[go: up one dir, main page]

WO1996036964A1 - Magnetic head assembly, assembling therefor, assembling apparatus therefor, and magnetic disk apparatus - Google Patents

Magnetic head assembly, assembling therefor, assembling apparatus therefor, and magnetic disk apparatus Download PDF

Info

Publication number
WO1996036964A1
WO1996036964A1 PCT/JP1996/001280 JP9601280W WO9636964A1 WO 1996036964 A1 WO1996036964 A1 WO 1996036964A1 JP 9601280 W JP9601280 W JP 9601280W WO 9636964 A1 WO9636964 A1 WO 9636964A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic head
connection terminal
wire
head slider
head assembly
Prior art date
Application number
PCT/JP1996/001280
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Amano
Naotake Ebinuma
Koji Serizawa
Ichiro Miyano
Naoki Maeda
Yukimori Umakoshi
Osamu Narisawa
Shuichi Sugahara
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1996036964A1 publication Critical patent/WO1996036964A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4853Constructional details of the electrical connection between head and arm

Definitions

  • Magnetic head assembly Description Magnetic head assembly, method for assembling the same, apparatus for assembling the same, and magnetic disk apparatus
  • the present invention relates to a magnetic head assembly, a method for assembling the same, a device for assembling the same, and a magnetic disk drive.
  • Magnetic disk drives are used as indispensable devices for computers and word processors, but in recent years, as the amount of information has increased, higher storage capacity, higher performance, and smaller size have been required.
  • the magnetic disk device is composed of a magnetic disk unit and a magnetic head unit. As performance and size are reduced, the magnetic head unit is also required to have higher precision and smaller size. .
  • a magnetic disk device is an information storage device, which has at least one rotating disk having concentric data tracks containing information, and a magnetic disk for reading data from each track or writing data to each track.
  • a head slider ; and an actuator for holding the magnetic head slider, moving to a desired track, and positioning a magnetic head portion during a read or write operation.
  • a magnetic head assembly body that has not been subjected to bonding is referred to as a work, that is, a work is a thin film magnetic transducer and a first connection terminal circuit pattern formed on an end surface perpendicular to the air bearing surface.
  • a magnetic head slider provided with a wiring pattern and a suspension provided with a second connection terminal circuit pattern at an end thereof; The magnetic head slider is so suspended that the surface of the thin-film magnetic conversion element is orthogonal to the surface of the thin film magnetic conversion element and the end of the second connection terminal circuit pattern surface in the lateral direction of suspension is parallel to the surface of the thin-film magnetic conversion element. It is configured above.
  • FIG. 13 A conventional magnetic head assembly used for the magnetic head section will be described with reference to FIGS. 13 to 20.
  • FIG. 13 A conventional magnetic head assembly used for the magnetic head section will be described with reference to FIGS. 13 to 20.
  • FIG. 13 is a perspective view of a conventional magnetic head assembly
  • FIG. 14 is an enlarged view of a magnetic head slider of the magnetic head assembly of FIG.
  • 11 is a magnetic head slider
  • 12 is a core slider
  • 13 is a thin-film magnetic transducer
  • 14 is a suspension
  • 15 is a connection terminal circuit pattern
  • 16 is a lead wire.
  • 17 is a protective tube
  • 18 is a flexible member
  • ⁇ 19 is a floating surface
  • 50 is a work.
  • the magnetic head slider 11 of the magnetic head assembly used in the magnetic disk device is composed of, for example, a core slider 12 made of ceramic and a thin-film magnetic transducer 13, and the lower surface thereof is a floating surface 19.
  • the suspension member of the magnetic head slider 11 is composed of a flat suspension 14 and a flexible member 18. One end of the suspension 14 is connected to an actuator arm (not shown), and the other end is connected.
  • the magnetic head slider 11 is connected to the bending member 18 for supporting the same.
  • the suspension member 14 acts as an elastic panel that presses the top surface 19 of the magnetic head slider 11 against the disk surface, while the flexure member 18 acts as the magnetic head slider 11. When the flying surface 19 rides on an air cushion between the flying surface 19 and the rotating disk, the magnetic head slider 11 gives flexibility.
  • the magnetic head slider 11 is fixed to the flexible member 18 with an adhesive or the like.
  • Circuit connection terminal pattern 1 provided on the magnetic head slider 1 1 5 and a magnetic disk main body (not shown) are connected by a lead wire 16, and the detected electrical signal from the thin-film magnetic transducer 13 is sent to the lead wire 16 via the circuit connection terminal pattern 15, It is transmitted to the magnetic disk body.
  • the lead wire 16 is coated with an insulating material such as a resin to electrically insulate the metal suspension 14 and is further passed through a protective tube 17 such as a pineal tube for mechanical protection. It is fixed to.
  • the protective tube 17 is fixed to the suspension 14 by mechanical means such as caulking.
  • connection terminal circuit pattern 15 Since there is no protective tube 17 between the connection terminal circuit pattern 15 and the protective tube 1, the lead wire 16 is insulated by the insulating coating.
  • the connection between the connection terminal circuit pattern 15 and the lead wire 16 is made by soldering or ultrasonic bonding.
  • the magnetic head slider 11 has also been required to be smaller and have higher performance. Accordingly, it is required that the mounting space of the lead wire 16 be as small as possible in the direction perpendicular to the suspension 14. Conventionally, since the lead wire 16 from the magnetic head slider 11 to the protection tube 17 fixed to the tip of the suspension 14 is formed in a predetermined shape, the lead wire 16 is in the plane of the suspension 14. In addition to this, mounting space is required in the vertical direction, which has been a bottleneck for downsizing the equipment.
  • the miniaturization of the magnetic head slider 11 and the miniaturization of the mounting space of the lead wire 16 have progressed to such an extent that the rigidity and elasticity of the lead wire 16 cannot be ignored.
  • the magnetic head slider 11 uses the elastic force of the suspension 14 to follow the magnetic disk while absorbing a slight runout of the disk while floating slightly above the surface of the disk.
  • the miniaturization of the magnetic head slider 11 and the suspension 14 reduces the force.
  • the vinyl tube 17 and the lead wire 16 are fixed in a predetermined shape, and generate a force in a direction opposite to the elastic force of the suspension 14. As described above, as miniaturization progresses, the force in the opposite direction cannot be ignored.
  • FIG. 15 is a perspective view of a conventional magnetic hybrid assembly of a composite structure. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the electric leads 3 ⁇ ⁇ ⁇ ⁇ patterned on the suspension 14 are wired from one end of the suspension 14 to a portion connected to the magnetic head slider 11.
  • FIG. 6 is an enlarged view of an electrical connection portion of the magnetic head slider shown in FIG. 5;
  • FIG. 17 is a perspective view showing the non-floating surface of the magnetic head slider not shown in FIG. 15;
  • reference numeral 15a denotes a wiring pattern
  • 32 denotes a base of the suspension 14
  • 33 denotes an anti-floating surface
  • 34 denotes a first electrically insulating layer
  • 35 denotes a
  • 36 is a connection terminal
  • 3.7 is a solder pole
  • 341 is a first electrically insulating layer.
  • a wiring pattern 15a is provided on the surface opposite to the flying surface 19 of the magnetic head slider 11, that is, on the anti-flying surface 33.
  • a first electrical insulating layer 34 is provided on a base 14 of a suspension 14 and a conductive layer 35 patterned thereon, and further thereon. Then, a second electrically insulating layer 341 is formed.
  • the first and second insulating layers 34, 341 are formed of a polyimide layer, and the patterned conductor layer 35 is formed of a vapor-deposited copper film.
  • the second insulating layer 341 was not formed in a portion where electrical connection with the magnetic head slider 11 was made, and the conductor layer 35 was exposed, and the connection terminal portion 36 was not formed. Is formed.
  • a solder pole 37 is arranged at a connection portion between the terminal portion 36 and the wiring pattern 15a of the magnetic head slider 11, and is heated and melted for electrical connection.
  • c first 8 diagram for explaining another example of the magnetic head slider 1 1 of the connection method is an enlarged view of another example of the electrical connection portion of the head assembly to magnetically shown in the first 5 Figure .
  • a suspension 14 having wiring patterned in the same manner as in the example of FIG. 16 is used, and the structure is almost the same as that of the example of FIG.
  • the same reference numerals as those in FIG. 16 denote the same parts, and a description thereof will be omitted, but only a new reference numeral will be described.
  • 38 is an adhesive.
  • the mechanical connection between the magnetic head slider 11 and the suspension 14 is connected by an adhesive 38. Further, the electrical connection is made between the connection terminal pattern 15 on the same surface as the magnetic element 13 of the magnetic head slider 11 and the terminal portion 36 provided on the suspension 14 as described in FIG. 16 described above. As shown, the solder poles 37 are fused and connected.
  • connection structure As described above, as the miniaturization proceeds, three problems newly arise in the connection structure using the composite structure or the laminated structure.
  • the first of the above three problems is that the magnetic head is mechanically attached and mechanically connected at the time of electrical connection.
  • a solder hole 3 is provided between the connection terminal pattern 15 located on the thin film magnetic transducer surface of the magnetic head slider 11 and the terminal portion 36 on the suspension 14.
  • a problem arises that stress is applied to the magnetic head slider 11 due to contraction and expansion of the connection member during curing, and the shape is deformed.
  • the magnetic head slider 11 is attached to the substrate 32 of the suspension 14 via the first electrically insulating layer 34, the conductor layer 35, and the second electrically insulating layer 34 1, and the adhesive 3
  • the adhesive is mechanically connected at 8
  • the anti-floating surface 33 of the magnetic head slider 11 contracts more than the floating surface 19 due to the contraction of the adhesive during curing.
  • the slider surface 1 of the magnetic head 1 has its flying surface 19 deformed in a convex shape with respect to the upper side.
  • the convex shape greatly affects the performance when the magnetic head slider 11 flies above the magnetic disk, that is, the flying characteristics.
  • the height of the convex shape is managed by adjusting the application amount of the adhesive 38, adjusting the bonding area of the suspension 14 and the like. Conversely, a concave shape will damage the magnetic disk.
  • FIG. 19 is a diagram showing a convex shape deformation amount when a low melting point solder is used for a connection member. As shown in the figure, it can be seen that, after soldering, the convex shape deformation amount is deformed in a decreasing direction. Its amount is between 10 nm and 40 nm.
  • the low solder used was a tin- and bismuth-based solder with a melting point of about 14 O'C. This low melting point solder has a property of expanding about 3% when it is solidified. ⁇ The expansion force at the time of solidification is the direction in which the thin-film magnetic transducer of the magnetic head slider 11 is pushed and the direction in which the convex shape is reduced. To work.
  • FIG. 20 is a diagram showing the amount of convex deformation when a conductive adhesive (silver epoxy-based) is used. As shown in FIG. 20, it can be seen that the convex shape is deformed in the direction of increasing the contrary to the case of FIG.
  • the epoxy adhesive hardens and shrinks when it is solidified in the opposite direction to the case of the low melting point solder, the direction in which the thin film magnetic transducer surface of the magnetic head slider 11 is pulled, the direction in which the convex shape increases. This is because the contraction force is applied to
  • the second of the three issues is the thermal issue.
  • the heat-resistant temperature of the magnetic head currently under study is said to be approximately 15 CTC. Therefore, the commonly used eutectic solder cannot be used in the connection method by soldering because the melting temperature is 18 CTC. —On the other hand, the use of a low melting point solder as described above solves the above-mentioned temperature problem, but has a problem of poor reliability depending on the use condition.
  • the third issue is the problem of assembly costs.
  • FIG. 16 The example described in FIG. 16 is an example in which an electrical connection terminal pattern 15 a is provided on the anti-floating surface 33 of the magnetic head slider 11, and the mechanical connection and the electrical connection are simultaneously performed. .
  • the structure of the magnetic head slider 11 shown in FIG. 17 is described above. Due to the assembling process, the electrical connection pattern 15 is formed on the same surface as the thin-film magnetic transducer 13 in many cases. Since the magnetic heads are manufactured at the same time, it is simple and cheap.
  • connection terminal pattern 15a on the anti-floating surface 33 is performed by forming a single piece of magnetic slider and then depositing a pattern from the thin-film magnetic conversion element surface. For example, there was a problem that the assembly cost would be extremely expensive.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and has a low mechanical stress at the time of mechanically attaching and electrically connecting a magnetic head slider, at a low temperature and at a low stress.
  • a magnetic head assembly an assembling method, an assembling apparatus, and an assembling apparatus, and a magnetic disk apparatus capable of performing electrical contact on a thin film magnetic transducer surface of a magnetic head slider without problems and at low cost. That is the purpose. Disclosure of the invention
  • a magnetic head assembly comprises a magnetic head slider provided with a first connection terminal circuit pattern, a wiring pattern and a second connection terminal circuit pattern.
  • a wire is formed from the provided suspension and a wire is arranged between the first and second connection terminal circuit patterns.
  • a bending function part is provided in a part of the suspension, and the wiring between the first and second connection terminal circuit patterns is configured to absorb expansion and contraction of the wiring. It is characterized by
  • a discard pad is provided on the same plane as the first circuit connection terminal pattern and at a position outside the magnetic head slider, and the discard pad is disposed with the first circuit connection terminal pattern. Wire bonding is performed between the pads, the wire is cut between the first circuit connection terminal pattern and the discarded pad, and the wire is bent at a right angle to form a work, and the second circuit connection terminal pattern is formed.
  • the present invention is characterized in that the wire is formed by edge bonding.
  • the magnetic head assembly according to any one of the preceding items, wherein the wiring between the first and second connection terminal circuit patterns has a diameter of 10 to 70 ⁇ for a gold wire and a diameter of 10 to 30 for a aluminum wire.
  • copper wire is characterized by being wired overhead with conductive wires having a diameter in the range of 10 to 40 m.
  • the magnetic head assembly according to any one of the preceding items, wherein the second connection terminal circuit pattern is located closer to the magnetic head than the bending function portion. .
  • the configuration of the method for assembling a magnetic head assembly according to the present invention is the method for assembling a magnetic head assembly according to any one of the preceding items, wherein: First wire bonding is performed, and then, the work is rotated 90 degrees so that the second connection terminal circuit pattern is on the upper side, and second wire bonding is performed, It is characterized by wiring.
  • the structure of the magnetic head assembly assembling apparatus is a magnetic head assembly comprising: a fixing means for fixing a work; and a wire wiring means for bonding a magnetic head slider and a suspension of the work to each other.
  • a first wire bonding is provided on a first connection terminal circuit pattern of the magnetic head slider, and the first wire bonding includes the first connection terminal circuit pattern and a second connection terminal circuit pattern on the suspension.
  • the workpiece is rotated 90 degrees around the intersection on a vertical line on each surface as a center of rotation, and a second wire bonding is provided on the second connection terminal circuit pattern to enable wire wiring. It features a child.
  • Another configuration of the apparatus for assembling a magnetic head assembly includes a fixing means for fixing a magnetic head slider, and a metal tape used for a discard pad positioned on the same plane as a magnetic element surface of the magnetic head slider.
  • a magnetic head assembly assembling device comprising: a positioning means for causing the magnetic tape to wind up the metal tape; and a circuit connection terminal pattern of a magnetic head slider on the fixing means and the positioned metal mold. Wire bonding means for bonding between the discard pads of the attached tape; cutting means for cutting the bonding wire between the pattern and the discard pad; and fixing means with the magnetic head slider fixed.
  • Rotating means for rotating the magnetic head slider by 90 degrees around an intersection line between the magnetic head slider surface and the discard pad surface It is characterized in that it comprises a bonding means for ⁇ edge-bonding and the other end of the wire which is a bonding on the circuit connection terminal pattern of the suspension.
  • the configuration of the magnetic disk drive according to the present invention includes at least one rotating disk having concentric data tracks containing information mounted on a housing, and a magnetic head for reading or writing data from the data tracks.
  • a magnetic head for reading or writing data from the data tracks.
  • the magnetic head assembly according to claim 1 A magnetic head assembly according to any one of claims 5 to 10 is characterized.
  • a magnetic head assembly comprising a magnetic head slider and a suspension, wherein a connection of a thin film magnetic transducer surface of the magnetic head slider is provided.
  • the suspension is provided with the flexure function portion, the connection terminal circuit pattern of the suspension and the magnetic head slider do not relatively move, so that the suspension can be connected to the magnetic head slider without being deformed.
  • the conductive wire expands and contracts and absorbs a change in the distance between the connecting portions due to a difference in linear expansion between the magnetic head slider and the suspension, the stress is not applied to the magnetic head slider. It can be connected to the head slider without deformation.
  • the stress due to the difference in linear expansion between the magnetic head slider and the suspension is determined by the longitudinal elastic modulus of the conductive wire, so that the stress can be reduced.
  • the conductive wire is connected with a slack, the stress due to a difference in linear expansion between the magnetic head slider and the suspension is reduced by the conductive force. Since the stress is determined by the bending elastic modulus of the wire, the stress can be reduced.
  • the vibration of the suspension can be reduced by setting the circuit connection terminal pattern of the suspension closer to the magnetic head slider than the flexure function part. Since there is no change in the distance between the joints due to vibration, the conductive wire is not deformed.
  • the magnetic head slider when the magnetic head slider travels while flying above the magnetic disk, the magnetic head slider applies a force in a direction to press the magnetic head slider against the magnetic disk, and the magnetic head slider is moved between the floating surface and the magnetic disk. Apply force in the direction of floating with the air cushion between the disk and the other side. Therefore, the irregularities and runout of the magnetic disk are absorbed by the flexure function of the suspension, and there is no cutting of the wire or deformation of the magnetic head slider.
  • the magnetic head assembly according to the above can be assembled in a thin film process for assembling a magnetic head element, and at low cost. I can make it.
  • the first wire bonding is performed on the circuit connection terminal pattern on the surface of the magnetic conversion element, and the second wiring is mounted on the suspension.
  • Wire bonding, and a wire with looseness between them can be formed, and the intersection point on the vertical line of each bonding is set as the center of rotation, so if the position of the first wire bonding is determined, The position of the second wire bonding can be determined.
  • FIG. 1 is a perspective view of a main part of a magnetic head assembly according to the present invention
  • FIG. 2 is a schematic explanatory view of a manufacturing apparatus of the magnetic head assembly of FIG. 1
  • FIG. FIG. 2 is an explanatory view of a bonding connection in the magnetic head assembly manufacturing apparatus of FIG. 2
  • FIG. 4 is an enlarged view of a bonding connection portion of FIG. 3
  • FIG. 5 is a drawing of FIG.
  • FIG. 6 is a diagram showing the amount of deformation of the air bearing surface due to bonding
  • FIG. 6 is a perspective view of a main part of a magnetic head assembly according to another embodiment of the present invention
  • FIG. FIG. 8 is an enlarged view of a bonding connection portion of the head assembly.
  • FIG. 1 is a perspective view of a main part of a magnetic head assembly according to the present invention
  • FIG. 2 is a schematic explanatory view of a manufacturing apparatus of the magnetic head assembly of FIG. 1
  • FIG. 2 is an explanatory
  • FIG. 8 is a structural view of a rotating jig of an assembling apparatus used for bonding the magnetic head assembly of FIG. 6, and FIG. FIG. 8 is an explanatory view of bonding by a rotating jig of the assembling apparatus shown in FIG. 8;
  • Fig. 11 is a model diagram of a head slider that is a simple beam.
  • 13 is a perspective view of a conventional magnetic head assembly, and FIG. 14 is a perspective view of a conventional magnetic head assembly;
  • FIG. 13 is a magnetic head assembly of the magnetic head assembly of FIG.
  • FIG. 15 is an enlarged view of a slider.
  • FIG. 15 is a perspective view of a conventional magnetic head assembly of a composite structure.
  • FIG. 16 is a perspective view of the magnetic head assembly shown in FIG. FIG.
  • FIG. 17 is an enlarged view of an electric connection portion
  • FIG. 17 is a perspective view showing a non-floating surface of the magnetic head slider shown in FIG. 15, and
  • FIG. 18 is a magnetic head shown in FIG.
  • FIG. 19 is an enlarged view of another example of the electrical connection part of the assembly
  • FIG. FIG. 20 is a diagram showing a convex shape ⁇ shape amount when a solder is used
  • FIG. 20 is a diagram showing a convex shape deformation amount when a conductive adhesive (silver epoxy resin) is used. .
  • Embodiments of the present invention will be described with reference to FIGS. 1 to 12.
  • a description will be given of a magnetic head assembly that presses a floating surface against a lower surface of a magnetic disk surface.
  • FIG. 1 is a perspective view of a main part of a magnetic head assembly according to the present invention, in which (a) is a perspective view showing a state before assembling, and (b) is a partially enlarged view after assembling.
  • the same reference numerals as those in FIG. 15 denote the same parts, and a description thereof will be omitted, and only new reference numerals will be described.
  • A is the both sides of the tip of the suspension 14
  • B is the center of the tip of the suspension 14
  • C is the inner garden of the tip of the suspension 14
  • 40 is a connection terminal circuit pattern with the magnetic disk main body
  • Reference numeral 41 denotes a connection terminal circuit pattern with the magnetic head slider 11.
  • an electric lead 31 which is a patterned wiring on the upper surface of a metallic suspension 14 and a magnetic disk main body (not shown) at one end.
  • a connection terminal circuit pattern 40 for electrical connection (hereinafter referred to as the magnetic disk side) and another inner end portion C at one end of the terminal C are connection terminals for electrical connection to the magnetic head slider 11.
  • a circuit pattern 41 (hereinafter referred to as a distal end side) is provided, and the electric lead 31 connects the two connection terminal circuit patterns 40 and 41.
  • connection terminal circuit patterns 40 and 41 are, for example, vapor-deposited or fitted with gold or the like, the surface thereof is exposed, and the other portions are covered with an insulating layer.
  • the suspension 14 drives the magnetic head slider 11 by its panel force.
  • a pressing force is generated to press the magnetic disk surface (not shown), and when the magnetic head slider 11 travels on the magnetic disk surface, an air cushion is formed between both surfaces. With this air cushion, the magnetic head slider 11 travels while floating.
  • the deflection angle in the circumferential direction of the disk is absorbed by both side portions A at the front end side of the suspension 14 and the deflection in the direction perpendicular to the traveling direction.
  • the angle is absorbed at the center B on the distal end side of the suspension 14.
  • the tip side inner court part C of the suspension 14 moves in the same manner as the magnetic head slider 11, and its position does not change relatively. In other words, it works the same as the flexure 18 of the prior art.
  • the magnetic head slider 11 will be described in detail with reference to FIG. 1 (b).
  • the magnetic head slider 11 is formed by forming a wafer from a material such as silicon carbide, alumina, or alumina titanium carbide as a base material, and forming a thin film magnetic layer on the wafer in the same process as the IC manufacturing process.
  • the conversion element 13 and a connection terminal circuit pattern 15 for electrical connection with the thin-film magnetic conversion element 13 on the same plane as the thin-film magnetic conversion element 13 (hereinafter, simply referred to as a magnetic head element surface). are formed in four places.
  • the thin-film magnetic transducer 13 and the connection terminal circuit pattern 15 are simultaneously formed in a plurality (approximately 100 or more).
  • the wafer including the plurality of thin-film magnetic transducers 13 and the connection terminal circuit patterns 55 is formed so as to include the thin-film magnetic transducers ⁇ 13 and the four connection terminal circuit patterns 515.
  • cutting is performed so as to form one rectangular member on a surface orthogonal to the magnetic head element surface. Two surfaces of a rectangular member continuous with the cut surface and orthogonal to the magnetic head element surface are polished as a floating surface 19 and an anti-floating surface 33, respectively.
  • the floating surface 1 9 In order to improve the characteristics, minute irregularities are formed by sputtering or the like.
  • the magnetic head of this embodiment uses alumina titanium carpite as a base material.
  • the front surface of the magnetic head element surface has a width of about lm ni. It has a height of 0.3 mm and a length of 11.2 mm.
  • the width of one of the circuit connection patterns 1'5 on the magnetic head element surface is about 130.
  • the anti-floating surface 33 is arranged such that the magnetic head element surface is orthogonal to the tip inner yard C of the suspension 14 and parallel to the tip end side. It is fixed to the inner courtyard C with adhesive.
  • connection terminal circuit pattern 15 and the connection terminal circuit pattern 41 are connected to each other by a gold wire 43 so that the connection terminal circuit pattern 15 is first bonded.
  • 1 is the second bonding, which is connected in the air.
  • the aerial connection line is arranged so as to change its direction at a right angle, with each vertical axis intersection of the connection terminal circuit pattern 15 and the connection terminal circuit pattern 41 as a bending point.
  • the thickness of the gold wire used for the connection is 25 m in diameter.
  • FIG. 2 illustrates an apparatus for assembling the magnetic head assembly of FIG.
  • the assembling apparatus shown in FIG. 2 includes a rotating jig on the left side of the figure, a pole bonding apparatus on the right side of the figure, and a common base.
  • reference numeral 44 denotes a rotary actuator for rotational driving
  • 50 denotes a member in which a magnetic head slider 11 is mounted on a suspension 14. 7
  • Reference numeral 51 denotes a fixed block for fixing the work 50
  • 52 denotes a rotating block
  • 59 denotes a mounting base
  • D denotes a rotation center axis of the rotary actuator 44.
  • 53 is an ultrasonic pole bonding portion
  • 54 is a horn
  • 55 is a gold wire of a bonding material
  • 56 is a spool
  • 57 is a cabillary
  • 58 is a lever.
  • the work 50 is fixed to the work fixing block 51 by vacuum suction or a fixing claw (neither is shown in detail).
  • a fixing claw either is shown in detail.
  • the connection terminal circuit pattern 15 of the magnetic head slider 11 is located upward.
  • the work fixing block 51 is fixed to a rotation block 52, and the rotation block 52 is connected to a rotary actuator 44.
  • the rotary actuator 44 rotates the rotary block 52 90 degrees about a rotation center axis D.
  • the work fixing block 5: 1 is provided with a heating means (not shown) for heating to about 150 ° C. Further, a mounting base 59 is provided on the rotating block 52.
  • the rotating jig thus configured is fixed to a mounting frame 59, and is fixed to a common frame 60 for the mounting frame 59 and the ultrasonic pole bonding portion 53.
  • the ultrasonic pole bonding portion 53 is a general device, and transmits vibration from an ultrasonic vibrator (not shown) in the upward direction of the work 50.
  • Horn 54 is arranged. At the tip of the horn 54, a capillary 57 is located.
  • the gold wire 55 of the bonding material is introduced from the spool 56 into the cavity 57.
  • the horn 54 is configured to move up and down by a lever 58 provided below the pole bonding portion 53.
  • FIG. 3 is an explanatory view of bonding connection by the assembling apparatus of FIG.
  • the same reference numerals as those in FIGS. 1 and 2 denote the same parts, and a detailed description thereof will be omitted.
  • connection terminal circuit pattern 15 is positioned upward as described above.
  • the held capillaries 57 are lowered, and the first bonding is performed on the connection terminal circuit pattern 15.
  • the lowered cable carrier 57 is raised to extend the bonding wire.
  • the bonding position of the connection terminal circuit pattern 15 and the suspension 14 The work 50 is rotated 90 degrees around the intersection with the bonding position of the connection terminal circuit pattern 41 on the tip side.
  • the cable carrier 57 is lowered again, and the second bonding is performed on the surrounding terminal circuit pattern 41.
  • connection terminal circuit pattern 15 and the connection terminal circuit pattern 41 on the suspension 14 are electrically connected.
  • FIG. 4 is an enlarged view of the bonding connection according to FIG.
  • Reference numeral 32 denotes a stainless steel plate base
  • reference numeral 34 denotes an insulating layer
  • reference numeral 38 denotes an adhesive.
  • the suspension 14 is composed of a stainless steel plate base 32, and the magnetic head slider 11 is fixed to the base 32 with an adhesive 38 via an insulating layer 34.
  • connection terminal circuit pattern 15 of the magnetic head slider 11 is used as a first bonding
  • connection terminal circuit pattern 41 on the distal end side of the suspension 14 is used as a second bonding
  • gold wires 43 are used.
  • the two patterns 15 and 41 are connected.
  • the path of the gold wire 43 is drawn out from the first bonding so as to be orthogonal to the magnetic head element surface, and is bent at a right angle so as to be orthogonal to the connection terminal circuit pattern 41 on the way.
  • the bonding has been completed and the above connection has been completed.
  • FIG. 5 is a diagram showing the amount of deformation of the flying surface due to the bonding of FIG.
  • FIG. 5 shows the deformation amount (nm) of the air bearing surface before and after connection on the vertical axis, and the deformation amount can be suppressed to 5 nm or less, which is not a problem.
  • the terminal circuit pattern 4 1 on the tip of the suspension 14 4 is magnetic Since it is the same as on a flexible member that does not move with the head slider 11, no stress is applied to the gold wire 43.
  • this bonding method can be connected at room temperature to 15 (low TC level), so it does not apply thermal stress to the magnetic head.
  • the magnetic head element surface and the connection terminal circuit pattern 15 Therefore, it can be manufactured using only the same process as the IC process, so it is inexpensive.
  • FIG. 6 is a perspective view of a main part of a magnetic head assembly according to another embodiment of the present invention
  • FIG. 7 is an enlarged view of a bonding connection portion of the magnetic head assembly of FIG. 1 are the same as those in FIG. Only new codes will be described.
  • 6 1 is an aluminum wire.
  • the structure of the work 50 including the magnetic head slider 11 and the suspension 14 is almost the same as that of [Example 1] in FIG.
  • the aluminum wire 61 is edge-bonded to the same plane as the connection terminal circuit pattern 15 of the magnetic head slider 11, that is, the edge bonding is performed on the magnetic head element surface, and the aluminum wire 61 is formed on the wiring pattern 41 of the suspension 14.
  • Edge bonding is performed, and an arc shape with a radius of curvature having both points of the connection terminal circuit pattern 15 and the connection terminal circuit pattern 41 as tangent lines is maintained.
  • FIG. 8 is a structural view of a rotating jig of an assembly apparatus used for bonding the magnetic head assembly of FIG.
  • 1 1 is a magnetic head
  • 6 2 is a lower block
  • 6 3 is an upper holding block
  • 6 4 is a rotary actuator
  • 6 5 is a stand block
  • 6 6 is gold-plated tape
  • 6 7 is a take-up reel
  • 68 is a ⁇ edge tool
  • 69 is a 7 Lumi wire
  • 70 is a wire cutter.
  • the lower block 62 has a rectangular shape, and is an oblique cross section from one upper side of one surface in the longitudinal direction of the rectangular shape to a predetermined position below the facing surface. Is provided.
  • the gantry block 65 has a shape in which a quadrangular pyramid protrudes from one surface in the longitudinal direction of the rectangular parallelepiped, the upper surface of the rectangular pyramid is continuous with the upper surface of the rectangular solid, and the side surface of the rectangular pyramid is It is configured to be continuous with each of the other two surfaces of the rectangular body orthogonal to the surface on which the quadrangular pyramid is protruded.
  • the slope of the quadrangular pyramid is formed from the upper surface of the rectangular body to a predetermined position of the quadrangular pyramid protruding surface in the longitudinal direction of the rectangular body.
  • the oblique section of the lower block 62 and the upright surface connected thereto come into contact with the inclined surface of the quadrangular pyramid protruding from the gantry block 65 and the upright surface connected thereto.
  • the magnetic head slider 11 is fixed by one surface in the longitudinal direction of the lower block 62 and the upper holding block 63 so that the magnetic element surface faces upward.
  • the lower block 62 and the upper holding block 63 have a structure that can be rotated 90 degrees with respect to the gantry block 65 by a rotary actuator 64 while holding the magnetic head slider 11. I have.
  • a tape 66 that is gold-plated is positioned in parallel with the magnetic head slider 11, and is wound on a take-up reel 67. Further, this rotating jig is attached to a common mount (not shown) together with an ultrasonic bonder (not shown) to form an assembling apparatus.
  • an edge tool 68, an aluminum wire 69, and a cutter 70 for cutting the wire 69 are provided on the magnetic element surface of the magnetic head slider 11 described above. Position at right angles to Have been.
  • FIG. 9 is an explanatory view of bonding by a rotating jig of the assembling apparatus of FIG.
  • FIG. 9 is a view of the rotary odor of the assembling apparatus shown in FIG. 8 as viewed from the direction of the arrow shown in the drawing.
  • the magnetic head slider 11 has the lower block 6 2 and the upper holding block 6 3.
  • the upper holding block 63 is omitted for simplicity of illustration.
  • connection between the circuit pattern 15 of the magnetic head slider 11 and the gold-plated tape 66 is made with aluminum wire 69 as a bonding material and with an edge tool 68. Ultrasonic bonding. The bonded gold-plated tape 66 is later discarded as a discard pad.
  • connection step is performed for all of the connection terminal circuit patterns 15 of the magnetic head slider 11. In this embodiment, there are four places.
  • the gold-plated tape 66 which is a discard pad, is wound around the take-up reel 67. With this winding, the aluminum wire portion on the second bonding side bonded to the discard pad is also wound on the winding reel 67.
  • the lower block 62 is connected to the mounting block 65 by the connection terminal circuit of the magnetic head slider 11 Rotate 90 degrees around the side of the gold-plated tape 66 of pattern 15. With this rotation, the aluminum wire 69 is bent 90 ° and plastically deformed.
  • FIG. 9 (d) when the magnetic head slider 11 is removed from the bonding apparatus in this state, the aluminum wire 69 is bonded on one side to the terminal pattern 15 of the magnetic head slider 11, 90 degrees bent Take out as a single item in a bent state.
  • the aluminum wire 69 is positioned such that one end of the aluminum wire 69 is placed on the connection terminal circuit pattern 41 on the suspension 14 in a state of this single piece, and is bonded. Fix with agent 38.
  • connection terminal circuit pattern 41 of the suspension 14 with the ⁇ edge tool 68 is again performed from above the connection terminal circuit pattern 41 of the suspension 14 with the ⁇ edge tool 68.
  • an aluminum wire is used, but a gold wire, a copper wire, or a wire gold-plated to copper can be similarly connected.
  • the flying surface 19 of the magnetic head slider 11 travels while flying above the surface of the magnetic disk via the air cushion, and the flying amount is also referred to as a number ⁇ . Therefore, the surface accuracy of this air bearing surface is required to be very high.
  • the flying surface is required to have high accuracy.
  • changes in surface accuracy due to environmental changes due to changes in temperature, temperature, etc. after assembly and adjustment must be minimized.
  • FIG. 10 is a model diagram in which the magnetic head slider is a simple beam.
  • (a) is a side view of a magnetic head beam
  • (b) is a cross-sectional view of a magnetic head simple beam.
  • b is head beam width to the magnetic, specifically 1/1 0 3 (mm)
  • h is head beam height to magnetic, in particular 3 1 0 4 (mm)
  • L is , the length of Uz de beams to magnetic, specifically 1. 2Z10 3 (mm)
  • E is Young's modulus of the magnetic head support, 40 X 1 0 1. (Poisson's ratio)
  • the allowable amount of deflection Y of the magnetic head is 5 nm
  • the load W N, Newton
  • the load W must not be applied with a force greater than 1Z10 1 , that is, 0.125 (N).
  • FIG. 11 is a model diagram of a wire wiring without slack in bonding of a magnetic head slider.
  • 71 is a magnetic head slider
  • 72 is a suspension
  • 73 is a wire
  • 74 is an adhesive
  • c is the length of the wire 73 in the longitudinal direction of the support plate panel 2
  • d Is the vertical length of the wire 73 to the support panel 72.
  • the linear expansion coefficient of each part will differ due to environmental temperature changes, so a tensile or compressive force will be applied to the wire 73, and a force in the direction perpendicular to the magnetic head 71, that is, the load W This affects the shape accuracy of the air bearing surface of the magnetic head 71.
  • the elastic coefficient and linear expansion coefficient of each material are shown in [Table 1].
  • the magnetic head slider 71 and the suspension 72 are made of alumina titanium carbide, stainless steel, and the wire 73 is made of gold, copper, and aluminum.
  • environmental temperature difference 6 0 ° C, load W is, 1 Z 1 0 1 (N)
  • the allowable amount of deflection change amount Y and 5 nm follow the above [equation 1]
  • the diameter of the wire 7 3 Calculated.
  • I in [Equation 1] is as follows.
  • the calculation shows that the diameter is 67 ⁇ for gold, 39 ⁇ for copper, and 29 for aluminum.
  • FIG. 12 is a model diagram of wire wiring having slack in bonding of a magnetic head slider.
  • the wire wiring shown in FIG. 12 (a) can be approximated to a tough beam as shown in FIG. 12 (b).
  • the magnetic head slider and the connection terminal circuits respectively provided on the suspension positioned at right angles to the magnetic head slider
  • the pattern is wired with conductive wires to absorb expansion and contraction, and the connection terminal circuit pattern on the suspension is positioned on a member with a flexure function, so that electrical connection can be made without applying stress to the magnetic head slider
  • the amount of deformation of the wiring wire due to the stress on the magnetic head slider caused by the difference in the linear expansion coefficient due to the temperature change is reduced, and no thermal stress is applied because bonding is performed at a low temperature. Since it can be manufactured in the same process as the IC process, an inexpensive magnetic head assembly, an assembling method, an assembling apparatus, and a magnetic disk device can be provided.

