[go: up one dir, main page]

WO1997008198A1 - Composes a base de peptides antigeniques et procede de dosage immunologique - Google Patents

Composes a base de peptides antigeniques et procede de dosage immunologique Download PDF

Info

Publication number
WO1997008198A1
WO1997008198A1 PCT/JP1996/002416 JP9602416W WO9708198A1 WO 1997008198 A1 WO1997008198 A1 WO 1997008198A1 JP 9602416 W JP9602416 W JP 9602416W WO 9708198 A1 WO9708198 A1 WO 9708198A1
Authority
WO
WIPO (PCT)
Prior art keywords
hcv
antigen
antibody
glu
ckk
Prior art date
Application number
PCT/JP1996/002416
Other languages
English (en)
French (fr)
Inventor
Toshiaki Kumazawa
Yoshiyasu Kiya
Hiroaki Tagami
Original Assignee
Srl, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Srl, Inc. filed Critical Srl, Inc.
Priority to EP96928683A priority Critical patent/EP0852234A1/en
Priority to AU68371/96A priority patent/AU6837196A/en
Publication of WO1997008198A1 publication Critical patent/WO1997008198A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/576Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
    • G01N33/5767Immunoassay; Biospecific binding assay; Materials therefor for hepatitis non-A, non-B hepatitis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to an antigenic peptide compound useful for measuring HCV (hepatitis C virus) -related antibody and an immunological assay method.
  • HCV hepatitis C virus
  • viruses on Earth There are a variety of viruses on Earth, some of which are pathogens.
  • the hepatitis virus that causes viral hepatitis is known to be transmitted during blood transfusion, injection, or childbirth.
  • Blood transfusion is an important means for human life support, and there have been many reports of viral hepatitis caused by this blood transfusion. This viral hepatitis is generally classified as type A, type B, and non-A non-B.
  • hepatitis B virus was also known as a cause of viral hepatitis during blood transfusion.
  • test reagents for detecting the presence of HBV have been developed, and it has become possible to easily confirm the presence of HBV before blood transfusion.
  • HBV hepatitis A virus
  • non-A non-B nonA non-B
  • the plasma of No. 2 was further administered to chimpanzee No. 3 and the onset of non-A non-B hepatitis was confirmed.
  • the target virus was assumed to be flavinovirus, and the virus particles were concentrated (Bradley, D.W. et al .: Gastroenterology,
  • genotypes I and II were compared to genotypell and IV (interferon treatment: 80% effective). It was reported that the therapeutic effect of interferon was low (29th Proceedings of the Japanese Society of Hepatology, p. 55, 1993). On the other hand, the above-mentioned genotype V type is rare in cases, and the therapeutic effect of INTERFAN on this type V is not clear.
  • RNA extraction of HCV from a patient sample, synthesis of the corresponding cDNA, amplification of the cDNA by PCR (polymerase chain reaction) method, electrophoresis method The genotype was determined through a complicated process, usually as long as 48 hours or more, called “Confirmation of the band of amplified cDNA using DNA”. Therefore, a long time and high cost were required.
  • HCV antibodies in patient sera can be classified into two types (serotypes) using antigens (consisting of about 300 amino acids) produced using the genetic recombination method ( Hepatobiliary knee, 2_2_, 883-889, 19.9 1 year), but this classification is not necessarily sufficient in terms of correspondence with the genotypes mentioned above (important for the determination of interferon treatment).
  • This serotype is a serotype, and since three gene sequences are recognized as one amino acid, the number of serotypes is smaller than that of genotypes.
  • the administration of interferon requires a large amount of cost, but has the disadvantage that the determination of the genotype as a prerequisite for the administration of interferon also requires a large amount of cost. If HCV genotype determination can be performed easily before treatment, it will be possible to easily predict the effects of interferon administration, and systematically formulate administration methods and treatment guidelines for interferon. Therefore, a simple and easy genotype determination of HCV has been eagerly desired since it can reduce the mental, physical, and economic burden on patients.
  • an object of the present invention is to provide an HCV antibody measurement antigen that enables easy measurement of HCV antibodies that can be distinguished from genotypes I and II, genotype II and IV, and genotype V of HCV. Is to provide.
  • Another object of the present invention is to provide an HCV antibody capable of distinguishing between HCV genotypes I and II, genotype II and IV, and genotype V, and in which cross-reaction or non-specific reaction is suppressed.
  • An object of the present invention is to provide an antigen for HCV antibody measurement that enables measurement.
  • Still another object of the present invention is to provide a simple method for measuring HCV antibodies that can be distinguished from genotypes I and II, genotype II and IV, and genotype V of HCV.
  • Still another object of the present invention is to provide an HCV antibody capable of distinguishing between genotypes I and II, genotype II and IV, and genotype V of HCV, and in which cross-reaction or non-specific reaction is suppressed. It is to provide a measuring method.
  • Still another object of the present invention is to provide a method for measuring low-cost HCV antibodies that can distinguish HCV genotypes I and II, genotype II and IV, and genotype V. Disclosure of the invention
  • HCV antibody type can be determined using a specific amino acid sequence (a sequence containing at least 6 amino acids) based on the HCV antigen site. Not only enables easy distinction between types l and II, genotypell and IV, and genotype V, but also with antigen-antibody reaction It has been found that cross-reaction or non-specific reaction is effectively suppressed, and that the above-mentioned object is extremely effective.
  • the antigen peptide compound of the present invention is based on the above findings, and more specifically, an amino acid sequence contained in the sequence represented by the following formula (1), wherein the sequence comprises at least six consecutive amino acids. It is characterized by including.
  • an antigenic peptide compound which is an amino acid sequence contained in the sequence represented by the following formula (2) and which comprises a sequence consisting of at least 6 consecutive amino acids. Is done.
  • an antigenic peptide compound which is an amino acid sequence contained in the sequence represented by the following formula (3) and which comprises a sequence consisting of at least 6 consecutive amino acids. Is done.
  • the antigen peptide represented by the above formula (1), (2) and / or (3) is bound to a carrier, and the HCV in the sample is added to the peptide by utilizing an antigen-antibody reaction.
  • Measuring the HCV antibody in the sample by binding the antibody and further binding a labeled ligand to the HCV antibody using an antigen-antibody reaction.
  • a measurement method is provided.
  • the term “ligand” refers to a substance (eg, antibody and Z or antigen) having specific binding to an antigen and an antibody or an antibody.
  • HCV type determination is performed using the HCV gene sequence itself.
  • the antibody type (serotype) against an antigen site specific to HCV is used.
  • determination of the antibody type is remarkably different from the conventional genotype determination (HCV RNA extraction ⁇ cDNA synthesis ⁇ PCR by the PCR method ⁇ confirmation of amplified band using electrophoresis).
  • a simple and low-cost HCV type (genotype) determination method can be provided because it can be performed in a short time and the work process is simple.
  • the present invention by using any one of the above-mentioned peptides (1) to (3), the conventional HCV-genotypes (types I and II) and (types III and IV) In addition to the determination, it is possible to detect or determine genotype V type.
  • FIG. 1 is a graph showing a result obtained by calculating a Hydrophilicity Value for the c0re region of HCV in Example 1.
  • FIG. 2 is a graph showing the results obtained by calculating the Hydrophilicity Value for the NS 4 region of HCV in Example 1.
  • FIG. 3 shows the hydrophilicity value for the NS5 region of HCV in Example 1. It is a graph which shows the result obtained by calculation.
  • FIG. 4 is a chromatogram showing the results of HPLC analysis of the antigenic peptide compound (2) (ckk-n52) obtained in Example 2.
  • Figure 5 is a chromatogram showing the HP LC analysis of antigenic peptide compound obtained in Example 2 (1) (C kk- n 5 1).
  • FIG. 6 is a schematic diagram showing the relationship between the antigen region of HCV and each antigen peptide.
  • FIG. 7 is a schematic diagram showing the relationship between the HCV antigen type and each antigen peptide.
  • amino acid sequence is described from the N-terminal (left side) to the C-terminal (right side) (for example, in the following amino acid sequence (1), k and g are the N-terminal, Pro Is the C-terminal).
  • amino acid notation is used.
  • the antigenic peptide compound of the present invention is included in a sequence represented by the following formula (1) (48 amino acids), (2) (31 amino acids), or (3) (22 amino acids) A peptide compound having a sequence consisting of at least six consecutive amino acids.
  • L e u- H is-I 1 e-A s n- G 1 n- A r g- A l a- V a 1- V a 1-A 1 a-P r o- A s p- Lys- G 1 u- V a 1-L e u- T yr-G lu-A 1 a-P he-A s p- G 1 u- Me t-G 1 u- G 1 u-C ys-Ser- G i n- A 1 a-A r g- P ro-T yr-I 1 e-G l u- G i n- A r g- G 1 n- V a 1-I l e- A l a- H i s- G l n- P h e- L y s- G lu-
  • Amino acid sequences of at least six consecutive amino acids which comprise at least six consecutive amino acids, constitute the same sequence as the peptides (1), (2) and / or (3) in the present invention. It can be suitably used as an antigen.
  • the even number of amino acids constituting such “amino acid sequences of various lengths” is determined by the balance between HCV discrimination and suppression of cross-reaction and non-specific reaction. Preferably, the number is at least 22 (more preferably at least 22).
  • amino acid sequences of various lengths (6 or more amino acids) include, for example, the following sequences.
  • a peptide “containing” the sequence of the above (1), (2) or (3) is also suitable as an antigen similarly to the above (1), (2) or (3).
  • the number of amino acids constituting such a peptide is preferably 40 or less when chemically synthesized, and is preferably 100 or less when obtained by a recombinant method.
  • Antigen peptide compounds described above (peptide compounds containing at least 6 amino acids)
  • the method for obtaining the product is not particularly limited.
  • the peptide compound may be chemically synthesized or may be produced using a genetic engineering technique (for example, a genetic recombination technique, that is, a recombinant method).
  • a genetic engineering technique for example, a genetic recombination technique, that is, a recombinant method.
  • amino acids are preferably linked by a solid-phase method from the viewpoint that the intermediate product can be easily purified and the like.
  • an automatic peptide synthesizer for example, an Applied Biosystems 43 (OA peptide synthesizer).
  • HC Vgenotype was tested by enzyme immunoassay (ELISA or EIA) using (2) and (3), and its specificity was confirmed using a sample of a patient who was separately determined for HC Vgenotype (see below). See Examples 4 and 5).
  • peptide compounds (1), (2) and (3) (all of which correspond to the NS4 region of HCV), serotype determination can be sufficiently performed as described later. From the viewpoint of further improving the accuracy of determination or expanding the range of application, it is preferable to combine the above peptide compound (1), (2) and / or (3) with another antigenic peptide compound.
  • Such "other antigenic peptide compounds” include the following peptides (4) to (9).
  • L e u- H is-V a 1-A sn-G in-A rg-A 1 a-V a 1-V a 1- A 1 a-Pro-Asp-Lys-Glu-Va1-Leu-Tyr-G1u-A1a-Phe-Asp-Glu- Me t-Glu-Glu-Cys-A1a-Ser-Arg-A1a-A1a-Leu-I1e-Glu-Glu-G1 y-
  • C ys-T hr-T hr-H is-G 1 y-L ys-A 1 a-T yr-A s p- V a 1-Asp-Met-V a 1-A s p- A 1 a-A s n- L e u- P h e-
