[go: up one dir, main page]

WO1996032670A1 - Operational reaction force control device for an operating lever of a working machine - Google Patents

Operational reaction force control device for an operating lever of a working machine Download PDF

Info

Publication number
WO1996032670A1
WO1996032670A1 PCT/JP1996/000983 JP9600983W WO9632670A1 WO 1996032670 A1 WO1996032670 A1 WO 1996032670A1 JP 9600983 W JP9600983 W JP 9600983W WO 9632670 A1 WO9632670 A1 WO 9632670A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
acceleration
lever
working machine
control device
Prior art date
Application number
PCT/JP1996/000983
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Ikeda
Keisuke Miyata
Nobuyoshi Hayakawa
Yoshie Ideura
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to EP96909331A priority Critical patent/EP0821299A4/en
Priority to KR1019970706690A priority patent/KR100301627B1/en
Publication of WO1996032670A1 publication Critical patent/WO1996032670A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/52Details of compartments for driving engines or motors or of operator's stands or cabins
    • B66C13/54Operator's stands or cabins
    • B66C13/56Arrangements of handles or pedals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G7/00Manually-actuated control mechanisms provided with one single controlling member co-operating with one single controlled member; Details thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/04766Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks providing feel, e.g. indexing means, means to create counterforce

Definitions

  • the present invention relates to a device for controlling an operation reaction force applied to an operation lever for operating a work machine such as a boom in a work machine such as a crane.
  • An operation reaction force control device that applies an operation reaction force to an operation lever in order to improve the operability of an operation lever that operates the winch in a winch operation of a crane is already known.
  • Japanese Utility Model Publication No. 62-140777 discloses a control device that changes the operation reaction force so as to be in proportion to the weight of the suspended load.
  • the operating reaction force is generated not only according to the weight of the suspended load but also according to the lever operation amount (winch hoisting speed), and this reaction force is applied to the winch operation lever. In this way, the lever operability is further improved.
  • the work machine when the conventional technology that applies an operation reaction force proportional to the weight of the suspended load is applied, the work machine may be operated for a long time on a heavy load, or the work machine may be operated at a large constant speed for a long time.
  • a large operation reaction force is applied to the operation lever for a long time, and there is a problem that the operator becomes tired:
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an operation reaction force control device capable of easily performing an operation for effectively suppressing load deflection and reducing an operator's fatigue. What you do:
  • an operation reaction force control device for an operation lever of a working machine, wherein an operation reaction force is applied to an operation lever for operating the working machine in a direction opposite to an operation direction.
  • An acceleration detecting means for detecting an acceleration; and an operation reaction force applying means for applying an operation reaction force to the operation lever, the operation reaction force increasing with an increase in the acceleration detected by the acceleration detection means.
  • an operation reaction force that increases as the acceleration detected by the acceleration detection unit increases is applied to the operation lever: That is, when a load swing occurs in the work machine. For example, as shown in Fig. 5, the load 22 suspended from the work equipment 21 swings in the traveling direction of the work equipment (the rotation direction of the work equipment 23 in the turning operation, and the C or D direction in the undulating operation). In the event of occurrence, it is necessary to operate the work equipment 21 or 23 to accelerate or decelerate to reduce load swing
  • FIG. 1 is a diagram showing a configuration of an embodiment of an operation reaction force control device for an operation lever of a working machine according to the present invention.
  • FIG. 2 is a control characteristic diagram showing a relationship between work machine acceleration and operation reaction force:
  • FIG. 3 is a diagram showing another embodiment of the present invention.
  • FIG. 4 is a diagram showing another embodiment of the present invention.
  • FIG. 5 is a side view of the mobile crane applied to the embodiment:
  • FIG. 1 is a diagram showing a configuration of a device for controlling an operation reaction force of an operation lever 1 disposed in a cab of a crane 20 shown in FIG.
  • a work implement raising spool 5 and a lowering spool 6 are disposed below the two pistons 3 and 4, respectively.
  • the spool 5 or 6 on the side corresponding to the pressed down piston is a metering spring. By being pushed by 7 or 8, lower Moved in this case, since spool 3 is depressed, spool 5 is moved downward.
  • the port pressure P1 or P2 rises to a magnitude proportional to the operation stroke of the operation lever 1, and the port pressure P1 or P2 of this magnitude rises to the pilot port 9a or 9b of the control valve 9.
  • the operating lever 1 is operated in the direction of the boom, and the port pressure P 1 proportional to the operating stroke acts on the pilot port 9 a of the control valve 9:
  • the control valve 9 is operated, the hydraulic cylinder for driving the boom 21 is driven at a speed corresponding to the valve opening, and the boom 21 is raised.
  • the control valve 9 acts on the pilot port 9b, the control valve 9 is moved in the reverse direction, and the boom 21 is lowered via the hydraulic cylinder.
  • the rotating shaft 10a of the motor 10 is connected to the base of the shaft 1b of the operating lever 1, and the operating lever 1 is operated in the operating direction or in the opposite direction to the operating direction according to the rotation of the motor 10.
  • the rotation direction and the rotation torque of the motor 10 are changed according to the electric command signal (voltage) output from the controller 11.
  • Pressure sensors 12 and 17 that detect the pipe pressures Pl and P2 as the lever operation amount Pl in the boom raising direction and the lever operation amount P2 in the boom lowering direction are provided in the lines 16 and 17 respectively. 13 are provided respectively, and the detected pressures Pl and P2 of the pressure sensors 12 and 13 as lever operation amount detecting means are output to the controller 11
  • the acceleration detector 14 is a detector that detects acceleration when the boom 21 moves up or down, and includes, for example, a speed sensor (for example, a rotary encoder or a laser speed). And a differentiation circuit that differentiates the output of this speed sensor and outputs acceleration ⁇ . Also, a servo-type acceleration sensor or the like is used as the acceleration sensor 14. The detected acceleration ⁇ of the acceleration detector 14 may be output to the controller 11:
  • the function of the differentiating circuit may be incorporated in the controller 11: Also, as the lever operation amount detecting means, the operation amount of the operation lever 1 is replaced with the rotation amount instead of the pressure sensor 1 2 1 3 A potentiometer or the like that detects the current may be used.
  • the lever operation amount may be detected as the speed of the boom 21.
  • the acceleration detector 14 is configured by a combination of a speed sensor and a differentiation circuit, the detection value of the speed sensor is It can be used as it is as the lever operation amount detection value, and it is not necessary to separately provide a lever operation amount detection means, and the cost can be reduced.
  • the acceleration ⁇ of the boom 21 may be detected by differentiating the pressure Pl P2 by regarding the pressure Pl ⁇ 2 as the speed of the boom 21:
  • the controller 11 gives the direction opposite to the operating direction of the operating lever 1 based on the boom acceleration ⁇ detected by the acceleration detector 14 and the lever operation amount P l ⁇ 2 detected by the pressure sensor 1 2 1 3
  • An operation reaction force F to be obtained (see FIG. 1) is determined as described later, an electric command signal corresponding to the operation reaction force F is generated, and the electric command signal is output to the motor 10 ".
  • FIG. 2 is a graph showing the control characteristics of such a reaction force control.
  • the relationship between the boom acceleration ⁇ , the lever operation amount P l ⁇ 2, and the lever operation reaction force F is shown by the control characteristics (L 1 to: LM L 2 ) Is stored in the memory of controller 11:
  • control characteristic L is set so that the operation reaction force F gradually increases as the acceleration ⁇ of the boom 21 increases.
  • the operation reaction force F is used to prevent the operation reaction force from reversing when the boom is decelerated (when the direction of the speed of the boom 21 by the lever operation is opposite to the direction of the acceleration). Is set to a low value close to zero
  • the controller 11 selects L1 as the control characteristic: and the lever operation amount Pl , ⁇ 2 is equal to or greater than a second threshold value set as a value larger than the first threshold value, the control characteristic L2 is selected, and the lever operation amount P l, ⁇ 2 is When the value becomes larger than the first threshold value and smaller than the second threshold value, as the operation amount increases in the range of L 1 to L 2 as shown by the arrow.
  • Control characteristic L ⁇ is selected such that operation reaction force F increases.
  • an operation reaction force F corresponding to the current boom acceleration ⁇ is obtained, an electric command signal corresponding to the operation reaction force F is generated, and output to the motor 10.
  • the motor 10 is driven, and an operation reaction force F is applied to the operation lever 1:
  • the operator can grasp the acceleration / deceleration state of the boom 21 as a working machine based on the operation reaction force F applied to the operation lever 1, and accelerate or decelerate the boom 21.
  • the operation reaction force F can be easily controlled by hand, and the deflection of the load can be suppressed effectively.
  • big operation counter Since the force F does not act on the control lever 1, even when the boom 21 is operated for a long time against a heavy load or when the boom 21 is operated at a large constant speed for a long time, a large operation reaction force is generated. F is not applied to the operation lever 1 for a long time, and the fatigue of the operation is greatly reduced.
  • the control characteristic L shown in Fig. 2 is an example. Pattern can be set
  • control characteristic L is changed according to the lever operation amount.
  • control characteristic L is fixed (for example, fixed to L1).
  • FIGS. 3 and 4 show another embodiment of the present invention.
  • a detector for detecting the acceleration of the boom up-and-down movement is arranged at the boom tip.
  • the acceleration sensor is expensive, a sensor for detecting the boom angle or the boom position is used as a detector for detecting the acceleration of the boom undulating movement, and the detection values of these sensors are differentiated by the second order.
  • the position of the boom tip in the front-rear direction can be estimated from the boom undulation angle 0 (see Fig. 3) and the boom length L. Due to the movement of the boom caused by the wind, etc., complex movements are caused:
  • the accelerometer is mounted on an up-and-down cylinder 30 for raising and lowering the boom, the acceleration clock is used to measure the up-and-down acceleration of the boom, and a torque corresponding to the measured value is given as an operation reaction force. Therefore, it is difficult for the crane operator to accurately grasp the movement of the boom tip.
  • the up-and-down cylinder 30 and the boom 21 are linked to each other, the up-and-down The relationship between the speed and the boom hoisting angular velocity is not linear, which also makes the method of attaching the accelerometer to the hoisting cylinder 3 difficult for the crane operator to grasp the movement of the boom tip.
  • the angle detector 25 is attached to the tip of the boom 21.
  • the output of the angle detector 25 is input to the controller 11 as shown in FIG.
  • the controller 11 calculates a component cos 0 in the front-rear direction of the boom angle 0 input from the angle detector 25 (more precisely, the front-rear direction with respect to the boom 21 and not the vehicle front-rear direction). By calculating the second-order derivative of the calculated value cos 0, a component in the longitudinal direction of the acceleration of the boom tip, cos 0, is obtained. Then, as in the previous embodiment, the controller 11 calculates the acceleration of the boom tip obtained in this manner.
  • the operation reaction force F to be applied in the direction opposite to the operation direction of the operation lever 1 is determined based on the component cos ⁇ in the front-rear direction and the lever operation amounts P l and ⁇ 2 detected by the pressure sensors 12 and 13. Obtained from the relationship shown in FIG. 2, generates an electric command signal corresponding to the operation reaction force F, and outputs the electric command signal to the motor 10 to thereby drive the motor 10 and operate Lever 1 has front and rear acceleration An operation reaction force F proportional to the direction component cos 0 is applied.
  • the torque proportional to the acceleration in the front-rear direction of the boom tip is applied to the up / down operating lever as a reaction force.
  • Direction of movement acceleration
  • the sensor for detecting the acceleration of the boom tip is: An inexpensive boom angle sensor is used, and the output of this sensor is second-order differentiated to determine the acceleration at the tip of the boom, which can also reduce equipment costs.
  • the longitudinal acceleration of the boom tip is determined, but the vertical acceleration of the boom tip is determined, and a force proportional to this acceleration is applied to the up / down lever as an operation reaction force. Also good Further, in the above embodiment, the boom angle sensor for calculating the boom angle at the tip of the boom is used. You can also determine the tip acceleration:
  • a crane boom is assumed as a working machine, but the working machine can be applied to any working machine as long as the working machine is driven to suppress load deflection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Control Devices (AREA)
  • Operation Control Of Excavators (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

An operation for effectively preventing the swing of load is made possible by imparting to an operating lever (1) an operational reaction force F that becomes greater as an acceleration α detected by an acceleration detecting means (14) becomes greater, and moreover the operator can be relieved of fatigue.

Description

明 細 書 作業機の操作レバーの操作反力制御装置 技術分野  Description Reaction control device for operating lever of work machine
本発明は、 クレーン等の作業機械において、 ブーム等の作業機を作動させる操 作レバーに付与される操作反力を制御する装置に関する:: 背景技術  The present invention relates to a device for controlling an operation reaction force applied to an operation lever for operating a work machine such as a boom in a work machine such as a crane.
クレーンのウィンチ作業において、 ウィンチを作動させる操作レバーの操作性 を向上させることを目的として、 操作レバーに操作反力を付与するようにした操 作反力制御装置は、 既に公知となっている  An operation reaction force control device that applies an operation reaction force to an operation lever in order to improve the operability of an operation lever that operates the winch in a winch operation of a crane is already known.
例えば、 実公昭 6 2— 1 4 0 7 7号公報では、 吊り荷の重量の大きさに比例し た大きさとなるよう操作反力を変化させる制御装置が開示されている。  For example, Japanese Utility Model Publication No. 62-140777 discloses a control device that changes the operation reaction force so as to be in proportion to the weight of the suspended load.
さらに、 特公平 5— 5 7 5 5号公報では、 吊り荷の重量ばかりではなく、 レバ —操作量 (ウィンチの巻上げ速度) に応じて、 操作反力を生成し、 これをウィン チ操作レバーに付与するようにして、 より一層のレバー操作性向上を図らんとし ている。  Furthermore, in Japanese Patent Publication No. 5-5 75.5, the operating reaction force is generated not only according to the weight of the suspended load but also according to the lever operation amount (winch hoisting speed), and this reaction force is applied to the winch operation lever. In this way, the lever operability is further improved.
しかし、 上記従来技術は、 ウィンチ作業において有効であるにしても、 クレー ンの旋回作業や作業機 (ブーム) の起伏作業時に、 適用した場合には、 必ずしも 有効ではない。  However, even if the above-mentioned prior art is effective in winch work, it is not necessarily effective when applied to crane turning work or work machine (boom) up / down work.
すなわち、 図 5に示すようにクレーン 2 0のブーム 2 1を矢印 A、 B方向に起 伏作動させた場合には、 オペレータ側においてブーム 2 1の加速度がわからずブ ーム 2 1の動きが把握できないために、 操作レバーによるブーム 2 1の微妙な運 動制御が難しく、 荷振れが生じ、 吊り荷 2 2が矢印 C、 D方向に振り子のような 振動的な相対運動をしてしまう  That is, as shown in Fig. 5, when the boom 21 of the crane 20 is raised and lowered in the directions of arrows A and B, the operator cannot know the acceleration of the boom 21 and the movement of the boom 21 is limited. Because it cannot be grasped, it is difficult to finely control the movement of the boom 21 with the operation lever, and the load swings, causing the suspended load 22 to move in a vibrating relative motion like a pendulum in the directions of arrows C and D.
また、 上部旋回体 2 3を旋回作動させた場合にも、 同様にして、 旋回方向に吊 り荷 2 2の荷振れが発生することになる  Similarly, when the upper swing body 23 is swung, swinging of the suspended load 22 occurs in the swing direction.
そこで、 このような荷振れを有効に抑える操作ができるような操作反力を操作 レバーに付与する必要があるが、 吊り荷の重量や、 レバー操作量といった情報の みに基づいた操作反力を操作レバーに付与するという上記従来技術では、 対処す ることはできなかった。 Therefore, an operation reaction force that enables such an operation to effectively suppress the load swing is operated. Although it is necessary to apply the lever to the lever, the above-described conventional technique of applying an operation reaction force to the operating lever based only on information such as the weight of the suspended load and the amount of lever operation cannot be dealt with.
さらに、 吊り荷の重さに比例した操作反力を付与する従来技術を適用した場合 には、 重い荷に対して作業機を長い時間操作する場合や、 作業機を大きい一定速 度で長い時間操作する場合等には、 大きな操作反力が長い間、 操作レバーに作用 されることになり、 オペレータが疲労してしまうという問題もあった:  Furthermore, when the conventional technology that applies an operation reaction force proportional to the weight of the suspended load is applied, the work machine may be operated for a long time on a heavy load, or the work machine may be operated at a large constant speed for a long time. When operating, for example, a large operation reaction force is applied to the operation lever for a long time, and there is a problem that the operator becomes tired:
本発明は、 こうした実状に «みてなされたものであり、 荷振れを有効に抑える 操作を容易に行うことができ、 しかもオペレータの疲労を軽減できる操作反力制 御装置を提供することを目的とするものである:  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an operation reaction force control device capable of easily performing an operation for effectively suppressing load deflection and reducing an operator's fatigue. What you do:
発明の開示 Disclosure of the invention
そこでこの発明では、 作業機を作動させる操作レバーに対して、 操作方向とは 反対方向に操作反力を付与するようにした作業機の操作レバーの操作反力制御装 置において、 前記作業機の加速度を検出する加速度検出手段と、 前記加速度検出 手段で検出された加速度が大きくなるに伴って大きくなる操作反力を前記操作レ バーに対して付与する操作反力付与手段とを具えるようにしている。  Therefore, according to the present invention, there is provided an operation reaction force control device for an operation lever of a working machine, wherein an operation reaction force is applied to an operation lever for operating the working machine in a direction opposite to an operation direction. An acceleration detecting means for detecting an acceleration; and an operation reaction force applying means for applying an operation reaction force to the operation lever, the operation reaction force increasing with an increase in the acceleration detected by the acceleration detection means. ing.
この構成によれば、 加速度検出手段で検出された加速度が大きくなるに伴って 大きくなる操作反力を前記操作レバーに対して付与するようにしている: すなわち、 作業機に荷振れが発生した場合、 たとえば、 図 5に示すよう、 作業 機 2 1に吊り下げられた荷 2 2が、 作業機進行方向 (旋回操作では作業機 2 3の 回転方向、 起伏操作では Cまたは D方向) に荷振れが発生した場合には、 作業機 2 1または 2 3を、 加速あるいは減速させて荷振れを抑える操作をする必要があ る  According to this configuration, an operation reaction force that increases as the acceleration detected by the acceleration detection unit increases is applied to the operation lever: That is, when a load swing occurs in the work machine. For example, as shown in Fig. 5, the load 22 suspended from the work equipment 21 swings in the traveling direction of the work equipment (the rotation direction of the work equipment 23 in the turning operation, and the C or D direction in the undulating operation). In the event of occurrence, it is necessary to operate the work equipment 21 or 23 to accelerate or decelerate to reduce load swing
そこで、 作業機の加速度が大きくなるに伴って操作反力が大きくなるよう操作 反力を変化させるようにすることで、 操作反力に基づいて、 作業機の加速、 減速 状態を把握できるようにした この結果、 作業機を、 加速あるいは減速させて荷 振れを抑える操作 (作業機に対する荷の相対的な運動の制御) 力、'、 操作反力を手 がかりに容易にできるようになり、 荷振れを有効に抑えることができるようにな る また、 加速伏態あるいは減速状態を除いた一定速度のときには、 大きな操作反 力が操作レバーに作用しないので、 重い荷に対して作業機を長い時間操作する場 合や、 作業機を大きい一定速度で長い時間操作する場合であっても、 大きな操作 反力が長時間操作レバーに付与されることがなくなり、 オペレータの疲労を飛躍 的に軽減することができる = 図面の簡単な説明 Therefore, by changing the operation reaction force so that the operation reaction force increases with the acceleration of the work equipment, the acceleration and deceleration states of the work equipment can be grasped based on the operation reaction force. As a result, the work machine can be accelerated or decelerated to reduce the load deflection (control of the relative movement of the load with respect to the work machine). Be able to effectively reduce runout In addition, when operating at a constant speed other than the accelerating state or the decelerating state, a large operation reaction force does not act on the operation lever. Even if the operation is performed for a long time, a large operation reaction force is not applied to the operation lever for a long time, and operator fatigue can be drastically reduced = Brief explanation of drawings
【図 1】 本発明に係る作業機の操作レバーの操作反力制御装置の実施例の構成 を示す図である。  FIG. 1 is a diagram showing a configuration of an embodiment of an operation reaction force control device for an operation lever of a working machine according to the present invention.
【図 2】 作業機加速度と操作反力との関係を示す制御特性図である:.  FIG. 2 is a control characteristic diagram showing a relationship between work machine acceleration and operation reaction force:
【図 3】 この発明の他の実施例を示す図である  FIG. 3 is a diagram showing another embodiment of the present invention.
【図 4】 この発明の他の実施例を示す図である  FIG. 4 is a diagram showing another embodiment of the present invention.
【図 5】 実施例に適用されるクレーン車の側面図である:  FIG. 5 is a side view of the mobile crane applied to the embodiment:
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明に係る作業機の操作レバーの操作反力制御装置の 実施例について説明する《  Hereinafter, an embodiment of an operation reaction force control device for an operation lever of a working machine according to the present invention will be described with reference to the drawings.
実施例では、 図 3に示すように、 クレーン 2 0の作業機であるブーム 2 1の起 伏を操作する操作レバーに付与される操作反力を制御する場合を、 想定して説明 する。  In the embodiment, as shown in FIG. 3, a case will be described assuming a case in which an operation reaction force applied to an operation lever for operating the boom 21 which is a working machine of the crane 20 is raised and lowered.
図 1は、 図 3に示すクレーン 2 0の運転室内に配設される操作レバー 1の操作 反力を制御する装置の構成を示す図である  FIG. 1 is a diagram showing a configuration of a device for controlling an operation reaction force of an operation lever 1 disposed in a cab of a crane 20 shown in FIG.
すなわち、 いま、 操作レバー 1が矢印方向 (ブーム 2 1を上昇させる方向) に 操作されると、 遠隔操作弁 2の作業機上げ用ピス トン、 下げ用ピス トン 3、 4の うち、 操作方向に対応するピス トン 3が、 操作プレート 1 aを介して押し下げら れる: なお、 操作レバー 1が逆方向 (ブーム 2 1を下降させる方向) に操作され ると、 ピス トン 4が同様に押し下げられる  That is, when the operating lever 1 is operated in the direction of the arrow (in the direction in which the boom 21 is raised), the remote control valve 2 is moved in the operating direction out of the working equipment raising piston and the lowering piston 3, 4. The corresponding piston 3 is pushed down via the operating plate 1a: If the operating lever 1 is operated in the opposite direction (the direction to lower the boom 21), the piston 4 is also pushed down
両ピス トン 3、 4の下方にはそれぞれ、 作業機上げ用スプール 5、 下げ用スプ ール 6が配置されており、 上記押し下げられたビス トンに対応する側のスプール 5または 6力 メータリングスプリング 7または 8によって押されることで、 下 方へ動かされる, ここでは、 ピス トン 3が押し下げられているので、 スプール 5 が下方へ動かされる。 A work implement raising spool 5 and a lowering spool 6 are disposed below the two pistons 3 and 4, respectively.The spool 5 or 6 on the side corresponding to the pressed down piston is a metering spring. By being pushed by 7 or 8, lower Moved in this case, since spool 3 is depressed, spool 5 is moved downward.
この結果、 ファインコントロール穴 f を介して、 油圧ポンプ 1 5の吐出口に連 通するポンプ圧力室 Ppと、 ドレン室 Dとの連結、 遮断が繰り返される やがて、 押し下げられたビストンに対応する側の管路 1 6または 1 7のポート圧 P 1また は P 2が、 メータリングスプリング 7または 8を縮める力 (レバー 1の操作スト ローク量に比例している) に相当する圧力にまで上昇し、 両者が、 ドレン穴 Dと ポンプ圧力室 Ppの中間位置でつり合う:  As a result, the connection and cutoff of the pump pressure chamber Pp communicating with the discharge port of the hydraulic pump 15 via the fine control hole f and the drain chamber D are repeated, and soon the piston corresponding to the pushed down piston The port pressure P1 or P2 in line 16 or 17 rises to a pressure corresponding to the force (proportional to the operating stroke of lever 1) that compresses metering spring 7 or 8, Both balance in the middle position between the drain hole D and the pump pressure chamber Pp:
すなわち、 ポート圧 P 1または P2は、 操作レバ一 1の操作ストローク量に比例 した大きさまで上昇し、 この大きさのポート圧 P 1または P 2がコントロールバル ブ 9のパイロッ トポート 9 aまたは 9 bに作用する: ここでは、 操作レバー 1力、'、 ブーム上げ方向に操作されており、 その操作ストローク量に比例したポート圧 P 1がコン ト ロールバルブ 9のパイロッ トポー ト 9 aに作用する: この結果、 コン トロールバルブ 9が作動して、 その弁開度に応じた速度で、 ブーム 2 1の駆動用 の油圧シリンダが駆動され、 ブーム 2 1が上昇される なお、 ポート圧 P 2がコ ン トロールバルブ 9のパイ口ッ トポー ト 9 bに作用した場合は、 コンロールバル ブ 9が逆方向に動かされ、 上記油圧シリンダを介して、 ブーム 2 1が下降される ことになる。  That is, the port pressure P1 or P2 rises to a magnitude proportional to the operation stroke of the operation lever 1, and the port pressure P1 or P2 of this magnitude rises to the pilot port 9a or 9b of the control valve 9. In this case, the operating lever 1 is operated in the direction of the boom, and the port pressure P 1 proportional to the operating stroke acts on the pilot port 9 a of the control valve 9: As a result, the control valve 9 is operated, the hydraulic cylinder for driving the boom 21 is driven at a speed corresponding to the valve opening, and the boom 21 is raised. When the control valve 9 acts on the pilot port 9b, the control valve 9 is moved in the reverse direction, and the boom 21 is lowered via the hydraulic cylinder.
操作レバー 1の軸 1 bの根元には、 モータ 1 0の回転軸 1 0 aが連結されてお り、 モータ 1 0の回転に応じて、 操作レバー 1を操作方向ないし操作方向とは逆 方向に傾転させ得るようになつている  The rotating shaft 10a of the motor 10 is connected to the base of the shaft 1b of the operating lever 1, and the operating lever 1 is operated in the operating direction or in the opposite direction to the operating direction according to the rotation of the motor 10. To be able to tilt
モータ 1 0は、 コン トローラ 1 1から出力される電気指令信号 (電圧.) に応じ て、 その回転方向およびその回転トルクが変化される  The rotation direction and the rotation torque of the motor 10 are changed according to the electric command signal (voltage) output from the controller 11.
管路 1 6、 1 7には、 管路内圧力 P l、 P 2をそれぞれ、 ブーム上昇方向のレバ 一操作量 P l、 ブーム下降方向のレバ一操作量 P2として検出する圧力センサ 1 2、 1 3がそれぞれ配設されており、 レバー操作量検出手段としての圧力センサ 1 2、 1 3の各検出圧 P l、 P 2は、 コン トローラ 1 1に出力される  Pressure sensors 12 and 17 that detect the pipe pressures Pl and P2 as the lever operation amount Pl in the boom raising direction and the lever operation amount P2 in the boom lowering direction are provided in the lines 16 and 17 respectively. 13 are provided respectively, and the detected pressures Pl and P2 of the pressure sensors 12 and 13 as lever operation amount detecting means are output to the controller 11
加速度検出器 1 4は、 ブーム 2 1が上昇ないしは下降するときの加速度を検出 する検出器であり、 例えば、 速度センサ (例えばロータ リエンコーダやレーザ速 度センサが使用される) と、 この速度センサの出力を微分し加速度 αを出力する 微分回路との組合わせで構成されている また、 加速度センサ 1 4として、 サー ボ型加速度センサ等を使用してもよい 加速度検出器 1 4の検出加速度 αは、 コ ントローラ 1 1に出力される: The acceleration detector 14 is a detector that detects acceleration when the boom 21 moves up or down, and includes, for example, a speed sensor (for example, a rotary encoder or a laser speed). And a differentiation circuit that differentiates the output of this speed sensor and outputs acceleration α. Also, a servo-type acceleration sensor or the like is used as the acceleration sensor 14. The detected acceleration α of the acceleration detector 14 may be output to the controller 11:
なお、 上記微分回路の機能をコントローラ 1 1に組み込む様にしてもよい: また、 上記レバー操作量検出手段として、 上記圧力センサ 1 2 1 3の代わり に、 操作レバ一 1の操作量を回転量として検出するポテンショメータ等を使用し てもよい。  Note that the function of the differentiating circuit may be incorporated in the controller 11: Also, as the lever operation amount detecting means, the operation amount of the operation lever 1 is replaced with the rotation amount instead of the pressure sensor 1 2 1 3 A potentiometer or the like that detects the current may be used.
なお、 レバー操作量を、 ブーム 2 1の速度として検出してもよく、 上記加速度 検出器 1 4を速度センサと微分回路との組合わせで構成した場合には、 当該速度 センサの検出値を、 そのままレバー操作量検出値として使用することができ、 レ バー操作量検出手段を別途設ける必要がなくなり、 コストダウンを図ることがで さる。  Note that the lever operation amount may be detected as the speed of the boom 21. When the acceleration detector 14 is configured by a combination of a speed sensor and a differentiation circuit, the detection value of the speed sensor is It can be used as it is as the lever operation amount detection value, and it is not necessary to separately provide a lever operation amount detection means, and the cost can be reduced.
また、 圧力 P l Ρ2をブーム 2 1の速度とみて、 圧力 P l Ρ2を微分すること により、 ブーム 2 1の加速度 αを検出するようにしてもよい:  The acceleration α of the boom 21 may be detected by differentiating the pressure Pl P2 by regarding the pressure PlΡ2 as the speed of the boom 21:
コントローラ 1 1では、 加速度検出器 1 4で検出されたブーム加速度 α、 圧力 センサ 1 2 1 3で検出されたレバー操作量 P l Ρ2に基づいて、 操作レバー 1 の操作方向とは逆方向に付与すべき操作反力 F (図 1参照) を後述するようにし て求め、 この操作反力 Fに対応する電気指令信号を生成し、 この電気指令信号を モータ 1 0に対して出力する」  The controller 11 gives the direction opposite to the operating direction of the operating lever 1 based on the boom acceleration α detected by the acceleration detector 14 and the lever operation amount P l 操作 2 detected by the pressure sensor 1 2 1 3 An operation reaction force F to be obtained (see FIG. 1) is determined as described later, an electric command signal corresponding to the operation reaction force F is generated, and the electric command signal is output to the motor 10 ".
図 2は、 こうした反力制御の制御特性を示すグラフであり、 ブーム加速度 αと、 レバー操作量 P l Ρ2と、 レバー操作反力 Fとの関係を制御特性し (L 1〜: LM L 2) として示している かかる関係は、 コントローラ 1 1のメモリに記憶され ている:  FIG. 2 is a graph showing the control characteristics of such a reaction force control. The relationship between the boom acceleration α, the lever operation amount P l Ρ2, and the lever operation reaction force F is shown by the control characteristics (L 1 to: LM L 2 ) Is stored in the memory of controller 11:
図 2からもわかるように、 ブーム 2 1の加速度 αが大きくなるに伴って、 操作 反力 Fが次第に大きくなるように、 制御特性 Lが設定されている  As can be seen from FIG. 2, the control characteristic L is set so that the operation reaction force F gradually increases as the acceleration α of the boom 21 increases.
また、 レバー操作量 P l Ρ2が大きくなるに伴って、 制御特性が L I— LJ1— L 2へと順次、 変化されて、 操作反力 Fが次第に大きくなるような制御特性 L 1 L M L 2が設定されている 一 0 一 より詳しくいえば、 In addition, as the lever operation amount P l Ρ2 increases, the control characteristics are changed to LI-LJ1-L2 sequentially, and the control characteristics L 1 LML 2 are set so that the operation reaction force F gradually increases. Being one 0 one More specifically,
' ブーム加速度 αが負の場合には、 ブーム減速時 (レバー操作によるブーム 2 1 の速度の方向が、 加速度の方向と逆のとき) における操作反力反転を防止する ために、 操作反力 Fを零に近い低い値に設定している  'When the boom acceleration α is negative, the operation reaction force F is used to prevent the operation reaction force from reversing when the boom is decelerated (when the direction of the speed of the boom 21 by the lever operation is opposite to the direction of the acceleration). Is set to a low value close to zero
• また、 荷振れの抑制よりもレバー 1の微細な操作を要求されることの多いレバ 一操作量が小さい領域では、 操作反力 Fを小さくしてブーム 2 1の微細なコン トロールをしやすくする必要がある そこで、 レバー操作量が小さくなるにつ れて操作反力 Fがより小さくなるように、 制御特性を L2— LJI— L 1へと順次 、 変化させるようにしている。  • In addition, in areas where the lever operation amount is often required to be finer than lever control, it is easier to control the boom 21 finely by reducing the operation reaction force F. Therefore, the control characteristics are sequentially changed from L2 to LJI to L1 so that the operation reaction force F becomes smaller as the lever operation amount becomes smaller.
' また、 ブーム 2 1の加速度 αが極端に大きいときには、 操作反力 Fを大きくし て、 誤操作等によるブーム 2 1の急激な動きを抑える必要がある そこで、 ブ ーム加速度ひが大きい領域では、 小さい領域よりも、 制御特性 Lの傾斜が大き くなるよう、 操作反力 Fをノンリニアに変化させるようにしている: '' Also, when the acceleration α of the boom 21 is extremely large, it is necessary to increase the operation reaction force F to suppress rapid movement of the boom 21 due to erroneous operation. The operation reaction force F is changed non-linearly so that the slope of the control characteristic L is larger than that in the small region:
コン トローラ 1 1では、 現在のレバー操作量 P l、 Ρ2が所定の第 1のしきい値 以下になった場合には、 制卸特性として L 1が選択される: そして、 レバー操作 量 P l、 Ρ2が、 上記第 1のしきい値よりも大きな値として設定された第 2のしき い値以上になった場合には、 制御特性 L2が選択される そして、 レバー操作量 P l、 Ρ2が上記第 1のしきい値よりも大きく上記第 2のしきい値よりも小さい値 となった場合には、 矢印に示すように L 1〜し 2の範囲で、 操作量が大きくなるに 伴って操作反力 Fが大きくなるような制御特性 L Μが選択される  When the current lever operation amount Pl, Ρ2, is equal to or less than the predetermined first threshold value, the controller 11 selects L1 as the control characteristic: and the lever operation amount Pl , Ρ2 is equal to or greater than a second threshold value set as a value larger than the first threshold value, the control characteristic L2 is selected, and the lever operation amount P l, Ρ2 is When the value becomes larger than the first threshold value and smaller than the second threshold value, as the operation amount increases in the range of L 1 to L 2 as shown by the arrow. Control characteristic L Μ is selected such that operation reaction force F increases.
さらに、 こうして選択した制御特性 Lに基づき、 現在のブーム加速度 αに対応 する操作反力 Fを求め、 この操作反力 Fに対応する電気指令信号を生成し、 モー タ 1 0に出力する。 これにより、 モータ 1 0が駆動され、 操作レバー 1には操作 反力 Fが付与される:  Further, based on the control characteristic L thus selected, an operation reaction force F corresponding to the current boom acceleration α is obtained, an electric command signal corresponding to the operation reaction force F is generated, and output to the motor 10. As a result, the motor 10 is driven, and an operation reaction force F is applied to the operation lever 1:
この結果、 オペレータとしては操作レバー 1に付与された操作反力 Fに基づい て、 作業機としてのブーム 2 1の加速、 減速状態を把握できるようになり、 ブー ム 2 1を、 加速あるいは減速させて荷振れを抑える操作を、 操作反力 Fを手がか りに容易にできるようになり、 荷振れを有効に抑えることができるようになる また、 加速状態あるいは減速状態を除いた一定速度のときには、 大きな操作反 力 Fが操作レバー 1に作用しないので、 重い荷に対してブーム 2 1を長い時間操 作する場合や、 ブーム 2 1を大きい一定速度で長い時間操作する場合であっても、 大きな操作反力 Fが長時間操作レバー 1に付与されることがなくなり、 オペレー 夕の疲労が飛躍的に軽減される- なお、 上記図 2に示す制御特性 Lは一例であり、 作業条件等に応じて種々のパ ターンを設定することができる As a result, the operator can grasp the acceleration / deceleration state of the boom 21 as a working machine based on the operation reaction force F applied to the operation lever 1, and accelerate or decelerate the boom 21. In this way, the operation reaction force F can be easily controlled by hand, and the deflection of the load can be suppressed effectively. Sometimes, big operation counter Since the force F does not act on the control lever 1, even when the boom 21 is operated for a long time against a heavy load or when the boom 21 is operated at a large constant speed for a long time, a large operation reaction force is generated. F is not applied to the operation lever 1 for a long time, and the fatigue of the operation is greatly reduced.- The control characteristic L shown in Fig. 2 is an example. Pattern can be set
例えば、 実施例では、 レバー操作量に応じて制御特性 Lを変化させるようにし ているが、 レバー操作量の大きさいかんにかかわらず、 制御特性 Lを固定 (例え ば L 1に固定) するような実施も可能である  For example, in the embodiment, the control characteristic L is changed according to the lever operation amount. However, regardless of the magnitude of the lever operation amount, the control characteristic L is fixed (for example, fixed to L1). Implementation is also possible
次に、 図 3及び図 4に、 この発明の他の実施例を示す  Next, FIGS. 3 and 4 show another embodiment of the present invention.
この実施例では、 運転者がより正確にブーム先端の起伏運動を把握できるよう にするために、 ブーム起伏運動の加速度を検出するための検出器をブーム先端に 配設するようにしている = また、 加速度センサは高価であるために、 上記ブーム 起伏運動の加速度を検出するための検出器としては、 ブーム角度またはブーム位 置を検出するセンサを採用し、 これらのセンサの検出値を 2階微分することによ りブーム加速度を求めるようにしている:  In this embodiment, in order to allow the driver to more accurately grasp the up-and-down movement of the boom tip, a detector for detecting the acceleration of the boom up-and-down movement is arranged at the boom tip. = However, since the acceleration sensor is expensive, a sensor for detecting the boom angle or the boom position is used as a detector for detecting the acceleration of the boom undulating movement, and the detection values of these sensors are differentiated by the second order. To determine the boom acceleration by:
すなわち、 クレーンの運転者にとって、 ブーム先端の前後方向の位置は、 ブー ムの起伏角 0 (図 3参照) とブーム長 Lとから推定することができるが、 ブーム 先端は、 たわみ、 ブーム振動、 風などによるブーム移動などの影 を受けて、 複 雑な運動を起こす:  In other words, for the crane operator, the position of the boom tip in the front-rear direction can be estimated from the boom undulation angle 0 (see Fig. 3) and the boom length L. Due to the movement of the boom caused by the wind, etc., complex movements are caused:
したがって、 上記加速度計をブームを起伏するための起伏シリンダ 3 0に取り 付け、 この加速時計によってブームの起伏加速度を測定し、 この測定値に対応す る トルクを操作反力として与えるような手法などでは、 クレーン運転者は、 ブー ム先端の運動を正確に把握しているとはいい難い また、 起伏シリンダ 3 0とブ ーム 2 1とはリンク結合されているので、 起伏シリンダ 3 0の伸縮速度とブーム 起伏角速度との関係は線形とはならず、 このことによつても、 加速度計を起伏シ リンダ 3に取り付ける手法がクレーン運転者にとってブーム先端の運動を把握し にくいものとしている事がいえる  Therefore, the accelerometer is mounted on an up-and-down cylinder 30 for raising and lowering the boom, the acceleration clock is used to measure the up-and-down acceleration of the boom, and a torque corresponding to the measured value is given as an operation reaction force. Therefore, it is difficult for the crane operator to accurately grasp the movement of the boom tip.In addition, since the up-and-down cylinder 30 and the boom 21 are linked to each other, the up-and-down The relationship between the speed and the boom hoisting angular velocity is not linear, which also makes the method of attaching the accelerometer to the hoisting cylinder 3 difficult for the crane operator to grasp the movement of the boom tip. Say
このため、 この実施例では、 図 3に示すように、 ブーム角 0を検出するブーム 角検出器 2 5をブーム 2 1の先端に取り付けるようにしている: この角度検出器 2 5の出力は、 図 4に示すようにコントローラ 1 1に入力され る。 For this reason, in this embodiment, as shown in FIG. The angle detector 25 is attached to the tip of the boom 21. The output of the angle detector 25 is input to the controller 11 as shown in FIG.
コントローラ 1 1では、 角度検出器 2 5から入力されたブーム角 0の前後方向 (正確にはブーム 2 1に関しての前後方向であり、 車体の前後方向ではない) の 成分 cos 0を演算し、 この演算値 cos 0を 2階微分することにより、 ブーム先端の 加速度の前後方向の成分一 cos 0を求める そして、 コントローラ 1 1は、 先の 実施例同様、 このようにして求めたブーム先端の加速度の前後方向の成分一 cos θ、 圧力センサ 1 2、 1 3で検出されたレバー操作量 P l、 Ρ 2に基づいて、 操作 レバー 1の操作方向とは逆方向に付与すべき操作反力 Fを図 2に示した関係から 求め、 この操作反力 Fに対応する電気指令信号を生成し、 この電気指令信号をモ 一夕 1 0に対して出力する これにより、 モータ 1 0が駆動され、 操作レバー 1 には、 ブーム先端の加速度の前後方向の成分一 cos 0に比例した操作反力 Fが付 与される。  The controller 11 calculates a component cos 0 in the front-rear direction of the boom angle 0 input from the angle detector 25 (more precisely, the front-rear direction with respect to the boom 21 and not the vehicle front-rear direction). By calculating the second-order derivative of the calculated value cos 0, a component in the longitudinal direction of the acceleration of the boom tip, cos 0, is obtained. Then, as in the previous embodiment, the controller 11 calculates the acceleration of the boom tip obtained in this manner. The operation reaction force F to be applied in the direction opposite to the operation direction of the operation lever 1 is determined based on the component cos θ in the front-rear direction and the lever operation amounts P l and Ρ 2 detected by the pressure sensors 12 and 13. Obtained from the relationship shown in FIG. 2, generates an electric command signal corresponding to the operation reaction force F, and outputs the electric command signal to the motor 10 to thereby drive the motor 10 and operate Lever 1 has front and rear acceleration An operation reaction force F proportional to the direction component cos 0 is applied.
このようにこの実施例においては、 ブーム先端の前後方向の加速度に比例した トルクが反力として起伏操作レバーに加えられる このため、 クレーンの運転者 は、 起伏操作レバーを操作しながらブーム先端の前後方向の動き (加速度) を感 じることができ、 これによりブーム先端の動き (位置、 速度) を予測することも 可能になる- したがって、 吊り荷を移動させる際に、 できるだけ吊り荷の振れが 発生しないようにブーム操作を行う事も可能になる また、 ブームを起伏した際 に、 吊り荷に発生する振り子運動を止めるためには、 ブーム先端を吊り荷の真上 にもってくればよいのであるが、 このような操作を行う際にも本実施例は有効で ある: さらに、 この実施例では、 ブーム先端の加速度を検出するためのセンサと して、 安価なブーム角センサを用い、 このセンサの出力を 2階微分することによ りブーム先端の加速度を求めるようにしたので、 装置コストを下げる事も可能に なる  As described above, in this embodiment, the torque proportional to the acceleration in the front-rear direction of the boom tip is applied to the up / down operating lever as a reaction force. Direction of movement (acceleration), which makes it possible to predict the movement (position, speed) of the end of the boom. Therefore, when moving the suspended load, the swing of the suspended load is minimized. It is also possible to operate the boom so that it does not occur.In order to stop the pendulum movement that occurs in the suspended load when the boom is raised and lowered, the boom tip should be brought directly above the suspended load However, this embodiment is also effective in performing such an operation. Further, in this embodiment, the sensor for detecting the acceleration of the boom tip is: An inexpensive boom angle sensor is used, and the output of this sensor is second-order differentiated to determine the acceleration at the tip of the boom, which can also reduce equipment costs.
なお、 上記実施例では、 ブーム先端の前後方向の加速度を求めるようにしたが、 ブーム先端の上下方向の加速度を求め、 この加速度に比例した力を操作反力とし て起伏レバーに加えるようにしても良い また、 上記実施例では、 ブーム先端のブーム角を求めるブーム角センサを用い るようにしたが、 ブーム先端の位置を求める位置センサを設け、 この位置センサ にの出力を 2階微分することによりブーム先端の加速度を求めるようにしてもよ い: In the above-described embodiment, the longitudinal acceleration of the boom tip is determined, but the vertical acceleration of the boom tip is determined, and a force proportional to this acceleration is applied to the up / down lever as an operation reaction force. Also good Further, in the above embodiment, the boom angle sensor for calculating the boom angle at the tip of the boom is used. You can also determine the tip acceleration:
なお上記各実施例では、 作業機としてクレーンのブームを想定しているが、 荷 振れを抑制するために駆動される作業機であれば、 任意の作業機に適用すること ができる。 産業上の利用可能性  In each of the above embodiments, a crane boom is assumed as a working machine, but the working machine can be applied to any working machine as long as the working machine is driven to suppress load deflection. Industrial applicability
以上説明したように本発明によれば、 荷振れを有効に抑える操作が容易にでき るようになる。 また、 レバー操作中におけるオペレータの疲労が飛躍的に軽減さ れる  As described above, according to the present invention, it is possible to easily perform the operation of effectively suppressing the deflection of the load. In addition, operator fatigue during lever operation is dramatically reduced.

Claims

請求の範囲 The scope of the claims
1 . 作業機を作動させる操作レバーに対して、 操作方向とは反対方向に操作反力 を付与するようにした作業機の操作レバーの操作反力制御装置において、 前記作業機の加速度を検出する加速度検出手段と、 1. An operation reaction force control device for an operation lever of a work implement which applies an operation reaction force to an operation lever for operating the work implement in a direction opposite to an operation direction, wherein an acceleration of the work implement is detected. Acceleration detection means;
この加速度検出手段で検出された加速度が大きくなるに伴って大きくなる操作 反力を前記操作レバーに対して付与する操作反力付与手段と、  An operation reaction force applying unit that applies an operation reaction force to the operation lever that increases as the acceleration detected by the acceleration detection unit increases;
を備えるようにした作業機の操作レバーの操作反力制御装置。  An operation reaction force control device for an operation lever of a working machine, comprising:
2 . 前記加速度検出手段は、 作業機の先端に取り付けられるものである請求の範 囲第 1項記載の作業機の操作レバーの操作反力制御装置: 2. The operating reaction force control device for an operating lever of a working machine according to claim 1, wherein said acceleration detecting means is attached to a tip of the working machine.
3 . 前記加速度検出手段は、 作業機の前後方向の加速度を検出するものである請 求の範囲第 1項または 2項記載の作業機の操作レバーの操作反力制御装置: 3. The operating reaction force control device for an operating lever of a working machine according to claim 1 or 2, wherein said acceleration detecting means detects a longitudinal acceleration of the working machine.
4 . 前記操作レバーの操作量を検出する操作量検出手段とをさらに具え、 、 前記操作反力付与手段は、 前記操作量検出手段で検出された操作量が大きくな るに伴って大きくなる操作反力を前記操作レバーに対して付与するようにした請 求の範囲第 1項記載の作業機の操作レバーの操作反力制御装置: 4. An operation amount detection means for detecting an operation amount of the operation lever, wherein the operation reaction force applying means performs an operation that increases as the operation amount detected by the operation amount detection means increases. 2. A control device for controlling an operation lever of an operating lever of a working machine according to claim 1, wherein a reaction force is applied to said operation lever.
5 . 前記加速度検出手段は、 作業機の角度を検出する作業機角度検出手段と、 こ の作業機角度検出手段によつて検出された角度を 2階微分して作業機の加速度を 求める加速度演算手段と、 5. The acceleration detection means includes a work equipment angle detection means for detecting an angle of the work equipment, and an acceleration calculation for obtaining the acceleration of the work equipment by second-order differentiation of the angle detected by the work equipment angle detection means. Means,
を具える請求の範囲第 1項記載の作業機の操作レバーの操作反力制御装置  2. An operation reaction force control device for an operation lever of a working machine according to claim 1, further comprising:
6 . 前記作業機角度検出手段は、 作業機の先端に取り付けられる請求の範囲第 5 項記載の作業機の操作レバーの操作反力制御装置 6. The operating reaction force control device for an operating lever of a working machine according to claim 5, wherein the working machine angle detecting means is attached to a tip of the working machine.
7 . 前記操作レバーの操作量を検出する操作量検出手段とをさらに具え、 、 前記操作反力付与手段は、 前記操作量検出手段で検出された操作量が大きくな るに伴って大きくなる操作反力を前記操作レバーに対して付与するようにした請 求の範囲第 5項または第 6項記載の作業機の操作レバーの操作反力制御装置 7. An operation amount detecting means for detecting an operation amount of the operation lever, further comprising: The request range, wherein the operation reaction force applying means applies the operation reaction force to the operation lever, the operation reaction force increasing with an increase in the operation amount detected by the operation amount detection means. Or the operation reaction force control device for the operating lever of the work implement described in paragraph 6
8 . 前記加速度検出手段は、 作業機の位置を検出する作業機位置検出手段と、 こ の作業機位置検出手段によって検出された作業機位置を 2階微分して作業機の加 速度を求める加速度演算手段と、 8. The acceleration detection means includes: a work equipment position detection means for detecting a position of the work equipment; and an acceleration for obtaining the acceleration of the work equipment by second-order differentiation of the work equipment position detected by the work equipment position detection means. Arithmetic means;
を具える請求の範囲第 1項記載の作業機の操作レバーの操作反力制御装置  2. An operation reaction force control device for an operation lever of a working machine according to claim 1, further comprising:
9 . 前記作業機位置検出手段は、 作業機の先端に取り付けられる請求の範囲第 8 項記載の作業機の操作レバーの操作反力制御装置 9. The operating reaction force control device for an operating lever of a working machine according to claim 8, wherein the working machine position detecting means is attached to a tip of the working machine.
1 0 . 作業機を作動させる操作レバーに対して、 操作方向とは反対方向に操作反 力を付与するようにした作業機の操作レバーの操作反力制御方法において、 前記作業機の加速度を検出し、 この検出された加速度が大きくなるに伴って大 きくなる操作反力を前記操作レバ一に対して付与するようにしたことを特徴とす る作業機の操作レバーの操作反力制御方法 10. A method for controlling an operation reaction force of an operation lever of a work implement in which an operation reaction force is applied in a direction opposite to an operation direction to an operation lever for operating the work implement, wherein the acceleration of the work implement is detected. An operation reaction force control method for an operation lever of a working machine, wherein an operation reaction force that increases as the detected acceleration increases is applied to the operation lever.
PCT/JP1996/000983 1995-04-08 1996-04-10 Operational reaction force control device for an operating lever of a working machine WO1996032670A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96909331A EP0821299A4 (en) 1995-04-10 1996-04-10 Operational reaction force control device for an operating lever of a working machine
KR1019970706690A KR100301627B1 (en) 1995-04-08 1996-04-10 Operating reaction control device of operating lever of working machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/84069 1995-04-10
JP8406995 1995-04-10

Publications (1)

Publication Number Publication Date
WO1996032670A1 true WO1996032670A1 (en) 1996-10-17

Family

ID=13820213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000983 WO1996032670A1 (en) 1995-04-08 1996-04-10 Operational reaction force control device for an operating lever of a working machine

Country Status (5)

Country Link
EP (1) EP0821299A4 (en)
KR (1) KR100301627B1 (en)
CN (1) CN1181140A (en)
TW (1) TW353652B (en)
WO (1) WO1996032670A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049535A1 (en) * 2019-09-12 2021-03-18 株式会社小松製作所 Work vehicle and method for controlling work vehicle
JP2021042018A (en) * 2019-09-09 2021-03-18 株式会社タダノ Boom operation system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639809B1 (en) * 2001-11-05 2006-10-30 히다치 겡키 가부시키 가이샤 Operation lever device and construction machinery of construction machinery
DE10260902A1 (en) * 2002-12-20 2004-07-15 Hamm Ag Self-driving vehicle, in particular road construction machine, and method for driving and steering a vehicle with a rotatable driver's seat
FR2875940B1 (en) * 2004-09-24 2006-12-22 Dav Sa LEVER CONTROL DEVICE, IN PARTICULAR FOR ORDERING COMPONENTS OF A MOTOR VEHICLE
US7753078B2 (en) 2007-04-19 2010-07-13 Husco International Inc. Hybrid hydraulic joystick with an integral pressure sensor and an outlet port
US7753077B2 (en) * 2007-04-19 2010-07-13 Husco International Inc. Hybrid hydraulic joystick for electrically operating valves
KR101420353B1 (en) * 2007-08-08 2014-07-16 무그 인코포레이티드 Control stick adapted for use in a fly-by-wire flight control system, and linkage for use therein
CN103303800B (en) * 2013-06-24 2015-06-03 中联重科股份有限公司 Crane rotation control method and system and crane
CN104627840A (en) * 2015-01-09 2015-05-20 深圳市正弦电气股份有限公司 Crane force feedback system
CN112456361A (en) * 2020-11-25 2021-03-09 西北工业大学 Control method for reducing swing amplitude of underwater extension set of hydraulic winch for hoisting sonar
KR102812531B1 (en) * 2022-12-26 2025-05-26 (주)페스코 The apparatus and method for controlling the rotation angle of the winch lever in dual detecting type

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017510A (en) * 1983-07-08 1985-01-29 Sumitomo Electric Ind Ltd Feedback control device for steadying rope suspension crane
JPS6214077U (en) 1985-07-09 1987-01-28
JPS6223285U (en) * 1985-07-25 1987-02-12
JPH02254098A (en) * 1989-02-20 1990-10-12 Aerospat Soc Natl Ind Slanting stick controller for air plane in particular
JPH055755A (en) 1991-04-25 1993-01-14 Fuji Electric Co Ltd Optical transformer
JPH055755B2 (en) * 1988-03-03 1993-01-25 Kobe Steel Ltd

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68912508T2 (en) * 1988-10-26 1994-05-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.), Kobe Control device for the force to be exerted on a control lever.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017510A (en) * 1983-07-08 1985-01-29 Sumitomo Electric Ind Ltd Feedback control device for steadying rope suspension crane
JPS6214077U (en) 1985-07-09 1987-01-28
JPS6223285U (en) * 1985-07-25 1987-02-12
JPH055755B2 (en) * 1988-03-03 1993-01-25 Kobe Steel Ltd
JPH02254098A (en) * 1989-02-20 1990-10-12 Aerospat Soc Natl Ind Slanting stick controller for air plane in particular
JPH055755A (en) 1991-04-25 1993-01-14 Fuji Electric Co Ltd Optical transformer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0821299A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042018A (en) * 2019-09-09 2021-03-18 株式会社タダノ Boom operation system
WO2021049535A1 (en) * 2019-09-12 2021-03-18 株式会社小松製作所 Work vehicle and method for controlling work vehicle
KR20220025016A (en) * 2019-09-12 2022-03-03 가부시키가이샤 고마쓰 세이사쿠쇼 Work vehicle and control method of work vehicle
KR102641401B1 (en) 2019-09-12 2024-02-27 가부시키가이샤 고마쓰 세이사쿠쇼 Work vehicles and control methods for work vehicles
US12001236B2 (en) 2019-09-12 2024-06-04 Komatsu Ltd. Work vehicle and method for controlling work vehicle

Also Published As

Publication number Publication date
TW353652B (en) 1999-03-01
KR19980703286A (en) 1998-10-15
KR100301627B1 (en) 2001-09-03
EP0821299A4 (en) 2000-02-23
CN1181140A (en) 1998-05-06
EP0821299A1 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US7067999B2 (en) Rotation control device of working machine
CN101336345B (en) Method for controlling movement of vehicle components
US5361211A (en) Control system for automatically controlling actuators of an excavator
US11414836B2 (en) Work machine
US7546729B2 (en) Method and system for limiting torque load associated with an implement
WO1996032670A1 (en) Operational reaction force control device for an operating lever of a working machine
CN1289392A (en) Revolution control device
WO1988006242A1 (en) Control lever with load force feedback
US5975214A (en) Working machine control device for construction machinery
JPH05196004A (en) Automatic cushion control device for work machine cylinders
JP2010066962A (en) Operation device
JP4294086B2 (en) Electric motor control device
JP2004036303A (en) Turning control device for working machine
JPH05195554A (en) Hydraulic actuator controller in earth-moving machine
JPH08302753A (en) Hydraulic construction machinery
KR20180032510A (en) Hydrostatic rotary drive and method for controlling hydrostatic rotary drive
JP5145931B2 (en) Lever operating reaction force control device for construction machinery
JPS6213619A (en) Swivel positioning device for upper swing type work vehicle
JP7710420B2 (en) Work Machine
JP6445352B2 (en) Work machine
JP4421685B2 (en) Control device for work equipment
JP2011163106A5 (en)
CN105386482A (en) Method for controlling vehicle components to move
JPS6239296B2 (en)
JP2018104930A (en) Construction machinery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96193201.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970706690

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1997 930792

Country of ref document: US

Date of ref document: 19971007

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1996909331

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996909331

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970706690

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970706690

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996909331

Country of ref document: EP