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)

Abstract

To provide an economical magnetic head assembly of the type in which a magnetic head slider and a suspension are connected by conductive wires in such a manner as to absorb extension and contraction, a work (50) is constituted from a magnetic head slider (11) equipped with a connection terminal circuit pattern (15), and a suspension (14) equipped with a wiring pattern (31) and a connection terminal circuit pattern (41). Both connection terminal circuit patterns are connected by wire bonding and flexible portions A and B are disposed at a part of the suspension (14) so that the wirings (43) between both connection terminal circuit patterns (15 and 41) absorb extension and contraction of the wirings (43).

Description

明 細 書 磁気へッド組立体およびその組立方法及びその組立装置並びに磁気ディ スク装置 技俯分野  Description Magnetic head assembly, method for assembling the same, apparatus for assembling the same, and magnetic disk apparatus
本発明は、 磁気へッド組立体およびその組立方法及びその組立装置並 びに磁気ディスク装置に関するものである。 背景技術  The present invention relates to a magnetic head assembly, a method for assembling the same, a device for assembling the same, and a magnetic disk drive. Background art
.磁気ディスク装置は、 コンピュータやワープロに必須の装置として使 用されているが、 近年情報量の増加と共に高記憶容量化、 高性能化、 小 形化が要求されている。 前記磁気ディスク装置は、 磁気ディスク部と磁 気へッド部とで構成されているが、 高性能化、 小形化されるにつれて、 磁気ヘッド部も高精度化、 かつ小形化が要求されている。  . Magnetic disk drives are used as indispensable devices for computers and word processors, but in recent years, as the amount of information has increased, higher storage capacity, higher performance, and smaller size have been required. The magnetic disk device is composed of a magnetic disk unit and a magnetic head unit. As performance and size are reduced, the magnetic head unit is also required to have higher precision and smaller size. .
磁気ディスク装置は情報記憶装置であり、 その構造は情報を含む同心 データ トラックを備えた少なくとも一枚の回転式ディスクと、 前記各ト ラックからデータを読み取りもしくは各トラックにデータを書き込むた めの磁気へッドスライダと、 前記磁気へッドスライダを保持し、 所望の トラックに移動し、 読み取りまたは書き込み動作中の磁気ヘッド部の位 置決めさせるためのァクチユエ一タとを有するものである。  A magnetic disk device is an information storage device, which has at least one rotating disk having concentric data tracks containing information, and a magnetic disk for reading data from each track or writing data to each track. A head slider; and an actuator for holding the magnetic head slider, moving to a desired track, and positioning a magnetic head portion during a read or write operation.
本明細書においては、 ボンディング未加工の磁気へッド組立本体をヮ ークという、 すなわち、 ワークとは、 浮上面に垂直な端面に、 薄膜磁気 変換素子と第一の接続端子回路パターンとを設けた磁気へッドスライダ と、 配線パターンとその端部に第二の接続端子回路パターンとを設けた サスペンジョンとからなリ、 当該第二の接続端子回路パターン面と前記 薄膜磁気変換素子面とが直交し、 かつ当該第二の接続端子回路パターン 面のサスペンジョン短手方向の端部と前記薄膜磁気変換素子面とが平行 となるように、 前記磁気へッドスライダを前記サスペンジョン上に取り 付けて構成したものである。 In the present specification, a magnetic head assembly body that has not been subjected to bonding is referred to as a work, that is, a work is a thin film magnetic transducer and a first connection terminal circuit pattern formed on an end surface perpendicular to the air bearing surface. A magnetic head slider provided with a wiring pattern and a suspension provided with a second connection terminal circuit pattern at an end thereof; The magnetic head slider is so suspended that the surface of the thin-film magnetic conversion element is orthogonal to the surface of the thin film magnetic conversion element and the end of the second connection terminal circuit pattern surface in the lateral direction of suspension is parallel to the surface of the thin-film magnetic conversion element. It is configured above.
従来技術における上記磁気ヘッ ド部に使用されている磁気ヘッド組立 体を第 1 3図から第 2 0図を用いて説明する。  A conventional magnetic head assembly used for the magnetic head section will be described with reference to FIGS. 13 to 20. FIG.
第 1 3図は、 従来の磁気へッド組立伴の斜視図、 第 1 4図は、 第 1 3 図の磁気ヘッド組立体の磁気へッ ドスライダの拡大図である。  FIG. 13 is a perspective view of a conventional magnetic head assembly, and FIG. 14 is an enlarged view of a magnetic head slider of the magnetic head assembly of FIG.
第 1 3図、 第 1 4図において、 1 1は磁気ヘッドスライダ、 1 2はコ ァスライダ、 1 3は薄膜磁気変換素子、 1 4はサスペンション、 1 5は 接続端子回路パターン、 1 6はリード線、 1 7は保護チューブ、 1 8は たわみ部材、■ 1 9は浮上面、 5 0はワークである。  In FIGS. 13 and 14, 11 is a magnetic head slider, 12 is a core slider, 13 is a thin-film magnetic transducer, 14 is a suspension, 15 is a connection terminal circuit pattern, and 16 is a lead wire. , 17 is a protective tube, 18 is a flexible member, ■ 19 is a floating surface, and 50 is a work.
磁気ディスク装置に用いる磁気ヘッド組立体の磁気ヘッドスライダ 1 1は、 例えばセラミックからなるコアスライダ 1 2と薄膜磁気変換素子 1 3とから構成され、 その下面が浮上面 1 9となっている。  The magnetic head slider 11 of the magnetic head assembly used in the magnetic disk device is composed of, for example, a core slider 12 made of ceramic and a thin-film magnetic transducer 13, and the lower surface thereof is a floating surface 19.
前記磁気ヘッドスライダ 1 1のサスペンジョン部材は、 平板状のサス ペンション 1 4とたわみ部材 1 8とから構成され、 前記サスペンション 1 4の一端をァクチユエ一タアーム (図示せず) に接続し、 その他端を 磁気ヘッドスライダ 1 1を支持する前記たわみ部材 1 8に接続している。 前記サスペンクヨン 1 4は、 前記磁気ヘッドスライダ 1 1の ょ面 1 9をディスク面に対して押えつける弾性パネどして作用し、 一方、 たわ み部材 1 8は、 前記磁気ヘッドスライダ 1 1の浮上面 1 9が、 当該浮上 面 1 9と回転ディスク間とのエアクッションに乗るとき、 当該磁気へッ ドスライダ 1 1にたわみ性を与えることになる。 前記磁気へッドスライ ダ 1 1ほ、 このたわみ部材 1 8に接着剤などで固定されている。  The suspension member of the magnetic head slider 11 is composed of a flat suspension 14 and a flexible member 18. One end of the suspension 14 is connected to an actuator arm (not shown), and the other end is connected. The magnetic head slider 11 is connected to the bending member 18 for supporting the same. The suspension member 14 acts as an elastic panel that presses the top surface 19 of the magnetic head slider 11 against the disk surface, while the flexure member 18 acts as the magnetic head slider 11. When the flying surface 19 rides on an air cushion between the flying surface 19 and the rotating disk, the magnetic head slider 11 gives flexibility. The magnetic head slider 11 is fixed to the flexible member 18 with an adhesive or the like.
前記磁気へッドスライダ 1 1上に設けられた回路接続端子パターン 1 5と、 図示しない磁気ディスク本体とはリード線 1 6で接続されており, 薄膜磁気変換素子 1 3からの検出電気信号は、 前記リード線 1 6で前記 回路接続端子パターン 1 5を介して、 磁気ディスク本体に伝送される。 前記リード線 1 6は、 金属性のサスペンション 1 4と電気絶縁するた め、 樹脂等の絶縁物でコーティングされ、 さらに機械的保護のため、 ピ ニールチューブ等の保護チューブ 1 7に通しサスペンション 1 4に固定 されている。 Circuit connection terminal pattern 1 provided on the magnetic head slider 1 1 5 and a magnetic disk main body (not shown) are connected by a lead wire 16, and the detected electrical signal from the thin-film magnetic transducer 13 is sent to the lead wire 16 via the circuit connection terminal pattern 15, It is transmitted to the magnetic disk body. The lead wire 16 is coated with an insulating material such as a resin to electrically insulate the metal suspension 14 and is further passed through a protective tube 17 such as a pineal tube for mechanical protection. It is fixed to.
前記保護チューブ 1 7は、 サスペンション 1 4へかしめ取付け等の機 械的な手段で固定されている。  The protective tube 17 is fixed to the suspension 14 by mechanical means such as caulking.
前記リード線 1 6は、 接続端子回路パターン 1 5と保護チューブ 1 Ί 間には保護チューブ 1 7がないので、 前記絶縁物コーティングで絶縁さ れている。 接続端子回路パターン 1 5とリード線 1 6の接続は、 はんだ 付けされるか、 または超音波接合によってなされる。  Since there is no protective tube 17 between the connection terminal circuit pattern 15 and the protective tube 1, the lead wire 16 is insulated by the insulating coating. The connection between the connection terminal circuit pattern 15 and the lead wire 16 is made by soldering or ultrasonic bonding.
近年、 磁気ディスク装置の小形化、 高性能化されるに伴い、 磁気へッ ドスライダ 1 1も小形高性能化が要求されるようになってきた。 これに 伴い、 前記リード線 1 6もサスペンション 1 4に垂直方向に可能な限り、 実装空間 小さくすることが要請されている。 従来は、 磁気へッドスラ イダ 1 1からサスペンション 1 4の先端に固定されている保護チュー 1 7までのリード線 1 6は、 所定の形状に形成されているため、 サスぺ ンシヨン 1 4の面内だけでなく垂直方向に実装空間が必要であり、 装置 の小形化の隘路になっていた。  In recent years, as the size and performance of magnetic disk devices have been reduced, the magnetic head slider 11 has also been required to be smaller and have higher performance. Accordingly, it is required that the mounting space of the lead wire 16 be as small as possible in the direction perpendicular to the suspension 14. Conventionally, since the lead wire 16 from the magnetic head slider 11 to the protection tube 17 fixed to the tip of the suspension 14 is formed in a predetermined shape, the lead wire 16 is in the plane of the suspension 14. In addition to this, mounting space is required in the vertical direction, which has been a bottleneck for downsizing the equipment.
さらには、 磁気ヘッドスライダ 1 1の小形化およびリード線 1 6の実 装空間の小形化は、 このリード線 1 6の持つ剛性および弾性が無視でき ない程度に進行してきた。 すなわち、 磁気ヘッドスライダ 1 1は、 サス ペンション 1 4の弾性力を利用し、 磁気ディスク円板の表面上を微少量 浮上しながら、 前記磁気ディスク円板の面振れ等を吸収しながら追従す るのであるが、 磁気ヘッドスライダ 1 1、 サスペンション 1 4の小形化 により、 その力も微小となってくる。 Further, the miniaturization of the magnetic head slider 11 and the miniaturization of the mounting space of the lead wire 16 have progressed to such an extent that the rigidity and elasticity of the lead wire 16 cannot be ignored. In other words, the magnetic head slider 11 uses the elastic force of the suspension 14 to follow the magnetic disk while absorbing a slight runout of the disk while floating slightly above the surface of the disk. However, the miniaturization of the magnetic head slider 11 and the suspension 14 reduces the force.
—方、 ビニールチューブ 1 7およびリード線 1 6は、 所定の形状に固 定されておリ、 前記サスペンション 1 4の弾性力と反対方向の力と発生 する。 上記の如く、 小形化が進行してくると、 この反対方向の力が無視 できなくなってくる。  On the other hand, the vinyl tube 17 and the lead wire 16 are fixed in a predetermined shape, and generate a force in a direction opposite to the elastic force of the suspension 14. As described above, as miniaturization progresses, the force in the opposite direction cannot be ignored.
そこで、 サスペンション 1 4の表面に電気的絶縁層を設け、 その上に パターン化された電気リードを形成し、 さらに、 その上に絶縁層を設け た複合構造体または積層構造体を用いる構造が提案されている。  Therefore, a structure using a composite structure or a laminated structure in which an electrical insulating layer is provided on the surface of the suspension 14, patterned electrical leads are formed thereon, and an insulating layer is provided thereon is proposed. Have been.
前記複合構造体または積層構造体の従来例を第 1 5図を参照して説明 する。 ■,'  A conventional example of the composite structure or the laminated structure will be described with reference to FIG. ■, '
第 1 5図は、 従来における複合構造体の磁気へッ卞組立体の斜視図で ある。■■ ■■ ■ ■ ■ ■  FIG. 15 is a perspective view of a conventional magnetic hybrid assembly of a composite structure. ■■ ■■ ■ ■ ■ ■
第 1 5図に示すように、 サスペンション 1 4上にパターン化された電 気リード 3 丄が、 当該サスペンション 1 4の一端から磁気へッドスライ ダ 1 1と接続する部分にまで配線されている。 As shown in FIG. 15, the electric leads 3パ タ ー ン patterned on the suspension 14 are wired from one end of the suspension 14 to a portion connected to the magnetic head slider 11.
前記サスペンション 1 4と前記磁気へッドスライダ 1 1との機械的接 続及び電気的接続方法の一例を第 1 6図及び第 1 7図を参照して説明す .る。:. ■ .  An example of a method for mechanically connecting and electrically connecting the suspension 14 and the magnetic head slider 11 will be described with reference to FIGS. 16 and 17. FIG. :. ■.
6図は、 第 ) 5図に示す磁気へッドスライダの電気接続部の拡大 図、 第 1 7図は、 第 1 5図に示ず磁気へッドスライダの非浮上面を示す 斜視図である。 FIG. 6 is an enlarged view of an electrical connection portion of the magnetic head slider shown in FIG. 5; FIG. 17 is a perspective view showing the non-floating surface of the magnetic head slider not shown in FIG. 15;
第 1 6図、 第 1 7図において、 1 5 aほ配線パターン、 3 2はサスぺ ンシヨン 1 4の基体、 3 3は反浮上面、 3 4ば第一の電気的絶縁層、 3 5は導電体層、 3 6は接続用端子部、 3 .7ははんだポール、 3 4 1は第 ^め電気的絶縁層である。 本実施例は、 磁気ヘッドスライダ 1 1の浮上面 1 9と反対の面、 すな わち反浮上面 3 3上に配線パターン 1 5 aを設けたものである。 In FIGS. 16 and 17, in FIG. 16, reference numeral 15a denotes a wiring pattern, 32 denotes a base of the suspension 14, 33 denotes an anti-floating surface, 34 denotes a first electrically insulating layer, and 35 denotes a The conductor layer, 36 is a connection terminal, 3.7 is a solder pole, and 341 is a first electrically insulating layer. In the present embodiment, a wiring pattern 15a is provided on the surface opposite to the flying surface 19 of the magnetic head slider 11, that is, on the anti-flying surface 33.
第 1 6図、 第 1 7図に示すように、 サスペンション 1 4め基体 3 2に 第一の電気的絶緣層 3 4を設け、 その上にパターン化された導電体層 3 5、 さらにその上に、 第二の電気的絶縁層 3 4 1が形成されている。 前記第一、 第二の絶縁層 3 4、 3 4 1はポリイミ ド層、 パターン化さ れた導電体層 3 5は蒸着された銅皮膜で形成している。  As shown in FIGS. 16 and 17, a first electrical insulating layer 34 is provided on a base 14 of a suspension 14 and a conductive layer 35 patterned thereon, and further thereon. Then, a second electrically insulating layer 341 is formed. The first and second insulating layers 34, 341 are formed of a polyimide layer, and the patterned conductor layer 35 is formed of a vapor-deposited copper film.
なお、 第二の絶縁層 3 4 1は、 磁気ヘッドスライダ 1 1との電気的接 続を行う部分に形成せず、 前記導電体層 3 5が剥き出しになっており、 接続用端子部 3 6を形成している。 この端子部 3 6と、 前記磁気ヘッド スライダ 1 1の配線パターン 1 5 aとの接続部分に、 はんだポール 3 7 を配置し加熱溶融させ、 電気的接続させている。  Note that the second insulating layer 341 was not formed in a portion where electrical connection with the magnetic head slider 11 was made, and the conductor layer 35 was exposed, and the connection terminal portion 36 was not formed. Is formed. A solder pole 37 is arranged at a connection portion between the terminal portion 36 and the wiring pattern 15a of the magnetic head slider 11, and is heated and melted for electrical connection.
さらに、 前記磁気ヘッドスライダ 1 1の接続方法の他の例を説明する c 第 1 8図は、 第 1 5図に示す磁気へッド組立体の電気接続部の他の例 の拡大図である。 Furthermore, c first 8 diagram for explaining another example of the magnetic head slider 1 1 of the connection method is an enlarged view of another example of the electrical connection portion of the head assembly to magnetically shown in the first 5 Figure .
本例では、 前記第 1 6図の例と同様にパターン化された配線を有する サスペンション 1 4を使用し、 構造も前記 1 6の例とほぼ同様である。 図中、 第 1 6図と同一符号は同等部分であるので説明を省略も、 新たな 符号のみを説明する。 3 8は接着剤である。  In this example, a suspension 14 having wiring patterned in the same manner as in the example of FIG. 16 is used, and the structure is almost the same as that of the example of FIG. In the figure, the same reference numerals as those in FIG. 16 denote the same parts, and a description thereof will be omitted, but only a new reference numeral will be described. 38 is an adhesive.
本実施例では、 磁気ヘッドスライダ 1 1とサスペンション 1 4の機械 的接続は接着剤 3 8により接続されている。 また、 電気的接続は、 磁気 ヘッドスライダ 1 1の磁気素子 1 3と同一面の接続端子パターン 1 5と サスペンション 1 4に設けた端子部 3 6との間で、 前記第 1 6図で説明 した如く、 はんだポール 3 7を溶融させて接続したものである。  In the present embodiment, the mechanical connection between the magnetic head slider 11 and the suspension 14 is connected by an adhesive 38. Further, the electrical connection is made between the connection terminal pattern 15 on the same surface as the magnetic element 13 of the magnetic head slider 11 and the terminal portion 36 provided on the suspension 14 as described in FIG. 16 described above. As shown, the solder poles 37 are fused and connected.
これらの関するものとしては、 例えば、 特開昭 6 3— 1 1 3 9 1 7号 公報記載の技術がある。 前述したように、 近時、 磁気ディスク装置が小形化、 高精度化される につれて、 磁気ヘッド部も小形化、 高精度化が要求される。 For example, there is a technique described in Japanese Patent Application Laid-Open No. Sho. As described above, recently, as magnetic disk devices have become smaller and more precise, the magnetic head has also been required to be smaller and more precise.
現在、 磁気ヘッド部は小形化され、 幅 l m m、 長さ 1 . 2 m m、 厚さ は 0 . 3 m mのものが検討されている。  At present, a magnetic head having a smaller size, a width of l mm, a length of 1.2 mm, and a thickness of 0.3 mm is being studied.
このように、 小形化が進行してくると、 前記複合構造体または積層構 造体を用いる接続構造においては、 三つの課題が新たに発生してくる。 前記三つの課題の第一は、 磁気ヘッドの機械的取付時および電気的接 続時の機械的ス小レスが問題となってくる。 例えば、 第 1 8図に示すよ うに、 磁気ヘッドスライダ 1 1の薄膜磁気変換素子面に位置する接続端 子パターン 1 5とサスペンション 1 4上の端子部 3 6との間をはんだポ ール 3 7接続する場合、 その接続部材の硬化時の収縮、 膨張により、 前 記磁気ヘッドスライダ 1 1に応力が加わり、 形状が変形するという問題 が発生する。  As described above, as the miniaturization proceeds, three problems newly arise in the connection structure using the composite structure or the laminated structure. The first of the above three problems is that the magnetic head is mechanically attached and mechanically connected at the time of electrical connection. For example, as shown in FIG. 18, a solder hole 3 is provided between the connection terminal pattern 15 located on the thin film magnetic transducer surface of the magnetic head slider 11 and the terminal portion 36 on the suspension 14. In the case of connection, a problem arises that stress is applied to the magnetic head slider 11 due to contraction and expansion of the connection member during curing, and the shape is deformed.