  • Lys-Pro (9) (corresponding to ckk-c2, corre area)
  • a sequence containing six consecutive amino acids is a peptide (4 ), (5), (6), (7), (8) and Z or (9) can be suitably used as an antigen peptide.
  • amino acid sequences having various lengths (6 or more amino acids) include the following sequences.
  • L e u- H is-V a 1-A sn-G in-A r g-A 1 a-V a 1-V a 1-A 1 a-P ro-A s p- Lys-G 1 u- V a 1-L e u- T yr-G 1 u- A 1 a-P he-A s-G 1 u-Met-G 1 u- G lu u- Cys-A 1 a- S e r- Ar g- A la (1 1)
  • a peptide (comprising six or more amino acids) containing any of the above-mentioned sequences (4) to (9) is also used as an antigen as in the above (4) to (9). It can be suitably used.
  • the number of amino acids constituting such a peptide is preferably 40 or less when chemically synthesized, and 100 or less when obtained by a recombinant method. preferable.
  • the preferred order of the antigen is as follows from the viewpoint of the accuracy of serotype determination.
  • the preferred order of antigens is as follows from the viewpoint of serotype determination accuracy.
  • the preferred order of the antigen is as follows from the viewpoint of serotype determination accuracy. .
  • the immunological measurement method used in the present invention is not particularly limited, and for example, a publicly-known immunoassay method can be used without any particular limitation.
  • an immunoassay method for example, an enzyme immunoassay, a radioimmunoassay (RIA), a fluorescent immunoassay (FIA) and the like can be used.
  • Well-known measuring techniques for example, an enzyme immunoassay, a radioimmunoassay (RIA), a fluorescent immunoassay (FIA) and the like can be used.
  • the type (serotype) of the HCV antibody in a sample can be determined by immunologically measuring the HCV antibody using the antigen peptide compound (for example, see below * In this way, it can be determined whether the serotype of HCV is group I, group II, or group III.)
  • the serotype of HCV is group I, group II, or group III.
  • HC Vserotype group I corresponds to HCV genotypes I and II
  • HCV serotype group II corresponds to HC Vgenotype III and IV
  • HCV serotype group III corresponds to HCV genoty peV.
  • HC Vgenotype can be determined.
  • the antigen peptide compound is bound to or immobilized on a carrier (or a support), and the specific binding property with the HCV antibody is used to determine the type of antibody against the HCV antigen. (Ie, the serotype of HCV).
  • a carrier or a support perserum albumin (BSA), preferably a polypeptide having a molecular weight of about 50,000 to 100,000, a microplate well, preferably a diameter of about 0.1 ⁇ m to 6 mm
  • BSA perserum albumin
  • Polystyrene balls or polystyrene beads
  • the above peptides (1) to (3) can be suitably used for measuring HCV antibodies as described above, and can also be used as antigens or immunogens for producing pectin against HCV, for example.
  • the vaccine can be produced, for example, using a genetic engineering technique (recombinant method).
  • the antigen site was calculated by the method of Hopp TP, Proc. Nat 1. Acad. Sci. 7_8., 38 24-38 28 (1981). More specifically, the following procedure was performed using the Hydrophlicity Value of each amino acid.
  • the Hyrdrophilicity Values of six consecutive amino acids were totaled. This calculation was performed for the entire region of the HCV amino acid sequence, and the hydrophilic and hydrophobic intensities were calculated. The portion having high hydrophilicity was defined as a site showing antigenicity.
  • a region that could serve as an antigen for hepatitis C was extracted.Furthermore, of the regions thus obtained, a region having a common amino acid sequence for genotype I and genotypell, and genotype Regions having a common amino acid sequence were determined for III and genotype IV. Furthermore, it differs from genotypes I, II, III and IV. The region having the following V-type amino acid sequence was also determined.
  • ckk-n51, ckk-n52, and ckk-n53 were determined for the NS4 region as the amino acid sequence of the antigen satisfying such conditions.
  • HCV antigenic peptide compounds (ckk-n51), (ckk-n52), (ckk-n53), (ckk-n1; structural formulas (4)) and (ckk-n1; Structural formula (5)) was synthesized by the method shown below.
  • Peptides were synthesized using an automated peptide synthesizer, Applied Biosystems 43 OA Peptide Synthesizer, using a symmetric anhydride of t-Boc amino acid as a reagent.
  • the resulting synthetic peptide was dissolved in anisol 'dimethyl sulphide' parathiocresol and reacted in the presence of hydrofluoric acid at 0-5 ° C for 1 hour for deprotection ( S. Sakakibara, Bull. Chera. So Jpn. 40, 2164 (19667)).
  • L e u- H is-V a 1-A sn-G in-A rg-A 1 a-V a 1-V a 1-A 1 a-P r o- A s p- Lys-G 1 u-V a 1-L e u- T yr-G l u- A 1 a-P He e- A s-G 1 u-Me t-G 1 u-G 1 u-Cys-A 1 a- S er-A r g- A l a- A la-L e u- I 1 e-G l u- G l u- G ly-
  • C ys-Th r-Th r-H is-H is-V a 1-S e r- P r o- A s p- A 1 a-A sp-L e u- I 1 e-G 1 u- A 1 a-A s n- L e u- L e u-
  • C ys-Th r-Th r- H is-G 1 y-L ys-A 1 a-T yr-A s p- V a 1-A s p- Me t-V a 1-A s p- A 1 a-A s n- L e u- P he-
  • Lys-Pro (9) (corresponding to ckk-c2, corre area)
  • the antigenic peptide ckk one n 1 of NS 4 regions obtained in Example 2, 0. 1 5MN a C 1 one 0 ⁇ 1 OMN a 2 HPO 4 - N a H 2 PO 4 ⁇ 2 H 2 O buffer (PBS ) Dissolved in PH 7.0 to a concentration of 1 igZm1.
  • This peptide solution was dispensed into 96-well microplates (trade name: ELISA PLATE 68667, manufactured by NUNC) at a rate of 100 ⁇ l / well and 37. C. The mixture was allowed to stand still for 60 minutes to immobilize the antigen peptide on a microplate.
  • the microplate was washed three times with 0.01MPBS (H7.0). After removing the washing solution, 0.1% gelatin 0.01 MPBS (pH 7.0) solution was dispensed at 300 ⁇ l / well, and allowed to stand for 37 ⁇ 60 minutes to coat gelatin on the plate. After removing the excess gelatin solution, it was washed three times with a 0.01 MPBS solution ( ⁇ 7.0) containing 0.05% Tween ⁇ 20.
  • Specimens (20 types) were prepared in advance at SRL Hachioji Laboratory Co., Ltd., with references (Okaraoto H., Hepatobiliary Knee, 24, 7-14 (1992); Chayaraa, K., HCV genotype was tested using the method of Tsubota, A., Arase, Y., et al., J. Gastroenterol. Hepatol. 8, 150-156 (1993)). , HC Vgenotype.
  • Example 2 The specificity of the antigenic peptide obtained in Example 2 was confirmed in the following manner using the sample for which the HC Vgenotype was determined by the PCR method as described above. In this study, the antigen peptide-immobilized microplate prepared in Example 3 was used for analysis according to the following procedure.
  • Each of the above samples was diluted 50-fold with 0.01 MPBS (pH 7.0) containing 0.01% BSA and 0.05% Tween 20 and added to each well. Each 100 ⁇ l was dispensed and reacted with the above antigen peptide at 37 ° C. for 60 minutes (reaction between antigen peptide and HCV antibody).
  • the microplate was washed 5 times with 0.05% Tween 20 containing 0.01 MPBS (pH 7.0), and after removing the washing solution, the microplate was washed at a concentration of 1 g / 20 ml.
  • Peroxidase-labeled anti-human IgG antibody (manufactured by KPL) was injected into each well in a quantity of 1001 and reacted at 37 ° C for 60 minutes (HCV antibody-POD-labeled anti-human I antibody). gG antibody reaction).
  • the microplate was washed 5 times with 0.05% Tween 20 containing 0.01 MPBS (H 7.0), and after removing the washing solution, 0.023% peroxide was added to each well. 0.5% containing hydrogen and 0.05% o-phenylenediamine (OPD)
  • OPD o-phenylenediamine
  • the reaction was stopped by adding 50 ⁇ l of 5N sulfuric acid in 50 ⁇ l increments, and the absorbance (ABS or OD) at a wavelength of 491 nm was measured with a spectrophotometer (trade name: Plate Reader-1; -200
  • An antigen peptide was prepared in the same manner as in Example 3 except that the antigen peptide ckk-1 n2 or n52 obtained in Example 2 was used instead of the antigen peptide ckk-1 n1 used in Example 3.
  • a microplate was prepared on which solid phase ckk-n2 or n52 was immobilized. In the same manner as in Example 4 except that the microplate thus obtained was used, samples (20 types) for which HCV genotype was determined in advance were analyzed.
  • the absorbance when using the antigen peptide ckk-n1 (peptide corresponding to serotype 1) and the absorbance when using the antigen peptide ckk-n2 (peptide corresponding to serotype2)
  • the absorbance obtained using the antigen peptide ckk-1 n 5 2 (a peptide corresponding to serotype 3)
  • one of the absorbance values is 1.5 times or more the value of the other absorbance. If there was, the type was determined to have the highest absorbance (serotype 1 for ckk-n1, serotype 2 for ckk-n2, serotype 3 for ckk-n5 2).
  • the determination method used here is summarized in Table 5 below.
  • NS4 region antigen peptide ckk-1 n1 (second column, NS4-1), ckk-n2 (third column, NS4-2), and ckk-1 n5 2 (second Positive (negative) or negative of the sample when using each of 4 columns, NS 4-3)
  • Example 3 was repeated except that the antigen peptides ckk- ⁇ 1 and ckk- ⁇ 4 of the NS ⁇ region obtained in Example 2 were used instead of the antigen peptides ckk-1 ⁇ 1 used in Example 3, respectively.
  • a microphone opening plate on which each antigen peptide was immobilized was prepared. Except for using the microplate thus obtained, the samples (20 types) for which HC Vgenotype was determined in advance were analyzed in the same manner as in Examples 4 and 5.
  • the absorbance (ckk-n3) and the absorbance (ckk- ⁇ 4) are compared, and one of the values is determined to be the other.
  • the value was 1.5 times or more of the value, the type having the higher absorbance (serotype 1 for ckk-n3 and serotype 2 for ckk-n4) was determined.
  • Example 3 In place of the antigenic peptide ckk—n1 used in Example 3, the antigenic peptide ckk—cl and ckk—c2 in the c 0 re region obtained in Example 2 (each of the peptides consisting of 20 amino acids) ) Were used in the same manner as in Example 3 to prepare microplates on which the respective antigen peptides were immobilized.
  • the serotype determination results obtained as described above are shown in columns 7 to 8 of Table 6 described above.
  • the absorbance (ckk-c1) and the absorbance (ckk-c2) are compared, and one of the values is determined to be the other.
  • the value was 1.5 times or more of the value of, the type having the higher absorbance (serotype 1 for cck-c1 and serotype 2 for ckk-c2) was determined.
  • a genotype V type which cannot be determined by the conventional serotype determination method, can be determined as a serotypelll type by using ckk-n51 or ckk-n52.
  • ckk-n51 or ckk-n52 can be determined as a serotypelll type by using ckk-n51 or ckk-n52.
  • genotype I and genotype II correlated well with serotype I
  • genotype III and enotype IV correlated well with serotype II
  • genotype V correlated well with serotype III.
  • an antigen peptide compound having a specific amino acid sequence unique to HCV and a method for measuring an HCV antibody using the same are provided.
  • the healing or treatment progress of hepatitis C can be easily observed. That is, according to the present invention, it is possible to use serotypes from an epidemiological point of view, and it is possible to use the past infection (antibody titer in the NS4 region) and the current hepatitis (antibody titer in the NS4 and / or NS5 region). ) Can be obtained.
  • an HCV antibody measurement antigen that enables easy measurement of HCV antibodies that can be distinguished from HCV genotypes I and II, genotype II and IV, and genotype V. Provided.
  • the present invention it is possible to distinguish HCV genotypes I and II, genotype II and IV, and genotype V, and to measure HCV antibodies in which cross-reaction or non-specific reaction is suppressed.
  • the present invention provides an antigen for measuring HCV antibody, which enables the following.
  • the present invention provides a simple method for measuring HCV antibodies that can distinguish HCV genotypes I and II, genotype II and IV, and genotype V.
  • a method for measuring a low-cost HCV antibody capable of distinguishing between genotypes I and II, genotype II and IV, and genotype V of HCV.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)

Description

糸田 抗原べプチド化合物および免疫学的測定方法 技術分野
本発明は、 HCV (C型肝炎ウィルス) 関連抗体の測定に有用な抗原ペプチド 化合物および免疫学的測定方法に関する。 背景技術
地球上には種々のウィルスが存在しており、 そのうちの幾つかは病原体である。 例えば、 ウィルス性肝炎の原因となる肝炎ウィルスは、 輸血、 注射あるいは出産 等の際に感染することが知られている。
輸血はヒ トの生命維持のための重要な一手段であるが、 この輸血によってウイ ルス性肝炎が発症した例が、 現在まで数多く報告されている。 このウィルス性肝 炎は、 一般に A型、 B型および非 A非 B型に分類されている。
従来においては、 B型肝炎ウィルス (HBV) も輸血時のウィルス性肝炎の原 因として知られていた。 近年この HBVの存在を検出する検査試薬が開発され、 輸血前に簡便に H B Vの存在を確認することが可能となったため、 輸血による H B V感染者は皆無となった。 一方、 明らかにウィルス性でありながら、 それまで 肝炎を起こす原因として考えられていた A型肝炎ウィルス (HAV) による A型 でも H BVによる B型でもない肝炎 (非 A非 B型; nonAnonB型) の存在も知られ ていたが、 その発生源 (ウィルス) を確認することは、 従来は困難とされていた。
1 9 8 9年に、 Choo, Q-L. ら (Science, 244 , 3 5 9— 3 6 2 , 1 9 8 9) および Kuo , G.ら (Science, 24 4 , 3 6 2— 3 6 4, 1 98 9 ) によって、 非 A非 B型肝炎ウィルスの存在が明らかにされた。 この肝炎ウィルスは HCV
(C型肝炎ウィルス) と命名されたが、 この HCVはヒ ト とチンパンジーのみに 感染することが、 以前から報告されていた。
上記文献においては、 以下のような実験が記載されている。 すなわち、 患者に 投与されて非 A非 B型肝炎を発症させた血液凝固第 VIII因子製剤と同じ製剤をチ ンパンジー No. 1に投与し、 非 A非 B型肝炎を発症させた。 更に該チンパンジー の肝臓からの抽出物をチンパンジー No. 2に投与し、 同様に非 A非 B型肝炎を発 症させた後、 チンパンジー No. 2の血漿を抽出した。 また、 このチンパンジー No.
2の血漿を更にチンパンジー No. 3に投与し、 非 A非 B型肝炎の発症を確認し た。 この発症が確認された血漿に対して、 目的とするウィルスをフラビノウィル スと想定してウィルス粒子の濃縮操作 (Bradley, D. W.ら: Gastroenterology,
88: 773 -779, 1 989 ) を行い、 ウィルスの R N Aを抽出した。 この ようにして得た RN Aに基づいて c DNAを合成し、 ; Lgt 1 1ライブラリーを作 製した。 この; Lgtl 1ライブラリ一に対して、 回復期のチンパンジー血清や非 A 非 B型慢性肝炎患者血清を用いたィムノスクリ一二ングを行い、 反応するクロ— ンの選択を行った。 この結果、 5-1-1· と称されるクローンのみが HCVに由 来する c DN A断片であることが確認された。
上述した操作は、 特公平 2— 5008 80号公報にも記載されており、 遺伝子 配列も明らかにされている。 また、 日本でも HCVの遺伝子配列に関する報告が なされている (Journal of virology, 65 (3) , 1 105〜 1 1 1 3, 1 9 91) c
1 990年 6月の日本肝臓学会において、 HCV構造領域の遺伝子配列が自治 医科大学の岡本らによって明らかにされた (第 26回日本肝臓学会予稿集、 1 9
90年) 。 1 990年 7月の日本癌学会においては、 岡本らと同様に、 HCVの 構造領域の遺伝子配列が明らかされた (第 49回日本癌学会予稿集、 1 990年) 。 これらの発表を比較すると、 HCVコア領域に関しては遺伝子の変異がほとん どないが、 HCVエンベロープ領域の遺伝子配列に関しては、 両者間で若干の相 違が認められる。
その後、 HCV構造領域のコア抗原と HCV非構造領域の抗原部位とを組み合 わせた抗体検査が提案され (臨床病理, 40 ( 1 2 ), 1 245-1 2 5 1 , 1 9 9 2) 、 このような抗体検査により、 ほぼ完全に H C V抗体陽性者のスクリーニン グを行うことが可能となった。
—方、 H C V検査と平行して C型肝炎のィンタ一フエ口ンによる治療が行われ るようになったが、 H C Vの遺伝子型(genotype)の種類により、 インタ一フエ口 ン治療の効果が異なることが判明している。 この genotypeの分類は、 Okamoto H. : 肝胆膝, 7-14 ( 1 9 9 2) によって明らかにされており、 I型 (Pro c. Natl. Acad. Sci. USA, 8 8, 24 5 1 -24 5 5, 1 9 9 1 ) 、 II型 (Jou rnal of virology, 6 5 (3 ) , 1 1 0 5〜: L 1 1 3, 1 9 9 1 ) 、 111 型 (Jo urnal of General Virology, 72 , 2 6 9 7-2 704, 1 99 1) および IV型
(Virology, 1 8 8 , 3 3 1 -34 1, 1 99 2 ) に分類されている。 更に、 岡本らにより、 V型までの genotypeの分類が示された (医学の歩み、 1 7 1 ( 1 4) 、 994〜 9 9 8頁 ( 1 9 94年) ) 。
1 9 93年 6月に行われた日本肝臓学会では、 genotype I型および II型 (イン ターフェロン治療: 20%有効) は、 genotypelll 型および IV型 (インターフエ ロン治療: 8 0%有効) に比べ、 インターフェロンの治療効果が低いことが報告 された (第 2 9回日本肝臓学会予稿集、 第 5 5頁、 1 9 9 3年) 。 一方、 上記し た genotype V型については症例が稀であるため、 この V型に対するィンタ一フエ 口ンの治療効果は明らかでない。
インターフェロンの投与は脱毛や発熱などの強い副作用が伴うことが多く、 患 者への負担が大きいため、 治療前の HC Vgenotypeの判定はインターフヱロン投 与効果の予測に極めて重要である。 しかしながら、 従来の genotype判定法におい ては、 「患者検体中の HC Vの RN A抽出、 これに対応する c DNAの合成、 該 c DNAの P CR (ポリメラーゼ連鎖反応) 法による増幅、 電気泳動法を用いる 増幅 c DN Aのバン ドの確認」 という、 通常 4 8時間以上にもおよぶ複雑な工程 を経て genotypeが決定されていたため、 長い時間と高いコス トとが必要とされて いた。
—方、 遺伝子組み替えの方法を用いて製造した抗原 (約 3 00個のアミノ酸か らなる) を用いて、 患者血清中の HCV抗体が 2つのタイプ (serotype) に分類 できることが報告されている (肝胆膝、 2_2_, 8 8 3〜 8 8 9、 1 9.9 1年) が 、 この分類は、 上記した (イ ンターフェロン治療の判定に重要な) genotypeとの 対応の点において必ずしも充分ではなかった。 この serotypeは血清型であり、 遺 伝子配列 3個で 1個のァミノ酸と認識されるため、 genotypeより も serotypeの方 が少ない数の分類となる。 上述したように、 インターフェロン投与には多額の費用がかかるが、 このイン ターフェロン投与の前提となる上記 genotypeの判定にも多額の費用がかかるとい う欠点があった。 治療前に HCVの genotype判定を簡便に行うことが可能であれ ば、 インターフヱロン投与効果を簡便に予測することが可能となり、 インターフ 工口ンの投与方法や治療指針を計画的に策定することができ、 更には患者への精 神的、 肉体的、 並びに経済的負担を軽減することができるため、 簡便な HCVの genotype判定が切望されていた。
したがって本発明の目的は、 HC Vの genotype I型および II型と、 genotypell I 型および IV型と、 genotypeV型との区別が可能な HCV抗体の簡便な測定を可 能とする HCV抗体測定用抗原を提供することにある。
本発明の他の目的は、 HCVの genotype I型および II型と、 genotypelll 型お よび IV型と、 genotypeV型との区別が可能で、—しかも交叉反応ないし非特異反応 が抑制された H C V抗体の測定を可能とする H C V抗体測定用抗原を提供するこ とにある。
本発明の更に他の目的は、 HCVの genotype I型および II型と、 genotypelll 型および IV型と、 genotypeV型との区別が可能な HC V抗体の簡便な測定法を提 供することにある。
本発明の更に他の目的は、 HC Vの genotype I型および II型と、 genotypelll 型および IV型と、 genotypeV型との区別が可能で、 しかも交叉反応ないし非特異 反応が抑制された HCV抗体の測定法を提供することにある。
本発明の更に他の目的は、 HCVの genotype I型および II型と、 genotypelll 型および IV型と、 genotypeV型との区別が可能な低コス トの HCV抗体の測定法 を提供することにある。 発明の開示
本発明者は鋭意研究の結果、 HC V抗原部位に基づく特定のアミノ酸配列 (少 なく とも 6個のアミノ酸を含む配列) を用いて HCV抗体型 (serotype) の判定 を行うことが、 HCVの genotype l型および II型と、 genotypelll 型および IV型 と、 genotypeV型との簡便な区別を可能とするのみならず、 抗原一抗体反応に伴 う交叉反応ないし非特異反応を効果的に抑制して、 上述した目的の達成に極めて 効果的であることを見出した。
本発明の抗原べプチド化合物は上記知見に基づく ものであり、 より詳しくは、 下記式 (1 ) で示される配列に含まれるアミノ酸配列であって、 連続した少なく とも 6個のアミノ酸からなる配列を含むことを特徴とするものである。
L e u- H i s - I 1 e - A s n - G i n- A r g - A 1 a - V a 1 - V a 1 - A l a - P r o- A s p- L y s- G l u- V a l - L e u- T y r - G l u- A 1 a - P h e- A s p- G l u- Me t - G 1 u- G 1 u- C y s - S e r- G l n- A l a - A r g - P r o- T y r - I 1 e - G 1 u- G i n- A r g- G 1 n- V a 1 - I l e- A l a- H i s - G l n- P h e- L y s- G l u- L y s - V a 1 - L e u ( 1 )
更に、 本発明によれば下記式 (2) で示される配列に含まれるアミノ酸配列で あって、 連続した少なく とも 6個のアミノ酸からなる配列を含むことを特徴とす る抗原べプチド化合物が提供される。
G 1 u- A 1 a - P h e- A s - G 1 u- Me t - G 1 u- G 1 u- C y s - S e r- G l n- A l a- A r g- P r o - T y r- I l e- G l u- G l n- A r g- G l n- V a l - I 1 e - A 1 a - H i s - G i n- P h e- L y s - G 1 u- L y s - V a 1 - L e u ( 2)
更に、 本発明によれば下記式 (3 ) で示される配列に含まれるアミノ酸配列で あって、 連続した少なく とも 6個のアミノ酸からなる配列を含むことを特徴とす る抗原べプチド化合物が提供される。
S e r- G l n- A l a- A r g - P r o- T y r - I 1 e~ G l u- G l n- A r g- G l n- V a l - I 1 e - A 1 a - H i s - G i n- P h e- L y s - G 1 u- L y s - V a 1 - L e u ( 3)
更に、 本発明によれば上記式 ( 1 ) 、 (2) および 又は (3) に記載の抗原 ぺプチドを担体に結合させ、 抗原—抗体反応を利用して該ぺプチドに検体中の H CV抗体を結合させ、 更に抗原一抗体反応を利用して該 HCV抗体に標識リガン ドを結合させることにより、 上記検体中の HC V抗体を測定することを特徴とす る HC V抗体の免疫学的測定法が提供される。 ここに、 「リガンド」 とは、 抗原およびノ又は抗体に対して特異的な結合性を 有する物質 (例えば抗体および Z又は抗原) をいう。
上述した従来の genotype判定においては、 H C V遺伝子の配列自体を利用して HCVの型判定を行っているが、 本発明においては、 HCVに固有の抗原部位に 対する抗体の型 (serotype) を利用して H C Vの型判定を行っている。 このよう な抗体型の判定は、 従来の genotype判定 (H C Vの R N A抽出→ c D N Aの合成 →該0 DN Aの P CR法による增幅→電気泳動法を用いた増幅バンドの確認) に 比べて著しく短時間で行うことができ、 しかも作業工程も単純であるため、 本発 明によれば、 簡便且つ低コス トの H CV型 (genotype) の判定方法を提供するこ とができる。
上記した従来の血清型判定法 (約 300個のアミノ酸からなる抗原を用いる) と比較して、 本発明においては、 抗原一抗体反応に伴う交叉反応ないし非特異反 応が効果的に抑制されている。
本発明によれば、 上記した (1) 〜 (3) のいずれかのペプチドを用いること により、 従来からの HCV— genotypeの ( I型および II型) と、 (III 型および IV型) との判定に加え、 更に genotypeV型の検出ないし判定が可能となる。
本発明によれば、 このような HCVタイプの更なる細分化が可能となることに より、 感染経路の分析にも有用な情報を得ることができる。
後述する実施例の方法により serotype判定を行った結果、 上記した genotype V 型 (serotypelll型に相当する) は日本では稀であるが、 アジア諸国や欧米諸国 ではむしろ主要な型であることが見出された (タイでは、 およそ半数が serotype III 型であった) 。 図面の簡単な説明
図 1は、 実施例 1において H C Vの c 0 r e領域に関し Hydrophil icity Value を計算により求めた結果を示すグラフである。
図 2は、 実施例 1において HC Vの N S 4領域に関し Hydrophilicity Valueを 計算により求めた結果を示すグラフである。
図 3は、 実施例 1において HC Vの N S 5領域に関し Hydrophilicity Valueを 計算により求めた結果を示すグラフである。
図 4は、 実施例 2において得られた抗原ペプチド化合物 (2) (c k k-n 5 2) の HP L C分析結果を示すクロマトグラムである。
図 5は、 実施例 2において得られた抗原ペプチド化合物 (1) (C k k— n 5 1) の HP L C分析結果を示すクロマトグラムである。
図 6は、 HCVの抗原領域と各抗原べプチドとの関係を示す模式図である。 図 7は、 H CVの抗原タイプと各抗原べプチドとの関係を示す模式図である。 発明を実施するための最良の形態
以下、 必要に応じて図面を参照しつつ、 本発明を詳細に説明する。
本明細書においては、 アミノ酸配列の表記においては、 N末端 (左側) から C 末端 (右側) へ記载する (例えば、 以下のアミノ酸配列 ( 1 ) においては、 kて gが N末端、 P r oが C末端である) 。 また、 本明細書においては、 下記に示す ァミノ酸表記を用いる。
(アミノ酸の一文字表記および三文字表記)
<略号 > <名称 > ぐ略号 > ぐ名称 >
A s p D ァスパラギン酸 V a 1 V バリン
A s n N ァスパラギン Me t M メチォニン
T h r T トレオニン l i e I イソロイシン
S e r S セリ ン L e u L ロイシン
G 1 u E グルタミン酸 T y r Y チロシン
G i n Q グルタミン P h e F フエニノレアラニン
P r o P プロリ ン T r p W ト リプトファン
G 1 y G グリ シン L y s K リ ジン
A l a A ァラニン H i s H ヒスチジン
C y s C システィン A r g R アルギニン
(抗原べプチド化合物)
本発明の抗原ペプチド化合物は、 下記式 ( 1 ) (アミノ酸 4 8個) 、 (2) (アミノ酸 3 1個) 、 または (3) (アミノ酸 2 2個) で示される配列に含まれ る配列であって、 少なく とも 6個の連続したァミノ酸からなる配列を有するぺプ チド化合物である。
L e u- H i s - I 1 e - A s n- G 1 n- A r g- A l a- V a 1- V a 1 - A 1 a - P r o- A s p- L y s - G 1 u- V a 1 - L e u- T y r - G l u - A 1 a - P h e - A s p- G 1 u- Me t - G 1 u- G 1 u- C y s - S e r - G i n- A 1 a - A r g- P r o - T y r - I 1 e - G l u- G i n- A r g- G 1 n- V a 1 - I l e- A l a- H i s- G l n- P h e- L y s- G l u -
L y s- V a l - L e u (1) ( c k k一 n 5 1 ; N S 4領域に 対応)
(一文字表記: LH I NQ RAVVA PDKEV LYEAF DEMEE CS QAR PY I EQ AQV I A HQ F KE K V L)
G 1 u- A 1 a - P h e- A s - G 1 u- M e t - G 1 u- G 1 u- C y s - S e r - G 1 n- A 1 a - A r g- P r o- T y r - I 1 e - G l u- G i n - A r g- G l n- V a 1 - I 1 e - A 1 a - H i s - G i n- P h e- L y s -
G l u- L y s- V a l - L e u (2) (c k k-n 52 ; NS
4領域に対応)
(—文字表記: EAFDE ME E C S Q AR P Y I EQAQ V I AHQ FKEKV L)
S e r - G i n- A l a - A r g- P r o- T y r- I l e- G l u- G l n- A r g- G l n- V a 1 - I 1 e - A 1 a - H i s - G i n- P h e- L y s -
G l u- L y s - V a 1 - L e u (3) (c k k-n 53 ; NS
4領域に対応)
(—文字表記: S QARP Y I EQA QV I AH QFKEK V L) 本発明者の知見によれば、 上記式 (1 ) 、 (2) 又は (3) で示されるァミノ 酸 48、 3 1ないし 22個からなる配列を構成する種々の長さのアミノ酸配列で あって、 少なく とも 6個の連続したアミノ酸を含む配列は、 本発明においてぺプ チド ( 1) 、 (2) および 又は (3) と同様に、 抗原として好適に使用可能で ある。 このような 「種々の長さのアミノ酸配列」 を構成するアミノ酸の偶数は、 HCVの識別性と、 交叉反応 ·非特異反応の抑制とのバランスの点からは、 1 0 個以上 (更には 22個以上) であることが好ましい。
上記した 「種々の長さのアミノ酸配列」 の具体例 (アミノ酸 6個以上) として は、 例えば、 下記の配列が挙げられる。
上記ペプチド化合物 (1) に含まれるアミノ酸配列
A s n- G i n- A r g - A 1 a - V a 1 - V a 1 - A 1 a - P r o- A s p- L y s - G 1 u - V a 1 - L e u- T y r - G 1 u - A 1 a - P h e - A s p - G l u- Me t- G l u- G 1 u- C y s - S e r - G l n- A l a - A r g- P r o- Ty r- I l e - G l u- G l n- A r g- G l n- V a 1 - I 1 e- A 1 a - H i s - G i n - P h e- L y s - G 1 u )
(一文字表記 : NQR A V V A PDKEVLYEAF DEMEE C S QAR P Y I E Q AQ V I A HQFKE)
上記ペプチド化合物 (2) に含まれるアミノ酸配列
A s p- G l u- Me t - G l u - G l u- C y s- S e r- G l n- A l a- A r g- P r o- T y r- I 1 e- G l u- G l n- A r g - G i n- V a 1- I 1 e - A 1 a - H i s - G i n- P h e- L y s - G l u- L y s- V a l - L e u
(—文字表記 : D EME E C S Q A R PY I EQAQV I A HQ F KE K V L)
上記ペプチド化合物 (3) に含まれるアミノ酸配列
S e r - G i n- A l a - A r g - P r o- T y r - I l e- G l u- G l n- A r g- G l n- V a l - I 1 e - A 1 a - H i s- G l n- P h e- L y s - G l u- L y s
(—文字表記: SQAR PY I EQAQV I A HQFKEK)
本発明者の知見によれば、 上記した ( 1) 、 (2) 又は (3) の配列を 「含む 」 ペプチドも、 上記 ( 1 ) 、 (2) 又は (3) と同様に抗原として好適に使用可 能である。 このようなペプチドを構成するアミノ酸の数は、 化学的に合成する場 合には 40個以下であることが好ましく、 リコンビナント法を用いて得る場合に は 100個以下であることが好ましい。
上述した抗原べプチド化合物 (少なく とも 6個のァミノ酸を含むぺプチド化合 物) を得る方法は特に制限されない。 該ペプチド化合物は化学的に合成してもよ く、 また遺伝子工学的手法 (例えば遺伝子組替え技術、 すなわちリコンビナント 法) を用いて製造してもよい。 化学的手法を用いる場合、 中間生成物の精製等が 容易な点からは、 固相法によりアミノ酸を連結することが好ましく、 更には自動 ペプチド合成機 (例えば、 アプライ ド ·バイオシステムズ社製の 43 OAぺプチ ド合成機) を用いて合成することが好ましい。
(抗原べプチド化合物の抗原性の確認)
上記したペプチド化合物 (1) 、 (2) および (3) の配列は、 HCVのNS 4領域のアミノ酸配列からの抗原部位の抽出に基づいて見出したものである (後 述の実施例 1を参照) 。 本発明者は、 更に、 これらのペプチド化合物 (1) 、
(2) および (3) を用いた酵素免疫測定法 (E L I S Aないし E I A) により H C Vgenotypeの検査を行い、 別途 H C Vgenotypeの判定を行つた患者の検体を 用いて、 その特異性を確認した (後述の実施例 4および 5を参照) 。
(他の抗原べプチド化合物)
上述したペプチド化合物 (1) 、 (2) およびノ又は (3) (いずれも HCV の NS 4領域に対応する配列) を用いることにより、 後述するように serotypeの 判定が充分可能であるが、 serotype判定の一層の精度向上ないし適用範囲拡大の 点からは、 上記ペプチド化合物 (1 ) 、 (2) および 又は (3) と、 他の抗原 ペプチド化合物とを組合わせることが好ましい。 このような 「他の抗原ペプチド 化合物」 としては、 下記のペプチド (4) 〜 (9) が挙げられる。
l i e- l i e- L e u- S e r - G l y- A r g- P r o- A l a- l i e- V a 1 - P r o- A s p- A r g - G 1 u- L e u- L e u- T y r - G 1 n- G 1 u- P h e- A s p- G 1 u - M e t - G 1 u - G 1 u - C y s - A 1 a - S e r- H i s - L e u- P r o- T y r- I l e- G l u- G l n- G l y-
Me t- G l n- L e u- A l a (4) (c k k一 n l、 NS 4 領域に対応)
(—文字表記 : I I L S G RPA I V PDRE L LYQE F DEMEE CASHL PY I EQ GMQ LA)
L e u- H i s - V a 1 - A s n - G i n- A r g - A 1 a - V a 1 - V a 1 - A 1 a - P r o- A s p- L y s - G l u- V a 1 - L e u- T y r - G 1 u- A 1 a - P h e- A s p- G l u- Me t - G l u- G l u- C y s - A 1 a - S e r - A r g - A 1 a - A 1 a - L e u- I 1 e - G l u- G l u- G 1 y-
G l n- A r g- I l e- A l a (5) (c k k— n 2、 NS 4 領域に対応)
(—文字表記 : LHVNQ RAVVA PDKEV LYEAF DEMEE CASRA A L I E E GQR I A)
Cy s_ Th r- Th r- H i s - H i s- V a l - S e r- P r o- A s p- A 1 a - A s - L e u- I 1 e - G 1 u - A 1 a - A s n - L e u- L e u-
T r p- A r g (6) (c k k一 n 3、 N S 5領域に対応)
(一文字表記 : CTTHH V S PDA DL I EA N L LWR)
C y s - T h r - T h r - H i s - G 1 y- L y s - A 1 a - T y r - A s p- V a 1 - A s p - M e t - V a 1 - A s p- A 1 a - A s n- L e u- P h e-
M e t - G 1 y (7) ( c k k-n 4 NS 5領域に対応)
(—文字表記 : CTTHG KAYDV D VD A NLFMG)
G l y- A r g- A r g- G l n- P r o- I 1 e - P r o- L y s - A 1 a - A r g- A r g- P r o- G 1 u- G 1 y - A r g - T h r - T r p - A 1 a -
G i n- P r o ( 8 ) (c k k一 c l、 c o r e領域に対応)
(—文字表記 : GRRQP I PKAR R P EGR TWAQ P)
G l y- A r g- A r g- G l n- P r o- I 1 e - P r o- L y s- A s p- A r g- A r g- S e r- Th r - G 1 y- L y s - S e r- T r p - G 1 y-
L y s - P r o (9) (c k k一 c 2、 c o r e領域に対応)
(一文字表記 : GRRQP I PKDR RS TGK SWGKP)
上記ペプチド (4) 〜 (9) についても、 N S 4領域対応のペプチド ( 1 ) 、 (2) ないし (3) の場合と同様にして、 抗原性の確認、 製造等を行うことがで さる。
また、 本発明者の知見によれば、 上記式 (4) 〜 ( 9) で示されるアミノ酸 4 0個または 20個からなる配列を構成する種々の長さのァミノ酸配列であって、 少なく とも 6個の連続したアミノ酸を含む配列は、 本発明においてペプチド (4 ) 、 (5) 、 (6) 、 (7) 、 (8) および Z又は (9) のいずれかと同様に、 抗原べプチドとして好適に使用可能である。
このような種々の長さのアミノ酸配列 (ァミノ酸 6個以上) としては、 例えば、 下記の配列が挙げられる。
上記ペプチド化合物 (4) に含まれるアミノ酸配列
l i e- l i e- L e u- S e r- G l y- A r g- P r o- A l a- I 1 e- V a 1 - P r o- A s p- A r g - G l u- L e u- L e u- Ty r - G 1 n- G 1 u- P h e- A s p- G l u- Me t - G l u- G l u- C y s- A l a- S e r- H i s- L e u (10)
(—文字表記: I I L S G R P A I V PDRE L LYQE F DEMEE C A S H L)
ει
> ■σ yielr→n Mlu《u Po G Glu Cs A r-
E M E P Y E C A
Figure imgf000015_0001
l G lieius Lu P Gn Metlul S rie G G C H
E 【 E M Ckk E E Snl C4l yylluu Mro T Gsa S一r G C一 u P
〔k K Akn E一一cr」 S ^一 Y C-一 yyellel Lu Tur G G n G M
Q L K P Y ypilihe Gl u Aa Gn Pn_u G s As G M
Q K E E F D M yl U> Ginu G H Gle一 s utlu A i L Glue G C n s- 。l G Mu
Q G M E广 £ C H E
一 一 *- ¾ *< ^ >- · 、
Π拏】 IfZ0/96dT/13d 86180 6 O 上記ペプチド化合物 (5) に含まれるアミノ酸配列
L e u- H i s - V a 1 - A s n - G i n- A r g- A 1 a- V a 1- V a 1 - A 1 a - P r o- A s p- L y s - G 1 u- V a 1 - L e u- T y r - G 1 u- A 1 a - P h e - A s - G 1 u - M e t - G 1 u- G l u- C y s - A 1 a - S e r- Ar g- A l a (1 1)
(—文字表記 : LHVNQ RAW A PDKE V L YEAF DEME E C A S R A)
ST
Figure imgf000017_0001
m 5 n
G C=
C*1 E 3
CO
tn σ
cn C •D
- > - 5
^
3
t 3C an
CD
CP
- 5
c= 1=
> CO CO ¾ DO C
c=
pyullul G二 G G A Al Asnu G Gi M Glu C
> - > ¾
tn E E G P Λ M EE D EC
- > - J > - > 〕 2k kコ-
^
r-
Figure imgf000017_0002
cn JO
【z拏】 ^^0/96<^13<1 86180/ム 6 OAV 上記ペプチド化合物 (6) に含まれるアミノ酸配列
V a 1 - S e r - P r o- A s p- A l a- A s p- L e u- I 1 e - G 1 u
A 1 a - A s n - L e u- L e u- T r p- A r g (1 2)
(—文字表記: VS PDA DL I EA NL LWR)
Z0/96K«71〕 -
usy Β·ιγ u\' aii ΐΐθ'ΐ dsy Β{ γ dsy ο jas \ s ι n
N v a i T n v a d S A ii CSG"-^^^] na^ USY Bi v "ID a I I dsy B ] y dsy o J j J as 入 s jjj sju
N Y H l T Q Y a d S A H ll [ CU -
»1 Y ui9 3 Ti9i dsy ειγ dsy OJJ J3S l^A
v a i i a v a d s ^ [L U- ^ ]
3 J v (IJ丄 η3η naq usy D I γ 3 \ naq dsy
)l M 1 1 N V 3 1 i a [ -5 Πつ]
¾1Y dsy oj Jos ド Λ s |H il nは SXQ
Y (l a S Λ H H 1 .L 3 [ΐ 11-^^3] J I|丄 J IJ丄 sズ 3 丄 丄 :)
Figure imgf000019_0001
SSN
上記ペプチド化合物 (7) に含まれるアミノ酸配列
L y s- A 1 a - Ty r - A s p- V a 1- A s p- Me t - V a 1 - A s p
A 1 a - A s n- L e u- P h e- Me t - G 1 y · (1 3)
(一文字表記: KAYDV DMVDA NL FMG)
【^
usy π(γ dsy 】3jn Usy 【 ΒΛ dsy 丄 Β【γ sA^ X j y
Ν Υ α Λ Η Ο Λ Π 人 Y )( [) [S u一 ;)
"sy «|Y dsy ιυ八 ju dsy \ > dsy は ιηγ sX-j λιο s jll
T N Y a A H a A Q A V O U [ ^-W
Υ (1 Λ 1 (1 Λ α λ Υ [G U - ]
Αΐθ 13Η 3 d noi USY Ely dsy \v 3f( dsy
n n ;i Ί N Y' a Λ H a [ u - ] l»A (Isv J MX CIV sA'i λΐο s JH _nは JIは
Λ (1 A V 0 11 1 X 3 [ひ u— Wつ] λ10 » d η»Ί usy Β\γ dsy dsy J BA dsy Ji|l Bjy Ajo s m JI!丄 J 丄 sA;)
上記ペプチド化合物 (8) に含まれるアミノ酸配列
A r g - G 1 n - P r o- I 1 e - P r o- L y s- A l a- Ar g- A r g- P r o - G 1 u- G 1 y- A r g- Th r - T r p - A 1 a - G i n- P r o (—文字表記 : RQP I PKAR RPEGR TWAQP)
上記ペプチド化合物 (9) に含まれるアミノ酸配列
G i n - P r o- I 1 e- P r o - L y s - A s p- A r g- A r g- S e r- Th r - G 1 y- L y s- S e r - T r p- G 1 y- L y s - P r o
(—文字表記 : QP I PKDR RS TGK SWGKP)
本発明者の知見によれば、 上記した (4) ないし (9) のいずれかの配列を含 むペプチド (アミノ酸 6個以上からなる) も、 上記 (4) ないし (9) と同様に 抗原として好適に使用可能である。 このようなべプチドを構成するアミノ酸の数 は、 化学的に合成する場合には 40個以下であ—ることが好ましく、 リ コンビナン ト法を用いて得る場合には 1 00個以下であることが好ましい。
本発明者の知見によれば、 上記ペプチド化合物 (1 ) 〜 (3) をそれぞれ単独 で抗原として用いる場合、 serotype判定の精度の点から、 抗原として好ましい順 は以下の通りである。 この欄の記載においては、 「 ( 1 ) 、 (2) 、 (3) 、
(4) およびノ又は (5) J をまとめて 「NS 4」 と表し、 Γ (8) および 又 は (9) 」 をまとめて 「c o r eJ と表し、 Γ (6) および 又は (7) j をま とめて 「N S 5」 と表す。
好ましい順 : c o r e〉NS 4〉NS 5
—方、 上記べプチド化合物 c 0 r e、 N S 4、 および N S 5のいずれか 2種類 を組合わせて抗原として用いる場合、 serotype判定の精度の点から、 抗原として 好ましい順は以下の通りである。
好ましい順 : (c o r e) + (N S 4 ) > (c o r e) + (N S 5 )
また、 上記べプチド化合物 c o r e、 N S 4、 および N S 5のいずれか 3種類 を組合わせて抗原と して用いる場合、 serotype判定の精度の点から、 抗原と して 好ましい順は以下の通りである。
好ましい順 : (c o r e ) + (N S 4 ) + (N S δ ) > (c o r e) + (N S 5) + (N S 4 ) (HCV抗体の測定方法)
上記した抗原べプチド化合物の HCV抗体との特異的結合性を利用して、 試料 ないし検体中の HCV抗体を免疫学的に測定することが可能である。 本発明にお いて使用する免疫学的測定法は特に制限されないが、 例えば、 公知のィムノアツ セィ法を特に制限なく使用することが可能である。 このようなィムノアツセィ法 としては、 例えば、 酵素免疫測定法、 放射免疫測定法 (R I A) 、 蛍光免疫測定 法 (F I A) 等が使用できる。 このィムノアッセィにおいては公知の測定技術
(例えば、 競合法、 二抗体法、 サンドイッチ法等) を特に制限なく使用すること が可能である。 このような公知の測定技術に関しては、 文献 (E I Aに関しては、 例えば、 石川榮治 「酵素免疫測定法」 (第 3版) 、 1 80頁、 医学書院) を参照 することができる。 .
本発明によれば、 上記抗原べプチド化合物を用いて HCV抗体を免疫学的に測 定することにより、 検体の HCV抗体の種類 (serotype) を判定することができ る (例え ίま *後述するように、 H C Vの serotypeカ group I 、 group II、 なレヽし gr oup III のいずれであるか判定できる) 。 後述するように、 HC Vserotypeの gr oup I は HCV genotype Iおよび IIに対応し、 H C V serotypeの group IIは HC Vgenotype IIIおよび IVに対応し、 H C V serotypeの group III は HCVgenoty peVに対応するため、 簡便な HC Vgenotypeの判定が可能となる。
上記ィムノアッセィにおいては、 必要に応じて、 上記抗原ペプチド化合物を担 体 (ないし支持体) に結合ないし固相化して、 その HCV抗体との特異的結合性 を利用して、 H C V抗原に対する抗体の種類 (すなわち H CVの serotype) を判 定することができる。 この際の担体ないし支持体としては、 ゥシ血清アルブミン (B SA) 、 好ましくは分子量 5万から 10万程度のポリペプチド、 マイクロプ レー トのゥエル、 好ましくは直径 0. 1 μ mから 6 mm程度のポリスチレンボー ル (ないしポリ スチレンビーズ) 等が好ましく用いられる。
上記ペプチド ( 1 ) 〜 (3) は、 上述したように H C V抗体測定に好適に用い ることができるが、 更には、 例えば HC Vに対するヮクチン製造用の抗原ないし 免疫原として用いることも可能である。 この場合のワクチンは、 例えば、 遺伝子 工学的手法を用いて作製することができる (リ コンビナン ト法) 。 以下、 実施例に基づき本発明を更に具体的に説明する。
実施例 1
(Hydrophilicity Valueによる抗原部位の特定)
Geoffrey RS, Nature, 30 2 , 490-4 9 5 ( 1 98 3) で合成された 抗原性を有するペプチドの配列と、 HCVの遺伝子配列 (第 26回日本肝臓学会 予稿集、 1 9 90年;第 4 9回日本癌学会予稿集、 1 9 9 0年; Proc. Natl. Ac ad. Sci. USA, 8 8, 24 5 1-24 5 5, 1 99 1 ; Journal of virology,
6 5 (3) , 1 1 05〜 1 1 1 3, 1 9 9 1 ; Journal of General Virology,
72, 26 9 7-2704, 1 9 9 1 ; Virology, 1 8 8 , 3 3 1-34 1 , 1 9 92 ) とに基づき、 HCVの非構造領域および構造領域のアミノ酸配列を決定 した。
このように求めたアミノ酸配列に基づき、 その抗原部位を Hopp TP, Proc. Nat 1. Acad. Sci. 7_8., 3 8 24-3 8 2 8 ( 1 9 8 1 ) の方法で算出した。 より 具体的には、 各アミノ酸の Hydrophlicity Value を用い、 以下のようにして行つ た。
上記により求めた HCVを構成するアミノ酸配列に基づき、 連続する 6個のァ ミノ酸の Hyrdrophilicity Valueを合計した。 この計算を H C Vアミノ酸配列の 全領域について行い、 親水性および疎水性の強度を算出した。 親水性が高い部分 を、 抗原性を示す部位とした。
この際、 Jack K., Mol. Biol. 1 5 7, 1 0 5 ( 1 9 8 2 ) に示されている H ydropathy Value や Alan MS. , Science, 2 2 7, 4 2 9 ( 1 9 8 5) に示され ている Antigenicity Value 等も、 上記 Hydrophi 1 ici ty Valueと同様に算出する ことが可能であった。
上記 Hydrophilicity Valueを用いた計算により求めた結果を図 1 ( c o r e領 域) 、 図 2 (N S 4領域) および図 3 (NS 5領域) のグラフに示す。
上記図 1で得られた結果に基づいて C型肝炎の抗原となり得る領域を抽出し、 更に、 このようにして求めた領域のうち、 genotype Iおよび genotypellで共通の アミノ酸配列を有する領域と、 genotype IIIおよび genotype IVで共通のァミノ 酸配列を有する領域とを求めた。 更に、 genotype I、 II、 III および IV型とは異 なる V型のアミノ酸配列を有する領域をも求めた。
この結果、 このような条件を満たした抗原のアミノ酸配列として、 NS 4領域 に関して下記の c k k— n 5 1、 c k k一 n 5 2、 および c k k— n 53が求め られた。
L e u- H i s - I 1 e - A s n- G i n- A r g - A 1 a - V a 1 - V a 1 - A 1 a - P r o- A s p- L y s - G 1 u - V a 1 - L e u- T y r - G l u- A l a- P h e- A s p- G l u - Me t - G l u- G l u- C y s - S e r- G 1 n- A 1 a - A r g - P r o- T y r - I 1 e - G l u- G i n- A r g - G 1 n- V a 1 - I 1 e - A 1 a- H i s - G 1 n- P h e - L y s - G 1 u- L y s- V a 1 - L e u (1 ) c k k— n 5 1
G 1 u- A 1 a - P h e - A s p- G 1 u- Me t - G l u- G 1 u- C y s - S e r - G l n- A l a- A r g- P r o - T y r- I l e- G l u- G l n- A r g- G l n- V a l - l i e- A l a- H i s- G l n- P h e- L y s - G l u- L y s- V a l - L e u (2) c k k - n 5 2
S e r- G l n- A l a- A r g- P r o- T y r - l i e- G l u- G l n- A r g - G l n- V a l - I 1 e - A 1 a - H i s - G i n- P h e- L y s -
G l u- L y s - V a l - L e u (3) c k k— n 5 3
実施例 2
(C型肝炎の抗原の作製)
上記した H C Vの抗原ペプチド化合物 (c k k— n 5 1 ) 、 ( c k k一 n 5 2) 、 (c k k— n 5 3) 、 ( c k k一 n 1 ;構造式 ( 4 ) ) および ( c k k— n 1 ;構造式 (5) ) を以下に示す方法で合成した。
ペプチドの合成は、 自動ペプチド合成機 Applied Biosystems 4 3 OA Peptide Synthesizer を用い、 t— B o c アミノ酸の対称性無水物を試薬と して用いて 行った。 得られた合成べプチドをァニソール ' ジメチルザルフアイ ド 'パラチォ ク レゾール内に溶解した後、 フッ化水素酸の存在下で、 0〜5°Cで 1時間反応さ せて脱保護を行った (S. Sakakibara, Bull. Chera. So Jpn. 4 0 , 2 1 64 ( 1 9 6 7 ) 参照) 。
脱保護により得られた粗結晶を 2 Ν酢酸に溶解してエーテルで抽出し、 抽出物 を凍結乾燥した。 この凍結乾燥物を HP LC (高性能液体クロマトグラフィー) を用いて精製した。
この HP L C精製は、 カラム (SISEIDO カプセルパック C 1 8 S G 1 20、 直 径 46 mm、 長さ 2 50 mm) を用い、 純水中に 0. 1 %トリフルォロ酢酸 (Tr ifluoroacetic acid; T F A) と 5 %ァセ トニ ト リル (CH3 CN) が含まれる 溶液と、 純水中に 0· 1 %T F Aと 50 %ァセトニト リルが含まれる溶液とを用 い、 流量 1 2m 1 /m i nで移動相にグラジェントをかけることによって行った。 この際に得られたクロマトグラムを図 4 ( c k k - n 5 2) に示す。
上記と同様にして、 合成抗原べプチド c k k一 n l (40) 、 n 2 (40) 、 n 5 1、 および n 5 3を用いて精製した。 この際に得られたクロマトグラムを図 5 ( c k k - n 5 1 ) に示す。
上記と同様にして、 下記に示す合成抗原ぺ チド c k k— n 3および c k k一 n 4 (NS 5領域ペプチド) ;および c k k一 c lおよび c k k一 c 2 (2 0ァ ミノ酸からなる c 0 r e領域べプチド) を、 それぞれ合成した。
I 1 e - I 1 e - L e u- S e r - G l y- A r g- P r o- A 1 a - I 1 e- V a 1 - P r o- A s p- A r g- G l u- L e u - L e u- T y r- G l n- G 1 u - P h e- A s p- G 1 u - M e t - G 1 u - G 1 u - C y s - A 1 a - S e r- H i s - L e u- P r o- T y r - I 1 e - G l u- G l n- G l y-
Me t - G l n- L e u- A l a (4) (c k k一 n l、 N S 4 領域に対応)
(—文字表記 : I I L S G R PA I V PDRE L LYQE F D EME E CASHL P Y I E Q GMQ LA)
L e u- H i s - V a 1 - A s n - G i n- A r g - A 1 a - V a 1 - V a 1 - A 1 a - P r o- A s p- L y s - G 1 u - V a 1 - L e u- T y r - G l u- A 1 a - P h e- A s - G 1 u - Me t - G 1 u - G 1 u - C y s - A 1 a - S e r - A r g- A l a- A l a - L e u- I 1 e - G l u- G l u- G l y -
G l n- A r g- I l e- A l a ( 5) (c k k— n 2、 N S 4 領域に対応)
(—文字表記 : LHVNQ RAW A PDKEV LYEAF DEME E CASRA A L I E E GQR I A)
C y s - Th r - Th r - H i s - H i s - V a 1 - S e r- P r o- A s p- A 1 a - A s p - L e u- I 1 e - G 1 u- A 1 a - A s n- L e u- L e u-
T r p- A r g -- (6) ( c k k一 n 3、 N S 5領域に対応)
(—文字表記: CTTHH VS PDA DL I EA NL LWR)
C y s - Th r - Th r- H i s - G 1 y- L y s - A 1 a - T y r - A s p- V a 1 - A s p- Me t - V a 1 - A s p- A 1 a - A s n- L e u- P h e -
Me t- G l y (7) (c k k一 n 4、 NS 5領域に対応)
(—文字表記: CTTHG KAYDV DMVDA NL FMG)
G 1 y- A r g- A r g- G i n- P r o- I 1 e - P r o- L y s- A l a- A r g- A r g- P r o- G l u- G l y- A r g- Th r - T r p- A 1 a -
G i n- P r o (8) (c k k— c l、 c o r e領域に対応)
(一文字表記 : GRRQP I PKAR RP EGR TWAQ P)
G l y- A r g- A r g- G i n- P r o- l i e - P r o- L y s- A s p- A r g - A r g - S e r- Th r- G 1 y- L y s - S e r - T r p - G l y -
L y s - P r o (9) (c k k一 c 2、 c o r e領域に対応)
(一文字表記 : GRRQP I PKDR RS TGK S WGK P)
上記した種々の抗原べプチドと、 HC Vの抗原領域との関係を図 6および図 7 に模式的に示す。
実施例 3
(ELISA 用プレー卜の作製)
実施例 2で得た N S 4領域の抗原ペプチド c k k一 n 1を、 0. 1 5MN a C 1一 0 · 1 OMN a 2 H P O4 - N a H2 P O4 · 2 H 2 O緩衝液 ( P B S ) P H 7. 0に、 1 i gZm 1の濃度となるように溶解した。 このペプチド溶液を、 96 -ウェルマィクロブレ一 ト (商品名 : ELISA PLATE 6 866 7 、 NUNC 社製) に 1ゥエルあたり 1 00 μ 1ずつ分注し、 3 7。Cで 60分間静置して上記 抗原べプチドをマイクロプレートに固相化した。
余剰の前記べプチド溶液を除去した後、 マイクロプレートを 0. 0 1MP B S ( H 7. 0) で 3回洗浄した。 洗浄液を除去した後、 濃度 0. 1 %のゼラチン の 0. 0 1 MP B S ( p H 7. 0) 溶液を 1ゥエルあたり 3 0 0 μ 1ずつ分注し、 3 7^ 6 0分間静置してゼラチンをプレート上にコーティングした。 余剰の前記 ゼラチン溶液を除去した後、 濃度 0. 0 5 %の Tw e e η 2 0を含有する 0. 0 1 MP B S溶液 (ρ Η 7. 0 ) で 3回洗浄した。
このようにしてゼラチンをコーティングしたプレートを 2 5 °Cで 6時間乾燥し た後、 4°Cで検体分析時まで保存した。
実施例 4
(検体の分析)
検体 (2 0種類) は、 予め株式会社エスァ一ルエル八王子ラボラ トリーにおい て、 文献記载 (Okaraoto H.、 肝胆膝, 2 4 , 7-1 4 ( 1 9 9 2 ) ; Chayaraa, K. , Tsubota, A. , Arase, Y. , et al. , J. Gastroenterol. Hepatol. 8, 1 5 0〜 1 5 6 ( 1 9 9 3 ) ) の P C Rを用いる方法を用いて H C V genotype の検査を 行い、 H C Vgenotypeの判定を得た。
このようにして P C R法により H C Vgenotypeの判定を行った検体を用いて、 以下のようにして実施例 2で得た抗原ペプチドの特異性を確認した。 この検討に おいては、 実施例 3で作製した抗原ペプチド固相化マイクロプレートを用い、 以 下のような手順で分析を行った。
上記した各検体をそれぞれ 0. 0 1 % B S Aおよび 0. 0 5 % Tw e e n 2 0 を含有する 0. 0 1 MP B S ( p H 7. 0 ) で 5 0倍に希釈して、 各ゥエルに 1 0 0 μ 1ずつ分注して、 上記抗原ペプチドと 3 7°Cで 6 0分間反応させた (抗原 ペプチド一 H C V抗体の反応) 。
反応後、 マイクロプレートを 0. 0 5 %T w e e n 2 0含有 0. 0 1 MP B S ( p H 7. 0 ) で 5回洗浄し、 洗浄液を除去した後、 濃度 1 g / 2 0 m 1 のペルォキシダ―ゼ標識抗ヒ ト I g G抗体 (K P L社製) を 1 0 0 1ずつ各ゥ エルに注入し、 3 7°Cで 6 0分間反応させた (H C V抗体一 P O D標識抗ヒ ト I g G抗体の反応) 。
反応後、 マイク ロプレートを 0. 0 5 %T w e e n 2 0含有 0. 0 1 M P B S ( H 7. 0 ) で 5回洗浄し、 洗浄液を除去した後、 各ゥエルに 0. 0 2 3 %過 酸化水素、 および 0. 0 0 5 % o—フヱニレンジァミ ン (O P D) を含有する 0. 1Mクェン酸一 N a 2 HP〇4 緩衝液を 1 00 μ 1ずつ分注し 3 7°Cで 30分間 反応させた (ペルォキシダ一ゼの活性測定反応) 。 反応後、 5N硫酸を 50 μ 1 ずつ添加して反応を停止させ、 波長 4 9 1 nmの吸光度 (AB Sないし OD) を 分光光度計 (商品名 : プレー トリーダ一、 日本インターメッ ド社製 N J - 200
1 ) で測定した。
実施例 5
(抗原べプチド c k k一 n 2、 n 5 2を用いた検体の測定)
実施例 3で用いた抗原べプチド c k k一 n 1に代えて、 実施例 2で得た抗原べ プチド c k k一 n 2又は n 5 2を用いた以外は、 実施例 3と同様にして抗原ぺプ チド c k k一 n 2または n 5 2を固相化したマイクロプレートを作製した。 この ようにして得たマイクロプレートを用いた以外は実施例 4と同様にして、 予め H CV genotypeの判定を行った検体 ( 20種類) .を分析した。
次いで、 上記実施例 4および本実施例で得られた吸光度の測定データに基づい て、 serotype判定を行った。
この際の serotype判定においては、 抗原ペプチド c k k— n 1 (serotype 1に 対応するペプチド) を用いた場合の吸光度と、 抗原ペプチド c k k— n 2 (sero type2に対応するペプチド) を用いた場合の吸光度と、 抗原ペプチド c k k一 n 5 2 (serotype3に対応するペプチド) を用いた場合の吸光度とを比較して、 い ずれか一つの吸光度の値が、 他の吸光度の値の 1. 5倍以上であった場合に、 吸 光度が高かったもののタイプ ( c k k一 n 1であれば serotype 1、 c k k - n 2 であれば serotype 2、 c k k一 n 5 2であれば serotype 3 ) とした。 ここで用い た判定方法を下記の表 5にまとめて示す。
【表 5】
サンブル
抗原 1 2 3 4 5 ckk- -nl 〇 ckk- ■n2 〇 ckk- •n52
Figure imgf000030_0001
〇 〇 秦 〇 判定 1 2型 3型 1+2+3 判
> >〇の OD値は 1.5倍以上の場合秦の抗原の型と判定する,
»陽性 〇陰性
上記により得られた serotype判定結果を、 下記表 6 (検体の希釈率は 5 0倍) に示す。
NS4 NS5 core iff
1
Figure imgf000032_0001
*t * rJ
2 2
3 K
Λ 1 £s
Π 2 3
6 2 4
7 2 3
8 1 +2 3
9 1 2
10 0 3
11 0 4
12 1 2
13 1 2
14 0 0
in 1 0
16
Figure imgf000032_0002
拳 書 〇 〇 P 〇 2 3
17 書 〇 〇 〇 〇 秦 〇 1 2
18 〇 〇 〇 o 〇 o 鲁 2 2
19 1 2
20 〇
Figure imgf000032_0003
〇 〇 〇 謇 3 5
锵 6 第 1列 :検体番号
第 2〜 4列: N S 4領域抗原べプチド c k k一 n 1 (第 2列、 N S 4— 1 ) 、 c k k - n 2 (第 3列、 NS 4— 2) 、 および c k k一 n 5 2 (第 4列、 NS 4 - 3) のそれぞれを用いた場合の検体の陽性 (き) 、 または陰性
(〇) の区別。 上記表 6 (N= 20) の serotype判定結果中、 " 1 " は 1型、 " 2" は 2型、 " 0" は陰性 (判定不能) 、 " 1 + 2" は混在型 (すなわち、 いずれか一方の吸光 度の値も、 他方の吸光度の値の 1. 5倍未満であり、 OD値が cutoff値以上であ つた場合) 、 " 0" は判定不能を示す。
上記で得られた serotype判定の結果をまとめて、 genotype判定結果 (図 5 (表 1 ) 中、 第 9列" genotype" に示す) と比較したところ、 以下の対応関係が得ら れた (Hepatology, 1 6 (4 ) , 8 8 6, 1 9 9 2参照) 。
く serotypeと genotypeとの対応 >
genotype判定 serotype判定
(P C R) (NS 4抗原)
I group I
II group I
III group II
IV group II
V group III .
(表中、 「genotypeV」 は、 P C R法による genotype判定において V型と判定さ れたものを示す。 )
実施例 6
(抗原べプチド c k k— n 3および c k k一 n 4を用いた検体の測定)
実施例 3で用いた抗原べプチド c k k一 η 1に代えて、 実施例 2で得た N S δ 領域の抗原べプチド c k k一 η 3および c k k— η 4をそれぞれ用いた以外は、 実施例 3と同様にしてそれぞれの抗原べプチドを固相化したマイク口プレートを 作製した。 このようにして得たマイクロプレートを用いた以外は実施例 4および 5と同様 にして、 予め H C Vgenotypeの判定を行った検体 ( 2 0種類) を分析した。
本実施例の方法による serotype判定においては、 実施例 5の場合と同様に、 吸 光度 ( c k k一 n 3 ) と、 吸光度 (c k k一 η 4 ) とを比較して、 いずれか一方 の値が他方の値の 1 . 5倍以上であった場合に、 吸光度の高い方のタイプ (c k k一 n 3の方であれば serotype 1、 c k k一 n 4の方であれば serotype 2 ) とし た。
上記により得られた serotype判定結果を、 前述した表 6の第 5〜 6列に示す。 本実施例で得られた serotype判定の結果をまとめて、 genotype判定結果と比較 したところ、 実施例 4および 5の結果と同様に、 以下の対応関係が得られた。 上記した表 6において、 各列のデータの意味は以下の通りである。
第 5〜 6列: N S 5領域抗原べプチド c k k一 n 3 (第 5列、 N S 5 — 1 ) 、 および c k k一 n 4 (第 6列、 N S 5 — 2 ) のそれぞれを用いた場合の 検体の陽性 (暴) 、 または陰性 (〇) の区別。
< serotypeと genotypeとの対応 >
genotype判疋' serotv卫 e判定
(P C R) (N S 5 )
I group I
II group I
III group II
IV group II
V group III
実施例 7
(抗原べプチド c k k一 c 1および c k k— c 2を用いた検体の測定)
実施例 3で用いた抗原べプチド c k k — n 1に代えて、 実施例 2で得た c 0 r e領域の抗原べプチド c k k — c lおよび c k k — c 2 (いずれもァミノ酸 2 0 個からなるペプチド) をそれぞれ用いた以外は、 実施例 3 と同様にしてそれぞれ の抗原べプチドを固相化したマイクロプレートを作製した。
このようにして得たマイクロプレートを用いた以外は実施例 4および 5と同様 にして、 予め HC Vgenotypeの判定を行った検体 ( 20種類) を分析した。
上記により得られた serotype判定結果を、 前述した表 6の第 7 ~ 8列に示す。 本実施例の方法による serotype判定においては、 実施例 5の場合と同様に、 吸 光度 ( c k k一 c 1) と、 吸光度 ( c k k一 c 2) とを比較して、 いずれか一方 の値が他方の値の 1. 5倍以上であった場合に、 吸光度の高い方のタイプ (c k k一 c 1の方であれば serotype 1、 c k k— c 2の方であれば serotype 2 ) とし た。
本実施例で得られた serotype判定の結果をまとめて、 genotype判定結果と比較 したところ、 実施例 4および 5の結果と同様に、 以下の対応関係が得られた。 上記した表 6において、 各列のデータの意味は以下の通りである。
第 7 ~ 8列 : c 0 r e領域抗原べプチド c k k一 c 1 (第 7列、 c o r e 一 1 ) 、 および c k k一 c 2 (第 8列、 · c o r e— 2) のそれぞれを用い た場合の検体の陽性 (秦) 、 または陰性 (〇) の区別。
第 9列 : serotype判定結果。
第 1 0列: genotype判定結果。
< serotypeと genotypeとの対 J¾、 >
genotype判疋 serotype判定
(P C R) (c o r e )
I group I
II group I
III group II
IV group II
V group III
上述したように本発明によれば、 従来の serotype判定方法では判定不能であつ た genotype V型も、 c k k— n 5 1又は c k k一 n 5 2を用いることにより、 se rotypelll 型として判定可能となった。
上述したように genotype Iおよび genotype IIは serotype I と良く相関し、 genotype IIIおよび enotype IVは serotype IIと良く 関し、 更に genotypeV は serotype IIIと良く相関していた。 産業上の利用可能性
上述したように本発明によれば、 HCVに固有の特定のアミノ酸配列を有す る抗原べプチド化合物およびこれを用いる HCV抗体測定方法が提供される。 本発明によれば、 交叉反応ないし非特異反応を抑制しつつ NS 4領域の感度を 向上させることにより、 検体の serotypeを簡便且つ正確に判定することが可能と なる。 したがって本発明によれば、 N S 4領域の感度を向上させた正確且つ簡便 な serotype判定に基づき、 例えば、 インターフヱロン治療の効果をあらかじめ予 測することが可能となる。
更には、 本発明による HCV抗体価測定に基づき、 C型肝炎の治癒ないし治療 経過を簡便に観察することが可能となる。 すなわち、 本発明によれば、 疫学的な 点からセロタイプを利用することが可能となり、 過去の感染 (NS 4領域の抗体 価) と、 現在の肝炎 (N S 4および/又は N S 5領域の抗体価) との関係につい ての知見を得ることも可能となる。
更には、 本発明によれば、 HCVの genotype I型および II型と、 genotypelll 型および IV型と、 genotypeV型との区別が可能な H C V抗体の簡便な測定を可能 とする HCV抗体測定用抗原が提供される。
更には、 本発明によれば、 HCVの genotype I型および II型と、 genotypelll 型および IV型と、 genotypeV型との区別が可能で、 しかも交叉反応ないし非特異 反応が抑制された HCV抗体の測定を可能とする HC V抗体測定用抗原が提供さ れる。
更には、 本発明によれば、 HCVの genotype I型および II型と、 genotypelll 型および IV型と、 genotypeV型との区別が可能な H C V抗体の簡便な測定法が提 供される。
更には、 本発明によれば、 HCVの genotype I型および II型と、 genotypelll 型および IV型と、 genotypeV型との区別が可能で、 しかも交叉反応ないし非特異 反応が抑制された HCV抗体の測定法が提供される。
更には、 本発明によれば、 H C Vの genotype I型および II型と、 genotypelll 型および IV型と、 genotypeV型との区別が可能な低コス 卜の HCV抗体の測定法 が提供される

Claims

言青 求 の 範 囲
1. 下記式 (1 ) ないし (3) からなる群から選ばれた配列に含まれるァミノ 酸配列であって、 連続した少なく とも 6個のァミノ酸からなる配列を含むことを 特徴とする抗原べプチド化合物。
L e u- H i s - I 1 e - A s n- G i n- A r g - A 1 a - V a 1 - V a 1 - A 1 a - P r o- A s p- L y s - G 1 u- V a 1 - L e u- T y r - G 1 u- A 1 a - P h e - A s p- G 1 u- Me t - G 1 u - G l u- C y s - S e r - G i n- A 1 a- A r g- P r o- T y r - I 1 e- G l u- G 1 n- A r g- G 1 n- V a 1 - I l e - A l a - H i s - G l n- P h e - L y s - G l u- L y s - V a l - L e u ( 1 )
G 1 u- A 1 a - P h e - A s p- G l u- M e t - G l u- G 1 u- C y s - S e r - G l n- A l a- A r g- P r o- T y r - I 1 e - G 1 u- G 1 n- A r g- G l n- V a l - I 1 e - A 1 a - H i s - G l n- P h e - L y s - G 1 u - L y s - V a 1 - L e u ( 2)
S e r - G i n- A 1 a - A r g - P r o- T y r - I 1 e - G 1 u- G 1 n- A r g- G l n- V a l - I 1 e - A 1 a - H i s - G i n- P h e - L y s- G 1 u - L y s - V a 1 - L e u ( 3)
2. 前記アミノ酸配列が、 下記式 (1 ) で示される配列である請求項 1記載の 抗原べプチド化合物。
L e u- H i s - I 1 e - A s n - G i n- A r g- A 1 a - V a 1 - V a 1 - A l a - P r o- A s p- L y s - G l u_ V a 1 - L e u- T y r - G l u - A 1 a - P h e - A s - G 1 u- M e t - G 1 u - G l u- C y s - S e r - G l n- A l a - A r g- P r o- T y r - I 1 e - G l u- G l n- A r g- G 1 n - V a 1 - I l e - A l a - H i s - G i n- P h e - L y s - G l u - L y s - V a 1 - L e u ( 1 )
3 , 前記アミノ酸配列が、 下記式 (2) で示される配列である請求項 1記載の 抗原べプチド化合物。
G 1 u- A 1 a - P h e- A s p- G l u- Me t - G l u - G l u- C y s- S e r- G l n- A l a- A r g- P r o- Ty r- l i e- G l u- G l n- A r g- G 1 n- V a 1 - I 1 e- A l a- H i s - G i n- P h e- L y s - G 1 u- L y s - V a 1 - L e u (2)
4. 前記アミノ酸配列が、 下記式 (3) で示される配列である請求項 1記載の 抗原べプチド化合物。
S e r - G i n- A l a - A r g - P r o- Ty r- I 1 e - G l u- G 1 n- A r g - G l n- V a 1 - I 1 e - A 1 a- H i s - G i n- P h e- L y s - G 1 u - L y s - V a 1 - L e u (3)
5. 化学的手法を用いて製造した請求項 1記載の抗原ぺプチド化合物。
6. 遺伝子工学的手法を用いて製造した請求項 1記載の抗原べプチド化合物。
7. 請求項 1に記載の抗原べプチドを担体に結合させ、 抗原—抗体反応を利用 して該ぺプチドに検体中の HCV抗体を結合させ、 更に抗原一抗体反応を利用し て該 HCV抗体に標識リガンドを結合させることにより、 上記検体中の HCV抗 体を測定することを特徴とする HCV抗体の免疫学的測定法。
8. 前記標識リガンドとして、 酵素で標識したリガンドを用いる請求項 7記载 の HCV抗体の免疫学的測定法。
9. 前記標識リガンドと して、 放射性物質で標識したリガンドを用いる請求項 7記載の HC V抗体の免疫学的測定法。
1 0. 前記標識リガンドとして、 蛍光物質で標識したリガンドを用いる請求項 7記載の H C V抗体の免疫学的測定法。
1 1. 請求項 1に記載の抗原べプチドから選択されたいずれか 2以上の抗原べ プチドを用いて、 HCVのセロタイブ (serotype) を判定する請求項 6記載の H CV抗体の免疫学的測定法。
1 2· 請求項 1に記載の H C Vの N S 4領域、 c o r e領域および N S 5領域 に対応する抗原べプチドから選択された、 異なる領域に対応する 2以上の抗原べ プチドを用いて、 HCVのセロタイブ (serotype) を判定する請求項 7記載の H C V抗体の免疫学的測定法 c
PCT/JP1996/002416 1995-08-31 1996-08-29 Composes a base de peptides antigeniques et procede de dosage immunologique WO1997008198A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96928683A EP0852234A1 (en) 1995-08-31 1996-08-29 Antigenic peptide compounds and immunoassay method
AU68371/96A AU6837196A (en) 1995-08-31 1996-08-29 Antigenic peptide compounds and immunoassay method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/223628 1995-08-31
JP22362895A JPH0967395A (ja) 1995-08-31 1995-08-31 抗原ペプチド化合物および免疫学的測定方法

Publications (1)

Publication Number Publication Date
WO1997008198A1 true WO1997008198A1 (fr) 1997-03-06

Family

ID=16801193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002416 WO1997008198A1 (fr) 1995-08-31 1996-08-29 Composes a base de peptides antigeniques et procede de dosage immunologique

Country Status (5)

Country Link
EP (1) EP0852234A1 (ja)
JP (1) JPH0967395A (ja)
KR (1) KR19990044211A (ja)
AU (1) AU6837196A (ja)
WO (1) WO1997008198A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2989120A4 (en) 2013-04-25 2017-04-19 Carmel-Haifa University Economic Corp. Synthetic anti-inflammatory peptides and use thereof
BR112020025764A2 (pt) 2018-06-19 2021-05-11 Biontech Us Inc. neoantígenos e usos dos mesmos

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505806A (ja) * 1992-03-06 1994-06-30 エヌ・ブイ・インノジェネティクス・ソシエテ・アノニム 免疫学的に重要なエピトープに相当するペプチドの決定方法、及び免疫学的に重要なエピトープに相当するビオチニル化ペプチド又は抗体の決定のための方法におけるその利用、その調製方法及びそれを含む組成物
JPH07501442A (ja) * 1991-11-21 1995-02-16 コモン サーヴィシス エージェンシー C型肝炎ウイルス検査
JPH07179493A (ja) * 1993-10-29 1995-07-18 S R L:Kk 抗原ペプチド化合物および免疫学的測定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501442A (ja) * 1991-11-21 1995-02-16 コモン サーヴィシス エージェンシー C型肝炎ウイルス検査
JPH06505806A (ja) * 1992-03-06 1994-06-30 エヌ・ブイ・インノジェネティクス・ソシエテ・アノニム 免疫学的に重要なエピトープに相当するペプチドの決定方法、及び免疫学的に重要なエピトープに相当するビオチニル化ペプチド又は抗体の決定のための方法におけるその利用、その調製方法及びそれを含む組成物
JPH07179493A (ja) * 1993-10-29 1995-07-18 S R L:Kk 抗原ペプチド化合物および免疫学的測定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BHATTACHERJEE, V. et al., J. GEN. VIROL., 76(7), (1995), p. 1737-1748. *
KATO, NOBUYUKI et al., BIOCHEM. BIOPHYS. RES. COMMUN., 181(1), (1991), p. 279-285. *
LIEVEN STUYVER et al., BIOCHEM. BIOPHYS. RES. COMMUN., 194(2), (1993), p. 635-641. *

Also Published As

Publication number Publication date
AU6837196A (en) 1997-03-19
KR19990044211A (ko) 1999-06-25
JPH0967395A (ja) 1997-03-11
EP0852234A1 (en) 1998-07-08

Similar Documents

Publication Publication Date Title
EP0318216B2 (en) NANBV diagnostics
US6416946B1 (en) Methods of typing hepatitis C virus and reagents for use therein
EP0642666B2 (en) Hepatitis c assay
CA2039481A1 (en) Peptides immunochemically reactive with antibodies directed against hepatitis non-a, non-b virus
JP4615567B2 (ja) C型肝炎ウイルス感染に関連する肝疾患の予後の予測
WO1997008198A1 (fr) Composes a base de peptides antigeniques et procede de dosage immunologique
US20060234214A1 (en) Methods of detecting hepatitis C virus
AU624105B2 (en) Nanbv diagnostics and vaccines
Buratti et al. Improved reactivity of hepatitis C virus core protein epitopes in a conformational antigen-presenting system
WO1995011918A1 (fr) Compose peptidique antigenique et methode de dosage immunologique
WO1996034013A1 (fr) Compose peptidique antigenique et methode de dosage immunologique
JPH04159298A (ja) Hcvペプチド
US20030108974A1 (en) Method for serological typing using type-specific antigens
US5635346A (en) Assay for Non-A Non-B hepatitis
JPH0591884A (ja) 非a非b型肝炎ウイルス関連抗原、抗体検出系、ならびにポ リヌクレオチド、ポリペプタイド
CA2162250C (en) Methods of typing hepatitis c virus and reagents for use therein
WO1994013700A1 (en) Peptides from the c33 region of hcv, antibodies thereto and methods for the detection of hcv
JPH07179493A (ja) 抗原ペプチド化合物および免疫学的測定方法
Saleh Study of proteins encoded by different fragments of C virus gene for detection hepatitis C infection
JPH04221398A (ja) 非a非b型肝炎ウイルスに対する抗体と免疫化学反応するペプチド
JPH04288097A (ja) Hcv非構造領域のペプチド
SE503627C2 (sv) Peptid, diagnostiskt antigen och förfarande för hepatit C diagnos

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS KE KG KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980701447

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996928683

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996928683

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1996928683

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980701447

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019980701447

Country of ref document: KR