[go: up one dir, main page]

WO1997003114A1 - Poudre absorbant l'eau et son procede de fabrication - Google Patents

Poudre absorbant l'eau et son procede de fabrication Download PDF

Info

Publication number
WO1997003114A1
WO1997003114A1 PCT/JP1996/001863 JP9601863W WO9703114A1 WO 1997003114 A1 WO1997003114 A1 WO 1997003114A1 JP 9601863 W JP9601863 W JP 9601863W WO 9703114 A1 WO9703114 A1 WO 9703114A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
powder
absorbing agent
producing
agent
Prior art date
Application number
PCT/JP1996/001863
Other languages
English (en)
French (fr)
Inventor
Kunihiko Ishizaki
Kinya Nagasuna
Nobuyuki Harada
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15931807&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997003114(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to DE69632570T priority Critical patent/DE69632570T3/de
Priority to JP50031997A priority patent/JP3462217B2/ja
Priority to US08/793,712 priority patent/US5981070A/en
Priority to EP96922234A priority patent/EP0780424B2/en
Publication of WO1997003114A1 publication Critical patent/WO1997003114A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/12Sanitary use, e.g. diapers, napkins or bandages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S521/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S521/905Hydrophilic or hydrophobic cellular product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to a water-absorbing agent powder and a method for producing the same. More specifically, the present invention shows a high absorption capacity under high pressure as well as under no pressure, and a cross-linking agent does not remain in the resin, thus ensuring safety.
  • the present invention relates to a water-absorbing agent powder which is excellent in hygiene and has a high absorption rate and is suitable for sanitary materials, and a production method for providing the same. Background art
  • water-absorbent resins have been widely used as one of the constituent materials of sanitary materials such as paper mummies and sanitary napkins.
  • the purpose of the water-absorbent resin is to prevent the contamination of clothing and the like caused by the body fluid by absorbing and retaining the excreted body fluid such as urine and blood.
  • water-absorbent resin examples include cross-linked polyacrylic acid partially neutralized products (Japanese Unexamined Patent Application Publication Nos. Sho 55-84304, Sho 55-108407, Sho Sho 55-84, 5-1 3 3 4 13), a starch-acrylonitrile grafted polymer hydrolyzate (Japanese Patent Publication No. 46-43995), starch -acrylic acid grafted Neutralized polymer (JP-A-5-111-468), genated product of vinyl acetate-acrylic acid ester copolymer (JP-A-52-46889) ), Crosslinked carboxymethylcellulose (US Pat. No. 4,650,716, US Pat. No.
  • Desirable properties of the above water-absorbent resin include: high absorption capacity when contacted with an aqueous liquid, excellent absorption rate, liquid permeability, gel strength of a swollen gel, and absorption of water from a substrate containing an aqueous liquid Suction power, low residual monomer (US Pat. No. 4,794,166), and the like.
  • a method using a polyhydric alcohol as a cross-linking agent JP-A-58-183, JP-A-61-16903, a polyhydric glycidyl compound, A method using a lysine compound, a polyvalent amine compound, or a polyvalent isocyanate compound (JP-A-59-189103 / US Pat. No. 4,666,893), using glyoxal Method (Japanese Patent Application Laid-Open No. Sho 52-1171733), a method using a polyvalent metal (Japanese Patent Application Laid-Open No. 51-136688, Japanese Patent Application Laid-Open No. No. 572,535, Japanese Patent Application Laid-Open No.
  • Japanese Patent Application Laid-Open No. 60-16956 Japanese Patent Application Laid-Open No. 60-255814
  • a method in which a diffi alcohol is present Method Japanese Patent Application Laid-Open No. 1-29204
  • a method in which water and an ether compound are present (Japanese Patent Application Laid-Open No.
  • the larvae are granulated with an aqueous liquid (US Pat. No. 5,369,148) or have a molecular weight of 2000 or more.
  • an aqueous liquid US Pat. No. 5,369,148
  • There is also known a method of adding a cationic polymer to a high molecular weight and immobilizing the polymer on a fiber base material US Pat. No. 5,322,610.
  • the role of the cross-linking treatment near the surface of the water-absorbent resin is becoming more important.
  • crosslinking agent is highly reactive such as an epoxy compound
  • crosslinking near the surface is likely to occur quickly and it is easy to obtain excellent physical properties.
  • the crosslinking agent itself has skin irritation and remains in a large amount in the resin, Considering its application to sanitary materials, it raises new safety issues. That is, in the conventional water-absorbing resin, the epoxy compound often remained in the order of several 10 to 100 Oppm.
  • crosslinks near the surface of hydrogel resin have been started under a specific high water content of 10 to 30% in order to reduce the amount of crosslinking agent remaining in the resin that crosslinks near the surface.
  • a method of further adding a specific amount of water during the reaction Japanese Patent Application Laid-Open No. 3-195705.
  • an object of the present invention is to provide a novel method that simultaneously satisfies the following three requirements: improvement of “absorption capacity under high pressure”, reduction of “remaining amount of epoxy crosslinking agent”, and improvement of “absorption rate”. It is an object of the present invention to provide a water absorbing agent powder and a method for producing the same. Disclosure of the invention
  • the inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the epoxy resin-containing cross-linking agent has been modified in the vicinity of its surface, and has a lipoxyl group in which the cross-linking agent remains in the resin.
  • the water-absorbent resin By treating the water-absorbent resin with a specific compound, it is possible to maintain high absorption characteristics such as absorption capacity under high pressure, and significantly reduce the residual amount of cross-linking agent. They have found that a liquid medicine can be easily obtained, and have completed the present invention.
  • the vicinity of the surface is cross-linked by an epoxy-group-containing cross-linking agent, and the cross-linking agent remains in the carboxyl-group-containing water-absorbing resin. It is characterized in that a nucleophile is added in a heated powder state to reduce the remaining crosslinking agent.
  • the vicinity of the surface is cross-linked by a cross-linking agent containing an epoxy group, and the cross-linking agent containing a carboxyl group remains. It is characterized by washing the water-absorbent resin powder to reduce the residual crosslinking agent.
  • the method for producing a water-absorbing agent powder of the present invention is a method for producing a carboxyl group-containing water-absorbent resin powder having a cross-linked surface, and an absorption capacity under a load of 50 g / cm ′ for physiological saline.
  • at least one selected from a water-soluble surfactant and a water-soluble polymer should be added in an amount sufficient to increase the speed (gZgZsec) beyond the absorption rate of the water-absorbent resin powder after surface crosslinking. It is characterized by being added.
  • the load in which the vicinity of the surface is crosslinked by the epoxy group-containing crosslinker and the epoxy group-containing bridging agent remains, and at least a part of the particles are foamed Water is added to the carboxyl group-containing water-absorbent resin powder having an absorption capacity under pressure of 50 g / cm 2 with respect to physiological saline, which is increased to at least 20 g Z g by surface crosslinking. It is characterized by reducing the amount of the remaining cross-linking agent in a powder state of the mixture obtained as a result.
  • the water-absorbing agent powder of the present invention is at least partially a porous water-absorbing resin powder, and the vicinity of the surface of the water-absorbing resin powder is cross-linked by a cross-linking agent containing an epoxy group, and the cross-linking agent remains. It is specified that the amount is 2 ppm or less.
  • the water-absorbent resin used in the present invention has a carboxyl group in which the vicinity of the surface is cross-linked by an ethoxy group-containing cross-linking agent and the cross-linking agent remains. It is a water-absorbing resin powder.
  • the water-absorbent resin powder has a high absorbency against physiological saline at a load of 50 cm 2 under pressure of at least 20 gZg, and further has a high absorbency even at a high load of 25 g / g or more. It has a magnification.
  • a water-absorbent resin powder having a large specific surface area and an irregular fractured surface, and a water-absorbent resin powder having at least a part of particles are used.
  • the particle size is 0.025 m 2 / g or more.
  • the water content of the water-absorbent resin powder is preferably less than 10%, more preferably less than 5%, from the viewpoint of physical properties.
  • such a water-absorbent resin powder can be obtained by crosslinking a hydrophilic cross-linked polymer as a precursor resin in the vicinity of the surface with a crosslinking agent containing an epoxy group under specific conditions.
  • a crosslinking agent containing an epoxy group under specific conditions.
  • the water-absorbing resin powder having a carboxyl group such that the cross-linking agent does not remain in the resin is often low in absorption capacity under high pressure, and it is an object of the present invention to use such a resin. It is not where to do.
  • the residual amount of the epoxy group-containing cross-linking agent in the water-absorbent resin powder before the treatment is not less than a certain amount because it improves the absorption capacity under high pressure.
  • the upper limit of the residual amount of the epoxy group-containing crosslinking agent is not particularly limited in the present invention. However, even if the amount of the remaining crosslinking agent is too large, the absorption capacity under pressure may be reduced. However, there is no improvement beyond a certain level, and reduction of the residual crosslinking agent requires time and a large amount of a nucleophilic agent described later, which is inefficient. Therefore, the preferred upper limit is preferably 2000 ppm or less, more preferably 1000 ppm or less, and still more preferably 50 ppm or less.
  • the optimum range of the residual cross-linking agent is more than 2 ppm to 200 ppm, more preferably 3 to 100 ppm. ppm, more preferably in the range of 4 to 500 ppm.
  • a water-absorbing polymer which is not surface-crosslinked is referred to as a hydrophilic crosslinking polymer or a precursor resin
  • the surface-crosslinked hydrophilic crosslinked polymer or the precursor resin is a water-absorbing resin.
  • the water-absorbent resin subjected to the treatment of the present invention is referred to as a water-absorbing agent powder.
  • the water-absorbent resin powder of the present invention varies depending on the surface area of the precursor resin, that is, the particle size and shape of the precursor resin powder, and the presence or absence of foaming. 0.005 to 2 parts by weight, more preferably 0.02 to 1.5 parts by weight, and even more preferably 0.06 to 1 part by weight, based on parts by weight, of the epoxy group-containing crosslinking agent. It is obtained by adding and mixing an aqueous liquid containing 0.1 to 10 parts by weight of water and 0.1 to 10 parts by weight of water.
  • the obtained water-absorbent resin can be suitably used in the present invention.
  • a water-absorbing resin powder having a carboxyl group which has a high absorption capacity even under pressure and in which an epoxy group-containing crosslinking agent remains in the water-absorbing resin.
  • the water-absorbent resin powder of the present invention obtained by the above control finally shows a high absorption capacity under high pressure by the treatment of the present invention, and
  • the water-absorbing agent powder of the present invention having a small residual amount of the epoxy group-containing crosslinking agent can be obtained.
  • a hydrophilic organic solvent may be used in combination with water as an aqueous liquid containing the above-mentioned crosslinking agent because of higher physical properties and less residual crosslinking agent.
  • the hydrophilic organic solvent used include low alcohols such as methyl alcohol, ethyl alcohol, I—propyl alcohol, is 0—propyl alcohol, n—butyl alcohol, is 0—butyl alcohol, and t-butyl alcohol.
  • Ketones such as acetone; ethers such as dioxane, alkoxide (poly) ethylene glycol and tetrahydrofuran; amides such as N, N-dimethylformamide; Sulphoxides such as dimethylsulphoxide.
  • the amount used is generally in the range of 0 to 10 parts by weight, preferably less than 5 parts by weight, based on 100 parts by weight of the solid content of the precursor resin.
  • the precursor resin that can be used in the present invention is not particularly limited as long as it has a carboxyl group.
  • Partially neutralized poly (bolyacrylate) cross-linked polymer, starch-acrylic acid graft polymer, carboxymethyl cell A hydrophilic crosslinked polymer that absorbs a large amount of water, preferably 100 to 100 times, under no pressure and swells in water such as a crosslinked polymer to form a substantially water-insoluble drogel. Can be exemplified.
  • the substantially water-insoluble hydrogel is the solubility of the water-absorbent resin in a large excess of pure water, that is, the water-soluble component is 50% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less.
  • a hydrophilic crosslinked polymer obtained by polymerizing an aqueous monomer is preferably used.
  • acrylates include alkali metal salts of acrylic acid, ammonium salts, and amine salts.
  • an alkali metal salt is used. More preferably, a sodium salt is used.
  • the neutralization ratio of the carboxyl group derived from acrylic acid is 40 to 100 mol%, preferably 50 to 95 mol%, more preferably 60 to 90 mol%. Those in the mole% range are preferred.
  • the neutralization may be performed with the monomer before the polymerization, or may be performed with the hydrogel polymer during or after the polymerization.
  • hydrophilic cross-linked polymer used in the present invention is obtained from a hydrophilic monomer containing acrylic acid and / or a salt thereof as a main component, it is used in combination with these acrylic acid or a salt thereof, and if necessary, other May be copolymerized.
  • the preferred method for producing an acrylate salt for the polymerization of a hydrophilic cross-linked polymer is exemplified in U.S. Patent No. 5,338,810 and European Patent No. 0,574,260.
  • monomers other than acrylic acid used include: methacrylic acid, maleic acid, ⁇ -atalyloyloxypropionic acid, vinylsulfonic acid, styrene sulfonic acid, 2- (meth) Acrylamide 2 —methylpropanesulfonic acid, 2 — (meth) acryloylenesulfonic acid, 2 — (meth) acryloylbu ⁇ anionic unsaturated monomers such as pansulfonic acid and salts thereof; Acryl amide, methacrylyl amide, ⁇ -ethyl (meta) acrylyl amide, ⁇ - ⁇ -propyl (meta) acrylyl amide, ⁇ ⁇ -isopropyl (meta) acrylyl amide , ⁇ , ⁇ —Jim Chill (meta) acrylyl amide, 2—hydroxyshethyl (meta) acrylate, 2—hydroxypropyl (meta)
  • N, N—N-ethylaminoethyl (methyl) acrylate, N ' N-Dimethylaminopropyl (meta) acrylate, cationic unsaturated monomers such as N-dimethylaminopropyl (meta) acrylamide and their tetrasalts, etc. Can be mentioned.
  • a water-free unsaturated monomer such as isobutylene or stearyl (meth) acrylate can be used.
  • the amount of these other monomers to be used is generally 0 to 50 mol%, preferably 0 to 30 mol%, more preferably (! To 10 mol%), based on all monomers.
  • the hydrophilic cross-linked polymer as the precursor resin used in the present invention has a cross-linked structure.
  • the self-cross-linking type polymer without using a cross-linking agent has two or more polymerizable unsaturated groups or two or more. Desirable are those obtained by copolymerizing or reacting the internal cross-linking agent having the above reactive group or the internal cross-linking agent having both the polymerizable unsaturated group and the reactive group.
  • these internal crosslinking agents include, for example, N, N'-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) Propylene glycol (meta) acrylate, trimethylolpropane tri (meta) acrylate, trimethylol pi, benzene (meta) acrylate, glycerine tri (meta) ) Atarilate, glycerin acrylate, methacrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, pentaerythritol Tetra (meta) acrylate, dipentaerythritol hexyl (meta) acrylate, tri-lino cyanate, tria-liluisocyanate Real phosphate, triarylamine, poly (meth) aryloxyalkane, (poly) ethylene glycol diglycidyl ether, glyceryl mono
  • a compound having two or more polymerizable unsaturated groups as an internal crosslinking agent in view of the water absorbing properties of the resulting water-absorbent resin powder
  • the amount of the monomer used is preferably The amount is preferably 0.05 to 2 mol%, more preferably 0.01 to 1 mol%, based on the components.
  • hydrophilic polymers such as starch and cellulose, derivatives of starch and cellulose, polybutyl alcohol, polyacrylic acid (salt), and polyacrylic acid (salt) are not crosslinked.
  • a chain transfer agent such as hypophosphorous acid (salt) or phosphorous acid (salt), a surfactant, or a foaming agent such as carbonate may be added.
  • aqueous solution polymerization or reverse phase suspension polymerization using the monomer as an aqueous solution.
  • the aqueous solution polymerization include casting polymerization performed in a mold, thin-layer polymerization performed on a belt conveyor, and polymerization performed while pulverizing the formed hydrogel polymer.
  • the concentration of the monomer component in the aqueous solution at the time of the aqueous solution polymerization is usually from 10 to 70% by weight, preferably from 20% by weight to a saturation concentration.
  • concentration of the monomer component in the aqueous solution at the time of the aqueous solution polymerization is usually from 10 to 70% by weight, preferably from 20% by weight to a saturation concentration.
  • the polymerization is usually carried out in an inert gas stream such as nitrogen, helium, argon or carbon dioxide.
  • radical polymerization methods include, for example, U.S. Pat.No. 4,033,776, U.S. Pat.No. 4,367,323, and U.S. Pat. U.S. Pat.No. 4,683,324, U.S. Pat.No. 4,973,632, and aqueous solution polymerization are described in U.S. Pat.No. 4,552,392, U.S. Pat. No.
  • potassium persulfate ammonium persulfate, sodium persulfate, t-butylhydroxide peroxide, hydrogen peroxide
  • Radical polymerization initiators such as 2'-azobis (2-amidinobutane) dihydrochloride and active energy rays such as ultraviolet rays and electron beams
  • active energy rays such as ultraviolet rays and electron beams
  • radical polymerization initiators can be used. preferable.
  • a reducing agent such as sodium sulfite, sodium bisulfite, sodium sulfate, formamidine sulfinic acid, L-ascorbic acid (salt), etc. is used in combination.
  • Dox polymerization may be used.
  • a plurality of these polymerization initiators and reducing agents may be used in combination, and the amount of the polymerization initiator and the reducing agent is usually 0.01 to 2 mol, preferably 0.01 to 0 mol, based on the total amount of the monomer component. .5 mol%.
  • the gel polymer after the polymerization is preferably dried. Drying methods used include hot air drying, drying with specific water vapor (US Pat. No. 4,920,022), microwave drying (US Pat. No. 5,075,344), Drying under reduced pressure. Drum dryer drying. ⁇ Aqueous methods include known methods such as azeotropic dehydration in an organic solvent.
  • the above-mentioned drying temperature is preferably from 70 to 300, more preferably from 100 to 250, and still more preferably from 150 to 200.
  • the water-absorbent resin fine powder Prior to drying, the water-absorbent resin fine powder is recycled into a gel polymer by means described in U.S. Patent No. 5,064,582 or U.S. Patent No. 5,487,879.
  • the polymer may be granulated, or the gel polymer may be subdivided in advance by a method such as U.S. Pat. No. 5,275,773, or U.S. Pat.
  • the supply of the gel polymer to the dryer may be controlled by the method described in the above item.
  • the shape of the hydrophilic cross-linked polymer as a precursor resin obtained by the above polymerization may be irregular shaped crushed, spherical, woven, rod-shaped, or C-shaped obtained by reversed-phase suspension polymerization.
  • Various types such as spheroids and substantially spherical shapes can be preferably used in the present invention.
  • the effect of the present invention is maximized, and shows a high absorption under pressure as well as under no pressure.
  • a spherical or irregularly crushed powder is preferably used as a starting material.
  • the high absorption rate resulting from the high specific surface area and the high fixability to pulp it is more preferably obtained by aqueous solution polymerization than spherical, and it has an irregular fracture shape, which is essentially subjected to a pulverization step. More preferably, an amorphous fractured hydrophilic crosslinked polymer in which at least a part of the particles is porous is used as the precursor resin. Further, it does not matter whether the porous material is an open cell or a closed cell.
  • the particles is at least partially porous, and is easily observed by observing the presence or absence of pores in a plurality of particles by an electron microscope photograph magnified 30 to 100 times. You can check.
  • preferably, 2% or more, more preferably 5% or more, even more preferably 10% or more of the particles are porous.
  • the BET specific surface area of 3 0 0 ⁇ 6 0 0 ⁇ m of the hydrophilic crosslinked polymer powder from the surface of the absorption rate, 0. 0 2 5 m 2 or more, preferably 0. 0 3 m 2 or more, further preferably rather it is 0. 0 4 m ⁇ g or more ones are used.
  • the foamed porous hydrophilic cross-linked polymer is used as the precursor resin, the hydrogel polymer is boiled by boiling the polymer during polymerization or drying. There is also a method for causing the above, but from the viewpoint of physical properties, it is preferable to use a foaming agent when producing the precursor resin.
  • foaming agent examples include an inert gas such as nitrogen, various organic solvents such as methyl alcohol peroxy D hexane, sodium (hydrogen) carbonate, ammonium hydrogen carbonate, and hydrogen carbonate (hydrogen).
  • inert gas such as nitrogen
  • organic solvents such as methyl alcohol peroxy D hexane, sodium (hydrogen) carbonate, ammonium hydrogen carbonate, and hydrogen carbonate (hydrogen).
  • Carbonates such as potassium, magnesium carbonate, carbon dioxide, and ethylene carbonate, 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2.2-azobis (2- (2-a Water-soluble ab compounds, such as midabrin-2-yl) bloban) dihydrochloride, 2,2'-azobis [2-methyl-N- (2-hydric quichetyl) propionamide]; Examples include water-dispersible azo compounds such as 2'-abbis (2-methylbution pionamidine) niacrylate.
  • foaming agents water-soluble or water-dispersible AB compounds or carbonates are preferable.
  • a water-soluble polymer or a surfactant may be used in combination with the foaming agent. Good.
  • the amounts of the foaming agent, the water-soluble polymer, and the surfactant are determined as appropriate.
  • the amount of the carbonic acid is usually less than 200% by weight based on the total amount of the monomer components. Is 100% by weight or less, Abu compound is 5% by weight or less, preferably 1% by weight or less, water-soluble polymer is 10% by weight or less, preferably 5% by weight or less, surfactant is 2% by weight or less, preferably Used at less than 1% by weight.
  • the average particle size of the precursor resin is 200 / ⁇ ! It is most preferred to use a precursor resin having a weight of up to 600 um and a lactate diameter of less than 150 zm with a weight of less than or equal to 10% by weight. If the average diameter is less than 200 / zm, the absorption capacity under high pressure may not be easily improved. Also, 6 If it exceeds 0 0 / m, the absorption rate is slow and it may take too long to reach the saturated absorption. On the other hand, if the resin having a particle diameter of less than 150 / zm is 10 wt. Care must be taken when the pressure exceeds the limit, because it may be difficult to reduce the amount of the residual crosslinking agent.
  • the precursor resin used in the present invention has a water content of 1 to 50% or less, preferably 1 to less than 20%, more preferably less than 10%. It can be treated as When the water content is high, the epoxy group-containing cross-linking agent penetrates into the interior of the precursor resin, and the residual amount of the epoxy group-containing cross-linking agent before treatment tends to decrease, but the absorption capacity only decreases. However, in the present invention, the absorption characteristics under high pressure tend not to be improved.
  • an epoxy group-containing crosslinking agent is used as an essential component with respect to the precursor resin having a carboxyl group obtained as described above. The precursor resin is added and heated to crosslink the vicinity of the surface of the precursor resin to obtain a water-absorbent resin powder, and the water-absorbent resin powder in which the added epoxy group-containing crosslinker remains is used as a starting material.
  • the epoxy group-containing crosslinking agent is added to the precursor resin, preferably in an aqueous liquid state, and then heated.
  • the amount of the crosslinking agent used is such that the amount of the crosslinking agent having an epoxy group is 0 based on 100 parts by weight of the precursor resin before the vicinity of the surface is crosslinked. 0.05 to 2 parts by weight, preferably 0.02 to 1.5 parts by weight, more preferably 0.06 to 1 part by weight, and the amount of the aqueous liquid containing the crosslinking agent is 0 to 0.5 parts by weight.
  • the aqueous liquid means water or a mixture of water and a hydrophilic organic solvent
  • the heating temperature after the addition is preferably 50 to 230, more preferably
  • the solid content of the water-absorbing resin powder obtained after the heat treatment is more than 90%, preferably 95% or more, more preferably 9S% or more.
  • the amount of the epoxy group-containing cross-linking agent or the amount of the aqueous liquid is out of the above range, physical properties such as absorption capacity under high pressure may not be improved, or after the treatment step of the present invention. Even afterwards, the amount of the remaining epoxy group-containing crosslinker may not decrease.
  • epoxy group-containing crosslinking agent means a compound having at least one epoxy group in its molecule and capable of reacting with a plurality of carboxyl groups in the precursor resin.
  • Examples of such compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, and polyglycerol polyglycidyl ether.
  • Glycidyl ethers such as propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether; glycidyl compounds such as glycidol, 7 -glycidoxypropyl trimethyxylsilane; epichlorohydrin, ebibromohid Epihalohydrins such as dolin; glycidyl phosphonate such as diglycidyl methylphosphonate and diglycidyl n-propylphosphonate Ester; 3, 4 - cyclohexanecarboxylic acid one 3 to epoxycyclododeca '' 4 '- epoxy cyclohexyl ester (trade name: Serokisai de 9 2 0 2 1, Ageruko and cyclic epoxy compounds such as Daicel Ltd.> Among them, a preferable epoxy group-containing crosslinking agent is a polyglycidyl compound, more preferably a polyglycidyl
  • the epoxy group-containing crosslinking agent may be used in combination with another crosslinking agent capable of reacting with a carboxyl group.
  • a cross-linking agent include known cross-linking agents which are generally known to be used for cross-linking near the surface. Examples thereof include ethylene glycol, diethyl glycol, propylene glycol, and the like.
  • Polyhydric alcohol compounds such as mine, polyoxypropylene, oxyethyleneoxypropylene block copolymer, pentaerythritol, sorbitol; ethylenediamine, diethylamine, triethylenetetramine Polyamines such as styrene, tetraethylene pentamine, pentaethylene he
  • polycondensates of these polyamines with epoxy compounds 2,4-triylene diisocyanate, polyvalent isocyanate compounds such as hexamethylene diisocyanate; Polyvalent oxazoline compounds such as ethylenebisoxabrin: silane coupling agents such as polyglycidoxypropyltrimethoxysilane, aminoprobitritrimethoxysilane, etc .; 1,3-dioxolane-2-one, 4 1-, 3-Dioxolane-one-one, 4,5-Dimethyl-1,3-dioxofuran-2-one, 4,4-Dimethyl- and 3-dioxolane-one-one, 4-ethylone-three-dioxofuran 1-one, 4-hydroxymethyl-1,3-dioxolan 1-2-one, 1,3-dioxane 1-2-one, 4-methyl-1 1,3—dioxane 1-2-one, Alkylene carbonate compounds such as 4, 6-dimethyl-1
  • the water-absorbent resin powder having a lipoxyl group obtained by the above method, in which the epoxy group-containing cross-linking agent remains is obtained by adding a nucleophile in a heated powder state. Either the crosslinking agent is reduced, or as a second method, washing is performed to reduce the remaining crosslinking agent, and the water-absorbing agent powder of the present invention is obtained.
  • the water-absorbing agent powder intended for the present invention which has excellent absorption characteristics and has a remarkably reduced residual crosslinking agent.
  • a carboxyl group-containing absorbing agent in which the vicinity of the surface is cross-linked by an epoxy group-containing cross-linking agent and the cross-linking agent remains first, as a first method, a carboxyl group-containing absorbing agent in which the vicinity of the surface is cross-linked by an epoxy group-containing cross-linking agent and the cross-linking agent remains.
  • a method for producing a water-absorbing agent powder which is characterized by adding a nucleophile to a water-based resin powder in a heated powder state to reduce a residual crosslinking agent, will be described in further detail.
  • the water absorbent resin powder to be treated is heated.
  • a water-absorbent resin powder that is not heated to room temperature or cooled to a room temperature or less, it is extremely difficult to stably and continuously feed the water-absorbent resin powder, and therefore, industrial practice It is difficult to manufacture and stabilize the quality.
  • the absorption or adsorption speed of the nucleophile into the water-absorbent resin powder is too slow in physical properties, and the effect of reducing the residual crosslinking agent is insufficient.
  • the heating temperature of the water-absorbent resin powder exceeds room temperature, and from the viewpoint of solving the above problem, specifically, at least 30'C, preferably at least 35, more preferably It is preferably at least 40'C.
  • the problem of stable and continuous feed of the water-absorbent resin powder exceeds room temperature, and preferably has no substantial problem at 30 ° C or more, more preferably at 35 ° C or more. If the temperature of the resin powder is too high, the absorption or adsorption speed of the nucleophile into the water-absorbent resin powder is too high even in the physical properties, resulting in uneven mixing and a slight decrease in the effect of reducing the residual crosslinking agent. Care must be taken, as there is also a tendency to do so.
  • the upper limit of the temperature of the water-absorbent resin powder in the present invention is usually 2 0 0 less than Te, preferably less than 1 0 0 e C, more preferably less than 8 O 'C, It is more preferably controlled to be less than 6 5 e C.
  • the water-absorbent resin powder may be externally heated to a predetermined temperature before adding a nucleophilic agent, and a heating device at that time may be used.
  • a heating device for this, dielectric heating, contact heating, hot air heating and the like are used.
  • the water-absorbent resin powder that has undergone each heating process such as polymerization, drying, pulverization, and surface cross-linking may be controlled to a predetermined temperature by continuously keeping and heating the water-absorbent resin powder.
  • the term “powder state” means that the water-absorbent resin powder does not adhere to each other to form a block state, does not swell and gels, and easily after the addition of a nucleophilic agent. The powders can be crushed and remain as powders after processing.
  • the object of the present invention (the three improvements of “remaining crosslinking agent J,“ absorption capacity under high pressure ”, and“ absorption rate ”are simultaneously satisfied) is not achieved.
  • nucleophile preferably used in the present invention examples include: a nucleophile having a nucleophilic atom of carbon or oxygen; a nitrogen compound having a nucleophilic atom of nitrogen; a halide having a nucleophilic atom of a halogen; Examples thereof include a sulfur compound in which the atom is sulfur, a phosphorus compound in which the nucleophilic atom is phosphorus, a nucleophile in which a hydroxyl group can be a nucleophilic point, and a nucleophilic agent in which a carboxyl group can be a nucleophilic point.
  • nucleophiles in which the nucleophilic atom is carbon or oxygen include, for example, acetals, acetates, alcoholates, acetate nitriles, acetylenes, acid anhydrides, water, Alcohols, inorganic hydroxides, aldehydes, peroxides such as organic hydroxides, hydroquinone methyl urea, carbon dioxide, carboxylic acids (salts), cyano acetates, cyclobenzene, etc. Olefins, ketene, ma. Acids, phenols and the like.
  • nitrogen compounds in which the nucleophilic atom is nitrogen include alkaline earth nitrates such as barium nitrate, amides, amide compounds, nitroamine compounds, and tertiary nitrogen compounds.
  • alkaline earth nitrates such as barium nitrate, amides, amide compounds, nitroamine compounds, and tertiary nitrogen compounds.
  • halide in which the nucleophilic atom is a halogen examples include halogenated compounds such as acetyl halides such as acetyl chloride, alkyl halides, antimony trihalides, bismuth D-gen bismuth, and boron tribromide.
  • halogenated compounds such as acetyl halides such as acetyl chloride, alkyl halides, antimony trihalides, bismuth D-gen bismuth, and boron tribromide.
  • borons hydrogenating compounds such as rubamoyl chloride, and luvamoyl compounds, and ⁇ ⁇ silane compounds.
  • Examples of sulfur compounds in which the nucleophilic atom is sulfur include aminothiols, carbon disulfide, ethylene sulfide, hydrogen sulfide, sulfur dioxide, sulfite (salt), hydrogen sulfite (salt), and thiosulfate (salt). Is mentioned.
  • Examples of the phosphorus compound in which the nucleophilic atom is phosphorus include phosphate.
  • nucleophiles in which the nucleophilic atom is oxygen examples include water, propylene glycol, caustic soda, caustic force, and boric acid. Examples include lethylene glycol, butyl alcohol, and alkoxy (poly) ethylene glycol. Examples of the nucleophile in which a carboxyl group can be a nucleophilic point include lactate, citrate, and propionate.
  • nucleophiles those having a neutral or basic pH of 5 or more are preferably used.
  • the nucleophile is various at room temperature, such as solid, liquid and gas. Among them, it is preferable to use a nucleophile which is liquid at normal temperature in order to achieve the object of the present invention. From the viewpoint of physical properties, a large amount of residue may impair water absorption, and a volatile liquid that can be easily removed after treatment is preferably used.
  • the boiling point of a suitable nucleophile is preferably a liquid having a temperature of at least 60'C, more preferably at least 100'C.
  • the upper limit of the boiling point of a suitable nucleophile is preferably 150 or less, and particularly preferably, water is essential as a nucleophile from the viewpoint of not only reducing the residual crosslinking agent but also improving the absorption rate. That is to say, what is included as an important component.
  • a liquid for example, water is used as the nucleophile
  • the amount used is 1 to 30% by weight, preferably 2 to 20% by weight, more preferably 3 to 10% by weight based on the water-absorbent resin powder. It is in the weight range, more preferably in the range of 4 to 8% by weight.
  • the amount of water used increases, not only is it difficult to obtain an effect commensurate with the amount used, but also the absorption capacity under pressure and the absorption speed may be reduced.
  • the water When water is added to the water-absorbent resin powder, the water may be added as mist or moisture, or as water vapor.
  • the present invention further reduces the residual amount of the epoxy group-containing crosslinking agent and improves the absorption rate of the resulting water-absorbing agent powder.
  • the viewpoint of absorption characteristics such as At least one nucleophile selected from nucleophiles in which a nitrogen and / or sulfur atom can be a nucleophilic point is preferably used in the present invention.
  • nucleophiles are absorbed or adsorbed by the water-absorbent resin powder, and are preferably used by being absorbed by the water-absorbent resin powder from the viewpoint of reducing the residual crosslinking agent.
  • at the time of adding these nucleophiles at least one selected from the group consisting of a water-soluble surfactant and a water-soluble polymer, which will be described later, may be added simultaneously or separately. This is more preferable because the absorption rate can be prevented from lowering due to surface crosslinking and the absorption rate can be further improved.
  • nucleophiles used in combination with water include amines, ammonia, ammonium carbonate, sulfite (salt), hydrogen sulfite (salt), thiosulfate (salt), urea from the viewpoint of safety and effect. It is more preferably at least one compound selected from thiourea, and most preferably polyamine and Z or bisulfite (salt).
  • Such compounds include sodium bisulfite, potassium bisulfite, ammonium bisulfite, polyarylamine, poly (diarylamine), and poly (N-alkylarylamine).
  • the amount of the nucleophile used in the volatile liquid, preferably used together with water depends on the remaining amount of the epoxy group-containing crosslinking agent used for crosslinking near the surface.
  • a non-volatile nucleophile usually 0.05 to 10 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the solid content of the water-absorbent resin powder. Parts by weight, more preferably 0.1 to 3 parts by weight.
  • the amount of used halo exceeds 10 parts by weight, it is not only uneconomical, but also easily excessive in order to achieve the optimal effect of reducing the residual cross-linking agent, which is the object of the present invention.
  • the absorption capacity under pressure may be reduced due to the residual agent.
  • the amount is less than 0.005 parts by weight, the improvement of the absorption amount and the absorption rate under high pressure may be insufficient, and the effect of reducing the residual amount of the crosslinking agent may not be obtained.
  • the use amount of the nucleophile is more preferably 0.2 to 2 parts by weight.
  • a hydrophilic organic solvent may be used in addition to water.
  • the hydrophilic organic solvent used may or may not be nucleophilic. Examples thereof include methyl alcohol, ethyl alcohol, ⁇ -propyl alcohol, isopropyl alcohol, ⁇ -butyl alcohol, isobutyl alcohol, and t-butyl alcohol.
  • Low-treated alcohols such as ketones; ketones such as acetone; ethers such as dioxane, alkoxy (poly) ethylene glycol, and tetrahydrofuran; amides such as N, N-dimethylformamide; dimethyl sulfoxide And the like.
  • the amount of the hydrophilic organic solvent used is within the range where the water-absorbent resin powder does not swell, and the optimal amount depends on the type and particle size of the water-absorbent resin. Usually, it is in the range of 0 to 10 parts by weight, preferably less than 5 parts by weight, based on 100 parts by weight of the solid content of the water-absorbent resin powder.
  • the residual crosslinking agent is essentially reduced by adding the nucleophilic agent, and more preferably the absorption rate
  • the improved water-absorbing agent powder of the present invention is also obtained.
  • the reaction between the remaining epoxy group-containing crosslinking agent and the nucleophile is performed within a range that does not affect the absorption characteristics of the water absorbent resin powder.
  • any method can be used as long as the powdered nucleophile is uniformly added to the water-absorbent resin and the reaction can be performed, such as by bringing the water-absorbent resin powder into contact with a solution containing a nucleophile and conducting the reaction. .
  • the reaction is preferably carried out in a short time by auxiliary means such as heating and catalyst addition, if necessary, so as not to adversely affect the absorption characteristics.
  • Apparatuses that can be suitably used for treating a water-absorbing resin powder with a nucleophile include, for example, a fluidized bed mixer, a cylindrical mixer, a screw mixer, and a burizer, a Nowaichi type.
  • heat treatment is preferably performed for about 6 minutes to 100 minutes, preferably for about 10 minutes to 600 minutes, and more preferably for about 20 minutes to 300 minutes.
  • the heat treatment is performed by setting the material temperature of the water-absorbent resin powder such that at least a part of the liquid nucleophile is in contact with the water-absorbent resin powder in a vapor state. It is preferable to perform the heat treatment at a material temperature of the water-absorbent resin powder of 150 ° C. or less, preferably 100 ° C. or less. In addition, heating; When drying at the same time or separately, the final content of the water-absorbent resin powder is at least 90% by weight, more preferably at least 95% by weight in the water-absorbing agent powder, from the viewpoint of physical properties.
  • the nucleophilic agent is water
  • water is added to the carboxyl group-containing water-absorbent resin powder. It is preferable to heat-treat the mixture obtained by the addition in a powder state.
  • the water-absorbent resin powder has a porous structure with a load of 50 cm 2 in which the vicinity of the surface is cross-linked by the epoxy-containing cross-linking agent, the cross-linking agent remains, and at least a part of the particles is foamed.
  • the absorption capacity under physiological pressure in saline was increased to at least 20 g Zg by surface crosslinking.
  • the amount of the remaining crosslinking agent it is possible to reduce the amount of the remaining crosslinking agent by leaving the mixture at room temperature for 10 days or more without heating. If left at room temperature, In a short time, the effect of reducing the residual cross-linking agent is insufficient, so that the water-absorbing resin powder to which moisture is added or not added is allowed to stand until actual use. Specifically, the effect of reducing the residual cross-linking agent is reduced. Therefore, it may be left for at least 10 days, preferably at least 20 days, more preferably at least 30 days.
  • the preferred amount of water at this time is the above-mentioned amount, and the addition of water may be performed at least partially over time by absorbing moisture.
  • the absorption capacity under pressure may decrease, so in order to reduce the residual crosslinking agent efficiently, the nucleophile is divided.
  • the solution be absorbed over time and added repeatedly.
  • the epoxy group-containing crosslinking agent is preferably reduced to 2 ppm or less, more preferably to the detection limit or less (hereinafter referred to as ND).
  • the water-absorbing agent powder thus treated has an absorption capacity under pressure of 20 g Z g or more, more preferably 25 g Z g or more, and has an improved absorption rate. More preferably, these three excellent physical properties are achieved by the method of the present invention.
  • Cleaning refers to contacting a water-absorbent resin powder having a carboxyl group in which an epoxy group-containing cross-linking agent remains with another gas, solid, or liquid cleaning agent capable of removing the cross-linking agent, and then further cleaning agent.
  • This is a method for producing a water-absorbing agent powder that separates the water-absorbing resin powder from the water-absorbing resin powder.
  • the washing is preferably carried out after contacting the water-absorbing resin with a liquid, more preferably after contacting with an organic solvent, more preferably,
  • the mixed solution After contact with a mixed solution comprising water and a hydrophilic organic solvent, the mixed solution is separated from the water-absorbent resin powder.
  • the organic solvent is preferably a solvent having a low boiling point, for example, a boiling point of less than 150, and more preferably less than 100 ° C.
  • a non-aqueous organic solvent such as cyclohexane can also be used.
  • hydrophilic organic solvents such as low ketones such as acetone are preferred.
  • a hydrophilic organic solvent mixed with water to be used a boiling point of less than 150, preferably a boiling point of methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, t-butyl alcohol, etc.
  • Low alcohols having a value of less than 0 are preferably exemplified.
  • the range of the mixing ratio between the water and the hydrophilic organic solvent is selected so that the mixed solution does not swell the water-absorbent resin powder.
  • the mixture ratio depends on the chemical composition of the water-absorbent resin powder, but the weight ratio of the mixture ratio can be easily confirmed by a preliminary test.
  • the ratio of water to the hydrophilic organic solvent is by weight and ranges from water: hydrophilic organic solvent-1 to 50:99 to 50.
  • the amount of the washing liquid used is appropriately determined depending on the amount of the residual cross-linking agent in the water-absorbing resin powder and the washing effect of the washing liquid. Usually, 50 to 200 weight parts per 100 parts by weight of the water-absorbing resin powder is used. Parts by weight, preferably in the range of 100 to 100 parts by weight.
  • the contact when the water-absorbing resin powder is brought into contact with a mixed solution composed of water and a hydrophilic organic solvent, the contact is carried out continuously or discontinuously in a batch. It can be done in a formula manner.
  • the water-absorbent resin powder is brought into contact with a mixed liquid composed of water and a hydrophilic organic solvent with stirring, if necessary, and then the water-absorbent resin powder is applied.
  • a mixed liquid composed of water and a hydrophilic organic solvent with stirring, if necessary
  • the mixed solution is separated by filtration and washed to obtain the water-absorbing agent powder of the present invention.
  • the directions of the water-absorbent resin powder and the washing liquid are co-current and counter-current is not particularly limited, but counter-current is more preferable from the washing effect. In the case of a batch type, the number of times of washing is not particularly limited.
  • the washing time is 15 seconds to 2 hours, preferably 30 seconds to 60 minutes, more preferably 1 to 30 minutes, and the temperature of the liquid or powder during washing is Although it can be widely used from the viewpoint of the cleaning effect, it is preferably used at room temperature, more preferably at 30 to 100 ° C, more preferably at 40 to 80 ° (:, more preferably at 40 to 60 °).
  • the pressure at the time of washing is not particularly limited to pressurized, depressurized and normal pressure, but is usually performed at normal pressure, and the water-absorbent resin powder after washing is further dried if necessary.
  • the residual amount of the ethoxy group-containing crosslinking agent is preferably reduced to 2 ppm or less, more preferably to ND.
  • the water-absorbing agent powder has an absorption capacity under pressure of 20 g Z g or more, preferably 25 g / g or more. More preferably, these properties are achieved by the method of the present invention.
  • a nucleophile and a cleaning agent are used to prevent a reduction in the absorption rate due to surface crosslinking and to further improve absorption.
  • at least one selected from a water-soluble polymer and a surfactant, preferably a water-soluble surfactant is used.
  • the addition may be performed separately from the above-described nucleophilic agent and washing solution, but preferably, the nucleophilic agent and the washing solution are allowed to coexist with a water-soluble surfactant.
  • the artificial urine is 28 times the powder of a carboxyl group-containing water-absorbent resin powder whose surface is crosslinked and which is dried.
  • the water-absorbent resin powder is an irregularly crushed powder having an absorption capacity under a load of 50 g / cm 2 of physiological saline which is increased to at least 20 g Zg by surface crosslinking.
  • the absorption rate is preferably higher than before the addition, preferably at least 0.OSC g / gZ sec), more preferably at least 0.05 (gZgZ sec), even more preferably at least 0.1 (gZg / sec).
  • the addition of the water-soluble surfactant or the water-soluble polymer, and preferably the addition of water allows the absorption under high pressure as compared with before the treatment of the present invention. While maintaining high magnification, the surface This is more preferable because a water-absorbing agent powder in which a decrease in absorption rate due to crosslinking is suppressed can be obtained.
  • a cross-linking agent used for surface cross-linking a cross-linking agent containing an epoxy group is particularly preferable, but other cross-linking agents can be used in combination.
  • HLB Hydrophile Balance
  • a nonionic or anionic surfactant is used, and more preferably, a nonionic surfactant is used.
  • the amount of the surfactant to be used is usually 0.01 to 2 parts by weight, preferably 0.01 to 1 part by weight, more preferably 0.1 to 1 part by weight, per 100 parts by weight of the water-absorbent resin powder. It is in the range of 0.2 to 0.5 parts by weight. If the amount is less than 0.001 part by weight, no effect is obtained by the addition. If the added amount is more than 2 parts by weight, not only the absorption rate improvement effect commensurate with the added amount cannot be seen, but also the absorption capacity under pressure may decrease rather, so care must be taken.
  • water-soluble polymer examples include water-soluble polymers such as starch, methylcellulose, carboxymethylcellulose, hydroquinethylcellulose, polyalkylenoxide, polyacrylic acid, and polyacrylate.
  • water-soluble polymers such as starch, methylcellulose, carboxymethylcellulose, hydroquinethylcellulose, polyalkylenoxide, polyacrylic acid, and polyacrylate.
  • a nonionic or anionic water-soluble polymer is preferably exemplified.
  • the surfactants used in the above-mentioned surfactants include fatty acid salts such as sodium oleate and castor oil, sodium lauryl sulfate, and ammonium lauryl sulfate.
  • Alkylsulfonate such as sodium salt, sodium dodecylbenzenesulfonate, etc., alkylbenzenesulfonate, alkylnapht noirsulfonate, dialkylsulfosuccinate 3 ⁇ -acid salts, alkyl phosphate salts, condensed naphthalenesulfonic acid formalin, polyoxyethylene alkyl sulfate salts, and the like.
  • nonionic surfactants used in the above-mentioned surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, and polyoxinsorby resin.
  • examples include acid-proof esters, polyoxyethylene alkylamines, fatty acid esters, and oxyethylene-oxypropylene block polymers.
  • Examples of the cationic surfactant used for the above-mentioned surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, lauryltrimethylammonium chloride, and stearinolate trimethylethyl. Quaternary ammonium salts such as ammonium chloride
  • amphoteric surfactant examples include lauryl dimethyl amine oxide and the like.
  • a water-absorbent resin powder containing a carboxyl group-containing cross-linked surface and dried is used.
  • atypical-pulverized water-absorbent resin powder was enhanced by surface crosslinking to the load 5 0 least absorption capacity under a load for the physiology saline in g / cm 2 2 0 g Z g,
  • the absorption rate (gZg / sec) defined by the 28-fold swelling time of the artificial urine at the end of the water-absorbing resin is sufficient to increase the absorption rate of the water-absorbing resin powder after surface crosslinking.
  • the present invention also provides a method for producing a water-absorbing agent powder to which at least one selected from a water-soluble surfactant and a water-soluble polymer is added.
  • the method for producing a water-absorbing agent powder of the present invention also includes a novel water-absorbing agent powder.
  • the present invention provides a novel water-absorbing agent powder that satisfies three contradictory physical properties (improved absorption capacity under pressure, improved absorption rate, and reduced amount of residual epoxy cross-linking agent) that have not been achieved conventionally.
  • the water-absorbing agent powder obtained according to the present invention is at least partially a porous water-absorbing resin powder, and despite having a large surface area, the conventional 1 / number 10 to 1 Z number 100 Shows a low residual cross-linking agent amount.
  • the water-absorbing agent powder of the present invention is a porous water-absorbing resin powder, and the surface of the water-absorbing resin resin powder is cross-linked by an epoxy group-containing cross-linking agent. It is a novel water-absorbing agent powder in which the residual amount of the crosslinking agent is 2 ppm or less, preferably reduced to ND.
  • the physical properties of the water absorbing agent powders, Te absorbency odor with saline, preferably, the load 5 0 absorbency gZ cm 2 become under pressure 2 0 gm l or more, more preferably 2 5 g / m 2 or more, and the absorption capacity under no pressure is 35 gZg or more.
  • These water-absorbing agent powders preferably have a BET specific surface area of the resin powder as a precursor resin of 0.025 m 2 Zg or more in the particles having a particle diameter of 300 to 600. properly is 0. 0 3 m 2 Zg or more, more preferably more than 0. 0 4 m 2 / g, absorption speed, which is defined by the present Akiratsumugi specification is 0.4 or more (gZgZ sec), preferably Is above 0.7 (gZg / sec).
  • the present invention not only the amount of the residual crosslinking agent can be remarkably reduced due to the treatment effect of the nucleophilic agent, but also a water-absorbing agent powder exhibiting excellent absorption characteristics without impairing characteristics such as absorption capacity under high pressure is obtained. It is possible to obtain a highly safe water-absorbing agent powder that is excellent in water absorption characteristics and is optimal for application to sanitary materials. It is.
  • Compounds such as deodorants, fragrances, inorganic powders, foaming agents, pigments, dyes, hydrophilic short fibers, plasticizers, binders, surfactants, and fertilizers are added to the water absorbing agent powder obtained in the present invention.
  • a new function may be added by adding.
  • the water-absorbing agent powder of the present invention may be further molded.
  • Granulation methods are exemplified in U.S. Pat. No. 4,734,478, European Patent 0,450,922, and European Patent 4,800,31. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows an apparatus used in the present invention for measuring the absorption capacity under high pressure.
  • FIG. 2 is a drawing substitute photograph showing the particle structure of the powder of the precursor resin (300 to 600 ⁇ m) of Reference Example 1 by an electron microscope photograph (50 times magnification).
  • FIG. 3 is a drawing substitute photograph showing the particle structure of the powder of the precursor resin (300 to 600 / m 2) of Reference Example 2 by an electron micrograph ( ⁇ 50).
  • FIG. 4 is a photograph substituted for a drawing showing the particle structure of the powder of the precursor resin (300 to 600; zm) of Reference Example 3 by an electron micrograph ( ⁇ 50).
  • 0.2 g of the water-absorbing agent powder is evenly placed in a non-woven tee bag (40 mm x 15 O mm), and placed in a 0.9% by weight aqueous sodium chloride solution (physiological saline). Immersed. After 60 minutes, the tee-bag type bag was pulled out, drained for a certain period of time, and then the weight W1 of the tee-bag type bag was measured. Perform the same operation without using the water-absorbing agent powder, find the blank weight W0 at that time, subtract the value of W0 from the value of W1, and divide that value by the initial weight (0.2 g) of the water-absorbing agent powder. Then, the absorption capacity under no pressure (gZg) was obtained.
  • aqueous sodium chloride solution physiological saline
  • the measuring device comprises a balance 1, a container 2 having a predetermined volume placed on the balance 1, an outside air suction pipe 3, a conduit 4, a glass filter 6, and It consists of a measurement section 5 placed on the Phil evening 6.
  • the container 2 has an opening 2a at the top and an opening 2b at the lower part of the side surface.
  • the outside air suction pipe 3 is fitted into the opening 2a, while the opening 2b A conduit 4 made of silicone resin is attached to the tube. Further, a predetermined amount of physiological saline 12 is charged into the container 2. The lower end of the outside air suction pipe 3 is submerged in the physiological saline solution 12. The outside air suction pipe 3 is provided to keep the pressure inside the container 2 at substantially atmospheric pressure.
  • the glass filter 6 is formed, for example, to have a diameter of 55 mm, and is attached to the ⁇ -port portion 8 so as to close the upper end opening of the rotor portion 8.
  • the measuring section 5 includes a filter paper 7, a support cylinder 9, a wire mesh 10 attached to the bottom of the support cylinder 9, and a columnar weight 11.
  • the support cup 9 has the same inner diameter as the upper end opening of the rotor 8.
  • the weight 11 can slide in the support cylinder 9 along the axial direction of the support cylinder 9.
  • the measuring section 5 includes a paper 7 and a support cylinder 9 (that is, a wire mesh 10) placed in this order on a glass filter 6, and a weight 11 inside the support cylinder 9, that is, a wire mesh 10. It is located.
  • the wire mesh 10 is made of stainless steel and is formed in a mesh of 400 (mesh size: 38 ⁇ m).
  • the height of the upper surface of the wire mesh 10, that is, the height of the contact surface between the wire mesh 10 and the water-absorbing agent powder 15 is set to be equal to the height of the lower end surface 3 a of the outside air suction pipe 3.
  • a predetermined amount and a predetermined size of the water-absorbing agent powder are uniformly spread on the wire mesh 10.
  • the weight is set so that a load of 50 g Z cm 2 can be uniformly applied to the wire mesh 10, that is, the water absorbing agent powder 15. Weight has been adjusted.
  • the absorption capacity of the water-absorbing agent powder to be tested was measured under ⁇ pressure.
  • the measuring method will be described below.
  • a predetermined amount of physiological saline 12 is put into the container 2.
  • a predetermined preparation operation such as fitting the outside air suction pipe 3 into the container 2 was performed.
  • paper 7 was planted on the glass filter 6.
  • 0.9 g of the water-absorbing agent powder is evenly sprayed on the inside of the support cylinder 9, that is, on the wire mesh 10, and the weight 11 is placed on the water-absorbing agent powder 15.
  • the wire cylinder 10 that is, the support cylinder 9, on which the water-absorbing agent powder 15 and the weight 11 are placed, is placed on the paper 7 so that the center axis thereof coincides with the center axis of the glass filter 6. It was placed on the above glass filter.
  • the weight of the physiological saline 12 absorbed by the water-absorbing agent powder was obtained from the measured value of the ceiling 1 over 60 minutes with time.
  • the same operation was performed without using the water-absorbing agent powder 15, and the blank weight, that is, the weight of the physiological saline absorbed by the filter paper 7 etc. other than the water-absorbing agent powder was determined from the measured value of the balance 1. Value.
  • the absorption capacity (g / g) of the water-absorbing agent powder 15 under high pressure is corrected (subtracted) by the blank value, and the weight of the physiological saline 12 actually absorbed by the water-absorbing agent powder 15 is calculated as follows. It was calculated by dividing by the initial weight (0.9 g) of the water-absorbing agent powder.
  • the same operation was performed by adding a known amount of cross-linking agent without using the water-absorbing agent powder.
  • the obtained calibration curve was used as an external standard, and the residual amount in the water-absorbing agent powder was considered in consideration of the dilution ratio of the filtrate.
  • the amount of the surface filler (ppm) was determined.
  • 0.358 g of a water-absorbing agent powder (300-850 zm fraction) was sprayed on a glass test tube (height: 126 mm) having an inner diameter of about 14.1 mm.
  • 10.0 g of artificial urine set to a temperature of 25 ° C was injected at once from the top center of this product, and 10 g of the artificial urine was visually observed to be 0.358 g of the water-absorbing agent powder.
  • the number of seconds until the gel was completely absorbed and became a 28-fold swollen (g / g) gel was measured. 28 times (g Zg) was divided by this number of seconds to obtain the absorption rate (gZgZ sec).
  • the higher the value the higher the absorption rate.
  • the artificial urine contained 0.2% by weight of sodium sulfate, 0.2% by weight of potassium chloride, 0.05% by weight of magnesium chloride hexahydrate, and 0% by weight of calcium chloride dihydrate.
  • Aqueous solution containing 0.25% by weight of dihydrogen phosphate and 0.085% by weight of dihydrogen phosphate and 0.015% by weight of dihydrogen phosphate .
  • the specific surface area is the precursor tree sorted to 300 to 600 / m by J1S standard sieve.
  • the fat powder was degassed by pressing at 150 ° C for 40 minutes, and then measured by the specific surface area by the BET (Brunauer-Bmmett-Teller) adsorption method using krypton gas as a standard gas while cooling with liquid nitrogen.
  • BET Brunauer-Bmmett-Teller
  • the water-soluble polymer eluted from the water-absorbing resin powder that is, the water-soluble component, is measured by measuring the amount of water-soluble polyanion derived from the polymer in the resulting liquid by colloid titration. did.
  • the dried product was pulverized using a lumilum, and further divided by using a mesh to obtain a precursor resin (A).
  • the precursor resin (A) is an irregularly crushed resin having an average particle diameter of 360 / m and a resin having a particle diameter of less than 150 zm in a ratio of 5% by weight and a water content of 6% by weight.
  • the precursor resin (A) is an irregularly crushed resin having an average particle diameter of 360 / m and a resin having a particle diameter of less than 150 zm in a ratio of 5% by weight and a water content of 6% by weight.
  • the water-soluble component in the precursor resin (A) is less than 10%. Bubbling was not observed in the precursor resin (A) by electron microscopy.
  • the BET specific surface area of the 300 to 600 m particles in the precursor resin (A) was 0.018 m 2 / g.
  • An electron micrograph of the non-porous irregularly crushed particles (300 to 600 / m), which is the precursor resin (A), is shown in FIG. 2, and its physical properties are shown in Table 1.
  • Precursor resin (A) 4 4 1 1 (unused) 0.3 1 Precursor resin (B) 5 2 9 (unused ) 0, 30 Precursor resin (C) 458 (unused) 0.72 Precursor resin (D)-448 (unused) 0.65
  • Water absorbent resin (1) 4 0 2 2 1 3 0 0 .2 2 Water absorbent resin (2) 4 3 2 6 4 0 0.0.28 Water absorbent resin (3) 3 8 2 4 7 0 0.70 Water absorption Water-soluble resin (4) 3 7 2 3 6 0 0.65 Water-absorbent resin C5) 3 0 1 5 3 0.30
  • An internal crosslinking agent was added to 5500 g (monomer concentration: 33%) of a monomer aqueous solution of sodium acrylate having a neutralization ratio of 75 mol as a monomer used for polymerization.
  • a mixed solution was prepared by dissolving 0.9 g (0.045 mol) of polyethylene glycol (n8).
  • the hydrogel polymer obtained by the above polymerization reaction was a porous gel-like polymer containing bubbles having a diameter of about 1 to 2 mm.
  • the dried product was pulverized using a roll mill, and further separated by an 85 mesh to obtain a precursor resin (B).
  • the precursor resin (B) had an average particle diameter of 330 m and had an irregular crushed shape in which the ratio of resin particles having a particle diameter of less than 150 m was 8% by weight and the water content was 6% by weight.
  • the precursor resin (B) had an average particle diameter of 330 m and had an irregular crushed shape in which the ratio of resin particles having a particle diameter of less than 150 m was 8% by weight and the water content was 6% by weight.
  • the water-soluble content of the precursor resin (B) was less than 10%.
  • the BET specific surface area of 300 to 60 abalone in the precursor resin (B) is 0.02
  • a monomer to be used for polymerization As a monomer to be used for polymerization, a monomer aqueous solution of sodium acrylate having a neutralization ratio of 75 mol% (550 g, unit amount) 34.9% (0.08 mol%) of Trimethicone-to-Luppan Pan Reactylate as an internal vehicle.
  • a foaming agent 4 g of the above-mentioned 2 ⁇ 2′-azobis (2-methylpropionamidine) 2-acrylate complex was uniformly dispersed, and as in Reference Example 2, ammonium persulfate and L-ascorbic acid were added. Was added.
  • the resulting hydrogel polymer contained a large number of air bubbles having a particle size of about 100 / m or less uniformly.
  • the hydrogel polymer is a porous gel polymer that exhibits white color due to foamed cells.
  • the hydrated gel polymer was cut to about 5 to 1 Omm, and the granulated product was spread on a wire mesh of 300 / zm (50 mesh), and then dried.
  • the resultant was dried with hot air at 60 ° C. for 60 minutes.
  • the dried product is pulverized using a mouth mill, The mixture was further classified with an 85-mesh to obtain a precursor resin (C).
  • the precursor resin (C) had an average particle size of 300 m and an irregular type crushing in which the ratio of the resin having a particle diameter of less than 150; / m was 8% by weight and the water content was 6% by weight. Shape.
  • the water-soluble content of the precursor resin (C) was less than 10%.
  • the specific surface area of 300 to 600 lactose was 0.04 m 2 / g.
  • the precursor resin (C) was found to be uniformly foamed and porous, as observed by electron microscopy.
  • Fig. 4 shows an electron micrograph showing the particle structure of the porous irregularly crushed abalone (300-600 zm), which foamed uniformly and its physical properties are shown in Table 1. .
  • the foaming agent was changed to 50 g of sodium carbonate, and 2 g of boroxyethylene sorbitan monostearate and 10 g of hydroxyxethyl cellulose were used as a dispersing aid for the foaming agent.
  • the blowing agent was uniformly dispersed in the aqueous monomer solution.
  • the obtained hydrogel polymer contained a large number of air bubbles having a particle size of about 100 / im or less uniformly.
  • the porous gel polymer was white.
  • the hydrated gel polymer was cut into a size of about 5 to 10 mm, and then dried, pulverized, and analyzed in the same manner as in Reference Example 3 to obtain a precursor resin (D).
  • the precursor resin (D) is an irregular crushed resin having an average abductor diameter of 360 zm, a resin having a particle diameter of less than 150 m is 8% by weight, and a water content of 6% by weight. there were.
  • the water-soluble content of the precursor resin (D) was 10%.
  • BET of 300 to 600 m particles in the precursor resin (D) The specific surface area was 0.03 m 2 .
  • the precursor resin (D) was found to be uniformly foamed throughout the particles by observation with an electron microscope and was porous. Table 1 shows the physical properties of the precursor resin (D).
  • Precursor resin (D) 10 in which all of the particles obtained in Reference Example 4 are uniformly porous. 0 parts, Echirenguri Korujiguri sheet Jill ether 0.1 5 parts as a crosslinking agent having an epoxy group, 4 parts of water, mixing the cross-linking agent solution consisting of 1 part of ethyl alcohol, the resulting mixture in 1 2 0 e C Heat treatment was performed for 40 minutes to obtain a water-absorbent resin powder (4).
  • the physical properties are shown in Table 1.
  • the amount of the crosslinking agent having an epoxy group was reduced and the amount of water was increased. That is, to 100 parts of the non-porous precursor resin (A) obtained in Reference Example 1, 0.01 part of ethylene glycol diglycidyl ether, 40 parts of water, and 10 parts of iso-pi-panol The resulting mixture was subjected to a heat treatment at 120 ° C. for 40 minutes to obtain a water-absorbent resin powder (5). As shown in Table 1, the obtained water-absorbent resin powder (5) was inferior in various physical properties, especially in the absorption capacity under high pressure, when the amount of the residual cross-linking agent after the surface cross-linking was small.
  • the water-absorbing agent powder (1) has an absorption capacity under no pressure of 38 gZg, an absorption capacity under high pressure of 21 gZg, and a residual cross-linking agent (ethylene glycol diglycidyl ether) content of 1 ppm. there were.
  • Table 2 also shows the results of these physical properties.
  • Table 2 Water absorption tower at the time of treatment Residual absorption under pressure Water absorption agent Water absorption agent
  • Water-absorbing agent powder (7) 4 0 4 4 1 0 1 0.25
  • the notation of ND in Table 2 above indicates that it is below the detection limit.
  • continuous mixing was difficult with the comparative water-absorbing agent powder (6).
  • a water absorbing agent powder was prepared in the same manner as in Example 1 except that 5 parts of a 30% aqueous sodium bisulfite solution was absorbed as a nucleophile in place of the 30% aqueous polyethyleneimine solution in Example 1. (2) was obtained.
  • the water-absorbing agent powder (2) has an absorption capacity of 41 g / g under no pressure.
  • the absorption capacity under high pressure is 22 g / g, and no residual ethylene glycol diglycidyl ether is detected. there were.
  • Table 2 also shows the results of these physical properties.
  • the water absorbing agent powder (5) was prepared in the same manner as in Example 4 except that 2 parts of water was further added and the amount of water added as a nucleophile was 5 parts in total. Obtained. Table 2 shows the physical properties of the water-absorbing agent powder (5).
  • a water-absorbing agent powder (6) was obtained in the same manner as in Example 4, except that the addition amount of water as a nucleophile was changed to 10 parts.
  • Table 2 shows the physical properties of the water-absorbing agent powder (6).
  • a water-absorbing agent powder (9) was obtained in the same manner as in Example 8, except that the amount of propylene glycol as a nucleophile was changed to 15 parts.
  • Table 2 shows the physical properties of the water-absorbing agent powder (9).
  • a comparative water-absorbent powder was prepared in the same manner as in Example 6 except that the powder temperature of the water-absorbent resin powder (2) to which the nucleophile was added was changed from 60 ° C in Example 6 to 20 ° C. (6) was obtained.
  • the nucleophile was continuously mixed with the water-absorbent resin powder, the supplied resin gradually aggregated, and the mixing became non-uniform.
  • Table 2 shows the physical properties of the finally obtained comparative water-absorbing agent powder (6). Compared with the water-absorbing agent powder (6) obtained in Example 6, the comparative water-absorbing agent powder (6) had clearly more aggregates and lower physical properties.
  • the water-absorbent resin powder (2) was treated in a gel state by changing the amount of the nucleophile added to 100 parts in Example 6 in which the treatment was performed in a powder state.
  • the same water-absorbing agent powder (7) was obtained by heat-treating as in 6, and passing through a 85-mesh sieve.
  • Table 2 shows the physical properties of the comparative water-absorbing agent powder (7) obtained.
  • the comparative water-absorbing agent powder (7) had almost the same reduction effect of the residual cross-linking agent as in Example 6 in which the powder was treated, but the absorption capacity under high pressure was significantly inferior.
  • Example 6 the powder temperature of the water-absorbent resin powder added a nucleophile from 6 0 e C conducted in Example 6, is performed in the same manner except that the 9 0, the water-absorbing agent powder (1 1) Obtained.
  • the mixing property of the nucleophile in the water-absorbent resin powder was determined at 20 ° C. Was much better than Comparative Example 5 performed at 60 ° C, but was slightly inferior to Example 6 performed at 60 ° C.
  • Table 2 shows the physical properties of the water-absorbing agent powder (11) thus obtained.
  • the water-absorbing agent powder (11) was slightly inferior to Example 6 in the absorption capacity under high pressure and the effect of reducing the residual crosslinking agent.
  • Example 6 the powder temperature of the water-absorbent resin powder to which the nucleophile was added was 60 in the same manner as in Example 6, except that the temperature was changed to 13 O'C.
  • Example 12 was obtained. Although mixing of the nucleophile to the water-absorbent resin powder is from Comparative Example 5 was carried out in KonaAtsushi 2 0 ° C was far superior, slightly than Example 1 1 was carried out in 9 0 e C Was inferior. Table 2 shows the physical properties of the obtained water-absorbing agent powder (11). The water absorbing agent powder (11) was slightly inferior to Example 6 in the absorption capacity under high pressure and the effect of reducing the residual crosslinking agent.
  • Table 2 shows the physical properties of (13).
  • the water-absorbing agent powder (15) was used.
  • Table 2 shows the physical properties of the water absorbing agent powder (15).
  • Example 13 in addition to 8 parts of water as a nucleophile, 2 parts of caustic soda were additionally used, and 0.1 part of sodium polyoxyethylene lauryl ether sulfate was added. In the same manner as in Example 13, a water-absorbing agent powder (16) was obtained. Table 2 shows the physical properties of the water-absorbing agent powder (16).
  • the method for producing a water-absorbing agent powder of the present invention is to reduce a residual bridge by adding a nucleophile in a heated powder state to a conventional water-absorbing resin powder whose surface is crosslinked.
  • a nucleophile in a heated powder state to a conventional water-absorbing resin powder whose surface is crosslinked.
  • the absorption capacity under no pressure is high, and the absorption capacity under high pressure is also excellent, and the highly reactive epoxy group-containing crosslinking agent does not remain in the water-absorbing agent powder.
  • Disposable diapers and sanitary napkins have characteristics such as liquid diffusibility, difficulty in moving and falling off from pulp, etc.
  • a water-absorbing agent powder particularly suitably used for sanitary materials such as pukin can be obtained easily and stably.
  • the water-absorbing agent powder of the present invention has a high absorption capacity under no pressure and an extremely excellent absorption capacity under high pressure, and a reactive epoxy group-containing crosslinking agent remains in the water-absorbing agent powder. It is particularly suitable for use in sanitary materials such as disposable diapers and sanitary napkins because it has high absorption rate, liquid diffusibility, and difficulty in moving or falling off pulp.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dispersion Chemistry (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書 吸水剤粉末およびその製造方法 技術分野
本発明は、 吸水剤粉末およびその製造方法に関するものであり、 更に 詳しくは、 高加圧下においても無加圧下と同様に高い吸収倍率を示し、 かつ、 架橋剤が樹脂中に残存せず安全性に優れ、 しかも、 高い吸収速度 を有した、 衛生材料に好適な吸水剤粉末、 およびそれを提供するための 製造方法に閩するものである。 背景技術
近年、 吸水性樹脂が、 紙ォムッ、 生理用ナブキンなどの衛生材料の構 成材料の一- 3として輻広く利用されている。 吸水性樹脂の目的は、 排出 された尿や血液等の体液を吸収させて、 保持するこ とにより、 上記体液 に起因する衣料などの汚染を防止するこ とである。
上記吸水性樹脂としては、 例えば、 ボリアク リル酸部分中和物架橋体 (特開昭 5 5 — 8 4 3 0 4号、 特開昭 5 5 — 1 0 8 4 0 7号、 特開昭 5 5 - 1 3 3 4 1 3号) 、 澱粉一アク リ ロニ ト リ ルのグラフ ト重合体の加 水分解物 (特公昭 4 6 - 4 3 9 9 5号) 、 澱粉ーァク リル酸のグラフ ト 重合体の中和物 (特開昭 5 1 一 1 2 5 4 6 8号) 、 酢酸ビニル—ァク リ ル酸エステル共重合体のゲン化物 (特開昭 5 2— 1 4 6 8 9号) 、 カル ボキシメチルセルロース架橋体 (米国特許第 4 6 5 0 7 1 6号、 米国特 許第 4 6 8 9 4 0 8号) 、 アタ リロニト リル共重合体もしくはアク リル 了ミ ド共重合体の加水分解物 (特開昭 5 3— 1 5 9 5 9号) またはこれ らの架橋体、 カチオン性モノ マ一の架橋重合体 (特開昭 5 8 — 1 5 4 7 0 9号、 特開昭 5 8 - 1 5 4 7 1 0号) 、 架橋イ ソブチレン—無水マレ イン酸共重合体 (米国特許第 4 3 8 9 5 1 3号) 、 2—アク リルアミ ド — 2 -メチルプロパンスルホン酸とァク リル酸の共重合架橋体 (欧州特 許第 0 6 8 1 8 9号) などが知られている。
上記の吸水性樹脂に望まれる特性としては、 水性液体に接した際の髙 い吸収倍率や優れた吸収速度、 通液性、 膨潤ゲルのゲル強度、 水性液体 を含んだ基材から水を吸い上げる吸引力、 少ない残存モノ マー (米国特 許第 4 7 9 4 1 6 6号) 等が挙げられる。
しかしながら、 上記従来の吸水性樹脂では、 これらの特性間の関係は、 必ずしも正の相関閬係を示さず、 例えば、 吸収倍率の高いものほど通液 性、 ゲル強度、 吸収速度等の物性は低下してしまうという問題が生じて いる。
そこで、 この様な吸水性樹脂の吸水諸特性をバラ ンス良く改良する方 法として吸水性樹脂の表面近傍を、 架橋剤によって、 さらに架橋する技 術が知られている。 上記方法としては、 これまでに、 下記に示すように、 様々な方法が提案されている。
例えば、 架橋剤として、 多価アルコールを用いる方法 (特開昭 5 8— 1 8 0 2 3 3号、 特開昭 6 1 - 1 6 9 0 3号) 、 多価グリ シジル化合物、 多価アジ リ ジン化合物、 多価ア ミ ン化合物、 多価イ ソシァネー ト化合物 を用いる方法 (特開昭 5 9 - 1 8 9 1 0 3 /米国特許第 4 6 6 6 8 9 3 号) 、 グリオキサールを用いる方法 (特開昭 5 2— 1 1 7 3 9 3号) 、 多価金属を用いる方法 (特開昭 5 1 - 1 3 6 5 8 8号、 特開昭 6 1 一 2 5 7 2 3 5号、 特開昭 6 2 — 7 7 4 5号) 、 シラ ンカップリ ング剤を用 いる方法 (特開昭 6 1一 2 1 1 3 0 5号、 特開昭 6 1 - 2 5 2 2 1 2号. 特開昭 6 1 — 2 6 4 0 0 6号) 、 モノエポキシ化合物を用いる方法 (特 開平 4 — 8 7 '6 3 8号) 、 エポキシ基含有高分子を用いる方法 (米国特 許第 4 7 5 8 6 1 7号) 、 エポキシ化合物とヒ ドロキシ化合物を用いる 方法 (特開平 2— I 3 2 1 0 3号) 、 アルキレ ン力一ボネー トを用いる 方法 (D E — 4 0 2 0 7 8 0 ) 等が知られている。
また、 架橋反応時に、 不活性無機粉末を存在させる方法 (特開眧 6 0 一 1 6 3 9 5 6号、 特開昭 6 0 — 2 5 5 8 1 4号) 、 二 ffiアルコールを 存在させる方法 (特開平 1 — 2 9 2 0 0 4号) 、 水とェ—テル化合物を 存在させる方法 (特開平 2 - 1 5 3 9 0 3号) 、 水溶性ポリマ一を存在 させる方法 (特開平 3 — 1 2 6 7 3 0号) 、 1価アルコールのアルキレ ンォキサイ ド付加物、 有機酸塩、 ラクタ厶等を存在させる方法 (E P — 5 5 5 6 9 2号, 米国特許第 5 3 2 2 8 9 6号) 、 2 5 0 m以上の粒 子が 9 0重暈%以上の吸水性樹脂を加熱して表面架橋剤と混合する方法 (特開平 7 - 2 2 4 2 0 4号) 、 還元剤と表面架橋剤を混合する方法 〔 米国特許第 5 3 8 2 6 1 0号) も知られている。
さらに、 表面近傍を架橋した後の粒子に対する更なる改良のために、 該拉子を水性液で造粒 (米国特許第 5 3 6 9 1 4 8号) したり、 分子量 2 0 0 0以上のカチオン性ボリマ一高分子量を添加し繊維基材へ固定化 したりする方法 (米国特許第 5 3 2 8 2 6 1 0号) も知られている。
なお、 その他、 本願優先出願日 ( 9 5年 7月 7 日) より前に出願され 9 5年 8月 2 3 曰に公開された技術 (E P - 6 6 8 0 8 0号) には、 表 面架橋に、 有機酸/無機酸 Zポリ了ミ ノ酸を添加する方法が開示されて いる。
これら公知の方法によれば、 吸水性樹脂の諸物性のバランスの改良は なされるものの、 上記諸物性の向上はいまだに十分とはいい難い。 よつ て、 上記吸水性樹脂に対し、 さらなる高品質化が求められているのが実 状である。
特に近年、 従来からの吸水性樹脂の基本物性の一つである無加圧下で の吸収倍率を高く維持したまま、 加圧下での吸収特性、 特に加圧下の吸 収倍率に優れた吸水性樹脂が求められるようになってきた。
とりわけ、 最近では、 高荷重下でも、 その吸収倍率を維持できるよう な、 高加圧下 (例えぱ、 5 0 g Z c n^ ) での吸収倍率に優れる吸水性 樹脂へのニーズも高まりつつある。 上記の高荷重下とは、 体重 1 O K g 程度の赤ちゃんのみならず、 大人用紙おむつ用にも用いられる様に、 よ り体重の重たい人が吸水性樹脂を含む衛生材料を用いた場合に生じる条 件である。
よって、 上記ニーズのために、 吸水性樹脂の表面近傍の架橋処理の役 割がさらに重要となりつつある。 このニーズへの対応のため、 例えば、 表面近傍の架橋の程度をこれまで以上に高めることが必要となる。 その ために、 表面架橋剤の使用量を増加させる、 あるいは、 より表面近傍の みを均一に架撟するために、 架撩剤と同時に添加する水分量や溶媒量を 少なく制限するという場合が多くなつてきている。
しかし、 このような場合には、 用いられる架橋剤が樹脂表面に残存し やすいという問題がある。 使用する架橋剤が多価アルコールのごとき反 応性の低く且つ安全性の高いものである場合には問題は無い。
しかしながら、 架橋剤がエポキシ化合物のごとき反応性の高いものの 場合には、 表面近傍の架橋が迅速に起こ り易く且つ物性面でも優れたも のが得易い反面、 架橋剤それ自体が皮虜刺激性を有し、 樹脂中に多く残 存したときに、 衛生材料への応用を考えると、 安全性の面から新たな問 題を生じる。 すなわち、 従来の吸水性樹脂では、 エポキシ化合物が数 1 0〜 1 0 0 O p p mォ一ダ一で残存することが多く見られた。
これまでに、 表面近傍を架橋させる架撟剤の樹脂中の残留量を低減す るため、 1 0〜 3 0 %という高い特定の含水率下で含水ゲル状樹脂の表 面近傍の架橋を開始し、 反応途中にさらに特定量の水を添加する方法 ( 特開平 3 — 1 9 5 7 0 5号) が知られている。
しかし、 このような方法はプロセス的にも複雑になるのみならず、 高 い含水率のため表面架橋剤が粒子内部まで浸透してしまい、 結果として、 髙加圧下における吸収倍率が不足するのみならず、 無加圧下での吸収倍 率が低下し、 しかも、 その残存架橋剤量の低弒も十分なものではなかつ た。 換言すれば、 残存架橋剤量の低減と、 高加圧下の吸収倍率の向上と は、 互いに二律背反するものであることが本発明者らにより明らかとな つたのである。
また、 近年、 おむつなどの吸収体の薄型化や高性能化のため、 上記吸 収体からパルプなどの繊維基材を減らし、 且つ吸水性樹脂の量を増加さ せる、 いわゆる、 吸水性樹脂の高濃度化の傾向にある。 しかし、 おむつ を高濃度化する場合、 吸水性樹脂は一般にパルプに比べて吸収速度が劣 るため、 吸水性樹脂に対し、 吸収速度の改善がより求められることにな 。
そこで、 吸水性樹脂を高吸収逨度にするためには、 吸水性樹脂の表面 積を増加させる必要性が生ずるが、 拉子怪を単に小さ くするだけでは通 液性が低下してしまう。 このため、 拉子径を小さくせずに表面積を大き くする方法として、 吸水性樹脂を粉砕して不定型破砕状にしたり、 さら には、 発泡させたりする方法が知られている。
また、 さらに、 このように発泡した、 多孔質の吸水性樹脂の丟面を架 橋処理し、 吸収速度と加圧下の吸収倍率を向上させる技術も知られてい る (米国特許第 5 3 9 9 5 9 1号) 。
しかし、 このような発泡した、 多孔質の吸水性樹脂の表面架橋を行い、 高加圧下の吸収倍率を高めよう とした場合には、 その広い表面積のため、 より多く の表面架棕剤の添加が必要となり、 また、 拉子への均一な表面 架橋剤の添加が困難である。 このため、 結果として、 表面架橋剤が従来 より残存し易くなることが判明した。 つまり、 近年、 吸水性樹脂に強く 求められている吸収速度の向上と、 表面架橋剤の残存量の低減とも互い に相反するものであることが判明した。
また、 髙加圧下での吸収倍率を得るには、 一般に、 上記したように表 面架撟剤を従来より増加すればよい場合があるが、 かかる場合、 表面近 傍の架橋密度が高すぎて、 かえって吸収速度が低下する場合があること も判明した。
つまり、 従来、 表面架橋によって吸収速度が向上することはよく言わ れていたが、 より重い体重にも耐える髙加圧下 (例えば、 5 0 g Z c m 2 ) での吸収倍率を十分向上させるまで、 エポキシ基含有架橋剤で表面架 橋を行うと、 表面架橋前の吸水性樹脂に比べて、 かえって、 本発明で規 定された吸収速度は低下する場合があることも判明した。 すなわち、 高 加圧下での吸収倍率の向上と、 吸収速度の向上との間も互いに相反する 場合があることも見いだされた。 以上、 本発明者らは、 今回、 ( 1 ) より重い体重にも対応した 「高加 圧での吸収倍率」 の向上と 「残存エポキシ架檎剤量」 の低減とが互いに 相反し、 ( 2 ) 高い比表面積による 「吸収速度」 の改善と 「エポキシ架 橋剤残存量」 の低減とが互いに相反し、 ( 3 ) 「高加圧での吸収倍率 J の向上と 「吸収速度」 の改善とが互いに相反する場合がある、 という問 題を新たに見いだした。
そこで、 本発明の目的は、 「高加圧での吸収倍率」 の向上と、 「ェポ キシ架橋剤残存量」 の低減と、 「吸収速度」 の改善との 3つを同時に満 足する新規な吸水剤粉末およびその製造方法を提供することにある。 発明の開示
本発明者らは、 上記目的を達成すべく鋭意検討した結果、 エポキシ基 含有の架橋剤でその表面近傍が変性されてなり、 かつ該架橋剤が樹脂中 に残存してなる力ルポキシル基を有する吸水性樹脂を、 特定の化合物で 処理することにより、 高加圧下での吸収倍率などの吸収諸特性を高く維 持したまま、 且つ架橋剤の残存量が著しく低減された、 高吸収速度の吸 水剤扮末が簡便に得られることを見い出し、 本発明を完成させるに至つ た。
即ち、 本発明の吸水剤粉末の製造方法は、 エポキシ基含有の架橋剤に より表面近傍が架橋され、 且つ、 該架檨剤が残存しているカルボキシル 基含有の吸水性樹脂扮末に対して、 加熱された粉末状態にて求核剤を添 加して残存した架橋剤を低減することを特徴としている。
本発明の吸水剤粉末の製造方法は、 エポキシ基含有の架橋剤により表 面近傍が架橋され、 且つ該架撟剤が残存しているカルボキシル基含有の 吸水性樹脂粉末に対して、 洗浄を行い残存架橋剤を低減することを特徴 としている。
本発明の吸水剤粉末の製造方法は、 表面近傍が架橋され、 且つ乾燥し たカルボキシル基含有の吸水性樹脂粉末であって、 荷重 5 0 g / c m ' における生理食塩水に対する加圧下の吸収倍率が少なく とも 2 0 g / g にまで、 表面架橋によつて高められた不定型破砕状の吸水性樹脂粉末に 対して、 人工尿 2 8倍膨潤時間で規定された上記吸水性樹脂粉末の吸収 速度 ( g Z g Z s e c ) が表面架橋後の吸水性樹脂粉末の吸収速度を越 えて高めるに十分な量の、 水溶性界面活性剤および水溶性高分子から選 ばれた少なく とも 1種をさらに添加することを特徵としている。
本発明の吸水剤粉末の製造方法は、 ェボキシ基含有の架橋剤により表 面近傍が架橋され且つ該エポキシ基含有の架榇剤が残存し、 且つ粒子の 少なく とも一部が発泡している荷重 5 0 g / c m 2 における生理食塩水 に対する加圧下の吸収倍率が少なく とも 2 0 g Z gにまで表面架橋によ つて高められた、 カルボキシル基含有の吸水性樹脂粉末に対し、 水を添 加して得た混合物を粉末状態にて、 残存する架橋剤を低減することを特 徴としている。
本発明の吸水剤粉末は、 少なく とも一部が多孔質の吸水性樹脂粉末で あって、 エポキシ基含有の架橋剤により上記吸水性樹脂粉末の表面近傍 が架橋され、 且つ、 上記架橋剤の残存量が 2 p p m以下であるこ とを特 徵としている。
以下、 本発明を更に詳しく説明する。
本発明に用いられる吸水性樹脂は、 ェボキシ基含有の架橋剤により表 面近傍が架橋され且つ該架橋剤が残存しているカルボキシル基を有する 吸水性樹脂粉末である。
好ましく は、 該吸水性樹脂粉末は、 荷重 5 0 c m2 における生理 食塩水に対する加圧下の吸収倍率が少なく とも 2 0 gZg、 さらには 2 5 g/g以上であるという高加 下においても高い吸収倍率を有するも のである。
さらに、 吸収速度の面から、 比表面積の大きな不定型破砕伏の吸水性 樹脂粉末、 さらには、 少なく とも粒子の一部が多孔質な吸水性樹脂粉末 が用いられ、 その比表面積としては、 表面架橋前の 3 0 0〜 6 0 0 u m の粒子において、 0. 0 2 5 m2 / g以上である。 また、 吸水性樹脂粉 末の含水率は、 物性面から、 好ま しく は 1 0 %未満、 さらに好ま しくは 5 %未満である。
例えば、 このような吸水性樹脂粉末は、 前 ¾体樹脂としての親水性架 橋重合体を特定条件でエポキシ基含有の架橋剤により表面近傍を架橋す ることにより得ることが可能である。 しかしながら、 該架橋剤が樹脂中 に残存していないようなカルボキシル基を有する吸水性樹脂粉末は、 高 加圧下における吸収倍率か低い場合が多く、 そのような樹脂を使用する ことは本発明の意図するところではない。
本発明において、 処理前の吸水性樹脂粉末におけるエポキシ基含有の 架橋剤の残存量としては、 高加圧下の吸収倍率を向上させることから、 —定量以上、 存在し、 その値は、 吸水性樹脂粉末当たり好ましく は 2 p p mを越え、 より好ましくは 5 p p m以上、 さらにより好ま しく は 1 0 P p m以上である。
また、 エポキシ基含有の架撟剤の残存量の上限は、 本発明では特に限 定されないが、 あまり残存架橋剤が多すきても、 加圧下での吸収倍率に おいて、 一定以上の向上は見られない上、 残存架橋剤の低減に時問や後 述する求核剤を多く必要とするので非効率である。 よって、 その好まし い上限量は、 好ましくは 2 0 0 0 p p m以下、 より好ましく は 1 0 0 0 p p m以下、 更に好ましく は 5 0 O p p m以下である。 つまり、 高い物 性と効率的な残存架橋剤の低減という観点から、 最適な残存架橋剤の範 囲は、 2 p p mを越え 2 0 0 O p p mまでの範囲、 より好ましく は 3〜 1 0 0 0 p p m、 さらに好ま しく は 4〜 5 0 0 p p mの範囲である。 以下、 本発明では、 表面架橋されていない吸水性ボリマーを親水性架 橋重合体あるいは前駆体樹脂と呼び、 該親水性架橋重合体あるいは前駆 体樹脂の表面架橋したものを吸水性榭脂、 さらに、 該吸水性樹脂に本発 明の処理を行ったものを吸水剤粉末と呼ぶ。
本発明の吸水性樹脂粉末は、 前駆体樹脂の表面積、 すなわち前駆体樹 脂粉末の粒度や形状、 発泡の有無によっても異なるが、 好ましくは表面 近傍が架橋される前の前駆体樹脂 1 0 0重量部に対し、 エポキシ基含有 の架橋剤 0. 0 0 5重量部から 2重量部、 より好ましくは 0. 0 2重量 部から 1 . 5重量部、 さらにより好ま しくは 0. 0 6〜 1重量部、 およ び水 0. 1 〜 1 0重量都を含む水性液の添加混合により得られる。
前駆体樹脂に対するエポキシ基を有する架橋剤の量および水性液の量 を、 上述のように特定範囲に制御することにより、 得られた吸水性樹脂 扮末は、 本発明において好適に使用できる、 高加圧下においても高い吸 収倍率を有し、 かつエポキシ基含有の架橋剤が吸水性樹脂扮末中に残存 している、 カルボキシル基を有する吸水性樹脂粉末とすることができる。 さらに、 上記制御により、 得られた本発明の吸水性樹脂粉末は、 最終 的に、 本発明の処理により高加圧下において高い吸収倍率を示し、 かつ エポキシ基含有の架橋剤の残存量の少ない本発明の吸水剤粉末とするこ とが可能となる。
また、 本発明において、 より高物性や少ない残存架橋剤のため、 上記 架撟剤を含む水性液と して、 親水性有機溶媒を水と併用し用いてもよい 。 用いられる親水性有機溶媒としては、 メチルアルコール、 ェチルアル コール、 I —プロ ピルアルコール、 i s 0 —ブロ ピルアルコール、 n — ブチルアルコ一ル、 i s 0 —ブチルアルコール、 t 一ブチルアルコール 等の低极アルコール類 ; アセ ト ン等のケ ト ン類 ; ジォキサン、 アルコキ シ (ボリ ) エチレ ングリ コ一ル、 テ ト ラ ヒ ドロ フラ ン等のエーテル類 ; N , N—ジメ チルホルムア ミ ド等のア ミ ド類 ; ジメチルスルホキシ ド等 のスルホキシ ド類を挙げるこ とができる。 本発明において、 その使用量 は、 通常、 前駆体樹脂の固形分 1 0 0重量部に対して、 0〜 1 0重量部. 好ま しく は 5重量部未満の範囲である。
本発明で使用可能な前駆体樹脂としては、 カルボキシル基を有するも のであれば特に制限はな く、 部分中和ボリアク リル酸塩架橋重合体、 澱 粉一アク リル酸のグラフ トポリマー、 カルボキシメチルセル口一ス架橋 体などの水中において多量の水、 好ま しく は、 生理食塩水を無加圧下で 1 0〜 1 0 0倍吸収し膨潤して実質水不溶性の ドロゲルを形成する親 水性架橋重合体を例示できる。
実質水不溶性のヒ ドロゲルとは、 大過剰の純水に対する吸水性樹脂の 溶解度、 すなわち、 水可溶成分が 5 0重量%以下、 好ま しく は 2 0重量 %以下、 より好ましく は 1 0重量 以下のものをいう。
より典型的には、 本発明では前駆体樹脂として、 必要により架橋剤や グラフ ト主鎖の存在下、 アタ リル酸及び Z又はその塩を主成分とする親 水性単量体を重合して得られた親水性架橋重合体が好ま しく 用いられる, アク リル酸塩としては、 アク リル酸のアルカ リ金属塩、 アンモニゥム 塩、 アミ ン塩などを例示する事ができるが、 好ま しく はアルカ リ金属塩. より好ましく はナ ト リ ウム塩が用いられる。
また、 その構成単位としてアク リ ル酸に由来するカルボキシル基の中 和率が 4 0〜 1 0 0 モル%、 好ま しく は 5 0〜 9 5 モル%、 より好ま し く は 6 0〜 9 0モル%の範囲にあるものが好ま しい。 なお、 中和は、 重 合前の単量体で行ってもよいし、 重合中や重合後の含水ゲル状重合体で TTつてもよレ、。
本発明で用いられる親水性架橋重合体をァク リル酸及び/又はその塩 を主成分とする親水性単量体より得る場合、 これらアク リル酸またはそ の塩に併用して、 必要により他の単量体を共重合させてもよい。 なお、 親水性架橋重合体の重合に好ま しいアタ リル酸塩の製造方法は、 米国特 許第 5 3 3 8 8 1 0号や欧州特許第 0 5 7 4 2 6 0号に例示されている < 用いられるアク リル酸以外の他の単量体の具体例としては、 メタァク リ ル酸、 マレイン酸、 ^—アタ リ ロイルォキシプロピオン酸、 ビニルス ルホン酸、 スチレンスルホン酸、 2— (メタ) アク リルア ミ ドー 2 —メ チルプロパンスルホン酸、 2 — (メタ) アタ リ ロイルェ夕ンスルホン酸、 2 — (メタ) ァク リ ロイルブ σパンスルホン酸などのァニオン性不飽和 単量体およびその塩 ; アク リル了 ミ ド、 メタアタ リルァ ミ ド、 Ν —ェチ ル (メタ) アク リルア ミ ド、 Ν— η —プロ ビル (メタ) アク リルア ミ ド、 Ν —イソプロ ピル (メ タ) アク リルア ミ ド、 Ν , Ν —ジメチル (メタ) アク リルア ミ ド、 2 —ヒ ドロキシェチル (メタ) アタ リ レー ト、 2 —ヒ ドロキシプロ ピル (メタ) アタ リ レー ト、 メ トキシボリエチレングリ コ ール (メタ) アタ リ レー ト、 ポリエチレ ングリ コールモノ (メタ) ァク リ レー ト、 ビニルピリ ジン、 N — ビニルピロ リ ドン、 N -ァク リ ロイル ピぺリ ジン、 N—アタ リ ロイルピロ リ ジンなどのノニォン性の親水基含 有不飽和単量体 ; N , N—ジメチルア ミ ノエチル (メタ) ァク リ レー ト. N , N —ジェチルア ミ ノ エチル (メ夕) アタ リ レー ト、 N ' N —ジメチ ルァ ミ ノプロ ピル (メ タ) ァク リ レー ト、 Ν · N—ジメチルァ ミ ノプロ ピル (メ タ) アク リ ルア ミ ドおよびそれらの四极塩などのカチオン性不 飽和単量体などを挙げるこ とができる。
また、 吸水性を損なわない範囲で、 イソプチレン、 ステアリル (メタ ) ァク リ レー トなどの竦水性不飽和単量体を用いることもできる。 これ らの他の単量体の使用量は全単量体中、 通常 0 〜 5 0 モル ¾、 好ま しく は 0〜 3 0 モル%、 更に好ま しく は(!〜 1 0 モル%である。
本発明に用いられる前駆体樹脂としての親水性架橋重合体は架橋構造 を有するものであるが、 架橋剤を使用 しない自己架橋型のものより、 2 個以上の重合性不飽和基や、 2個以上の反応性基を有する内部架橋剤や、 或いは重合性不飽和基と反応性基を併せ持った内部架橋剤を共重合また は反応させたものが望ま しい。
これらの内部架橋剤の具体例と しては、 例えば、 N , N ' ー メチ レ ン ビス (メタ) アク リルア ミ ド、 (ポリ) エチレングリ コールジ (メタ) ァク リ レー ト、 (ポリ) プロ ピレングリ コールジ (メタ) ァク リ レー ト、 ト リ メチロールプロパン ト リ (メタ) ァク リ レー ト、 ト リ メチロールプ πノ、'ンジ (メタ) アタ リ レー ト、 グリセ リ ン ト リ (メタ) アタ リ レー ト、 グリセリ ンアタ リ レー ト メタク リ レー ト、 エチレンォキサイ ド変性ト リ メチロールプロパン ト リ (メタ) ァク リ レー ト、 ペンタエリスリ トール テ トラ (メ タ) ァ ク リ レー ト、 ジペンタエ リ ス リ トールへキサ (メ タ) ァク リ レー ト、 ト リ ア リ ノしシァ ヌ レー ト、 ト リア リ ルイ ソ シァ ヌ レー ト ト リ ア リ ルホスフェー ト、 ト リ ア リ ルア ミ ン、 ポリ (メ タ) ァ リ ロキシ アルカ ン、 (ボリ ) エチレ ングリ コールジグリ シジルェ—テル、 グリセ 口一ルジグリ シジルエーテル、 エチ レ ングリ コール、 ボリエチレ ングリ コール、 プロ ピレ ンダリ コール、 グリ セ リ ン、 ペン夕エリ ス リ トール、 エチレ ンジァ ミ ン、 ポリ エチ レ ンィ ミ ン、 グリ シジル (メ タ) ア タ リ レ ー トなどを挙げることができる。 また、 これらの内部架橋剤は 2種以上 使用してもよい。
中でも、 得られる吸水性樹脂粉末の吸水特性などから、 2個以上の重 合性不飽和基を有する化合物を内部架橋剤として必須に用いることが好 ましく、 その使用量としては前記単量体成分に対して 0 . 0 0 5〜 2モ ル%とするのが好ましく、 より好ましくは 0 . 0 1 〜 1 モル%である。 また、 重合に際しては、 澱粉やセルロース、 澱粉やセルロースの誘導 体、 ポリ ビュルアルコ一ル、 ポリ ア ク リ ル酸 (塩) 、 ポリ ア ク リ ル酸 ( 塩) 架橋休等の親水性高分子や、 次亜リ ン酸 (塩) や亜燐酸 (塩) 等な どの連鎖移動剤、 界面活性剤、 炭酸塩などの発泡剤などを添加してもよ い。
これらのモノ マーへ加える化合物は、 米国特許第 4 0 7 6 6 6 3号. 米国特許第 4 2 2 8 6 0 8 2号, 米国特許第 4 3 2 0 0 4 0号, 米国特 許第 4 8 3 3 2 2 2号, 米国特許第 5 1 1 8 7 1 9号, 米国特許第 5 1 4 9 7 5 0号, 米国特許第 5 1 5 4 7 1 3号, 米国特許第 5 2 6 4 4 9 5号や、 欧州特許第 0 3 7 2 9 8 3 1号, 欧州特許第 0 4 9 6 5 9 4号 などに示されている。 本発明に用いられる親水性架橋重合体を得る為に上記した単量体を重 合するに際しては、 バルク重合や沈澱重合を行うことも可能であるが、 性能面や重合の制御の容易さから、 単量体を水溶液として、 水溶液重合 または逆相懸濁重合を行う ことが好ましい。 水溶液重合として、 型枠の 中で行う注型重合、 ベル ト コ ンベヤー上で行う薄層重合、 生成する含水 ゲル重合体を紬分化しながら行う重合などが例示される。
また、 水溶液重合の際の水溶液中での単量体成分の濃度としては、 通 常 1 0〜 7 0重量%、 好ま しく は 2 0重量%〜飽和濃度であり、 重合時 の連铰重合、 回分式重合の区別や減圧、 加圧、 常圧の区別は間わない。 また、 重合は通常、 窒素、 ヘリ ウム、 アルゴン、 炭酸ガスのような不活 性気流中で行なわれることが好ま しい。
また、 その重合開始には、 例えば、 ラジカル重合開始剤による重合、 放射線重合、 電子線重合、 光増感剤による紫外榇重合法等の公知の方法 を広く採用できるが、 重合を定量的にかつ完全に行わせしめるためラジ カル重合開始剤による重合を採用することが好ましい。 かかるラジカル 重合方法は、 例えば、 逆相懸濁重合は米国特許第 4 0 3 3 7 7 6号、 米 国特許第 4 3 6 7 3 2 3号、 米国特許第 4 4 4 6 2 6 1号、 米国特許第 4 6 8 3 2 7 4号、 米国特許第 4 9 7 3 6 3 2号などに例示され、 水溶 液重合は米国特許第 4 5 5 2 9 3 8号、 米国特許第 4 6 2 5 0 0 1号、 米国特許第 4 6 5 4 3 9 3号、 米国特許第 4 7 0 3 0 6 7号, 米国特許 第 4 8 7 3 2 9 9号、 米国特許第 4 9 8 5 5 1 4号、 米国特許第 5 1 2 4 4 1 6号、 米国特許第 5 2 5 0 6 4 0号などに例示されている。
また重合の開始の際には、 過硫酸カ リウム、 過硫酸アンモニゥム、 過 硫酸ナトリウム、 t一ブチルハイ ド口パーオキサイ ド、 過酸化水素、 2 , 2 ' —ァゾビス ( 2—ア ミ ジノブ口パン) 二塩酸塩等のラジカル重合開 始剤、 紫外線や電子線などの活性エネルギー線等を用いることができる が、 ラジカル重合開始剤を用いるこ とが好ましい。
また、 酸化性ラジカル重合開始剤を用いる場合、 亜硫酸ナト リウム、 亜硫酸水素ナ ト リ ウム、 硫酸第一铁、 ホルムア ミ ジンスルフィ ン酸、 L —ァスコルビン酸 (塩) 等の還元剤を併用してレ ドッ クス重合としても 良い。 これらの重合開始剤や還元剤を複数併用してもよく、 その使用量 は通常、 単量体成分の全暈に対して 0 . 0 0 1 〜 2モル 、 好ま しく は 0 . 0 1 〜 0 . 5モル%である。
また、 単量体成分を水溶液重合する場合、 重合後のゲル状重合体は好 ま しく は乾燥される。 用いられる乾燥方法と しては、 熱風乾燥、 特定水 蒸気での乾燥 (米国特許第 4 9 2 0 2 0 2号) 、 マイ クロ波乾燥 (米国 特許第 5 0 7 5 3 4 4号) 、 減圧乾燥. ドラム ドライヤー乾燥. 踩水性 有機溶媒中での共沸脱水など公知の手法が挙げられる。
上記の乾燥温度としては、 好ま しく は 7 0〜 3 0 0 、 より好ま しく は 1 0 0〜 2 5 0で、 更により好ま しく は 1 5 0〜 2 0 0てが挙げられ る。 また、 乾燥に先だって、 米国特許第 5 0 6 4 5 8 2号や米国特許第 5 4 7 8 8 7 9号などに記載の手段で、 吸水性樹脂微粉末を、 ゲル伏重 合体にリサイ クルし、 造粒してもよいし、 米国特許第 5 2 7 5 7 7 3号 などの手法でゲル状重合体を予め細分化してもよいし、 また、 米国特許 第 5 2 2 9 4 8 7号などに記載の方法で、 ゲル状重合体の乾燥器への供 給をコン トロ一ルしてもよい。
上記の重合により得られた前駆体樹脂としての親水性架橋重合体の形 状は不定型破碎状、 逆相懸濁重合で得られた球状、 織維状、 棒状、 シー ト状、 略球状等種々のものが本発明に好ましく使用できるが、 本発明の 効果を最大限に発揮させ、 加圧下においても無加圧下と同様に高い吸収 量を示し、 未反応の架橋剤が残存せず安全性に優れた吸水剤粉末を得る 為には、 出発原料として、 好ま しく は、 球状または不定型破砕状が用い られる。
さらに、 高い比表面積に由来する高吸収速度や、 パルプへの高い固定 性のために、 球状よりも、 より好ましく は、 水溶液重合により得られ、 必須に粉砕工程を柽た不定型破^状、 さらに好ましくは、 少なく とも粒 子の一部が多孔質である不定型破^状の親水性架橋重合体が前駆体樹脂 として用いられる。 さらに、 多孔質が連続気泡であるか、 独立気泡であ るかは特に問わない。
なお、 本発明において、 少なく とも一部が多孔質の拉子とは、 3 0〜 1 0 0倍に拡大した電子顕微鏡写真によって、 複数の粒子中の細孔の有 無を観察して容易に確認することができる。 本発明では、 好ましく は粒 子粒の 2 %以上、 より好ましく は 5 %以上、 更により好ましく は 1 0 % 以上が多孔質のものが用いられる。 また、 吸収速度の面から該親水性 架橋重合体粉末の B E T比表面積が 3 0 0〜 6 0 0 ^ mにおいて、 0 . 0 2 5 m 2 以上、 好ましくは 0 . 0 3 m 2 以上、 さらに好まし くは 0 . 0 4 m g以上のものが用いられる。 本発明の方法では、 広 い比表面積のため、 残存架橋剤が発生しやすい不定型破碎伏の吸水性樹 脂や多孔質の吸水性樹脂ゃ微粉リサイクル吸水性樹脂でも、 残存架橋剤 の少ない、 或いは、 検出されない吸水剤粉末が得られるので好ましい。 なお、 本発明で、 発泡させた多孔質の親水性架橋重合体を前駆体樹脂 に用いる場合には、 重合時や乾燥時に含水ゲル伏重合体を沸腾させ発泡 させる方法もあるが、 物性面から、 前駆体樹脂を製造する際に発泡剤を 使用することが好ましい。 本発明に使用可能な発泡剤としては、 窒素 などの不活性気体、 メチルアルコールゃシク Dへキサンなどの各種有機 溶媒、 炭酸 (水素) ナ ト リ ウム、 炭酸 (水素) ァンモニゥム、 炭酸 (水 素) カ リ ウム、 炭酸マグネシウム、 二酸化炭素、 エチレンカボーネー ト などの炭酸類、 2 , 2 ' ーァゾビス ( 2—メチルプロピオンアミ ジン) 二塩酸塩、 2 . 2—ァゾビス ( 2— ( 2 —イ ミダブリ ン— 2—ィル) ブ ロバン) 二塩酸塩、 2 , 2 ' —ァゾビス 〔 2—メチル - N— ( 2—ヒ ド 口キシェチル) 一プロピオンアミ ド〕 などの水溶性アブ化合物、 2 , 2 ' 一アブビス ( 2—メチルブ口ピオンアミ ジン) ニアク リル酸塩などの水 均一分散性ァゾ化合物を例示できる。
これら発泡剤の内、 好ましく は、 水溶性または水分散性のアブ化合物、 あるいは炭酸類であり、 発泡のコン トロールのために、 水溶性高分子や 界面活性剤をさらに発泡剤と併用してもよい。
また、 発泡剤、 水溶性高分子、 および界面活性剤の使用量は、 それぞ れ適宜決定されるが、 単量体成分の全量に対して通常、 炭酸類で 2 0 0 重量% 下、 好ましくは 1 0 0重量%以下、 アブ化合物で 5重量 以下、 好ましくは 1重量 以下、 水溶性高分子で 1 0重量%以下、 好ましくは 5重量%以下、 界面活性剤で 2重量%以下、 好ましくは 1重量%以下で 使用される。
また、 前駆体樹脂の拉孑径として、 その平均粒子怪が 2 0 0 / π!〜 6 0 0 u mで、 かつ 1 5 0 z m未満の拉子径を有する樹脂の重量が 1 0重 量%以下の前駆体樹脂を用いるのが最も好ましい。 平均拉子径が 2 0 0 /z m未満では高加圧下の吸収倍率が向上しにくい場合がある。 また、 6 0 0 / mを越えるときは、 吸収速度が遅く、 飽和吸収量に達するために 長時間かかり過ぎる場合がある。 一方、 1 5 0 /z m未満の粒子径を有す る樹脂が 1 0重量? を越えたときには、 残存架橋剤量の低減がなされに くい場合があるので注意を要する。
また、 本発明に用いる前駆体樹脂は、 含水率が 1 〜 5 0 %未谲、 好ま しくは 1 〜 2 0 %未満、 さらに好ましく は 1 0 %未満であり、 そのより 好ま しい形状は扮末として取扱えるものである。 その含水率が高い場合 エポキシ基含有の架橋剤が前駆体樹脂の内部まで浸透し、 処理前のェポ キン基含有の架橋剤の残存量は少なくなりやすいものの、 逆に吸収倍率 が低下するのみならず、 高加圧下での吸収特性が向上しない傾向にある 本発明では、 例えば上記の様にして得られたカルボキシル基を有する 前駆体樹脂に対して、 エポキシ基含有の架橋剤を必須成分として添加し 加熱して、 上記前駆体樹脂の表面近傍を架橋せしめて吸水性樹脂粉末を 得、 さらに添加したエポキシ基含有の架橋剤が残存した吸水性樹脂粉末 を出発原料とする。
エポキシ基含有の架橋剤を用いて架橋処理を行っても、 エポキシ基含 有の架橋剤が吸水性樹脂粉末中に残存していない場合、 上記吸水性樹脂 粉末を出発原料としたとき、 一般に、 上記吸水性樹脂粉末の粒子表面層 のみの均一な架橋が達成されていないためか、 上記吸水性樹脂粉末から 得られる吸水剤粉末は、 その無加圧下および高加圧下での各吸収倍率が それぞれ不十分となり易く、 好ましくない。 本発明において、 ェポキ シ基含有の架橋剤は、 好ましく は水性液の状態で前記前駆体樹脂に添加 され、 次いで加熱される。 それらの使用量は、 表面近傍が架橋される前 の前駆体樹脂 1 0 0重量部に対し、 エポキシ基を有する架橋剤の量が 0 . 0 0 5〜 2重量郎、 好ま しく は 0 . 0 2〜 1 . 5重量部、 さらに好ま しく は 0 . 0 6〜 1重量部であり、 該架橋剤を含有する水性液の量が 0
. 1 〜 1 0重量部の範囲であることがより好ま しい。
こ こで水性液とは、 水や、 水と親水性有機溶媒との混合物を意味する, また、 添加後の加熱温度は好ま しく は 5 0〜 2 3 0て、 より好ま しく は
1 0 0〜 2 0 O 'Cの範囲である。 また、 加熱処理後に得られる吸水性樹 脂粉末の固形分は、 9 0 %を越え、 好ま し く は 9 5 %以上、 より好ま し く は 9 S ½以上である。
エポキシ基含有の架橋剤の添加量や水性液の添加量が上記範囲をはず れる場合には、 高加圧下の吸収倍率のような物性がよくならないことが あったり、 本発明の処理工程を経た後においても残存するェポキシ基含 有の架橘剤の量が少なく ならないこ とがある。
本発明で言うエポキシ基含有の架橋剤とは、 その分子内にエポキシ基 を少なく とも 1 個有し、 且つ前記前駆体樹脂中の複数のカルボキシル基 と反応しうる化合物である。
このような化合物としては、 例えば、 エチレ ングリ コ一ルジグリ シジ ルエーテル、 ボリエチレ ンジグリ シジルェ一テル、 グリセ口一ルポリ グ リ シジルェ一テル、 ジグリセロールポリ グリ シジルェ一テル、 ポリ グリ セロ一ルポリ グリ シジルェ一テル、 プロピレングリ コールジグリ シジル エーテル、 ポリプロピレングリ コ一ルジグリ シジルェ一テル等のグリ シ ジルェ一テル ; グリ シ ドール、 7 —グリ シ ドキシプロ ビル ト リ メ トキシ シラ ン等のグリ シジル化合物 ; ェピクロルヒ ドリ ン、 ェビブロモヒ ドリ ン等のェピハロ ヒ ドリ ン ; メチルホスホン酸ジグリ シジルエステル、 n —プロピルホスホン酸ジグリ シジルエステル等のホスホン酸グリ シジル エステル ; 3 , 4 —エポキシシクロへキサンカルボン酸一 3 ' ' 4 ' - エポキシシクロへキシルエステル (商品名 : セロキサイ ド⑨ 2 0 2 1、 ダイセル社製〉 のような環状エポキシ化合物などを挙げるこ とができる 。 中でも、 得られる吸水剤粉末の吸収特性の観点から、 好ましいェポキ シ基含有の架橋剤は、 ポリ グリ ジジル化合物であり、 より好ま しく はェ チレングリ コールジグリ シジルェ一テルのようなポリ グリ シジルェ一テ ルである。
また本発明において、 上記エポキシ基含有の架橋剤は、 更にカルボキ シル基と反 可能な他の架橋剤と併用して使用することも可能である。 このような架橋剤と しては通常、 表面近傍の架橋処理に使用することが 知られている公知の架橋剤が例示され、 例えば、 エチレングリ コール、 ジエチレ ンク'リ コ一ル、 プロ ピレングリ コール、 ト リエチレングリ コー ル、 テトラエチレングリ コール、 ポリエチレングリ コール、 プロピレン グリ コール、 1 , 3 _プロパンジォ一ル、 ジブロ ピレングリ コール、 2 , 2 , 4 — ト リ メチルー し 3 —ペン夕ジオール、 ボリ プロ ピレングリ コ —ル、 グリセリ ン、 ボリ グリセリ ン、 2 —プテン一 し 4—ジォ一ル、 1 , 4一ブタンジオール、 1 , 5—ペン夕ンジオール、 し 6 —へキサ ンジオール、 1, 2—ンクロへキサンジメタノール、 し 2 —シクロへ キサノール、 ト リ メチ口一ルプロパン、 ジエタノールァミ ン、 ト リエタ ノールア ミ ン、 ポリオキシプロ ピレン、 ォキシエチレンォキシブロピレ ンブロ ッ ク共重合体、 ペンタエリスリ トール、 ソルビトールなどの多価 アルコール化合物 ; エチレ ン ジァ ミ ン、 ジエチレ ン ト リァ ミ ン、 ト リエ チレンテ トラ ミ ン、 テ トラエチレンペン夕 ミ ン、 ペン夕エチレンへキサ ミ ン、 ポリアミ ドポリア ミ ン、 ボリエチレンィ ミ ン等の多価アミ ン化合 物、 並びに、 それら多価ア ミ ンとハ口エポキシ化合物との縮合物 : 2 , 4 ― ト リ レンジイソシァネ一 ト、 へキサメチレンジイソシァネー ト等の 多価イソシァネ一 ト化合物 ; し 2—エチレンビスォキサブリ ン等の多 価ォキサゾリ ン化合物 : Ί一グリ シドキシプロピルト リ メ トキシシラン ァーァ ミ ノプロ ビルト リ メ トキシシラン等のシランカップリ ング剤 ; 1 , 3 —ジォキゾラ ン一 2—オン、 4 ーメチルー 1 , 3—ジォキソラ ン一 2 一オン、 4, 5 —ジメチル一 1 , 3—ジォキフラン一 2—オン、 4 , 4 一ジメチルー し 3—ジォキソラン一 2 —オン、 4 一ェチル一 し 3 — ジォキフラン一 2—オン、 4 ー ヒ ドロキシメチル— 1 , 3—ジォキソラ ン一 2 —オン、 1 , 3—ジォキサン一 2—オン、 4一メチル一 1 , 3 — ジォキサン一 2—オン、 4 , 6 —ジメチル一 1 , 3—ジォキサン一 2 — オン、 1 , 3—ジォキソパン一 2—オン等のアルキレンカーボネー ト化 合物 : 亜鉛、 カルシウム、 マグネシウム、 アルミニウム、 鉄、 ジルコ二 ゥ厶等の水酸化物及び塩化物等の多価金属化合物 ; 等より選ばれる 1種 または 2種以上のものが例示できる。
前記方法により得られた、 エポキシ基含有の架橋剤が残存している力 ルポキシル基を有する吸水性樹脂粉末は、 第 1 の方法として、 加熱され た粉末状態にて求核剤を添加して残存架橋剤を低減するか、 あるいは、 第 2の方法として、 洗浄を行い残存架橋剤が低減されて、 本発明の吸水 剤粉末となる。 この少なく とも 1つの後工程を柽ることで、 吸収特性に 優れ、 しかも残存架橋剤が著しく低減された本発明の意図する吸水剤粉 末を経済的に得ることができる。
以下、 先ず、 第 1 の方法として、 エポキシ基含有の架橋剤により表面 近傍が架橋され、 且つ該架橋剤が残存しているカルボキシル基含有の吸 水性樹脂粉末に対して、 加熱された粉末状態にて求核剤を添加して残存 架橋剤を低減することを特徵とする吸水剤粉末の製造方法について、 更 に詳しく説明する。
まず、 本発明において、 処理される吸水性樹脂粉末は加熱されている ことが必須である。 加熱されていない室温、 あるいは室温以下に冷却さ れた吸水性樹脂粉末を用いる場合、 吸水性樹脂粉末の安定的、 且つ連梡 的なフィ ー ドが極めて困難であり、 よって、 工業的な実際の製造や品質 の安定が困難である。 また、 物性面でも求核剤の吸水性樹脂粉末への吸 収あるいは吸着速度が遅すぎて、 残存架撟剤の低減効果が不十分である 。 なお、 かかる問題は実験室程度の極小スケールでは現れ難く見い出さ れなかったが、 本発明者らが工業的な規模にスケールァップする際に見 いだされた問題であり、 本発明において、 処理する吸水性樹脂粉末を加 熱しておく という簡便且つ効率的な手段で解决した。
本発明において、 吸水性樹脂粉末の加熱温度としては室温を越えるこ とが必須であり、 上記問題を解决するという観点から、 具体的には 3 0 'C以上、 好ましくは 3 5で以上、 より好ましく は 4 0 'C以上である。
また、 吸水性樹脂粉末の安定的且つ連梡的フィ一ドの問題は室温を越 え、 好ましく は 3 0て以上、 より好ましく は 3 5 °C以上で実質問題はな くなるが、 吸水性樹脂粉末の温度が高すぎると、 物性面でも求核剤の吸 水性樹脂粉末への吸収あるいは吸着速度が速すぎて、 混合の不均一が発 生したり、 残存架橋剤の低減効果がやや低下する傾向も見られるので注 意を要する。
よって、 本発明における吸水性樹脂粉末の温度の上限は、 通常、 2 0 0て未満、 好ましくは 1 0 0 eC未満、 より好ましくは 8 O 'C未満であり、 6 5 eC未満に制御されることがさらに好ましい。
本発明で必須とされる加熱された吸水性樹脂粉末を得る方法としては 求核剤を添加する前に、 吸水性樹脂粉末を所定温度に、 外部から加熱す ればよく、 その際の加熱装置には誘電加熱、 接触加熱、 熱風加熱などが 用いられる。 また、 重合、 乾燥、 粉砕、 表面架橋などの各加熱プロセス を経た吸水性樹脂粉末を連続的に保温、 加温などを行うことで所定温度 にコン トロールしてもよい。
また、 本発明では、 上記のようにして得られた該エポキシ基含有の架 棕剤が残存しているカルボキシル基含有の吸水性樹脂粉末に対し、 それ が加熱された粉末状態にて求核剤を添加する。
本発明において、 粉末状態とは、 吸水性樹脂粉末が、 互いに接着され て、 ブロ ッ ク状態となるこ となく、 また、 膨潤してゲル化するこ となく、 求核剤添加後も容易に粉末同士を解碎でき、 処理後も粉末として存在す る状態である。
求核剤で処理する際に、 吸水性樹脂粉末が粉末状態でない場合、 残存 エポキシ架橋剤の低減効果が低いばかりか、 求核剤処理後に、 吸収速度 や加 E下の吸収倍率が低下する場合もあり、 本発明の目的 ( 「残存架橋 剤 J 、 「高加圧下吸収倍率」 、 「吸収速度」 の 3つの改善を同時に満足 ) が達成されない。
本発明で好適に使用される求核剤としては、 求核原子が炭素あるいは 酸素である求核剤、 求核原子が窒素である窒素化合物、 求核原子がハロ ゲンであるハロゲン化物、 求核原子が硫黄である硫黄化合物、 求核原子 がリ ンであるリ ン化合物、 水酸基が求核点となりうる求核剤、 カルボキ シル基が求核点となりうる求核剤が挙げられる。 求核原子が炭素あるいは酸素である求核剤としては、 例えば、 ァセタ ール類、 ァセ トアセテー ト類、 アルコラー ト類、 ァセ トニ ト リ ル類、 ァ セチレン類、 酸無水物、 水、 アルコール類、 無機水酸化物、 アルデヒ ド 類、 有機ハイ ドロバ一オキサイ ドのような過酸化物、 ヒ ドロキンメチル 尿素、 二酸化炭素、 カルボン酸 (塩) 類、 シァノ アセテー ト類、 シクロ ベン夕 ジェンなどのォレフ ィ ン類、 ケテン類、 マ。ン酸類、 フエ ノ ール 類などが挙げられる。
求核原子が窒素である窒素化合物と しては、 硝酸バリ ゥムのようなァ ルカ リ土類の硝酸塩類、 ァ ミ ド類、 ー极ァ ミ ン化合物、 ニ极ァ ミ ン化合 物、 三极ァ ミ ン化合物、 ポリ ア ミ ン化合物、 アンモニア、 炭酸ァンモニ ゥ厶、 アジ ド類、 シァナ ミ ド類、 (イ ソ) シァネー ト類、 エチ レ ンイ ミ ン、 ヒ ドラ ジン化合物、 ラ タ 夕厶化合物、 フタルイ ミ ド、 スルホンア ミ ド類、 ピリ ジン、 ニコチンア ミ ド、 尿素、 チォ尿素などが挙げられる。 求核原子がハロゲンであるハロゲン化物と しては、 塩化ァセチルのよ うなハロゲン化ァシル類、 ハロゲン化アルキル類、 ト リハロゲン化アン チモン、 ハ Dゲン化ビスマス、 三臭化ホウ素のようなハロゲン化ホゥ素 類、 塩化力ルバモイルのよ うなハ□ゲン化力ルバモイル化合物、 ク σ σ シラン化合物などが挙げられる。
求核原子が硫黄である硫黄化合物としては、 アミ ノチオール類、 ニ硫 化炭素、 エチ レ ンスルフ ィ ド、 硫化水素、 二酸化硫黄、 亜硫酸 (塩) 、 亜硫酸水素 (塩) 、 チォ硫酸 (塩) などが挙げられる。 求核原子がリ ン である リ ン化合物としては、 リ ン酸塩が挙げられる。
前記求核原子が酸素である求核剤の中、 水酸基が求核点となり うる求 核剤としては、 水やプロ ピレ ングリ コール、 苛性ソーダ、 苛性力 リ、 ボ リエチレングリ コール、 ブチルアルコール、 アルコキシ (ポリ) ェチレ ングリコールなどが挙げられ、 カルボキシル基が求核点となりうる求核 剤としては、 乳酸塩、 クェン酸塩、 プロピオン酸塩などが挙げられる。
さらに、 これら求核剤として、 好ましくは、 中性あるいは塩基性のも のである p H 5以上のものが用いられる。 また、 上記求核剤は常温で固 体、 液体、 気体とさまざまであるが、 これらの中でも、 本発明の目的を 達成するため、 常温で液体の求核剂を使用することが好ましく、 さらに は物性面から、 多量の残存は吸水性を損なう恐れもあり、 処理後の除去 が容易な揮発性の液体が好適に用いられる。 そして、 好適な求核剤の 沸点は好ましく は 6 0 'C以上、 より好ましく は 1 0 0 'C以上の液体であ る。 また、 好適な求核剤の沸点の上限は好ましくは 1 5 0て以下であり、 中でも好ましく は、 残存架橋剤低減のみならず、 吸収速度向上の面から も、 求核剤として、 水を必須な成分として含むものを用いることである。 求核剤に液体、 例えば、 水を使用する場合、 その使用量は吸水性樹脂 粉末に対して 1 〜 3 0重量%、 好ましくは 2〜 2 0重量%、 より好まし く は 3〜 1 0重量 の範囲、 さらに好ましく は 4〜 8重量%の範囲であ る。 水の使用量が多くなる場合、 残存架撟剤の低減に対し、 使用量に見 合った効果が得られ難いばかりか、 かえつて加圧下の吸収倍率や吸収速 度が低下する場合がある。 また、 吸水性樹脂粉末に対して水を添加する 際、 上記水を、 ミストや湿気として、 或いは水蒸気として添加してもよ い 0
また、 液体の求核剤、 好ましくは揮発性の液体、 さらに好ましくは水 に加えて、 さらに本発明では、 エポキシ基含有の架橋剤の残存量の低減、 および得られる吸水剤粉末の吸収速度向上などの吸収特性の観点から、 窒素および/または硫黄原子が求核点となりうる求核剤から選ばれた少 なく とも 1種である求核剤が、 本発明で好ま しく併用される。
これら求核剤は、 吸水性樹脂粉末に吸収または吸着され、 好ましくは, 残存架橋剤低減の面から吸水性樹脂粉末に吸収させて用いられる。 また, これら求核剤を添加する際に、 後述する、 水溶性界面活性剤および水溶 性高分子から選ばれた少なく とも 1種を、 同時または別個に添加するこ とが、 上記吸水剤粉末における表面架橋による吸収速度の低下を防ぎ、 その吸収速度をより向上できるので、 より好ま しい。
更に、 水と共に併用する求核剤としては、 安全性や効果の観点から、 アミ ン類、 アンモニア、 炭酸ァン乇ニゥム、 亜硫酸 (塩) 、 亜硫酸水素 (塩) 、 チォ硫酸 (塩) 、 尿素、 チォ尿素から選ばれた少なく とも 1種 の化合物であることがより好ましく、 ポリアミ ンおよび Zまたは亜硫酸 水素 (塩) であることが最も好ま しい。
このような化合物を、 より具体的に例示すれば、 亜硫酸水素ナ ト リウ 厶、 亜硫酸水素力リウ厶、 亜硫酸水素ァンモニゥム、 ポリアリルァミ ン、 ボリ (ジァリル了 ミ ン) 、 ポリ ( N—アルキルァ リ ルァミ ン) 、 ボリ ( アルキルジァリルァ ミ ン) 、 モノアリルァ ミ ンとジァリルァ ミ ンの共重 合体、 モノア リ ルァ ミ ンと N —アルキルァリルァ ミ ンの共重合体、 モノ ァリルア ミ ンとジアルキルジァリルァンモニゥム塩の共重合体、 ジァリ ルァミ ンとジアルキルジァリルアンモニゥム塩の共重合体、 直鏆ポリエ チレンィ ミ ン、 分岐ポリエチレンィ ミ ン、 ボリエチレンポリア ミ ン、 ボ リプロ ピレンポリアミ ン、 ポリア ミ ドポリア ミ ン、 ボリェ一テルボリァ ミ ン、 ボリ ビニルァ ミ ン、 ポリア ミ ドポリア ミ ン ' ェピク σロヒ ドリ ン 樹脂等を例示できる。 2 δ 本発明に於いて上記揮発性液体の求核剤、 好ま しくは水と共に併用さ れる求核剤の使用量は、 表面近傍の架橋に用いるエポキシ基含有の架橋 剤の残存量によっても異なるが、 通常、 非揮発性の求核剤の場合、 吸水 性樹脂粉末の固形分 1 0 0重量部に対して 0 . 0 0 5〜 1 0重量部、 好 ましくは 0 . 0 1 〜 5重量部、 さらに好ましくは 0 . 1 〜 3重量部の範 囲である。
使用暈が 1 0重量部を越える場合は、 不経済となるばかりか、 本発明 の目的とするところの最適な残存架橋剤の低減効果を達成する上で過剰 量となりやすく、 かえって、 該求核剤の残存によって加圧下の吸収倍率 が低下してしまう場合もある。 また、 0 . 0 0 5重量部未満の少ない量 では、 高加圧下の吸収量や吸収速度の改良が不十分となることがあり、 また該架橋剤の残存量の低減効果が得られにく い。 上記求核剤の使用量 は、 より好ましくは 0 . 2〜 2重量部である。
また、 本発明において、 求核剤として水を用いる場合、 水以外に親水 性有機溶媒を併用してもよい。 用いられる親水性有機溶媒としては、 求 核性の有無は問わないが、 例えば、 メチルアルコール、 ェチルアルコ一 ル、 η—プロピルアルコール 、 イソプロピルアルコール、 η—ブチル アルコール、 イ ソブチルアルコール、 t 一ブチルアルコール等の低扱ァ ルコール類: アセ トン等のケ トン類 ; ジォキサン、 アルコキシ (ボリ) エチレングリ コール、 テトラヒ ドロフラン等のエーテル類 ; N , N—ジ メチルホルムアミ ド等のアミ ド類 ; ジメチルスルホキシド等のスルホキ シ ド類を挙げることができる。
本発明において、 使用される親水性有機溶媒の量は、 吸水性樹脂粉末 が膨潤化しない範囲で、 吸水性樹脂の種類や粒度によってその最適量は 異なるが、 通常、 吸水性樹脂粉末の固形分 1 0 0重量部に対して、 0〜 1 0重量部、 好ましくは 5重量部未満の範囲である。
本発明において、 ェポキシ基含有の架橋剤が残存しているカルボキシ ル基を有する吸水性樹脂粉末は、 上記求核剤を添加することで残存架撟 剤が必須に低減され、 さらに好ましく は吸収速度も向上された本発明の 吸水剤粉末となる。
処理の方法としては、 残存するエポキシ基含有の架橋剤と求核剤の反 応が吸水性樹脂粉末の吸収特性に影響を及ぼさない範囲で行われること が好ましく、
1 ) 吸水性樹脂粉末に求核剤をガス状態で接触反応せしめる方法、
2 ) 吸水性樹脂粉末に求核剤を混合し反応せしめる方法、
3 ) 吸水性樹脂粉末に求核剤を含む溶液を混合し反応せしめる方法、
4 ) 求核剤を含む溶液中に吸水性樹脂粉末を接触せしめ反応を行う方 法等、 吸水性樹脂に粉末求核剤が均一に添加され反応可能であるのなら ば特にその方法は問わない。 また反応は必要により加熱や触媒添加など の補助手段により、 吸収特性に悪影響しないよう短時間に達成されるこ とが好ましい。
吸水性榭脂粉末を求核剤で処理するのに好適に使用できる装置として は、 例えば、 流動床式混合機、 円筒型混合機、 スク リュー型混合機、 夕 —ビュライザ一、 ナウ夕一型混合機、 V型混合機、 リボン型混合機、 双 腕型二—ダー、 気流型混合機、 回転円盤型混合機、 ロールミキサー、 気 流乾燥機、 回転式乾燥機、 棚段式回転乾燥機、 パドルドライヤ一、 円盤 形乾燥機、 流動層乾燥機、 ベル ト式乾燥機、 ナウター型加熱機、 赤外線 乾燥機、 マイクロ波乾燥機等を例示できる。 これら求核剤を添加した後、 本発明の目的を達成するため、 求核剤存 在下で加熱処理することが好ましく、 更に好ましくは加熱処理後に乾燥 すればよい。 加熱処理時間や温度は、 求核剤の種類や量、 および残存架 橋剤の低減度合いで適宜決定されるが、 あまり短時間では効果が不十分 な場合もあり、 水を用いる場合、 5分以上、 例えば 6分〜 1 0 0 0分、 好ましくは 1 0分〜 6 0 0分、 より好ましくは 2 0分〜 3 0 0分程度加 熱処理することが好ましい。
本発明では、 吸水性樹脂粉末に対し、 液体である求核剤の少なく とも 一部が蒸気の伏態で接触するように上記吸水性樹脂粉末の材料温度を設 定して、 上記加熱処理することが望ましく、 吸水性樹脂粉末の材料温度 が 1 5 0 以下、 好ましく は 1 0 0 °C以下で加熱処理することが好まし い。 さらに、 加熱処;!と同時または別途、 乾燥する場合、 物性面から、 最終的な吸水性樹脂粉末の含有率は、 吸水剤粉末中の 9 0 %重量以上、 より好ましくは 9 5重量 以上である。
また、 本発明の第 1 の方法 (求核剤処理) のより具体的な方法として、 求核剤が水である場合、 前記したように、 カルボキシル基含有の吸水性 榭脂粉末に対し、 水を添加して得た混合物を粉末状態にて、 加熱処理す ることが好ましい。 上記吸水性樹脂粉末は、 エポキシ基含有の架橋剤に より表面近傍が架橋され、 且つ該架橋剤が残存し、 且つ粒子の少なく と も一部が発泡して多孔質の、 荷重 5 0 c m 2 における生理食塩水に 対する加圧下の吸収倍率が少なく とも 2 0 g Z gにまで表面架橋によつ て高められたものである。
上記の処理の他の方法として、 加熱せずに、 室温で 1 0 日以上放置し て、 残存する架橋剤を低減することも可能である。 室温で放置する場合、 短時間では残存架橋剤の低減効果が不十分であり、 よって、 水を吸湿な いし添加した吸水性樹脂粉末を実使用まで放置し、 具体的には、 添加残 存架榇剤低減効果の面から、 1 0 日以上、 好ましく は 2 0 日以上、 より 好ましくは 3 0 日以上放置すればよい。 この際の好ましい水分量は前記 した量であり、 水の添加は、 少なく とも一部を吸湿などで経時的に行つ てもよい。
また、 本発明において、 多量の求核剤を一度に添加すると加圧下の吸 収倍率が低下する場合もあることから、 残存架橋剤を効率的に低減する ために、 求核剤を分割して、 あるいは経時的に吸収させ、 橾り返し添加 することも好ま しい。
本発明において、 求核剤処理後の吸水剤粉末では、 エポキシ基含有の 架橋剤は好ましくは 2 p p m以下、 より好ま しく は検出限界以下 (以下, N Dという) にまで低減される。 このように処理された吸水剤粉末では, 加圧下の吸収倍率が 2 0 g Z g以上、 より好ま しくは 2 5 g Z g以上を 保持し、 かつ、 吸収速度も向上しているこ とがより好ましく、 これら 3 つの優れた物性は本発明の方法で達成される。
次いで、 以下、 第 2の方法として、 エポキシ基含有の架橋剤により表 面近傍が架橋され、 且つ該エポキシ基含有の架橋剤が残存しているカル ボキシル基含有の吸水性樹脂粉末に対して、 洗浄して残存架橋剤を低弒 することを特徴とする吸水剤粉末の製造方法について.説明する。
洗浄とは、 エポキシ基含有の架橋剤が残存しているカルボキシル基を 有する吸水性樹脂粉末を、 架橋剤を除去しうる他の気体、 固体、 液体の 洗浄剤と接触させた後、 更に洗浄剤と吸水性樹脂粉末とを分雜する吸水 剤粉末の製造方法である。 この場合、 洗浄は、 吸水性樹脂を好ましく は液体と接触後、 より好ま しくは有機溶媒と接触後、 さらに好ましくは、
水および親水性有機溶媒からなる混合液と接触後、 混合液を吸水性樹脂 粉末から分雜する方法によってなされる。
ここで、 上記有機溶媒としては、 低沸点のもの、 例えば沸点 1 5 0 未満、 さらには 1 0 0 °c未満が好ましく、 それら中でも、 シクロへキサ ンなどの锞水性有機溶媒も用いることが可能であるが、 効果の面から、 アセ ト ンなどの低极ケ ト ンなどの親水性有機溶媒が好ま しい。 また、 用 いられる水と混合される親水性有機溶媒として、 メチルアルコール、 ェ チルアルコール、 ブロ ピルアルコール、 イ ソプロ ピルアルコール、 t一 ブチルアルコ一ル等の沸点 1 5 0 未満、 好ましくは沸点 1 0 0で未満 の低极アルコ一ル類が好適に例示される。
本発明でより好ましい態樣は、 上記水と親水性有機溶媒との混合比の 範囲を、 混合液が吸水性樹脂粉末を膨潤しないように選択することにあ る。 上記範囲内となるように混合液を選択する場合、 上記混合比は吸水 性樹脂粉末の化学組成に左右されるが、 上記混合比の重量割合は容易に 予備試験により確認可能である。
多くの場合、 水と親水性有機溶媒の比率は重量比で、 水 : 親水性有機 溶媒- 1 〜 5 0 : 9 9〜 5 0の範囲である。 また、 洗浄液の使用量は、 吸水性樹脂粉末中の残存架橋剤量や洗浄液の洗浄効果によって適宜決定 されるが、 通常、 吸水性樹脂粉末 1 0 0重量部当たり 5 0〜 2 0 0 0重 量部、 好ましくは 1 0 0〜 1 0 0 0重量部の範囲である。
本発明において、 吸水性榭脂粉末を、 水および親水性有機溶媒からな る混合液と接触させるにあたり、 上記接触を連続あるいは非連続の回分 式方法で行うことができる。
例えば、 該吸水性樹脂粉末を、 水および親水性有機溶媒からなる混合 液中で、 必要により撹拌しながら接触させ、 その後、 吸水性樹脂粉末を. 適する方法で、 例えば、 デカンテ一シヨ ンや吸引濾過により混合液より 分離することにより洗浄して、 本発明の吸水剤粉末を得る。 また、 連梡 で洗浄を行う場合、 吸水性樹脂粉末と洗浄液の向きは併流、 向流は特に 問わないが、 洗浄効果から向流がより好ま しい。 そして、 回分式で行う 場合、 洗浄の回数は特に問わない。
これらの方法において、 洗净時間は 1 5秒〜 2時問、 好ましくは 3 0 秒〜 6 0分、 より好ま しくは 1 〜 3 0分であり、 洗浄時の液体の温度や 粉末の温度は洗浄効果の面から、 広く用いることができるが、 好ましく は室温を越え、 さらに 3 0〜 1 0 0 'C、 より好ましくは 4 0〜 8 0 ° (:、 さらに好ましくは 4 0〜 6 0 °Cである。 また、 洗浄時の圧力は加圧、 減 圧、 常圧と特に問わないが、 常圧で通常行われる。 そして、 洗浄後の吸 水性樹脂粉末は、 必要に応じて更に乾燥すればよい。 また、 洗浄処理 後の吸水性樹脂粉末となる吸水剤粉末では、 ェボキシ基含有の架橋剤の 残存量は、 好ましくは 2 p p m以下、 より好ましくは N Dにまで低減さ れる。 且つ、 上記吸水剤粉末では、 加圧下の吸収倍率が 2 0 g Z g以上、 好ましく は 2 5 g / g以上を保持していることがより好ましく、 これら 物性は本発明の方法で達成される。
さらに、 これら第 1 の方法 (求核剤) ならびに第 2の方法 (洗浄) に おいて、 表面架橋による吸収速度の低下を防ぎ、 吸収逮度をより向上さ せるため、 求核剤および洗浄剤と共に、 水溶性高分子および界面活性剤 から選ばれる少なく とも 1種、 好ましくは水溶性界面活性剤を用いるこ とが好ましい。 添加する方法としては、 前記した求核剤や洗浄液と別途 行ってもよいが、 好ま しく は、 求核剤や洗浄液に対し、 水溶性界面活性 を共存させればよい。 また、 添加には、 水を用いることがより好ましい ( また、 本発明は、 表面近傍が架橋され、 且つ乾燥したカルボキシル基 含有の吸水性樹脂粉末に対して、 その粉末の、 人工尿 2 8倍膨潤時間で 規定された吸収速度 ( gZ gZ s e c ) を、 表面架橋後の吸水性樹脂粉 末の吸収速度を越えて高めるのに十分な量の、 水溶性界面活性剤および 水溶性高分子から選ばれた少なく とも 1種をさらに添加する吸水剤粉末 の製造方法をも提供する。
上記吸水性樹脂粉末は、 荷重 5 0 g/ c m2 における生理食塩水に対 する加圧下の吸収倍率が少なく とも 2 0 g Zgにまで表面架橋によって 高められた不定型破砕状のものである。 吸収速度は、 添加前と比べて好 ましくはプラス 0. O S C g/gZ s e c ) 以上、 より好ましく は 0. 0 5 ( gZgZ s e c ) 以上、 さらに好ましく は 0. 1 ( gZg/ s e c ) 以上高められる。
前記したように、 より重い体重にも耐える高加圧下での吸収倍率を十 分向上させるまで、 エポキシ基含有の架撟剤で表面架撟を行う と、 具体 的には、 荷重 5 0 gZ c m2 における生理食塩水に対する加圧下の吸収 倍率を少なく とも 2 0 gZgにまで高めると、 かえって、 人工尿 2 8倍 膨潤時間で規定された吸収速度 ( g/gZ s e c ) は低下する場合もあ ることが判明した。
しかしながら、 本発明のように、 上記水溶性界面活性剤や水溶性高分 子の添加によって、 好ましくはさらに水を添加することによって、 本発 明の処理前と比べて、 高加圧下での吸収倍率を高く維持しながら、 表面 架橋による吸収速度の低下を抑制された吸水剤粉末が得られるのでより 好ま しい。 なお、 表面架橋に用いる架橋剤としてはエポキシ基含有の架 橋剤が特に好ま しいが、 他の架橋剤を併用することもできる。
本発明に用いられる上記界面活性剤としては、 好ましく は H L B ( Hy droph i l e-L i pophi l e Ba l ance) = 7以上、 さらには 9以上、 さ らには 1 1 以上のものであり、 好ま し く はノニオンまたはァニオン系界面活性剤、 より好ま しく はノニオン系界面活性剤が使用される。
これら界面活性剤の使用量は、 吸水性樹脂粉末 1 0 0重量部当たり、 通常、 0 . 0 0 1〜 2重量部、 好ま しく は 0 . 0 1 〜 1重量都、 さらに 好ま しく は 0 . 0 2〜 0 . 5重量部の範囲内である。 添加量が 0 . 0 0 1重量部より少ない場合、 添加による効果が見られない。 添加量が 2重 量部より多い場合、 添加量に見合った吸収速度の改善効果が見られない ばかりか、 加圧下の吸収倍率などがかえつて低下する場合もあり注意を 要する。
前述の水溶性高分子としては、 具体的には、 デンプン、 メチルセル口 ース、 カルボキシメチルセルロース、 ヒ ドロキンェチルセルロース、 ポ リァルキレ ンォキシ ド、 ボリアク リル酸、 ポリアク リル酸塩などの水溶 性高分子が、 好ましく はノニォン性またはァニオン性水溶性高分子が例 示される。
前述の界面活性剤に用いられる了二オン系界面活性剤としては、 ォレ イン酸ナ ト リ ウム、 ヒマシ油カ リ ウムなどの脂肪酸塩、 ラウ リ ル硫酸ナ ト リ ウム、 ラウ リル硫酸ァンモニゥムなどのアルキル硫酸エステル塩、 ドデシルベンゼンスルホン酸ナ ト リ ゥム塩などのアルキルベンゼンスル ホン酸塩、 アルキルナフ夕 レ ンスルホン酸塩、 ジアルキルスルホコハク 3 β 酸塩、 アルキルリ ン酸エステル塩、 ナフタ レンスルホン酸ホルマリ ン縮 合物、 ポリオキシェチレンアルキル硫酸エステル塩等が挙げられる。 前述の界面活性剤に用いられるノニオン系界面活性剤としては、 ポリ ォキシエチレンアルキルエーテル、 ポリオキシエチレンアルキルフエノ —ルエーテル、 ポリオキシエチレン脂防酸エステル、 ソルビタン脂肪酸 エステル、 ポリオキンソルビ夕ン脂防酸エステル、 ポリオキシエチレン アルキルァ ミ ン、 脂肪酸エステル、 ォキシエチレン—ォキシプロ ピレン ブロ ッ クポリマー等が挙げられる。
前述の界面活性剤に用いられるカチオン系界面活性剤としては、 ラウ リルア ミ ンアセテー ト、 ステアリ ルア ミ ンアセテー ト等のアルキルアミ ン塩、 ラウ リル ト リ メチルアンモニゥムクロライ ド、 ステア リノレ ト リ メ チルアンモニゥムクロライ ド等の第四极ァンモニゥム塩等が挙げられる
。 前述の界面活性剤に用いられる両性イオン界面活性剤としては、 ラウ リ ルジメチルア ミ ンォキサイ ド等が挙げられる。
この様に、 本発明では第 1 の方法および第 2の方法に関連して、 本癸 明の目的を達成するため、 表面近傍が架橋され、 且つ乾燥したカルボキ シル基含有の吸水性樹脂粉末であって、 荷重 5 0 g / c m 2 における生 理食塩水に対する加圧下の吸収倍率が少なく とも 2 0 g Z gにまで表面 架橋によって高められた不定型破砕状の吸水性樹脂粉末に対して、 その 吸水性樹脂扮末の人工尿 2 8倍膨潤時間で規定された吸収速度 ( g Z g / s e c ) が、 表面架橋後の吸水性樹脂粉末の吸収速度を越えて高める のに十分な量の、 水溶性界面活性剤および水溶性高分子から選ばれた少 なく とも 1種を添加する吸水剤粉末の製造方法をも提供する。
また、 以下、 本発明の吸水剤粉末の製造方法は新規な吸水剤粉末をも 提供する。 すなわち、 本発明は、 従来達成されなかった相反する 3つの 物性 (加圧下吸収倍率の向上、 吸収速度の改善、 残存エポキシ架橋剤量 の低減) を満たした新規な吸水剤粉末を提供する。
本発明で得られた吸水剤粉末は、 少なく とも一部が多孔質の吸水性樹 脂粉末であって、 表面積が大きいにも関わらず、 従来の 1 /数 1 0〜 1 Z数 1 0 0 となる低い残存架橋剤量を示す。
すなわち、 本発明の吸水剤粉末は、 少なく とも一部が多孔質の吸水性 樹脂粉末であって、 エポキシ基含有の架橋剤によって上記吸水性樹脂樹 脂粉末の表面近傍が架橋され、 且つ、 上記架橋剤の残存量が 2 p pm以 下、 好ましくは NDにまで低減された新規な吸水剤粉末である。
また、 上記吸水剤粉末の物性は、 生理食塩水を用いた吸収倍率におい て、 好ましくは、 荷重 5 0 gZ c m2 となる加圧下の吸収倍率が 2 0 g ml 以上、 より好ましく は 2 5 g/m2 以上であり、 一方、 無加圧下 の吸収倍率も 3 5 gZg以上である。
これら吸水剤粉末は、 その前駆体樹脂となる樹脂粉末の B E T比表面 積が、 上記樹脂粉末の粒径が 3 0 0〜 6 0 0 の粒子において、 0. 0 2 5 m2 Zg以上、 好ま しくは 0. 0 3 m2 Zg以上、 より好ましく は 0. 0 4 m2 /g以上のものであり、 本願明紬書で規定された吸収速 度が 0. 4以上 ( gZgZ s e c ) 、 好ましくは 0. 7 (gZg/ s e c ) 上のものである。
本発明によれば、 求核剤の処理効果により残存架橋剤の量を著しく低 減できるのみならず、 高加圧下の吸収倍率などの特性を損なわない優れ た吸収特性を示す吸水剤粉末が得られ、 吸水特性に優れ、 衛生材料への 応用に最適な安全性の高い吸水剤粉末が、 プロセス的にも効率よく得ら れる。
本発明で得られた吸水剤粉末に対して、 消臭剤、 香料、 無機粉末、 発 泡剤、 顔料、 染料、 親水性短織維、 可塑剤、 バインダー、 界面活性剤、 肥料等の化合物を添加して新たな機能を附加してもよい。
かかる化合物は、 米国特許第 4 1 7 9 3 6 7号. 米国特許第 4 1 9 0 5 6 3号, 米国特許第 4 5 0 0 6 7 0号, 米国特許第 4 6 9 3 7 1 3号, 米国特許第 4 8 1 2 4 8 6号, 米国特許第 4 8 6 3 9 8 9号, 米国特許 第 4 9 2 9 7 1 7号, 米国特許第 4 9 5 9 0 6 0号, 米国特許第 4 9 7 2 0 1 9号, 米国特許第 5 0 7 8 9 9 2号, 米国特許第 5 2 2 9 4 8 8 号や、 欧州特許第 0 0 0 9 9 7 7号, 欧州特許第 0 4 9 3 0 1 1号など に例示されている。
また、 本発明の吸水剤粉末を更に造拉ゃ成型してもよい。 また、 造粒 方法は米国特許第 4 7 3 4 4 7 8号や、 欧州特許第 0 4 5 0 9 2 2号, 欧州特許第 4 8 0 0 3 1 号などに例示されている。 図面の簡単な説明
図 1 は、 本発明において使用した、 高加圧下の吸収倍率を測定するた めの装置である。
図 2は、 参考例 1 の前駆体樹脂 ( 3 0 0〜 6 0 0 ^ m ) の粉末の粒子 構造を電子顕微鏡写真 ( 5 0倍) によって示す図面代用写真である。
図 3は、 参考例 2の前駆体樹脂 ( 3 0 0〜 6 0 0 / m ) の粉末の粒子 構造を電子顕微鏡写真 ( 5 0倍) によって示す図面代用写真である。
図 4は、 参考例 3の前駆体樹脂 ( 3 0 0〜 6 0 0 ;z m ) の粉末の粒子 構造を電子顕微镜写真 ( 5 0倍) によって示す図面代用写真である。 発明を実施するための最良の形態
以下実施例により本発明をさらに詳細に説明するが、 本発明の範囲が これらの実施例のみに限定されるものではない。
尚、 吸水剤粉末の諸性能は以下の方法で測定した。
( a ) 無加圧下での吸収倍率
吸水剤粉末 0. 2 gを不織布製のティ —バッグ式袋 ( 4 0 mm X 1 5 O mm) 内に均一に入れ、 0. 9重量%塩化ナ ト リ ウム水溶液 (生理食 塩水) 中に浸潰した。 6 0分後にティ 一バッグ式袋を引き上げ、 一定時 間水切りを行った後、 ティ —バッグ式袋の重量 W1 を測定した。 同様の 操作を吸水剤粉末を用いないで行い、 そのときのブランク重量 W0 を求 め、 W1 の値から W0 の値を差し引き、 その値を吸水剤粉末の初期重量 ( 0. 2 g ) で除して、 無加圧下での吸収倍率 ( gZg ) とした。
( b ) 高加圧下での吸収倍率
先ず、 加圧下の吸収倍率の測定に用いる測定装置について、 図 1 を参 照しながら、 以下に簡単に説明する。
図 1 に示すように、 釗定装置は、 天秤 1 と、 この天秤 1上に載置され た所定容量の容器 2 と、 外気吸入パイブ 3 と、 導管 4 と、 ガラスフィ ル 夕 6 と、 このガラスフィル夕 6上に載置された则定部 5 とからなってい る。
上記の容器 2は、 その頂都に開口部 2 aを、 その側面下部に開口部 2 bをそれぞれ有しており、 開口部 2 aに外気吸入パイプ 3が嵌入される 一方、 開口部 2 bにシリ コーン樹脂からなる導管 4が取り付けられてい る。 また、 容器 2には、 所定量の生理食塩水 1 2が投入されている。 外気吸入パイプ 3の下端部は、 生理食塩水 1 2中に没している。 外気 吸入パイプ 3は、 容器 2内の圧力をほぼ大気圧に保っために設けられて いる。 上記のガラスフィ ル夕 6は、 例えば直径 5 5 m mに形成されてお り、 ロー ト部 8の上端開口部を塞ぐように上記 α— ト部 8に取り付けら れている。
上記開口部 2 b と口一 ト部 8の下端開口部とを導管 4により連結する ことにより、 、 容器 2の内部と、 ロー ト部 8の内部とが、 導管 4によつ て互いに連通されている。 また、 ガラスフィ ルタ 6は、 容器 2に対する 位置および高さが固定されている。 上記の測定部 5は、 濾紙 7 と、 支持 円筒 9 と、 この支持円筒 9の底部に貼着された金網 1 0 と、 円柱状の重 り 1 1 とを有している。
上記支持円笥 9は、 ロー ト部 8の上端開口部と同一の内径を有してい る。 上記重り 1 1 は、 上記支持円筒 9内を、 上記支持円筒 9の軸方向に 沿って摺動できるようになつている。
測定部 5は、 ガラスフィルタ 6上に、 槺紙 7、 支持円筒 9 (つまり金 網 1 0 ) がこの順に載置されると共に、 支持円筒 9内部、 即ち、 金網 1 0上に重り 1 1 が载置されてなつている。
金網 1 0は、 ステンレスからなり、 4 0 0 メ ッシュ (目の大きさ 3 8 u m ) に形成されている。 また、 金網 1 0の上面、 つまり、 金網 1 0 と 吸水剤粉末 1 5 との接触面の高さは、 外気吸入パイプ 3の下端面 3 aの 高さと等しくなるように設定されている。
そして、 金網 1 0上に、 所定量および所定粒径の吸水剤粉末が均一に 散布されるようになっている。 金網 1 0、 すなわち、 吸水剤粉末 1 5に 対して、 5 0 g Z c m 2 の荷重を均一に加えることができるように、 重 り 1 1の重量が調整されている。
上記構成の測定装置を用いて、 試験する吸水剤粉末に対する、 髙加圧 下での吸収倍率を測定した。 測定方法について以下に説明する。
先ず、 容器 2に所定量の生理食塩水 1 2を入れる。 容器 2に外気吸入 パイプ 3を嵌入する、 等の所定の準備動作を行った。 次に、 ガラスフィ ル夕 6上に垅紙 7を栽置した。 また、 この載置動作に平行して、 支持 筒 9内部、 即ち、 金網 1 0上に、 吸水剤粉末 0 . 9 gを均一に散布し、 この吸水剤粉末 1 5上に重り 1 1 を載置した。
次いで、 痫紙 7上に、 金網 1 0、 つまり、 吸水剤粉末 1 5および重り 1 1 を載匿した上記支持円筒 9を、 その中心軸がガラスフィルタ 6の中 心軸に一致するように、 上記ガラスフィ ル夕 6上に戧置した。
そして、 濾紙 7上に支持円茼 9を載置した時点から、 6 0分間にわた つて経時的に、 該吸水剤粉末が吸水した生理食塩水 1 2の重量を天抨 1 の測定値から求めた。 また、 同様の操作を吸水剤粉末 1 5を用いないで 行い、 ブランク重量、 つまり、 吸水剤粉末以外の例えば濾紙 7等が吸水 した生理食塩水の重量を、 天秤 1 の測定値から求め、 ブランク値とした。 吸水剤粉末 1 5に対する高加圧下での吸収倍率 ( g / g ) は、 ブラン ク値による補正 (差し引く) を行い、 吸水剤粉末 1 5が実際に吸水した 生理食塩水 1 2の重量を、 吸水剤粉末の初期重量 ( 0 . 9 g ) で除して 算出された。
( C ) 吸水性樹脂粉末あるいは吸水剤粉末中の残存エポキシ基含有の 架橋剤量 吸水剤粉末 2 . 0 gを 1 0 0 m 1 のビーカ一に加え、 メチル ァルール/水 = 2 / 1重量 からなる組成液 2 m 1 を加え、 蓋をして 1 時間放置する。 メチルアルコール 5 m 1 を上記ビ一カーに加え旃過し、 濾液 1 . 0 gを 5 O m 1 のナスフラスコに入れ、 1 2 w t %のニコチン ァミ ド水溶液 0. 0 5 m l を添加する。
ナスフラスコに空冷管をつけ沸騰したゥォータ一バスで 3 0分間加熱 する。 反応液をろ紙を用いて旗過し、 滹過液を漠縮した後、 ニコチンァ ミ ドー架橋剤付加物を高性能液体クロマ トグラフィ 一で、 UV吸収によ つて分析した。
—方、 吸水剤粉末を用いず既知量の架橋剤を加えて同様の操作を行い, 得られた検量線を外部標準となし、 濾過液の希釈倍率を考慮して、 吸水 剤粉末中の残存表面架撟剤量 ( p p m) を求めた。
( d ) 吸収速度 (Swell Rate)
内径約 1 4. 1 mmのガラス製試験管 (高さ 1 2 6 mm) に吸水剤粉 末 ( 3 0 0〜 8 5 0 zm分极物) 0. 3 5 8 gを散布した。 次いで、 こ のものの上部中央から、 温度 2 5 °Cに設定された 1 0. 0 gの人工尿を 一気に静注して、 目視により人工尿 1 0 gが吸水剤粉末 0. 3 5 8 gに 全て吸収され、 2 8倍膨潤 ( g/ g ) ゲルになるまでの秒数を測定した 。 2 8倍 ( g Zg ) をこの秒数で割り、 吸収速度 (gZgZ s e c ) と した。 勿論、 数値が大きいほど、 高吸収速度である。 上記人工尿は、 硫酸ナ ト リ ウムが 0. 2重量%、 塩化カ リ ウムが 0. 2重量%、 塩化マ グネシゥム 6水和物が 0. 0 5重量 、 塩化カルシウム 2水和物が 0. 0 2 5重量%、 リ ン酸二水素了ンモニゥ厶が 0. 0 8 5重量%、 リ ン酸 水素二了ンモニゥムが 0. 0 1 5重量%を溶解した状態で含有する水溶 液である。
( e ) 比表面積
比表面積は、 J 1 S搮準篩で 3 0 0〜 6 0 0 /mに分扱した前駆体樹 脂粉末を 1 5 0てで 4 0分脱気した後、 液体窒素で冷却しながらク リプ トンガスを標準ガスとする B E T ( Brunauer-Bmme t t-Tel ler) 吸着法に よる比表面積によって測定された。
( f ) 水可溶分
吸水性樹脂粉末 0 . 5 gを 1 リ ッ トルのィォン交換水で 1 6時間摱拌 した後、 濾紙で膨潤ゲルを除去した。 こう して得られた據液中の水溶性 ボリマ一由来のポリア二オン量をコロイ ド滴定によって測定することで, 吸水性樹脂粉末から溶出した水溶性ポリマー、 すなわち、 水可溶分を測 定した。
( g ) 固形分
吸水製樹脂粉末 1 . 0 0 0 gをアルミ カップに戧せ、 1 8 0での無風 オーブンで 3時問加熱乾燥し、 その乾燥減量に基づき固形分を求めた。
(参考例 1 )
7 5モル%の中和率を有するァク リル酸ナ ト リゥム塩の単量体水溶液 5 5 0 0 g (単量体濃度 3 7 % ) に、 内部架橋剤として N , N ' —メチ レンビスアク リルアミ ド 1 . 7 7 g ( 0 . 0 5モル を溶解させた混 合溶液を得た。 上記混合溶液を、 窒素ガスで 3 0分脱気後、 内容積 1 0 Lでシグマ型羽根を 2本有するジャケッ ト付きステンレス製双腕型二一 ダ一に蓋をつけた反応器に供耠した。 上記混合溶液を、 3 0 'Cの温度に 保ちながら、 さらに窒素置換した。
次いで、 上記混合溶液に対し、 上記の羽を回転させながら過硫酸アン モニゥム 2 . 4 gと Lーァスコルビン酸 0 . 1 2 gを添加したところ、 上記混合溶液において 1分後に重合が開始し、 1 6分後には、 重合反応 系である上記混合溶液内のピーク温度は 8 3 に達した。 上記の重合反応によって得られた含水ゲル重合体は、 気泡を含まない 実質透明なものであり、 また、 約 5 mmの径に紬分化された。 その後更 に攪拌を梡け、 重合を開始して 6 0分後に含水ゲル重合体を取り出した《 得られた含水ゲル状重合体の細粒化物を 3 0 0 m ( 5 0 メ ッシュ) の金網上に広げ、 1 5 0 °Cで 9 0分間熱風乾燥した。 乾燥物を口一ルミ ルを用いて粉碎し、 更に 8 5 0 メ ッシュで分极して前駆体樹脂 (A ) を得た。 上記前駆体樹脂 ( A) は、 平均粒子怪 3 6 0 /mでかつ 1 5 0 zm未満の粒子径を有する樹脂の割合が 5重量 、 含水率 6重量%の 不定型破砕状のものであった。
なお、 前駆体樹脂 (A) 中の水可溶分は 1 0 %未満である。 前駆体樹 脂 (A) には電子頭微鏡による観察によって、 発泡は見られなかった。 前駆体樹脂 ( A) における 3 0 0〜 6 0 0 m粒子の B E T比表面積は 0. 0 1 8 m2 /gであった。 上記前駆体樹脂 (A) である非多孔質な 不定型破砕状粒子 ( 3 0 0〜 6 0 0 / m) の電子顕微鏡写真を図 2に示 し、 その物性を表 1 に示した。
O 97/03114
4 5
l 処理時 吸水倍率 加圧下 残存 吸収速度 吸水剤 扮末の 吸収倍率 架榇剤
CO (g/g) (g/g) <,g/g/sec) 前罄体樹脂 (A) 4 4 1 1 (未使用) 0. 3 1 前駆体樹脂 ( B) 5 2 9 (未使用) 0, 3 0 前駆体樹脂 ( C ) 4 5 8 (未使用) 0. 7 2 前椠体樹脂 ( D ) ― 4 4 8 (未使用) 0 . 6 5
吸水性樹脂 ( 1 ) 4 0 2 2 1 3 0 0. 2 2 吸水性樹脂 ( 2 ) 4 3 2 6 4 0 0. 2 8 吸水性樹脂 ( 3 ) 3 8 2 4 7 0 0 . 7 0 吸水性樹脂 ( 4 ) 3 7 2 3 6 0 0. 6 5 吸水性樹脂 C 5 ) 3 0 1 5 3 0. 3 0
(参考例 2 )
重合に用いる単量体として、 7 5モル の中和率を有するァク リル酸 ナト リゥ厶塩の単量体水溶液 5 5 0 0 g (単量体濃度 3 3 %) に、 内部 架撟剤としてボリエチレ ングリ コ一ルジァク リ レー ト (n 8 ) . 9 g ( 0. 0 4 5モル を溶解させた混合溶液を調製した。
次いで、 上記混合溶液を窒素置換後、 厚さ約 5 c mの状態で静置重合 させるため、 重合開始剤と して過硫酸ァンモニゥム 2. 4 gと Lーァス コルビン酸 0. 1 2 g、 さらに発泡剤兼重合開始剤として、 水溶性ァゾ 化合物 2、 2 ' 一アブビス ( 2—アミ ジノブ口パン) 2塩酸塩 4 gを添 加し均一溶解させたところ、 1 分後に重合が開始した。 上記混合溶液は、 その重合反応において、 ピ一ク温度が 7 0 eCに達した。
上記重合反応によつて得られた含水ゲル状重合体は、 径約 1〜 2 mm の気泡を含んだ多孔質のゲル伏重合体であつた。 該含水ゲル重合体をミ — トチヨパーで細分化し、 細粒化物を 3 0 0 mメ ッシュの金網上に広 げ、 1 6 0 eCで 6 0分間熱風乾燥した。
次いで、 乾燥物をロールミルを用いて粉砕し、 更に 8 5 0 メ ッシ ュで分扱して前駆体樹脂 ( B ) を得た。 前駆体樹脂 (B) は、 平均粒子 径 3 3 0 mで、 かつ 1 5 0 m未満の粒子径を有する樹脂粒子の割合 が 8重量 、 含水率 6重量%の不定型破砕状のものであった。
なお、 前駆体樹脂 ( B ) の水可溶分は 1 0 %未満であった。 前駆体榭 脂 (B ) における 3 0 0〜 6 0 拉子の B E T比表面積は 0. 0 2
5 m2 ロであった。 上記前驄体樹脂 (B) は、 電子顕微镜による観察 によって、 粒子の一部に発泡が観察された。 一部が多孔質の上記前駆体 樹脂 (B) である不定型破砕状粒子 ( 3 0 0〜 6 0 0 m) の電子顕微 铳写真を図 2に示し、 その物性を表 1 に示した。
(参考例 3 )
液温を 2 0 °Cに保ちつつ、 1 0 %濃度の 2 , 2 ' —アブビス ( 2—メ チルプロピオン了ミ ジン) 二塩酸塩水溶液 3 6部に、 1 2 0 0 r pmの 撹拌下、 3 7 %アク リル酸ナ ト リ ウム水溶液 6. 7部を添加した混合溶 液を調製したところ、 数秒後に、 上記混合溶液が白濁し、 平均粒子径 1 0 mの白色微粒子状固体が上記混合溶液から生成した。
この白濁液を濾過するこ とにより約 2. 2部の平均粒子径 1 O imの 白色微粒子伏固体を単離した。 上記固体を水洗して精製した。 この固体 は、 UVでアブ基特有の吸収 ( 3 6 5 n m) が認められ、 また NMR、 I R、 元素分析の結果より、 水均一分散性の 2 , 2 ' —ァゾビス ( 2 - メチルプロ ピオンア ミ ジン) 二アク リル酸塩であることが判明した。 ついで、 参考例 2の重合装置において、 重合に用いる単量体として、 7 5モル%の中和率を有するァク リ ル酸ナ ト リ ウム塩の単量体水溶液 5 5 0 0 g (単量体獏度 3 8 % ) に、 内部架撟剤として ト リ メチ口一ルプ 口パン ト リアク リ レー ト 3. 4 9 g ( 0. 0 5モル%) を溶解させたも のを用い、 且つ癸泡剤として、 上記 2 · 2 ' ーァゾビス ( 2—メチルブ ロ ピオンアミ ジン) 2ァク リ ル酸塩錯体 4 gを均一分散させ、 参考例 2 と同様に過硫酸ァンモニゥ厶と Lーァスコルビン酸を添加した。
得られた含水ゲル状重合体には、 粒径約 1 0 0 /m以下の気泡を多数 均--に含まれていた。 上記含水ゲル状重合体は、 発泡した気泡のため白 色を示す多孔質ゲル状重合体である。 該含水ゲル重合体を約 5〜 1 O m mに裁断し、 細粒化物を 3 0 0 /zm ( 5 0 メ ッシュ) の金網上に広げ、 1 5 0。Cで 6 0分間熱風乾燥した。 乾燥物を口一ルミルを用いて粉砕し、 更に 8 5 0 メ ッシュで分級して前駆体樹脂 (C) を得た。
前駆体樹脂 (C) は、 平均粒子怪 3 0 0 mで、 かつ、 1 5 0 ;/m未 満の粒子径を有する樹脂の割合が 8重量%、 含水率 6重量%の不定型破 砕状のものであつた。
なお、 前駆体樹脂 ( C ) の水可溶分は 1 0 %未満であった。 前駆体樹 脂 ( C) における、 3 0 0〜 6 0 0 01拉子の85丁比表面積は 0. 0 4 m2 /gであった。 前駆体樹脂 (C) は、 電子顕微镜による観察によ つて、 粒子の全体が均一に発泡して多孔質であった。 全体が均一に発泡 し、 多孔質の不定型破砕状拉子 ( 3 0 0〜 6 0 0 zm) の粒子構造を示 す電子顕微镜写真を図 4に示し、 その物性を表 1 に示した。
(参考例 4 )
参考例 3において、 発泡剤を炭酸ナ ト リウム 5 0 gに変更し、 且つ、 発泡剤の分散助材としてボリォキシエチレンソルビタンモノステァレ一 ト 2 gおよびヒ ドキシェチルセル ス 1 0 gを単量体水溶液に対し溶 解させることで、 発泡剤を単量体水溶液に対し均一分散させた。
ついで、 該単量体水溶液を参考例 3 と I司様に重合したところ、 得られ た含水ゲル状重合体は、 粒径約 1 0 0 /im以下の気泡を多数均一に含ん でいるため、 白色を示す多孔質ゲル状重合体であった。 該含水ゲル重合 体を約 5〜 1 0 mmに裁断し、 以下、 参考例 3 と同様に乾燥 · 粉砕 ·分 极を行うことで、 前駆体樹脂 (D) を得た。
前駆体樹脂 (D) は、 平均拉子径 3 6 0 zmで、 かつ 1 5 0 m未満 の粒子径を有する樹脂の割合が 8重量%、 含水率 6重量%の不定型破砕 状のものであった。 また、 前駆体樹脂 (D) の水可溶分は 1 0 %朱潸で あった。 前駆体樹脂 (D) における、 3 0 0〜 6 0 0 m粒子の B E T 比表面積は 0. 0 3 m2 ロであった。 前駆体樹脂 (D) には、 電子顕 微镜による観察によって、 粒子の全体に均一な発泡が見られ、 多孔質で あった。 前駆体樹脂 (D) の物性を表 1 に示した。
(比較例 1 )
参考例 1 で得られた非多孔質の前駆体樹脂 (A) 1 0 0部に、 ェポキ シ基を有する架橋剤としてエチレ ングリ コ一ルジグリ シジルェ一テル 0 . 1部及び水 4部からなる架橋剤水溶液を混合し、 得られた混合物を 1 2 0 'Cで 4 0分間加熱処理するこ とで吸水性樹脂粉末 ( 1 ) を得た。 こ の物性を表 1 に示した。
(比較例 2 )
参考例 2で得られた粒子の一部が多孔質の前駆体樹脂 ( B ) 1 0 0部 に、 エポキシ基を有する架橋剤としてエチレングリ コールジグリ シジル エーテル 0. 1部, 水 4部, イ ッブ πピルァルール 0. 5部からなる架 橋剤水溶液を混合し、 得られた混合物を 1 2 O 'Cで 3 0分間加熱処理す るこ とにより、 吸水性樹脂粉末 ( 2 ) の得た。 この物性値を表 1 に示し た。
(比較例 3 )
参考例 3で得られた粒子全体が均一に多孔質の前駆体樹脂 (C) 1 0 0部に、 エポキシ基を有する架橋剤としてエチレンダリ コールジグリ シ ジルェ一テル 0. 1 5部, 水 4部, エチルアルコール 1部からなる架橋 剤水溶液を混合し、 得られた混合物を 1 8 0でで 3 0分間加熱処理する こ とにより、 吸水性樹脂粉末 ( 3 ) を得た。 この物性値を表 1 に示す。 (比較例 4 )
参考例 4で得られた粒子全体が均一に多孔質の前駆体樹脂 (D) 1 0 0部に、 エポキシ基を有する架橋剤としてェチレングリ コールジグリ シ ジルエーテル 0. 1 5部, 水 4部, エチルアルコール 1部からなる架橋 剤水溶液を混合し、 得られた混合物を 1 2 0 eCで 4 0分間加熱処理する ことで吸水性樹脂粉末 ( 4 ) を得た。 この物性値を表 1 に示す。
(比較例 5 )
残存架橋剤を低狨するために、 エポキシ基を有する架橋剤を低減し且 つ水の量を増加した。 すなわち、 参考例 1 で得られた非多孔質の前駆体 樹脂 ( A) 1 0 0部に、 エチレングリ コ一ルジグリ シジルェ—テル 0. 0 1部及び水 4 0部、 イソプ πパノール 1 0部からなる架橋剤水溶液を 混合し、 得られた混合物を 1 2 0てで 4 0分間加熱処理することで吸水 性樹脂粉末 ( 5 ) を得た。 得られた吸水性樹脂粉末 ( 5 ) は、 表 1 に示 すように、 表面架橋後に残存架橋剤量の少ない場合、 諸物性、 特に高加 圧下の吸収倍率に劣っていた。
(実施例 1 )
比較例 1 で得られた吸水性樹脂粉末 ( 1 ) 1 0 0部を粉温 5 0でに保 ちながら、 求核剤として 3 0 %ポリエチレンイ ミ ン水溶液 ( 「ェポミ ン P— 1 0 0 0」 (株) 日本触媒製) 5部を添加混合し吸収せしめ、 粉末 状態で 4 O 'Cで 3 0分加熱し 2 0 メ ッシュ金網 ( 8 5 0 zm) 通過物を 分取して本発明の吸水剤粉末 ( 1 ) を得た。 吸水剤粉末 ( 1 ) は、 無加 圧下での吸収倍率が 3 8 gZg、 高加圧下の吸収倍率が 2 1 gZg、 残 存架橋剤 (エチレングリ コールジグリ シジルェ一テル) 量が 1 p p mの ものであった。 また、 それらの物性の結果を表 2にも示した。 表 2 処理時 吸水搭荜 加圧下 残存 吸収逮度 吸水剤 粉末の 吸収倍^ 架榇剤
温度
CO (g/g) Cg/g) μ πι Cg/g/sec) 吸水剤扮末 ( 1 ) 5 0 3 8 2 1 1 0. 2 2 吸水剤扮末 ( 2 ) 5 0 4 1 2 2 ND 0. 2 4 吸水剤扮末 < 3 ) 4 0 4 2 2 1 ND 0 . 2 2 吸水剤扮末 ( 4 ) 6 0 4 3 2 6 6 0 . 3 1 吸水剤扮末 C 5 ) 6 0 4 3 2 6 2 0. 3 2 吸水剤扮芣 ( 6 ) 8 0 4 3 2 5 1 0. 3 1 吸水剤扮末 ( 7 ) 7 0 3 7 2 3 7 0 . 6 6 吸水剤粉末 ( 8 ) 4 0 3 5 2 1 1 0 0. 6 5 吸水剤扮末 C 9 ) 4 0 3 2 2 0 7 0. 6 0 吸水剤汾末 (10) 4 0 4 3 2 6 4 0 . 4 0 吸水剤扮末 ( 9 0 4 3 2 4 2 0. 3 0 吸水剤粉末 ( 12〉 1 3 0 4 3 2 3 4 0 . 2 9 吸水剤扮末 (13) 4 5 3 8 2 4 5 0 . 7 4 吸水剤粉末 (14) 4 5 3 7 2 3 ND 0. 8 4 吸水剤粉末 (15) 4 5 3 7 2 3 N D 0 . 8 8 吸水剤扮末 (16) 4 5 3 7 2 3 2 0. 7 0 吸水剤粉末 (17) 3 0 3 5 2 2 8 0. 7 1 比較
吸水剤扮末 ( 6 ) 2 0 4 3 2 1 1 5 0. 3 0 比較
吸水剤粉末 ( 7 ) 4 0 4 4 1 0 1 0. 2 5 上記表 2における NDの表記は、 検出限界以下であることを示す。 また、 比較吸水剤粉末 ( 6 ) では連梡混合が困難であった。
(実施例 2 )
実施例 1 における、 3 0 %ポリエチレンイ ミ ン水溶液の代わりに、 求 核剤として 3 0 %亜硫酸水素ナト リゥム水溶液 5部を吸収せしめた他は. 実施例 1 と同様の操作を行い吸水剤粉末 ( 2 ) を得た。 吸水剤粉末 ( 2 ) は、 無加圧下での吸収倍率が 4 1 /g. 高加圧下の吸収倍率が 2 2 g/gで、 残存エチレングリ コ一ルジグリ シジルェ一テルが検出されな いものであった。 また、 それらの物性の結果を表 2にも示した。
(実施例 3 )
比較例 1で得られた吸水性樹脂粉末 ( 1 ) 1 0 0部を 4 O 'Cに保ち、 重量割合 5 0 : 5 0の水およびエチルアルコール混合液 1 0 0 0 c c と 撹拌下に 3 0分間接触せしめ、 その後吸引滹過し、 さらに 5 0でで減圧 乾燥 2 4時間行って洗浄することで、 本発明の吸水剤粉末 ( 3 ) を得た 。 吸水剤粉末 ( 3 ) は、 無加圧下での吸収倍率が 4 2 g/g、 高加圧下 の吸収倍率が 2 1 /g. 残存ェチレングリ コールジグリ シジルエーテ ルは検出されないものであった。 また、 それらの物性の結果を表 2にも 示した。
(実施例 4 )
比較例 2で得られた吸水性樹脂粉末 ( 2 ) 1 0 0部を粉温 6 (TCに保 ちながら、 求核剤として水 3部を添加し吸収せしめた後、 粉末状態で 1 8 0 "Cで 1時間加熱し乾燥し、 更に J I S 8 5 0 / mメッシュ金網を通 過させることで吸水剤粉末 ( 4 ) を得た。 吸水剤粉末 ( 4 ) の物性を表 2に示した。 (実施例 5 )
実施例 4において、 水を 2部さらに添加して、 求核剤として水の添加 量をト一タルで 5部とする以外は、 実施例 4 と同様に行うことで吸水剤 粉末 ( 5 ) を得た。 吸水剤粉末 ( 5 ) の物性を表 2に示した。
(実施例 6 )
実施例 4において、 求核剤として水の添加量を 1 0部とする以外は、 実施例 4 と同様に行う ことで吸水剤粉末 ( 6 ) を得た。 吸水剤粉末 ( 6 ) の物性を表 2に示した。
(実施例 7 )
比較例 3で得られた吸水性樹脂粉末 ( 3 ) 1 0 0部を粉温 7 0てに保 ちながら、 求核剤としてのジェタノ一ルァ ミ ン 3部を吸収せしめ、 粉末 状態で 6 0てで 1 時間加熱し更に 8 5 0 〃 mメ ッシュ金網を通過させる ことで吸水剤粉末 ( 7 ) を得た。 吸水剤粉末 ( 7 ) の物性を表 2に示し た。
(実施例 8 )
比較例 4で得られた吸水性樹脂粉末 ( 4 ) 1 0 0部を粉温 4 0てに保 ちながら、 求核剤としてのプロ ピし ングリ コール 5部を添加した後、 粉 末状態で 8 0てで 1 時間加熱し、 更に 2 0 メ ッシュ金網を通過させるこ とで吸水剤粉末 ( 8 ) を得た。 吸水剤粉末 ( 8 ) の物性を表 2に示した。 (実施例 9 )
実施例 8において、 求核剤としてのプロピレングリ コールの量を 1 5 部とする以外は実施例 8 と同様に行い、 吸水剤粉末 ( 9 ) を得た。 吸水 剤粉末 ( 9 ) を物性を表 2に示した。
(実施例 1 0 ) 実施例 4において、 ノニオン系界面活性剤ボリォキシエチレンソルビ タンモノステアレー ト (H L B = 1 4. 9 ) 0. 1都、 および求核剤と して水の添加量を 5部を加えた後、 6 0 eCで固形分を保ったまま 1時間 加熱処理し、 次いで乾燥する以外は実施例 4 と同様に行うことで吸水剤 粉末 ( 1 0 ) を得た。 吸水剤粉末 ( 1 0 ) の物性を表 2に示した。
(比較例 6 )
実施例 6において、 求核剤を添加する吸水性樹脂粉末 ( 2 ) の粉温を 実施例 6で行った 6 0てから、 2 0 °Cとする以外は同様に行い、 比較吸 水剤粉末 ( 6 ) を得た。 なお、 吸水性樹脂粉末に求核剤を連檨的に混合 しょう とすると、 徐々に供給する樹脂に凝集が見られれ混合が不均一と なった。 最終的に得られた比較吸水剤粉末 ( 6 ) の物性を表 2に示した 。 比較吸水剤粉末 ( 6 ) は、 実施例 6で得られた吸水剤粉末 ( 6 ) と比 ベて、 明らかに凝集物も多く、 その物性も低かった。 (比較例 7 ) 粉末状態で処理する実施例 6において、 求核剤を添加量を 1 0 0部と することで、 吸水性樹脂粉末 ( 2 ) をゲル状態で処理し、 以下、 実施例
6 と同様に加熱処理し 8 5 メ ッ シュの篩を通過させることで比較 吸水剤粉末 ( 7 ) を得た。 得られた比較吸水剤粉末 ( 7 ) の物性を表 2 に示した。 比較吸水剤粉末 ( 7 ) は、 粉末状態で処理した実施例 6 と比 ベて、 残存架橋剤の低減効果はほぼ同じ位であつたが、 高加圧下での吸 収倍率が大幅に劣っていた。
(実施例 1 1 )
実施例 6において、 求核剤を添加する吸水性樹脂粉末の粉温を実施例 6で行った 6 0 eCから、 9 0でとする以外は同様に行い、 吸水剤粉末 ( 1 1 ) を得た。 なお、 吸水性樹脂粉末への求核剤の混合性は扮温 2 0 °C で行った比較例 5よりは遥かに優れていたが、 6 0てで行った実施例 6 よりはやや劣っていた。 得られた吸水剤粉末 ( 1 1 ) の物性を表 2に示 した。 吸水剤粉末 ( 1 1 ) は、 実施例 6よりは、 高加圧下での吸収倍率 および残存架橋剤の低減効果に若干劣つていた。
(実施例 1 2 )
実施例 6において、 求核剤を添加する吸水性樹脂粉末の粉温を実施例 6で行った 6 0てから、 1 3 O 'Cとする以外は同様に行い、 吸水剤粉末
( 1 2 ) を得た。 なお、 吸水性樹脂粉末への求核剤の混合性は粉温 2 0 °Cで行った比較例 5 よりは遥かに優れていたが、 9 0 eCで行った実施例 1 1 よりはやや劣っていた。 得られた吸水剤粉末 ( 1 1 ) の物性を表 2 に示した。 吸水剤粉末 ( 1 1 ) は、 実施例 6 よりは、 高加圧下での吸収 倍率および残存架橋剤の低減効果に若干劣っていた。
(実施例 1 3 )
比較例 3で得られた吸水性樹脂粉末 ( 3 ) 1 0 0部を粉温 4 5でに保 ちながら、 求核剤としての水 8部を吸収せしめ、 固形分を保ったまま、 扮末状態で 6 0 'Cで 1 時間加熱し更に乾燥した。 次いで、 8 5 0 mメ ッシュ金網を通過させることで吸水剤粉末 ( 1 3 ) を得た。 吸水剤粉末
( 1 3 ) の物性を表 2に示した。
(実施例 1 4 )
突施例 1 3において、 ノニオン系界面活性剤ポリオキシエチレンソル ビ夕ンモノステアレー ト (HL B = 1 4. 9 ) 0. 1部、 求核剤として 水 8部に加え、 さらにト リエタノールァミ ン 1部を併用する以外は実施 例 1 3 と同様に行い、 吸水剤粉末 ( 1 4 ) を得た。 吸水剤扮末 ( 1 4 ) の物性を表 2に示した。 (実施例 1 5 )
実施例〗 3において、 ノニオン系界面活性剤ボリォキシエチレンソル ビタンモノステアレート (HL B = i 4. 9 ) 0. 1部を、 求核剤とし て水 8部に加え、 さらに尿素 3部を併用する以外は実施例 1 3 と同様に 行い、 吸水剤粉末 ( 1 5 ) を得た。 吸水剤粉末 ( 1 5 ) の物性を表 2に 示した。
(実施例 1 6 )
実施例 1 3において、 求核剤として水 8部に加え、 さらに苛性ソーダ 2部を併用した上、 界面活性剤ポリオキシエチレンラウリルェ一テル硫 酸ナ ト リ ウム 0. 1都を加えた以外は実施例 1 3 と同様に行い、 吸水剤 粉末 ( 1 6 ) を得た。 吸水剤粉末 ( 1 6 ) の物性を表 2に示した。
(実施例 1 7 )
比較例 3で得られた吸水性樹脂扮末 ( 3 ) 1 0 0部を粉温 3 0でに保 ち、 温度 3 0 °CZ湿度 9 0 %R Hの条件下、 水 8部を吸湿させ、 次いで、 加熱せずに粉末状態で 4 0 日間密閉し放置して、 吸水剤粉末 ( 1 7 ) を 得た。 吸水剤粉末 ( 1 7 ) の物性を表 2に示した。 産業上の利用可能性
本発明の吸水剤粉末の製造方法は、 従来の表面近傍が架橋された吸水 性樹脂粉末に対して、 加熱された粉末伏態にて求核剤を添加して残存架 橋剂を低減することにより、 無加圧下の吸収倍率が高く、 かつ高加圧下 での吸収倍率にも非常に優れ、 反応性の高いエポキシ基含有の架橋剤が 吸水剤粉末中に残存せず、 さらに高吸収速度、 液の拡散性、 パルプから の移動や脱落のし難く さ、 等の特徵を有することから紙おむつ、 生理ナ プキンなどの衛生材料に特に好適に用いられる吸水剤粉末を簡便に、 か つ安定に得ることができる。
本発明の吸水剤粉末は、 無加圧下の吸収倍率が高く、 かつ高加圧下で の吸収倍率にも非常に優れ、 反応性の髙ぃエポキシ基含有の架橋剤が吸 水剤粉末中に残存せず、 さらに高吸収速度、 液の拡散性、 パルプからの 移動や脱落のし難く さ、 等の特徴を有することから、 紙おむつ、 生理ナ プキンなどの衛生材料に特に好適に用いられる。

Claims

請 求 の 範 囲
1 . エポキシ基含有の架橋剤により表面近傍が架橋され、 且つ該架橋剤 が残存しているカルボキシル基含有の吸水性樹脂粉末に対して、 加熱さ れた粉末状態にて求核剤を添加して残存架橋剤を低減することを特徵と する吸水剤粉末の製造方法。
2. 該吸水性樹脂粉末の荷重 5 0 g/ c m2 における生理食塩水に対す る加圧下の吸収倍率が少なく とも 2 0 g /gであることを特徵とする請 求項 1記載の吸水剤粉末の製造方法。
3. 該吸水性樹脂粉末が、 水溶性不飽和単量体を水溶液重合し且つ粉砕 して得られた不定型破碎状であることを特徴とする請求項 1記載の吸水 剤扮末の製造方法。
4. 該吸水性樹脂粉末が、 発泡剤の存在下で得られた多孔質であること を特徴とする請求項 1記載の吸水剤粉末の製造方法。
5. 該発泡剤が、 水溶性アブ化合物および炭酸類から選ばれる少なく と も 1種であることを特徵とする請求項 4記裁の吸水剤粉末の製造方法。
6. 該吸水性樹脂粉末の表面架橋前の B E T比表面積は、 上記吸水性榭 脂粉末の粒径が 3 0 0〜 6 0 0 umにおいて、 0. 0 2 5 m2 Zg以上 のものであることを特徴とする請求項 1記載の吸水剤粉末の製造方法。
7. 該吸水性樹脂粉末の表面近傍の架橋は、 水分量 1 0 %未満に乾燥し た親水性架橋重合体 1 0 0重量部当たりエポキシ基含有の架橋剤 0. 0 0 5〜 2重量部および水 0. 1 〜 1 0重量部を含む水性液の添加混合に より行われることを特徵とする請求項 1記載の吸水剤粉末の製造方法。
8. エポキシ基含有の架橋剤の残存量が 2〜 2 0 0 0 p pmであること 5 g を特徴とする請求項 1記載の吸水剤粉末の製造方法。
9 . 求核剤が液体であることを特徵とする請求項 1記載の吸水剤粉末の 製造方法。
1 0 . 求核剤が水であるこ とを特徴とする請求項 9記載の吸水剤粉末の 製造方法。
1 1 . 求核剤は、 吸水性樹脂粉末 1 0 0重量都に対して、 1〜 3 0重量 部用いられることを特徵とする請求項 9記載の吸水剤粉末の製造方法。
1 2 . 求核剤は p H 5以上のものであることを特徵とする請求項 9記載 の吸水剤扮末の製造方法。
1 3 . 求核剤の求核原子が、 窒素および硫黄から選ばれた少なく とも 1 種であることを特徵とする請求項 1記載の吸水剤粉末の製造方法。
1 4 . 水、 および、 求核原子が窒素および または硫黄から選ばれた求 核剤の 2種類以上同時に併用されることを特徵とする請求項 1記戟の吸 水剤粉末の製造方法。
1 5 . 求核剤は、 アミ ン類、 アンモニア、 炭酸アンモニゥム、 亜硫酸 ( 塩) 、 亜硫酸水素 (塩) 、 チォ硫酸 (塩) 、 尿素、 チォ尿素、 アミ ド類 から選ばれた少なく とも 1種であることを特徵とする請求項 1 3記載の 吸水剤扮末の製造方法。
1 6 . 求核剤が、 ボリァミ ンおよびノ又は亜硫酸水素 (塩) であること を特徴とする請求項 1 3記載の吸水剤粉末の製造方法。
1 7 . さらに、 水溶性界面活性剤を添加する工程を含むことを特徵とす る請求項 1記載の吸水剤粉末の製造方法。
1 8 . 求核剤存在下で、 該吸水性樹脂粉末を加熱処理するこ とを特徵と する請求項 9記載の吸水剤粉末の製造方法。
1 9. 求核剤の存在下で、 該吸水性樹脂粉末を 1 0分以上加熱処理する ことを特徵とする請求項 1 8記載の方法。
2 0. 吸水性樹脂粉末に対し、 求核剤の少なく とも一部が蒸気の状態で 接触するように上記吸水性樹脂粉末の温度を設定して、 上記加熱処理す ることを特徵とする請求項 1 8記載の吸水剤粉末の製造方法。
2 1. 加熱された粉末状態の温度が 3 0〜 1 0 0ての範囲であることを 特徵とする請求項 1記載の吸水剤粉末の製造方法。
2 2. 求核剤処理後の吸収速度 (gZg/s e c) が、 求核剤処理前よ り大きくなつていることを特徴とする請求項 1記載の吸水剤粉末の製造 方法。
2 3. 求核剤処理後のエポキシ基含有の架橋剤が 2 p p m以下にまで低 減され且つ加圧下の吸収倍率が 2 0 gZg以上を保持しているこ とを特 徵とする請求項 1記載の吸水剤粉末の製造方法。
2 4. 求核剤を該吸水性樹脂粉末に吸収せしめることを特徴とする請求 項 1 8記載の吸水剤粉末の製造方法。
2 5. 求核剤を、 分割し、 檨り返し添加することを特徵とする請求項 1 記載の吸水剤粉末の製造方法。
2 6. エポキシ基含有の架橋剤により表面近傍が架橋され、 且つ該架橋 剤が残存している力ルボキシル基含有の吸水性樹脂粉末に対して、 洗浄 を行い残存架橋剤を低減することを特徴とする吸水剤粉末の製造方法。
2 7. 洗浄は、 吸水性樹脂を水および親水性有機溶媒からなる混合液と 接触後、 混合液を吸水性樹脂から分離する方法によってなされることを 特徴とする請求項 2 6記載の吸水剤粉末の製造方法。
2 8. 混合液は、 吸水性樹脂粉末の膨潤が回避されるように選択される θ 1
ことを特徴とする請求項 2 6記載の吸水剤粉末の製造方法。
2 9. 該吸水性樹脂粉末の荷重 5 0 g/ c m2 における生理食塩水に対 する加圧下の吸収倍率が少なく とも 2 0 g/gであることを特徵とする 請求項 2 6記載の吸水剤粉末の製造方法。
3 0. 該吸水性樹脂粉末が、 発泡剤の存在下で得られた多孔質であるこ とを特徵とする請求項 2 6記載の吸水剤粉末の製造方法。
3 1 . 該吸水性樹脂粉末が、 水溶性不飽和単量体を水溶液重合し、 且つ 粉砕して得られた不定型破砕状のものであることを特徴とする請求項 2
6記載の吸水剤粉末の製造方法。
3 2. 該発泡剤が、 水溶性ァゾ化合物および炭酸類から選ばれる少なく も 1種であることを特徴とする請求項 3 0記載の吸水剤粉末の製造方法 {
3 3. 該吸水性樹脂扮末は、 表面架橋前の B E T比丟面積が、 上記吸水 性樹脂粉末の径が 3 0 0〜 6 0 0 zmにおいて、 0. 0 2 5 m2 Zg以 上であることを特徵とする請求項 2 6記載の吸水剤粉末の製造方法。
3 4. 該吸水性樹脂粉末の表面近傍の架橋が、 水分量 1 0 %未満に乾燥 した親水性架橋重合体 1 0 0重量部当たりエポキシ釜含有の架橋剤 0 - 0 0 5〜 2重量部および水 0. 1 〜 1 0重量部を含む水性液の添加混合 により行われることを特徵とする請求項 2 6記載の吸水剤粉末の製造方 法。
3 5. 洗浄前の吸水性樹脂粉末において、 エポキシ基含有の架橋剤の残 存量が 2〜 2 0 0 0 p p mであることを特徵とする請求項 2 6記載の吸 水剤粉末の製造方法。
3 6. 表面近傍が架橋され、 且つ乾燥したカルボキシル基含有の吸水性 樹脂粉末であって、 荷重 5 0 g/c m2 における生理食塩水に対する加圧下の吸収倍率が 少なく とも 2 0 gZgにまで、 表面架橋によって高められた不定型破砕 状の吸水性樹脂粉末に対して、
人工尿 2 8倍膨潤時間で規定された上記吸水性樹脂粉末の吸収速度 ( g/g/ s e c ) が表面架橋後の吸水性樹脂粉末の吸収速度を越えて高 めるに十分な量の、 水溶性界面活性剤および水溶性高分子から選ばれた 少なく とも 1種をさらに添加することを特徴とする吸水剤粉末の製造方
3 7. エポキシ基含有の架橋剤により表面近傍が架橋され且つ該ェポキ シ基含有の架橋剤が残存し、 旦っ粒子の少なく とも一部が多孔質の、 荷 重 5 0 g/ c m2 における生理食塩水に対する加圧下の吸収倍率が少な く とも 2 0 gZgにまで表面架橋によって高められたカルボキシル基含 有の吸水性樹脂粉末に対し、
水を添加して得た混合物を粉末状態にて、 残存する架橋剤を低滅する ことを特徴とする吸水剤粉末の製造方法。
3 8. 混合物を粉末伏^にて、 加熱処理するこ とを特徵とする請求項 3 7記載の吸水剤粉末の製造方法。
3 9. 混合物を粉末状態にて、 室温で 1 0 日以上放置して処理すること を特徵とする請求項 3 7記載の吸水剤粉末の製造方法。
4 0. 少なく とも一部が多孔質の吸水性樹脂粉末であって、
エポキシ基含有の架橋剤によって、 上記吸水性樹脂粉末の表面近傍が 架橋されており、 且つ、 上記架橋剤の残存量が 2 p pm以下のものであ ることを特徵とする吸水剤粉末。
1. 荷重 5 0 c in2 における生理食塩水に対する加圧下の吸収倍 率が少なく とも Z O gZgであることを特徵とする請求項 4 0記裁の吸 水剤粉末。
4 2. 該吸水性樹脂粉末は、 上記吸水性樹脂粉末の前駆体樹脂である表 面架橋前の親水性樹脂架橋体の B E T比表面植が 3 0 0〜 6 0 0 zmの 粒子において、 0. 0 2 5 m2 /g以上のものであることを特徵とする 請求項 4 0記載の吸水剤粉末。
4 3. 人工尿 2 8倍膨潤で規定された吸収速度が、 0. 7 ( gZgZ s e c ) 以上のものであることを特徴とする請求項 4 0記載の吸水剤扮末:
PCT/JP1996/001863 1995-07-07 1996-07-05 Poudre absorbant l'eau et son procede de fabrication WO1997003114A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69632570T DE69632570T3 (de) 1995-07-07 1996-07-05 Wasserabsorbierendes pulver und verfahren zur herstellung
JP50031997A JP3462217B2 (ja) 1995-07-07 1996-07-05 吸水剤粉末およびその製造方法
US08/793,712 US5981070A (en) 1995-07-07 1996-07-05 Water-absorbent agent powders and manufacturing method of the same
EP96922234A EP0780424B2 (en) 1995-07-07 1996-07-05 Water absorbent powder and process for the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17189595 1995-07-07
JP7/171895 1995-07-07

Publications (1)

Publication Number Publication Date
WO1997003114A1 true WO1997003114A1 (fr) 1997-01-30

Family

ID=15931807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001863 WO1997003114A1 (fr) 1995-07-07 1996-07-05 Poudre absorbant l'eau et son procede de fabrication

Country Status (5)

Country Link
US (1) US5981070A (ja)
EP (1) EP0780424B2 (ja)
JP (1) JP3462217B2 (ja)
DE (1) DE69632570T3 (ja)
WO (1) WO1997003114A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188726A (ja) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
JPH11188725A (ja) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
EP0885917A3 (en) * 1997-06-18 2000-10-04 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process
WO2002085959A1 (fr) * 2001-04-16 2002-10-31 Sumitomo Seika Chemicals Co., Ltd. Resine d'absorption d'eau appropriee a l'absorption de liquide visqueux contenant un compose a poids moleculaire eleve, et absorbant et article absorbant les contenant
JP2004513198A (ja) * 2000-10-30 2004-04-30 ストックハウゼン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト 改良されたブロッキング特性を有する吸収構造
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
JP2009235120A (ja) * 2008-03-25 2009-10-15 Toray Ind Inc エポキシ系粒子の精製方法
WO2009133763A1 (ja) * 2008-05-01 2009-11-05 テルモ株式会社 視認性医療用処置材
JP2010202743A (ja) * 2009-03-02 2010-09-16 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
JP2012525454A (ja) * 2009-04-30 2012-10-22 ビーエーエスエフ ソシエタス・ヨーロピア 金属不純物を分離する方法
WO2013051417A1 (ja) 2011-10-06 2013-04-11 住友精化株式会社 吸水性樹脂粒子の製造方法
WO2013128978A1 (ja) 2012-02-29 2013-09-06 住友精化株式会社 吸水性樹脂粒子の製造方法
WO2014021388A1 (ja) * 2012-08-01 2014-02-06 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末を用いた吸水剤及びその製造方法
JP2014505151A (ja) * 2011-02-07 2014-02-27 ビーエーエスエフ ソシエタス・ヨーロピア 高い膨潤速度を有する吸水性ポリマー粒子の製造法
WO2014041968A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
JP2014237846A (ja) * 2009-02-17 2014-12-18 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末およびその製造方法
US9199218B2 (en) 2011-08-03 2015-12-01 Sumitomo Seika Chemicals Co., Ltd. Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
US9833769B2 (en) 2011-02-07 2017-12-05 Basf Se Process for producing water-absorbing polymer particles with high free swell rate
WO2020145384A1 (ja) 2019-01-11 2020-07-16 株式会社日本触媒 吸水性樹脂を主成分とする吸水剤及びその製造方法
WO2021201177A1 (ja) 2020-03-31 2021-10-07 株式会社日本触媒 粒子状吸水剤
US11383221B2 (en) 2018-12-12 2022-07-12 Lg Chem, Ltd. Preparation method of super absorbent polymer
US11891487B2 (en) 2018-09-28 2024-02-06 Lg Chem, Ltd. Preparation method of super absorbent polymer and super absorbent polymer therefrom
US11931290B2 (en) 2017-12-21 2024-03-19 Nippon Shokubai Co., Ltd. Water absorbent resin powder for heat-generating element composition, and heat-generating element composition
US12179172B2 (en) 2018-12-11 2024-12-31 Lg Chem, Ltd. Method of preparing superabsorbent polymer and superabsorbent polymer

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194531B1 (en) 1996-06-05 2001-02-27 Nippon Shokubai Co., Ltd. Method for production of cross-linked polymer
US6444744B1 (en) 1998-03-11 2002-09-03 Nippon Shokubai Co., Ltd. Hydrophilic resin, absorbent article, and acrylic acid for polymerization
EP1130045B2 (en) 2000-02-29 2015-10-28 Nippon Shokubai Co., Ltd. Process for producing a water-absorbent resin powder
ATE301169T1 (de) * 2000-06-07 2005-08-15 Sicpa Holding Sa Durch uv-strahlung härtbare zusammensetzung
US6927268B2 (en) * 2000-06-21 2005-08-09 Nippon Shokubai Co., Ltd. Production process for water-absorbent resin
AU2001280800A1 (en) * 2000-07-28 2002-02-13 The Dow Chemical Company Sulfonated substantially random interpolymer-based absorbent materials
KR100398947B1 (ko) 2000-11-28 2003-09-22 금호석유화학 주식회사 폴리알킬렌글리콜로 치환된 다가반응성(multi-reactive)규소화합물 및 그제조방법
US6828014B2 (en) 2001-03-22 2004-12-07 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6908966B2 (en) 2001-03-22 2005-06-21 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US7070854B2 (en) 2001-03-22 2006-07-04 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6897168B2 (en) 2001-03-22 2005-05-24 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
CA2482394C (en) 2003-02-10 2009-06-30 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
TWI302541B (en) * 2003-05-09 2008-11-01 Nippon Catalytic Chem Ind Water-absorbent resin and its production process
JP4640923B2 (ja) * 2003-09-05 2011-03-02 株式会社日本触媒 粒子状吸水性樹脂組成物の製造方法
JP4926474B2 (ja) 2004-02-05 2012-05-09 株式会社日本触媒 粒子状吸水剤及びその製造方法並びに吸水性物品
US20050235336A1 (en) * 2004-04-15 2005-10-20 Kenneth Ma Data storage system and method that supports personal video recorder functionality
AU2005240481B2 (en) * 2004-05-12 2008-07-03 Nippon Shokubai Co., Ltd. Waste solution solidifying agent, process for preparing the same and use of the same
DE102005001789A1 (de) 2005-01-13 2006-07-27 Basf Ag Verfahren zum Klassieren eines teilchenförmigen wasserabsorbierenden Harzes
US20060173431A1 (en) * 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
US20060173432A1 (en) * 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
TWI353360B (en) 2005-04-07 2011-12-01 Nippon Catalytic Chem Ind Production process of polyacrylic acid (salt) wate
DE102005042608A1 (de) 2005-09-07 2007-03-08 Basf Ag Polymerisationsverfahren
TWI394789B (zh) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind 吸水性樹脂組成物及其製造方法、吸收性物品
EP1837348B9 (en) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
WO2008108343A1 (ja) * 2007-03-05 2008-09-12 Nippon Shokubai Co., Ltd. 吸水剤及びその製造方法
CN101631819B (zh) 2007-03-12 2015-03-11 巴斯夫欧洲公司 再润湿的表面交联的超吸收剂的制备方法
US7935860B2 (en) * 2007-03-23 2011-05-03 Kimberly-Clark Worldwide, Inc. Absorbent articles comprising high permeability superabsorbent polymer compositions
WO2010004020A1 (de) 2008-07-11 2010-01-14 Basf Se Verfahren zur oberflächennachvernetzung wasserabsorbierender polymerpartikel
US20120058267A1 (en) 2009-05-18 2012-03-08 Basf Se Coating Process for Water-Absorbing Polymer Particles
CN105771945A (zh) 2009-09-29 2016-07-20 株式会社日本触媒 颗粒状吸水剂及其制造方法
WO2011042429A1 (de) 2009-10-09 2011-04-14 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2486066B1 (de) * 2009-10-09 2013-08-28 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2535369B1 (en) * 2010-02-10 2021-03-24 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
EP2546286B1 (en) 2010-03-12 2019-09-25 Nippon Shokubai Co., Ltd. Method for manufacturing a water-absorbing resin
WO2011117245A1 (de) 2010-03-25 2011-09-29 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP6045795B2 (ja) * 2012-02-23 2016-12-14 株式会社リブドゥコーポレーション 吸水体、および、これを用いた吸収性物品
JP5719079B1 (ja) 2014-07-11 2015-05-13 住友精化株式会社 吸水性樹脂及び吸収性物品
JP5689204B1 (ja) * 2014-07-11 2015-03-25 住友精化株式会社 吸水性樹脂の製造方法、吸水性樹脂、吸水剤、吸収性物品
JP5719078B1 (ja) 2014-07-11 2015-05-13 住友精化株式会社 吸水性樹脂の製造方法
CN111356426B (zh) 2017-11-16 2022-05-06 株式会社日本触媒 吸水剂及吸收性物品
US11986798B2 (en) 2018-04-10 2024-05-21 Basf Se Permeable superabsorbent and process for production thereof
JP7192442B2 (ja) * 2018-11-29 2022-12-20 セイコーエプソン株式会社 吸収性複合体
CN109755644B (zh) * 2018-12-21 2021-04-27 清华大学深圳研究生院 凝胶复合聚合物电解质膜及其制备方法、锂离子电池
US12403448B2 (en) 2019-07-24 2025-09-02 Basf Se Permeable superabsorbent and process for production thereof
CN111621039B (zh) * 2020-05-25 2022-08-05 万华化学集团股份有限公司 一种吸水性树脂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000653A1 (en) 1977-07-21 1979-02-07 Basil Earle Wainwright Rear view mirrors
EP0001994A1 (de) 1977-11-04 1979-05-30 Hoechst Aktiengesellschaft Verfahren zur Herstellung von Acetoacetylaminobenzolen
JPS6361005A (ja) * 1986-09-01 1988-03-17 Lion Corp 表面架橋した多孔性ポリマ−の製造方法
EP0339461A1 (en) 1988-04-21 1989-11-02 Kimberly-Clark Corporation Absorbent products containing hydrogels with ability to swell against pressure
JPH04501877A (ja) * 1989-06-21 1992-04-02 ラッキー リミテッド 高吸水性樹脂の製造方法
JPH06200046A (ja) * 1992-01-28 1994-07-19 Sanyo Chem Ind Ltd 改質された高吸水性樹脂の製法および樹脂

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180233A (ja) * 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収剤
DE3635367A1 (de) * 1986-08-30 1988-03-03 Cassella Ag Verfahren zur herstellung eines weitgehend monomerenfreien hydrogels
DE3724709A1 (de) 1987-07-25 1989-02-02 Stockhausen Chem Fab Gmbh Verfahren zur herstellung von polymerisaten mit niedrigem restmonomergehalt
JPH02132103A (ja) * 1988-11-11 1990-05-21 Idemitsu Petrochem Co Ltd ポリアクリル酸アルカリ金属塩の製造方法
WO1991003497A1 (en) * 1989-09-04 1991-03-21 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of preparing water-absorbent resin
JP2854039B2 (ja) 1989-10-23 1999-02-03 三菱化学株式会社 粉粒体の造粒方法
JP2848882B2 (ja) * 1989-12-25 1999-01-20 三菱化学株式会社 高吸水性樹脂の製造法
US5369148A (en) * 1990-04-27 1994-11-29 Nippon Shokubai Co., Ltd. Method for continuous agglomeration of an absorbent resin powder and apparatus therefor
JP2960495B2 (ja) * 1990-07-31 1999-10-06 日本化薬株式会社 吸水剤及びその製造方法
DE69133620D1 (de) * 1990-12-21 2009-09-10 Nippon Catalytic Chem Ind Wasserabsorbierendes Material und Verfahren zu seiner Herstellung sowie wasserabsorbierender Artikel und Verfahren zu seiner Herstellung
DE4138408A1 (de) 1991-11-22 1993-05-27 Cassella Ag Hydrophile, hochquellfaehige hydrogele
CA2086031A1 (en) * 1992-01-28 1993-07-29 Shigeki Ueda Process for producing improved water absorbing resin and resin made by the same
US5389722A (en) 1992-06-05 1995-02-14 Nippon Shokubai Co., Ltd. Hydrophilic resin and method for production thereof
JP2675729B2 (ja) 1992-12-16 1997-11-12 株式会社日本触媒 吸水性樹脂の製造方法
US5314420A (en) * 1993-09-17 1994-05-24 Nalco Chemical Company Superabsorbent polymer having improved absorption rate and absorption under pressure
JPH07224204A (ja) * 1994-02-10 1995-08-22 Toagosei Co Ltd 吸水性樹脂の製造方法
US5610208A (en) * 1994-02-17 1997-03-11 Nippon Shokubai Co., Ltd. Water-absorbent agent, method for production thereof, and water-absorbent composition
DE69531670T3 (de) 1994-12-08 2012-02-23 Nippon Shokubai Co. Ltd. Poröses wasserabsorbierendes Harz

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000653A1 (en) 1977-07-21 1979-02-07 Basil Earle Wainwright Rear view mirrors
EP0001994A1 (de) 1977-11-04 1979-05-30 Hoechst Aktiengesellschaft Verfahren zur Herstellung von Acetoacetylaminobenzolen
JPS6361005A (ja) * 1986-09-01 1988-03-17 Lion Corp 表面架橋した多孔性ポリマ−の製造方法
EP0339461A1 (en) 1988-04-21 1989-11-02 Kimberly-Clark Corporation Absorbent products containing hydrogels with ability to swell against pressure
JPH04501877A (ja) * 1989-06-21 1992-04-02 ラッキー リミテッド 高吸水性樹脂の製造方法
JPH06200046A (ja) * 1992-01-28 1994-07-19 Sanyo Chem Ind Ltd 改質された高吸水性樹脂の製法および樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0780424A4

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712584A3 (en) * 1997-06-18 2010-08-25 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process
EP0885917A3 (en) * 1997-06-18 2000-10-04 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6458921B1 (en) 1997-06-18 2002-10-01 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
EP1400556A1 (en) * 1997-06-18 2004-03-24 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process
US7153910B2 (en) 1997-06-18 2006-12-26 Nippon Shokubai: Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
JPH11188725A (ja) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
JPH11188726A (ja) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
JP2004513198A (ja) * 2000-10-30 2004-04-30 ストックハウゼン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト 改良されたブロッキング特性を有する吸収構造
US7427650B2 (en) 2000-10-30 2008-09-23 Stockhausen Gmbh Absorbing structure having improved blocking properties
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
US7495056B2 (en) 2001-01-26 2009-02-24 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and water-absorbent structure
WO2002085959A1 (fr) * 2001-04-16 2002-10-31 Sumitomo Seika Chemicals Co., Ltd. Resine d'absorption d'eau appropriee a l'absorption de liquide visqueux contenant un compose a poids moleculaire eleve, et absorbant et article absorbant les contenant
JP2009235120A (ja) * 2008-03-25 2009-10-15 Toray Ind Inc エポキシ系粒子の精製方法
WO2009133763A1 (ja) * 2008-05-01 2009-11-05 テルモ株式会社 視認性医療用処置材
CN101998868A (zh) * 2008-05-01 2011-03-30 泰尔茂株式会社 视认性医用处置材料
JP5527898B2 (ja) * 2008-05-01 2014-06-25 テルモ株式会社 視認性医療用処置材
JP2014237846A (ja) * 2009-02-17 2014-12-18 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末およびその製造方法
JP2010202743A (ja) * 2009-03-02 2010-09-16 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
JP2012525454A (ja) * 2009-04-30 2012-10-22 ビーエーエスエフ ソシエタス・ヨーロピア 金属不純物を分離する方法
US9833769B2 (en) 2011-02-07 2017-12-05 Basf Se Process for producing water-absorbing polymer particles with high free swell rate
JP2014505151A (ja) * 2011-02-07 2014-02-27 ビーエーエスエフ ソシエタス・ヨーロピア 高い膨潤速度を有する吸水性ポリマー粒子の製造法
EP3023442A1 (en) 2011-08-03 2016-05-25 Sumitomo Seika Chemicals CO. LTD. Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
US9199218B2 (en) 2011-08-03 2015-12-01 Sumitomo Seika Chemicals Co., Ltd. Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
EP3398974A1 (en) 2011-08-03 2018-11-07 Sumitomo Seika Chemicals CO. LTD. Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
EP3023443A1 (en) 2011-08-03 2016-05-25 Sumitomo Seika Chemicals CO. LTD. Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
EP3009458A1 (en) 2011-08-03 2016-04-20 Sumitomo Seika Chemicals CO. LTD. Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
WO2013051417A1 (ja) 2011-10-06 2013-04-11 住友精化株式会社 吸水性樹脂粒子の製造方法
US9605094B2 (en) 2011-10-06 2017-03-28 Sumitomo Seika Chemicals Co., Ltd. Method for producing water absorbent resin particles
US9138722B2 (en) 2012-02-29 2015-09-22 Sumitomo Seika Chemicals Co., Ltd. Method for producing water-absorbent resin particles
WO2013128978A1 (ja) 2012-02-29 2013-09-06 住友精化株式会社 吸水性樹脂粒子の製造方法
WO2014021388A1 (ja) * 2012-08-01 2014-02-06 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末を用いた吸水剤及びその製造方法
JPWO2014021388A1 (ja) * 2012-08-01 2016-07-21 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末を用いた吸水剤及びその製造方法
WO2014041968A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
KR20150056572A (ko) 2012-09-11 2015-05-26 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수제의 제조 방법 및 그 흡수제
US11931290B2 (en) 2017-12-21 2024-03-19 Nippon Shokubai Co., Ltd. Water absorbent resin powder for heat-generating element composition, and heat-generating element composition
US11891487B2 (en) 2018-09-28 2024-02-06 Lg Chem, Ltd. Preparation method of super absorbent polymer and super absorbent polymer therefrom
US12179172B2 (en) 2018-12-11 2024-12-31 Lg Chem, Ltd. Method of preparing superabsorbent polymer and superabsorbent polymer
US11383221B2 (en) 2018-12-12 2022-07-12 Lg Chem, Ltd. Preparation method of super absorbent polymer
WO2020145384A1 (ja) 2019-01-11 2020-07-16 株式会社日本触媒 吸水性樹脂を主成分とする吸水剤及びその製造方法
KR20210110350A (ko) 2019-01-11 2021-09-07 가부시키가이샤 닛폰 쇼쿠바이 흡수성 수지를 주성분으로 하는 흡수제 및 그의 제조 방법
US12053756B2 (en) 2019-01-11 2024-08-06 Nippon Shokubai Co., Ltd. Water absorbent agent having water-absorbent resin as main component and comprising a sulfur-containing reducing agent
WO2021201177A1 (ja) 2020-03-31 2021-10-07 株式会社日本触媒 粒子状吸水剤

Also Published As

Publication number Publication date
DE69632570T2 (de) 2005-06-02
EP0780424B2 (en) 2012-08-01
EP0780424A4 (en) 2000-01-05
US5981070A (en) 1999-11-09
DE69632570T3 (de) 2013-01-17
EP0780424A1 (en) 1997-06-25
DE69632570D1 (de) 2004-07-01
JP3462217B2 (ja) 2003-11-05
EP0780424B1 (en) 2004-05-26

Similar Documents

Publication Publication Date Title
WO1997003114A1 (fr) Poudre absorbant l&#39;eau et son procede de fabrication
US10059817B2 (en) Method for producing polyacrylic acid (salt)-based water absorbing agent, and water absorbing agent
JP5430620B2 (ja) 吸水性樹脂の製造方法
JP5022226B2 (ja) 吸水性樹脂の表面処理方法
JP6282669B2 (ja) ポリアクリル酸(塩)系吸水剤及びその製造方法
KR20160127742A (ko) 폴리(메트)아크릴산(염)계 입자상 흡수제 및 제조 방법
WO1996017884A1 (fr) Resine absorbant l&#39;eau, son procede de production et composition de resine absorbant l&#39;eau
JP4162746B2 (ja) 吸水剤組成物及びそれを用いた吸収性物品
EP2896645A1 (en) Method for manufacturing polyacrylic acid (polyacrylate)-based water-absorbent agent, and water-absorbent agent
JPH06287220A (ja) 吸水性樹脂の製造法
JPH11279287A (ja) 吸水剤組成物および吸水剤の製造方法
JP3606966B2 (ja) 吸水性樹脂およびその製造方法
JP6171083B2 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP2000093792A (ja) 吸水剤
JP2002201290A (ja) 吸水性樹脂およびその製造方法
JPH11286611A (ja) 吸水性樹脂組成物およびその製造方法
CN113272365A (zh) 以吸水性树脂为主成分的吸水剂及其制造方法
JP4308382B2 (ja) 吸水剤およびその製造方法
JPH10265582A (ja) 吸水剤およびその製造方法
JP2944447B2 (ja) 吸水剤およびその製造方法
JPH06200046A (ja) 改質された高吸水性樹脂の製法および樹脂
JP2002212301A (ja) 吸水剤およびその製造方法
JP4860019B2 (ja) 吸水剤とその製造方法および用途
JP3963550B2 (ja) 吸水剤の製造方法
JP4244084B2 (ja) 吸水剤、その製造方法および体液吸収物品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08793712

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996922234

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996922234

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996922234

Country of ref document: EP