さらに、 詳しく具体的に説明する。 磁気へッドスライダ 1 1がサスぺ ンシヨン 1 4の基体 3 2に、 第一の電気的絶縁層 3 4、 導電体層 3 5、 第二の電気的絶縁層 3 4 1を介して、 接着剤 3 8で機械的に接続される と、 その接着剤の硬化時の収縮により磁気へッドスライダ 1 1の反浮上 面 3 3は、 浮上面 1 9に比べより多く収縮する。 その結果、 磁気ヘッド スライダレ 1は、 その浮上面 1 9が上方に対して凸形状に変形する。 この凸形状は、 磁気ヘッドスライダ 1 1が磁気ディスク円板上を浮上 走行する際の性能、 すなわち浮上特性にに大ぎく影響する。 前記凸形状 の高ざは、 接着剤 3 8の塗布量、 サスペンション 1 4の接着面積の調整 等で管理しているのが現状である。 逆に、 凹形状になると磁気ディスク 円板を損傷することになる。  Further details will be described in detail. The magnetic head slider 11 is attached to the substrate 32 of the suspension 14 via the first electrically insulating layer 34, the conductor layer 35, and the second electrically insulating layer 34 1, and the adhesive 3 When the adhesive is mechanically connected at 8, the anti-floating surface 33 of the magnetic head slider 11 contracts more than the floating surface 19 due to the contraction of the adhesive during curing. As a result, the slider surface 1 of the magnetic head 1 has its flying surface 19 deformed in a convex shape with respect to the upper side. The convex shape greatly affects the performance when the magnetic head slider 11 flies above the magnetic disk, that is, the flying characteristics. At present, the height of the convex shape is managed by adjusting the application amount of the adhesive 38, adjusting the bonding area of the suspension 14 and the like. Conversely, a concave shape will damage the magnetic disk.
上記のように、 磁気へッドスライダ 1 1の薄膜磁気変換素子面に位置 する接続端子パターン 1 5とサスペンション 1 4に設けた接続端子部 3 6との間を接続することに基づく前記凸形状の実験結果を説明する。 第 1 9図は、 接続部材に低融点はんだを用いた場合の凸形状変形量を 示す線図である。 図示の如く、 はんだ付け後、 凸形状変形量は、 減少す る方向に変形しているのがわかる。 その量は 1 0 n mから 4 0 n mであ る。 As described above, the connection terminal pattern 15 located on the thin-film magnetic transducer surface of the magnetic head slider 11 and the connection terminal portion 3 provided on the suspension 14 An experimental result of the above-mentioned convex shape based on connection between 6 and 6 will be described. FIG. 19 is a diagram showing a convex shape deformation amount when a low melting point solder is used for a connection member. As shown in the figure, it can be seen that, after soldering, the convex shape deformation amount is deformed in a decreasing direction. Its amount is between 10 nm and 40 nm.
使用した低はんだは、 融点約 1 4 O 'Cの錫、 ビスマス系のはんだであ る。 この低融点はんだは固化する際に約 3 %膨張する性質を持っている < 前記固化時の膨張力が、 磁気ヘッドスライダ 1 1の薄膜磁気変換素子を 押す方向、 つまリ凸形状を小さくする方向に働くためである。  The low solder used was a tin- and bismuth-based solder with a melting point of about 14 O'C. This low melting point solder has a property of expanding about 3% when it is solidified. <The expansion force at the time of solidification is the direction in which the thin-film magnetic transducer of the magnetic head slider 11 is pushed and the direction in which the convex shape is reduced. To work.
さらに、 第 2 0図を参照して詳しく説明する。  This will be described in detail with reference to FIG.
第 2 0図は、 導電性接着剤 (銀エポキシ系) 用いた場合の凸形状変形 量を示す線図である。 第 2 0図に示すように、 第 1 9図の場合とは逆に 凸形状が増加する方向に変形しているのがわかる。  FIG. 20 is a diagram showing the amount of convex deformation when a conductive adhesive (silver epoxy-based) is used. As shown in FIG. 20, it can be seen that the convex shape is deformed in the direction of increasing the contrary to the case of FIG.
前記エポキシ系接着剤は、 低融点はんだの場合とは逆に固化するとき、 硬化収縮を起こすため、 磁気ヘッドスライダ 1 1の薄膜磁気変換素子面' を引張る方向、 つまリ凸形状を増加させる方向に収縮力が掛るためであ る。  Since the epoxy adhesive hardens and shrinks when it is solidified in the opposite direction to the case of the low melting point solder, the direction in which the thin film magnetic transducer surface of the magnetic head slider 11 is pulled, the direction in which the convex shape increases. This is because the contraction force is applied to
以上の実験結果からもわかるように、 膨張力、 収縮力いずれにしても、 磁気へッドスライダ 1 1の薄膜磁気変換素子面に応力が掛ると、 磁,気へ ッドスライダ 1 1の浮上面 1 9の表面形状が変化することは明らかであ る。  As can be seen from the above experimental results, regardless of the expansion force and the contraction force, when stress is applied to the thin film magnetic transducer surface of the magnetic head slider 11, the air bearing surface 19 of the magnetic head slider 11 It is clear that the surface shape changes.
上記三つの課題の内、 第二の課題は熱的問題である。  The second of the three issues is the thermal issue.
小形化、 高精度化により磁気ヘッドの耐熱温度は、 低下する傾向にあ る。 現在検討されている磁気へッドの耐熱温度は、 おおよそ 1 5 CTCと いわれている。 したがって、 はんだ付けによる接続方法では、 一般に使 われている共晶性はんだは溶融温度が 1 8 CTCであるため使用できない。 —方、 上記の如ぐ低融点はんだを使用すると、 前記温度の問題は解決す るが、 使用状況によっては信頼性に乏しいという問題がある。 With miniaturization and higher precision, the heat-resistant temperature of magnetic heads tends to decrease. The heat-resistant temperature of the magnetic head currently under study is said to be approximately 15 CTC. Therefore, the commonly used eutectic solder cannot be used in the connection method by soldering because the melting temperature is 18 CTC. —On the other hand, the use of a low melting point solder as described above solves the above-mentioned temperature problem, but has a problem of poor reliability depending on the use condition.
第三の課題は、 組立コストの問題である。  The third issue is the problem of assembly costs.
第 1 6図で説明した例は、 磁気ヘッドスライダ 1 1の反浮上面 3 3に, 電気的接続端子パターン 1 5 aを設け、 機械的接続と、 電気的接続とを 同時に行わせる例である。  The example described in FIG. 16 is an example in which an electrical connection terminal pattern 15 a is provided on the anti-floating surface 33 of the magnetic head slider 11, and the mechanical connection and the electrical connection are simultaneously performed. .
前掲した第 1 7図にその構造を示すが、 磁気ヘッドスライダ 1 1は、 その組立工程上、 電気的接続パターン 1 5を薄膜磁気変換素子 1 3と同 —面に形成することは、 多数個の磁気ヘッドを同時に製作するので筒単、 かつ安価である。  The structure of the magnetic head slider 11 shown in FIG. 17 is described above. Due to the assembling process, the electrical connection pattern 15 is formed on the same surface as the thin-film magnetic transducer 13 in many cases. Since the magnetic heads are manufactured at the same time, it is simple and cheap.
反面、 第 1 7図に示すごとく、 反浮上面 3 3に接続端子パターン 1 5 aを形成すことは、 磁気へヅ卞スライタ単品を形成させてから、 薄膜磁 気変換素子面からパターンを蒸着等で引き延ばして来る必要があリ、 組 立コストが非常に高価なものとなるという問題があった。  On the other hand, as shown in Fig. 17, the formation of the connection terminal pattern 15a on the anti-floating surface 33 is performed by forming a single piece of magnetic slider and then depositing a pattern from the thin-film magnetic conversion element surface. For example, there was a problem that the assembly cost would be extremely expensive.
本発明は、 上記従来技術の課題を解決するためになされたもので、 磁 気へッドスライダの機械的取付時および電気的接続時の機械的ストレス が少なぐ、 低温度で且つ低応力で熱的問題がなく、 低コストで、 磁気へ ッドスライダの薄膜磁気変換素子面での電気的接繚を行うことができる 磁気へッド組立体およびその組立方法及びその組立装置並びに磁気ディ スク装置を提供することをその目的どするものである。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and has a low mechanical stress at the time of mechanically attaching and electrically connecting a magnetic head slider, at a low temperature and at a low stress. Provided are a magnetic head assembly, an assembling method, an assembling apparatus, and an assembling apparatus, and a magnetic disk apparatus capable of performing electrical contact on a thin film magnetic transducer surface of a magnetic head slider without problems and at low cost. That is the purpose. Disclosure of the invention
上記目的を達成するため、 本発明に係る磁気へッド組立体の構成は、 第一の接続端子回路パターンを設けた磁気ヘッドスライダと、 配線パタ ーンと第二の接続端子回路パターンどを設けたサスペンジョンとからヮ ——クを形成し、 前記第一、 第二の両接続端子回路パターン間をワイヤ配 線した磁気へッド組立体において、 前記サスペンジョンの一部にたわみ 機能部を設けると共に、 前記第一、 第二接続端子回路パターン間の配線 が当該配線の伸縮みを吸収するように構成したことを特徴とするもので ある。 In order to achieve the above object, a magnetic head assembly according to the present invention comprises a magnetic head slider provided with a first connection terminal circuit pattern, a wiring pattern and a second connection terminal circuit pattern. A wire is formed from the provided suspension and a wire is arranged between the first and second connection terminal circuit patterns. In the wired magnetic head assembly, a bending function part is provided in a part of the suspension, and the wiring between the first and second connection terminal circuit patterns is configured to absorb expansion and contraction of the wiring. It is characterized by
前項記載の磁気へッド組立体おいて、 前記第一の回路接続端子パター ンと同一平面上、 かつ前記磁気へッドスライダ外の位置に捨てパッドを 設け、 前記第一の回路接続端子パターンと捨てパッド間でワイヤポンデ ィングを行い、 当該第一の回路接続端子パターンと当該捨てパヅド間で ワイヤを切断し、 当該ワイヤを直角に折り曲げ後、 ワークを形成すると 共に、 前記第二の回路接続端子パターンと前記ワイヤとをゥエッジボン デイングして構成したことを特徴とするものである。  The magnetic head assembly according to the preceding claim, wherein a discard pad is provided on the same plane as the first circuit connection terminal pattern and at a position outside the magnetic head slider, and the discard pad is disposed with the first circuit connection terminal pattern. Wire bonding is performed between the pads, the wire is cut between the first circuit connection terminal pattern and the discarded pad, and the wire is bent at a right angle to form a work, and the second circuit connection terminal pattern is formed. The present invention is characterized in that the wire is formed by edge bonding.
前項記載のいずれかの磁気へッド組立体において、 前記第一、 第二接 続端子回路パターン間の配線が、 金ワイヤでは直径 1 0〜7 0 πι、 ァ ルミワイヤでは直径 1 0〜 3 0 m、 銅ワイヤでは直径 1 0〜4 0 m の範囲である導電ワイヤで架空配線したことを特徴とするものである。  The magnetic head assembly according to any one of the preceding items, wherein the wiring between the first and second connection terminal circuit patterns has a diameter of 10 to 70πι for a gold wire and a diameter of 10 to 30 for a aluminum wire. m, copper wire is characterized by being wired overhead with conductive wires having a diameter in the range of 10 to 40 m.
I項記載のいずれかの磁気へッ ド組立体において、 前記第一、 第二接 続端子回路パターン間の配線が、 弛みを持つようにしたことを特徴とす るものである。  The magnetic head assembly according to any one of Items I, wherein the wiring between the first and second connection terminal circuit patterns has slack.
前項記載のいずれかの磁気へッド組立体において、 前記第二の接続端 子回路パターンを、 前記磁気ヘッドに対し、 前記たわみ機能部より近傍 に位置させたことを特徴とするするものである。  The magnetic head assembly according to any one of the preceding items, wherein the second connection terminal circuit pattern is located closer to the magnetic head than the bending function portion. .
本発明に係る磁気へッド組立体の組立方法の構成は、 前項いずれかに 記載されている磁気ヘッド組立体の組立方法において、 前記ワークを第 —の接続端子回路パターンを上向きに位置させ、 第一のワイヤボンディ ングを施し、 次ぎに、 前記ワークを、 前記第二の接続端子回路パターン が上部になるように 9 0度回転させ、 第二のワイヤボンディングを施し、 ワイヤ配線することを特徴とするものである。 The configuration of the method for assembling a magnetic head assembly according to the present invention is the method for assembling a magnetic head assembly according to any one of the preceding items, wherein: First wire bonding is performed, and then, the work is rotated 90 degrees so that the second connection terminal circuit pattern is on the upper side, and second wire bonding is performed, It is characterized by wiring.
本発明に係る磁気ヘッド組立体の組立装置の構成は、 ワークを固定す る固定手段と、 前記ワークの磁気ヘッドスライダとサスペンジョン間を ボンディングするワイヤ配線手段とを具備した磁気へッド組立体の組立 装置において、 前記磁気へッドスライダの第一の接続端子回路パターン 上に第一のワイヤポンディングを設け、 当該第一の接続端子回路パター ンと前記サスペンション上の第二の接続端子回路パターンを含むそれぞ れの面に鉛直な線上の交点を回転中心として、 前記ワークを 9 0度回転 させ、 前記第二の接続端子回路パターン上に第二のワイヤボンディング を設け、 ワイヤ配線できるように構成したこどを特徴とずるものである。 本発明に係る磁気ヘッド組立体の組立装置の他の構成は、 磁気へッド スライダを固定する固定手段と、 捨てパッドに用いる金属テープを前記 磁気へッドスライダの磁気素子面と同一面上に位置させる位置決め手段 と、 前記金属テープを巻取る巻取り手段と備えた磁気へッド組立体の組 立装置であって、 前記固定手段上の磁気ヘッドスライダの回路接続端子 パターンと前記位置決めした金めつきテ一プの捨てパッド間とをポンデ ィングするワイヤボンディング手段と、 前記ボンディングワイヤを前記 パターンと前記捨てパッド間でカツ卜するカツト手段と、 前記磁気へッ ドスライダを固定したまま固定手段を前記磁気へッドスライダ面と前記 捨てパッド面との交線を軸として 9 0度回転させる回転手段と、 前記磁 気へッ卞スライダ上にポンディングされている前記ワイヤの他端を前記 サスペンションの回路接続端子パターン上にゥエッジボンディングする ボンディング手段を具備することを特徴とするものである。  The structure of the magnetic head assembly assembling apparatus according to the present invention is a magnetic head assembly comprising: a fixing means for fixing a work; and a wire wiring means for bonding a magnetic head slider and a suspension of the work to each other. In the assembling apparatus, a first wire bonding is provided on a first connection terminal circuit pattern of the magnetic head slider, and the first wire bonding includes the first connection terminal circuit pattern and a second connection terminal circuit pattern on the suspension. The workpiece is rotated 90 degrees around the intersection on a vertical line on each surface as a center of rotation, and a second wire bonding is provided on the second connection terminal circuit pattern to enable wire wiring. It features a child. Another configuration of the apparatus for assembling a magnetic head assembly according to the present invention includes a fixing means for fixing a magnetic head slider, and a metal tape used for a discard pad positioned on the same plane as a magnetic element surface of the magnetic head slider. A magnetic head assembly assembling device comprising: a positioning means for causing the magnetic tape to wind up the metal tape; and a circuit connection terminal pattern of a magnetic head slider on the fixing means and the positioned metal mold. Wire bonding means for bonding between the discard pads of the attached tape; cutting means for cutting the bonding wire between the pattern and the discard pad; and fixing means with the magnetic head slider fixed. Rotating means for rotating the magnetic head slider by 90 degrees around an intersection line between the magnetic head slider surface and the discard pad surface; It is characterized in that it comprises a bonding means for © edge-bonding and the other end of the wire which is a bonding on the circuit connection terminal pattern of the suspension.
本発明に係る磁気ディスク装置の構成は、筐体に実装された情報を含 む同心データ トラックを備えた少なくとも一枚の回転ディスクと、 前記 データ 卜ラックからデータを読み取リもしくは書き込むため磁気へッド 組立体と、 これらを動作させる装置回路部と、 前記装置回路部がインタ フェースを介して制御されるように構成した磁気ディスク装置において. 前記磁気へッド組立体を、 請求の範囲 1項ないし請求の範囲 5項記載の いずれかの磁気へッド組立体としたことを特徵とするものである。 The configuration of the magnetic disk drive according to the present invention includes at least one rotating disk having concentric data tracks containing information mounted on a housing, and a magnetic head for reading or writing data from the data tracks. Do An assembly, a device circuit unit for operating the assembly, and a magnetic disk device configured to control the device circuit unit via an interface. The magnetic head assembly according to claim 1, A magnetic head assembly according to any one of claims 5 to 10 is characterized.
上記各技術的手段の働きはつぎのとおりである。  The function of each of the above technical means is as follows.
請求の範囲 1項ないし 4項記載の磁気ヘッド組立体に係る発明の構成 によれば、 磁気へッドスライダとサスペンションとからなる磁気へッド 組立体において、 磁気へッドスライダの薄膜磁気変換素子面の接続端子 回路パターンと、 サスペンション上の接続端子回路パターンとを、 剛性 の小さな導電ワイヤ、 例えば金、 アルミ、 銅ワイヤにより伸び縮みを吸 収するような配線をすることにより、 磁気へッドスライダとサスペンシ ヨンとの収縮差による応力が前記導電ワイヤを介して前記磁気へッドス ライダに対し加わらないので、 当該磁気ヘッドスライダに変形させずに 接続することができる。 .  A magnetic head assembly comprising a magnetic head slider and a suspension, wherein a connection of a thin film magnetic transducer surface of the magnetic head slider is provided. By connecting the terminal circuit pattern and the connection terminal circuit pattern on the suspension with a rigid conductive wire such as gold, aluminum or copper wire to absorb expansion and contraction, a magnetic head slider and suspension can be formed. Since no stress is applied to the magnetic head slider via the conductive wire, the magnetic head slider can be connected to the magnetic head slider without being deformed. .
また、 サスペンションにたわみ機能部を設けたので、 当該サスペンシ ヨンの接続端子回路パターンと磁気へッドスライダとほ相対的に動かな いので当該磁気へッドスライダに変形させることがなく接続することが できる。  Further, since the suspension is provided with the flexure function portion, the connection terminal circuit pattern of the suspension and the magnetic head slider do not relatively move, so that the suspension can be connected to the magnetic head slider without being deformed.
また、 前記磁気へッドスライダと前記サスペンションとの線膨張差に よる接続部間の距離変化も前記導電ワイヤが伸び縮みして吸収するため、 その応力が前記磁気ヘッドスライダに対し加わらないので、 当該磁気へ ッドスライダに変形させることがなく接続することができる。  Further, since the conductive wire expands and contracts and absorbs a change in the distance between the connecting portions due to a difference in linear expansion between the magnetic head slider and the suspension, the stress is not applied to the magnetic head slider. It can be connected to the head slider without deformation.
請求の範囲 2項記載の磁気ヘッ ド組立体に係る発明の構成によれば、 捨てパッドを設けることにより、 ゥエッジボンディングすることによリ、 狭ピッチ、 かつ低温で接続することができる。  According to the configuration of the invention relating to the magnetic head assembly described in claim 2, by providing the discard pad, it is possible to perform connection at a narrow pitch and at a low temperature by performing edge bonding.
請求の範囲 3項記載の磁気へッド組立体に係る発明の構成によれば、 導電ワイヤで架空配線したので、 前記磁気へッドスライダと前記サスぺ ンシヨンとの線膨張差による応力が当該導電ヮィャの縦弾性率によリ定 まるので、 当該応力を小さくすることができる。 According to the configuration of the invention relating to the magnetic head assembly according to claim 3, Since the overhead wire is provided by the conductive wire, the stress due to the difference in linear expansion between the magnetic head slider and the suspension is determined by the longitudinal elastic modulus of the conductive wire, so that the stress can be reduced.
請求の範囲 4項記載の磁気ヘッド組立体に係る発明の構成によれば、 導電ワイヤに弛みを持たせて接続したので、 前記磁気ヘッドスライダと 前記サスペンションとの線膨張差による応力が、 当該導電ワイヤの曲げ 弾性率により定まるので、 当該応力を小さくすることができる。  According to the configuration of the invention of the magnetic head assembly according to claim 4, since the conductive wire is connected with a slack, the stress due to a difference in linear expansion between the magnetic head slider and the suspension is reduced by the conductive force. Since the stress is determined by the bending elastic modulus of the wire, the stress can be reduced.
請求の範囲 5項記載の磁気へッド組立体に係る発明の構成によれば、 前記サスペンションの回路接続端子パターンをたわみ機能部よリ磁気へ ッドスライダの近傍にすることにより、 当該サスペンションの振動もし ぐは振動による接続部間の距離変化がないので、 導電ワイヤの変形がな い。  According to the configuration of the invention relating to the magnetic head assembly according to claim 5, the vibration of the suspension can be reduced by setting the circuit connection terminal pattern of the suspension closer to the magnetic head slider than the flexure function part. Since there is no change in the distance between the joints due to vibration, the conductive wire is not deformed.
換言すれば、 磁気ヘッドスライダが磁気ディスク円板上を浮上しなが ら走行する際、 磁気ヘッドスライダを磁気ディスク円板に押さえつける 方向に加力し、 磁気へッドスライダは、 その浮上面と磁気ディスク円板 との間のエアークッションで逆に浮かせる方向に加力する。 従って、.前 記磁気ディスク円板の凹凸や面ぶれは前記サスペンションのたわみ機能 部で吸収され、 前記ワイヤの切断や磁気ヘッドスライダの変形がない。 請求の範囲 6項記載の磁気ヘッド組立体の組立方法の発明の構成によ れば、 前記記載の磁気ヘッド組立体.を磁気ヘッド素子を組立する薄膜ェ 程で組立することができ、 安価につくることができる。  In other words, when the magnetic head slider travels while flying above the magnetic disk, the magnetic head slider applies a force in a direction to press the magnetic head slider against the magnetic disk, and the magnetic head slider is moved between the floating surface and the magnetic disk. Apply force in the direction of floating with the air cushion between the disk and the other side. Therefore, the irregularities and runout of the magnetic disk are absorbed by the flexure function of the suspension, and there is no cutting of the wire or deformation of the magnetic head slider. According to the configuration of the invention of the method for assembling a magnetic head assembly according to claim 6, the magnetic head assembly according to the above can be assembled in a thin film process for assembling a magnetic head element, and at low cost. I can make it.
請求の範囲 7項、 8項記載の磁気へッド組立体の組立装置の発明の構 成によれば、 磁気変換素子面の回路接続端子パターンに第一のワイヤポ ンデイングし、 サスペンション上に第二のワイヤボンディングし、 その 間にゆるみを持たせた配線ができ、 各ボンディングの鉛直線上の交点を 回転中心にするので、 第一のワイヤボンディングの位置を決めれば、 再 度第二のワイヤボンディングの位置が決めることができる。 図面の簡単な説明 According to the structure of the invention of the apparatus for assembling a magnetic head assembly according to claims 7 and 8, the first wire bonding is performed on the circuit connection terminal pattern on the surface of the magnetic conversion element, and the second wiring is mounted on the suspension. Wire bonding, and a wire with looseness between them can be formed, and the intersection point on the vertical line of each bonding is set as the center of rotation, so if the position of the first wire bonding is determined, The position of the second wire bonding can be determined. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る磁気ヘッド組立体の要部斜視図であり、 第 2 図は、 第 1図の磁気ヘッド組立体の製造装置の略示説明図であり、 第 3 図は、 第 2図の磁気へッド組立体製造装置におけるるボンディング接続 の説明図であリ、 第 4図は、 第 3図によるボンディング接続部の拡大図 であり、 第 5図は、 第 3図によるボンディングによる浮上面の変形量を 示す線図であり、 第 6図は、 本発明の他の実施例に係る磁気ヘッド組立 体の要部斜視図であり、 第 7図は、 第 6図の磁気ヘッド組立体のポンデ イング接続部の拡大図であり、 第 8図は、 第 6図の磁気ヘッド組立体の ボンディングに用いられる組立て装置の回転治具の構造図であり、 第 9 図は、 第 8図の組立て装置の回転治具によるボンディングの説明図であ リ、 第 1 0図は、 磁気ヘッドスライダを単純梁としたモデル図であり、 第 1 1図は、 磁気へッドスライダのボンディングにおいて弛みのないヮ ィャ配線のモデル図であリ、 第 1 2図は、 磁気へッドスライダのポンデ ィングにおいて弛みを持つワイヤ配線のモデル図であリ、 第 1 3図は、 従来の磁気へッド組立体の斜視図であり、 第 1 4図は、 第 1 3図の磁気 ヘッド組 体の磁気ヘッドスライダの拡大図であり、 第 1 5図は、 従来 における複合構造体の磁気へッド組立体の斜視図であり、 第 1 6図は、 第 1 5図に示す磁気へッド組立体の電気接続部の拡大図であり、 第 1 7 図は、 第 1 5図に示す磁気へッドスライダの非浮上面を示す斜視図であ リ、 第 1 8図は、 第 1 5図に示す磁気ヘッド組立体の電気接続部の他の 例の拡大図であり、 第 1 9図は、 接続部材に低融点はんだを用いた場合 の凸形状窣形量を示す線図であり、 第 2 0図は、 導電性接着剤 (銀ェポ キジ系) を用いた場合の凸形状変形量を示す線図である。 4 FIG. 1 is a perspective view of a main part of a magnetic head assembly according to the present invention, FIG. 2 is a schematic explanatory view of a manufacturing apparatus of the magnetic head assembly of FIG. 1, and FIG. FIG. 2 is an explanatory view of a bonding connection in the magnetic head assembly manufacturing apparatus of FIG. 2, FIG. 4 is an enlarged view of a bonding connection portion of FIG. 3, and FIG. 5 is a drawing of FIG. FIG. 6 is a diagram showing the amount of deformation of the air bearing surface due to bonding; FIG. 6 is a perspective view of a main part of a magnetic head assembly according to another embodiment of the present invention; FIG. FIG. 8 is an enlarged view of a bonding connection portion of the head assembly. FIG. 8 is a structural view of a rotating jig of an assembling apparatus used for bonding the magnetic head assembly of FIG. 6, and FIG. FIG. 8 is an explanatory view of bonding by a rotating jig of the assembling apparatus shown in FIG. 8; Fig. 11 is a model diagram of a head slider that is a simple beam. 13 is a perspective view of a conventional magnetic head assembly, and FIG. 14 is a perspective view of a conventional magnetic head assembly; FIG. 13 is a magnetic head assembly of the magnetic head assembly of FIG. FIG. 15 is an enlarged view of a slider. FIG. 15 is a perspective view of a conventional magnetic head assembly of a composite structure. FIG. 16 is a perspective view of the magnetic head assembly shown in FIG. FIG. 17 is an enlarged view of an electric connection portion, FIG. 17 is a perspective view showing a non-floating surface of the magnetic head slider shown in FIG. 15, and FIG. 18 is a magnetic head shown in FIG. FIG. 19 is an enlarged view of another example of the electrical connection part of the assembly, and FIG. FIG. 20 is a diagram showing a convex shape 窣 shape amount when a solder is used, and FIG. 20 is a diagram showing a convex shape deformation amount when a conductive adhesive (silver epoxy resin) is used. . Four
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
第 1図ないし第 1 2図を参照して、 本発明の各実施例を説明する。 なお、 以下の各実施例においては、 磁気ディスク面の下面に浮上面を 押しつける磁気ヘッド組立体について説明する。  Embodiments of the present invention will be described with reference to FIGS. 1 to 12. In the following embodiments, a description will be given of a magnetic head assembly that presses a floating surface against a lower surface of a magnetic disk surface.
〔実施例 1〕  (Example 1)
第 1図を参照して、 本発明に係る磁気ヘッド組立体の一実施例を説明 する。 第 1図は、 本発明に係る磁気へッド組立体の要部斜視図であリ、 ( a ) は組立前の示す斜視図、 ( b ) は組立後の一部拡大図である。 図 中、 第 1 5図と同一符号は同等部分であるので、 説明は省略し、 新たな 符号のみ説明する。  An embodiment of the magnetic head assembly according to the present invention will be described with reference to FIG. FIG. 1 is a perspective view of a main part of a magnetic head assembly according to the present invention, in which (a) is a perspective view showing a state before assembling, and (b) is a partially enlarged view after assembling. In the figure, the same reference numerals as those in FIG. 15 denote the same parts, and a description thereof will be omitted, and only new reference numerals will be described.
第 1図において、 Aはサスペンション 1 4の先端両側部、 Bはサスぺ ンシヨン 1 4の先端中央部、 Cはサスペンション 1 4の先端内庭部、 4 0は磁気ディスク本体との接続端子回路パターン、 4 1は磁気へッドス ライダ 1 1との接続端子回路パターンである。  In FIG. 1, A is the both sides of the tip of the suspension 14, B is the center of the tip of the suspension 14, C is the inner garden of the tip of the suspension 14, 40 is a connection terminal circuit pattern with the magnetic disk main body, Reference numeral 41 denotes a connection terminal circuit pattern with the magnetic head slider 11.
第 1図 ( a ) に示すように、 金属性のサスペンション 1 4の上面にパ ターン化された配線である電気リ一ド 3 1と、 その一端には磁気ディス ク本体 (図示せず) と電気的接続をするための接続端子回路パターン 4 0 (以下、 磁気ディスク側という) と、 他の.一端の先端内庭部 Cには磁 気ヘッドスライダ 1 1と電気的接続をするだめの接続端子回路パターン 4 1 (以下、 先端側という) が設けられ、 前記電気リード 3 1が両接続 端子回路パターン 4 0と 4 1とを接続している。  As shown in FIG. 1 (a), an electric lead 31 which is a patterned wiring on the upper surface of a metallic suspension 14 and a magnetic disk main body (not shown) at one end. A connection terminal circuit pattern 40 for electrical connection (hereinafter referred to as the magnetic disk side) and another inner end portion C at one end of the terminal C are connection terminals for electrical connection to the magnetic head slider 11. A circuit pattern 41 (hereinafter referred to as a distal end side) is provided, and the electric lead 31 connects the two connection terminal circuit patterns 40 and 41.
前記接続端子回路バターン 4 0、 4 1は、 例えば、 金などで蒸着もし くはめつきざれており、 その表面が露出され、 その他の部分を絶緣層で 覆われている。  The connection terminal circuit patterns 40 and 41 are, for example, vapor-deposited or fitted with gold or the like, the surface thereof is exposed, and the other portions are covered with an insulating layer.
前記サスペンション 1 4は、 そのパネ力で磁気ヘッドスライダ 1 1を 前記図示しない磁気ディスク面に押える押圧力を発生させ、 この磁気へ ッドスライダ 1 1が前記磁気ディスク面上を走行する際、 両面間にエア 一クッションを形成させている。 このエアークッションにより、 磁気へ ッドスライダ 1 1が浮上しながら走行する。 The suspension 14 drives the magnetic head slider 11 by its panel force. A pressing force is generated to press the magnetic disk surface (not shown), and when the magnetic head slider 11 travels on the magnetic disk surface, an air cushion is formed between both surfaces. With this air cushion, the magnetic head slider 11 travels while floating.
この走行時、 ディスク表面を精度良く走行するために、 ディスクの円 周方向、 すなわち、 走行方向の振れ角度は、 サスペンション 1 4先端側 の両側部 Aで吸収され、 前記走行方向と直角方向の振れ角度は、 サスぺ ンシヨン 1 4の先端側中央部 Bで吸収される。 すなわち、 そのサスペン シヨン 1 4の先端側内庭部 Cは、 磁気へッドスライダ 1 1と同じように 動き、 相対的にはその位置が変化しない。 言いかえれば、 従来技術のた わみ部材 1 8と同じ働きをすることになる。  During this traveling, in order to travel on the disk surface with high accuracy, the deflection angle in the circumferential direction of the disk, that is, in the traveling direction, is absorbed by both side portions A at the front end side of the suspension 14 and the deflection in the direction perpendicular to the traveling direction. The angle is absorbed at the center B on the distal end side of the suspension 14. In other words, the tip side inner court part C of the suspension 14 moves in the same manner as the magnetic head slider 11, and its position does not change relatively. In other words, it works the same as the flexure 18 of the prior art.
第 1図 (b ) を参照して、 磁気ヘッドスライダ 1 1を詳細に説明する。 前記磁気ヘッドスライダ 1 1は、 基材として、 シリコンカーバイ ト、 アルミナ、 アルミナチタンカーバイ ト等の材料でウェハを形成し、 その ウェハ上に、 I C製造工程と同様な工程で作られる薄膜磁気変換素子 1 3と、 この薄膜磁気変換素子 1 3と同一平面 (単に、 磁気ヘッド素子面 という) 上に、 前記薄膜磁気変換素子 1 3と電気的接続のための接続端 子回路パターン 1 5とを 4個所に形成する。 前記製造工程においては、 前記薄膜磁気変換素子 1 3と前記接続端子回路パターン 1 5とが複数個 (およそ、 1 0 0 0個以上) 同時に形成される。  The magnetic head slider 11 will be described in detail with reference to FIG. 1 (b). The magnetic head slider 11 is formed by forming a wafer from a material such as silicon carbide, alumina, or alumina titanium carbide as a base material, and forming a thin film magnetic layer on the wafer in the same process as the IC manufacturing process. The conversion element 13 and a connection terminal circuit pattern 15 for electrical connection with the thin-film magnetic conversion element 13 on the same plane as the thin-film magnetic conversion element 13 (hereinafter, simply referred to as a magnetic head element surface). Are formed in four places. In the manufacturing process, the thin-film magnetic transducer 13 and the connection terminal circuit pattern 15 are simultaneously formed in a plurality (approximately 100 or more).
次に、 上記複数個の薄膜磁気変換ド素子 1 3と接続端子回路パターン レ 5とを含むウェハを、 前記薄膜磁気変換素子 1 3と前記 4個所の接続 端子回路パターン 1 5とを含むように、 前記磁気ヘッド素子面に直交す る面で一個づつの長方形部材となるように切断する。 前記切断面と連続 し、 前記磁気ヘッド素子面と直交する長方形部材の二つの面を、 それぞ れ浮上面 1 9、 反浮上面 3 3として研磨する。 最後に、 前記浮上面 1 9 に特性を良くするため、 微少凹凸がスパッタ等により形成される。 Next, the wafer including the plurality of thin-film magnetic transducers 13 and the connection terminal circuit patterns 55 is formed so as to include the thin-film magnetic transducers と 13 and the four connection terminal circuit patterns 515. Then, cutting is performed so as to form one rectangular member on a surface orthogonal to the magnetic head element surface. Two surfaces of a rectangular member continuous with the cut surface and orthogonal to the magnetic head element surface are polished as a floating surface 19 and an anti-floating surface 33, respectively. Finally, the floating surface 1 9 In order to improve the characteristics, minute irregularities are formed by sputtering or the like.
本実施例の磁気へッドは、 その基材にアルミナチタンカーパイ トを用 い、 その大きさを、 浮上面を上にしたとき、 その前面である磁気ヘッド 素子面が、 約幅 l m ni、 高さ 0 . 3 m mで、 長さは、 .1 . 2 m mと小形 化されている。 そして、 磁気ヘッド素子面の回路接続パターン 1' 5の大 きさは、 その 1つの巾が約 1 3 0 である。  The magnetic head of this embodiment uses alumina titanium carpite as a base material. When the size of the magnetic head is raised with the air bearing surface facing upward, the front surface of the magnetic head element surface has a width of about lm ni. It has a height of 0.3 mm and a length of 11.2 mm. The width of one of the circuit connection patterns 1'5 on the magnetic head element surface is about 130.
このような磁気ヘッドスライダ 1 1は、 前記磁気ヘッド素子面が前記 サスペンション 1 4の先端内庭 C部と直交し、 かつ前記先端側の端部と 平行になるように、 反浮上面 3 3が当該先端内庭部 Cに接着剤で固定さ れている。  In such a magnetic head slider 11, the anti-floating surface 33 is arranged such that the magnetic head element surface is orthogonal to the tip inner yard C of the suspension 14 and parallel to the tip end side. It is fixed to the inner courtyard C with adhesive.
このような状態で、 前記接続端子回路バターン 1 5と前記接続端子回 路パターン 4 1とは、 金線 4 3により当該接続端子回路パターン 1 5を 第一のボンディングとし、 当該接続端子回路パターン 4 1を第二のボン デイングとして、 空中接続されている。  In this state, the connection terminal circuit pattern 15 and the connection terminal circuit pattern 41 are connected to each other by a gold wire 43 so that the connection terminal circuit pattern 15 is first bonded. 1 is the second bonding, which is connected in the air.
このとき、 前記空中接続線が、 前記接続端子回路パターン 1 5と、 前 記接続端子回路パターン 4 1のそれぞれの垂直軸交点を曲がり点として、 直角に方向変更して配設されている。 前記接続に使用した金線の太さは、 直径 2 5 mである。 このようにして、 磁気へッドスライダ 1 1が形成 される。  At this time, the aerial connection line is arranged so as to change its direction at a right angle, with each vertical axis intersection of the connection terminal circuit pattern 15 and the connection terminal circuit pattern 41 as a bending point. The thickness of the gold wire used for the connection is 25 m in diameter. Thus, the magnetic head slider 11 is formed.
〔実施例 2〕  (Example 2)
次ぎに、 第 2図を参照して、 本発明の他の実施例を説明する。  Next, another embodiment of the present invention will be described with reference to FIG.
第 2図は、 第 1図の磁気ヘッド組立体の組立て装置を説明する。  FIG. 2 illustrates an apparatus for assembling the magnetic head assembly of FIG.
第 2図に示される組立て装置は、 図示左部の回転治具と、 図示右部の ポールボンディング装置と、 これらの共通架台とからなつている。  The assembling apparatus shown in FIG. 2 includes a rotating jig on the left side of the figure, a pole bonding apparatus on the right side of the figure, and a common base.
前記回転治具において、 4 4は回転駆動用のロータリアクチユエータ、 5 0はサスペンション 1 4に磁気ヘッドスライダ 1 1を取り付けた部材 7 In the rotary jig, reference numeral 44 denotes a rotary actuator for rotational driving, 50 denotes a member in which a magnetic head slider 11 is mounted on a suspension 14. 7
(以下、 ワークという) 、 5 1はワーク 5 0を固定する固定ブロック、 5 2は回転ブロック、 5 9は取付け架台、 Dはロータリアクチユエータ 4 4の回転中心軸である。 Reference numeral 51 denotes a fixed block for fixing the work 50, 52 denotes a rotating block, 59 denotes a mounting base, and D denotes a rotation center axis of the rotary actuator 44.
前記ポールボンディング装置において、 5 3は超音波ポールボンディ ング部、 5 4はホーン、 5 5はボンディング材の金ワイヤ、 5 6はスプ ール、 5 7はキヤビラリ、 5 8はレバ一である。  In the pole bonding apparatus, 53 is an ultrasonic pole bonding portion, 54 is a horn, 55 is a gold wire of a bonding material, 56 is a spool, 57 is a cabillary, and 58 is a lever.
図示の如く、 ワーク固定ブロック 5 1に、 ワーク 5 0が真空吸引もし くは固定爪等 (いずれも詳細は図示せず) により固定されている。 なお、 詳細な図示を省略するが、 前記磁気ヘッドスライダ 1 1の接続端子回路 パターン 1 5が上向きに位置している。  As shown in the drawing, the work 50 is fixed to the work fixing block 51 by vacuum suction or a fixing claw (neither is shown in detail). Although not shown in detail, the connection terminal circuit pattern 15 of the magnetic head slider 11 is located upward.
前記ワーク固定ブロック 5 1は回転ブロック 5 2に固定され、 前記回 転プロック 5 2が、 ロータリアクチユエータ 4 4に連結されている。 前 記ロータリアクチユエータ 4 4は、 前記回転プロック 5 2を回転中心軸 Dを中心として 9 0度回転させるようになつている。  The work fixing block 51 is fixed to a rotation block 52, and the rotation block 52 is connected to a rotary actuator 44. The rotary actuator 44 rotates the rotary block 52 90 degrees about a rotation center axis D.
前記回転中心軸 Dの延長には、 図示しないが、 磁気ヘッドスライダ 1 1の接続端子回路パターン 1 5のボンディング位置と、 サスペンション 1 4上の接続端子回路パターン 4 1のボンディング位置との交点か位置 している。  In the extension of the rotation center axis D, although not shown, an intersection or a position between the bonding position of the connection terminal circuit pattern 15 of the magnetic head slider 11 and the bonding position of the connection terminal circuit pattern 41 on the suspension 14 is provided. are doing.
また、 前記ワーク固定ブロック 5 :1には、 図示しないが加熱手段が設 けられており、 約 1 5 0 °Cに加熱する。 さらに、 回転ブロック 5 2には 取付け架台 5 9を設けられている。  The work fixing block 5: 1 is provided with a heating means (not shown) for heating to about 150 ° C. Further, a mounting base 59 is provided on the rotating block 52.
このように構成された前記回転治具を取付け架台 5 9に固定し、 前記 取付け架台 5 9と超音波ポールボンディング部 5 3との共通架台 6 0に 固定されている。  The rotating jig thus configured is fixed to a mounting frame 59, and is fixed to a common frame 60 for the mounting frame 59 and the ultrasonic pole bonding portion 53.
一方、 超音波ポールボンディング部 5 3は一般的な装置であり、 前記 ワーク 5 0の上方向に超音波の振動子 (図示せず) から振動を伝達する ホーン 5 4が配置されている。 前記ホーン 5 4の先端にはキヤビラリ 5 7を位置させている。 本実施例におけるボンディング材の金ワイヤ 5 5 は、 スプール 5 6からキヤビラリ 5 7中に導入されている。 このホーン 5 4は、 ポールボンディング部 5 3の下部に設けられているレバー 5 8 により上下に移動する機構となっている。 On the other hand, the ultrasonic pole bonding portion 53 is a general device, and transmits vibration from an ultrasonic vibrator (not shown) in the upward direction of the work 50. Horn 54 is arranged. At the tip of the horn 54, a capillary 57 is located. In this embodiment, the gold wire 55 of the bonding material is introduced from the spool 56 into the cavity 57. The horn 54 is configured to move up and down by a lever 58 provided below the pole bonding portion 53.
本組立て装置による磁気へッド組立体のボンディング方法を説明する < 第 3図は、 第 2図の組立て装置によるボンディング接続の説明図であ る。 図中、 第 1図、 第 2図と同一符号は同等部分であるので、 詳細な説 明を省略する。  A method for bonding a magnetic head assembly by the present assembling apparatus will be described. FIG. 3 is an explanatory view of bonding connection by the assembling apparatus of FIG. In the figures, the same reference numerals as those in FIGS. 1 and 2 denote the same parts, and a detailed description thereof will be omitted.
第 3図 ( a ) に示す如く、 まず、 サスペンション 1 4上に接着された 磁気へッドスライダ 1 1は、 前記の如く接続端子回路パターン 1 5が上 向きに位置させているので、 ホーン 5 4に保持されたキヤビラリ 5 7を 下降させ、 第一のボンディングを前記接続端子回路パターン 1 5上にて 行わせる。  As shown in FIG. 3 (a), first, the magnetic head slider 11 bonded on the suspension 14 is connected to the horn 54 because the connection terminal circuit pattern 15 is positioned upward as described above. The held capillaries 57 are lowered, and the first bonding is performed on the connection terminal circuit pattern 15.
次に、 第 3図 ( b ) に示す如く、 下降させていたキヤビラリ 5 7を上 昇ざせ、 ボンディングワイヤを延長させる。 ' 次に、 第 3図 ( c ) に示す如ぐ、 このボンディングワイヤを延長させ たまま、 かつキヤビラリ 5 7の位置を変えないで、 接続端子回路パター ン 1 5のボンディング位置と、 サスペンション 1 4先端側の接続端子回 路パターン 4 1のボンディング位置との交点を中心に、 ワーク 5 0を 9 0度回転させる。  Next, as shown in FIG. 3 (b), the lowered cable carrier 57 is raised to extend the bonding wire. 'Next, as shown in Fig. 3 (c), with the bonding wire extended and without changing the position of the cable 57, the bonding position of the connection terminal circuit pattern 15 and the suspension 14 The work 50 is rotated 90 degrees around the intersection with the bonding position of the connection terminal circuit pattern 41 on the tip side.
次に、 第 3図 ( d ) に示す如く、 再度キヤビラリ 5 7を下降させ、 前 記接繞端子回路パターン 4 1上に第二のボンディングを行わせる。  Next, as shown in FIG. 3 (d), the cable carrier 57 is lowered again, and the second bonding is performed on the surrounding terminal circuit pattern 41.
第 3図 ( e ) に示す如く、 第二のボンディング完了後、 再度キヤビラ リ 1 7を上昇させれば、 1本のワイヤリングが完成する。  As shown in FIG. 3 (e), after the completion of the second bonding, the cable 17 is raised again to complete one wiring.
上記工程を 4回繰り返せば、 磁気へッドスライダ 1 1上の 4個所の接 続端子回路パターン 1 5と、 サスペンション 1 4上の接続端子回路バタ ーン 4 1とが電気的に接続される。 If the above process is repeated four times, the four heads on the magnetic head slider 11 The connection terminal circuit pattern 15 and the connection terminal circuit pattern 41 on the suspension 14 are electrically connected.
さらに、 第 4図を参照して詳しく説明する。  Further details will be described with reference to FIG.
第 4図は、 第 3図によるボンディング接続部の拡大図である。 図中、 第 1図と同一符号は同等部分であるので説明を省略する。 3 2はステン レス板材の基体、 3 4は絶縁層、 3 8は接着剤である。  FIG. 4 is an enlarged view of the bonding connection according to FIG. In the figure, the same reference numerals as those in FIG. Reference numeral 32 denotes a stainless steel plate base, reference numeral 34 denotes an insulating layer, and reference numeral 38 denotes an adhesive.
サスペンション 1 4をステンレス板材の基体 3 2で構成し、 この基体 3 2に絶縁層 3 4を介し接着剤 3 8で磁気へッドスライダ 1 1を固定す る。  The suspension 14 is composed of a stainless steel plate base 32, and the magnetic head slider 11 is fixed to the base 32 with an adhesive 38 via an insulating layer 34.
前記磁気ヘッドスライダ 1 1の接続端子回路パターン 1 5を第一のポ ンディングとし、 前記サスペンション 1 4の先端側の接続端子回路パタ ーン 4 1を第二のボンディングとして、 金線 4 3で、 前記両パターン 1 5、 4 1とを接続する。  The connection terminal circuit pattern 15 of the magnetic head slider 11 is used as a first bonding, the connection terminal circuit pattern 41 on the distal end side of the suspension 14 is used as a second bonding, and gold wires 43 are used. The two patterns 15 and 41 are connected.
前記金線 4 3の経路は、 前記第一のボンディングより磁気ヘッド素子 面に直交するように引出され、 途中で前記接続端子回路パターン 4 1と 直交するように直角に曲げられ、 前記第二のボンディングに到り、 上記 接続が完成されている。  The path of the gold wire 43 is drawn out from the first bonding so as to be orthogonal to the magnetic head element surface, and is bent at a right angle so as to be orthogonal to the connection terminal circuit pattern 41 on the way. The bonding has been completed and the above connection has been completed.
このような構造で構成されると、 この接続による応力は、 金線 4 3の 部分で吸収されるため、 ほとんど磁気へッドスライダ 1 1には及ぶこと はない。  With such a structure, since the stress due to this connection is absorbed by the gold wire 43, it hardly reaches the magnetic head slider 11.
第 5図を参照して、 本実施例により磁気ヘッドスライダ 1 1の浮上面 1 9の変形量を説明する。 第 5図は、 第 3図のボンディングによる浮上 面の変形量を示す線図である。  With reference to FIG. 5, the deformation amount of the flying surface 19 of the magnetic head slider 11 according to the present embodiment will be described. FIG. 5 is a diagram showing the amount of deformation of the flying surface due to the bonding of FIG.
第 5図は、 接続前後の浮上面の変形量 (n m ) を縦軸に示すものであ リ、 5 n m以下と問題にならない程度の変形量に抑えることができる。 きらに、 サスペンション 1 4の先端側端子回路パターン 4 1は、 磁気 ヘッドスライダ 1 1と相互の動きがないたわみ部材上にあるのと同じで あるため、 金線 4 3に応力が掛ることもない。 FIG. 5 shows the deformation amount (nm) of the air bearing surface before and after connection on the vertical axis, and the deformation amount can be suppressed to 5 nm or less, which is not a problem. In the end, the terminal circuit pattern 4 1 on the tip of the suspension 14 4 is magnetic Since it is the same as on a flexible member that does not move with the head slider 11, no stress is applied to the gold wire 43.
ざらに、 このボンディング方法は、 常温から 1 5 (TC位の低温で接続 できるため、 磁気ヘッドに熱ストレスを与えることもない。 さらに、 磁 気へッド素子面と接続端子回路パターン 1 5があるため、 I C工程と同 様な工程のみで、 製作できるので、 安価である。  Roughly, this bonding method can be connected at room temperature to 15 (low TC level), so it does not apply thermal stress to the magnetic head. In addition, the magnetic head element surface and the connection terminal circuit pattern 15 Therefore, it can be manufactured using only the same process as the IC process, so it is inexpensive.
〔実施例 3〕  (Example 3)
本発明のさらに他の実施例を第 6図、 第 7図を参照して説明する。 第 6図は、 本発明の他の実施例に係る磁気へッド組立体の要部斜視図、 第 7図は、 第 6図の磁気ヘッド組立体のボンディング接続部の拡大図で ある。 第 1図と同一符号は同等部分であるので、 再度の説明を省略する。 新たな符号のみを説明する。 6 1はアルミ線である。  Still another embodiment of the present invention will be described with reference to FIG. 6 and FIG. FIG. 6 is a perspective view of a main part of a magnetic head assembly according to another embodiment of the present invention, and FIG. 7 is an enlarged view of a bonding connection portion of the magnetic head assembly of FIG. 1 are the same as those in FIG. Only new codes will be described. 6 1 is an aluminum wire.
磁気へッドスライダ 1 1とサスペンション 1 4とからなるワーク 5 0 の構造は、 第 1図の 〔実施例 1〕 とほぼ同様である。 本実施例では、 アルミ線 6 1が、 磁気ヘッドスライダ 1 1の接続端子回路パターン 1 5 と同一平面、 すなわち磁気ヘッド素子面にゥエッジボンディングされる と共に、 サスペンション 1 4の配線パターン 4 1上でゥエッジボンディ ングされ、 前記接続端子回路パターン 1 5と前記接続端子回路パターン 4 1上との両点を接線とする曲率半径の円弧状を保持している。  The structure of the work 50 including the magnetic head slider 11 and the suspension 14 is almost the same as that of [Example 1] in FIG. In this embodiment, the aluminum wire 61 is edge-bonded to the same plane as the connection terminal circuit pattern 15 of the magnetic head slider 11, that is, the edge bonding is performed on the magnetic head element surface, and the aluminum wire 61 is formed on the wiring pattern 41 of the suspension 14. (4) Edge bonding is performed, and an arc shape with a radius of curvature having both points of the connection terminal circuit pattern 15 and the connection terminal circuit pattern 41 as tangent lines is maintained.
上記接続方法を図 8、 9を参照して説明する。  The above connection method will be described with reference to FIGS.
第 8図は、 第 6図の磁気へッド組立体のボンディングに用いられる組 立て装置の回転治具の構造図である。  FIG. 8 is a structural view of a rotating jig of an assembly apparatus used for bonding the magnetic head assembly of FIG.
第 8図において、 1 1は磁気へッド、 6 2は下プロック、 6 3は上押 えブロック、 6 4はロータリアクチユエータ、 6 5は架台ブロック、 6 6は金めつきテープ、 6 7は巻取リール、 6 8はゥエッジツール、 6 9 は 7ルミワイヤ、 7 0はワイヤ用カツタである。 第 8図に示される回転治具において、 下ブロック 6 2は、 長方体の形 状を有し、 当該長方体の長手方向の一面の上部一辺から対面下方の所定 位置まで、 斜裁断面を設けて構成されている。 In Fig. 8, 1 1 is a magnetic head, 6 2 is a lower block, 6 3 is an upper holding block, 6 4 is a rotary actuator, 6 5 is a stand block, 6 6 is gold-plated tape, 6 7 is a take-up reel, 68 is a ゥ edge tool, 69 is a 7 Lumi wire, and 70 is a wire cutter. In the rotating jig shown in FIG. 8, the lower block 62 has a rectangular shape, and is an oblique cross section from one upper side of one surface in the longitudinal direction of the rectangular shape to a predetermined position below the facing surface. Is provided.
架台ブロック 6 5は、 長方体の長手方向の一面に四角錐を突設させた 形状を有し、 当該四角錐の上面が当該長方体の上面と連続し、 当該四角 錐の側面が当該四角錐を突設させた面に直交する当該長方体の他の二面 とそれぞれ連続して構成されている。  The gantry block 65 has a shape in which a quadrangular pyramid protrudes from one surface in the longitudinal direction of the rectangular parallelepiped, the upper surface of the rectangular pyramid is continuous with the upper surface of the rectangular solid, and the side surface of the rectangular pyramid is It is configured to be continuous with each of the other two surfaces of the rectangular body orthogonal to the surface on which the quadrangular pyramid is protruded.
したがって、 当該四角錐の斜面が当該長方体の上面から前記長方体の 長手方向の四角錐突設面の所定位置まで構成されている。 前記下プロッ ク 6 2の斜裁断面とこれに連続する立面と、 前記架台ブロック 6 5に突 設させた四角錐の斜面とこれに連続する立面とが当接するようになって いる。  Therefore, the slope of the quadrangular pyramid is formed from the upper surface of the rectangular body to a predetermined position of the quadrangular pyramid protruding surface in the longitudinal direction of the rectangular body. The oblique section of the lower block 62 and the upright surface connected thereto come into contact with the inclined surface of the quadrangular pyramid protruding from the gantry block 65 and the upright surface connected thereto.
磁気へッドスライダ 1 1は、 下プロック 6 2の長手方向の一面と、 上 押えブロック 6 3とにより、 磁気素子面が上方になるように固定されて いる。  The magnetic head slider 11 is fixed by one surface in the longitudinal direction of the lower block 62 and the upper holding block 63 so that the magnetic element surface faces upward.
前記下ブロック 6 2と前記上押えプロック 6 3は、 磁気へッドスライ ダ 1 1を保持したまま、 ロータリアクチユエータ 6 4により、 架台プロ ック 6 5に対し 9 0度回転できる構造となっている。  The lower block 62 and the upper holding block 63 have a structure that can be rotated 90 degrees with respect to the gantry block 65 by a rotary actuator 64 while holding the magnetic head slider 11. I have.
さらに、 前記架台ブロック 6 5の上面には、 磁気へッドスライダ 1 1 と平行に金めつきされたテープ 6 6が位置され、 巻取リール 6 7に卷取 られる構造となっている。 さらに、 この回転治具は、 超音波ボンダ部 (図示せず) と共に、 共通架台 (図示せず) に取付けられ、 組立て装置 を形成している。  Further, on the upper surface of the gantry block 65, a tape 66 that is gold-plated is positioned in parallel with the magnetic head slider 11, and is wound on a take-up reel 67. Further, this rotating jig is attached to a common mount (not shown) together with an ultrasonic bonder (not shown) to form an assembling apparatus.
前記超音波ボンダ部のホーン (図示せず) には、 ゥエッジツール 6 8 とアルミワイヤ 6 9およぴ前記ワイヤ 6 9をカットするカツタ 7 0が前 記磁気ヘッドスライダ 1 1の磁気素子面に直角に対向するように位置さ れている。 On the horn (not shown) of the ultrasonic bonder, an edge tool 68, an aluminum wire 69, and a cutter 70 for cutting the wire 69 are provided on the magnetic element surface of the magnetic head slider 11 described above. Position at right angles to Have been.
次に、 第 9図を参照して上記組立て装置の回転治具によるボンディン グを説明する。 第 9図は、 第 8図の組立て装置の回転治具によるポンデ イングの説明図である。 なお、 第 9図は、 第 8図の組立て装置の回転治 臭において、 図示矢印の方向からの図であり、 上記説明の如く、 磁気へ ッドスライダ 1 1が下プロック 6 2と上押えブロック 6 3で固定されて いるが、 図示を簡単にするため、 前記上押えブロック 6 3が省略されて いる。  Next, with reference to FIG. 9, the bonding of the above assembling apparatus by the rotating jig will be described. FIG. 9 is an explanatory view of bonding by a rotating jig of the assembling apparatus of FIG. FIG. 9 is a view of the rotary odor of the assembling apparatus shown in FIG. 8 as viewed from the direction of the arrow shown in the drawing. As described above, the magnetic head slider 11 has the lower block 6 2 and the upper holding block 6 3. The upper holding block 63 is omitted for simplicity of illustration.
まず、 第 9図 ( a ) に示す如く、 磁気ヘッドスライダ 1 1の接続端子 回路パターン 1 5と金めつきテープ 6 6間を、 ボンディング材としてァ ルミワイヤ 6 9で、 ゥエッジツール 6 8にて超音波ボンディングする。 前記ボンディングされた金めつきテープ 6 6は、 捨てパッドとして、 後 に捨てられる。  First, as shown in Fig. 9 (a), the connection between the circuit pattern 15 of the magnetic head slider 11 and the gold-plated tape 66 is made with aluminum wire 69 as a bonding material and with an edge tool 68. Ultrasonic bonding. The bonded gold-plated tape 66 is later discarded as a discard pad.
次に、 前記捨てパッドと接続端子回路パターン 1 5の間で、 かつ捨て パッドの近傍で、 当該アルミワイヤ 6 9を、 カツタ 7 0にて切断する。 前記接続工程を磁気ヘッドスライダ 1 1の接続端子回路パターン 1 5の 全てについて行われる。 本実施例では 4個所である。  Next, the aluminum wire 69 is cut with a cutter 70 between the discard pad and the connection terminal circuit pattern 15 and near the discard pad. The connection step is performed for all of the connection terminal circuit patterns 15 of the magnetic head slider 11. In this embodiment, there are four places.
次に、 第 9図 (b ) に示す如く、 捨てパッドである金めつきテープ 6 6を巻取リール 6 7に巻取る。 このように巻取れば、 前記捨てパッドに ポンデイングされた第二のボンディング側のアルミワイヤ部分も、 巻取 リール 6 7に巻取られる。  Next, as shown in FIG. 9 (b), the gold-plated tape 66, which is a discard pad, is wound around the take-up reel 67. With this winding, the aluminum wire portion on the second bonding side bonded to the discard pad is also wound on the winding reel 67.
次に、 第 9図 ( c ) に示すように、 磁気ヘッドスライダ 1 1を固定し た状態のままで下ブロック 6 2は、 架台ブロック 6 5に対し、 磁気へッ ドスライダ 1 1の接続端子回路パターン 1 5の金めつきテープ 6 6側部 を中心に 9 0度回転する。 この回転に伴って、 アルミワイヤ 6 9は、 9 0虔折れ曲がり塑性変形する。 次に、 第 9図 ( d ) に示すように、 この状態で磁気ヘッドスライダ 1 1をボンディング装置から取外すと、 アルミワイヤ 6 9が片側を磁気へ ッドスライダ 1 1の端子パターン 1 5にボンディングされ、 9 0度折れ 曲がった状態での単品として取り出される。 Next, as shown in FIG. 9 (c), with the magnetic head slider 11 fixed, the lower block 62 is connected to the mounting block 65 by the connection terminal circuit of the magnetic head slider 11 Rotate 90 degrees around the side of the gold-plated tape 66 of pattern 15. With this rotation, the aluminum wire 69 is bent 90 ° and plastically deformed. Next, as shown in FIG. 9 (d), when the magnetic head slider 11 is removed from the bonding apparatus in this state, the aluminum wire 69 is bonded on one side to the terminal pattern 15 of the magnetic head slider 11, 90 degrees bent Take out as a single item in a bent state.
次に、 第 9図 ( e ) に示すように、 この単品の状態でサスペンション 1 4上の接続端子回路パターン 4 1上に、 上記アルミワイヤ 6 9の一端 が載置するように位置させ、 接着剤 3 8で固定する。  Next, as shown in FIG. 9 (e), the aluminum wire 69 is positioned such that one end of the aluminum wire 69 is placed on the connection terminal circuit pattern 41 on the suspension 14 in a state of this single piece, and is bonded. Fix with agent 38.
次に、 第 9図 ( f ) に示すように、 サスペンション 1 4の接続端子回 路パターン 4 1上から再度ゥエッジツール 6 8にてボンディングする。 本実施例では、 アルミワイヤを用いたが、 金ワイヤ、 銅ワイヤ、 もし ぐは銅に金めつきしたワイヤでも同様にして、 接続が可能である。  Next, as shown in FIG. 9 (f), bonding is again performed from above the connection terminal circuit pattern 41 of the suspension 14 with the ゥ edge tool 68. In this embodiment, an aluminum wire is used, but a gold wire, a copper wire, or a wire gold-plated to copper can be similarly connected.
このようにすれば、 〔実施例 1〕 と同様に、 磁気ヘッドスライダ 1 1に応力をかけずに、 直角面の両接続端子回路パターン間の電気的接続 が可能である。  In this way, as in [Embodiment 1], electrical connection between both connection terminal circuit patterns on the right-angled surface is possible without applying stress to the magnetic head slider 11.
以下、 上記 〔実施例 1〕 、 〔実施例 3〕 において、 配線ワイヤに 弛みをもたせない場合、 弛みをもたせた場合について詳細検討する。 前記説明した如く、 磁気ヘッドスライダ 1 1の浮上面 1 9は、 磁気デ イスクの表面をェャクッションを介して浮上して走行しており、 その浮 上量は、 数 η ιηともいわれている。 したがつてこの浮上面の面精度は非 常に高精度が要求される。  Hereinafter, in the above [Example 1] and [Example 3], the case where the wiring wire is not slackened and the case where the wiring wire is slacked will be discussed in detail. As described above, the flying surface 19 of the magnetic head slider 11 travels while flying above the surface of the magnetic disk via the air cushion, and the flying amount is also referred to as a number ηιη. Therefore, the surface accuracy of this air bearing surface is required to be very high.
磁気へッドの小形化によってますますこの浮上面は、 高精度が要求さ れてきている。 特に、 一度組み立て調整した後の経時変化もしぐは温度 等による環境変化による面精度の変化は、 極力小さく しなければならな い。  Increasingly, due to the miniaturization of magnetic heads, the flying surface is required to have high accuracy. In particular, changes in surface accuracy due to environmental changes due to changes in temperature, temperature, etc. after assembly and adjustment must be minimized.
本実施例で用いた磁気へッドスライダの剛性を単純な梁と.して検討す る。. ■ 第 1 0図は、 磁気ヘッドスライダを単純梁としたモデル図である。 第 1 0図において、 ( a ) は磁気ヘッド梁の側面図、 (b ) は磁気へ ッド単純梁の断面図である。 bは、 磁気へッド梁の幅、 具体的には 1 / 1 03 (mm) 、 hは、 磁気へッド梁の高さ、 具体的には 3 1 04 (m m) 、 Lは、 磁気へヅド梁の長さ、 具体的には 1. 2Z103 (mm) 、 Eは、 磁気ヘッド梁のヤング率、 40 X 1 01。 (ポアソン比) 、 磁気へ ッドのたわみ変化量 Yの許容量を 5 nmとし、 荷重 W (N、 ニュートン) を下記の 〔数式 1〕 から計算する。 The rigidity of the magnetic head slider used in the present embodiment will be examined as a simple beam. . ■ FIG. 10 is a model diagram in which the magnetic head slider is a simple beam. In FIG. 10, (a) is a side view of a magnetic head beam, and (b) is a cross-sectional view of a magnetic head simple beam. b is head beam width to the magnetic, specifically 1/1 0 3 (mm) , h is head beam height to magnetic, in particular 3 1 0 4 (mm), L is , the length of Uz de beams to magnetic, specifically 1. 2Z10 3 (mm), E is Young's modulus of the magnetic head support, 40 X 1 0 1. (Poisson's ratio), the allowable amount of deflection Y of the magnetic head is 5 nm, and the load W (N, Newton) is calculated from the following [Equation 1].
WL3 WL 3
… 【数式 1】 b h  … [Equation 1] b h
ただし 〖 - 2 :二次モーメント  Where 〖-2: second moment
計算の結果、 荷重 Wは、 1Z101、 すなわち 0. 1 2 5 (N) 以上 の力が加わってはならないことになる。 As a result of the calculation, the load W must not be applied with a force greater than 1Z10 1 , that is, 0.125 (N).
次に、 第 I 1図を参照して、 接続端子回路パターン間をワイヤで弛み なく配線した場合のモデルを説明する。 第 1 1図は、 磁気へッドスライ ダのボンディングにおいて弛みのないワイヤ配線のモデル図である。 第 1 1図において、 7 1は磁気ヘッドスライダ、 7 2はサスペンション、 7 3はワイヤ、 74は接着剤であり、 cは、 ワイヤ 7 3の支持板パネ Ί 2の長手方向に対する長さ、 dはワイヤ 7 3の支持板パネ 7 2への垂直 方向の長さである。  Next, a model in the case where the connection terminal circuit patterns are wired without loosening with wires will be described with reference to FIG. FIG. 11 is a model diagram of a wire wiring without slack in bonding of a magnetic head slider. In FIG. 11, 71 is a magnetic head slider, 72 is a suspension, 73 is a wire, 74 is an adhesive, c is the length of the wire 73 in the longitudinal direction of the support plate panel 2, d Is the vertical length of the wire 73 to the support panel 72.
ワイヤが弛みなく配線されている場合は、 環境の温度変化により各部 品の線膨張係数が異なるためワイヤ 7 3に引っ張りあるいは圧縮力がか かり、 磁気ヘッド 7 1に垂直方向の力、 すなわち荷重 Wがかかり、 磁気 ヘッド 7 1の浮上面の形状精度に影響をおよぼすことになる。 ここで、 各材質の弾性係数、 線膨張係数を 〔表 1〕 に示している If the wire is wired without slack, the linear expansion coefficient of each part will differ due to environmental temperature changes, so a tensile or compressive force will be applied to the wire 73, and a force in the direction perpendicular to the magnetic head 71, that is, the load W This affects the shape accuracy of the air bearing surface of the magnetic head 71. Here, the elastic coefficient and linear expansion coefficient of each material are shown in [Table 1].
【表 1】 【table 1】
Figure imgf000027_0001
Figure imgf000027_0001
第 1 1図において、 磁気へッドスライダ 7 1、 サスペンション 7 2の 材質は各々アルミナチタンカーバイト、 ステンレス、 ワイヤ 7 3の材質 は、 金、 銅、 アルミについて c = d = l . 5/ 1 0 Cm] , 環境温度差 を 6 0 °C、 荷重 Wは、 1 Z 1 01 (N) 、 たわみ変化量 Yの許容量を 5 nmとし、 上記 〔数 1〕 にしたがい、 ワイヤ 7 3の径を計算した。 但し, 〔数式 1〕 における Iは下記の如ぐになる。 In Fig. 11, the magnetic head slider 71 and the suspension 72 are made of alumina titanium carbide, stainless steel, and the wire 73 is made of gold, copper, and aluminum.c = d = 1.5 / 10 Cm ], environmental temperature difference 6 0 ° C, load W is, 1 Z 1 0 1 (N), the allowable amount of deflection change amount Y and 5 nm, follow the above [equation 1], the diameter of the wire 7 3 Calculated. However, I in [Equation 1] is as follows.
I = π (ワイヤ 7 3の径) 4Ζ64 I = π (diameter of wire 7 3) 4 Ζ64
この計算結果、 金では直径 6 7 μιη、 銅では 3 9 μπι、 アルミでは 2 9 であることがわかる。  The calculation shows that the diameter is 67 μιη for gold, 39 μπι for copper, and 29 for aluminum.
従って、 弛みなくワイヤ 7 3を配線した場合、 前記 〔表 1〕 の材料定 数、 上記線径を前記以下のものを用いれば、 磁気へッドスライダ 7 1の 浮上面の面精度の変化量を 5 nm以下にすることができるのである。 し かし、 ワイヤ 7 3の線径が 1 0 m以下では、 作業性が悪ぐ、 量産には 不適である。 次に、 〔実施例 1〕 、 〔実施例 3〕 のように、 ワイヤに弛みを持 たせた場合は、 温度変化によるワイヤの磁気ヘッドスライダに及ぼす力 は、 ワイヤの引っ張りの力ではなく、 曲げの力がかかることになる。 第 1 2図を参照して曲げの力がかかる場合を説明する。 第 12図は、 磁気へッドスライダのボンディングにおいて弛みを持つワイヤ配線のモ デル図である。 Therefore, when the wire 73 is wired without slack, if the material constant of Table 1 and the wire diameter described above are used, the change in the surface accuracy of the air bearing surface of the magnetic head slider 71 will be 5 It can be smaller than nm. However, if the wire diameter of the wire 73 is 10 m or less, the workability is poor, and it is not suitable for mass production. Next, when the wire is slack as in [Example 1] and [Example 3], the force exerted on the magnetic head slider by the temperature change due to the temperature change is not the pulling force of the wire but the bending. Will be applied. The case where a bending force is applied will be described with reference to FIG. FIG. 12 is a model diagram of wire wiring having slack in bonding of a magnetic head slider.
第 1 2図において、 図中、 第 1 1図と同一符号は同等部分であるので、 再度の説明は省略する。  In FIG. 12, the same reference numerals as those in FIG. 11 denote the same parts, and a description thereof will not be repeated.
第 12図 ( a) に示すワイヤ配線を、 第 12図 (b ) に示すように、 かたもち梁に近似させることができる。  The wire wiring shown in FIG. 12 (a) can be approximated to a tough beam as shown in FIG. 12 (b).
曲げの力を下記の 〔数式 2〕 にじたがい、 計算する。  Calculate the bending force according to the following [Equation 2].
W= wYI 1 … 【数式 2】 W = wYI 1 … [Equation 2]
この場合の 〔数式 2〕 の符号は、 第 1 0図及び 〔数式 1〕 と同一であ るので、 説明を省略する。 本実例にお 、て、 銅線のワイヤ径 39 に 用い、 第 1 1図に示すように、 弛みを持たせずに、 配線した場合に比べ ると、 その荷重力は、 3. 5 1Z104 〔N〕 、 1. 4%となり、 弛み を持たせた配線の効果が大きいことがわかる。 これは、 銅線に限らず、 他のワイヤ材料についでも同様な結果が得られる。 産業上の利用可能性 In this case, the sign of [Equation 2] is the same as that of FIG. 10 and [Equation 1], and the description is omitted. In this example, the load force was 3.5 1Z10 4 compared to the case where the copper wire was used without wire slack, as shown in Fig. 11, using the wire diameter 39 of copper wire. [N] was 1.4%, which indicates that the effect of the wiring having the slack was great. This is not limited to copper wire, but similar results can be obtained for other wire materials. Industrial applicability
上説明したように、 本発明の構成によれば、 磁気へッドスライダと これに直角に位置するサスペンション上にそれぞれ設けた接続端子回路 パターンを伸び縮みを吸収するように導電ワイヤで配線し、 サスペンシ ョン上の接続端子回路パターンをたわみ機能を備えた部材上に位置させ ることにより、 磁気へッドスライダに応力をかけずに電気接続が可能で あり、 さらに、 温度変化による線膨張係数の差によつて生ずる配線ワイ ャの磁気ヘッドスライダへの応力による変形量を低減させ、 低温でボン ディング接続するため熱ストレスを与えることもなく、 I C工程と同様 な工程で製作可能であるため、 安価な磁気ヘッ ド組立体、 その組立方法 及びその組立装置ならびに磁気ディスク装置を提供するこどができる。 As described above, according to the configuration of the present invention, the magnetic head slider and the connection terminal circuits respectively provided on the suspension positioned at right angles to the magnetic head slider The pattern is wired with conductive wires to absorb expansion and contraction, and the connection terminal circuit pattern on the suspension is positioned on a member with a flexure function, so that electrical connection can be made without applying stress to the magnetic head slider In addition, the amount of deformation of the wiring wire due to the stress on the magnetic head slider caused by the difference in the linear expansion coefficient due to the temperature change is reduced, and no thermal stress is applied because bonding is performed at a low temperature. Since it can be manufactured in the same process as the IC process, an inexpensive magnetic head assembly, an assembling method, an assembling apparatus, and a magnetic disk device can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 第一の接続端子回路パターンを設けた磁気ヘッドスライダと、 配線 パターンと第二の接続端子回路パターンとを設けたサスペンジョンと からワークを形成し、 前記第一、 第二の両接続端子回路パターン間を 電気接鐃した磁気へッド組立体において、 前記サスペンションにたわ み機能部を設けると共に、 前記第一、 第二接続端子回路パターン間の 配線が当該配線の伸縮みを吸収するように構成したことを特徴とする 磁気へッド組立体。 1. A work is formed from a magnetic head slider provided with a first connection terminal circuit pattern and a suspension provided with a wiring pattern and a second connection terminal circuit pattern, and the first and second connection terminal circuits are formed. In a magnetic head assembly in which patterns are electrically connected, a flexure function section is provided on the suspension, and wiring between the first and second connection terminal circuit patterns absorbs expansion and contraction of the wiring. A magnetic head assembly comprising:
2 . 請求の範囲第 1項記載の磁気ヘッド組立体おいて、  2. The magnetic head assembly according to claim 1,
前記第一の回路接続端子パターンと同一平面上、 かつ前記磁気へッ ドスライダ外の位置に捨てパッ ドを設け、 前記第一の回路接続端子パ ターンと捨てパッド間でワイヤボンディングを行い、 当該第一の回路 接続端子パターンと当該捨てパッド間でワイヤを切断し、 当該ワイヤ を直角に折り曲げ後、 ワークを形成すると共に、 前記ワイヤと前記第 二の回路接続端子パターンとをゥエッジボンディングして構成したこ とを特徴とする磁気ヘッド組立体。 A discard pad is provided on the same plane as the first circuit connection terminal pattern and at a position outside the magnetic head slider, and wire bonding is performed between the first circuit connection terminal pattern and the discard pad. A wire is cut between the one circuit connection terminal pattern and the discarded pad, the wire is bent at a right angle, a work is formed, and the wire and the second circuit connection terminal pattern are edge-bonded. A magnetic head assembly characterized by the following.
. 請求の範囲第 1項または第 2虔記 mの磁気へッド組立体において、 前記第一、 第二接続端子回路パターン間の配線が、 金ワイヤでは直 径 1 0〜 7 0 m、 アルミワイヤでは直径 1 0〜 3 0 το. , 銅ワイヤ では直径 1 0〜 4 0 mの範囲である導電ワイヤで架空配線したこと を特徴とする磁気へッド組立体。 The magnetic head assembly according to claim 1, wherein the wiring between the first and second connection terminal circuit patterns is a gold wire having a diameter of 10 to 70 m, aluminum. A magnetic head assembly characterized by being wired overhead by a conductive wire having a diameter of 10 to 30 το. For a wire and a diameter of 10 to 40 m for a copper wire.
. 請求の範囲第 1項または第 2項記載の磁気へッド組立体において、 前記第一、 第二接続端子回路パターン間の配線が、 弛みを持つよう にしたことを特徴とする磁気ヘッド組立体。  3. The magnetic head assembly according to claim 1, wherein the wiring between the first and second connection terminal circuit patterns has slack. Three-dimensional.
. 請求の範囲第 1項または第 2項記載の磁気へッド組立体において、 前記第二'の接続端子回路パターンを、 前記磁気ヘッドスライダに対 し、 前記たわみ機能部より近傍に位置させたことを特徴とする磁気へ ッド組立体。 The magnetic head assembly according to claim 1 or 2, A magnetic head assembly, wherein the second 'connection terminal circuit pattern is located closer to the magnetic head slider than the bending function portion.
6 . 磁気ヘッド組立体の組立方法において、 ワークを第一の接続端子回 ΰ 路パターンを上向きに位置.させ、 第一のワイヤポンドデイングを施し、 次ぎに、 前記ワークを前記第二の接続端子回路パターンが上部になる ように 9 0度回転させ、 第二のワイヤボンディングを施し、 ワイヤ配 線することを特徴とする磁気へッド組立体の組立方法。  6. In the method of assembling a magnetic head assembly, the work is positioned with the first connection terminal circuit pattern facing upward, the first wire ponding is performed, and then the work is connected to the second connection terminal. A method for assembling a magnetic head assembly, comprising rotating the circuit pattern by 90 degrees so that the circuit pattern is on the upper side, performing second wire bonding, and wiring.
7 . ワークを固定する固定手段と、 前記ワークの磁気ヘッドスライダと0 サスペンション間とをボンディングするワイヤ配線手段とを具備した 磁気ヘッド組立体の組立装置において、 前記磁気ヘッドスライダの第 —の接続端子回路パターン上に第一のワイヤボンディングを設け、 当 該第一の接続端子回路パターンと前記サスペンション上の第二の接続 端子回路パターンを含むそれぞれの面に鉛直な線上の交点を回転中心5 として、 前記ワークを 9 0度回転させ、 前記第二の接続端子回路バタ ーン上に第二のワイヤボンディングを設け、 ワイヤ配線できるように 構成したことを特徴どする磁気へッド組立体の組立装置。 7. An assembling apparatus for a magnetic head assembly, comprising: fixing means for fixing a work; and wire wiring means for bonding the magnetic head slider of the work and the 0 suspension. The first connection terminal of the magnetic head slider. A first wire bonding is provided on the circuit pattern, and an intersection on a line perpendicular to each surface including the first connection terminal circuit pattern and the second connection terminal circuit pattern on the suspension is defined as a rotation center 5, The magnetic head assembly assembling apparatus, wherein the work is rotated by 90 degrees, a second wire bonding is provided on the second connection terminal circuit pattern, and a wire can be wired. .
8 . 磁気ヘッドスライダを固定する固定手段と、 捨てパッドに用いる金 属テープを前記磁気ヘッドスライダの磁気素子面と同一面上に位置さ0 せる位置決め手段と、 前記金属テープを巻取る巻取り手段と備えた磁 気へッド組立体の組立装置であって、 前記固定された磁気へッドスラ イダの第一の接続端子回路パターンと前記位置決めした金めつきテー プの捨てパッド間とをボンディングするワイヤボンディング手段と、 前記ワイヤを前記回路パターンと前記捨てパッド間でカツトするカツ5 ト手段と、 前記磁気ヘッドスライダを固定したまま固定手段を前記磁 へッドスライダ面と前記捨てパッド面との交線を軸として 9 0度回 転させる回転手段と、 前記磁気へヅドスライダの前記ワイヤの他端を 前記サスペンションの第二接続端子回路パターン上にゥエッジポンデ ィングするポンディング手段を具備することを特徴とする磁気へッド 組立体の組立装置。 8. Fixing means for fixing the magnetic head slider, positioning means for positioning the metal tape used for the discard pad on the same plane as the magnetic element surface of the magnetic head slider, and winding means for winding the metal tape A magnetic head assembly assembling apparatus, comprising: bonding between a first connection terminal circuit pattern of the fixed magnetic head slider and a discarded pad of the positioned metal-coated tape. Wire bonding means; cutting means for cutting the wire between the circuit pattern and the discard pad; and fixing means for fixing the magnetic head slider while intersecting the magnetic head slider surface with the discard pad surface. 90 degrees around the axis A rotating means for rotating the magnetic head slider, and a bonding means for edge bonding the other end of the wire of the magnetic head slider onto a second connection terminal circuit pattern of the suspension. apparatus.
9 . 筐体に実装された情報を含む同心データトラックを備えた少なくと も一枚の回転ディスクと、 前記データ トラックからデータを読み取り もしくは書き込むため磁気へッド組立体と、 これらを動作させる装置: 回路部と、 前記装置回路部がィンタフエ一スを介して制御されるよう に構成した磁気ディスグ装置において、 前記磁気へッド組立体を、 請 求の範囲第 1項ないし第 5項記載のいずれかの磁気へッド組立体とし. たことを特徴とする磁気ディスク装置。 9. At least one rotating disk with concentric data tracks containing information mounted on the housing, a magnetic head assembly for reading or writing data from said data tracks, and a device for operating these In a magnetic disk device configured such that a circuit unit and the device circuit unit are controlled via an interface, the magnetic head assembly may be provided as described in claim 1 to claim 5, A magnetic disk drive comprising any one of a magnetic head assembly.
PCT/JP1996/001280 1995-05-16 1996-05-15 Magnetic head assembly, assembling therefor, assembling apparatus therefor, and magnetic disk apparatus WO1996036964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11696095A JPH08315343A (en) 1995-05-16 1995-05-16 Magnetic head assembly, method of assembling the same, apparatus of assembling the same, and magnetic disk device
JP7/116960 1995-05-16

Publications (1)

Publication Number Publication Date
WO1996036964A1 true WO1996036964A1 (en) 1996-11-21

Family

ID=14700007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001280 WO1996036964A1 (en) 1995-05-16 1996-05-15 Magnetic head assembly, assembling therefor, assembling apparatus therefor, and magnetic disk apparatus

Country Status (2)

Country Link
JP (1) JPH08315343A (en)
WO (1) WO1996036964A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301731B2 (en) 2002-06-18 2007-11-27 Fujitsu Limited Head assembly having microactuator
CN113798620A (en) * 2021-10-09 2021-12-17 浙江汉博汽车传感器有限公司 Automatic winding, soldering and detecting device and process for crankshaft position sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532439B2 (en) * 1999-03-02 2004-05-31 アルプス電気株式会社 Magnetic head

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113917A (en) * 1986-10-28 1988-05-18 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Slider suspension assembly for data recording disc file
JPH02139708A (en) * 1988-11-19 1990-05-29 Nippon B T Ee Kk Device for locking magnetic head lead wire
JPH05282642A (en) * 1992-04-02 1993-10-29 Sony Corp Magnetic disk device
JPH0729341A (en) * 1993-07-12 1995-01-31 Hitachi Ltd Rotating disk storage device and head suspension thereof
JPH07220258A (en) * 1993-03-31 1995-08-18 Hitachi Ltd Magnetic head assembly and magnetic disk device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113917A (en) * 1986-10-28 1988-05-18 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Slider suspension assembly for data recording disc file
JPH02139708A (en) * 1988-11-19 1990-05-29 Nippon B T Ee Kk Device for locking magnetic head lead wire
JPH05282642A (en) * 1992-04-02 1993-10-29 Sony Corp Magnetic disk device
JPH07220258A (en) * 1993-03-31 1995-08-18 Hitachi Ltd Magnetic head assembly and magnetic disk device
JPH0729341A (en) * 1993-07-12 1995-01-31 Hitachi Ltd Rotating disk storage device and head suspension thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301731B2 (en) 2002-06-18 2007-11-27 Fujitsu Limited Head assembly having microactuator
CN113798620A (en) * 2021-10-09 2021-12-17 浙江汉博汽车传感器有限公司 Automatic winding, soldering and detecting device and process for crankshaft position sensor

Also Published As

Publication number Publication date
JPH08315343A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
US5864445A (en) Hygrothermal load compensating structures in an integrated lead suspension
JP4156203B2 (en) Suspension for disk unit
JP3965233B2 (en) Head suspension assembly and data recording disk drive
US7525769B2 (en) Micro-actuator having swing support to allow horizontal swinging movement of slider support
US6125014A (en) Via-less connection using interconnect traces between bond pads and a transducer coil of a magnetic head slider
US6349017B1 (en) Magnetic head suspension assembly using bonding pads of a slider to an attachment surface of a flexure
US7359154B2 (en) Method and apparatus for connecting a micro-actuator to driver arm suspension
JP2713762B2 (en) Head support device
US20040095687A1 (en) Precise positioning actuator for head element, head gimbal assembly with the actuator, disk drive apparatus with the head gimbal assembly and manufacturing method of head gimbal assembly
JP3975688B2 (en) Head element micropositioning actuator, head gimbal assembly provided with the actuator, and method of manufacturing the actuator
JPH103633A (en) Spacer device for slider/suspension and space control method
JPH11120715A (en) Suspension system
JP2000348451A (en) Magnetic head apparatus and manufacture thereof
WO1996036964A1 (en) Magnetic head assembly, assembling therefor, assembling apparatus therefor, and magnetic disk apparatus
JPS6012686B2 (en) floating magnetic head
JP4898742B2 (en) Suspension for disk unit
JP3497793B2 (en) Magnetic head
JP3241448B2 (en) Magnetic head device
JP4453249B2 (en) Magnetic head manufacturing apparatus and method
JP3330272B2 (en) Magnetic disk drive
JPH07220258A (en) Magnetic head assembly and magnetic disk device
WO2012011874A1 (en) A thermal microactuator for a suspension arm of a hard disk drive and a method of fabricating the thermal microactuator
JP2002142469A (en) Piezoelectric actuator and its manufacturing method
JP2002117516A (en) Structure for connecting and packaging magnetic head slider, and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase