[go: up one dir, main page]

WO1997003746A1 - Procede et dispositif pour la decomposition et/ou destruction plasma-chimique de substances nocives - Google Patents

Procede et dispositif pour la decomposition et/ou destruction plasma-chimique de substances nocives Download PDF

Info

Publication number
WO1997003746A1
WO1997003746A1 PCT/DE1996/001268 DE9601268W WO9703746A1 WO 1997003746 A1 WO1997003746 A1 WO 1997003746A1 DE 9601268 W DE9601268 W DE 9601268W WO 9703746 A1 WO9703746 A1 WO 9703746A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
discharge
dielectric
exhaust gas
reactor
Prior art date
Application number
PCT/DE1996/001268
Other languages
German (de)
English (en)
Inventor
Thomas Hammer
Irmo Paulus
Michael RÖMHELD
Robert SEEBÖCK
David-Walter Branston
Jörg KIESER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1995125749 external-priority patent/DE19525749A1/de
Priority claimed from DE1995125754 external-priority patent/DE19525754A1/de
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1997003746A1 publication Critical patent/WO1997003746A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor

Definitions

  • the invention relates to a process for the plasma-chemical decomposition and / or destruction of pollutants, in particular for the exhaust gas purification of internal combustion engines or other machines operated with fossil fuel, the pollutants as a volume flow passing through a section in a reactor which is impaired by dielectric ("breastfeeding") discharges is applied.
  • the invention also relates to the associated device for carrying out the method, with an electrode arrangement for a dielectrically disabled discharge, which arises between at least a first, dielectrically coated electrode and a second electrode as counter electrode by applying a high voltage of a predetermined frequency .
  • the direct exhaust gas aftertreatment in dielectrically handicapped gas discharges which are also referred to as barrier discharges, is a promising way of building pollutant reduction elements which permit a reduction in the emissions of harmful gases.
  • the exhaust gases can be emitted both from stationary systems and, in particular, from mobile internal combustion engines, such as gasoline engines, diesel engines, two-stroke engines, but also aircraft engines or rocket engines.
  • mobile internal combustion engines such as gasoline engines, diesel engines, two-stroke engines, but also aircraft engines or rocket engines.
  • Such a method and an associated device are previously known from DE-A-42 31 581.
  • an exhaust gas reduction element in the exhaust line of a mobile vehicle, ship or missile requires additional power, which must be provided by the engine.
  • the additional power required leads to additional fuel consumption.
  • diesel engines offer the advantage of a 10 to 15% lower fuel consumption per mechanical kilowatt hour delivered than petrol engines.
  • diesel engines do not allow the use of regulated three-way catalytic converters as in gasoline engines, which means that they have significantly higher NO x emissions than gasoline engines with catalytic converters.
  • the post-treatment of this NO x portion must therefore be carried out so efficiently in terms of energy in the diesel engine that the advantage in fuel consumption is reduced as little as possible. This means that if exhaust gas reduction elements are used according to the principle of dielectric barrier discharge, the efficiency must be significantly improved.
  • the object of the invention is therefore to propose practical measures with which the use of energy for the dielectric barrier discharge, in particular for the decomposition of an NO molecule, can be significantly reduced.
  • the object is achieved in that the discharge is operated in a specific spatial, in the simplest case periodic structure: the entire reactor volume is repeatedly divided into discharge zones on the one hand and into discharge-free zones on the other hand, for which purpose the reactor has means for moving in the direction of flow Exhaust gas flow repeating field increase in the region of the discharge zones.
  • the discharges are advantageously excited with suitably shaped pulse or AC voltages with repetition rates of around 100 Hz to a few 100 kHz. Such a selection of the discharge frequency ensures that adjacent volume elements in the exhaust gas stream that are sufficiently close to one another are treated.
  • the problem of an excessive use of energy in the dielectrically impeded discharge is essentially solved by two measures: On the one hand - associated with the localization of the discharge zones in the reactor compared to conventional reactors - an increase in the mean energy of the electrons in the Discharge reached. On the other hand, the energy coupled in with the discharge is optimally implemented in the sense of plasma chemistry.
  • the subject of the invention is the means by which electrical field structures for dividing the reactor volume into discharge and discharge-free zones can be achieved.
  • the means for repetitive field elevation are preferably a periodic electrode structure in the longitudinal direction of the reactor.
  • the means for repetitively increasing the field can have additional periodic elements in the longitudinal direction of the reactor.
  • the invention is based on the experience that increases in field strength are conducive to efficient decomposition of pollutants. It is based on the consideration that the geometry of the field-generating structures for silent discharges to exhaust gas discharges must be designed in such a way that the field strength increases are sufficiently large and along the flow of the acting gas varied sufficiently. This also gives the possibility of introducing chemically active materials into the discharge reactor in such a way that they provide the largest possible surface for plasma-activated, possibly catalytic reactions, but do not impair the increase in field strength at the electrode structures and their local variation.
  • FIG. 1 shows a diagram to clarify the physico-chemical starting point for the barrier discharge
  • FIG. 2 shows a phenomenological model of a dielectrically disabled discharge in a volume flow
  • FIGS. 3 to 11 different embodiments of new reactors for exhaust gas reduction by means of dielectric disabled discharge
  • FIGS. 12 to 14 ways to achieve additional local field increases in such reactors.
  • the development of the concentrations of the end products over fifteen discharge cycles in the case of a dielectric barrier discharge can be followed on the basis of FIG. 1:
  • the chronological sequence of the discharge cycles is determined by the frequency of the AC voltage applied. It should be selected so that a volume element of the exhaust gas flow through the reactor is treated at suitable intervals.
  • a metal electrode 1 is arranged at a predetermined distance from a counter electrode 2, which is coated with a dielectric 3.
  • d ⁇ mean the thickness of the layer of the dielectric and dg ap the distance of the surface of the dielectric 3 from the metal electrode 1.
  • the electrodes 1 and 2 are over a
  • a single discharge filament 4 of a dielectrically impeded discharge is shown as an example, which is geometrically referred to as a cylindrical plasma channel with a diameter d ⁇ , which extends from one base point on the dielectric 3 with a diameter dp to the opposite Metal electrode 1 is enough.
  • the latter distance limits the number of adjacent filaments 4, 4 ', .... Pf is the average areal density of all discharge filaments 4 in a period T, which results from the number of filaments in a period divided by the electrode area of the reactor.
  • each 1 denotes a cylindrical metallic inner electrode in the axis of a metallic hollow cylinder 2, which encloses a reactor volume.
  • the hollow cylinder 2 is provided on the inside with a dielectric layer 3 and thus forms the counter electrode for a so-called "silent" discharge, which is also referred to as a barrier discharge or a dielectric discharge.
  • a high voltage HV of a predefinable frequency is applied to the electrodes 1 and 2 by means of an external voltage source 5, by means of which barrier discharges are activated, which are used for the decomposition of pollutants.
  • circular disks 11, 12,... are attached to the inner metal cylinder 1 at substantially periodic intervals, which complete the inner cylinder 1 to form an electrode 10.
  • the aim is to treat all volume elements lying sufficiently close together in the exhaust gas flow.
  • the frequency is selected so that a volume element of the exhaust gas flow treated once in a cycle is given a sufficiently long time to allow the radicals generated by the discharge to react as far as possible.
  • the aim is for the radicals to react completely.
  • a suitable frequency for achieving the aforementioned result is in the range from approximately 100 Hz to a few 100 kHz, provided that the periodic structure shown in FIGS. 3 to 11 and 13 to 14 is assumed.
  • the distance d z between adjacent disks 31, 32 is selected so that
  • n ⁇ 5 will be chosen in order to keep the reactor compact.
  • the geometry is still defined by a second condition which is essential for the desired effect of efficient pollutant decomposition: so that there is an increased average electron energy in the ignition phase of individual persons
  • the latter provision means specifically in the geometry of FIG. 3 with equidistant cylindrical disks 11, 12, ... as the inner electrode and a dielectric coated hollow cylinder as the outer electrode that the axial distance d z of the disks 11, 12, ... through the Relationship d z > 2- (d G + d D / ⁇ r ) and the free distance d from the cutting edge to the inner cylinder 1 is given by the relationship d R> cl G + d D / ⁇ r , where d- £ , the thickness of the dielectric layer and ⁇ r mean its relative permittivity (dielectric constant) .
  • the spatial structure of FIG. 3 can be varied in further exemplary embodiments.
  • the material of the dielectric coating can also be repeated in the direction of the exhaust gas flow or periodic in the axial direction of the reactor. It is common in all examples that in certain areas of the reactor, e.g. in the vicinity of the electrodes or the di-electric structures always forms an electric field which is greatly increased compared to the average. As a result, regions of high electrical field strength alternate with regions of low electrical field strength in the flow direction of the exhaust gas to be treated such that gas discharges can ignite only in regions of high field strength at the voltages and frequencies used.
  • the cylinder 1 receiving the disks 11, 12,... Is additionally covered by a solid dielectric 19.
  • a fibrous or otherwise porous material can be present, which preferably has a catalytic or a reducing effect. The same applies to the geometric dependency as in FIG. 3.
  • a catalytically or reducing material 34 is introduced into the interspace of the disks 11, 12, ... in such a way that the local field strength increase in the disk plane and the axial variation of the field strength are not disturbed, but at the same time the reactive surface of the dielectric material 34 is maximized.
  • This is achieved by a contour in which the dielectric 34 clings asymptotically to the disks 11, 12, ..., the tips themselves being free of the material.
  • the geometry according to FIG. 5 is supplemented in such a way that the outer dielectric also has periodic structures 33. This results in a further local increase in field strength in the wafer plane, the surfaces of the dielectric, which in turn may in turn be catalytically active, being increased. In this case the values for dp should be increased in the relationships given above.
  • FIG. 7 shows an increase in field strength compared to the homogeneous case of two cylinder electrodes pushed into one another is achieved solely by structuring a dielectric applied on both sides, the structures being designated by 53 and 54. Such periodic structuring may already be sufficient in certain cases, so that the use of the metallic disks 11, 12, ... is unnecessary.
  • FIGS. 8 to 11 the examples in FIGS. 3 to 6 have been modified in such a way that the metallic structures producing the field elevations are attached to the inside of the metallic hollow cylinder 2. Instead of the disks 11, 12, ... there are thus disk rings 21, 22, ... with cutting edges on the inner circumference of the individual rings.
  • the materials 74 and 74 are also used in such a way that the metallic structures producing the field elevations are attached to the inside of the metallic hollow cylinder 2.
  • the disks 11, 12, ... there are thus disk rings 21, 22, ... with cutting edges on the inner circumference of the individual rings.
  • the cylinder geometry does not have to be strictly adhered to.
  • the cutting edges of the disks 11, 12, ... or. the disc rings 21, 22, ... be structured, for example serrated.
  • FIG. 12 shows how the field strength can be further increased locally in one of the reactors from FIGS. 3 to 6 by providing the cutting edge electrodes 11, 12,... Each with a tooth structure III on their edge.
  • a tooth structure III can analogously also be transferred to the outer electrode rings in FIGS. 8 to 11 and to the dielectric structures in FIGS. 7 and 11.
  • FIG. 13 there is an arrangement 40 in the form of a metallic cylinder brush on the inner cylinder electrode 1, the bristles 41, 42,... Being arranged either uniformly or in tufts in a certain periodic structure.
  • the peaks for field elevation are realized from a barbed wire-like structure 60, which either forms the axis of the arrangement or is wound up helically on a winding body lying in the axis and spines 61, 62, Have direction to the cylinder wall 2 with dielectric 3.
  • the bristles 41, 42, ... and the spikes 61, 62, ... according to FIGS. 13 and 14 have the advantage of an approximate zero dimensionality compared to the cutting edges of the disks 11, 12, ... of FIG. 3, which corresponds to a greater dependence of the elevation of the electric field on the rounding radius compared to a linear cutting edge.
  • a value between 1 and 3 mm is suitable.
  • the rounding radius is in the range of 0.1 mm. With such an arrangement, the effect of the increased electron energy is optimized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Il a déja été proposé que, pour que les gaz d'échappement, par exemple d'un moteur à combustion interne, soit purifié, l'on fasse passer lesdits gaz, qui contiennent des substances nocives, par un chemin, dans un volume de réacteur, volume sur lequel agissent des décharges diélectriquement inhibées ('silencieuses'). Selon l'invention, la décharge se fait dans une structure spatialement périodique, dans laquelle tout le volume du réacteur est subdivisé dans le sens axial en zones à décharges et en zones sans décharges. Dans le dispositif associé, lequel est pourvu, de préférence, d'un agencement coaxial d'électrodes comprenant au moins une première électrode à revêtement diélectrique (2, 3) et au moins une seconde éelectrode (1) constituant une contre-électrode, la contre-électrode comporte des moyens (10, 20, 40, 60) destinée à produire des pointes de champ locales qui sont, de préférence, périodiques dans le sens axial.
PCT/DE1996/001268 1995-07-14 1996-07-12 Procede et dispositif pour la decomposition et/ou destruction plasma-chimique de substances nocives WO1997003746A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE1995125749 DE19525749A1 (de) 1995-07-14 1995-07-14 Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
DE19525754.5 1995-07-14
DE19525749.9 1995-07-14
DE1995125754 DE19525754A1 (de) 1995-07-14 1995-07-14 Verfahren und Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen

Publications (1)

Publication Number Publication Date
WO1997003746A1 true WO1997003746A1 (fr) 1997-02-06

Family

ID=26016828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001268 WO1997003746A1 (fr) 1995-07-14 1996-07-12 Procede et dispositif pour la decomposition et/ou destruction plasma-chimique de substances nocives

Country Status (1)

Country Link
WO (1) WO1997003746A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008592A1 (fr) * 1996-08-30 1998-03-05 Siemens Aktiengesellschaft Procede et dispositif pour la decomposition/destruction plasma-chimique des polluants
WO1999043933A1 (fr) 1998-02-26 1999-09-02 Siemens Aktiengesellschaft Procede et dispositif pour l'epuration des gaz d'echappement
DE19819372A1 (de) * 1998-04-30 1999-11-04 Degussa Verfahren zur Verminderung des Stickoxidgehaltes der Abgase eines Verbrennungsmotors
WO2000068153A1 (fr) * 1999-05-06 2000-11-16 Japan Science And Technology Corporation Appareil pouvant detruire par oxydation une substance nocive pour des traces
WO2001062306A3 (fr) * 2000-02-01 2002-04-25 T E M Tech Entwicklungen Und M Procede et dispositif pour regler la capacite entre deux electrodes dans un gaz
RU2184601C1 (ru) * 2000-11-27 2002-07-10 Общество с ограниченной ответственностью "ТурбоДЭн" Способ переработки газа высокого давления в плазменном разряде и плазмохимический реактор для осуществления способа
US6955790B2 (en) * 1998-05-27 2005-10-18 Maquet Critical Care Ab Apparatus for plasma-chemical production of nitrogen monoxide
CN108392952A (zh) * 2018-04-12 2018-08-14 宁波大学 等离子有机废气净化系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979193A (en) * 1972-07-03 1976-09-07 Jack Sikich Corona discharge apparatus
EP0158823A2 (fr) * 1984-04-14 1985-10-23 BROWN, BOVERI & CIE Aktiengesellschaft Procédé et dispositif pour la purification de gaz d'échappement
DE3425111A1 (de) * 1984-07-07 1986-01-16 Walther & Cie AG, 5000 Köln Vorrichtung zur durchfuehrung von plasmaentladungen in gasen
WO1988003835A1 (fr) * 1986-11-24 1988-06-02 Waltonen Laboratories, Inc. Appareil et procede d'excitation d'un fluide
EP0366876A1 (fr) * 1988-10-05 1990-05-09 Mitsubishi Jukogyo Kabushiki Kaisha Appareil de traitement de gaz d'échappement
JPH03275119A (ja) * 1990-03-26 1991-12-05 Akira Mizuno プラズマ排ガス処理装置
DE4317964A1 (de) * 1993-05-28 1994-12-01 Siemens Ag Verfahren und Vorrichtung zur plasmachemischen Bearbeitung von Schadstoffen und Materialien
DE4413118A1 (de) * 1993-07-12 1995-01-19 Nagatoshi Suzuki Gasreinigungsvorrichtung
EP0659465A2 (fr) * 1993-12-23 1995-06-28 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Procédé et dispositif pour la purification de gaz d'échappement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979193A (en) * 1972-07-03 1976-09-07 Jack Sikich Corona discharge apparatus
EP0158823A2 (fr) * 1984-04-14 1985-10-23 BROWN, BOVERI & CIE Aktiengesellschaft Procédé et dispositif pour la purification de gaz d'échappement
DE3425111A1 (de) * 1984-07-07 1986-01-16 Walther & Cie AG, 5000 Köln Vorrichtung zur durchfuehrung von plasmaentladungen in gasen
WO1988003835A1 (fr) * 1986-11-24 1988-06-02 Waltonen Laboratories, Inc. Appareil et procede d'excitation d'un fluide
EP0366876A1 (fr) * 1988-10-05 1990-05-09 Mitsubishi Jukogyo Kabushiki Kaisha Appareil de traitement de gaz d'échappement
JPH03275119A (ja) * 1990-03-26 1991-12-05 Akira Mizuno プラズマ排ガス処理装置
DE4317964A1 (de) * 1993-05-28 1994-12-01 Siemens Ag Verfahren und Vorrichtung zur plasmachemischen Bearbeitung von Schadstoffen und Materialien
DE4413118A1 (de) * 1993-07-12 1995-01-19 Nagatoshi Suzuki Gasreinigungsvorrichtung
EP0659465A2 (fr) * 1993-12-23 1995-06-28 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Procédé et dispositif pour la purification de gaz d'échappement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9204, Derwent World Patents Index; Class E36, AN 92-028586, XP002016841 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008592A1 (fr) * 1996-08-30 1998-03-05 Siemens Aktiengesellschaft Procede et dispositif pour la decomposition/destruction plasma-chimique des polluants
WO1999043933A1 (fr) 1998-02-26 1999-09-02 Siemens Aktiengesellschaft Procede et dispositif pour l'epuration des gaz d'echappement
DE19819372A1 (de) * 1998-04-30 1999-11-04 Degussa Verfahren zur Verminderung des Stickoxidgehaltes der Abgase eines Verbrennungsmotors
DE19819372C2 (de) * 1998-04-30 2000-03-02 Degussa Verfahren zur Verminderung des Stickoxidgehaltes der Abgase eines Verbrennungsmotors
US6238525B1 (en) 1998-04-30 2001-05-29 Degussa-Hüls Aktiengesellschaft Process for reducing the nitrogen oxides content of exhaust gas from an internal combustion engine
US6955790B2 (en) * 1998-05-27 2005-10-18 Maquet Critical Care Ab Apparatus for plasma-chemical production of nitrogen monoxide
WO2000068153A1 (fr) * 1999-05-06 2000-11-16 Japan Science And Technology Corporation Appareil pouvant detruire par oxydation une substance nocive pour des traces
US6896790B1 (en) 1999-05-06 2005-05-24 Japan Science & Technology Corporation Apparatus for oxidatively destructing trace injurious substance
WO2001062306A3 (fr) * 2000-02-01 2002-04-25 T E M Tech Entwicklungen Und M Procede et dispositif pour regler la capacite entre deux electrodes dans un gaz
RU2184601C1 (ru) * 2000-11-27 2002-07-10 Общество с ограниченной ответственностью "ТурбоДЭн" Способ переработки газа высокого давления в плазменном разряде и плазмохимический реактор для осуществления способа
CN108392952A (zh) * 2018-04-12 2018-08-14 宁波大学 等离子有机废气净化系统
CN108392952B (zh) * 2018-04-12 2023-10-27 宁波大学 等离子有机废气净化系统

Similar Documents

Publication Publication Date Title
DE69514733T2 (de) Koronaquelle zur Erzeugung einer Koronaentladung und Behandlung von fliesfähige Abfallstoffen mit Koronaentladung
DE4416676C2 (de) Vorrichtung zur Entgiftung von Abgasen aus mobilen Anlagen
DE19518970C1 (de) Verfahren und Vorrichtung zur Behandlung von Abgas
DE19534950C2 (de) Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
DE19903533A1 (de) Verfahren zur selektiven katalytischen Reduktion von Stickoxiden in sauerstoffhaltigen Abgasen
DE4317964C2 (de) Vorrichtung zur plasmachemischen Bearbeitung von Schadstoffen und Materialien
WO1989012021A1 (fr) Dispositif de production d'ozone
DE4231581A1 (de) Verfahren zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen, insbesondere zur Abgasreinigung von Verbrennungsmotoren oder anderer mit fossilem Treibstoff betriebenen Maschinen, sowie zugehörige Vorrichtung
DE69813856T2 (de) Koronaentladungsreaktor
DE19525749A1 (de) Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
WO1997003746A1 (fr) Procede et dispositif pour la decomposition et/ou destruction plasma-chimique de substances nocives
EP2477748B1 (fr) Dispositif de traitement de gaz d'échappement chargés des particules
EP1121522B1 (fr) Procede et dispositif de reduction plasma-chimique de substances nocives gazeuses et/ou solides contenues dans les gaz d'echappement de moteurs a combustion interne
EP0921849B1 (fr) Procede et dispositif pour la purification de gaz d'echappement contenant des oxides d'azote
DE19635231A1 (de) Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
DE602004004728T2 (de) Nicht thermischer Plasmareaktor und Kraftfahrzeugabgasanlage mit einem solchen Reaktor
DE19525754A1 (de) Verfahren und Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
DE19717160A1 (de) Vorrichtung zur Nachbehandlung von Abgas durch Kombination von Gasentladung und Katalysator
DE19717889C2 (de) Vorrichtung und Verfahren zur Zersetzung von giftigen Schadstoffen in Abgasen von Verbrennungsprozessen
WO2000057992A1 (fr) Dispositif et procede pour le traitement de gaz en circulation, en particulier de gaz d'echappement
EP0902721B1 (fr) Dispositif pour le traitement ulterieur d'effluents gazeux par l'association d'une decharge gazeuse et d'un catalyseur
DE9407861U1 (de) Vorrichtung zur Entgiftung von Abgasen aus mobilen Anlagen
DE10344489B4 (de) Vorrichtung und Verfahren zur Ausfilterung von Ruß aus Abgasen oder Aerosolen aus Abluft und zur plasmagestützten Behandlung von Abgas oder von Abluft
EP3333125B1 (fr) Procédé destiné à la commande d'un générateur d'ozone
WO1997005369A1 (fr) Procede et dispositif pour la decomposition des oxydes d'azote dans les gaz d'echappement de moteurs a combustion interne

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA