[go: up one dir, main page]

WO1997006920A1 - Procede d'usinage avec immobilisation de piece a usiner par congelation - Google Patents

Procede d'usinage avec immobilisation de piece a usiner par congelation Download PDF

Info

Publication number
WO1997006920A1
WO1997006920A1 PCT/JP1996/002282 JP9602282W WO9706920A1 WO 1997006920 A1 WO1997006920 A1 WO 1997006920A1 JP 9602282 W JP9602282 W JP 9602282W WO 9706920 A1 WO9706920 A1 WO 9706920A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
freezing
work
coagulant
machining
Prior art date
Application number
PCT/JP1996/002282
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Tarumizu
Original Assignee
Yoshitaka Tarumizu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshitaka Tarumizu filed Critical Yoshitaka Tarumizu
Priority to US08/836,141 priority Critical patent/US6073451A/en
Priority to DE69621004T priority patent/DE69621004T2/de
Priority to JP9507480A priority patent/JP2992770B2/ja
Priority to EP96946237A priority patent/EP0811457B1/en
Publication of WO1997006920A1 publication Critical patent/WO1997006920A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/08Work-clamping means other than mechanically-actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/08Work-clamping means other than mechanically-actuated
    • B23Q3/086Work-clamping means other than mechanically-actuated using a solidifying liquid, e.g. with freezing, setting or hardening means

Definitions

  • the present invention relates to a freeze chuck type machining method, and more particularly, to a method of machining a work by fixing a position of a work by freezing a medium.
  • a freeze chuck method and apparatus using ice as an adhesive medium have been proposed.
  • a refrigeration plate made of a material having good thermal conductivity such as copper is used. Water is applied in a mist state on the refrigeration plate, and a work is placed on the refrigeration plate. The upper surface temperature of the refrigerating plate is reduced to 0 ⁇ or less by energizing the thermoelectric element provided below the plate. It is a method of cooling, thereby freezing the water and fixing the work to the ice film.
  • machining fluid or a coolant fluid (hereinafter referred to as a machining fluid) in the same way as general-purpose machining methods even in the method of fixing this work by freezing.
  • a machining fluid is generally higher than the temperature of the ice that fixes the work. For this reason, when the machining liquid is supplied to the machining surface, the ice film is melted, and the workpiece comes off the fixing surface during machining and cannot be machined. .
  • the prior art freezes water and fixes the work with an ice film.
  • sufficient fixing force is required unless the upper surface temperature of the cooling plate is set to a lower temperature of -5, for example, about 110.
  • the workpiece cannot be removed unless the temperature is raised to 0 ° C or more after processing. Therefore, it takes a long time of 1 to 3 minutes to fix and release the work on the freezing plate.
  • a film of antifreeze is formed on the upper surface of the freezing plate in the freezing chuck device outside the machine, and the work is placed on the adapter plate placed thereon and water is applied thereto.
  • the vacuum chuck of the on-machine refrigeration check device is deactivated to release the freezing pump. Release the adapter plate fixed to the rate, and place the adapter plate, which has been waiting as described above, on the freezing plate of the on-board refrigeration check device (an antifreeze film is spread on the upper surface of this plate). Then, the vacuum chuck is activated.
  • thermoelectric element for lowering the upper surface temperature of the refrigeration plate to a temperature as low as 15 mm, and a cooling water passage formed by the thermoelectric element is used.
  • Two expensive devices including the body) and a fixing base for fixing the plastic base are required for the on-board use and the outside use. For this reason, there were problems that costs were doubled and running costs such as power consumption were expensive.
  • the cooling is not performed to a temperature below ⁇ : with a freezing check device outside the machine, the workpiece will be displaced on the adapter plate, making machining by automatic control difficult.
  • the present invention has been researched and devised to solve the above-mentioned problems, and its basic object is to operate even at a high temperature of 0 ° C. and in a wet processing method using a processing liquid.
  • Another object of the present invention is to provide a refrigerating chuck-based machining method that can perform sequential machining of a large number of workpieces more efficiently or with an inexpensive apparatus. Disclosure of the invention
  • the refrigeration check system of the present invention cools the fixing surface by interposing at least a high molecular weight coagulant having a freezing point higher than that of water between the work and the fixing surface.
  • the feature is that the work is fixed by using a polymer-based coagulant as an adhesive medium.
  • the machining method using the freezing chuck method of the present invention uses a pallet for supporting a work, a fixing surface, and a freeze-type chuck device having a means for controlling the temperature of the fixing surface, and the work is processed by a freezing type chuck.
  • At least a polymer-based coagulant with a freezing point higher than that of water is used as a workpiece and a pallet. It is characterized in that the work is fixed by using a polymer coagulant as an adhesive medium by cooling the pallet.
  • the polymer-based coagulant as the workpiece fixing element in the present invention needs to have not only a solidification point higher than that of water but also a poor affinity for water and good water repellency. .
  • the specific gravity is preferably lighter than water.
  • silicone oil represented by low molecular weight silicone oil or cyclic silicone oil or oil containing silicone oil as a main component.
  • This polymer-based coagulant includes everything from liquid to cream (butter) or pasty.
  • the latter form of cream or paste is obtained simply by blending a viscosity modifier (a thickener) consisting of solid particles with silicone oil.
  • a viscosity modifier a viscosity modifier, Powders of various materials, preferably fine powders, can be used.
  • the present invention includes a case where a liquid polymer-based coagulant and a cream- or paste-shaped polymer-based coagulant are used alone, and a case where both are used in combination. Applying a cream-like or pasty polymer-based coagulant so as to connect the periphery of the work with the fixing surface can fix the work very effectively.
  • Workpieces processed by applying the present invention include metals represented by iron, copper, aluminum, titanium, silicon, and germanium, plastics, glass, carbon, and ceramics. Materials of any type, including wood, wood, or a composite of two or more of these materials, such as quartz, diamond, CBN, ruby, and sapphires, and of any shape and size.
  • Processing methods include surface grinding, form grinding, creep grinding, cylindrical grinding, and other various types of grinding, turning, grinding, cutting, slicing, dicing, milling, grooving, drilling, Any form such as sculpture is acceptable.
  • the work may be directly fixed to the fixing surface ⁇ pallet when the work for the work is a surface, but when the work penetrates the wall thickness such as cutting or drilling.
  • a punching material is interposed between the original work and the fixing surface.
  • the present invention includes this case. Therefore, in the present invention, the term "work" is a concept that includes not only an original work as an object to be processed but also a work in which a punching material is layered.
  • the present invention provides a method suitable for successively machining a large number of workpieces. Contains.
  • the first method is to provide at least a first and a second freezing chuck device having a fixing surface and a cooling fluid passage for controlling the temperature of the fixing surface, while providing a processing machine.
  • the first and second circulating cooling devices for supplying the cooling fluid are arranged in the vicinity and outside the processing machine, and the next process is repeated successively.
  • a work is arranged on the fixing surface of the first freezing type chuck via a polymer-based coagulant, and the first freezing type chuck is connected to a second circulating cooling device located outside the processing machine.
  • the work is fixed to the first freezing chuck using the polymer coagulant as an adhesive medium.
  • first freezing chuck device Separate the first freezing chuck device with the fixed work from the second circulating cooling device, transfer it to the table of the processing machine and fix it mechanically, and connect it to the first circulating cooling device. Then, machining is performed while maintaining the polymer coagulant at a temperature below the freezing point.
  • the workpiece to be processed next is placed on the fixing surface of the second freeze-type chuck device via a polymer-based coagulant, and the second freeze-type
  • the chuck is connected to a second circulating cooling device located outside the processing machine to cool the polymer-based coagulant to a temperature below the freezing point. It is fixed to the second freezing chuck device.
  • the first freezing type chuck device is separated from the first circulating cooling device and removed from the table of the processing machine, while the second freezing type chuck device is removed.
  • the chucking device is separated from the second circulating cooling device, transferred to the table of the processing machine and mechanically fixed, and connected to the first circulating cooling device so that the polymer-based coagulant can be cooled below the freezing point. Perform the following machining while maintaining the temperature.
  • a freezing type chuck device having a fixing surface and a means for controlling the temperature of the fixing surface is arranged on the processing machine, and a pre-cooler is arranged at a position separated from the processing machine,
  • the method uses multiple pallets and repeats the next step.
  • a work is placed on the first pallet via a polymer-based coagulant, and the first pallet is placed on the prismer maintained at a temperature equal to or lower than the freezing point of the polymer-based coagulant. Then, the polymer is fixed to the first pallet using the polymer-based coagulant as an adhesive medium.
  • the fixing of the first pallet on the freezing chuck device is released, and the second pallet is placed on the fixing surface of the freezing chuck device from the precooler and fixed.
  • the advantages of the present invention are as follows. A polymer coagulant having a higher freezing point than water is placed between the work and the fixing surface or the pallet placed on the work and the work, and the polymer coagulant is used as a bonding medium to fix the work. I'm trying to get.
  • a polymer coagulant having a coagulation point higher than that of water is used as a medium for fixing the work, and the polymer coagulant has extremely poor affinity for water. Therefore, there is no danger that the polymer-based coagulant will be dissolved even if a water-soluble or oil-based coolant containing an antifreeze or the like is sprayed onto the tool and the workpiece. There is no need to worry about the workpiece being unlocked, and machining can be performed safely. Furthermore, even if the machining fluid at a temperature of 0 ° C or more is intensively supplied to the machining area, the medium that fixes the peak does not dissolve, so the machining heat is removed, lubricated, and chips and abrasives are eliminated. Such characteristics of the working fluid can be sufficiently exhibited, and safe and accurate processing can be performed.
  • the working temperature of the working fluid can be made relatively high, a cooling fluid cooling device with a small capacity is sufficient. Furthermore, since the temperature of the work is lower than in the case of the conventional chucking method, the amount of machining fluid used can be reduced, which makes it possible to adopt a system that does not recirculate the machining fluid. Filtration circulation supply equipment can be omitted. For this reason, the equipment cost can be reduced. Furthermore, polymer-based coagulants have extremely poor affinity for water and are water-repellent, so they can be used when cutting, dicing, or slitting silicon wafers or metal plates.
  • machining fluid it is possible to use the machining fluid, and it is possible to constantly supply fresh machining fluid to the machining part to promote the discharge of cutting chips and falling abrasive grains. Can also be cleaned.
  • the conventional ice freezing method a sufficient fixing force cannot be exerted unless the temperature is reduced to less than 10 X in practice, and it takes a long time to attach and detach the work.
  • the freezing point is higher than the freezing point, and the work can be fixed on a fixing surface or a pallet even at a temperature of 0 ° C or more.
  • thermoelectric elements A fluid represented by water may be used.
  • the freezing-type chuck device only needs to provide a passage for the cooling fluid, so that it can be made into a thin and light plate-like device, and when placed on the table of the processing machine, the movement of the tool can be reduced. It will not be disturbed.
  • the time for attaching and detaching the work to and from the freeze-check device can be greatly reduced.
  • the freezing type chuck device Only one pre-cooler with a cooling capacity of at most about 2 to 3 ° C outside the machine, and a simple fluid circulation type pre-cooler Can be used. Therefore, even in the case of the pallet circulation type, the equipment cost can be significantly reduced.
  • the polymer-based coagulant of the present invention (including a creamy or paste-like composition not containing a viscosity modifier having a particularly high specific gravity) has a property that the specific gravity is smaller than that of water, Processing is easy.
  • FIG. 1 is an explanatory view showing a first example of a freeze chuck type machining method according to the present invention.
  • FIG. 2 is a vertical sectional side view showing another example of the freezing chuck device in the first example.
  • FIG. 3 is an explanatory view showing a second example of the freeze chuck type machining method according to the present invention.
  • FIG. 41A is a longitudinal sectional side view showing another embodiment of the second example.
  • FIG. 4-B is a plan view of the apparatus of FIG.
  • Fig. 5-A is a cross-sectional view showing the work mounting stage when a liquid coagulant is used.
  • FIG. 5B is a cross-sectional view showing a state in which the workpiece is being machined.
  • Fig. 5-C is an explanatory diagram showing the state at the end of machining the workpiece and the state of recovery of the polymer-based coagulant.
  • FIG. 6-A is a cross-sectional view showing another example of a mode of fixing a workpiece with a polymer-based coagulant.
  • FIG. 6B is a cross-sectional view showing another example of a mode of fixing a workpiece with a polymer-based coagulant.
  • FIG. 6-C is a cross-sectional view showing another example of a mode of fixing a workpiece with a polymer-based coagulant.
  • FIG. 6D is a cross-sectional view showing another example of a mode of fixing a workpiece with a polymer-based coagulant.
  • FIG. 7-A is a cross-sectional view showing another example of a manner of fixing a workpiece with a polymer-based coagulant when a punching material is used.
  • FIG. 7B is a cross-sectional view showing another example of a manner of fixing a workpiece with a polymer-based coagulant when a punching material is used.
  • FIG. 7C is a cross-sectional view showing another example of a manner of fixing a workpiece by a polymer-based coagulant when a punching material is used.
  • FIG. 8A is an explanatory diagram showing the initial stage of machining of the preceding work when the method of the present invention is applied to sequential machining by the second technique.
  • FIG. 8B is an explanatory view showing a middle stage of machining the preceding work.
  • FIG. 8C is an explanatory diagram showing the subsequent work exchange stage.
  • FIG. 8-D is an explanatory view showing an example of a method of recovering a polymer-based coagulant and cleaning a workpiece.
  • FIG. 9 is an explanatory view showing an example in which the method of the present invention is applied to the sequential processing by the first method in a state of a processing stage of a preceding work.
  • FIG. 10A is a perspective view showing the shape and dimensions of the work in the embodiment of the present invention.
  • FIG. 10B is a perspective view showing the shape and dimensions of the work in the example of the present invention.
  • FIG. 11A is a perspective view showing a shape of a work before processing in the embodiment of the present invention.
  • FIG. 11B is a front view showing the dimensions of the work shown in FIG. 11A.
  • FIG. 11C is a plan view showing the dimensions of the workpiece in FIG. 11A.
  • FIG. 11D is a perspective view showing a completed state of the work of FIG. 11A.
  • FIG. 11E is a front view of the workpiece shown in FIG. 11D.
  • Fig. 12-A is a longitudinal sectional side view showing a state of machining the work of Fig. 11-A.
  • FIG. 12B is a front view showing the state of machining the work shown in FIG. 11A.
  • FIG. 13-A is a vertical sectional side view showing a workpiece processing state in the embodiment of the present invention.
  • Fig. 13-B is a partial cross-sectional view showing an enlarged state of the work of Fig. 13-A.
  • Fig. 13-C is a cross-sectional view taken along line X-X of Fig. 13-B. Detailed description of the invention
  • FIG. 1 shows a first example of a freeze chuck type machining method according to the present invention.
  • the workpiece is directly fixed to the fixing surface and machined.
  • 1 is a work machine worktable
  • 2 is a desired tool such as a grindstone, a byte, a reamer, a drill, a tap
  • 3 is a working fluid supply means
  • 5 is a work.
  • Reference numeral 4 denotes a freezing type chuck device, which includes a base 4a fixedly mounted on the worktable 1, an abutment 4b fixed thereon, and a fixing surface fixed to the abutment 4b and provided on the upper surface. It has a fixing face plate 4c having 40, and means 4d arranged on the lower surface side of the fixing face plate 4c to lower and raise the temperature of the fixing face plate 4c.
  • Reference numeral 6 denotes a polymer-based coagulant interposed between the lower surface of the work 5 and the fixing surface 40.
  • the base 4a is made of a high-strength material such as stainless steel, and the base 4b is made of a material having good heat insulation and electrical insulation, such as plastic.
  • the fixing face plate 4c is made of a material having good thermal conductivity, for example, copper, aluminum, aluminum nitride, or the like.
  • the means 4d for controlling the temperature of the fixing face plate 4c is optional.
  • a plurality of thermoelectric elements 41 are used, and these thermoelectric elements 41 are attached to the fixing face plate 4c in close contact.
  • the thermoelectric element 41 has the property of absorbing heat from the upper surface and releasing it from the lower surface when a positive current is applied, and absorbing heat from the lower surface and releasing it to the upper surface when a negative current is applied. ing.
  • a power supply line 42 of each thermoelectric element 41 is led out and connected to an external controller 7.
  • the controller 7 has a DC power supply circuit and a control circuit.
  • the control circuit arbitrarily sets a preparation temperature, a processing temperature (cooling temperature), and a fixing release temperature (heating temperature) according to the processing content. Means for supplying a current of a corresponding polarity and current value are included.
  • thermoelectric element 41 Since the thermoelectric element 41 is used as described above, heat is generated from the lower surface side of the thermoelectric element 41 during processing, and the heat is transferred to the work installation section 1 via the base 4a. Therefore, an exhaust heat cooling mechanism 4 e is provided near the thermoelectric element 41.
  • the exhaust heat cooling mechanism 4 e uses cooling water circulating and is configured as a core in FIG. 1, and the supply pipe 43 and the return pipe 44 of the exhaust heat cooling mechanism 4 e are connected to an external cooling water supply device. Connected to 8.
  • the machining fluid supply means 3 includes a nozzle 30 for supplying a machining fluid to the machining section, and a machining fluid supply device 31 for supplying the machining fluid thereto.
  • the cooling pressurized air supply device 32 is connected to the system of the device 31 via the adjustment valve 320.
  • Reference numeral 9 denotes a recovery means for the polymer-based coagulant 6, which is a groove-shaped or gutter-shaped receiver 90 surrounding the periphery of the fixing face plate 4c, and is connected to the receiver 90 by a passage element 93 such as a hose.
  • a first water tank 91 is provided and a second water tank 92 communicating with an upper area of the first water tank 91 is provided.
  • the first water tank 91 has water at a temperature higher than the freezing point of the polymeric coagulant 6 (this includes not only industrial water but also water containing an antifreeze or a solvent. The same applies hereinafter).
  • the second water tank 92 is filled with water 920 having a temperature lower than the freezing point of the polymer-based coagulant 6.
  • Fig. 2 shows another example of the freezing type chuck device 4, which is the same as that of Fig. 1 except that the exhaust heat cooling mechanism 4e that circulates cooling water is not a core but a passage. is there.
  • FIG. 3 shows a second example of the freeze chuck type machining method according to the present invention. Also in this example, the work 5 is directly fixed to the fixing surface 40 and is machined.
  • a fluid is used as a medium for controlling the temperature of the fixing face plate 4c of the freezing-type chuck device 4, instead of an electric-heat conversion element.
  • This is based on freezing the polymeric coagulant 6, which has a higher freezing point than water, and has the advantage that the apparatus can be made simpler and less expensive.
  • the temperature control means 4d of the fixing face plate 4c of the freezing type chuck device 4 is constituted by a core 45 having a fluid passage 450 inside thereof and having an upper portion closely contacting the lower surface of the fixing face plate 4c.
  • a core 45 having a fluid passage 450 inside thereof and having an upper portion closely contacting the lower surface of the fixing face plate 4c.
  • it may be a passage that is not a core but a sap.
  • the inlet pipe 456 and the discharge pipe 457 connected to the core 45 project from the base 4a or the support 4b to the outside, and the supply pipe 450 and the return pipe 451 via a joint.
  • the supply pipe 450 and the return pipe 451 are connected to a circulating cooling device 10 for freezing a high molecular weight coagulant.
  • the circulating cooling device 10 includes a tank 100 having a refrigeration coil and a discharge pump 101, and the supply pipe 450 and the return pipe 451 have an electromagnetic valve 4 for opening and closing.
  • the supply pipe 450 and the return pipe 451, which are located further upstream, are connected via a relief valve 454.
  • the supply pipe 450 and the return pipe 451 are connected to the on-off valves 452, 453.
  • the branch is also branched at the downstream portion, and the branch supply pipe 450 ′ and the branch return pipe 45 1 ′ are connected to a circulation hot water supply device 11 for freezing the polymer-based coagulant.
  • the circulating hot water supply device 11 has a hot water tank 110 having a heater and a hot water discharge pump 111, and has a branch supply pipe 450 'and a branch return pipe 45 1'.
  • On-off valves 45 2 ′ and 45 3 ′ of electromagnetic type are provided, and the upstream part is connected via a relief valve 454 ′.
  • the on-off valves 45 2 and 45 3, 45 2 ′ and 45 3 ′ are separate from each other, but of course they are constituted by a 3-position switching valve.
  • the other configuration is the same as that of the first example, and thus the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • FIG. 3 the circulating hot water supply device 11 is used as one element of the temperature control means 4d, but this device is not necessarily required. That is, FIGS. 4-A and 4-B simplify the second example, and allow the freezing-type chuck device 4 itself to be used as a jig having high mobility.
  • the inlet pipe 456 and the discharge pipe 457 protrude outside from the base 4a or the support 4b, and have plugs at their ends for quick fluid couplings (quick connecting couplings).
  • the supply pipe 450 and the return pipe 4 51 of the circulation type cooling device 10 have quick fluid couplings 4 5 8, 4 5 9 at the ends, respectively, and are instantaneously attached to and detached from the introduction pipe 45 6 and the discharge pipe 45 7. It has become so.
  • the other configuration is the same as that of the second example, and thus the same portions are denoted by the same reference characters and description thereof will be omitted.
  • the polymer-based coagulant 6 has a coagulation point as high as possible than the coagulation point of water, and it is an essential physical property to coagulate at room temperature or higher.
  • the material has poor affinity for water (having water repellency) and a lighter specific gravity than water.
  • a typical example of the polymer-based coagulant 6 is a silicone resin, for example, a silicone oil represented by a low molecular weight silicone oil or a cyclic silicone oil, or a silicone oil containing the same as a main component. .
  • This silicone oil has a skeleton of siloxane bonds in which silicon and oxygen are alternately arranged, and the molecules are arranged in a chain.
  • the organic oils include a methynole group and a phenyl group as organic groups. Methyl-based (methylpolysiloxane, phenylpolysiloxane), methylphenyl-based (methylphenylpolysiloxane), etc.
  • Low molecular weight silicone oil or cyclic silicone oil has the property of solidifying at a temperature close to room temperature, has good thermal stability, and has chemical resistance, oxidation resistance, and electrical insulation properties. It is also advantageous in point.
  • This polymer-based coagulant 6 is usually in a liquid state or in a state similar to this. In this case, prior to processing, the polymer-based coagulant 6 is applied to the fixing surface 40 or the lower surface of the work 5, or to both the fixing surface 40 and the work 5. .
  • the film thickness is arbitrary, and even a few microns can provide a sufficient fixing effect.
  • Fig. 5-A to Fig. 5-C show step by step how to fix the work 5 to the fixing face plate 4c and carry out machining using a liquid as the polymer-based coagulant 6. .
  • the fixing surface 40 of the fixing face plate 4c is kept at a temperature higher than the solidification temperature of the polymer-based coagulant.
  • apply a liquid polymer coagulant 6 to the fixing surface 40 by any method such as brush, roller, spray, etc., and apply the polymer coagulant to the fixing surface 40.
  • An agent film is formed.
  • the polymer coagulant 6 may of course be applied to the lower surface of the work 5.
  • the workpiece 5 is placed on the polymer-based coagulant film, and the position and orientation are adjusted as appropriate.
  • the temperature is lower than the freezing point of the coagulant.
  • this is performed by passing a positive current from the controller 7 to each thermoelectric element 41 and simultaneously operating the exhaust heat cooling mechanism 4e. Close the on-off valves 45 2 ′ and 45 3 ′ and open the on-off valves 45 2, 45 3 to send fluid from the circulating cooling device 10 to the core 45 via the supply pipe 450. It is performed by repeating returning from the return pipe 45 1 to the circulation cooling device 10.
  • the supply pipe 45 0 and the return pipe 45 1 of the circulation type cooling device 10 are connected to the introduction pipe 4 56 and the discharge pipe 4 57 by quick fluid couplings 4 5 8 and 4 59. It is done by doing.
  • the polymer coagulant 6 changes from a liquid phase to a solid phase by coagulation, and the rework 5 is firmly attached to the fixing surface 40 by the coagulated molecules of the frozen polymer coagulant 6 ′. Glue.
  • temperature lower than the freezing point means that the coagulating molecules of the polymer-based coagulant are tightly bound, and the fixing force (holding force) due to the adhesion between the fixing surface 40 and the work 5 is the mechanical load.
  • the temperature at which it can withstand loads sufficiently usually at a temperature about 1 O lower than the freezing point of the polymeric coagulant 6 is there.
  • the fixed state of the work 5 is obtained. Then, the working machine is operated, and the desired work is applied to the rework 5 by the tool 2 as shown in FIG. 5B. At this time, the machining fluid is supplied from the machining fluid supply means 3 to the contact area between the tool 2 and the work 5.
  • the coolant cooled to an arbitrary temperature lower than the freezing point of the polymer-based coagulant 6 may be sprayed from the nozzle 30, or the working fluid may be cooled from the pressurized air supply means 32, for example. Cooling and pressurized air at a temperature of 0 ° C or less and a pressure of 5 to 7 kg / cm 2 may be added and mixed, and sprayed from nozzle 30 as mist.
  • the latter method has a high re-cooling effect because water is vaporized when water is atomized, and is used in the case of mechanical chucking for resentment with a small amount of processing fluid, for example, less than 2 ⁇ It is possible to obtain an effect comparable to the cooling effect of about 10 ⁇ minutes or more of the processing fluid.
  • the frozen polymer-based coagulant 6 ' has water repellency, so that the frozen polymer-based coagulant 6' can be dissolved in the working fluid and the coagulated state is maintained.
  • the work 5 is kept fixed. Therefore, the machining fluid is cooled by the machining fluid, the machining debris and abrasive grains are smoothly removed from the machining area, the lubrication between the workpiece 5 and the tool 2 is also good, and the surface quality is good. And accuracy can be obtained.
  • the temperature control means 4d is operated to return the temperature of the fixing surface 40 to a temperature higher than the freezing point of the polymer-based coagulant.
  • this is performed by passing a negative current from the controller 7 to each thermoelectric element 41.
  • the on-off valves 45 2 and 45 3 Is closed, and the on-off valves 45 2 ′ and 45 3 ′ are opened to open the circulating hot water supply device 11 from the circulating hot water supply device 4 1 ′ to branch the hot water at a temperature higher than the freezing point of the polymeric coagulant.
  • the liquid supply pipe 450 to the core 45, and return from the return pipe 45 1 and the branch return pipe 45 1 'back to the circulation type hot water supply device 11 are repeated. .
  • the operation of the circulation type cooling device 10 was stopped, and the connection between the introduction pipe 456 and the discharge pipe 4557 was broken by the quick fluid couplings 458, 459. This is performed by exposing the fixing face plate 4c of the freezing type chuck device 4 to an atmosphere at room temperature.
  • the polymer coagulant 6 is returned from the solid phase to the liquid phase by the above operation, so that the fixing force on the work is released, and the processed work 5 ′ as shown by the white arrow in Fig. 5-C. Can be removed from the fixing surface 40.
  • the polymer-based coagulant 6, which has returned to the liquid phase as described above, is appropriately exposed to the scraping surface 40 by a scraper or the like, and is allowed to flow down together with the chips and detached abrasive grains.
  • the polymer-based coagulant 6 is sent to the first water tank 91.
  • this first water tank 9 1 Is filled with water 910 at a temperature higher than the freezing point of the polymeric coagulant 6. Since polymer-based coagulant 6 has a lower specific gravity than water and has no affinity for water, it separates from water 910 as shown in Fig. 5-C and floats on the water surface, causing chips and separation Since the abrasive grains Z settle at the bottom of the first water tank 91, they can be easily separated.
  • the second water tank 92 accommodates water 9200 at a temperature lower than the freezing point of the polymer-based coagulant 6.
  • the polymer-based coagulant 6 solidifies on water 920. Therefore, it can be easily collected by retrieving it on a net or the like, and can be reused.
  • the polymer-based coagulant 6 according to the present invention is not limited to a liquid or a property close thereto. That is, it may be creamy or pasty.
  • the work 5 can be adhered and fixed to the work 5 as a support block for a large volume instead of a film at the time of solidification.
  • a creamy or pasty polymeric coagulant is obtained by adding a viscosity modifier composed of solid particles to a main ingredient (for example, silicone oil) and kneading the mixture.
  • the solid particles have a mean particle size of at most 10 ⁇ m, preferably a fine powder having an average particle size of 1 ⁇ m or less, more preferably 0.5 ⁇ or less. It is.
  • the material of the solid particles is not limited, but in general, earth powder represented by diatomaceous earth, rice and wheat powder, starch, coral powder, wood ash, paper and fiber burned ash, white carbon, Zeolite and fly ash are good examples. In addition, use the following powder in powder form. Can be used. Metals such as ceramics, silicon, ferrite, carbon, graphite, glass, stone, stone, plastics, cotton, wood, pulp, paper, iron, copper, and aluminum, and their oxides.
  • diatomaceous earth, flours such as rice and wheat, and starches are fine particles and have a low specific gravity, so that they can be uniformly dispersed and mixed in the main component (for example, silicone oil), hardly separate, and inexpensive. Recommended because there is. However, it can be used satisfactorily if other components are mixed and applied immediately.
  • the solid particles may be used by mixing several kinds.
  • a small amount of a liquid substance, for example, a surfactant may be added in addition to the solid particles to promote separation from the workpiece during washing of the workpiece after machining.
  • the solid particles not only increase the viscosity, but also function as aggregates during coagulation, as in mortar and concrete, and the coagulant of the polymer increases in solidification almost in proportion to the amount added. . Therefore, it is preferable to add the solid particles to the silicone oil as the main component at least about 5 wt%. However, if the amount of addition is large, the strength during coagulation is high, but the fluidity before coagulation deteriorates, making it difficult to apply. Therefore, the upper limit is preferably less than 50 wt%.
  • the ratio of silicone oil to solid particles (powder) may be selected from the range of (9: 1) to (5.1: 4.9). It changes from something close to a cream to a paste.
  • FIG. 6 A or Figure 6-D shows an example.
  • a liquid polymer-based coagulant is denoted by reference numeral 60
  • a cream or paste-like polymer-based coagulant is denoted by reference numeral 600.
  • FIG. 6—A shows a liquid polymer coagulant 60 interposed between the lower surface of the work 5 and the fixing surface 40 in a film form, and the side surface 51 of the work 5 and the fixing surface 4 at a predetermined distance from it.
  • a cream or paste-like high molecular weight coagulant 600 is applied so that it is connected to 0, and the cross-section of the cream or paste-like high molecular weight coagulant 600 is applied.
  • Fig. 6-B shows only the connection of the creamy or pasty polymeric coagulant 600 between the side surface 51 of the work piece 5 and the fixing surface 40 at a predetermined distance from it. Instead, it is applied so as to cover the upper surface 52 of the work 5.
  • This mode is suitable for thinly cutting a work into pieces.
  • the solidification height where both end surfaces and the upper surface are connected in a bridge. This is because it is retained by the molecular coagulant.
  • a cream or paste-like polymer-based coagulant 600 is applied between the lower surface of the work 5 and the fixing surface 40, and a predetermined distance from the side surface 51 of the work 5 It is applied so that it is connected to the remote fixing surface 40.
  • the polymer coagulant 600 between the lower surface of the workpiece 5 and the fixing surface 40 functions as a punching-out even when performing a penetrating process such as cutting or drilling. Therefore, there is an advantage that a punching material described later can be omitted.
  • a creamy or pasty polymeric coagulant 600 is applied between the lower surface of the work 5 and the fixing surface 40, and between the side surface 51 of the work 5 and the fixing surface 40. The entire work 5 is wrapped by being applied and then applied so as to cover the upper surface 52 of the work 5. This embodiment has the advantage of obtaining the effect of FIG. 6-D and the effect of FIG. 6-B.
  • the creamy or pasty polymer-based coagulant 600 is also used when a part of a workpiece 5 typified by processing on an E-type ferrite described below is applied, and the processed part is rotated. It is also useful to fill gaps in the holes to prevent damage due to processing forces.
  • the creamy or pasty polymer-based coagulant 6,100 may be arbitrarily used, such as brushing, spattling, or extruding with an extrusion gun.
  • the work 5 in the present invention includes the work 5 on which the punching material is layered.
  • Figures 7-A through 7-C show this detail.
  • the punching material is indicated by reference numeral 5b, and has a hardness that does not hinder machining by tool 2, and is generally made of carbon or graphite plate.
  • the punching material 5b is supported on the fixing surface 40 via a polymer-based coagulant, and is placed on the punching material 5b via the polymer-based coagulant as an original workpiece. Work (shown here as 5a) is supported.
  • the blank 5b has an area equal to or larger than that of the workpiece 5a.
  • FIG. 7A shows an example in which a liquid polymer-based coagulant 60 is used.
  • Fig. 7 —B shows a work in which a liquid polymer coagulant 60 is interposed between the substitute material 5 b and the fixing surface 40, and the work 5 a is interposed between the liquid coagulant 60 and the liquid polymer coagulant 60.
  • 5b around the workpiece 5a and the punching material 5b or solid The application surface 40 is connected with a creamy or pasty polymeric coagulant 600.
  • Figure 7-C further covers the top surface 52 of the work 50 with a creamy or pasty polymer-based coagulant 600, which is then surrounded by a creamy or pasty polymer-based coagulant 51. It is linked to coagulant 600.
  • FIGS. 8A to 8D show another embodiment of the present invention, that is, an example suitable for processing the work 5 by sequentially attaching it to one processing machine.
  • the work 5 is not directly fixed to the fixing surface of the freezing chuck device 4, but is separately reworked with a polymer coagulant 6 using a pallet 14a as a jig.
  • a pallet 14a as a jig.
  • a plurality of pallets 14a and 14a are used, and the freezing chuck device 4 of any of the first to third examples is used, and separately from the outside of the processing machine. Install the pre-cooler 1 to 3.
  • the pallets 14a and 14a are made of a material having good heat conductivity, such as aluminum or an alloy thereof, in a plate shape or a dish shape or a pan shape having an enclosing wall at a peripheral edge thereof. It has an area where multiple 5 can be arranged.
  • the precooler 13 has a cooling plate 13 1 attached to a base 13 0 made of a heat insulating material, and a core 13 2 having a cooling fluid passage such as water below the cooling plate 13 1. It has a close structure, and the fluid supply pipe 13 3 and return pipe 13 4 are circulated in the same structure as the cooling water supply device 8 of the first example or the circulation type cooling device 10 of the third example. It is connected to the cooling device 13a.
  • the processing method according to this embodiment will be described from an initial stage.
  • the temperature of the fixing surface 40 is controlled by the temperature control means 4d. Keep the temperature slightly higher than the freezing temperature of ice.
  • the pre-cooler 13 Activate 13a to circulate the cooling fluid through the supply pipe 133 and the return pipe 134 to the core 132, and move the cooling plate 131 from the freezing point of the polymer-based coagulant. Also keep the temperature low, for example 1-5 "C.
  • the pallet 14 a set in this way is placed on the cooling plate 13 1 of the precooler 13.
  • the polymer coagulant 6 is cooled to a temperature lower than the coagulation temperature of the polymer coagulant 6 through the pallet 14a, and the work 5 is palletized by the adhesive force of the frozen polymer coagulant 6 '. G It is firmly fixed on 14a.
  • the pallet 14a in which the work 5 is fixed with the frozen polymer-based coagulant 6 'in this way is placed on the fixing face plate 4c of the freezing type chuck device 4.
  • water is applied to the fixing surface 40 of the fixing face plate 4c by spraying or the like.
  • the controller 7 activates the temperature control means 4d to set the temperature of the fixing surface 40 to a required temperature below the freezing point of water, for example, about -3 ⁇ , and keeps it.
  • the palette 14a in which the rework 5 is fixed with the frozen polymer-based coagulant 6 ' is fixed on the fixing plate 4c with frozen ice.
  • the machining system is prepared, and the desired machining may be performed with the tool 2 while supplying the replenishing fluid to the machining localities of the tool 2 and the work 5 by the machining fluid supply means 3 as described above.
  • the temperature of the working fluid is preferably 13 ° C. or less, but the present invention Since the amount of the liquid used is small, and the frozen polymer-based coagulant 6 'itself has high heat insulating properties, the temperature rise of the pallet 14a can be suppressed. Therefore, even if the temperature of the machining fluid is 0 ⁇ or more, the amount of heat absorbed by the freezing chuck device 4 from the fixing surface 40 is larger than the amount of the machining fluid warming the work 5 and the pallet 14a. Is so large that the pallet 14a does not separate from the fixing face plate 4c. Further, when the work 5 is made of ceramic or plastic, the work itself is also heat-insulating, so that the detachment of the pallet 14a is further prevented.
  • the pallet 14 a is placed on the cooling plate 13 1 of the precooler 13, which is maintained at a temperature lower than the freezing point of the polymer-based coagulant 6, whereby the rework 5 is palletized. It is fixed at 14a, and waits in this state. This is the state shown in Fig. 8-B.
  • the controller 7 operates the re-temperature control means 4 d to the temperature-raising side, so that the above-mentioned preparation temperature (1) or 1 Return to a high temperature.
  • the pallet 14 a holding the workpiece 5 thus processed can be detached from the freezing chuck device 4. This state is shown in Fig. 8-C.
  • the precooler 13 since the workpiece 5 is fixed to the reparet 14a by the polymer-based coagulant 6 having a high freezing point, the precooler 13 may have a low capacity, and therefore, the equipment cost is greatly reduced. In addition, since the water is not frozen, there is no need to apply any antifreeze to the lower surface of the pallet, and the work is easy.
  • control temperature gradient can be kept within a narrow range of about 5 ⁇ , so that the work for attaching and detaching the work to and from the freezing-type chuck device 4 can be reduced by 10%. It can be as short as ⁇ 15 seconds.
  • the work 5 even when the work 5 is detached from the freezing type chuck device 4, the work 5 remains fixed to the frozen polymer coagulant 6 'pallet 14a having a high freezing point. Easy handling such as transportation without falling.
  • the work 5 can be washed, and at this time, the specific gravity of water is lighter, it has no affinity for water, and its solidification point is higher than that of water. Coagulant 6 can also be recovered.
  • the washing / collecting means 9 ′ as shown in FIG. 8D, for example, water (including one containing a solvent) 910 is housed therein, and a heating means 911 such as a heater is used.
  • the first water tank 91 was designed to maintain the water at a temperature higher than the freezing point of the polymer-based coagulant, and water 920 was housed inside.
  • This is equipped with a second water tank 92, which is always kept at a temperature lower than the freezing point of the polymer-based coagulant by a cooling mechanism 922, and the take-out part is located above the water surface of the first water tank 91.
  • 9 14 is provided.
  • the pallet 14a removed from the freezing type chuck device 4 is inserted into the first water tank 91.
  • the fixing of the work 5 is instantaneously released, and the work 5 is washed with the water 910 to remove chips. Since the dropped abrasive grains have a large specific gravity, they settle to the bottom of the tank and are removed from the discharge section 915. Then, if left for a while after the washing, the water 910 and the polymer-based coagulant 6 are separated, and the polymer-based coagulant 6 floats on the water surface as a thick film.
  • the polymer coagulant 6 flows into the second water tank 92 because the polymer coagulant 6 is dissolved and has fluidity. Since the temperature of 0 is lower than the freezing point of the polymer-based coagulant, the polymer-based coagulant 6 freezes instantaneously on water 920. Then, the frozen polymer-based coagulant 6 ′ may be stored in a container for re-use and reuse by an appropriate take-out means 93 such as a net or a ladle.
  • an appropriate take-out means 93 such as a net or a ladle.
  • the washing / collecting means may have a conveying means such as a conveyor inside.
  • FIGS. 6-A to 6-D and FIGS. 7-A to 7- The use of a combination of liquid and creamy or pasty substances as shown in C or use of only creamy or pasty substances is included.
  • Figure 7—Fixing surface 40 in C should be read as palette 14a.
  • a polymer-based coagulant 6 may be used instead of water.
  • the polymer-type coagulant 6 is applied to the fixing face plate 4c of the freezing type chuck device 4, the pallet 14a is disposed thereon, and the polymer control agent 4d is used to control the polymer-type coagulant. It is cooled to a temperature lower than the coagulation temperature of the coagulant 6, thereby fixing the pallet 14a to coagulate the polymer coagulant 6.
  • the fixing face plate 4c of the freezing type chuck device 4 may further include a vacuum chuck mechanism. According to this, the pallet 14 can be securely fixed to the fixing face plate 4c, and can be instantly released.
  • FIG. 9 shows another embodiment suitable for sequentially processing a workpiece in the present invention.
  • the pallet is not used, and the freezing chuck device 4 itself is used as a replaceable jig, so that the work 5 can be fixed and released more efficiently and inexpensively. There is an advantage that can be done.
  • a first circulating cooling device 10a and a second circulating cooling device 10b having a structure as shown in Fig. 4-A and Fig. 4-1B are arranged respectively.
  • the first freezing chuck device 4 is disposed outside the machine, and one or more works 5 are disposed on the fixing surface 40 via the polymer-based coagulant 6.
  • the introduction pipe 4 5 6 and the discharge pipe 5 6 7 of the first freezing type chuck 4 are connected to the supply pipe 4 5 0 and the return pipe 4 5 1 of the second circulation cooling apparatus 10 b outside the machine.
  • quick fluid coupling 458, 459 are instantaneously connected.
  • the second circulating cooling device 10b is operated to circulate the cooling fluid through the passage of the freezing type chuck device 4 so that the polymer-based coagulant 6 is cooled to a temperature below the freezing point, for example, in the range of 2 to 5. Cool to the temperature inside.
  • the work 5 is solidified and adhered to the fixing surface 40 of the first freezing type chuck device 4.
  • connection of the first freezing-type chucking device 4 to the second circulation-type cooling device 10b is disconnected, transferred to the worktable 1 of the processing machine A, and fixed to a known mechanical chucking mechanism.
  • the inlet pipe 4 5 6 and the discharge pipe 5 6 7 are instantaneously connected to the first circulation cooling device 10 a supply pipe 4 50 a, return pipe 4 5 1 and quick fluid coupling 4 5 8, 4 5 9. Connect. Since this operation is simple and can be performed in a short time, the work 5 is not released.
  • the first freezing chuck device 4 and the first circulating cooling device 1 on the work table are provided. 0 Disconnect the connection to a and take out the first freezing chuck device 4. Transfer to the place where the cleaning process is performed, while the second freezing chuck device 4 outside the machine and the second circulating cooling device Disconnect the device 10b, place the second freeze-type chuck device 4 on the work table 1, fix it with a known mechanical check mechanism, and quickly move the second freeze-type chuck device 4 Connect to the first circulating cooling device 10a with fluid couplings 458 and 459. With this, it is possible to immediately proceed to processing for the next work.
  • low-molecular silicone oil composed mainly of cyclic polydimethylsiloxane was used.
  • This polymer-based coagulant is a colorless and transparent liquid with a viscosity (253 ⁇ 4) of 2.4 cSt (m 2 / S), a freezing point of 17 ⁇ :, and a refractive index (25 ° C) of 1.394.
  • the surface tension is 19.0 U.90 ⁇ dyn / cm ⁇ MN / cm ⁇ and the specific gravity is 0.95 (25 ⁇ ).
  • the chuck of this polymer-based coagulant has a temperature of 5 on the surface to be fixed and the work piece.
  • Chuck material copper
  • work material cemented carbide
  • vertical direction 11 to 15 kgZcm 2
  • the fixed face plate of the freezing type chuck device is made of copper and is 300 x 150 mm.
  • the work is made of PZT parium titanate.
  • the dimensions are 50 (w) x 50 (L) x 2 (t) mm according to the indication in Fig. 10-A, and this is 5 (w).
  • a slicing machine is used as the processing machine.
  • the processing conditions are as follows: Tool: Resin Bond Diamond Diamond Wheel (grit # 600), Tool Dimension: Outer Diameter 100mm, Thickness 0.4mm, Tooling Speed: 500 , Tool rotation speed: 5000rpm, Cutting direction: Downcut.
  • the temperature of the fixing face of the fixing face plate is maintained at about 20 ° C, and in this state, the polymer-based coagulant is applied to the fixing face to a thickness of about 2 ⁇ .
  • the work was placed on top, and a positive current was applied to the freezing type chuck device to lower the chucking surface to 1, and this state was maintained. This solidified the polymer coagulant and fixed the work immovably.
  • machining fluid supply means For machining, a needle nozzle with a diameter of lmm is used as the machining fluid supply means, and the grinding fluid, which has been cooled down to about 3 at about 150 cc / min. Sprayed directly from
  • the material is a composite material of aluminum A2011 and epoxy resin, and the dimensions are 300 (W) x 200 (L) x 2 (t) mm for the upper and lower aluminum, and 300 (W) x 200 (L) X 0.1 (t) mm, dimensions after processing are 300 ( ⁇ ) X6 (L) X4.1 (t) mm.
  • the processing machine is a precision slicing machine.
  • the tool used is a 100 dragon disk with a diameter of 10 ⁇ and three diamond tools of lmm thickness.
  • the tool rotation speed is 6000rpm
  • the tool feeding speed is 120mm / min
  • the cutting direction is set as a downcut.
  • Example 2 The same polymer type coagulant as in Example 1 was used, and the freezing chuck device used was a cooling / heating type using a fluid shown in FIG.
  • a water-soluble working fluid (containing antifreeze) cooled to about -5 was pumped at 150 cc / min while being cooled to about -10 ° C by an air cooler. Using a mixture of cooling air of min. and a pressure of about 5 kg / cm 2 , this was directly sprayed into the processing point from the front in the tool advancing direction using a 21 mm nozzle with a diameter of 4 mm.
  • the workpiece has a shape as shown in Fig. 11A, and the dimensions are according to the indication in Fig. 11B, the height h is 8 mni, the total width is 15 mm, and the width W i of the left and right feet is 2mm, thickness t! F 3 mm, middle foot width W 2 7 mm, thickness t 2 force 0.6 mm. Height of middle foot on this work h: From hot water mm Li, Figure 1 1 performs processing that form a gap g - D and FIG. 1 1 is taken as the shape of the product shown to an E c
  • the processing machine uses a surface grinder with creep function.
  • the tool used is a resin-bonded diamond grinding wheel (grain size # 400) and 20 ⁇ ⁇ ⁇ . Rotation speed: 270 rpm, wheel feed speed: 600 mm / min, machining mode: creep, downcut.
  • Example 2 Use the same polymer type coagulant as in Example 1, and use a freezing type The cooling / heating type of the fluid shown in Fig. 3 was used.
  • the polymer-based coagulant does not dissolve, the work is kept in a stable fixed state, and the polymer-based coagulant filling the gap between the middle foot and both feet does not solidify.
  • the thinner middle foot was kept reinforced a little, and it was able to withstand the machining resistance at the time of cutting with a grindstone.
  • Example 4 ⁇ Cutting was performed using the pallet of the present invention.
  • the polymer coagulant described in Example 1 was used.
  • As the pallets two sheets of material: aluminum alloy, dimensions of 120 (W) x 130 (L) x 10 (t) mm were used.
  • a cooling water circulation type having a cooling plate size of 100 (W) x iL O (L) x 50 (t) nun was used.
  • the work was made of PZT parium titanate, dimensions: 50 (W) x 50 (L) x 1 (t) mm.
  • the preparatory temperature of the chill surface of the freezing type chiller was set at 1 ° C for standby, and the cooling plate upper surface temperature of the pre-cooler was kept at 2-3 ⁇ for standby.
  • a polymer-based coagulant was applied to a pallet kept at room temperature to a thickness of about 2 / xm, and a coating was placed thereon. In this state, the pallet was placed on the pre-cooler. As a result, the polymer coagulant solidified, and each workpiece became firmly fixed.
  • the pallet was placed on the fixing surface of the preparatory temperature through water, and the freezing type chuck was operated to lower the fixing surface to 13 ° C., and this temperature was maintained. As a result, the reparet was fixed on the fixing surface.
  • a water-soluble working fluid (containing antifreeze) cooled to about 15 is pumped at 150 cc / min and cooled to about 110 ° C by an air cooler. Using a mixture with cooling air of min., it was directly sprayed into the machining point from the front of the tool at a pressure of about 5 kg / cm 2 using a 4 mm diameter needle nozzle. During processing, the workpiece remains firmly fixed to the pallet, and the pallet remains firmly fixed on the chuck surface, so that the cut surface has no chipping and a clean cut surface is obtained.
  • a water-soluble working fluid containing antifreeze
  • the temperature of the chuck surface of the freezing chuck device was raised to 2 ° C, and the water was dissolved to release the fixing of the pallet.
  • the work of the next mouth is fixed to the pallet at a temperature exceeding 0 ° by the polymer-based coagulant, and the pallet is fixed in the freezing chuck device. Since the temperature difference between the release and the release is about 5X, it was possible to attach and detach the work with the processing machine in a very short time of 10 seconds.
  • Example 5 Then, even if the pallet is removed from the freezing chuck device, the temperature is below the solidification temperature of the polymer-based coagulant at this time. Was easy. No, as post-processing. While being fixed to the ret, it is inserted into the first water tank containing warm water at 20 ° C, thereby washing the rework and separating and floating the polymer-based coagulant. Transferred to a second tank containing water. As a result, the polymer coagulant was frozen and collected smoothly.
  • Example 5 Example 5
  • Lissajous cobalt material according to the present invention was sliced with a multi-cutting whetstone.
  • the dimensions were 50 (L) X 25 (W) x 7 (t) min, which were cut into 50 X 1.5 (W) x 7 (t) nnn.
  • the processing machine uses a slicing machine, and as a jig, 10 multi-wheels of electrodeposited diamond grindstone (grain size # 280), tool dimensions are 100 mm outside diameter, 0.4 mm thickness, and 2 mm grinding wheel pitch. used.
  • the processing conditions were as follows: grinding wheel rotation speed: 3000 rpm, tool feed speed 20 mm / min, processing method: downcut.
  • the temperature of the fixing surface was maintained at about 20 ° C.
  • the liquid polymer-based coagulant of Example 1 was applied to the fixing surface to obtain a thickness.
  • a punching material consisting of a 5 mm force-bon is arranged, and a paste-like polymer-based coagulant is applied about 0.1 mm on the punching material, and a mark is placed on the paste.
  • the paste-like polymer-based coagulant was applied to the side and top surfaces of the work.
  • the paste-like polymer-based coagulant was prepared by adding 30 wt% of diatomaceous earth having an average particle size of 0.01 ⁇ to the low molecular weight silicone oil of Example 1 and kneading the mixture (No. 1). And the low molecular weight silicone oil of Example 1 with 35 wt% of flour added and kneaded (second type).
  • the grinding fluid cooled to about 3 was directly sprayed at a flow rate of about 15 ⁇ Zni in to the machining area where the workpiece and the tool were in contact.
  • the base polymer-based coagulant containing fine powder increased the strength of the adhesive layer composed of the coagulated polymer-based coagulant.
  • the large adhesive layer made of the solidified polymer-based coagulant is used to fix the surface while slicing or working both ends of the machined work in the longitudinal direction. This is probably because the adhesive layers at both ends in the longitudinal direction are connected to the upper layer of the coagulating polymer-based coagulant on the upper surface of the work to form a bridge.
  • the freezing chuck type machining method of the present invention can be applied to machining of any work regardless of shape and material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jigs For Machine Tools (AREA)

Description

明 糸田 凍結チヤック式機械加工法 技術分野
本発明は凍結チヤック式機械加工法、 さらに詳細にはワークを媒体を 凍結することによ リ位置固定して機械加工する方法に関する。 背景技術
ワークに対してフライス加工、 研削加工、 旋削加工、 研摩加工、 切断 加工、 ダイシング加工、 穴明け加工、 彫刻加工などの機械加工を行う場 合には、 ワークを加工機械テーブル上にしっかリ と固定 (チヤッキング) することが必要である。
このワークの固定方法と して、 従来ではマグネッ トチャック、 真空チ ャック、 バイスなどが用いられていたが、 ワークの材質、 形状などの制 限がつきまとい、 ワークが薄かったリ、 こわれやすかつたリ、 複雑な形 状であったリ した場合にワークを確実、 安定的に固定することができな いという問題があった。
この対策と して、 氷を接着媒体とする凍結チヤック法と装置が提案さ れている。 この先行技術は、 銅など熱伝導性の良好な材質からなる冷凍 用プレー トを用い、 この冷凍用プレー ト上に水を霧状に塗布し、 その上 にワークを載せ、 この状態で冷凍用プレー トょ リ下方に設けられている 熱電素子に通電することによ リ冷凍用プレー 卜の上面温度を 0 ^以下に 冷し、 それによリ水を結氷させ、 氷膜にょリワークを固定する方法であ る。
しかし、 かかる先行技術は、 いまだ次のような問題があった。
( 1 )加工液を使用して加工することが不可能ないし困難である。
機械加工中にワークと工具との間に発生する加工熱は加工面を著しく 損傷し、 また工具の寿命を短くする。 そこでこのワークを凍結方式によ リ固定する方法においても、 汎用の機械加工法と同じように加工液ない しクーラント液 (以下、 加工液と称す)を使用することが適切である。 しかしながら、 加工液の温度は、 一般にワークを固定している氷の温度 ょリも高い。 このため、 加工液を加工面に供給すると氷膜が溶解され、 加工中にワークが固定用面から外れて加工不能となるばかリでなく、 テ —ブルから外れて飛び出すためきわめて危険であった。
この対策として、 不凍液を含む水溶性の加工液を用い、 これを氷点以 下に冷却して使用しても、 氷は水と親和性が強いため、 ゃはリ加工液が ワークを固定している氷を溶解しやすく、 ワークの固定解除が起リやす い。 こうしたことから、 先行技術の方法は、 事実上、 加工液を使用しな い乾式加工にしか適用することができなかった。
(2)加工中に氷がワークに積層することによリ工具の動きが阻害されや すい。
たとえばワークの切断加工やダイシング加工を行った場合に、 加工中、 水溶性加工液や空気中の水分がワーク上に結氷して積層する。 この氷が 工具のフランジゃマンドレル等に接触し、 工具の動きに障害を与えるた め、 精密な加工が困難となったリ、 工具や主軸を損傷するといつたトラ ブルが生じやすかつた。
(3)慣用のチヤック手段に比べてワークの着脱能率が悪く、 またコス ト ァップにつながる。
先行技術は水を凍結させて氷膜でワークを固定するが、 実際上は、 冷 凍用プレー トの上面温度を— 5でよ リ も低い温度たとえば一 1 0 程度 にしなければ十分な固定力を得ることができず、 また、 加工後には 0 °C 以上に温度上昇させなければワークを取リ出すことができない。 このた め、 冷凍用プレー ト上でのワークの固定と離脱にそれぞれ 1〜 3分とい う長い時間を要する。
この打開策と して、 従来では次のよ うな方法を取っていた。 すなわち、 真空チヤック機能を付加した冷凍チヤック装置と、 真空チヤック機能を 有しない冷凍チヤック装置とを用い、 前者を加工機械のテーブル上に配 置し、 後者を加工機械の外部 (機外) に配置する。 そして、 それら 2セ ッ トの冷凍チヤック装置に加えて、 アルミニゥムからなる複数枚のァダ プタープレー トを準備しておき、 機上の冷凍チヤック装置を使用してヮ ークを固定して機械加工している間に、 次の加工分のワークをアダプタ フレー トに固定しておくサイクルを採用している。
すなわち、 まず、 機外の冷凍チャック装置における冷凍用プレー トの 上面に不凍液の膜を形成しておき、 これに載せられるアダプタープレー トの上にワークを載置すると ともに水を塗布し、 この状態で冷凍チヤッ ク装置を作動して予めワークをアダプタープレー トに凍結固定させた状 態と し、 この状態で待機する。 そして、 機上での機械加工が完了したと きに、 機上の冷凍チヤック装置の真空チヤックを作動解除して冷凍用プ レートに対するアダプタープレー 卜の固定を解き、 前記のよ うに待機し ていたアダプタープレー トを機上の冷凍チヤック装置の冷凍用プレー ト (この上面には不凍液の膜が敷かれている) に載置して、 真空チャック を作動させるのである。
しかし、 この手法では、 冷凍用プレー トと、 冷凍用プレー トの上面温 度を一 5 ¾ょ リ も低い温度まで降温させるための熱電素子と、 熱電素子 による冷却水通路を設けたプラスチック台 (ボディ) および該プラスチ ック台を固定する固定台とを構成要素とする高価な装置が機上用と機外 用と して 2台必要となる。 このためコス トが 2倍となリ、 電力消費量な どのランニングコス トも高価になるという問題があった。 さらに、 機外 の冷凍チヤック装置で ο τ:以下の温度まで冷却しないとワークがァダブ タープレー ト上で位置ずれしてしまい、 自動制御による加工が困難とな る。
本発明は前記のよ うな問題点を解消するために研究して創案されたも ので、 その基本的目的は、 0 ^ょ リ も高い温度条件においてもまた加工 液を使用する湿式加工方式においても、 ワークを加工中しつかリ と固定 して高精度に加工することができ、 それでいながらワークの着脱も簡単 に能率よく に行う ことができる実用的な凍結チヤック方式による機械加 工法を提供することにある。
また本発明の他の目的は、 多数のワークの逐次加工をよ リ能率的にし かも安価な装置で行う ことができる冷凍チヤック方式による機械加工法 を提供することにある。 発明の開示
上記目的を達成するため本発明の冷凍チヤック方式は、 凝固点が水の それよ リ も高い高分子系凝固剤をすく なく と もワーク と固定用面の間に 介在させ、 固定用面を冷却することにょ リ高分子系凝固剤を接着媒体と してワークを固定することを特徴と している。
また、 本発明の冷凍チャック方式による機械加工法は、 ワークを支持 するパレッ トと、 固定用面と該固定用面を温度制御する手段を備えた凍 結式チヤック装置とを使用し、 ワークをパレッ トに固定しそのパレッ ト を凍結用チヤック装置に固定してワークを機械加工する方法であって、 凝固点が水のそれよ リ も高い高分子系凝固剤を少なく と もワークとパレ ッ トの間に介在させ、 パレツ トを冷却することによ リ高分子系凝固剤を 接着媒体と してワークを固定することを特徴と している。
本発明におけるワーク固定要素と しての高分子系凝固剤は、 凝固点が 水のそれよ リ も髙いことに加え、 水と親和性が乏しく 良好な撥水性を備 えていることが必要である。 そしてこれに加えて、 好ましく は、 比重が 水よ リ も軽いことである。
その例と しては、 低分子シリ コーンオイルないし環状シリ コーンオイ ルで代表されるシリ コーンオイルあるいはこれを主成分とするものなど 挙げられる。
この高分子系凝固剤は、 液状のものからク リーム状 (バター状) ない しペース ト状のものをすベて含んでいる。 後者のク リーム状ないしぺー ス ト状物は簡便にはシリ コーンオイルに固体粒子からなる粘度調整剤( 増ちよ う剤)配合することで得られたものである。 粘度調整剤と しては、 各種材質の粉末好ましくは微粉末を用いることができる。
本発明は液状の高分子系凝固剤とク リーム状ないしペース ト状の高分 子系凝固剤を単体で使用する場合のほか、 両者を併用する場合を含んで いる。 ク リーム状ないしペース ト状の高分子系凝固剤はワークの周囲と 固定用面をつなぐように塗着すると非常に効果的にワークを固定するこ とができる。
本発明を適用して加工されるワークは、 鉄系、 銅系、 アルミニウム系, チタン系、 シリ コン系、 ゲルマニウム系などで代表される金属、 プラス チック系、 ガラス系、 カーボン系、 セラミ ック系、 木質系、 あるいはこ れらの 2種以上の複合材、 水晶、 ダイヤモンド、 C B N、 ルビー、 サフ アイャなど材質を問わず、 また形状、 寸法も問わない。
加工方法も、 平面研削、 成形研削、 ク リープ研削、 円筒研削などの各 種研削加工、 旋削加工、 研摩加工、 切断加工、 スライス加工、 ダイシン グ加工、 ミーリ ング加工、 溝加工、 穴明け加工、 彫刻など態様を問わな い。
前記ワークはこれに対する加工が表面である場合には、 固定用面ゃパ レツ トに直接固定されてもよいが、 切断加工や穴明け加工のように加工 が肉厚を貫通するような場合には、 ワーク固定用面に対する工具の接触 を防止するため抜き代材が本来のワークと固定用面の間に介装される。 本発明はこの場合を含んでぉリ、 したがって、 本発明において「ワーク」 とは加工対象物と しての本来のワークはもちろん、 抜き代材を層着した ものの双方を含む概念である。
本発明は、 さらに多数のワークを逐次機械加工するために好適な方法 を含んでいる。
その第 1の手法は、 固定用面と該固定用面を温度制御するための冷却 用流体の通路を備えた少なく とも第 1 と第 2の凍結式チャック装置を用 意する一方、 加工機械の近傍と加工機械外の位置には冷却用流体を供給 するための第 1 と第 2の循環式冷却装置を配し、 次の工程を逐次繰リ返 す方法である。
a . 第 1の凍結式チヤック装置の固定用面上に高分子系凝固剤を介して ワークを配し、 第 1の凍結式チヤック装置を加工機械外位置にある第 2の循環式冷却装置と接続して高分子系凝固剤を凝固点以下の温度に 冷却することにょ リ高分子系凝固剤を接着媒体と してワークを第 1 の 凍結式チヤック装置に固定する。
b . ワークを固定した前記第 1の凍結式チヤック装置を第 2の循環式冷 却装置と切離し、 加工機械のテーブル上に移して機械的に固定すると ともに、 第 1 の循環式冷却装置と接続して高分子系凝固剤を凝固点以 下の温度に維持しながら機械加工を行う。
c . 前記機械加工を行っている間に、 次に加工すべきワークを第 2の凍 結式チヤック装置の固定用面上に高分子系凝固剤を介して配置し、 該 第 2の凍結式チヤック装置を加工機械外位置にある第 2の循環式冷却 装置と接続して高分子系凝固剤を凝固点以下の温度に冷却することに よ リ高分子系凝固剤を接着媒体と してワークを第 2の凍結式チヤック 装置に固定しておく。
d . 前記機械加工後、 第 1の凍結式チャック装置を第 1の循環式冷却装 置と切離して加工機械のテーブル上から除去する一方、 第 2の凍結式 チヤック装置を第 2の循環式冷却給装置と切離して加工機械のテープ ル上に移して機械的に固定し、 第 1の循環式冷却装置と接続すること で高分子系凝固剤を凝固点以下の温度に維持しながら次の機械加工を 行う。
また、 第 2の手法は、 加工機械上に固定用面と該固定用面を温度制御 する手段を備えた凍結式チヤック装置を配し、 加工機械から外れた位置 にはプリ クーラーを配し、 さらに複数枚のパレッ トを使用し、 次の工程 を逐次繰リ返す方法である。
a . 第 1のパレッ ト上に高分子系凝固剤を介してワークを配し、 前記第 1のパレツ トを高分子系凝固剤の凝固点以下の温度に保持した前記プ リ ク一ラーに載せ、 それによ リ高分子系凝固剤を接着媒体と してヮー クを第 1のパレッ トに固定する。
b . ワークを固定した前記第 1のパレツ トをプリ クーラーから取外し、 凍結式チヤック装置の固定用面に載せて固定して機械加工を行う。 c . 前記機械加工を行っている間に、 次に加工すべきワークを高分子系 凝固剤を介して第 2のパレッ トに载せ、 該第 2のパレッ トをプリ クー ラーに載せて冷却し高分子系凝固剤を接着媒体と してワークを固定し ておく。
d . 前記機械加工後、 凍結式チャック装置上の第 1のパレッ トの固定を 解除する一方、 第 2のパレツ トをプリ クーラーから凍結式チヤック装 置の固定用面に載せて固定する。 本発明による利点を挙げると次の通リである。 凝固点が水のそれよリも高い高分子系凝固剤をワークと固定用面また はこれに載せられるパレツ 卜とワークの間に配し、 高分子系凝固剤を接 着媒体としてワークの固定を得るようにしている。
このため、 固定用面が 0 °C未満の場合はもちろん o tを越える温度で あっても強い機械加工力に十分耐えうる固定力が得られる。 また、 ヮ一 クを凍結固定させるのに要する時間もきわめて削減されるため、 ワーク 固定作業の能率化を図ることができる。
また、 ワークを固定する媒体として凝固点が水のそれよリ も高い高分 子系凝固剤を使用しておリ、 その高分子系凝固剤は水との親和性がきわ めて乏しい。 このため、 不凍液などを含有する水溶性あるいは油性の加 ェ液を工具とワークに噴射したリ吹き付けたリ しても、 高分子系凝固剤 が溶解される危険性は全くなく、 したがって、 加工中にワークの固定が 解除されてしまうという心配がなく、 安全に加工を行うことができる。 さらに、 0 ¾以上の温度の加工液を加工局部に集中的に供給してもヮー クを固定する媒体が溶解することはないから、 加工熱の除去、 潤滑、 切 粉ゃ砥粒類の排除といった加工液の特性を十分に発揮させることができ、 安全確実に精度のよい加工を行うことができる。
また、 加工液の使用温度を比較的高くすることができるから、 加工液 の冷却装置も小さな能力のもので足リる。 さらに、 慣用のチャック法の 場合に比べてワークの温度が低いため、 加工液の使用量も少なくするこ とができ、 これによリ加工液をろ過循環させない方式の採用が可能とな リ、 ろ過循環供給設備を省略する事もできる。 このため装置コス トを下 げることができる。 さらに、 高分子系凝固剤は水との親和性がきわめて乏しく、 撥水性が あるため、 シリ コンウェハーや金属板などに対して切断加工やダイシン グ加工、 スリ ッ ト加工などを行った場合にも、 氷の膜でワークを固定し た場合に問題となっていたワークの表面に加工液や空気中の水が凍結し 積層し、 それが刃先の直上の工具フランジゃ主軸に接触するといった現 象が全く生じない。 このため、 工具の動きが常に円滑に保たれ、 スムー ズに精度のよい加工を行う ことができる。
また、 上記のように加工液の使用が可能になリ、 加工部に常に新鮮な 加工液を供給して切粉や脱落砥粒の排出を促進することができるから、 加工面の仕上がリ もきれいにすることができる。
高分子系凝固剤と して、 主成分に固体粒子を混合分散したク リーム状 ないしペース ト状のものを使用した場合には、 主成分の凝固によ リ薄い 膜でなくボリ ユームの大きな塊リ となリ、 かつ固体粒子が一種の骨材と して働く。 このためワークの接着固定力が非常に強くなリ、 ワークに対 する加工力が強大であっても安定的な固定状態を保つことができる。 ことにク リーム状ないしペース ト状の高分子系凝固剤を下部が固定用 面に接するようにワークの周囲に塗着し、 この状態で高分子系凝固剤を 凝固させた場合には、 ワークは下面だけでなく周囲もがつちリ と剛体に よ リ保持固定されるため、 ワークをスライス加工した場合にも固定用面 から剥がれたリ しなく なる。 さらにク リーム状ないしペース ト状の高分 子系凝固剤を固定用面に接するようにワークの周囲に塗着するだけでな く ワークの上面を覆う ように塗着した場合には、 スライス片はボリ ユー ムの大きな両端接着層とこれをプリ ッジ状につなぐ上面層とによって強 u
固に固定されるため、 スライス片の厚みが薄くても固定面から剥離せず、 安定した状態に保たれる。 なお、 この状況は図 1 3— B , 図 1 3— Cを 参照されたい。
さらに、 従来の氷の凍結方式では、 実際上は一 1 0 X:以下にしないと 十分な固定力が発揮されないため、 ワークの着脱に長時間を要したが、 高分子系凝固剤は水の凝固点よ リ も凝固点が高く 、 0 °C以上の温度でも ワークを固定用面またはパレツ トに固定化しておく ことができ、 ワーク 着脱のための温度勾配は 5〜 6でといった小さな範囲で足リ る。
このことから凍結式チヤック装置と しては 0〜 3 °C程度までの冷却能 力のものを使用することが可能となリ、 固定用面を降温させる手段と し て熱電素子に限られず、 水で代表される流体でもよいことになる。 この 場合には凍結式チヤック装置は冷却用流体の通路を設けるだけでよくな るため、 薄く軽いプレート状のものにすることができ、 加工機械のテー ブル上に配置したときに工具の移動の妨げならなく なる。
それゆえ、 多数のワークを逐次加工する場合に、 第 1 の手法を採用す れば、 パレツ トを要さず、 凍結式チャック装置そのものを交換式の治具 と して加工機械のテーブル上で取替え、 凍結式チヤック装置を機上と機 外の循環式冷却装置に迅速流体継手を利用して瞬間着脱するだけで簡単 且つ能率的にワークの取替えを行う ことができる。 加工後のワークは凍 結式チヤック装置の固定用面に固定したままで取リ出すことができるた め、 後の処理も容易である。
また、 第 2の手法を採用した場合もワークの凍結チヤック装置に対す る着脱時間を大幅に短縮することができる。 また、 凍結式チャック装置 は機上に 1台で足リ、 機外にはせいぜい 2〜 3 °C程度までの冷却能力を 持つプリクーラーを使用するだけで足リ、 このプリクーラーとしては流 体循環式の簡易なものを使用することができる。 したがって、 このパレ ッ ト循環使用形式の場合にも、 装置コス トを大幅に低減することができ る。
本発明の高分子系凝固剤 (粘度調整剤としてとくに比重の大きいもの を配合しないクリーム状ないしペース ト状のもの含む) が水よリも比重 が小さい性質を有している場合、 使用後の処理も容易である。
すなわち、 使用済みの高分子系凝固剤だけをあるいはこれとワークを 高分子系凝固剤の凝固点よリも高い温度の水(不凍液などを配合してい るものを含む)に装入すれば、 高分子系凝固剤は水面上に分離浮上し、 その浮上した高分子系凝固剤をこれの凝固範囲内の温度の水を満たした 槽に注入すれば簡単に回収することができる。 この方法によれば、 ヮー クに付着した切粉などの洗浄と高分子系凝固剤の回収とを簡単、 安価な 手段で行うことができる。 図面の簡単な説明
図 1は本発明による凍結チヤック式機械加工法の第 1例を示す説明図 である。
図 2は第 1例における凍結用チヤック装置の他の例を示す縦断側面図 である。
図 3は本発明による凍結チヤック式機械加工法の第 2例を示す説明図 である。 図 4 一 Aは第 2例の別の態様を示す縦断側面図である。
図 4— Bは図 4の装置の平面図である。
図 5— Aは高分子系凝固剤と して液状のものを使用した場合における ワークの装着段階を示す断面図である。
図 5— Bはワーク機械加工中の状態を示す断面図である。
図 5— Cはワーク機械加工終了時の状態と高分子系凝固剤の回収状態 を示す説明図である。
図 6— Aは高分子系凝固剤によるワークの固定態様の別の例を示す断 面図である。
図 6— Bは高分子系凝固剤によるワークの固定態様の別の例を示す断 面図である。
図 6— Cは高分子系凝固剤によるワークの固定態様の別の例を示す断 面図である。
図 6— Dは高分子系凝固剤によるワークの固定態様の別の例を示す断 面図である。
図 7— Aは抜き代材を使用した場合の高分子系凝固剤によるワークの 固定態様の別の例を示す断面図である。
図 7— Bは抜き代材を使用した場合の高分子系凝固剤によるワークの 固定態様の別の例を示す断面図である。
図 7— Cは抜き代材を使用した場合の高分子系凝固剤によるワークの 固定態様の別の例を示す断面図である。
図 8— Aは本発明法を第 2の手法による逐次加工に適用した場合の先 行ワークの加工初期段階を示す説明図である。 図 8—Bは先行ワークの加工中期段階を示す説明図である。
図 8—Cは後行ワーク交換段階を示す説明図である。
図 8—Dは高分子系凝固剤の回収とワーク洗浄法の一例を示す説明図 である。
図 9は本発明法を第 1の手法による逐次加工に適用した例を先行ヮー クの加工段階の状態で示す説明図である。
図 1 0— Aは本発明の実施例におけるワークの形状と寸法を示す斜視 図である。
図 1 0 _ Bは本発明の実施例におけるワークの形状と寸法を示す斜視 図である。
図 1 1一 Aは本発明の実施例におけるワークの加工前の形状を示す斜 視図である。
図 1 1— Bは図 1 1— Aのワークの寸法を示す正面図である。
図 1 1一 Cは図 1 1— Aのワークの寸法を示す平面図である。
図 1 1一 Dは図 1 1一 Aのワークの加工完了状態を示す斜視図である。 図 1 1一 Eは図 1 1—Dのワークの正面図である。
図 1 2— Aは図 1 1一 Aのワークの加工状態を示す縦断側面図である。 図 1 2— Bは図 1 1一 Aのワークの加工状態を示す正面図である。 図 1 3— Aは本発明の実施例におけるワーク加工状態を示す縦断側面 図である。
図 1 3— Bは図 1 3— Aのワークの加工された状態を拡大して示す部 分的断面図である。
図 1 3— Cは図 1 3— Bの X— X線に沿う断面図である。 発明の詳細な説明
図 1 は本発明による凍結チヤック式機械加工法の第 1例を示している。 この例では、 ワークを固定用面に直接固定して機械加工を行なっておリ、
1は加工機械のワークテーブル、 2は砥石、 バイ ト、 リーマ、 ドリル、 タップなど所望の工具、 3は加工液供給手段、 5はワークである。
4は凍結式チヤック装置であリ、 ワークテーブル 1 に据付け固定され る基台 4 a と、 これの上部に固定された支台 4 b と、 該支台 4 bに固定 され上面に固定用面 4 0を有する固定用面板 4 c と、 固定用面板 4 cの 下面側に配され、 固定用面板 4 cを降温および昇温する手段 4 d とを有 している。
6はワーク 5の下面と固定用面 4 0の間に介在された高分子系凝固剤 である。
基台 4 aは強度の高い材料たとえばステンレスなどによリ作られ、 支 台 4 bは熱絶縁性、 電気絶縁性の良好な材料たとえばプラスチックで作 られている。 固定用面板 4 cは熱伝導性の良好な材料例えば銅、 アルミ 二ゥム、 窒化アルミ ゥムなどによって作られている。
固定用面板 4 c を温度制御する手段 4 dは任意である。 この例では複 数個の熱電素子 4 1が用いられており、 それら熱電素子 4 1は固定用面 板 4 c に密着して取リ付けられている。 熱電素子 4 1 はプラス電流を通 電したときに上面側から熱を吸収して下面から放出し、 マイナス電流を 通電したときに下面側から熱を吸収して上面側に放出する特性を有して いる。 各熱電素子 4 1の給電線 4 2は導出され、 外部のコントローラ 7に接 続されている。 コントローラ 7は、 D C電源回路と制御回路とを有して ぉリ、 制御回路には加工内容に応じて準備温度と加工温度 (冷却温度) および固定解除温度 (昇温温度) を任意に設定し、 それに対応する極性 と電流値の電流を供給する手段が含まれている。
上記のように熱電素子 4 1を用いているため加工時に熱電素子 4 1の 下面側から熱が発生し、 これが基台 4 aを介してワーク据付け部 1に伝 熱される。 そこで、 熱電素子 4 1の近傍には排熱冷却機構 4 eが設けら れている。 この排熱冷却機構 4 eは冷却水を循環使用したもので、 図 1 ではコアとして構成され、 その排熱冷却機構 4 eの供給管 4 3と戻リ管 4 4は外部の冷却水供給装置 8に接続されている。
加工液供給手段 3は、 加工液を加工部に供給するノズル 3 0と、 これ に加工液を供給する加工液供給装置 3 1 とを有してぉリ、 さらに好まし くは、 加工液供給装置 3 1の系に調整バルブ 3 2 0を介して冷却加圧空 気供給装置 3 2が接続される。
9は高分子系凝固剤 6の回収手段であリ、 固定用面板 4 cの周囲を囲 む溝状ないし樋状の受け 9 0と、 この受け 9 0とホース等の通路要素 9 3で連絡された第 1水槽 9 1 と、 第 1水槽 9 1の上部域と連絡する第 2 水槽 9 2を有している。 第 1水槽 9 1には高分子系凝固剤 6の凝固点よ リも高い温度の水 (これは工業用水などのほか、 不凍液や溶剤を配合し ている水を含む。 以下同じ) 9 1 0が満たされておリ、 第 2水槽 9 2に は高分子系凝固剤 6の凝固点よリも温度の低い水 9 2 0が満たされてい る。 図 2は凍結式チヤック装置 4の別の例を示してぉリ、 冷却水を循環す る形式の排熱冷却機構 4 eがコアでなく通路となっているほかは図 1 の ものと同じである。
図 3は本発明による凍結チヤック式機械加工法の第 2例を示している。 この例においても、 ワーク 5は固定用面 4 0に直接固定され、 機械加工 されるよ うになつている。
この第 2例においては、 凍結式チヤック装置 4の固定用面板 4 c を温 度制御する媒体と して電気 · 熱変換要素でなく流体が用いられている。 これは水よ リ も凝固点の高い高分子系凝固剤 6を凍結させることに基づ く もので、 装置を簡単かつ安価にすることができる利点がある。
したがって凍結式チヤック装置 4の固定用面板 4 cの温度制御手段 4 dは、 内部に流体の通路 4 5 0を有し上部が固定用面板 4 cの下面に密 接するコア 4 5で構成されている。 もちろんコアでなく クネタネと した 通路であってもよい。
前記コア 4 5に接続した導入管 4 5 6 と排出管 4 5 7は基台 4 aまた は支台 4 bから外部に突出し、 継手を介して供給管 4 5 0 と戻リ管 4 5 1にそれぞれ接続されておリ、 それら供給管 4 5 0 と戻リ管 4 5 1は高 分子系凝固剤凍結用の循環式冷却装置 1 0に接続されている。
循環式冷却装置 1 0は冷凍コイルを有するタンク 1 0 0 と吐出ポンプ 1 0 1 を有してぉリ、 供給管 4 5 0 と戻リ管 4 5 1には電磁式などの開 閉弁 4 5 2, 4 5 3が介在されておリ、 これよ リ も上流の部位の供給管 4 5 0 と戻リ管 4 5 1 はリ リーフ弁 4 5 4を介して接続されている。 また、 供給管 4 5 0 と戻リ管 4 5 1は、 前記開閉弁 4 5 2 , 4 5 3 よ リも下流の部位でそれぞれ分岐され、 その分岐供給管 4 50 ' と分岐戻 リ管 4 5 1 ' は高分子系凝固剤凍結解除用の循環式温水供給装置 1 1に 接続されている。
この循環式温水供給装置 1 1はヒータを有する温水タンク 1 1 0と、 温水吐出ポンプ 1 1 1を有してぉリ、 その分岐供給管 4 50 ' と分岐戻 リ管 4 5 1 ' には電磁式などの開閉弁 4 5 2 ' , 4 5 3 ' が設けられ、 これよリも上流の部位がリ リーフ弁 4 54 ' を介して接続されている。 なお、 この例では開閉弁 4 5 2と 4 5 3, 4 5 2 ' と 45 3 ' がそれ ぞれ別個になっているが、 もちろん 3位置切換え弁などによって構成さ れる。
その他の構成は第 1例と同じであるから、 同じ部分に同じ符号を付し、 説明は省略する。
図 3の例では温度制御手段 4 dの一要素として循環式温水供給装置 1 1を使用しているが、 この装置は必ずしも必要としない。 すなわち、 図 4— Aと図 4— Bは第 2例を簡便にし、 凍結式チヤック装置 4そのもの を移動性に富む治具として使用できるようにしたものである。
導入管 4 5 6 と排出管 4 5 7は基台 4 aまたは支台 4 bから外部に突 出し、 先端に迅速流体継手 (クイック コネクティング カップリング) に対するプラグを有している。 循環式冷却装置 1 0の供給管 450と戻 リ管 4 5 1はそれぞれ先端に迅速流体継手 4 5 8, 4 5 9を有し、 前記 導入管 4 5 6と排出管 45 7に瞬時着脱されるようになつている。 その 他の構成は第 2例と同様であるから、 同じ部分に同じ符号を付し、 説明 は省略する。 本発明において、 高分子系凝固剤 6は、 水の凝固点よ リ も凝固点がで きるだけ高く、 常温またはそれ以上の温度で凝固することが必須の物性 である。 これに加えて、 水と親和性が乏しく (撥水性を示す) 、 水よ リ も比重が軽い物性を有していることが好ましい。
かかる高分子系凝固剤 6の代表的なものと しては、 シリ コーン樹脂、 たとえば低分子シリ コーンオイルないし環状シリ コーンオイルで代表さ れるシリ コーンオイルあるいはこれを主成分とするものが挙げられる。 このシリ コーンオイルは、 珪素と酸素が交互に並んだシロキサン結合 を骨組と し、 分子が連鎖状にならんでいるものであリ、 有機基と してメ チノレ基ゃフエ二/レ基を含むメチル系 (メチルポリ キロキサン、 フエニル ポリ シロキサン) 、 メチルフエニル系 (メチルフエ二ルポリ シロキサン) などがある。
低分子シリ コーンオイルないし環状シリ コーンオイルは常温に近い温 度で凝固する性質を有してぉリ、 また熱安定性もよく、 耐薬品性、 耐酸 化性、 電気絶縁性の各特性も有する点でも有利である。
この高分子系凝固剤 6は通常、 液状ないしこれに近い性状となってい る。 この性状の場合には、 加工に先立って、 高分子系凝固剤 6は固定用 面 4 0またはワーク 5の下面に塗布されるか、 あるいは固定用面 4 0 と ワーク 5の双方に塗布される。 膜厚は任意であリ、 数ミクロンでも十分 に固定効果があげられる。
図 5— Aないし図 5— Cは高分子系凝固剤 6 と して液状のものを用い、 ワーク 5を固定用面板 4 cに固定して機械加工を行う方法を段階的に示 している。 加工に際しては、 固定用面板 4 cの固定用面 4 0を高分子系凝固剤の 凝固温度よリも高い温度に保っておく。 この状態で図 5— Aのように固 定用面 4 0に液状の高分子系凝固剤 6を刷毛、 ローラ、 噴霧など任意の 方法にょリ塗布し、 固定用面 4 0に高分子系凝固剤膜を形成する。 高分 子系凝固剤 6はもちろんワーク 5の下面に塗布してもよい。
そして次に、 ワーク 5を高分子系凝固剤膜の上に置き、 適宜位置決め、 配向の調整などを行ったのち、 温度制御手段 4 dを作動して固定用面 4 0の温度を高分子系凝固剤の凝固点よリも低い温度にする。
これは、 第 1例の場合には、 コントローラ 7から各熱電素子 4 1にプ ラス電流を通電し、 同時に排熱冷却機構 4 eを作動することによリ行わ れ、 第 2例の場合には開閉弁 4 5 2 ' , 4 5 3 ' を閉じ、 開閉弁 4 5 2, 4 5 3を開いて循環式冷却装置 1 0から供給管 4 5 0を介してコア 4 5 に流体を送リ、 戻リ管 4 5 1から循環式冷却装置 1 0に戻すことを反復 することによって行われる。 第 3例では循環式冷却装置 1 0の供給管 4 5 0と戻リ管 4 5 1を迅速流体継手 4 5 8 , 4 5 9によリ導入管 4 5 6 と排出管 4 5 7と接続することによって行われる。
これによリ高分子系凝固剤 6は液相から凝固によリ固相へと変化し、 凍結高分子系凝固剤 6 ' の凝固分子によリワーク 5は固定用面 4 0と強 固に接着する。
なお、 「凝固点よリも低い温度」 とは、 高分子系凝固剤の凝固分子が 緻密に結合し、 固定用面 4 0とワーク 5との接着による固定力 (保持力) が機械加工による負荷荷重に十分耐えられるまでになる温度を意味し、 通常の場合、 高分子系凝固剤 6の凝固点よリも約 1 O 以上低い温度で ある。
以上でワーク 5の固定状態が得られるので、 加工機械を作動し、 図 5 — Bのよ うに、 工具 2によ リ ワーク 5に所望の加工を加える。 このとき に、 工具 2 とワーク 5の接触部域に加工液供給手段 3から加工液を供給 する。
これは、 高分子系凝固剤 6の凝固点よ リ も低い任意温度に冷却した加 ェ液をノズル 3 0から噴射してもよいし、 あるいは加工液に冷却加圧空 気供給手段 3 2から、 たとえば温度が 0 °C以下、 圧力が 5〜 7 k g/cm2の 冷却加圧空気を添加混合し、 ノズル 3 0からミス トと して噴霧してもよ い
後者の方法は、水が霧化される際に気化熱を奪われるためよ リ冷却効 果が高く、 例えば 2 βノ分以下といった少ない加工液量で憤用の機械的 チャック法の場合に使用される約 1 0 β 分以上の量の加工液による冷 却効果に匹敵する効果を得ることができる。
0 ¾を越える加工液を使用しても、 凍結高分子系凝固剤 6 ' は撥水性 を有するため、 加工液にょ リ凍結高分子系凝固剤 6 ' は溶解せす、 凝固 状態が維持され、 ワーク 5はしつかリ と固定状態に保たれる。 したがつ て、 加工液にょ リ加工熱が冷却され、 加工屑や脱落砥粒が円滑に加工部 位から除去され、 ワーク 5 と工具 2間の潤滑も良好になリ、 良好な加工 面性状と精度を得ることができる。
また、 上記のような冷却加圧空気混合加工液が加工中に凝固して氷と なっても、 凍結高分子系凝固剤 6 ' が撥水性を有するためワーク 5の表 面に氷が凍結したリ、 積層したリすることがなく、 工具 2および工具 2 のフランジまたはマンドレルは損傷することなくきれいな状態に保たれ る。
このようにして目的とする加工が終了したならば、 温度制御手段 4 d を作動して固定用面 4 0の温度を高分子系凝固剤の凝固点よリも高い温 度に戻す。
これは、 第 1例の場合には、 コントローラ 7から各熱電素子 4 1にマ ィナス電流を通電することによリ行われ、 第 2例の場合には、 開閉弁 4 5 2, 4 5 3を閉じ、 開閉弁 4 5 2 ' , 4 5 3 ' を開いて循環式温水供 給装置 1 1から高分子系凝固剤の凝固点よリも高い温度の温水を分岐液 体供給管 4 5 0 ' と液体供給管 4 5 0を介してコア 4 5に送リ、 戻リ管 4 5 1 と分岐戻リ管 4 5 1 ' から循環式温水供給装置 1 1に戻すことを 反復することによって行われる。 第 3例の場合には、 循環式冷却装置 1 0の作動を止め、 迅速流体継手 4 5 8, 4 5 9によリ導入管 4 5 6と排 出管 4 5 7との接続を解き、 凍結式チヤック装置 4の固定用面板 4 cを 常温の雰囲気にさらすことによって行われる。
いずれにしても上記操作によリ高分子系凝固剤 6は固相から液相に戻 るためワークに対する固定力が解除され、 図 5— Cの白抜き矢印のよう に加工済みのワーク 5 ' を固定用面 4 0から取リ外すことができる。 上記のようにして液相に戻った高分子系凝固剤 6は、 適宜スク レーパ などにょリ固定用面 4 0をさらって、 切粉や離脱砥粒などともに流下さ せる。
実施例においては、 固定用面板 4 cの周囲には受け 9 0があるため、 高分子系凝固剤 6は第 1水槽 9 1に送リこまれる。 この第 1水槽 9 1に は高分子系凝固剤 6の凝固点よリも高い温度の水 9 1 0が満たされてい る。 高分子系凝固剤 6は水よリも比重が軽く、 また水と親和性がないた め、 図 5— Cのように水 9 1 0と分離して水面上に浮上し、 切粉や離脱 砥粒 Zは第 1水槽 9 1の底に沈降するため、 簡単に分離することができ る。
そして、 第 1水槽 9 1から高分子系凝固剤 6を第 2水槽 9 2に移せば、 第 2水槽 9 2では高分子系凝固剤 6の凝固点よリ も低い温度の水 9 2 0 が収容されているため、 高分子系凝固剤 6は水 9 2 0の上で凝固する。 したがって、 網などにょリ救い取ることで簡単に回収することができ、 再使用に供することができる。
しかし、 本発明による高分子系凝固剤 6は液状ないしこれに近い性状 であることに限定されない。 すなわち、 クリーム状ないしペース ト状で あってもよい。 この場合には凝固時に膜でなく大きなボリユームの支持 ブロックとなリ、 ワーク 5をしつかリ と接着固定することができる。 こう したクリーム状ないしペース ト状の高分子系凝固剤は主剤 (たと えばシリコーンオイル) に固体粒子からなる粘度調整剤を添加し混練し たものが好適である。 その固体粒子は粉末ことに平均粒径が最大でも 1 0 μ mのもの、 ょリ好適には平均粒径 1 μ m以下さらに好適には平均粒径 0 . 5 μ ηι以下といった微粉末が好適である。
固体粒子の材料は限定はないが、 一般には、 珪藻土で代表される土類 の粉、 米や小麦などの粉、 でんぷん類、 サンゴの粉、 木灰、 紙や繊維を 燃焼した灰、 ホワイ トカーボン、 ゼォライ ト、 フライアッシュなどが好 ましい例として挙げられる。 そのほか次のものを粉末状にしたものも使 用できる。 セラミ ック、 シリ コン、 フェライ ト、 カーボン、 グラフアイ ト、 ガラス、 石、 石育、 プラスチック、 木綿、 木、 パルプ、 紙、 鉄、 銅、 アルミニウムなどの金属やその酸化物など。
たとえば、 珪藻土や米や小麦などの粉、 でんぷん類は微粒子でかつ比 重が軽いため主成分 (たとえばシリ コーンオイル) に均一に分散混合す ることができ分離が起こ リにくいこと、 しかも安価であることから推奨 される。 しかし他のものも混合してすぐに塗着するならば十分に使用可 能である。 前記固体粒子はいくつかの種類のものを混合して使用するこ ともできる。 また、 機械加工後のワーク洗浄時にこれからの分離を促進 するための液状物質、 たとえば界面活性剤を固体粒子のほか微量添加し てもよい。
固体粒子は粘度を增加すると ともに、 凝固時にモルタルやコンク リ一 卜の場合と同じように骨材と して機能し、 添加量にほぼ比例して高分子 系凝固剤は凝固時の強度が増す。 したがって、 固体粒子は前記主成分と してのシリ コーンオイルに少なく とも 5 w t %程度添加することが好ま しい。 しかしあま リ添加量が多いと凝固時の強度は高いものの凝固前の 流動性が悪くなるため、 塗着しにく く なる。 そこで、 上限は 5 0 w t % 未満とすることが好ましい。 一般的には、 シリ コーンオイルと固体粒子 (粉末) の比を ( 9 : 1 ) ~ ( 5 . 1 : 4 . 9 ) の範囲から選択すれば よく、 この固体粒子の配合比率によ リ液に近いもの〜ク リーム状〜ぺー ス ト状に変化する。
こう したク リーム状ないしペース ト状の高分子系凝固剤は単独で、 ま た前記した液状の高分子系凝固剤と併用して使用する。 図 6— Aないし 図 6— Dはその例を示している。 わかリやすくするため、 これら図では 液状の高分子系凝固剤を符号 6 0で表し、 ク リーム状ないしペース ト状 の高分子系凝固剤を符号 6 0 0で表している。
図 6— Aはワーク 5の下面と固定用面 4 0間に液状の高分子系凝固剤 6 0を膜状に介在させ、 ワーク 5の側面 5 1 とこれから所定の距離離れ た固定用面 4 0 との間をつなぐようにク リーム状ないしペース ト状の高 分子系凝固剤 6 0 0を塗着しておリ、 ク リーム状ないしペース ト状の高 分子系凝固剤 6 0 0は断面が三角状に類する形状となっている。 この態 様はワークを研削したリ、 研摩したリする加工に適している。
図 6— Bはク リーム状ないしペース ト状の高分子系凝固剤 6 0 0をヮ ーク 5の側面 5 1 とこれから所定の距離離れた固定用面 4 0 との間をつ なぐだけでなく、 ワーク 5の上面 5 2を覆う よ うに塗着している。 この 態様はワークを薄くスライス切断加工したリするのに適している。 すな わち、 スライス切断加工したときに薄いワーク片は単に下端面の面積分 が固定用面 4 0に接着されるだけでなく、 両端面と上面とがブリ ッジ状 につながった凝固高分子系凝固剤によって保持されることになるからで ある。
図 6— Cではク リーム状ないしペース ト状の高分子系凝固剤 6 0 0を ワーク 5の下面と固定用面 4 0間に塗着し、 さらにワーク 5の側面 5 1 とこれから所定の距離離れた固定用面 4 0 との間をつなぐよ うに塗着し ている。 この態様は切断加工や穴開け加工など貫通系の加工を行なう場 合にも、 ワーク 5の下面と固定用面 4 0間の高分子系凝固剤 6 0 0が抜 き代と して機能するため、 後述する抜き代材を省略できる利点がある。 図 6— Dではクリーム状ないしペース ト状の高分子系凝固剤 6 0 0を ワーク 5の下面と固定用面 4 0間と、 ワーク 5の側面 5 1 と固定用面 4 0との間に塗着し、 さらにワーク 5の上面 5 2を覆うように塗着するこ とでワーク 5全体を包んでいる。 この態様は図 6—Dの効果と図 6— B の効果が得られる利点がある。
クリーム状ないしペース ト状の高分子系凝固剤 6 0 0はまた、 後述す る E型フェライ トに対する加工で代表されるようなワーク 5の一部を加 ェする場合に、 その加工部位の回リの空隙を埋めて加工力による破損を 防止するのにも役立つ。
クリーム状ないしペース ト状の高分子系凝固剤 6, 0 0は刷毛塗リ、 へ ら塗リ、 押出しガンによる押出しなど任意である。
前に述べたように本発明におけるワーク 5は抜き代材を層着している ものを含んでいる。 図 7— Aないし図 7— Cはこの詳細を示している。 抜き代材は符号 5 b として示してぉリ、 工具 2による加工の障害となら ない硬度のもの、 一般にカーボンやグラフアイ 卜の板が用いられる。 こ うした抜き代材 5 bは高分子系凝固剤を介して固定用面 4 0に支持され、 その抜き代材 5 bの上に高分子系凝固剤を介して本来の加工対象物とし てのワーク (ここでは符号 5 a として示した) が支持される。 抜き代材 5 bはワーク 5 aと同等以上の面積を有している。
図 7— Aは液体の高分子系凝固剤 6 0を用いた例を示している。 図 7 —Bは液体の高分子系凝固剤 6 0を抜き代材 5 b と固定用面 4 0の間に 介在させ、 ワーク 5 aを液体の高分子系凝固剤 6 0の塗膜を介して抜き 代材 5 bに配し、 さらにワーク 5 aの周囲 5 1 と抜き代材 5 bまたは固 定用面 4 0をク リーム状ないしペース ト状の高分子系凝固剤 6 0 0で結 んでいる。 図 7— Cはさらにワーク 5 0の上面 5 2をクリーム状ないし ペース ト状の高分子系凝固剤 6 0 0で覆い、 それをワーク周囲 5 1のク リーム状ないしペース ト状の高分子系凝固剤 6 0 0と連結している。
図 8— Aないし図 8— Dは本発明の別の態様すなわちワーク 5を逐次 ひとつの加工機械に付替えて加工するのに好適な例を示している。 この方法はワーク 5を、 直接、 凍結式チャック装置 4の固定用面に固 定するのでなく、 別に治具としてパレッ ト 1 4 aを使用してこれに高分 子系凝固剤 6によリワーク 5を固定し、 そのパレッ ト 1 4 aを固定用面 4 0に定着させる方式でぁリ、 ワーク 5の固定と固定解除をよリ能率的 に行える利点がある。
詳しく説明すると、 複数枚のパレッ ト 1 4 a, 1 4 aを用い、 かつ前 記第 1例ないし第 3例のいずれかの凍結式チヤック装置 4を使用すると ともに、 これとは別に加工機械外部にプリクーラー 1 3を設置する。 パレッ ト 1 4 a, 1 4 aは熱伝導性の良好な材料たとえばアルミニゥ ムないしその合金などによリ板状あるいは周縁部に囲壁を持つ皿状ない しパン状に作られてぉリ、 ワーク 5を複数個配置できる面積を持ってい る。
プリクーラー 1 3は熱絶縁性材料からなる基台 1 3 0に冷却板 1 3 1 を取付け、 冷却板 1 3 1の下側に水などの冷却用の流体の通路を有する コア 1 3 2を密接させた構造を有し、 流体の供給管 1 3 3と戻リ管 1 3 4を第 1例の冷却水供給装置 8あるいは第 3例の循環式冷却装置 1 0と 同じような構造の循環式冷却装置 1 3 aに接続している。
この態様による加工法を初期段階から説明すると、 凍結式チヤック装 置 4において、 パレッ ト固定用媒体として水を使用する場合には、 温度 制御手段 4 dによリ固定用面 4 0の温度を氷の凝固温度よリも少し高い 温度にしておく。 一方、 プリクーラー 1 3においては、 循環式冷却装置 1 3 a を作動して冷却用流体を供給管 1 3 3 と戻リ管 1 3 4を介してコ ァ 1 3 2に循環させ、 冷却板 1 3 1 を高分子系凝固剤の凝固点よ リ も低 い温度たとえば 1〜 5 "Cに保つ。
この状態で図 8— Aの右の図のよ うに、 高分子系凝固剤の凝固点よ リ も高い温度を持つパレッ ト 1 4 aの上面に高分子系凝固剤 6を塗布し、 あるいは単数または複数のワーク 5に高分子系凝固剤 6を塗布し、 ヮー ク 5をパレッ ト 1 4 aの上面に載せる。
このよ うにセッ トされたパレッ ト 1 4 a を前記プリ クーラー 1 3の冷 却板 1 3 1 に載置する。 これによ リ、 パレッ ト 1 4 a を介して高分子系 凝固剤 6がこれの凝固温度よ リ低い温度に冷却されるため、 凍結高分子 系凝固剤 6 ' による接着力でワーク 5はパレツ ト 1 4 a上に強固に固定 される。
このようにしてワーク 5を凍結高分子系凝固剤 6 ' で固定したパレツ ト 1 4 a を前記凍結式チヤック装置 4の固定用面板 4 c上に載置する。 この時までに固定用面板 4 cの固定用面 4 0には水を噴霧等によ リ塗布 しておく。 そしてコン トローラ 7によ リ温度制御手段 4 dを作動し、 固 定用面 4 0温度を水の凝固点以下の所要温度たとえば— 3 ^程度にし、 これを保つ。 これによ リ ワーク 5を凍結高分子系凝固剤 6 ' で固定した パレッ ト 1 4 aは凍結した氷によ リ固定用面板 4 c上に固定される。 これで加工体制が整うので、 前記のように加工液供給手段 3によ リ加 ェ液を工具 2 とワーク 5の加工局部に供給しつつ、 工具 2で所望の加工 を行えばよい。
この場合、 加工液の温度は一 3 °C以下が好ましいが、 本発明では加工 液の使用量が少なくて済み、 しかも、 凍結高分子系凝固剤 6 ' そのもの も断熱性が高いためパレツ ト 1 4 aの温度上昇を抑制できる。 このこと から、 加工液の温度が 0 ^以上であっても、 加工液がワーク 5 とパレツ ト 1 4 aを温める熱量に比べて凍結式チヤック装置 4が固定用面 4 0か ら吸収する熱量がはるかに大であるため、 パ レッ ト 1 4 aが固定用面板 4 c上から離脱することはない。 また、 ワーク 5がセラミ ックスやブラ スチックの場合にはそれ自体も断熱性があるため、 ますますパレツ ト 1 4 aの離脱が防止される。
この間、 別のパレッ ト 1 4 aには前記のよ うに高分子系凝固剤 6が塗 布され、 次のサイクルに加工すべきワーク 5が載せられる。 これが図 8 一 Aの状態である。
そして、 パレッ ト 1 4 aは高分子系凝固剤 6の凝固点よ リ も低い温度 に保たれているプリ クーラー 1 3の冷却板 1 3 1 に載置され、 これによ リワーク 5はパ レッ ト 1 4 aに固定され、 この状態で待機される。 これ が図 8— Bの状態である。
このようにして凍結式チヤック装置 4での加工が終了したときには、 コン トローラ 7によ リ温度制御手段 4 dを昇温側に作動し、 前記した準 備温度 ( 1で) ないしこれよ リ 1 ^程度高い温度に復帰させる。 これに ょ リ加工済みのワーク 5を保持しているパレッ ト 1 4 aは凍結式チヤッ ク装置 4から離脱できる。 この状態が図 8— Cである。
そこで、 固定用面 4 0に水を噴霧し、 プリ クーラー 1 3の冷却板 1 3 1に載置されている次の口ッ トのパレッ ト 1 4 a を固定用面 4 0に載置 し、 コン トローラ 7によ リ温度制御手段 4 dを再び凍結用温度に下降さ せれば、 直ちに次の加工に移ることができ、 また次のロッ トのワークを 高分子系凝固剤を介してパレツ トに載せ、 プリクーラー 1 3に載置する ことでワークを固定状態としておく ことができる。
この方法においては、 ワーク 5が凝固点の高い高分子系凝固剤 6によ リパレツ ト 1 4 aに固定されることから、 プリクーラー 1 3は低能力の ものでよく、 したがって、 装置コス トを大幅に安くすることができ、 ま た、 水を凍結するのでないためパレツ 卜の下面に不凍液を塗布するとい つた作業も全く必要とせず、 作業も容易である。
さらに、 凍結式チヤック装置 4では水を凍結媒体として使用していて も制御温度勾配を 5 ^程度以内の狭い範囲にすることができるため、 凍 結式チヤック装置 4に対するワークの着脱時間を 1 0〜 1 5秒といった きわめて短時間のものにすることができる。
さらに、 ワーク 5は凍結式チヤック装置 4から取リ外された状態でも 凝固点の高い凍結高分子系凝固剤 6 ' ょリパレッ ト 1 4 aに固定された 状態を保つから、 振動などによってパレッ トから落下したリせず、 搬送 などの取扱いが容易である。
そして、 あとはワーク 5の洗浄を行なえばよく、 この時に水の比重よ リも軽く、 水と親和性がなくかつ凝固点が水のそれよリも高いという性 質を利用して同時に高分子系凝固剤 6の回収も行うことができる。
すなわち、 その洗浄 · 回収手段 9 ' としては、 たとえば図 8— Dのよ うに、 内部に水 (溶剤含有しているものを含む) 9 1 0を収容し、 ヒー タ等の加熱手段 9 1 2によリ前記水を高分子系凝固剤の凝固点よリも高 い温度に保持するようにした第 1水槽 9 1 と、 内部に水 9 2 0を収容し. これを冷却機構 9 2 2によリ常時高分子系凝固剤の凝固点よリも低い温 度に保つようにした第 2水槽 9 2を備え、 第 1水槽 9 1の水面よリ上位 に取出し部 9 1 4を設けたものが挙げられる。
この手段を用いた場合には、 凍結式チヤック装置 4から取リ外したパ レッ ト 1 4 aを第 1水槽 9 1に挿入する。 こうすれば、 水 9 1 0が高分 子系凝固剤の凝固点よリも高い温度であるため、 ワーク 5の固定が瞬時 に解除され、 ワーク 5は水 9 1 0によって洗浄され、 切粉や脱落砥粒な どは比重が大きいため槽底に沈降し、 排出部 9 1 5から取リ出される。 そして洗浄後しばらく放置すると、 水 9 1 0と高分子系凝固剤 6は分離 し、 高分子系凝固剤 6は水面上に厚膜となって浮上する。
この時に取出し部 9 1 4の弁を開放すれば、 高分子系凝固剤 6は溶解 していて流動性があるため第 2水槽 9 2に流入するが、 この第 2水槽 9 2の水 9 2 0は高分子系凝固剤の凝固点よリも低い温度となっているた め、 高分子系凝固剤 6は水 9 2 0の上で瞬時に凍結する。 そこで、 あと はこの凍結した高分子系凝固剤 6 ' を網や柄杓などの適宜の取出し手段 9 3によリ梳ぃ取リ、 再使用のための容器類に収容すればよい。
洗浄 ·回収手段は内部にコンベアなどの搬送手段を有してもよいこと はもちろんである。
なお、 上記説明では高分子系凝固剤 6として液体状のものを用いてい るが、 これはあくまでも例でぁリ、 図 6— A〜図 6— Dおよぴ図 7— A 〜図 7— Cに示したような液状のものとクリーム状ないしペース ト状の ものの併用あるいはクリーム状ないしペース ト状のもののみの使用もも ちろん含まれる。 これらの場合、 図 6— A〜図 6— Dおよび図 7— A ~ 図 7— Cの固定用面 4 0はパレッ ト 1 4 a と読み替えられる。
凍結式チヤック装置 4のパレツ ト固定用媒体と しては水でなく高分子 系凝固剤 6を使用してもよい。 この場合には凍結式チヤック装置 4の固 定用面板 4 cに高分子系凝固剤 6が塗布され、 パレッ ト 1 4 aはその上 に配され、 温度制御手段 4 dによ リ高分子系凝固剤 6の凝固温度よ リ も 低い温度に冷却され、 それによる高分子系凝固剤 6の凝固にょリパレツ ト 1 4 aは固定される。
なお、 パレツ トを使用する態様の場合、 凍結式チヤック装置 4の固定 用面板 4 cにさらに真空チヤック機構を有していてもよい。 これによれ ば、 ょ リ確実にパレッ ト 1 4を固定用面板 4 cに固定し、 また瞬時に固 定解除することができる。
図 9は本発明においてワークを逐次加工するのに好適な他の態様を示 している。 この態様は、 パレッ トを使用せず、 凍結式チャック装置 4そ のものを付替式の治具と して使用したもので、 ワーク 5の固定と固定解 除をよ リ能率的にしかも安価に行なえる利点がある。
この場合には、 凍結式チャック装置 4 と して図 4一 A, 図 4— Bに示 すような流体循環式のものを少なく と も 2台以上使用し、 加工装置 Aの 近傍と加工装置外方には、 図 4— A, 図 4一 Bに示すよ うな構造を備え た第 1 の循環式冷却装置 1 0 a と第 2の循環式冷却装置 1 0 bをそれぞ れ配置する。
この方法の場合には、 第 1の凍結式チャック装置 4を機外に配し、 固 定用面 4 0に単数または複数のワーク 5を高分子系凝固剤 6を介して配 置する。 この状態で第 1の凍結式チヤック装置 4の導入管 4 5 6と排出管 5 6 7は機外の第 2の循環式冷却装置 1 0 bの供給管 4 5 0 , 戻リ管 4 5 1 と迅速流体継手 4 5 8, 4 5 9と瞬時接続される。 そして第 2の循環式 冷却装置 1 0 bを作動して冷却用の流体を凍結式チヤック装置 4の通路 に循環させることにょリ高分子系凝固剤 6を凝固点以下の温度たとえば 2〜5 の範囲内の温度に冷却する。 これでワーク 5は凝固し、 第 1の 凍結式チヤック装置 4の固定用面 4 0にしつかリ と接着される。
次に、 第 1の凍結式チヤック装置 4の第 2の循環式冷却装置 1 0 bに 対する接続を切離し、 加工機械 Aのワークテーブル 1上に移し、 公知の 機械的チヤック機構にょリ固定する。 それとともに導入管 4 5 6と排出 管 5 6 7を第 1の循環式冷却装置 1 0 aの供給管 4 5 0, 戻リ管 4 5 1 と迅速流体継手 4 5 8 , 4 5 9と瞬時接続させる。 この作業は簡単で短 時間に行なえるため、 ワーク 5は固定が解除されない。
この状態で加工装置 Aに備わっている図示しない工具によリワークに 対する所望の加工を行なう。 そしてこの加工の間に、 次に加工すべきヮ —ク 5は、 機外に準備されている第 2の凍結式チヤック装置 4の固定用 面 4 0に高分子系凝固剤 6を介して配置される。 そしてその第 2の凍結 式チヤック装置 4は機外の第 2の循環式冷却装置 1 0 bの供給管 4 5 0, 戻リ管 4 5 1 と迅速流体継手 4 5 8, 4 5 9と瞬時接続され、 これによ る高分子系凝固剤 6の凝固でワークは固定用面 4 0にしつかリと接着さ れ、 この状態で待機される。 図 9はこの状態を示している。
そうして加工機械 Aでのワークに対する加工が終了したならば、 ヮー クテーブル上の第 1の凍結式チヤック装置 4と第 1の循環式冷却装置 1 0 a との接続を解除し、 第 1の凍結式チヤック装置 4を取出し . 洗浄ェ 程を行なう場所に移送する一方、 機外にある第 2の凍結式チヤック装置 4と第 2の循環式冷却装置 1 0 bとの接続を解き、 第 2の凍結式チヤッ ク装置 4をワークテーブル 1に配置して公知の機械的チヤック機構によ リ固定すると ともに、 第 2の凍結式チヤック装置 4を迅速流体継手 4 5 8, 4 5 9で第 1の循環式冷却装置 1 0 a と接続する。 これで直ちに次 のワークに対する加工に移ることができる。
以下、 上記操作を繰リ返すことによ リ多数のワークを凍結式固定方法 の利点を生かしつつ能率よく逐次加工することができる。 この図 9のヮ ークの固定用面 40に対する配置は、 図 5— A、 図 6— A〜図 6— Dお よび図 7— A〜図 7— Cに示される態様から適宜選択して行なえばよい。 実 施 例
次に本発明の実施例を示す。
実施例 1
高分子系凝固剤と して、 主成分が環状ポリ ジメチルシロキサンの低分 子シリ コーンオイルを使用した。
この高分子系凝固剤の特性は、 無色透明の液体で、 粘度 ( 2 5¾) が 2. 4cSt(m2/S)、 凝固点 1 7ΐ:、 屈折率 (2 5°C) が 1. 3 94、 表 面張力 1 9. 0 U.90}dyn/cm{MN/cm}、 比重 0. 9 5 ( 25 ^) である。 そしてこの高分子系凝固剤のチヤックカは、 固定用面上とワークの温 度が 5で、 チャック材質 : 銅、 ワーク材質 : 超硬合金の条件において、 垂直方向 1 1 ~ 1 5 k gZ c m2、 せん断方向 8〜 1 2 k g Z c m2であ つた。 したがって、 この高分子系凝固剤によるワーク固定温度は、 5^ ないしそれよ リ適度に低い温度範囲に設定すればよいことがわかる。
1)上記高分子系凝固剤を使用し、 凍結式チヤック装置と して図 1に示す ものを使用してマイク口波誘電体セラミ ックス素子のスライス加工を行 つた。
2)凍結式チヤック装置の固定用面板は銅製で、 300 X 150mmである。
3)ワークは、 材質: PZTチタン酸パリ ウム、 寸法は図 1 0— Aの表示に従 う と 50(w) X50(L) X 2(t)mmであリ、 これを 5(w) X 5(L) X 2(t)mniにした。 加工機械と してはスライシングマシンを使用し、 加工条件は、 工具: レジノィ ドボンドダイヤモン ド砥石(粒度 #600)、 工具寸法:外径 100mm、 厚み 0.4mm、 工具送リ速度: 500匪/ min、 工具回転数: 5000rpm、 加工方向: ダウンカッ トと した。
4)加工に先立って、 固定用面板の固定用面の温度を 20°C程度に保ち、 こ の状態で固定用面に前記高分子系凝固剤を約 2 μπιの厚さに塗布し、 その 上に上記ワークを置き、 凍結式チヤック装置にプラス電流を通電してチ ャック用面を 1 に下降し、 この状態を保った。 これによリ高分子系凝 固剤は凝固し、 ワークは不動に固定された。
5)加工に際しては加工液供給手段と して lmm径のニー ドルノズルを用い、 これから約 3 に冷却した研削液を約 150c c/minでワークと工具の接触す る加工部位に工具進行方向の前方から直接噴射した。
6)この結果、 高分子系凝固剤は溶解せず、 ワークは安定した固定状態に 保たれ、 スライスされた切断面にはクラックゃチッビングが全く発生せ ず、 きれいなせん断面が得られた。 加工後、 固定用面の温度を 20Tに上昇させてワークを取出し、 チヤッ ク用面上から高分子系凝固剤と切粉や脱落砥粒を流下させ、 水温を 20 に保った第 1水槽に装入した。 これによ リ高分子系凝固剤は分離浮上し、 水温を 10^に保った隣接する第 2水槽に注入したところ高分子系凝固剤 は凝固し、 ほとんど全量が回収された。
7)比較のため、 従来法によって上記加工を行った。 この場合は、 固定用 面に水を噴霧し、 その上に上記ワークを置き、 凍結式チャック装置にプ ラス電流を通電して固定用面を- 10°Cにし、 これを加工中保持した。 こ れによ リ水は凍結しワークは固定された。
加工開始にあたって、 上記条件で研削液を噴射させたところ、 氷が溶 解して被加工物の固定が解除されてしまい、 加工はできなかった。 そこ で、 約 5%の水分を含むエアミス トを圧力 5kg/cm2で工具(砥石)による切 断加工部と 180度変位した部位に噴射し、 切断加工部に約- 10°Cに冷却し た空気を直接噴射した。 これによれば氷は溶解しなかったが、 スライス されたワークの切断面の下側に研削熱によるクラックが発生し、 指の爪 で引搔く と剥落してしまい、 不良品となってしまった。 実施例 2
1)本発明によ リアルミ二ゥムとブラスチック材との複合材を切断加工し た。
材質はアルミニウム A2011とエポキシ樹脂との複合材、 寸法は、 図 1 0— Βの表示に従う と、 上下のアルミニウムが 300 (W) X 200 (L) X 2(t)mm、 中間のプラスチックが 300 (W) x 200 (L) X 0.1(t)mm、 加工後の寸法は 300 (Ψ) X6(L) X4.1(t)mmである。
加工機械は精密スライシングマシン、 使用工具は直径 100龍円盤に、 長さ 10ππη、 厚み lmmのダイヤモンドツール 3本を取リ付けたもの、 工具回 転速度は 6000rpm、 工具送リ速度は 120mm/min、 加工方向ダウンカッ トと した。
高分子系凝固剤は実施例 1と同じものを使用し、 凍結式チャック装置 は図 3に示す流体による冷却/昇温タイプのものを使用した。
3)加工に当って、 循環式温水供給装置から凍結式チヤック装置のコアに 20での温水を供給し、 この状態で固定用面に高分子系凝固剤を約 2 の 厚さに塗布し、 その上に上記ワークを置き、 液体回路を切換え、 循環式 冷却装置からコアに冷水を供給して、 固定用面を 2 °Cに下降し、 この状 態を保った。 これによ リ高分子系凝固剤は凝固し、 ワークは不動に固定 された。
4)加工液と しては約- 5でに冷却した水溶性加工液液(不凍液含有)を 150c c/m inで圧送しつつこれにエアクーラで約- 10°Cに冷却された 280 β /min の冷却エアと混合したものを用い、 これを 4mm径の二一 ドルノズルを用 いて約 5kg/cm2の圧力で工具進行方向の前方から加工ポィン トに直接噴 射した。
5)この結果、 高分子系凝固剤は溶解せず、 ワークは安定した固定状態に 保たれ、 またワークの中間に挟まれているプラスチック材は全く溶け出 さず、 切断されたワークの切断面は表面粗さが 0.2s以下の鏡面であった。 また、 加工中に加工液がワークの上に凍結積層することもなく、 工具の 動きは円滑で、 切断品の寸法精度は良好であった。 6)比較のため、 実施例 1と同じ条件で水を凍結してワークを固定し、 上 記加工条件と加工液条件で切断を行ったところ、 加工中にワークがチヤ ックから外れてしまい、 加工不可能となった。 これは加工液が 0°C以下 の低温であっても、 水と親和性の高い不凍液を混合しているため、 ヮー クを固定用面に接着している氷が加工液によって溶かされてしまったか らである。
また、 加工可能時期においても、 加工液と空気中の水分が凍結してヮ 一クに積層し、 これが工具のフランジに接触し、 それによ リエ具の回転 運動が不安定となリ、 切断精度が低下した。 実施例 3
1 )本発明にょ リ薄肉中足付き E型フェライ トコアのギヤップ研削加工を 行った。
該ワークは、 図 1 1一 Aに示すよ うな形状で、 寸法は、 図 1 1一 Bの 表示に従う と、 高さ hが 8 mni、 全幅 が 1 5 mm、 左右の足の幅 W iが 2 m m、 厚さ t !カ 3 mm、 中足の幅 W 2が 7 mm、 厚さ t 2力 0 . 6 mmである。 こ のワークに中足を高さ h : 湯 mmから
Figure imgf000041_0001
リ、 ギャップ gを形成す る加工を行い図 1 1 — Dと図 1 1一 Eに示す形状の製品とするのである c
2)加工機械はク リープ機能付きの平面研削盤を使用し、 工具と してはレ ジノィ ドボンドダイヤモン ド研削砥石(粒度 #400)、 2 0 Ο πηη φを使用し, 加工条件は、 砥石回転速度: 2 7 0 0 r pm、 砥石送リ速度: 6 0 0 mm/m i n , 加工モー ド:ク リープ加工、 ダウンカッ ト と した。
2)高分子系凝固剤は実施例 1 と同じものを使用し、 凍結式チヤック装置 は図 3に示す流体による冷却/昇温タイプのものを使用した。
3)加工に当っては、 固定用面板の固定用面の温度を 2 0 程度に保ち、 この状態で固定用面に高分子系凝固剤を約 3 μ πιの厚さに塗布し、 その 上に上記ワークを図 1 2— Αのように相互に密接させて 2 0枚並べ、 か つ、 両側の足と中足の空隙にも高分子系凝固剤を満たし、 凍結式チヤッ ク装置を作動させてチャック用面を 1 ^に下降し、 この状態を保った。 これによ リ高分子系凝固剤は凝固してワークは不動に固定され、 また両 側の足と中足の空隙が凝固した高分子系凝固剤で埋められ、 中足が補強 された。
4)加工に際しては、 加工液供給手段と して lmm径の二一ドルノズルを 2本 用い、 これらから約 3 に冷却した研削液を約 1 5 0 c c /m i iiで砥石進行 方向前方から研削ボイントに直接噴射した。
5)この結果、 高分子系凝固剤は溶解せず、 ワークは安定した固定状態に 保たれ、 かつ中足と両側足のギヤップを埋めている高分子系凝固剤も凝 固せず、 これによ リ薄い中足はしつかリ と補強された状態が保たれ、 砥 石による切込み時の加工抵抗にも十分耐え、 全枚数が破損されることな く精度よく ギヤップ加工を行えた。
6)比較のため、 実施例 1, 2 と同じよ うに氷の凍結にょ リ ワークを固定 用面に固定し、 両側の足と中足の空隙を氷で埋め、 上記条件でギャップ 加工を行ったが、 この場合には、 加工中に加工液によって氷が溶け、 中 足が折れてしまい、 さらにワークそのものの固定が解除されてしまい、 加工不能となった。
実施例 4 υ本発明のパレッ トを使用する態様を用いて切断加工を行った。
高分子系凝固剤と しては実施例 1に記載したものを使用した。 パレツ トと しては、 材質:アルミニゥム合金、 寸法 1 2 0 (W) X 1 3 0 (L) X 1 0 ( t ) mmのものを 2枚使用した。
凍結式チャック装置と しては、 図 1 に示すものを使用した。 プリ ク一 ラーと しては、 冷却板寸法 1 00 (W) x i l O (L) x 5 0 ( t ) nunを有す る冷却水循環式のものを使用した。 ワークは材質: P Z Tチタン酸パリ ゥム、 寸法 5 0 (W) X 5 0 (L) X 1 (t)mmを使用した。
2)加工に当っては、 凍結式チヤック装置のチヤック面の準備温度を 1 °C に設定してスタンバイさせ、 プリ クーラーの冷却板上面温度を 2〜 3 ¾ に保ってスタンバイ させた。
常温に保たれたパレッ トに高分子系凝固剤を約 2 /xm厚に塗布し、 ヮ ークを載せた。 この状態で当該パレッ トをプリ クーラーに載せた。 これ によ リ高分子系凝固剤は凝固し、 各ワークは強固に固定された状態にな つた。
このパレッ トを前記準備温度の固定用面上に水を介して載せ、 凍結式 チヤック装置を作動して固定用面を一 3 °Cに下降させ、 この温度を維持 させた。 これによ リパレツ トは固定用面上に固定された。
加工液と しては約一 5 に冷却した水溶性加工液液(不凍液含有)を 1 5 0 c c /min圧送しつつこれにエアクーラで約一 1 0 °Cに冷却された 2 8 0 β /minの冷却エアと混合したものを用い、 これを 4 mm径のニードル ノズルを用いて約 5 kg/cm2の圧力で工具前方から加工ボイン トに直接噴 射した。 加工中、 ワークはパレッ トに強固に固定された状態を保ち、 またパレ ッ トもチャック面上にしっかリ と固定された状態を保ち、 したがって、 切断面はチッビングはなく きれいな切断面が得られた。
3)—方、 前記加工中、 次のロッ トのワークを前記条件によ リパレツ トに 配し、 前記温度のプリ クーラーに載せて高分子系凝固剤の凝固によ リ固 定させておいた。
そして前記加工の完了と同時に凍結式チヤック装置のチヤック面の温 度を 2 °Cに上昇させ、 水を溶解してパレツ トの固定を解除した。
この後チヤック面に水を噴霧し、 再びプリ クーラーに載せておいたパ レッ トを固定用面に載せ、 固定用面を一 3 °Cに下降させ、 この温度を維 持させた。 これによ リパレッ トは固定用面上に固定され、 次の加工に移 つた。
4)この実施例は、 次の口ッ トのワークが高分子系凝固剤によ リ 0 ¾を越 える温度でパレツ トに固定されておリ、 しかも凍結式チャック装置にお けるパレッ ト固定と解除の温度差が 5 X程度であるため、 加工機械での ワークの着脱を 1 0秒といったきわめて短時間にて行う ことができた。
5)そして、 凍結式チャック装置からパレッ トを取リ外しても、 この時に は温度が高分子系凝固剤の凝固温度以下であるため、 ワークはパレツ ト と一体になってぉリ、 ハン ドリ ングが容易であった。 後処理と して、 ノ、。 レツ トに固定されたまま 20 °Cの温水を収容した第 1水槽に挿入し、 これ によ リ ワークを洗浄すると と もには高分子系凝固剤を分離浮上させ、 こ れを 10での水を収容した第 2水槽に移した。 これによ リ高分子系凝固剤 は凍結され円滑に回収できた。 実施例 5
1)本発明によ リサマリ ュームコバル ト材をマルチ切断砥石でスライス加 ェした。 寸法は 50 (L)X 2 5 (W)x 7 (t)minであリ、 これを 5 0 X 1.5 (W)x 7 (t)nnnに切断した。 加工機械はスライシングマシンを使用し、 ェ 具と して電着ダイヤモンド砥石 (粒度 # 28 0 ) の 1 0枚マルチ砥石、 工具寸法は外径 1 00mm、 厚み 0. 4 mm、 砥石ピッチ 2 mmを使用 した。 加工条件は、 砥石回転数 : 3000 r p m、 工具送リ速度 20m m/m i n、 加工法ェ : ダウンカツ 卜と した。
2) 凍結式チヤック装置と しては固定用面が 240 X 5 Ommの図 1に 示すものを使用した。
加工に当たっては、 固定用面の温度を 20 °C程度に保ち、 この状態で 図 1 3— Aのよ うに、 固定用面に前記実施例 1の液状高分子系凝固剤を 塗布して厚さ 5 mmの力一ボンからなる抜き代材を配し、 この抜き代材 の上にペース ト状の高分子系凝固剤を約 0. 1 mm塗布し、 その上にヮ ークを置き、 さらに前記ペース ト状の高分子系凝固剤をワークの側面と 上面に塗布した。
ペース ト状の高分子系凝固剤と しては、 実施例 1の低分子シリ コーン オイルに平均粒径が 0. 0 1 μιηの珪藻土を 3 0 w t %添加し、 混練し たもの (第 1タイプ) と、 実施例 1の低分子シリ コ一ンオイルに小麦粉 を 3 5 w t %添加して混練したもの (第 2タイプ) を使用した。
3) この状態で凍結式チヤック装置にプラス電流を通電して固定用面を 1°Cに降下させ、 この状態を保った。 これによ リ第 1タイプと第 2タイ プの各高分子系凝固剤は凝固し、 ワークは高分子系凝固剤で包まれた状 態で不動に固定された。
加工に際しては、 約 3 に冷却した研削液を約 1 5 β Z ni i nの流量 でワークと工具の接触する加工部位に直接噴射した。
4 ) この結果、 スライス加工中にワークは 1 . 5 m mという薄い厚さで 切断されたにもかかわらず、 固定用面から一切剥がれて飛散することが なく、 安定した固定状態に保たれた。
比較のため、 第 1実施例の液体高分子系凝固剤だけを使用してワーク を固定して加工を行なったところ、 ワーク数の約 5 %が加工中に固定用 面から剥がれて飛散してしまった。
このように本実施例で好結果が得られたのは、 微粉末を配合したベー ス ト状の高分子系凝固剤のため、 凝固高分子系凝固剤からなる接着層の 強度が高くなったこと、 その凝固高分子系凝固剤からなるボリユームの 大きな接着層が図 1 3— Bと図 1 3— Cのようにスライス加工中ないし 加工されたワークの長手方向両端部を支えつつ固定用面に設着され、 し かも長手方向両端部の接着層がワークの上面の凝固高分子系凝固剤上層 と連結してプリ ッジを形成していることによると考えられる。 産業上の利用可能性
本発明の凍結チャック式機械加工法は、 形状、 材質を問わずあらゆる ワークの機械加工を行なう場合に適用することができる。

Claims

言青 求 の 範 囲
1 . 固定用面と該固定用面を温度制御する手段を備えた凍結式チヤック 装置によ リ ワークを固定して機械加工する方法において、 凝固点が水の それよ リ も高い高分子系凝固剤をすく なく と もワーク と固定用面の間に 介在させ、 固定用面を冷却することにょ リ高分子系凝固剤を接着媒体と してワークを固定することを特徴とする凍結チヤック式機械加工法。
2 . ワークを支持するパレッ ト と、 固定用面と該固定用面を温度制御す る手段を備えた凍結式チヤック装置とを使用し、 ワークをパレッ トに固 定しそのパレツ トを凍結用チヤック装置に固定してワークを機械加工す る方法であって、 凝固点が水のそれよ リ も高い高分子系凝固剤を少なく ともワークとパレツ トの間に介在させ、 パレッ トを冷却することによ リ 高分子系凝固剤を接着媒体と してワークを固定するよ うにしたことを特 徴とする凍結チヤック式機械加工法。
3 . ワークは抜き代材を加工時に層着しているものを含む請求範囲 1 ま たは 2に記載の凍結チヤック式機械加工法。
4 . 高分子系凝固剤と してシリ コーンオイル又はこれを主成分とする液 状物を用いる請求範囲 1ないし 3のいずれかに記載の凍結チヤック式機 械加工法。
5 . 高分子系凝固剤と してシリ コーンオイルに粘度調整剤を混入したク リーム状物ないしペース ト状物を用いる請求範囲 1ないし 3のいずれか に記載の凍結チヤック式機械加工法。
6 . 高分子系凝固剤と して、 シリ コーンオイルまたはシリ コーンオイル を主成分とする液状物とシリ コーンオイルに粘度調整剤を混入したク リ ーム状物ないしペース ト状物とを併用する請求範囲 1 ないし請求範囲 3 のいずれかに記載の凍結チヤック式機械加工法。
7 . シリ コーンオイルに粘度調整剤を混入したク リーム状物ないしべ一 ス ト状物をワークの周囲と固定用面をつなぐよ うに塗着することを含む 請求範囲 5または請求範囲 6に記載の凍結チヤック式機械加工法。
8 . シリ コーンオイルに粘度調整剤を混入したク リーム状物ないしぺ一 ス ト状物をワークの周囲および上面と固定用面をつなぐように塗着する ことを含む請求範囲 5または請求範囲 6に記載の凍結チヤック式機械加 工法。
9 . シリ コーンオイルが凝固点が常温に近い低分子シリ コーンオイルで ある請求範囲 4ないし請求範囲 8のいずれかに記載の凍結チヤック式機 械加工法。
1 0 . 固定用面と該固定用面を温度制御するための冷却用流体の通路を 備えた少なく とも第 1 と第 2の凍結式チャック装置を用意する一方、 加 ェ機械の近傍と加工機械外の位置には冷却用流体を供給する第 1 と第 2 の循環式冷却装置を配し、 次の工程を逐次繰リ返すことを特徴とする請 求範囲 1、 3ないし 9のいずれに記載の凍結チヤック式機械加工法。 a . 第 1の凍結式チヤック装置の固定用面上に高分子系凝固剤を介して ワークを配し、 第 1の凍結式チヤック装置を加工機械外位置にある第 2の循環式冷却装置と接続して高分子系凝固剤を凝固点以下の温度に 冷却することにょ リ高分子系凝固剤を接着媒体と してワークを第 1の 凍結式チヤック装置に固定する。 b . ワークを固定した前記第 1 の凍結式チヤック装置を第 2の循環式冷 却装置と切離し、 加工機械のテーブル上に移して機械的に固定すると ともに、 第 1の循環式冷却装置と接続して高分子系凝固剤を凝固点以 下の温度に維持しながら機械加工を行う D
c . 前記機械加工を行っている間に、 次に加工すべきワークを第 2の凍 結式チヤック装置の固定用面上に高分子系凝固剤を介して配置し、 該 第 2の凍結式チヤック装置を加工機械外位置にある第 2の循環式冷却 装置と接続して高分子系凝固剤を凝固点以下の温度に冷却することに よ リ高分子系凝固剤を接着媒体と してワークを第 2の凍結式チヤック 装置に固定しておく。
d . 前記機械加工後、 第 1の凍結式チャック装置を第 1の循環式冷却装 置と切離して加工機械のテーブル上から除去する一方、 第 2の凍結式 チャック装置を第 2の循環式冷却給装置と切離して加工機械のテープ ル上に移して機械的に固定し、 第 1 の循環式冷却装置と接続すること で高分子系凝固剤を凝固点以下の温度に維持しながら次の機械加工を 行う。
1 1 . 加工機械上に固定用面と該固定用面を温度制御する手段を備えた 凍結式チヤック装置を配し、 加工機械から外れた位置にはプリ クーラー を配し、 さらに複数枚のパレッ トを使用し、 次の工程を逐次繰リ返すこ とを特徴とする請求範囲 2ないし 9のいずれかに記載の凍結チヤック式 機械加工法。
a . 第 1 のパレツ ト上に高分子系凝固剤を介してワークを配し、 前記第 1のパレッ トを高分子系凝固剤の凝固点以下の温度に保持した前記プ リ クーラーに載せ、 それによ リ高分子系凝固剤を接着媒体と してヮ一 クを第 1のパレツ トに固定する。
b . ワークを固定した前記第 1のパレツ トをプリ クーラーから取外し、 凍結式チヤック装置の固定用面に載せて固定して機械加工を行う。 c . 前記機械加工を行っている間に、 次に加工すべきワークを高分子系 凝固剤を介して第 2のパレッ トに載せ、 該第 2のパレツ トをプリ クー ラーに載せて冷却し高分子系凝固剤を接着媒体と してワークを固定し ておく。
d . 前記機械加工後、 凍結式チャック装置上の第 1のパレッ トの固定を 解除して移動する一方、 第 2のパレツ トをプリ クーラーから凍結式チ ャック装置の固定用面に載せて固定する。
PCT/JP1996/002282 1995-08-17 1996-08-12 Procede d'usinage avec immobilisation de piece a usiner par congelation WO1997006920A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/836,141 US6073451A (en) 1995-08-17 1996-08-12 Freezing chuck type machining method
DE69621004T DE69621004T2 (de) 1995-08-17 1996-08-12 Bearbeitungsverfahren mit werkstückhalterung durch einfrieren
JP9507480A JP2992770B2 (ja) 1995-08-17 1996-08-12 凍結チャック式機械加工法及び凍結チャック式機械加工法用ワーク固定装置
EP96946237A EP0811457B1 (en) 1995-08-17 1996-08-12 Freeze chuck type machining method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23202795 1995-08-17
JP7/232027 1995-08-17

Publications (1)

Publication Number Publication Date
WO1997006920A1 true WO1997006920A1 (fr) 1997-02-27

Family

ID=16932825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002282 WO1997006920A1 (fr) 1995-08-17 1996-08-12 Procede d'usinage avec immobilisation de piece a usiner par congelation

Country Status (5)

Country Link
US (1) US6073451A (ja)
EP (1) EP0811457B1 (ja)
KR (1) KR100387952B1 (ja)
DE (1) DE69621004T2 (ja)
WO (1) WO1997006920A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049117A (ja) * 2011-08-31 2013-03-14 Ricoh Co Ltd 加工装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2279213A1 (en) * 1997-12-02 1999-06-10 Hoya Healthcare Corporation Intraocular lenses and process for producing molded-in type intraocular lenses
JP3894526B2 (ja) * 1998-07-06 2007-03-22 株式会社ディスコ 切削装置
FR2789187B1 (fr) 1998-11-19 2001-11-30 Cirtes Ct D Ingenierie De Rech Procede de realisation de pieces mecaniques, en particulier de prototypes, par decomposition en strates, strates elementaires obtenues selon le procede et pieces mecaniques ainsi obtenues
FR2789188B1 (fr) 1998-11-19 2001-11-30 Cirtes Ct D Ingenierie De Rech Procede de realisation de pieces mecaniques, en particulier de prototypes, par decomposition en strates avec retournement, strates elementaires obtenues selon le procede et pieces mecaniques ainsi obtenues
FR2809040B1 (fr) * 2000-05-15 2002-10-18 Cirtes Ct D Ingenierie De Rech Structure d'etau pour le positionnement et le maintien de pieces en vue de leur usinage
FR2808896B1 (fr) 2000-05-15 2003-05-09 Cirtes Ct D Ingenierie De Rech Dispositif pour la realisation de plaques destinees a un procede de prototypage rapide, procede d'usinage et d'assemblage desdites plaques et pieces prototypes ainsi obtenues
JP4000835B2 (ja) * 2001-11-22 2007-10-31 株式会社デンソー セラミック積層体の製造方法
US7840443B2 (en) * 2001-12-27 2010-11-23 Proto Labs, Inc. Automated quoting of CNC machined custom molds and/or custom parts
GB2387799B (en) * 2002-04-22 2005-07-13 Rolls Royce Plc Method or manufacturing thin wall isogrid casings
CN100535071C (zh) * 2002-08-07 2009-09-02 宾夕法尼亚州研究基金会 用于将工件粘接在制造夹具上并且使之松解的系统和方法
JP2004160635A (ja) * 2002-09-27 2004-06-10 Denso Corp 機械加工法
FR2845492B1 (fr) 2002-10-07 2004-11-26 Cirtes Src Piece mecanique avec au moins un circuit de transport de fluide et son procede de conception par strates
AU2003214352A1 (en) 2003-02-06 2004-09-28 Cirtes Src Method of optimising the joints between layers in modelling or prototyping involving layer decomposition, and parts thus obtained
US20050042881A1 (en) * 2003-05-12 2005-02-24 Tokyo Electron Limited Processing apparatus
US20050269022A1 (en) * 2004-06-08 2005-12-08 Denso Corporation Fusion/coagulation work fixing agent and machining method using the same
US7296421B2 (en) * 2005-08-05 2007-11-20 Eminent Supply Corporation Protecting method of article
US7524390B2 (en) * 2006-03-27 2009-04-28 The Penn State Research Foundation Fixture and method of holding and debonding a workpiece with the fixture
US20100212331A1 (en) * 2006-07-21 2010-08-26 The Curators Of The University Of Missouri Cryopreservation method and device
US7836573B2 (en) * 2006-10-25 2010-11-23 Proto Labs, Inc. Method of machining a part
US9869392B2 (en) 2011-10-20 2018-01-16 Lam Research Corporation Edge seal for lower electrode assembly
US9859142B2 (en) 2011-10-20 2018-01-02 Lam Research Corporation Edge seal for lower electrode assembly
ITAR20120024A1 (it) * 2012-07-24 2014-01-25 Simone Nardis Adduttore d'acqua mobile, finalizzato alla distribuzione; adatto ad essere applicato a torni paralleli tradizionali, adattati a funzionare da diamantatrice a ghiaccio per catene, nell'ambito dell'industria orafa o a macchine utenzili specifiche.
US10090211B2 (en) 2013-12-26 2018-10-02 Lam Research Corporation Edge seal for lower electrode assembly
KR101626553B1 (ko) 2014-10-29 2016-06-01 서울과학기술대학교 산학협력단 연성 피가공물의 동결식 가공장치
DE102015113609A1 (de) 2015-08-18 2017-02-23 Heckert Gmbh Verfahren und Werkzeugmaschine zur Präzisionsbearbeitung von Werkstücken
CN112824019A (zh) * 2019-11-20 2021-05-21 温州豪德盛企业有限公司 绝缘梳形撑条专用双交换冰冻工作台
CN111266897A (zh) * 2020-02-27 2020-06-12 东莞长盈精密技术有限公司 冷冻定位装置和冷冻定位方法
CN111230548A (zh) * 2020-02-27 2020-06-05 东莞长盈精密技术有限公司 冰冻定位装置和冰冻定位方法
CN115122123B (zh) * 2021-03-25 2025-03-14 严沛熙 工件保持装置及方法
CN116117657A (zh) * 2022-12-07 2023-05-16 中国航发动力股份有限公司 一种无磁性金属薄壁平板零件的加工方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252945A (ja) * 1986-04-25 1987-11-04 Mitsubishi Heavy Ind Ltd 被加工材の仮止め着脱方法
JPH0631567A (ja) * 1992-07-10 1994-02-08 Nikko Kikai Kk 被工作物の固定方法及び固定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD107228A1 (ja) * 1973-10-05 1974-07-20
US4091580A (en) * 1977-06-29 1978-05-30 Timex Corporation Process for holding and cutting sheet glass
DE3203868C1 (de) * 1982-02-05 1983-10-13 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verfahren zum Abstuetzen eines durch Schweissen nachzubearbeitenden oder zu reparierenden Bauteils sowie eine fuer dieses Verfahren geeignete Abstuetzeinrichtung
EP0100648A3 (en) * 1982-07-29 1985-08-07 Yoshiaki Nagaura Holding a workpiece
US4463927A (en) * 1983-02-24 1984-08-07 The United States Of America As Represented By The United States Department Of Energy Apparatus for sectioning demountable semiconductor samples
US4629378A (en) * 1984-08-27 1986-12-16 Parsons John T Meltable matrix chucking machining center and process using
US4730382A (en) * 1984-08-27 1988-03-15 Parsons John T Meltable matrix chucking and machining
JPS62246447A (ja) * 1986-04-18 1987-10-27 Hitachi Ltd 非磁性体チヤツキング方法およびその装置
GB2201106B (en) * 1986-12-11 1990-10-10 Rolls Royce Plc Apparatus and method of securing a component
CH671540A5 (ja) * 1987-05-26 1989-09-15 Fmtd Fab Mach Taill Diamants
US5138918A (en) * 1990-05-31 1992-08-18 Xerox Corporation Method and apparatus for securing drum blanks on isostatic mandrel
CH686121A5 (fr) * 1992-07-02 1996-01-15 Piguet & Co Horlogerie Procede de fixation de pieces par congelation et dispositif pour la mise en oeuvre du procede.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252945A (ja) * 1986-04-25 1987-11-04 Mitsubishi Heavy Ind Ltd 被加工材の仮止め着脱方法
JPH0631567A (ja) * 1992-07-10 1994-02-08 Nikko Kikai Kk 被工作物の固定方法及び固定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0811457A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049117A (ja) * 2011-08-31 2013-03-14 Ricoh Co Ltd 加工装置

Also Published As

Publication number Publication date
DE69621004T2 (de) 2002-12-19
KR100387952B1 (ko) 2003-10-10
EP0811457B1 (en) 2002-05-02
DE69621004D1 (de) 2002-06-06
US6073451A (en) 2000-06-13
EP0811457A1 (en) 1997-12-10
KR970706941A (ko) 1997-12-01
EP0811457A4 (en) 1999-11-03

Similar Documents

Publication Publication Date Title
WO1997006920A1 (fr) Procede d'usinage avec immobilisation de piece a usiner par congelation
US5983483A (en) Freezing type workpiece fixing method
US20050098195A1 (en) Apparatus process and method for mounting and treating a substrate
JP2001507290A (ja) パターン化した研磨工具
US9969045B2 (en) Method and device for dispensing solid compound pastes for surface processing, and related surface processing method and system
JP5057815B2 (ja) ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
CN113732966B (zh) 一种复合结合剂砂轮及其制备方法
KR101558196B1 (ko) 잉곳 절단 장치 및 절단 방법
CN105904311A (zh) 一种抛光复合机床及抛光方法
CN101774160B (zh) 冰粒型固结磨料抛光垫及快速制备方法和装置
CN104001973A (zh) 一种蜂窝芯加工的方法
JP5495981B2 (ja) 半導体基板の製造方法
JP2992770B2 (ja) 凍結チャック式機械加工法及び凍結チャック式機械加工法用ワーク固定装置
JP5631160B2 (ja) ワークのダイシング装置及びワークのダイシング方法
JPH10296719A (ja) ワイヤソーおよびそのインゴット切断方法
JP3432439B2 (ja) 凍結チャック式機械加工用ワーク固定用媒体
JPH11309639A (ja) ワ―ク固定用媒体
JP3732360B2 (ja) 凍結式ワーク加工法およびワーク固定装置
CN100528473C (zh) 工件固定夹具及其使用方法
CN103586989B (zh) 一种涂覆游离磨料的线锯切割机
CN109435009B (zh) 一种陶瓷坯体的3d打印成型方法
JPS62140767A (ja) 氷粒によるシヨツトブラスト加工装置
CN215702351U (zh) 晶圆去边设备
JP2003251539A (ja) ワークの固定方法およびワークの加工方法
EP4622770A1 (en) Bonded abrasive articles and methods of forming and use

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996946237

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970702483

Country of ref document: KR

Ref document number: 08836141

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1019970702483

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996946237

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996946237

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970702483

Country of ref document: KR