[go: up one dir, main page]

WO1997002429A1 - Procede et appareil d'utilisation de l'energie de pression totale de la gravite du fluide en ecoulement - Google Patents

Procede et appareil d'utilisation de l'energie de pression totale de la gravite du fluide en ecoulement Download PDF

Info

Publication number
WO1997002429A1
WO1997002429A1 PCT/JP1996/000045 JP9600045W WO9702429A1 WO 1997002429 A1 WO1997002429 A1 WO 1997002429A1 JP 9600045 W JP9600045 W JP 9600045W WO 9702429 A1 WO9702429 A1 WO 9702429A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
energy
gravity
flowing fluid
pressure pipe
Prior art date
Application number
PCT/JP1996/000045
Other languages
English (en)
French (fr)
Inventor
Toshitaka Yasuda
Original Assignee
Toshitaka Yasuda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP7201256A external-priority patent/JPH0874729A/ja
Application filed by Toshitaka Yasuda filed Critical Toshitaka Yasuda
Priority to AU44002/96A priority Critical patent/AU4400296A/en
Publication of WO1997002429A1 publication Critical patent/WO1997002429A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • F03B13/105Bulb groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the water flow under the atmospheric pressure includes the atmospheric pressure and the water flow.
  • each position in the gravitational total pressure PGH acting on existing three-dimensional directions and fixed supplies gravity total pressure ⁇ ⁇ "to the water flow passing through the Kurai ⁇ as shown in FIG. 5, the slope of m SL water flow in Work in one-dimensional direction along the flow at each position in the water flow
  • the coexistence fusion action is a concept that two forces with different action direction dimensions act on each other on the condition of the other side as a necessary condition and separate the work component ⁇ to perform the maximum amount of work. If this continues in a steady state due to natural energy, it becomes a natural permanent movement.
  • the water turbine when a water turbine is provided in a steady flow water flow under atmospheric pressure, the water turbine can be driven by the kinetic energy of the water flow without supplying artificial energy. That is, a steady stream of water or wind under atmospheric pressure is a natural permanent motion that can use its total gravitational pressure ⁇ ,,.
  • the present invention is a third kind of permanent movement that is realized in combination with the natural permanent movement.
  • the basic type of the present invention includes a pressure pipe provided with an axial flow turbine or a wind turbine having the same structure in the center, in a constant flow of the flowing fluid under the atmospheric pressure where the g-permanent motion exists.
  • the cross-sectional area of the pressure pipe is set to the inlet and outlet.
  • the frontal energy supply means is provided at a position where the cross-sectional area near the inflow port is large.
  • Rear energy supply means is provided at a position where the area is large 0
  • the gravitational static pressure PCHS acts from the ⁇ direction between the inflow port and the outflow port ⁇ ⁇ of the pressure tube due to the difference in the action direction dimensions that do not match, but the gravitational dynamic pressure P r. It works only from the inlet of the pressure pipe. Therefore, a fluid under atmospheric pressure cannot flow into the pressure pipe.
  • the present invention provides a method as described above, wherein a resistance counteracting pressure difference P, corresponding to the gravity total pressure difference P in the natural world, a gravity dynamic pressure supplement pressure PGMVA corresponding to the gravity dynamic pressure PH in the natural world,
  • the flow rate maintaining kinetic energy E which maintains the same flow rate in the pressure pipe as the steady flow of the flowing fluid under the atmospheric pressure in which the permanent motion exists, and the front energy supply means and the
  • the water flow loses kinetic energy by driving the hydraulic turbine, the gravitational total pressure Pe, an amount corresponding gravity static pressure P C "lost kinetic energy by; because increases, increased
  • the kinetic energy is immediately recovered by the coexistence and fusion action of the gravitational static EEPr ,,, s and the gravitational total pressure difference PG HI), that is, the condition of the permanent motion that does not affect the steady flow is satisfied.
  • the total pressure P GH which is the atmospheric pressure and is fixed at each position in the wind and acts in three dimensions, passes through that position
  • the gravitational total pressure P (: u is supplied to the wind
  • the gravitational total pressure difference Pe at the position and acting in the one-dimensional direction along the flow generates the wind velocity V, and as described above, the coexistence fusion action that maintains the flow rate of the wind supplied with the gravitational total pressure P ( ;
  • the third type of permanent motion of the present invention includes a basic type and an advanced type. And complex coexistence and fusion.
  • the method and apparatus for using the energy of a flowing fluid under atmospheric pressure according to the present invention are as follows.
  • the conditions for establishing the third type of permanent motion are as follows. These are achieved by conventional hydrodynamic theory. No, but based on new fluid dynamics, this can be achieved as described below.
  • the basic type of the third type of permanent motion device of the present invention is to provide an axial flow turbine or a pressure tube provided with a windmill of the same shape in the center at atmospheric pressure where natural permanent motion exists. It is installed substantially horizontally in the flowing fluid, and in order to take advantage of the characteristics of the flowing water turbine type, the sectional area of the pressure tube is deflected in the circumferential direction from both the inlet and the outlet toward the water turbine or the wind turbine.
  • the front energy supply means is provided at a position where the cross-sectional area near the inflow port is large, and the rear energy supply means is provided at a position where the cross-sectional area near the outflow port is large.
  • the basic type of the third kind of permanent movement method of the present invention is that a fluid of a predetermined flow rate passes through the pressure pipe under the condition that the total gravity P acts on the pressure pipe from the front energy supply means.
  • the pressure difference P that cancels all the resistances that occur when the resistance cancels.
  • a gravitational dynamic pressure supplementary pressure P c HV A corresponding to the gravitational dynamic pressure P CHV of the flowing fluid near the outside of the outlet of the pressure pipe, and the gravitational total pressure P GH is supplied from the rear energy supply means.
  • the total pressure P obtained by adding the resistance cancellation pressure difference PD to the gravity total pressure Pc; Due to the characteristics of the axial flow turbine type described in 11 of [VI], the turbine is distributed with a gradient that maintains a predetermined flow rate in the pressure pipe regardless of the presence or absence of a load on the turbine or wind turbine. Thereby, as will be described later, the third kind of permanent movement is established.
  • a developed type of the third type of permanent exercise apparatus of the present invention is that a connection between the inlet and the outlet of the basic type pressure pipe is made by a circulating pressure pipe having a uniform cross-sectional area.
  • a sealed circulating pressure pipe, a predetermined area that opens upward to the atmospheric pressure at the inlet and outlet and receives the total gravity P en including atmospheric pressure (the inlet or outlet of the original pressure pipe) (The cross-sectional area of the outlet or more) is provided, and an external energy supply means is provided in the circulating pressure pipe.
  • the bay of the circulating pressure pipe Provide a separator at the curved part so as not to bias the flow rate.
  • a development of the third type of permanent movement method of the present invention is characterized in that the external energy supply means cancels out the resistance of the circulating pressure pipe portion with respect to a predetermined flow rate to zero, thereby reducing the pressure difference PDO between the external resistance and the flowing fluid.
  • An advanced type of permanent motion of the third kind can be constructed which realizes a double-A coexistence fusion action of the total pressure energy EH and the total gravity energy of pressure H in the circulating pressure pipe.
  • the study of the present invention was started by clarifying the “energy source” of a flowing fluid under atmospheric pressure, and after about 5 years of study, the following new fluid dynamics was obtained.
  • the steady flow of a flowing fluid under atmospheric pressure includes the atmospheric pressure and is fixed at each position in the water flow, and the total gravitational pressure P GH acting in a three-dimensional direction passes through that position.
  • the gravitational total pressure PGH is supplied, and the gravitational total pressure difference P Ci1 ,,-sin ⁇ PGH acting at one position in the water flow and acting in a one-dimensional direction along the flow is generated by the gradient of the water flow, and the flow velocity V is generated.
  • there is a coexistence fusion action that maintains the flow rate at which the gravity total pressure P CH is supplied.
  • a water turbine is provided in such a steady flow of water, energy is supplied by the total gravity PG, so that the water turbine can be driven by the kinetic energy of the water flow without supplying artificial energy.
  • a steady stream of water under atmospheric pressure is a natural permanent motion that can receive energy from the total gravity pressure Pen and use its kinetic energy.
  • the analysis of flowing fluid under atmospheric pressure uses a microfluidized bed or a microfluidic tube, and the coexistence and fusion of the total gravity P (; l and the total gravity difference ⁇ ⁇ , The microfluidic bed or the microfluidic tube based on the assumption of the combined coexistence and fusion of the action and the total gravity pressure Pu and the total gravity difference pr; fM) existing on the upstream side and the downstream side. Set and analyze.
  • a vortex is formed, a complex coexisting fusion action is formed in the vortex, and the vortex that has completed the complex coexisting fusion action becomes an independent vortex.
  • a pressure pipe provided with an axial flow turbine or a windmill of the same shape at the center in a flowing fluid under atmospheric pressure which is a permanent motion. Installed almost horizontally, 1 below!
  • the sectional area of the pressure pipe is reduced while being deflected circumferentially toward the turbine or wind turbine from both the flow port and the outlet, and
  • a front energy supply means is provided at a position with a large cross-sectional area near the inflow port, and a rear energy supply means is provided at a position with a large cross-sectional area near the outflow port, as in the basic type of the third type permanent movement method of the present invention.
  • Artificial static pressure ⁇ artificial kinetic energy is supplied in accordance with the following phenomenon 2.
  • the boundary condition for controlling the flow inside the pressure pipe and combining and coexisting with the flow of natural permanent motion outside the pressure pipe. Can be satisfied, and a boundary condition for realizing the coexisting fusion action and the complex coexistence fusion action of the third kind of permanent motion can be configured in the pressure pipe.
  • various forces and energies are mixed in the pressure pipe.
  • the artificial static pressure / artificial kinetic energy has the action direction dimensions of gravity total pressure ⁇ , gravitational dynamic pressure P CHV, gravitational static pressure.
  • the gravitational dynamic pressure supplementary pressure PCVA supplied from the front energy supply means acts as a substitute for the gravitational dynamic pressure PGHV between the outlet of the water turbine or the windmill and the outflow port.
  • a fourth gravitational total pressure ⁇ is artificially interrupted between the pressure pipe and the outflow port. Is in the same state as a flowing fluid under atmospheric pressure, and there is a phenomenon described in 11.
  • the resistance canceling pressure difference P 0 that is artificially supplied to the vicinity of the inflow port in the above state has a gradient necessary to cancel the resistance of each part in the pressure pipe to 0, as shown in FIG.
  • the gravitational total pressure P GH is made to be able to operate in the flowing fluid in the pressure pipe in the same manner as in the case of a flowing fluid under atmospheric pressure, and the flow in the pressure pipe is Combination of fluid and flowing fluid under atmospheric pressure.
  • the above control is established because the resistance canceling pressure difference and the gravitational total pressure have different action direction dimensions and act in a clearly divided manner.
  • the flow rate maintained kinetic energy formic E FA that is artificially supplied to the outflow mouth near the above state, independent of the 1 1. Whether the load of the water. Car or windmill based on the description of which will be described later, the Maintaining a predetermined flow rate in the pressure pipe and artificially interrupting the fourth gravity total pressure P CH as described above, and interrupting the fourth gravity total pressure P G submitand the upstream gravity total pressure P G Constructs a complex coexisting fusion action of H with the downstream total gravity P R; M
  • the supply amount of the total gravity pressure P F: H is proportional to the working area of the total gravity pressure PG , and (the total gravity pressure per unit area acting on the position ⁇ ( : ⁇ ,) ( The minimum cross-sectional area through which the acting total gravity pressure P GH passes) X (the flow rate at that position).
  • the gravitational dynamic pressure P GH is one-dimensional in the direction of flow, it can be supplied only from the upstream side.
  • the gravitational static pressure Pn ! Ls has three-dimensional action direction.
  • the outlet gravitational hydrostatic pressure One suited to the waterwheel or windmill from P; so H S is vacuum may be traced back from the outlet to the exit of the water turbine or windmill. This makes the reason for denying permanent motion by the second law of thermodynamics and the entropy increasing law meaningless. 4.
  • an arbitrary amount can be supplied by matching the direction of action of the artificial energy with the direction from the supply position to the operation position. Then, the supplied artificial energy becomes kinetic energy until reaching the predetermined flow rate, and becomes pressure energy after reaching the predetermined flow halo.
  • part of the artificial pressure energy supplied from the front energy supply means is distributed as a static pressure downstream from the supply position and becomes the resistance canceling pressure difference P n And gradually consumed.
  • the remainder of the artificial pressure energy supplied from the front energy supply means is a substitute for the gravity dynamic pressure P CH , 'which cannot be traced from the outlet at the downstream side of the water turbine or wind turbine.
  • Gravitational dynamic pressure replenishment pressure P (; ,, ⁇ ) and serves to artificially interrupt the fourth gravity total pressure P GH between the downstream side of the water turbine or wind turbine and the outlet.
  • the flow maintaining kinetic energy supplied from the rear energy supply means is configured such that the fourth gravity total pressure P GH is artificially interrupted between the downstream side of the water turbine or the wind turbine and the outflow port based on the above 6. Under the condition that the pressure is adjusted, the gravitational total pressure energy E GH is generated by coexistence and fusion with the gravitational total pressure P CH existing at the supply position. Further, in this case, based on the above 3. and 8.
  • the amount of artificial energy supplied is proportional to the flow rate at the position where artificial pressure is supplied to the pressure pipe, and is determined by the artificial pressure X flow rate.
  • the amount of artificial energy supplied is proportional to the flow rate that the artificial kinetic energy can maintain at the position where the artificial kinetic energy coexists with the total gravity pressure P G ⁇ , and is determined by the total flow rate of the gravity and the maintenance flow rate of the artificial kinetic energy. .
  • the flow rate per unit time in each part in the pressure pipe must be equal, so after the boundary condition for the establishment of the complex coexistence and fusion action is established.
  • the excess artificial kinetic energy cannot operate because there is no partner to coexist and fuse, and the common maximum flow rate does not change. It remains as pressure energy.
  • it is transmitted to the downstream side because the amount of fluid movement does not change, and is distributed as a static pressure from the supply position to the downstream side as described in 5. above.
  • the required amount is the resistance cancellation pressure difference ⁇ .
  • the driving kinetic energy that has flowed into the water turbine or windmill together with the fluid of the predetermined flow rate is the rotational kinetic energy consumed by rotating the runner of the water turbine or windmill, and the fluid of the predetermined flow rate is discharged.
  • the rotational kinetic energy during rotation in the water turbine or wind turbine is taken into account, the total pressure of gravity between the inlet and the outlet of the pressure pipe is shown in Fig. 2. It is maintained at a constant value as shown.
  • the distribution of the artificially supplied resistance canceling pressure difference Pr overlaps, and constitutes total pressure static pressure + dynamic pressure.
  • the total pressure P has a gradient between the inflow port and the outflow port of the pressure tube to maintain the flow rate per unit time at each position.
  • the gravity total pressure energy E of the second system naturally existing outside the inflow of the pressure pipe and the second system naturally existing between the inflow port and the outlet of the water turbine or windmill Gravitational total pressure energy E n ", the third system gravitational total pressure energy fi f naturally existing outside the outlet of the pressure pipe, and between the outlet of the water turbine or wind-turbine and the outlet.
  • the artificially interrupted fourth system gravity total pressure energy E is combined and coexisted and fused to maintain a predetermined flow rate and drive the water turbine or wind turbine.
  • the output of the water turbine or wind turbine is And a third-class perpetual movement is realized.
  • the basic type of the present invention realizes the third type of permanent movement by installing the above-mentioned natural permanent movement in a flowing fluid under atmospheric pressure.
  • the basic type of the third type of permanent exercise device of the present invention is a water pump or a wind turbine 6 having the same shape as that shown in FIG.
  • a rear guide vane section 7 is provided to reduce the cross-sectional area of the pressure pipe 1 while deflecting it in the circumferential direction from both the inlet 2 and the outlet 3 toward the water turbine or wind turbine 6,
  • a front energy supply means 4 is provided at a position with a large cross-sectional area near the migratory population 2
  • a rear energy supply means 8 is provided at a position with a large cross-sectional area near the outlet 3.
  • 9 is an inflow section
  • 9a is a front conical section for continuously changing the cross-sectional area
  • 10 is an outflow section
  • 10a is a rear conical section for continuously changing the cross-sectional area
  • 11 Is a generator connected to the water turbine or wind turbine 6.
  • the position of the inlet 2 may be higher or lower than the position of the water turbine or the wind turbine 6.
  • the position of the outlet 3 is the same as or lower than the position of the water turbine or the wind turbine 6. In this case, the height difference is canceled by the effect of gravity on the fluid in the pressure pipe at that portion.
  • the flowing fluid is a water flow with a bottom inclination of 0, and a water depth H (m
  • the basic type of the third type of permanent movement method of the present invention is that the total gravity P at the position of the pressure pipe 1 from the front energy supply means 4 acts in the pressure pipe 1. And a resistance canceling pressure difference P that cancels all the resistances generated when a fluid of a predetermined flow rate passes through the pressure pipe 1 under the condition that the fluid flows near the outlet 3 of the pressure pipe 1.
  • gravity dynamic pressure P GHV gravitational dynamic refilling pressure corresponding to P [: "supplying and VA, from the rear energy supply unit 8, the gravitational total pressure P G , is the pressure at the location of the pressure tube 1 wherein the conditions acting in the tube 1 a predetermined flow rate of the fluid supplying the flow maintaining the kinetic energy E Roramuda a kinetic energy of the flow maintaining the flow velocity V F when passing through the rear energy supply unit 8.
  • the gravitational dynamic pressure replenishment pressure P GHVA supplied from the front energy supply means 4 acts as a substitute for the gravitational dynamic pressure P CH V between the outlet of the water turbine or wind turbine 6 and the outlet 3, so that the water turbine or The fourth gravitational total pressure P GH is artificially interrupted between the outlet of the wind turbine 6 and the outflow ⁇ 3, and the fluid flowing in the pressure pipe 1 becomes large with respect to the gravitational total pressure P CH. It becomes the same state as a flowing fluid under atmospheric pressure.
  • the resistor canceled pressure differential P to be artificially fed near the inlet port 3 in the above state :, the slope required to cancel, as shown in FIG. 2, the resistance of each part of the pressure tube 1 to 0 And distributed from the inlet 2 to the outlet 3 so that the flowing fluid in the pressure pipe 1 is in the same state as the flowing fluid under the atmospheric pressure with respect to the total gravity pressure P GH and the total gravity pressure difference P GHD.
  • the flow maintaining motion energy E artificially supplied to the vicinity of the inside of the outlet 1 is formed by the pressure pipe irrespective of the load of the water or wind 6 due to the characteristics of the axial flow turbine type.
  • the pressure pipe 1 the total gravity P G ⁇ of the third system of the flowing fluid outside the outlet 3 and the total gravity of the fourth system artificially interrupted are mixed and coexisted. Is maintained at a predetermined flow rate.
  • the output of the turbine obtained by the basic model is as follows when the flowing fluid is water. As shown in Fig. 1, all the gravitational total pressure P GH can be converted into kinetic energy to drive the turbine, so as shown in Fig. 1, a pressure pipe is installed at the water depth H (m), and the flow velocity becomes V (m / sec). When the cross section of the inlet is (m 2 ),
  • Turbine output capacity (kW) (S, XV) ⁇ gx (10.33 + H) ⁇ x turbine efficiency-[(S, V) X ⁇ (resistance canceling pressure difference) + (replacement of gravity dynamic pressure) Pressure P GHVA ) ⁇ + Flow maintenance kinetic energy E] ⁇ Power efficiency of artificial energy.
  • Wind turbine output capacity (kW)-(S! XV) ⁇ X 1 0. 3 3 ⁇ X Utilization of total gravity pressure P X Wind turbine efficiency— [(S, XV) X ⁇ (resistance cancellation pressure difference P D ) + (Gravity dynamic pressure supplement pressure P F; F , V ,,) ⁇ + Flow maintenance kinetic energy ⁇ , .. ⁇ ] + Power efficiency of artificial energy
  • the developed type of the present invention uses a flowing fluid corresponding to the natural flowing fluid under the atmospheric pressure, which constitutes the above-mentioned natural permanent motion, by artificially configuring and using it under the atmospheric pressure. It can be applied to almost all uses such as internal combustion engines and external combustion engines.
  • a developed type of the third type of permanent exercise apparatus of the present invention is a circulating pressure pipe 1 having a uniform cross-sectional area between the inlet 2 and the outlet S 3 of the basic type pressure pipe 1.
  • Separators 15 and 15 are provided at the curved part of the circulation pressure pipe 2a so as not to bias the flow rate.
  • an advanced type of the third type of permanent movement method of the present invention is to use an external energy supply means 14 to cancel the resistance of the circulating pressure pipe 12a at a predetermined flow rate to zero to reduce the resistance to zero.
  • the canceling pressure difference P o and the external flow rate maintaining kinetic energy E which maintains a predetermined flow rate of the flowing fluid. The same as the flow fluid under the atmosphere where the natural permanent motion exists in the basic type in the flow fluid of the predetermined flow rate in 2a.
  • Gravity total pressure energy E c gravitational static pressure energy E ( ; HS + gravitational dynamic pressure energy E ( ; HV .1 can exist, so the gravity in the basic type pressure pipe 1 which forms a part of the developed type composite coexistence fusion operation of the total pressure energy-saving E FI H gravity total pressure energy ECH circulation pressure pipe 1 in 2 a Boundary conditions necessary for the third kind of permanent motion that satisfy the requirements can be constructed.
  • the fluid of a predetermined flow rate in the circulating pressure pipe 12a will have the same gravitational total pressure energy per unit flow per unit time. It merges with the fluid of a predetermined flow rate in the basic type pressure pipe 1 which constitutes a part of the above-mentioned advanced type having E Gtl , and combines it with the output of the water turbine or windmill 6 in the same manner as in the basic type.
  • the third kind of perpetual movement to supply the artificial energy to be supplied is realized.
  • the output of the turbine obtained by the advanced type is-.
  • the flowing fluid is water, as shown in Fig. 2, the total gravity ⁇ and ⁇ can be converted into kinetic energy to drive the turbine.
  • the water wheel is placed at the position of depth H (m), if the cross-sectional area of the flow rate of the circulating pressure tube 1 in 2 a is V Cm./ sec).
  • the output of the wind turbine obtained by the advanced type is that when the flowing fluid is air, if all the total pressure Pe is converted into kinetic energy, the flow velocity will be about 41 OmZ sec. difficult.
  • the utilization rate of the total gravity pressure is set at an upper limit of 40% (100% may be used if it is technically feasible). )
  • the cross-sectional area of the inlet is S! (M 2 )
  • Wind ⁇ output capacity (kW) (S!
  • FIG. 1 is a side sectional view showing an example of the basic type of water of the third type of permanent exercise apparatus of the present invention.
  • FIG. 2 is a diagram showing distributions of a total gravity, a gravity static pressure, a gravitational dynamic pressure, and a resistance canceling pressure difference in the case of water of the basic type of the third type of permanent movement method of the present invention.
  • FIG. 3 is a side cross-sectional view showing an example of the case of developed air of the third type of permanent exercise apparatus of the present invention.
  • FIG. 4 is a diagram showing distributions of the total pressure of gravity, the static pressure of gravity, the dynamic pressure of gravity, and the resistance-cancelling pressure difference in the case of air, which is an advanced type of the type 3 permanent movement method of the present invention.
  • Fig. 5 is a diagram showing the behavior of coexisting fusion in which a flowing fluid under atmospheric pressure forms a natural permanent motion.
  • FIG. 6 is a schematic diagram when a basic type of the third type of permanent exercise apparatus of the present invention is installed in an orifice under a burrow.
  • Fig. 7 shows the basic model of the third type of permanent exercise device of the present invention installed over two waterways. It is a schematic diagram in the case of placing.
  • FIG. 8 is a schematic diagram when the basic type of the third-class permanent exercise apparatus of the present invention is installed in an artificial circulation channel.
  • the method and apparatus for using the gravitational total pressure energy of the flowing fluid according to the present invention are the same as those for the case where the flowing fluid is water or air. Explain one by one and add a special use at the end.
  • the present embodiment is used in a tidal current, a river, a water channel, or the like, by hanging it from a water flow into a current.
  • the structure of the pressure pipe 1 is such that an axial flow turbine 6 is provided at the center, an inflow section 9, a front guide vane section 5, an outflow section 10 and a rear guide vane section 7 are provided.
  • the cross-sectional area of the pressure pipe 1 is reduced while being deflected in the circumferential direction from both the inlet 2 and the outlet 3 toward the turbine 6.
  • the front guide vane section 5 and the rear guide vane section 7 have a mechanism capable of adjusting the deflection angle of each guide vane.
  • the front energy supply means 4 is provided between the inflow section 9 and the front guide vane section 5, and the cutoff near the outflow port 3 is provided.
  • the rear energy supply means 8 is provided between the outflow portion 10 and the rear guide vane portion 7.
  • 9a is a front conical part for continuously changing the cross-sectional area
  • 10a is a rear conical part for continuously changing the cross-sectional area
  • 11 is a generator connected to a water turbine.
  • the front guide vane part 5 and the rear guide vane part 7 are shown as cylinders in Fig. 5, but since the reduction ratio is limited in the cylindrical shape, the inner and outer surfaces are circular. A conical surface can be used to increase the reduction ratio.
  • the reason why the inflow portion 9 and the outflow portion 10 are provided is to keep the front energy supply means 4 and the rear energy supply means 8 stable even if the flow velocity V of the water flow pulsates. However, in order to increase the output efficiency, the smaller the reduction ratio at the inflow section 9 and the outflow section 10 is better.
  • the inlet 2 with a cross section of 12.56 m 2 is reduced to 1.5 m 2 at the inflow section 9 and the front guide vane section 5 to have a cross section of 1 2.56 m 2 . 1. reduced to 5 m 2 at the outflow ⁇ 3 and the outlet portion 1 0 and the rear guide Doben unit 8.
  • the reduction ratio is Similarly, it is 1-8.4, but even if the inflow side sharply decreases, the loss is small, so the loss is small. Therefore, if the outflow side sharply reduces, the loss increases, so the distance decreases over a long distance.
  • Reduction rate at front energy supply means 4 and rear energy supply means 8 To achieve both operational stability and efficiency, reduce the reduction rate at these positions to about 1/2.
  • Maximum kinetic energy of the flowing fluid through the pressure pipe 1 i.e., may be considered to be proportional to the kinetic energy of the water wheel driving velocity V T. Approximate from the known data on these,
  • the principle is the same for the basic type using air, so it can be easily configured by referring to the development type for the following air.
  • the developed type of the present invention uses a flowing fluid equivalent to a natural flowing fluid under atmospheric pressure, which constitutes a natural eternal link, by artificially configuring and using it under atmospheric pressure, so that a conventional water turbine, windmill, It can be applied to almost all uses such as internal combustion engines and external combustion engines.
  • the present embodiment is configured so that it can be installed in the hood of an automobile as an alternative to the automatic gasoline engine.
  • a circulating pressure pipe 12 a having a uniform cross-sectional area is connected between the inlet 2 and the outlet ⁇ 3 of the pressure pipe 1 of a substantial type, which constitutes a part of the present embodiment,
  • the opening 1 3), which is larger than the cross-sectional area of the exit! 3 is provided with an opening with a closed circulation pressure pipe 1 2, which consists in an external energy supply means ⁇ 4 provided in the circulation pressure pipe 1 in 2 a.
  • the curved portion of the circulating pressure pipe a2a should be sewn so as not to bias the flow rate. Les one motor 1 5, 1 5 provided c
  • the circulation flow of the circulation air gravity all ⁇ E Nerugi E c gravity total pressure PGHX unit time passing flow To maintain and circulate You.
  • the cross-sectional area of the openings 13 and 13 is a predetermined area (at least the cross-sectional area of the inlet or outlet of the original pressure pipe).
  • the conditions that can maintain the above condition are as follows : total gravity energy E per unit time per unit flow rate of circulating air in the circulation pressure pipe 12a (; H , total gravity pressure P CH is the opening 13; It is the same as the gravity total pressure energy E GI per unit time per unit flow of wind under atmospheric pressure, provided that the gravity total pressure energy E c ⁇ ⁇ ⁇ is supplied from 13.
  • a third type of motor an advanced type of motion is realized, and an output is obtained from a generator connected to the windmill, and this output drives the motor of the electric vehicle.
  • the bonnet of the car It is necessary to make the bonnet of the car a little longer, but the one shown in Fig. 3 is configured to be 2 m in length, and six are arranged in parallel with the bonnet. If the total length is 2 m, the inside diameter of the circulating pressure pipe 12 a can be set to 0.15 m.
  • the wind turbine driving flow speed V T is approximately 7% compression rate of the flow air 2 5 0 m. / Sec and set. With this, the utilization rate of the total gravity energy EG "becomes about 37%. Of course, if technically possible, the speed can be further increased.
  • the outlet is reduced to 17.66 cm 2 at the outlet and the rear guide vane.
  • the reduction rate is also 1: 1 (), but even if the inflow side sharply reduces, the loss generated is small because the loss is small. So shrink over long distances.
  • the wind turbine drive velocity V T of the will depend gravity total pressure ⁇ in certain present type, determined by the predetermined flow rate and cross sectional area S FCT, S BCT in development type.
  • Reduction ratio in front energy supply means and rear energy supply means To achieve both operational stability and efficiency, reduce the reduction rate at these positions to about 1 to 2 times.
  • the gravity total pressure P CH is a pressure pipe!
  • the resistance canceling pressure difference that cancels out all the resistances generated when the flow fluid of a predetermined flow rate passes through the pressure pipe ⁇ under the conditions acting inside the pressure pipe ⁇ , and the outflow of the pressure pipe 1
  • Wind ⁇ drive velocity V About 5% of the kinetic energy of
  • Wind turbine output capacity (kW) (S, XV) X ⁇ gX10.33 ⁇ X utilization rate X windmill efficiency-[(S, XV) X ⁇ (resistance canceling pressure difference PD) + (gravity dynamic refilling pressure P CHVA) + (external resistance cancellation Ii: power difference P:,) ⁇ + flow maintained kinetic energy formic E FA + external flow maintained kinetic energy F; kappa lambda have] ⁇ human energy power efficiency - ( S 1 XV) X ⁇ g X] 0.3 3 ⁇ X 0.3 7 x 0.9-[(S, XV) X ⁇ (resistance counter pressure difference ⁇ ⁇ ) + (gravity dynamic pressure charging pressure ⁇ ⁇ .
  • the same result can be obtained even if the pressure pipe 1 and the external energy supply means 14 are exchanged.
  • the circulation is not limited to the vertical plane, and if the openings 13 and 13 are directed upward, the same result can be obtained regardless of whether the circulation is horizontal or at an angle.
  • the basic type of the third type of permanent motion it is stable if the outflow velocity of the flowing fluid from the outlet of the pressure pipe can be adjusted to the flow velocity of the flowing fluid under atmospheric pressure outside the outlet. It can be used for special applications shown in Figs. The basic type and the advanced type were developed from the examination of these special applications.
  • the basic type pressure pipe 1 can be used by installing it in the orifice 16 by digging it.
  • H in FIG. 6 can be used as a part of the output of the front energy supply means.
  • a basic type pressure pipe I can be installed and used across two water streams, F2, which have a head H, between water surfaces.
  • H in FIG. 7 can be used as a part of the output of the front energy supply means.
  • the basic types of the present invention are: (1) tidal currents, ocean currents, rivers, waterways such as waterways, (2) in the wind, (3) mobile bodies on or under water, (4) mobile bodies in the atmosphere, (5) It can be used in the boring orifice shown in Fig. 6, which uses a head, two waterways with a head drop shown in Fig. 7, and (6) the artificial circulation waterway shown in Fig. 8.
  • the developed type of the present invention can be applied to almost all applications such as conventional water turbines, wind turbines, internal combustion engines, and external combustion engines.
  • an advanced version of the invention is:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Description

明 細 書
流動流体の重力全圧エネルギの使用方法とその装置 技 術 分 野
本発明の検討内容を纏めて背景技術の欄の [ VI ] に示す大気圧下の流動流 体に関する新しい流体力学に基づいて説明寸ると、 大気圧下の水流には、 大 気圧を含み水流中の各位置に固定して存在し 3次元方向に作用する重力全圧 P G Hが図 5 に示すようにその位鬵を通過する水流に重力全圧 Ρ ΰ„を供給し、 m記水流の勾配により前記水流中の各位置にあり流れに沿う 1次元方向に作
¾する重力全圧差 Ρ Ο Η Π = s i η ^ · Ρ , :'が流速 Vを発生し前記のように し て重力全圧 P c Ηが供給されている流動流体の流量を維持する共存融合作用が ある。 そして、 この共存融合作用により .、 前記各位置において重力全圧エネ ルギ E C Η =重力全圧 P C , , X流量 =重力静压 Ρ : X流量 +重力動圧 P C H V X 流量-重力静圧ェネルギ E π ·, +重力動 ェネルギ E r. V が維持され流量が 維持されている。
ここで、 共存融合作用とは、 作用方向次元が異なる 2つの力が、 相互に相 手側の作用を必要条件にして作用し、 作¾分 ^を分けて共通最大量の仕事を するという概念であり、 これが自然のェネルギによって定常状態で続けば自 然永久運動になる。 実際に、 大気圧下の定常流の水流に水車を設けると .. 人 為エネルギを供給すること無く 、 水流の運動エネルギで前記水車を駆動でき る。 即ち、 大気圧下の定常流の水流や風は重力全圧 Ρ , . Ηをエネルギ源と しそ の運動エネルギを利兩できる自然永久運動である。
上記に対して、 本発明は、 前記自然永久運動と組み合わせて成立する第 3 種永久運動である。
本発明の基本型は、 前記 g然永久運動が存在する大気圧下の流動流体の定 常流由に、 軸流水車またはこれと同じ構造の風車を 央部に設けた圧力管を 設置し、 背景技術の欄の [ W ] 新しい流体力学の ( 4 ) の 1 1 . に記載のよ うに軸流水車型の特性を利用するために、 前記圧力管の断面積を流入口と流 出口との双方から前記水車または風-車に向かって円周方向に偏向しながら縮 小し、 前記流入口近傍の断面積が大きい位置に前部エネルギ供給手段を設け .、 前記流出口近傍の断面積が大きい位置に後部エネルギ供給手段を設けてい る 0
上記に状態では、 作用方向次元が合う合わないの相違により、 前記重力静 圧 P C H S は前記圧力管の流入口と流出门との、 δ方から作用するが前記重力動 圧 P r. H V は前記圧力管の流入口から しか作用しない。 従って、 大気圧下の流 動流体は前記圧力管内に流入できない。
本発明は、. 上記の状態で、 自然界の前記重力全圧差 P に相当する抵抗 打消し圧力差 P ,, と、 自然界の前記重力動圧 P H に相当する重力動圧補充 圧力 P G M V Aと、 前記自然永久運動が存在する大気圧下の流動流体の定常流と 同じ流量を前記圧力管内に維持する流量維持運動エネルギ E , とを、 これら の作 ¾方向次元に合わせて前記前部エネルギ供給手段と前記後部エネルギ供 給手段とから人為的に供給し、 前記水車または風車の下流側の圧力管内に人 為的に重力全圧エネルギ E Γ. Mを割り込ませた にすることにより、 前記圧力 管内の流動流体の状態を前記自然永タ運動が存在する大気圧下の流動流体の 定常流の状態と同じにして、 前記圧力管内の 動流体と大気圧下の流動流体 との間に複合共存融合作用が成立する第 3稈 久運動を構成し、 前記圧力管 内の重力静圧 Ρ ^ '; を運動エネルギに変換して水車または風車を駆動する流 動流体の重力全圧エネルギの使用方法とその装置に関するものである。 本発明の発展型は、 上記の基本型の圧力管の流人口と流出口との間に、 重 力全圧 Ρ π Ηを取り入れる開口部を 2箇所に設けた循環圧力管を取り付け、 前 記循環圧力管内の流動流体の状態を、 前記自然永久運動が存在する大気圧下 の流動流体の定常流の状態と同じ条件にすることによ り、 第 3種永久運動を 構成している。 背 景 技 術
本欄では、 [ I ] 自然界に存在する自然永久運動と第 3種永久運動との関 係、 [Π ] 第 3種永久運動の必要条件、 第 3種永久運動の [m] 基本型と [ W] 発展型の構成、 「V ] 従来の流体力学の問題点、 [VI] 新しい流体力学 と従来の永久運動否定理由の無関係化を説明する。
[ I ] 自然界に存在する自然永久運動と本発明の第 3種永久運動との関係 : ( 1 ) 天体の永久運動と本発明の第 3種永久運動との関係 :
天体の永久運動では、 宇宙誕生時の爆発による直線運動エネルギと 万有引力との釣合いで構成される運動が、 抵抗損失が無い状態で維持されて いると想像されるので、 地球上で抵抗損失が存在する場合の永久運動とは構 成が異なる、 即ち、 エネルギの補給機構が無い。
しかし、 万有引力と直線運動エネルギという作用方向次元が異なる 2つの 力の釣合いで永久運動が成立していることは、 繰り返し運動又は可逆変化で 構成される永久運動には作用方向次元が異なる 2つの力の共存融合作用が必 要なことを暗示している。
( 2 ) 地球上の自然永久運動と本発明の第 3種永久運動との関係 :
1. 大気圧下の水流の定常流には、 新しい流体力学によると、 技術 分野の欄に述べたように、 自然永久運動が存在する。
そして、 水流に水車を設けると、 水車を駆動して運動エネルギを失った水 流は、 重力全圧 Pe ,によって運動エネルギを失った分だけ重力静圧 P C; が 増加するので、 増加した重力静 EEPr,,,s と前記重力全圧差 P GHI) との共存融 合作用により、 直ちに運動エネルギを回復する。 即ち、 定常流に影響を残さ ないという永久運動の条件を満たす。
2. 大気圧下の風の中には、 新しい流体力学によると、 大気圧であり風の 中の各位置に固定して存在し 3次元方向に作用する重力全圧 PGHがその位置 を通過する風に重力全圧 P(:uを供給し、 大気圧の勾配により前記風の中の各 位置にあり流れに沿う 1 次元方向に作用する重力全圧差 Pe が風速 Vを発 生し前記のようにして重力全圧 P(;Hが供給される風の流量を維持する共存融 合作用がある。 そして、 この共存融合作用により、 前記各位置において重力 全圧エネルギ E (;H =重力全圧 P CH X流量 =重力静圧 P C IL S X流量 +重力動圧 Ρ ,, HV X流量-重力静圧エネルギ E G,,S +重力動圧エネルギ E G が維持さ れ流量が維持されている。 上記の現象が自然のエネルギで定常状態で続けば 自然永久運動になる。
実際に、 風の中に風車を設けると、 風車を駆動して運動エネルギを失った 風は、 重力全圧 PCHによって運動エネルギを失った分だけ重力静圧 Pc . が 増加するので、 増加した重力静圧 P と前,记重力全圧差 Ρ^π, との共存融 合作用により、 直ちに運動エネルギを回復する。 即ち、 定常流に影響を残さ ないという永久運動の条件を満たす。
3. 本発明の第 3種永久運動には、 技術分野の欄の後半に記載のように、 基本型と発展型とがあり、 何れも、 新しい流体力学に ¾づいて、 上記の自然 永久運動と複合共存融合させることにより構成される。
[Π ] 本発明の第 3種永久運動の成立条件 :
本発明の大気圧下の流動流体のエネルギの使用方法とその装置 Iこお(ナ る第 3種永久運動の成立条件は、 下記の通りである。 これらは、 従来の流体 力学の理論では達成できないが、 新しい流体力学に基づけば後述のようにし て達成できる。
( I 投入エネルギより大きな出力は得られないというエネルギ保存則に よる第! 種永久運動の否定理由を無関係にする境界条件の設定。
( 2 ) エネルギは遡らないという熱力学第 2法則による第 2種永久運動の 否定理由を無関係にする境界条件の設定。
( 3 ) 可逆反応は存在しないというェン ト Dピー増加則による第 2種永久 運動の否定理由を無関係にする境界条件の設定。
[ ] 本発明の第 3種永久運動の基本型 : 本発明の第 3種永久運動装置の基本型は、 図〗 に示すように、 軸流水 車またはこれと同じ形の風車を中央部に設けた圧力管を自然永久運動が存在 する大気圧下の流動流体中に略水平に設置し、 鈾流水車型の特性を利用する ために前記圧力管の断面積を流入口と流出口との双方から前記水車または風 車に向かって円周方向に偏向させながら縮小し、 前記流入口近傍の断面積が 大きい位置に前部エネルギ供給手段を設け、 前記流出口近傍の断面積が大き い位置に後部エネルギ供給手段を設けて構成される。
本発明の第 3種永久運動方法の基本型は、 前記前部エネルギ供給手段から 、 重力全圧 P ,が前記圧力管内に作用している条件で所定流量の流動流体が 前記圧力管内を通過する際に発生する総ての抵抗を 0に打ち消す抵抗打消し 圧力差 P。 と、 前記圧力管の流出口外近傍の流動流体の重力動圧 P C H V に相 当する重力動圧補充圧力 P c H V Aとを供給し、 前記後部エネルギ供給手段から 、 重力全圧 P G Hが前記圧力管内に作用している条件で前記所定流量の流体が この後部エネルギ供給手段を通過する際の流速の運動エネルギである流量維 持運動エネルギ Ε ,, Λを供給することにより、 図 2に示すように、 前記前部ェ ネルギ供給手段と前記圧力管の流出口との間で、 重力全圧 P c; Ηに抵抗打消し 圧力差 P D を加えた全圧 Pが、 背景技術の欄の [ VI ] の 1 1 . の記載の軸流 水車型の特性により前記水車または風車の負荷の有無とは無関係に、 前記圧 力管内の所定流量を維持する勾配を有して分布する。 これによつて、 後述の ように、 第 3種永久運動が成立する。
[ IV ] 本発明の第 3種永久運動の発展型 :
本発明の第 3種永久運動装置の発展型は、 図 3に示すように、 前記基 本型の圧力管の流入口と流出口との間を断面積が均一な循環圧力管で接続し て密閉循環圧力管とし、 前記流入口部分と流出口部分との 2箇所に上向きに 大気圧に対して開き大気圧を含む重力全圧 P e nを受け入れる所定面積 (元の 圧力管の流入口または流出口の断面積以上) の開口部を設け、 前記循環圧力 管内に外部エネルギ供給手段を設けて構成される。 尚、 前記循環圧力管の湾 曲部には、 流量を偏らせないようにセパレ一タを設ける。
本発明の第 3種永久運動方法の発展型は、 前記外部エネルギ供給手段によ り、 所定流量に対する前記循環圧力管部分の抵抗を打ち消して 0 にする外部 抵抗打消し圧力差 P D Oと、 流動流体の所定流量を維持する外部流量維持運動 エネルギ E F ,、。 とを供給することにより、 前記循環圧力管内の所定流量の流 動流体に、 基本型における自然永久運動が存在する大気圧下の流動流体と同 じ単位時間単位通過流量当たりの 「重力全 ftエネルギ E π π =重力静圧ェネル ギ E G H S +重力動圧エネルギ E c tl、. 」 を存 f十:させ得るので、 前記基本型の場 合と同様にして、 前記基本型の圧力管内の^力全圧エネルギ E Hと、 前記循 環圧力管内の重力全圧エネルギ £ Hとの複 A共存融合作用を成立させる第 3 種永久運動の発展型を構成できる。
[ V ] 従来の流体力学の問題点 :
従来の水力学や流体力学は、 重力全 P が作 ¾しない閉鎖された流 動流体の取扱いには実用上の問題が無く 大きな実績をあげている- しかし、 従来の7 K力学や流体力学では、 人: 圧下の流動流体の理論が根本 的に間違っている。
実際に、 従来の水力学は、 大気圧下の流動流体に関しては、 従来の流体力 学の運動方程式を使 ¾せず、 実験式を使用 し、 或いは、 理論とは無関係に経 験的な知識を使用し実態に合わせて処理をしている
従夹の流体力学では水の場合には位置ェネルキがあり空気の場合には位置 エネルギがないが、 流動流体内では周囲には i ]じ質量の流体があるので、 水 も空気も共に位置エネルギは無い害である。
従来の水力学や流体力学では、 大気圧下の水流のベルヌーィの式やオイラ 一の運動方程式やナビエ · ス ト一クスの運動方程式が、 実在しない位置エネ ルギをエネルギ源にしている。 従って、 ベルヌ --ィの式では、 大気圧下の水 流は水面から少し下の部分で流速が最も速いことを説明できない。 ォイラ -- の運動方程式は良く知られているように解析結果が実態と全く異なる。 ナビ ェ · ス ト—クスの運動方程式は、 解析結果が流動流体の動きとは無関係な単 なる曲線の式や単なる曲面の式になり実態と全く異なる。
大気圧下の水流と風とは共に流動流体であるので同じ機構を有する害であ るが、 一般に行われているオープン水路の水流の説明は風に適用できない。 又、 従来の流体力学の運動方程式は本発明の大気圧下の流動流体の重力全 圧エネルギの使用方法とその装置で起きる現象を説明できない。
[ VI ] 本発明の第 3種永久運動の基本になる新しい流体力学と従来の永久運 動否定理由の排除 :
発明者は、 幼少年時代の水遊びの経験により学校で学んだ流体の位置 エネルギに疑問を持ったことと、 上記のよ うに、 従来の流体力学の運動方程 式が大気圧下の流動流体のエネルギと流れの実態を説明できないこととから
、 大気圧下の流動流体の I"エネルギ源. I に未知の部分があるとの予測を立て
、 本発明の検討を、 大気圧下の流動流体の 「エネルギ源」 を明らかにするこ とから始め、 約 5年間の検討結果、 下記の新しい流体力学を得た。
( 1 ) 従来の流体力学の問題点その i :
従来の流体力学は、 大気圧下の流動流体を取り扱う際に、 実在しな い位置エネルギをエネルギ源にしている。
( 2 ) 従来の流体力学の問題点その 2 :
林檎の榭の下には一般に池が無いので、 ニュー ト ンの運動法則は、 流体に適用する場合の条件を付けずに、 力を、 力 ==質量 X加速度と し、 力は 質量が加速される方向にのみ存在すると している。
従来の流体力学は、 ニュー ト ンの運動法則に基づいて運動方程式を作って いるので、 大気圧下の流動流体の定常流の場会には、 図 5に示すように、 大 気圧を含み流動流体中の各位置に固定して静止状態で存在し 3次元方向に作 用する重力全圧 P G Hが、 その位置を通過する流動流体に重力静圧エネルギ E C li s = (その位置に作用する単位面積当たりの重力全圧 P (: H ) X (その位置 に作用する重力全圧 P c ,,が通過する最小断面積) X (その位置の流量) を、 流体の移動が無い方向から供給していることを見落としている。 即ち、 前記 のように、 大気圧下の流動流体の定常流は各位置において静止状態で存在す る重力全圧 PGHからエネルギの供給を受ける自然永久運動であることを見落 としている。
( 3 ) 大気圧下の流動流体の定常流が自然永久運動であることと、 その解 析方法 :
大気圧下の流動流体の定常流は、 水流の場合は、 大気圧を含み水流 中の各位置に固定して存在し 3次元方向に作用する重力全圧 PGHがその位置 を通過する水流に重力全圧 P G Hを供給し、 前記水流の勾配により前記水流中 の各位置にあり流れに沿う 1次元方向に作用する重力全圧差 PCi1,, - s i n θ · PGHが流速 Vを発生し前記のようにして重力全圧 PCHが供給される流量 を維持する共存融合作用がある。 この共存融合作用により、 前記各位置にお いて重力全圧エネルギ E u =重力全圧 P[:li 流量 =重力静圧 PGHS 流量 + 重力動圧 PGMV X流量 =重力静圧ェネルギ E, ,S +重力動圧エネルギ EW,、 が維持され、 更に、 上流側に発生すべき重力全圧エネルギと下流側に発生す べき重力全圧エネルギとが複合共存融合して共通最大重力全圧エネルギが維 持され流量が維持されている。 そして、 このような定常流の水流に水車を設 けると、 重力全圧 PG,,によるエネルギの供給があるので、 人為エネルギを供 給すること無く、 水流の運動エネルギで前記水車を駆動できる。 即ち、 大気 圧下の定常流の水流は重力全圧 P en,からエネルギの供給を受けその運動エネ ルギを利用できる自然永久運動である。
大気圧下の流動流体の定常流は、 風の場合は、 大気圧であり風の中の各位 置に固定して存在し 3次元方向に作用する重力全圧 PCHがその位置を通過す る風に重力全圧 Ρ π„を供給し、 前記大気圧の勾配により前記風の中の各位置 にあり流れに沿う i次元方向に作用する重力全圧差 Ρ(;ΗΙ) が流速 Vを発生し 前記のようにして重力全圧 が供給される風の流量を維持する共存融合作 用がある。 この共存融合作用により、 前記各位置において重力全圧エネルギ E (;„ =重力全圧 P CH X流量 =重力静圧 P CHS X流量 +重力動圧 P CH V X流量 =重力静圧ェネルギ E (:„S +重力動圧エネルギ E CHV が維持され、 更に、 上 流側に発生すべき重力全圧エネルギと下流側に発生すべき重力全圧エネルギ とが複合共存融合して共通最大重力全圧エネルギが維持され流量が維持され ている。 そして、 このような定常流の風に風車を設けると、 重力全圧 に よるエネルギの供給があるので、 人為エネルギを供給すること無く、 風の運 動エネルギで前記風車を駆動できる。 即ち、 大気圧下の定常流の風は重力全 圧 PGHからエネルギの供給を受けその運動エネルギを利用できる自然永久運 動である。
そして、 大気圧下の流動流体の解析は、 微小流層、 又は、 微小流管を使用 し、 同一位置に存在する重力全圧 P(;l と重力全圧差 Ρ Γ,Πい との共存融合作用 と、 上流側と下流側とに存在する重力全圧 P uと重力全圧差 pr;fM) との複合 共存融合作用との想定に基づいて前記微小流層、 又は、 前記微小流管を設定 して解析する。 渦が出来ると、 渦の中で複合共存融合作用が構成され、 この 複合共存融合作用が出来上がった渦は独立渦になる。
( 4.) 大気圧下の流動流体中に設置された圧力管内の流動流体 :
本発明の第 3種永久運動装置の基本型のように、 軸流水車またはこ れと同じ形の風車を中央部に設けた圧力管を S然永久運動である大気圧下の 流動流体中に略水平に設置し、 後述の 1 ! . に基づいて軸流水車型の特性を 利用するために、 前記圧力管の断面積を流 Πと流出口との双方から前記水 車または風車に向かって円周方向に偏向させながら縮小し、 前記流入口近傍 の断面積が大きい位置に前部エネルギ供給手段を設け、 前記流出口近傍の断 面積が大きい位置に後部エネルギ供給手段を設け、 本発明の第 3種永久運動 方法の基本型のように、 前記前部エネルギ供給手段から、 重力全圧 P GHが前 記圧力管内に作甩している条件で所定流量の流動流体が前記圧力管内を通過 する際に発生する総ての抵抗を 0 に打ち消す抵抗打消し圧力差 pD と、 前記 圧力管の流出口外近傍の流動流体の重力動圧 P に相当する重力動圧補充压 力 P CH VAとを供給し、 前記後部エネルギ供給手段から、 重力全圧 P CHが前記 圧力管内に作用している条件で前記所定流量の流体がこの後部エネルギ供給 手段を通過する際の流速の運動エネルギである流量維持運動エネルギ E FAを 供給する場合には、 下記の現象が存在する。
1 . 人為静圧ゃ人為運動エネルギを、 下記の 2. 以下の現象に合わせ て供給することにより、 圧力管内の流れを制御して圧力管外の自然永久運動 の流れと複合共存融合させる境界条件を満たすことができ、 第 3種永久運動 の共存融合作用と複合共存融合作用とを成立させる境界条件を前記圧力管内 に構成できる。 この場合、 前記圧力管内で各種の力やエネルギが混在するが 、 後述のように、 人為静圧ゃ人為運動エネルギは、 それらの作用方向次元が 重力全圧 Ρ 、 重力動圧 P CHV 、 重力静圧 P,:,!s 、 重力全圧エネルギ Ε Π,,、 重力動圧エネルギ EGHV 、 重力静圧エネルギ Ems 等の自然の力やエネルギ の作用方向次元と異なれば、 前記の自然の力やエネルギとは別個の作用を分 担し、 作用方向次元が一致すれば同じ作用を行い、 又、 部分的に過剰に存在 させても共存融合する相手が無いので、 過剰分は静圧として前記圧力管を通 過してしま うので、 目的に合わせる制御が比較的に容易である。
2. 大気圧下の流動流体では、 重力全圧 と重力全圧差 Ρ ,·;„。 とは 流体内に分布して自然に存在するが、 前記圧力管の場合には、 前記の抵抗打 消し圧力差 P D と重力動圧補充圧力 P c ,い,いと流量維持運動エネルギ E F Λとを 前記圧力管内に人為的に供給することにより、 始めて、 重力全圧 P G,, =重力 静圧 P GS +重力動圧 P GHV が、 流入口から前記水車または風車の出口まで 作用し、 重力静圧 PnHS のみが、. 流出口から前記水車または風車の出口まで 作用する。
そして、 この時に、 前記前部エネルギ供給手段から供給された前記重力動 圧補充圧力 P C V Aが前記水車または風車の出口と流出口間で重力動圧 P G H V の代役をするので 前記水車または風車の出口と前記流出口との間に、 人為 的に第 4の重力全圧 Ρππを割り込ませた形になり、 前記圧力管内の流動流体 が大気圧下の流動流体と同じ状態になり、 且つ、 後述の 1 1 . に記載の現象 がある。
上記の状態で流入口内近傍に人為的に供給される前記抵抗打消し圧力差 P 0 は、 図 2に示すように、 前記圧力管内の各部の抵抗を 0 に打ち消すに必要 な勾配を有して流入口から流出口まで分布することにより、 前記圧力管内の 流動流体内で、 重力全圧 P GHが大気圧下の流動流体での場合と同じように作 用できる状態にし、 前記圧力管内の流動流体と大気圧下の流動流体との複合 共存融合作用を成立させる。 この場合、 上記の制御が成立するのは、 前記抵 抗打消し圧力差 と重力全圧 とが、 作用方向次元が異なり作用分担を 明確に分けて作用するからである。
上記の状態で流出口内近傍に人為的に供給される前記流量維持運動エネル ギ EFAは、 後述の 1 1 . の記載に基づいて前記水.車または風車の負荷の有無 とは無関係に、 前記圧力管内の所定流量を維持して、 前記のように人為的に 第 4の重力全圧 P CHを割り込ませ、 割り込ませた第 4の重力全圧 P G„と上流 側の重力全圧 P GHと下流側の重力全圧 PR;Mとの複合共存融合作用を構成する
3. 重力全圧 P F:Hの供給量は重力全圧 P G,,の作用面積に比例し、 (そ の位置に作用する単位面積当たりの重力全圧 Ρ(,) (その位置に作用する 重力全圧 PGHが通過する最小断面積) X (その位置の流量) となる。
そして、 重力動圧 P GHは作用方向次元が流れの方向の 1 次元方向なので上 流側からのみ供給可能であるが、 重力静圧 Pn!ls は作用方向次元が 3次元方 向であるので、. 本発明のように、 圧力管の断面積が流入口と流出口との双方 から前記水車または風車に向かって円周方向に偏向させながら縮小している 場合には、 図 2に示すように、 前記流出口から前記水車または風車に向かつ て重力静圧 P ;HS が減圧するので、 前記流出口から前記水車または風車の出 口まで遡り得る。 このことが、 熱力学第 2法則とエン トロピー増加則による 永久運動の否定理由を無意味にする。 4. 人為エネルギを圧力管内に供給する場合には、 その人為エネルギ の作用方向次元と、 供給位置から見た作用位置への方向とを合わせれば、 任 意の量を供給できる。 そして、 供給された人為エネルギは、 所定流量に到達 するまでは運動エネルギになり、 所定流暈に到達後は圧力エネルギになる。
5. 前記 4. に基づいて、 前記前部エネルギ供給手段から供給される 人為圧力エネルギの一部は、 供給位置から下流側に静圧と して分布して前記 抵抗打消し圧力差 Pn になり、 次第に消費される。
6. 前記 4. に基づいて、 前記前部エネルギ供給手段から供給される 人為圧力エネルギの残部は、 前記水車または風車の下流側において、 前記流 出口から遡れない重力動圧 PCH、' の代役である重力動圧補充圧力 P (;, ,νΛにな り、 前記水車または風車の下流側と前記流出口との間に人為的に第 4の重力 全圧 PGHを割り込ませる役割を果たす。 このことが、 前記 3. と共に、 エネ ルギは遡らないという熱力学第 2法則と可逆変化は起こ らないというェン ト 口ピ一増加則による永久運動の否定理由を無意味にする。
7. 前記後部エネルギ供給手段から供給される流量維持運動エネルギ は、 前記 6. に基づき前記水車または風車の下流側と前記流出口との間 に人為的に第 4の重力全圧 PGHを割り込ませることを条件にして、 その供給 位置に存在する重力全圧 PCHとの共存融合作用により、 重力全圧エネルギ E GHを発生する。 更に、 この場合、 前記 3. と後述の 8. とに基づいて、 重力 全圧 PCHの作用位置の断面積が大きいほど重力全圧 PGI,の供給量が大きいの で、 前記流量維持運動エネルギ E ,,Λの供給位置を流出口に近づける程、 供給 すべき人為エネルギが小さ く て済み、 (抵抗打消し圧力差 Ρ, +重力動圧補 充圧力 Ρ π Λ +流量維持運動エネルギ Ε ) を発生させる人為エネルギ《水 車または風車の駆動運動エネルギとなり、 前記水車または風車の出力で前記 人為エネルギを賄う ことができるようになる。
このことが、 投入エネルギょり も大きな出力は得られないとする経験側 であるエネルギ保存側による永久運動の否定理由を無意味にする。 8 . 人為エネルギの供給量は、 人為圧力の場合は、 人為圧力を圧力管 に供給する位置での流量に比例し、 人為圧力 X流量で決まる。 又、 人為運動 エネルギの場合は、 人為運動エネルギを重力全圧 P G„と共存融合させる位置 で人為運動エネルギが維持し得る流量に比例し、 重力全圧 X人為運動エネル ギの維持流量で決まる。
9 . 複合共存融合作用を構成している複数の流動流体系において、 そ の中の一つの流動流体系に、 過剰の人為エネルギを存在させても、 過剰分は
、 共同融合する相手が無いので、 前記複合共存融合作用の共通可能最大重力 全圧エネルギは変化しない。 逆に言えば、 一-つの流動流体系に過剰の人為ェ ネルギを供給して存在させ得るので、 制御が容易である。
1 0 . 言い方を換えれば、 前記圧力管内の流動流体の場合は、 圧力管 内の各部分の単位時間通過流量が等しく なければならないことから、 複合共 存融合作用成立の境界条件が成立した後に、 部分的に過剰な人為運動エネル ギが残っても、 人為運動エネルギの過剰分は共存融合する相手がないので作 用できず共通最大流量は変化せず、 前記の過剰な人為運動エネルギは人為圧 力エネルギと して残る。 そして、 人為压カエネルギの形になれば、 流体の移 動量を変化させないので下流側に伝わり、 前記 5 . に述べたように、 供給位 置から下流側に静圧として分布し、 複合共存融合に必要な分が前記抵抗打消 し圧力差 Ρ。 になって流量を維持する圧力勾配が構成され、 又、 前記 6 . に 述べたように、 流出口から遡れない重力動圧 P ,;„v の代役である重力動圧補 充圧力 P n !, V Aになる。 そして、 上記の役割分が満たされた後に更に残る人為 圧力エネルギは前記圧力管の流出口から大気圧下に流出して損失になる。
1 1 . 軸流水車またはこれと同じ形の風車の場合、 前記水車または風 車の負荷の如何にかかわらず、 広く知られているように、 前記水車または風 車の負荷が增減すると、 前記水車または風車の出口から出ていく運動エネル ギが減增するが、 運動エネルギの作用方向次元である円周方向への偏向角度 が前記減增を打ち消すように減増するので、 前記水車または風車内の各部の 流量は所定流量に維持される。 そ して、 前記水車または風車内に前記所定流 量の流体と共に流入した駆動運動エネルギは、 前記水車または風車のランナ 一を回転して消費される回転運動エネルギと、 前記所定流量の流体を流出さ せる流出運動エネルギとに分かれるが、 前記水車または風車内で回転中の回 転運動エネルギを計算に入れると、 前記圧力管の流入口と流出口との間の重 力全圧は図 2に示すように一定値に維持されている。 そして、 その上に、 図 2に示すように、 人為的に供給した抵抗打消し圧力差 P r, の分布が重なり、 全圧 静圧 +動圧を構成している。 そして、 この全圧 Pは、 前記圧力管の 流入口と流出口との間で、 各位置で単位時間通過流量を維持する勾配を有し ている。 この状態で、 前記圧力管の流入 Π外に自然に存在する第 〗 系統の重 力全圧エネルギ E と、 前記流入口と前記水車または風車の出口との間に自 然に存在する第 2系統の重力全圧エネルギ E n "と、 前記圧力管の流出口外に 自然に存在する第 3系統の重力全圧エネルギ fi f と、 前記水車または風-車の 出口と前記流出口との間に人為的に割り込ませた第 4系統の重力全圧エネル ギ E ,とが複合共存融合して、 所定流量を維持し、 前記水車または風車を駆 動し、 前記水車または風車の出力が、 人為エネルギを賄い第 3種永久運動が 実現する。
1 2 . 上記において、 前記圧力管内の総ての現象の一つ一つは総て自 然法則に基づく流体現象である。 即ち、 本発明は、 新しい流体力学が示す流 体の自然現象を目的に合わせて組み合わせることで実現している。 即ち.. 前 記 [ Π ] 本発明の第 3種永久運動の成立条件に述べた、 ( 1 ) 投入エネルギ より大きな出力は得られないというエネルギ保存則による第 1種永久運動の 否定理由と、 ( 2 ) エネルギは遡らないという執力学第 2法則による第 2種 永久運動の否定理由と、 ( 3 ) 可逆反応は存在しないというェン トロピー增 加則による第 2種永久運動の否定理由とが無意味になり、 第 3種永久運動は 自然法則に基づいて成立する。 発 明 の 開 示
[ I ] 本発明の第 3種永久運動の基本型 :
( 1 ) 使用場所:
本発明の基本型は、 前記の自然永久運動が存在する大気圧下の流動流体中 に設置して第 3種永久運動を実現するものである。
使用場所は、 1 . 潮流、 海流、 河川、 水路等の水流、 2 . 風の中、 3 . 水 上または水中の移動体、 4 , 大気中の移動体、 5 . 落差を利用する図 6 に示 すもぐりオリ フィス、 図 7 に示す水面間に落差がある 2つの水路、 6 . 図 8 に示す人為循環水路等である。
( 2 ) 本発明の第 3種永久運動装置の基本型 :
本発明の第 3種永久運動装置の基本型は、 図 1 に示すよ うに、 紬流 水車またはこれと同じ形の風車 6を中央部に設けた圧力管 1 を大気圧下の流 速 Vの流動流体 に略水平に設置し、 背景技術の欄の [ ί ] 新しい流体力学 の ( 4 ) の 1 1 . に記載の軸流水車型の特性を利用するために、 前部ガイ ド ベーン部 5 と後部ガイ ドべ一ン部 7 とを設けて前記圧力管 1 の断面積を流入 □ 2 と流出口 3 との双方から前記水車または風車 6に向かって円周方向に偏 向させながら縮小し、 前記流人口 2近傍の断面積が大きい位置に前部エネル ギ供給手段 4を設け、 前記流出口 3近傍の断面積が大きい位置に後部エネル ギ供給手段 8を設けて構成される。 9は流入部、 9 aは断面積を連続的に変 化させるための前部円錐部、 1 0 は流出部、 1 0 aは断面積を連続的に変化 させるための後部円錐部、 1 1 は前記水車または風車 6に接铳する発電機で ある。
湾曲又は傾斜した圧力管 1 を使用する場合には、 前記流入口 2の位置は前 記水車または風車 6の位置に対して高く ても低く ても良い。 前記流出口 3の 位置は前記水車または風車 6の位置と同じか又はより低くする。 このように すると、 前記高低差は、 その部分の圧力管内の流体に対する重力の作用で打 ち消される。 流動流体が、 図 5に示すように、 底面の傾斜角が 0の水流で、 水深 H (m
) 、 流速 V (m/ s e c ) の A点では、
重力全圧
Figure imgf000018_0001
( 1 0. 3 3 + H) ( t. /m2 ) -重力静圧 PCHS +重力 動圧 PGHV - [ ( 1 0. 3 3 -f-Η) - { (V) 2 ノ ( 2 x g) } ] + { (V ) 2 / ( 2 X g ) }
重力全圧差 PGHU = PGH X s i n Θ
となる。
流動流体が、 流速 V (m s e c ) の風の場合は、
重力全圧 PG" = 1 ϋ . 3 3 ( t /m2 ) =重力静圧 PG,1S +重力動圧 PGH V = [ 1 0. 3 3— { 0. 0 0 1 2 x (V) 2 / ( 2 x g) } ] + { 0. 0 0 1 2 x ( V ) 2 . ( 2 X g ) }
重力全圧差 PGH» =大気圧の勾配で決まる
となる。
( 3 ) 本発明の第 3種永久運動方法の基本型 :
本発明の第 3種永久運動方法の基本型は、 前記前部エネルギ供給手 段 4から、 前記圧力管 1の位置での重力全圧 P、..„が前記圧力管 1 内に作用し ている条件で所定流量の流動流体が前記圧力管 1 内を通過する際に発生する 総ての抵抗を 0に打ち消す抵抗打消し圧力差 P と、 前記圧力管 1 の流出口 3外近傍の流動流体の重力動圧 PGHV に相当する重力動圧補充圧力 P[:VAと を供給し、 前記後部エネルギ供給手段 8から、 前記圧力管 1の位置での重力 全圧 PG,,が前記圧力管 1内に作用している条件で前記所定流量の流体がこの 後部エネルギ供給手段 8を通過する際の流量維持流速 VF の運動エネルギで ある流量維持運動エネルギ E ΡΛを供給する。
この状態において、 図 2に示すように、 重力全圧 Pc„ =重力静圧 PGf,s + 重力動圧 Ρπν が、 圧力管の流入口 2から水車または風車 6の出口まで作用 し、 重力静圧 PGHS のみが、 圧力管の流出□ 3から水車または風車 6の出口 まで作用する。 そして、 この時に、 前部エネルギ供給手段 4から供給された前記重力動圧 補充圧力 P GHVAが水車または風車 6の出口と流出口 3間で重力動圧 P CH V の 代役をするので、 水車または風車 6の出口と流出□ 3 との間に、 人為的に第 4の重力全圧 P GHを割り込ませた形になり、 圧力管 1 内の流動流体が、 重力 全圧 P CHに関しては、 大気圧下の流動流体と同じ状態になる。
上記の状態で流入口 3内近傍に人為的に供給される前記抵抗打消し圧力差 P :, は、 図 2に示すように、 圧力管 1 内の各部の抵抗を 0 に打ち消すに必要 な勾配を有して流入口 2から流出口 3 まで分布し、 圧力管 1 内の流動流体を 、 重力全圧 P GHと重力全圧差 P GHD とに対して、 大気圧下の流動流体と同じ 状態にし、 次の流量維持運動エネルギ E:.. ,の供給により、 圧力管). 内の流動 流体と大気圧下の流動流体との複合共存融合作用が成立するようになる。 上記の状態で流出口 1 内近傍に人為的に供給される前記流量維持運動エネ ルギ E は、 軸流水車型の特性により水虽または風虽 6の負荷の有無とは無 関係に、 前記圧力管 1 の流出口 3外の流動流体の第 3系統の重力全圧 P G„と 、 前記の人為的に割り込ませた第 4系統の重力全圧 とを複合共存融合さ せて、 圧力管 1 内の所定流量を維持する。
この状態を纏めると、 圧力管 1 の流人门 2外に自然に存在する第 1系統の 重力全圧ェネルギ E Ηと、 流入口 2 と水車または風車 6の出口との間に自然 に存在する第 2系統の重力全圧エネルギ E c„と、 圧力管 1 の流出口 3外に自 然に存在する第 3系統の重力全圧エネルギ E (:l,と、 水車または風車 6の出口 と流出口 3 との間に人為的に割り込ませた第 4系統の重力全圧エネルギ Ε (:π とが複合共存融合して、 所定流量を維持し、 水車または風車 6を駆動し、 水 車または風車 6の出力が、 発電機 1 1 を駆動し、 発電機 1 1 の出力が、 前部 エネルギ供給手段 4 と後部エネルギ供給手段 8 とを駆動する人為エネルギを 賄い第 3種永久運動が実現する。
( 4 ) 本発明の第 3種永久運動の基本型の出力 :
1 . 基本型で得られる水車の出力は、 流動流体が水の場合には、 図 2 に示すように、 重力全圧 P GHを総て運動エネルギに変換して水車を駆動でき るので、 図 1に示すように、 水深 H (m) の位置に圧力管を設置し、 流速が V (m/ s e c ) . 流入口の断面積が (m2 ) の場合、
水車出力容量 (kW) = (S , X V) { g x ( 1 0. 3 3 + H) } x水 車効率一 [ ( S , V) X { (抵抗打消し圧力差 ) + (重力動圧補充圧 力 P GHVA) } +流量維持運動エネルギ E ] ÷人為エネルギの電力効率 となる。
概算すると、 Hを無視しても、 圧力管を通過する水の 1 (m3 .Z s e c ) 当たり約 4 5 kWになり、 大きな出力が得られる。
2. 基本型で得られる風車の出力は、 流動流体が空気の場合には、 重 力全圧 PCHを総て運動エネルギに変換すると、 流速は約 4 1 0 m/ s e cに なり、 技術的に難しい。 重力全圧の利用率を 4 0 %を上限とし (技術的に可 になれば 1 0 0 %で良い) 2 5 0 m/ s e cを実用できるとして計算すると 、 風速が V ( m ./ s e c ) 、 流入口の断面積が (m2 ) の場合、
風車出力容量 (kW) - ( S ! X V ) { κ X 1 0. 3 3 } X重力全圧 P の利用率 X風車効率— [ ( S , X V ) X { (抵抗打消し圧力差 PD ) + ( 重力動圧補充圧力 P F; F,V,、) } +流量維持運動エネルギ Ε ,..Λ] +人為エネルギ の 力効率
となる。
概算すると、 圧力管を通過する風の 1 (mj / s e c ) 当たり約 1 6 k W になり、 オープン風車に比べると極めて大きな出力が得られる。
( 5 ) 負荷の変動や流動流体の流速の変動に対する制御方法:
1. 負荷の変動に対しては、 変速歯車を使用するか、. 負荷の増減に合 わせて供給する人為エネルギの量を増減させて圧力管内の流動流体の流量を 調整し、 水車や風車で駆動される発電機等の回転数を一定に維持する。
2. 流体の流速の変動に対しては、 前部ガイ ドベーン部 5と後部ガイ ドベーン部 7 との、 ガイ ドべ一ンの円周方向の偏向角度を調整可能な構造に し、 流速の増減に合わせて、 前記偏向角度を減増させ、 水車または風車への 流入速度を一定に維持する。
[ Π ] 本発明の第 3種永久運動の発展型 :
( 1 ) 使用方法 :
本発明の発展型は、 前記の自然永久運動を構成する大気圧下の自然 の流動流体に相当する流動流体を、 大気圧下で人為的に構成して使用するの で、 従来の水車、 風車、 内燃機関、 外燃機関等の殆どすベての用途に適用で きる。
( 2 本発明の第 3種永久運動装置の発展型 :
本発明の第 3種永久運動装置の発展型は、 図 3に示すように、 基本 型の圧力管 1 の流入口 2 と流 S口 3 との間を断面積が均一な循環圧力管 1 2 aで接続し、 流入口 2の部分と流出口 2の部分との 2か所に上向きに大気圧 に対して開き大気圧を含む重力全圧 P G を受け入れる所定面積 (元の圧力管 の流入口または流出口の断面積以上) の開口部 1 3、 I 3を設けて開口部付 き密閉循環圧力管 .1 2 と し.、 循環圧力管 1 2 a内に外部エネルギ供給手段 1 4を設けて構成される。 尚、 循環圧力管 〗 2 aの湾曲部には、 流量を偏らせ ないようにセパレ一タ 1 5、 1 5を設ける。
( 3 ) 本発明の第 3種永久運動方法の発展型 :
本発明の第 3種永久運動方法の発展型は、 図 3に示すように、 外部 エネルギ供給手段 1 4 により、 所定流量に対する循環圧力管 1 2 a部分の抵 抗を打ち消して 0 にする外部抵抗打消し圧力差 P oと、 流動流体の所定流量 を維持する外部流量維持運動エネルギ E ,、。 とを供給することにより、. 循環 圧力管】. 2 a内の所定流量の流動流体に、 基本型における自然永久運動が存 在する大気压下の流動流体と同じ 「単位時間単位通過流量当たりの重力全圧 エネルギ E c " =重力静圧エネルギ E (; H S +重力動圧エネルギ E (; H V .1 を存在 させ得るので、 発展型の一部を構成する基本型の圧力管 1 内の重力全圧エネ ルギ E FI Hと循環圧力管 1 2 a内の重力全圧エネルギ E C Hとの複合共存融合作 用を成立させる第 3種永久運動に必要な境界条件を構成できる。
上記により、 軸流水車型の特性により水車または風車 6の負荷とは無関係 に、 循環圧力管 1 2 a内の所定流量の流動流体が、 単位時間単位通過流量当 たり同じ大きさの重力全圧エネルギ EGtlを有する前記の発展型の一部を構成 する基本型の圧力管 1内の所定流量の流動流体と複合共存融合し、 前記基本 型の場合と同様にして、 水車または風車 6の出力で供給すべき人為エネルギ を賄う第 3種永久運動が実現する。
( 4 ) 本発明の第 3種永久運動の発展型の出力 :
1 . 発展型で得られる水車の出力は-. 流動流体が水の場合には、 図 2 に示すように、 重力全圧 ΡΓ,Ηを総て運動エネルギに変換して水車を駆動でき るので、 水深 H (m) の位置に水車を設置し、 循環圧力管 1 2 a内の流速が V Cm./ s e c) . 循環圧力管 1 2 aの断面積が S (m2 ) の場合、 水東出力容量 ( kW) = ( S , X V ) { g x ( 1 0. 3 3 + H ) } x水 車効率一 [ ( S , x' V) X { (抵抗打消し圧力差 P,., ) + (重力動圧補充圧 力 PNHVA) + (外部抵抗打消し圧力差 Ρ Λ) } + { (流量維持運動エネルギ Ε ΡΑ) + (外部流量維持運動エネルギ Ε Α .) } ] ÷人為ヱネルギの電力効 率
となる。
概算すると、 圧力管を通過する水の 1 ( m 1 , s e c ) 当たり約 4 G kW になる。
2. 発展型で得られる風車の出力は、 流動流体が空気の場合には、 重 力全圧 Pe ,を総て運動エネルギに変換すると、 流速は約 4 1 O mZ s e cに なり、 技術的に難しい。 重力全圧 の利用率を 4 0 %を上限とし (技術的 に可能になれば 1 0 0 %で良い) 2 5 0 mノ s e cを実用できるとして計算 すると、 風の風速が V ( m / s e c ) 、 流入口の断面積が S ! (m2 ) の場 風虽出力容量 ( kW) = ( S! X V) X { g X 1 0. 3 3 } X重力全圧 P CHの利用率 X水車効率一 [ ( S , X V ) X { (抵抗打消し圧力差 P D ) + ( 重力動圧補充圧力 PCHVA) + (外部抵抗打消し圧力差 P DA) } + { (流量維 持運動エネルギ ΕΡΛ) + (外部流量維持運動エネルギ EFA。 ) } ] ÷人為ェ ネルギの電力効率
となる。
概算すると、 圧力管を通過する風の 1 (m3 Z s e c ) 当たり約 1 4 kW になる。
( 5 ) 負荷の変動に対する制御方法 :
負荷の変動に対しては、 1. 変速歯車を使用するか、 2. 負荷の増 減に合わせて供給する人為エネルギの量を增'减させて圧力管内の流動流体の 流量を調整し、 水車や風車で駆動される発電機等の回転数を一定に維持する
図面の簡単な説明
図 1 は、 本発明の第 3種永久運動装置の基本型の水の場合の一例を示す側 断面図である。
図 2は、 本発明の第 3種永久運動方法の基本型の水の場合の重力全圧、 重 カ静圧、 重力動圧、 抵抗打消し圧力差の分布を示す図である。
図 3は、 本発明の第 3種永久運動装置の発展型の空気の場合の一例を示す 側断面図である。
図 4 は、 本発明の第 3種永久運動方法の発展型の空気の場合の重力全圧、 重力静圧、 重力動圧、 抵抗打消し圧力差の分布を示す図である。
図 5は、 大気圧下の流動流体が自然永久運動を構成する共存融合作用の動 作を示す図である。
図 6は、 本発明の第 3種永久運動装置の基本型をもぐりオリ フィスに設置 した場合の模式図である。
図 7 は、 本発明の第 3種永久運動装置の基本型を 2つの水路に跨がって設 置した場合の模式図である。
図 8 は、 本発明の第 3種永久運動装置の基本型を人為循環水路に設置した 場合の模式図である。 発明を実施するための最良の形態
本発明の流動流体の重力全圧エネルギの使用方法とその装置は、 流動流体 が水でも空気でも構造 '原理が同じなので、 水の場合の基本型と、 空気の場 合の発展型とを夫々一つずつ説明し、 最後に特殊用途を追加する。
[ I ] 本発明の流動流体の重力全圧エネルギの使用方法とその装置の水の場 合の基本型の実施形態 :
( 1 ) 用途:
本実施形態は、 潮流、 河川、 水路等において、 餑から水流中に釣り 下げて使用するものである。
応用例と しては、 水上または水中船舶に取り付けても使用できる。
( 2 ) 構造 :
図 1 に示す圧力管 1 を蜉 (図示せず) から釣り下げて、 圧力管 1 の 中心軸を略水平にして水深 H ( m ) = 4 m、 流速 V ( m / s e c ) = 2 m / s e cの位置に設置する。
圧力管 1 の構造は、 図 1 に示すように、 軸流水車 6を中央部に設け、 流入 部 9 と前部ガイ ドベーン部 5 と流出部 1 0 と後部ガイ ドベーン部 7 とを設け て前記圧力管 1 の断面積を流入口 2 と流出口 3 との双方から前記水車 6 に向 かって円周方向に偏向させながら縮小する。 この場合、 前部ガイ ドベーン部 5 と後部ガイ ドベーン部 7 とは、 夫々のガイ ドべ一ンの偏向角を調整できる 機構にしておく。 次いで、 流入口 2近傍の断面積が大きい位置に、 即ち、 本 実施形態では流入部 9 と前部ガイ ドベーン部 5 との間に前部エネルギ供給手 段 4を設け、 流出口 3近傍の断面積が大きい位置に、 即ち、 本実施例では流 出部 1 0 と後部ガイ ドベーン部 7 との間に後部エネルギ供給手段 8を設ける 。 9 aは断面積を連続的に変化させるための前部円錐部、 1 0 aは断面積を 連続的に変化させるための後部円錐部、 1 1 は水車に接続する発電機である 。 又、 圧力管 1 の内径は変化しているが、 外径は水流を乱さないように外套 管を付けて円筒形にしておく。
この場合、 図〗 では、 前部ガイ ドべ一ン部 5 と後部ガイ ドべ一ン部 7 とを 円筒形に示しているが、 円筒形では縮小率に限界があるので、 内外側面を円 錐面にして縮小率を大きくすることができる。 又、 流入部 9 と流出部 1 0 と を設けるのは、 水流の流速 Vが脈動しても、 前部エネルギ供給手段 4 と後部 エネルギ供給手段 8 とに安定作用を維持させるためである。 但し、 出力効率 を大きく するには流入部 9 と流出部 1 0 における縮小率が小さい方が良い。 各種の設定事項:
1. 所定流量 :
流入口 2 と流出ロ 3 との直径 = 4 mとすると、
所定流量 = 22 X 3. 1 4 X 2 = 1 2. 5 6 x 2 = 2 5. 1 m 3 / s e c 2. 重力全圧エネルギ EGtl
重力全圧エネルギ EGH =重力全圧 Ρπιι X流量 = X ( 1 0. 3 3 + 4 ) X 2 5. 1 ( k W ) = 3 5 2 4. 9 k W
3. 水車 6に流入する水車駆動流速 V T
重力全圧エネルギ EGHを総て水車駆動流速 VT に変換すると、 水車駆動流速 VT = { 2 X g X ( 1 0. 3 3 + 4 ) } 1/2 = 1 6. 8 m / s e c
4. 前部ガイ ドべ一ン 5 と後部ガイ ドべ一ン 7 との偏向して縮小した 水車 6側の断面積 S f GT 、 S HCT :
断面積 S FCT 、 S HOT = 2 5. 1 ÷ 1 6. 8 = 1. 5 m2
即ち、 断面積 1 2. 5 6 m2 の流入口 2を流入部 9 と前部ガイ ドべーン部 5 とで 1. 5 m2 まで縮小し、 断面積 1 2. 5 6 m2 の流出□ 3を流出部 1 0 と後部ガイ ドべーン部 8 とで 1. 5 m2 まで縮小する。 この場合、 縮小率は 同じく 1ノ 8. 4であるが、 流入側は急激に縮小しても発生損失が小さいの で短い距離で縮小し、 流出側は急激に縮小すると発生損失が大きくなるので 長い距離で縮小する。 尚、 断面積 S FGT 、 S BGT は、 1. 5 m2 より大きく ても小さくても、 水車駆動流速 VT は原理的に、 1 6. 8 mZs e cであり 、 (断面積 S FCT 、 S BGT ) (水東駆動流速 VT ) で所定流量が決まる。
5. 前部エネルギ供給手段 4と後部エネルギ供給手段 8での縮小率: 作用の安定性と効率とを両立させるために、 これらの位置での縮小 率を 1 / 2程度にする。
( 3 ) 方法:
1 ) 前部エネルギ供給手段 4から、 圧力管 1の位置での重力全圧 P„H が圧力管 1内に作用している条件で所定流量の流動流体が圧力管 1内を通過 する際に発生する総ての抵抗を 0に打ち消す抵抗打消し圧力差 P D と、 圧力 管 1の流出口 3外近傍の流動流体の重力動圧 P(;Hv に相当する重力動圧補充 圧力 PcHVAとを供給する。
1. 抵抗打消し圧力差 P D :
圧力管 1内を通過する流動流体の最大運動エネルギ、 即ち、 水 車駆動流速 VT の運動エネルギに比例すると考えて良い。 これらに関する公 知データから概算すると、
流入口 2と水車 6の出口との間: 水車駆動流速 VT の運動エネルギの約 5 %= 3 5 2 4. 9 k WX 0. 0 5 = 1 7 6. 2 k W
水車 6の出口と流出口 3 との間:水車駆動流速 VT の運動エネルギの約 2 2 % = 3 5 2 4. 9 k WX 0. 2 2 = 7 7 5. 5 k W
従って、
抵抗打消し圧力差 P D は、 水車駆動流速 V , の運動エネルギの約 2 7 % == 3 5 2 4. 9 k WX 0. 2 7 = 9 5 1 . 7 kWになる。
2. 重力動圧捕充圧力 P CH VA
前部エネルギ供給手段 4での縮小率を 1ノ 2にしているので、 重力動圧補充圧力 PGHV ま、 流速 2 m / s e cの運動エネルギ 22 ÷ 2 x 2 5. 1 = 5 0. 2 k Wになる。
3. 前部エネルギ供給手段 4の出力 = 1 7 6. 2 + 7 7 5. 5 + 5 0. 2 = 1 0 0 2 kWになる。
2 ) 後部エネルギ供給手段 8から、 前記圧力管 1 の位置での重力全圧
Penが前記圧力管 1 内に作用している条件で前記所定流量の流体がこの後部 エネルギ供給手段 8を通過する際の流量維持流速 VF の運動エネルギである 流量維持運動エネルギ E ΡΛを供給する。
1. 流量維持運動エネルギ E F A
後部エネルギ供給手段 8での縮小率を 〗 ノ 2 にしているので、 流量維持運動エネルギ は、 流速 2 m./ s e cの運動エネルギ = 42 ÷ 2 X 2 5. 1 = 2 0 0. 8 kWになる。
( 4 ) 出力 :
水一車出力容量 ( kW) = (S : X V ) X { g X ( 1 0. 3 3 + H ) } x水車効率— [ (S , V) X { (抵抗打消し圧力差 Ρ: ) + (重力動圧 補充圧力 PG,IVA) } +流量維持運動エネルギ ί κΛ] ÷人為エネルギの電力効 率 = ( S , V ) { R X ( 1 0. 3 3 + Η ) } X 0. 9 - [ ( S , x V ) { (抵抗打消し圧力差 Ρ" ) + (重力動圧補充圧力 Pc,,.,A) } +流量維持 運動エネルギ E A] ÷ 0. 7 6 = 3 5 2 4. 9 k W X 0. 9 — ( 1 0 0 2 k W+ 2 0 0. 8 k ) ÷ 0. 7 6 - 3 1 7 2 k W - 1 5 8 3 k W - 1 5 8 9 k Wとなる n
( 5 ) 負荷の変動や流動流体の流速の変動に対する制御方法 :
I ) 負荷の変動に対しては、 1 . 変速歯車を使用して水車 6で駆動さ れる発電機の回転数を一定に維持する。 2. 負荷の増減に合わせて供給する 人為エネルギの量を増減させて圧力管内の流動流体の流量を調整し、 出力を 下げて、 水車で駆動される発電機の回転数を一定に維持する。
2 ) 流体の流速の変動に対しては、 前部ガイ ドベーン部 5 と後部ガイ ドベーン部 7 との、 ガイ ドべーンの円周方向の偏向角度を流速の増減に合わ せて減増させ、 水車へ流入する水車駆動流速 V T を一定に維持する。
尚、 空気を利用する基本型も原理は同じであるので、 次の空気の場合の発 展型を参考にすれば容易に構成できる。
[ Π ] 本発明の流動流体の重力全圧エネルギの使用方法とその装置の空気の 場合の発展型の実施形態 :
( t ) 用途 :
本発明の発展型は、 自然永久連動を構成する大気圧下の自然の流動 流体に相当する流動流体を、 大気圧下で人為的に構成して使 ¾するので、 従 来の水車、 風車、 内燃機関、 外燃機関等の殆どすベての用途に適用できる。 本実施形態は、 自動直のガソ リ ンエンジンに代わるものと して、 自動車の ボンネッ ト内に設置できるように構成する。
応用例と しては、 飛行機やへリ コプタを含めて広く使 ¾できる。
( 2 ) 構造:
図 3に示すよ うに、 本実施形態の一部を構成する甚本型の圧力管 1 の流入口 2 と流出□ 3 との間を断面積が均一な循環圧力管 1 2 aで接続し、 流人口 2の部分と流出口 2の部分との 2か所に上向きに大気圧に対して開き 大気圧を含む重力全圧 P 0 Hを受け入れる所定面積 (元の圧力管の流入口また は流出口の断面積以上) の開口部 1 3、 ! 3を設けて開口部付き密閉循環圧 力管 1 2 と し、 循環圧力管 1 2 a内に外部エネルギ供給手段〗 4を設けて構 成される。 尚、 循環圧力管〗 2 aの湾曲部には、 流量を偏らせないよ うにセ ノ、。レ一タ 1 5、 1 5を設ける c
上記の構造にすると、 開口部付き密閉循環圧力管 1 2内で流通空気の循環 流が維持され、 重力全圧 P Hが開口部 1 3、 1 3から前記流通空気の循環流 に重力全圧エネルギ E G Hを供給するので、 铀流水車型の特性により前記圧力 管 1 内の風車の負荷の有無に関係なく 、 前記流通空気の循環流は重力全圧ェ ネルギ E c 重力全圧 P G H X単位時間通過流量を維持して循環することにな る。 この場合、 開口部 1 3、 1 3の断面積が所定面積 (元の圧力管の流入口 または流出口の断面積以上) であることが必須条件であり、 これによつて、 開口部付き密閉循環圧力管 1 2内の流通空気が、 密閉状態に準じて循環しな がら、 重力全圧 PGHから重力全圧ェメルギ E(;„の供給を受けることができる 0
そして、 上記の状態を維持できる条件は、 循環圧力管 1 2 a内の流通空気 の単位時間単位通過流量当たりの重力全圧エネルギ E(;Hを、 重力全圧 PCHが 開口部 1 3、 1 3から重力全圧エネルギ Ec„を供給するという条件で大気圧 下の風の単位時間単位通過流量当たりの重力全圧エネルギ E G I,と同じにする ことである。 これができれば、 基本型の場合と同様にして第 3種永タ、運動の 発展型が実現し、 風車に接続した発電機から出力が得られ、 この出力で電気 自動車のモータを駆動する。
各種の設定事項 :
1 . 形状 ·寸法 :
自動車のボンネッ トを少し長く する必要があるが、 図 3 に示すも のを全長 2 mに構成し、 6個をボンネ ッ トに並列に並べる。 全長を 2 mにす ると、 循環圧力管 1 2 aの内径を 0. 1 5 mに設定できる。
2 . 風車駆動流速 VT
風車駆動流速 VT を流通空気の圧縮率約 7 %である 2 5 0 m./ s e c と設定する。 これで、 重力全圧エネルギ E G"の利用率は約 3 7 %になる 。 勿論、 技術的に可能であれば更に高速にすれば良い。
3. 所定流量 :
循環圧力管 1 2 a内の流通空気の流速 V = 2 5 m/ s e c と設定 すると、 所定流量 = 0. 4 4 m 3 Z s e c となる。
4 . 利用できる重力全圧エネルギ Ε ΠΗ :
重力全圧エネルギ E CH =重力全圧 Ρ «Η Χ流量 = g X 1 0. 3 3 X 0. 4 4 X利用率 0. 3 7 ( k W) = 1 6. 5 kWとなる。 5. 前部ガイ ドべ一ンと後部ガイ ドべ一ンとの偏向して縮小した水車 側の断面積 S MT . S BGT :
断面積 S GT . S BGT = 0. 4 4 + 2 5 0 = 1 7. 6 6 c m2 となる。 即ち、 断面積 1 7 6. 6 c m2 の流人口 2を流入部と前部ガイ ドべ—ン部 とで j 7. 6 6 c m 2 まで縮小し、 断面積 1 7 6. 6 c m2 の流出口を流出 部と後部ガイ ドべ一ン部とで 1 7. 6 6 c m2 まで縮小する。 この場合、 縮 小率は同じく 1 ノ 1 ()であるが、 流入側は急激に縮小しても発生損失が小さ いので短い距離で縮小し、 流出側は急激に縮小すると発生損失が大きく なる ので長い距離で縮小する。
尚、 前記の風車駆動流速 VT は、 某本型では重力全圧 ΡπΜで決まるが、 発 展型では所定流量と断面積 S FCT 、 S BCT とで決まる。
5. 前部エネルギ供給手段と後部エネルギ供給手段での縮小率 : 作用の安定性と効率とを両立させるために、 これらの位置での縮 小率を 1ノ 2程度にする。
( 3 ) 方法 :
1 ) 前部エネルギ供給手段から、 重力全圧 PCHが圧力管 ! 内に作用し ている条件で所定流量の流動流体が圧力管 ί 内を通過する際に発生する総て の抵抗を 0 に打ち消す抵抗打消し圧力差 と、 圧力管 1 の流出□ 3外近傍 の流動流体の重力動圧 Ρ Π"Ν に相当する重力動圧補充圧力 P HVAとを供給す る。
1 . 抵抗打消し圧力差 PD
圧力管 1 内を通過する流動流体の最大運動エネルギ、 即ち、 風 車駆動流速 V.,. の運動エネルギに比例すると考えて良い。 これらに関する公 知データから概算すると、
流入口 2 と風車の出口との間 : 風虽駆動流速 V.「 の運動エネルギの約 5 %
= 1 6. 5 k WX 0. 0 5 = 0. 8 3 k W
風車の出口と流出口 3 との間 : 風車駆動流速 V-, の運動エネルギの約 2 2 %= 1 6. 5 k W 0. 2 2 = 3. 6 3 k W
従ってゝ
抵抗打消し圧力差 Ρ。 は、 風車駆動流速 VT の運動エネルギの約 2 7 % = 1 6. 5 k WX 0. 2 7 = 4. 4 6 kWになる。
2. 重力動圧補充圧力 PCH VA
前部エネルギ供給手段での縮小率を 1 / 2にしているので、 重 力動圧補充圧力 P GHV ま、 風車駆動流速 VT の運動エネルギの 4 %= 1 6. 5 k W X 0. 0 4 = 0. 6 6 k Wになる。
3. 前部エネルギ供給手段の出力 = 0. 8 3 + 3. 6 3 + 0. 6 6 = 5. 1 2 k Wになる。
2 ) 後部エネルギ供給手段から、 重力全圧 Ρ(が前記圧力管 1 内に作 用している条件で前記所定流量の流体がこの後部エネルギ供給手段を通過す る際の流量維持流速 VF の運動エネルギである流量維持運動エネルギ EFAを 供給する。
1 . 流量維持運動エネルギ ΕκΛ
後部エネルギ供給手段での縮小率を 1 / 2にしているので、 流 量維持運動エネルギ Ε κ ま、 水車駆動流速 V T の運動エネルギの約 4 %= 1 B . 5 k Wx 0. 0 4 = 0. 6 6 kWになる。
3 ) 外部エネルギ供給手段 1 4から、 循環圧力管部 1 2 aを所定流量 の流通空気が通過する際に発生する抵抗を 0 に打ち消す外部抵抗打消し圧力 差 PD0と、 循環圧力管部 1 2 a内を通過する所定流量の流通空気の運動エネ ルギである外部流量維持運動エネルギ E 。 とを供給する。 これによつて、 循環圧力管 1 2 a内の流通空気の単位時間単位通過流量当たりの重力全圧ェ ネルギ E GHを、 重力全圧 P GHが開口部 1 3、 1 3から重力全圧エネルギ を供給するという条件で、 大気圧下の風の単位時間単位通過流量当たりの重 力全圧エネルギ Et:„と同じにし、 基本型の場合と同様にして第 3種永久運動 の発展型を実現し、 風車に接続した発電機の出力で電気自動のモータを駆動 することができる。
1. 外部抵抗打消し圧力差 PD(, :
外部抵抗打消し圧力差 pD。は、 水車駆動流速 ντ の運動エネル ギの約 3 %= 1 6. 5 k WX 0. 0 3 = 0, 5 kWになる。
2. 外部流量維持運動エネルギ E ,.·Α。 :
外部抵抗打消し圧力差 Ρπ。は、 水車駆動流速 の運動エネル ギの約 1 % = 1 6. 5 k W X 0. 0 1 = 0. 1 7 k Wになる。
3. 外部エネルギ供給手段の出力 = 0. 5 + 0. I 7 = 0. 6 7 k Wになる。
( 4 :) 出力 :
風車出力容量 ( k W) = ( S , X V ) X { g X 1 0. 3 3 } X利闲 率 X風車効率一 [ ( S , X V ) X { (抵抗打消し圧力差 P D ) + (重力動圧 補充圧力 P CHVA) + (外部抵抗打消し ίί:力差 P :, ) } +流量維持運動エネル ギ E FA +外部流量維持運動エネルギ F; κΛい ] ÷人為エネルギの電力効率- ( S 1 X V ) X { g X 】 0. 3 3 } X 0. 3 7 x 0. 9 - [ ( S , X V) X { (抵抗打消し圧力差 Ρ Π ) + (重力動圧捕充圧力 Ρ ·.,,ハ) + (外部抵抗打消 し圧力差 ) } +流量維持運動エネルギ Ε ,· '· +外部流量維持運動エネルギ Ε , 0 ] ÷ 0. 7 6 = 1 6. 5 k W X 0. 9 - 6. 4 k W ÷ 0. 7 6 = 1 4. 8 kW— 8. 5 kW= 6. 3 kW= 8. 6馬力
従って、 6台並列に設置すると、 約 5 2馬力になる。
( 5 ) 負荷の変動に対する制御方法 :
1 ) 負荷の変動に対しては、 1 . 変速歯車を使用して風車で駆動され る発電機の回転数を一定に維持する。 2. 負荷の増減に^わせて供給する人 為エネルギの量を増減させて圧力管内の流動流体の流量を調整し、 出力を下 げて、 風車で駆動される発電機の回転数を一定に維持する。
尚、 外部抵抗打消し圧力差 と外部流量維持運動エネルギ Ε Λ。 とを制 御して、 圧力管〗 内で維持される流量と、 循環圧力管 1 2 a部分で維持され る流量とを正確に一致させることは困難なので、 循環圧力管 1 2 a部分で維 持される流量が少し過剰になるように設定する。 この過剰分は、 開口部 1 3 、 1 3から出入り して調整され、 設備は安定して動作する。
尚、 図 3において、 圧力管 1 と外部エネルギ供給手段 1 4 とが入れ代わつ ていても同様な結果が得られる。 又、 図 3に示すように、 循環は垂直面内に 限らず、 開口部 1 3、 1 3が上を向いておれば、 循環は水平でも、 角度があ つも同様な結果が得られる。
流動流体が水の場合も、 原理的には同じであるので、 前記の水の場合の基 本型の実施形態を参考にすれば容易に実施できる。 但し、. 水の場合には、 図 3に 2点鎖線で示すバイパス回路を、 上面を大気圧に開放するようにして取 り付ける。 このバイパス回路があれば、 設備の制御が容易で安定して動作す o
[ m ] 本発明の第 3種永久運動の基本型の特殊用途の実施形態 :
本発明の第 3種永久運動の基本型の場合には、 圧力管の流出口からの 流動流体の流出速度を、 前記流出口外の大気圧下の流動流体の流速に合わせ ることができれば安定して動作するので、 図 6〜図 8 に示す特殊用途に使用 できる。 これらの特殊用途の検討から発展したのが前記の基本型であり発展 型である。
( 1 ) もぐりオリ フィスでの使用 :
図 6に示すように、 基本型の圧力管 1 をもぐりオリ フィス 1 6 に設 置して使用できる。 この場合には、 図 6の H , を前部エネルギ供給手段の出 力の一部と して使用できる。
( 2 ) 水面間に落差がある 2つの水流に跨がっての使用 :
図 7 に示すように、 基本型の圧力管 I を水面間に落差 H , がある 2 つの水流 、 F 2 に跨がって設置して使用できる。 この場合には、 図 7の H , を前部エネルギ供給手段の出力の一部と して使用できる。
( 3 ) 人為的に構成した水流中での使用 : 図 8に示すように、 水流を垂直面内で循環させる人為循環水路 1 7 aに水流循環手段 1 8から人為的にエネルギを供給して大気圧下の勾配水流 1 7を構成し、 基本型の圧力管 1を勾配水流 1 7の中に設置する。 この場合 、 水流循環手段 1 8が供給するのは、 人為循環水路 1 7 a内の抵抗を 0に打 ち消す圧力差と、 揚水して勾配水流 1 7の勾配を作るためのエネルギとであ り、 制御が困難であり、 循環させる水量を 1 0 0 %使用しないので効率が悪 いが、 本発明の基本型の使用が可能であり、 これを発展させたのが前記の発 展型である。 産業上の利用可能性
[ I ] 本発明の第 3種永久運動の基本型:
本発明の基本型は、 ( 1 ) 潮流、 海流、 河川、 水路等の水流、 ( 2 ) 風の中、 ( 3 ) 水上または水中の移動体、 ( 4 ) 大気中の移動体、 ( 5 ) 落 差を利用する図 6に示すもぐりオリフィス、 図 7に示す水面間に落差がある 2つの水路、 ( 6 ) 図 8に示す人為循環水路等で使用できる。
そして、 完全なク リーンエネルギであり、 エネルギ問題の解決、 自然環境 の改善、 生活環境の改善等の効果が大きい。
[ Π ] 本発明の第 3種永久運動の発展型:
本発明の発展型は、 従来の水直、 風車、 内燃機関、 外燃機関等の殆ど すべての用途に適用できる。
例えば、 本発明の発展型は、
( 1 ) 原子力発電所等を含む各種の発電所に代わって、 電力需要を総て 賄うことができる。
( 2 ) 自動車のエンジンに代わる等、 石油の燧料としての消費を無く し 、 大気汚染、 地球温暖化等を防止できる。
( 3 ) 地球の平和と繁栄の永綾:
1 - 本発明の第 3種永久運動を成立させる複合共存融合作用の概 念は、 今、 人類に必要な最大の哲学である。
2 . 第 3種永久運動でエネルギを確保し、 このエネルギで、 資源 をリサイクルし、 自然環境、 生活環境を整えて、 未来に対する行き詰まり感 と無力感とを取り除き、 地球の平和と繁栄を確立できる。

Claims

請 求 の 範 囲
1 . 軸流水車またはこれと同じ形の風車を中央部に設けた圧力管を大気圧下 の流動流体中に設置し、 前記圧力管の断面積を流入口と流出口との双方から 前記水車または風車に向かって円周方向に偏向させながら縮小し、 前記流入 口近傍の断面積が大きい位置に前部エネルギ供給手段を設け、 前記流出口近 傍の断面積が大きい位置に後部エネルギ供給手段を設けることを特徴とする 流動流体の重力全圧エネルギの使用装置。
2 . 軸流水車またはこれと同じ形の風車を中央部に設けた圧力管を大気圧下 の流動流体中に設置し、 前記圧力管の断面積を流入口と流出口との双方から 前記水車または風車に向かって円周方向に偏向させながら縮小し、 所定流量 の流動流体が前記圧力管内を通過する際に発生する総ての抵抗を 0に打ち消 す抵抗打消し圧力差を前記流入口近傍の断面積が大きい位置に供給し、 前記 圧力管の流出口外近傍の流動流体の重力動圧に相当する重力動圧補充圧力を 前記水車または風車の出口より上流側に供給し、 前記流入口近傍の断面積が 大きい位置に前記所定流量の流体がその供給位置を通過する際の流速の運動 エネルギである流量維持運動ェネルギを供給することを特徴とする流動流体 の重力全圧エネルギの使用方法。
3 . 請求項 1 に記載の流動流体の重力全圧エネルギの使用装置の圧力管の流 入口と流出口との間を断面積が均一な循環圧力管で接続して密閉循環圧力管 とし、 前記循環圧力管内に外部エネルギ供給手段を設け、 前記の請求項 1の 圧力管と前記外部エネルギ供給手段との間に上向きに大気圧に対して開き大 気圧を含む重力全圧を受け入れ、 且つ、 前記の請求項〗 の圧力管の流入口ま たは流出口の断面積以上の断面積を有する開口部を設けることを特徴とする 流動流体の重力全圧エネルギの使用装置。
4 . 請求項 1 に記載の流動流体の重力全圧エネルギの使用装置の圧力管の流 入口と流出口との間を断面積が均一な循環圧力管で接続して密閉循環圧力管 とし、 前記循環圧力管内に外部エネルギ供給手段を設け、 前記の請求項 1の 圧力管と前記外部エネルギ供給手段との間に上向きに大気圧に対して開き大 気圧を含む重力全圧を受け入れ、 且つ、 前記の請求項 1の圧力管の流入口ま たは流出口の断面積以上の断面積を有する開口部を設け、 前記循環圧力管内 に、 所定流量に対する前記循環圧力管部分の抵抗を打ち消して 0にする外部 抵抗打消し圧力差と、 流動流体の所定流量を前記循環圧力管内で維持する外 部流量維持運動エネルギとを供給することを特徴とする流動流体の重力全圧 エネルギの使用方法。
PCT/JP1996/000045 1995-07-04 1996-01-08 Procede et appareil d'utilisation de l'energie de pression totale de la gravite du fluide en ecoulement WO1997002429A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44002/96A AU4400296A (en) 1995-07-04 1996-01-08 Method and device for using gravity total pressure energy of flowing fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7201256A JPH0874729A (ja) 1994-07-05 1995-07-04 流体の流れに作用する重力を運動エネルギに変換する方法とその装置
JP7/201256 1995-07-04

Publications (1)

Publication Number Publication Date
WO1997002429A1 true WO1997002429A1 (fr) 1997-01-23

Family

ID=16437933

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1996/000045 WO1997002429A1 (fr) 1995-07-04 1996-01-08 Procede et appareil d'utilisation de l'energie de pression totale de la gravite du fluide en ecoulement
PCT/JP1996/001829 WO1997002430A1 (fr) 1995-07-04 1996-06-28 Procede et dispositif permettant d'utiliser la totalite de l'energie de pression gravitationnelle d'un fluide en ecoulement

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001829 WO1997002430A1 (fr) 1995-07-04 1996-06-28 Procede et dispositif permettant d'utiliser la totalite de l'energie de pression gravitationnelle d'un fluide en ecoulement

Country Status (2)

Country Link
AU (2) AU4400296A (ja)
WO (2) WO1997002429A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127151A (ja) * 2010-12-17 2012-07-05 Shoji Uchida 発電装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016765A (ja) * 2005-06-07 2007-01-25 Shinko Electric Co Ltd 水力発電システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187983A (ja) * 1984-10-05 1986-05-06 Junji Uematsu 流水のエネルギ−利用装置
JPS63128272U (ja) * 1987-02-17 1988-08-22
JPH05126026A (ja) * 1991-08-14 1993-05-21 Toshitaka Yasuda 下流側流速を利用する小落差水力発電方法
JPH05141340A (ja) * 1991-07-10 1993-06-08 Toshitaka Yasuda 小流速大量流水中の水力発電方法
WO1994016215A1 (en) * 1993-01-09 1994-07-21 Toshitaka Yasuda Water-jet hydraulic power generation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187983A (ja) * 1984-10-05 1986-05-06 Junji Uematsu 流水のエネルギ−利用装置
JPS63128272U (ja) * 1987-02-17 1988-08-22
JPH05141340A (ja) * 1991-07-10 1993-06-08 Toshitaka Yasuda 小流速大量流水中の水力発電方法
JPH05126026A (ja) * 1991-08-14 1993-05-21 Toshitaka Yasuda 下流側流速を利用する小落差水力発電方法
WO1994016215A1 (en) * 1993-01-09 1994-07-21 Toshitaka Yasuda Water-jet hydraulic power generation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127151A (ja) * 2010-12-17 2012-07-05 Shoji Uchida 発電装置

Also Published As

Publication number Publication date
AU4400296A (en) 1997-02-05
AU6243896A (en) 1997-02-05
WO1997002430A1 (fr) 1997-01-23

Similar Documents

Publication Publication Date Title
EP2205833B1 (en) Turbine assembly
US8801359B2 (en) System and method for extracting power from fluid using a Tesla-type bladeless turbine
EA016975B1 (ru) Турбомашина с гидравлическими турбинами с поперечной подачей потока жидкости и с уменьшенной величиной общей подъемной силы
CN103397975B (zh) 标准型浮管式水力发电机
US20090309368A1 (en) Water wheel impeller blade type power generator
KR101849765B1 (ko) 터빈 장치
CN103502632A (zh) 水力涡轮机和水电站
US6568181B1 (en) Apparatus for extracting power from a fluid flow
CA2714693C (en) Turbine unit and assembly
EP0924426A3 (en) Run-of-river submerged water turbine
US5005356A (en) Torque converter utilizing streamwise vorticity
WO1997002429A1 (fr) Procede et appareil d'utilisation de l'energie de pression totale de la gravite du fluide en ecoulement
US9677402B2 (en) Wind machine with aerodynamic elements to concentrate and accelerate an Aeolian flow entering from outside
JPS5954777A (ja) 連動水車の発電装置
CA2236219A1 (en) Power generator driven by environment's heat
ES2706449B2 (es) Hidrogenerador con turbina hidrocinetica de reaccion horizontal
JPH06185449A (ja) 浮力機関
JPH05141340A (ja) 小流速大量流水中の水力発電方法
KR100837999B1 (ko) 소수력발전의 수차 가속페달
WO1998030799A2 (fr) Procede pour utiliser la totalite de l'energie gravitationnelle d'un fluide en ecoulement, et appareil correspondant
JP6725824B1 (ja) 誘水式潮流発電装置
JPS6187983A (ja) 流水のエネルギ−利用装置
CN101563538B (zh) 涡轮单元和组件
JPH04121459A (ja) 低流速用水車装置
KR200458527Y1 (ko) 조류에너지의 풍력발전에너지로의 변환효율을 극대화하는 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR BY CA CN JP KR LK RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA