[go: up one dir, main page]

WO1997009293A1 - Transformation de gaz naturel en hydrocarbures de poids moleculaire eleve - Google Patents

Transformation de gaz naturel en hydrocarbures de poids moleculaire eleve Download PDF

Info

Publication number
WO1997009293A1
WO1997009293A1 PCT/US1995/011249 US9511249W WO9709293A1 WO 1997009293 A1 WO1997009293 A1 WO 1997009293A1 US 9511249 W US9511249 W US 9511249W WO 9709293 A1 WO9709293 A1 WO 9709293A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
carbon dioxide
process according
water
hydrocarbons
Prior art date
Application number
PCT/US1995/011249
Other languages
English (en)
Inventor
Louis De Vries
Original Assignee
Louis De Vries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Louis De Vries filed Critical Louis De Vries
Priority to AU35048/95A priority Critical patent/AU3504895A/en
Priority to PCT/US1995/011249 priority patent/WO1997009293A1/fr
Publication of WO1997009293A1 publication Critical patent/WO1997009293A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/10Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with water vapour
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry

Definitions

  • the present invention overcomes this drawback of the K-E process and produces multicarbon hydrocarbons from natural gas. This is accomplished by using integrated effluent processing to provide a cyclic process wherein the by- product carbon dioxide of the K-E reaction is reacted with syn gas obtained by partial oxidization of natural gas to produce a mixture of carbon monoxide and water for further processing in the K-E reaction.
  • the resulting preferred process may be further characterized as a process for the production of multicarbon hydrocarbons from natural gas comprising the steps of: (a) oxidizing said natural gas in a partial oxidizer to produce a syn gas, (b) heating said syn gas at a temperature above 800° C in a first reactor with carbon dioxide, (c) reacting said reaction product of said first reactor in contact with a metal catalyst in a second reactor, (d) removing the hydrocarbons and excess water from the reaction product of the second reactor, (e) returning at least a portion of the remainder of the reaction product from the second reactor back to the oxidizer and (f) separating the desired hydrocarbon product from the water phase.
  • the hydrocarbon product of the second reactor contains a range of hydrocarbon molecules having from 1 to over 20 carbon atoms depending on the reaction conditions.
  • the low boiling molecules may be allowed to remain in the gas phase of the product stream and returned to the first reactor along with the carbon dioxide.
  • the carbon dioxide and any low molecular weight hydrocarbons are returned to the first reactor via the partial oxidizer. In this way the low molecular weight hydrocarbons are reoxidized to syn gas and fed to the first reactor.
  • the desired ratio of the two reactants in the first reactor is maintained by determining the amount of carbon dioxide in the syn gas feed stock and adjusting the amount of carbon dioxide returned from the second reactor back to the first reactor to allow for any carbon dioxide in the syn gas feed.
  • the desired ratio is also maintained by recycling the remainder of the reaction product from the first reactor, after removing carbon monoxide and water, back to the first reactor.
  • the recycle stream from the first separator is mainly hydrogen and carbon dioxide, the relative amounts of each depending on the operating mode selected.
  • the amounts of hydrogen and carbon dioxide in this recycle stream are essentially equal.
  • an excess mode all of the excess gas is present in the recycle stream along with any unreacted species.
  • steady state operation is obtained by charging the syn gas at a constant rate.
  • carbon dioxide contained in the natural gas feed to the oxidizer will contribute that much to the total carbon dioxide concentration in the first reactor.
  • Carbon dioxide prepared by completely oxidizing natural gas with pure oxygen is another source. Excess hydrogen is obtained by increasing the amount of syn gas fed to the first reactor, or limiting the amount of carbon dioxide charged to the first reactor.
  • the remainder of the reaction product from the second reactor after separation of the hydrocarbons and water is a gas, and is essentially carbon dioxide with small amounts of hydrogen and methane.
  • This gaseous material is retumed to the first reactor, preferably via the oxidizer.
  • the amount retumed depends on the amount of carbon dioxide in the natural gas feed stock. As the concentration of carbon dioxide in the natural gas increases, the amount of the gaseous material returned to the first reactor or to the oxidizer, decreases until the two quantities balance at about 66% carbon dioxide in the natural gas.
  • any low molecular weight hydrocarbons are oxidized to syn gas and most of the carbon dioxide passes through unchanged. It is known that the presence of carbon dioxide in a partial oxidizer limits the formation of soot.
  • syn gas containing hydrogen and carbon monoxide in a ratio of 1: 1 to 3:1, preferably 2: 1.
  • gases may be present in the syn gas feed, for example, carbon dioxide, nitrogen, etc.
  • sulfur-containing gases can not be tolerated in the catalyzed second reaction zone and must be removed from the process stream prior to that time. This separation may be effected before or after the oxidizer, or after the first reactor.
  • equation (2) there is a 1:1 ratio of hydrogen to carbon dioxide
  • equation (3) there is a 4: 1 excess of hydrogen over carbon dioxide in the first reactor
  • equation (4) there is an 4: 1 excess of carbon dioxide over hydrogen in the first reactor:
  • the feed stock to the second reactor preferably has a carbon monoxide: hydrogen ratio greater than 4: 1, preferably greater than 9: 1.
  • Iron based catalysts are superior to the cobalt based catalysts in some respects, i.e. under identical conditions the reaction rate is higher for the iron catalyst.
  • the iron catalyst is easily oxidized by excess water and the ratio of carbon monoxide: water must be 2: 1 or greater. Iron catalysts are much more sensitive to carbon dioxide contamination because they are oxidized by carbon dioxide.
  • the reaction product mixture from reactor 2 is passed via line 12 to a separator 3.
  • the gaseous carbon monoxide is removed from separator 3 via line 13.
  • the water, hydrogen and carbon dioxide from separator 3 are removed via line 14 and charged to condenser 4.
  • the liquid water formed within this condenser is removed via line 15, and after revaporization in vaporizer 22, it is removed through line 19 and is combined with the carbon monoxide in line 13 and then charged to reactor 5 via line 16.
  • an iron catalyst is used in reactor 5
  • half of the water remains in vaporizer 22.
  • a cobalt catalyst is used therein, all of the water is removed and charged to reactor 5 via line 19. Any excess water remaining in vaporizer 22 is removed via line 21.
  • the hydrogen and carbon dioxide remaining after water separation in condenser 4 are removed and passed back to reactor 2 via line 11.
  • FIG. 4 A more detailed embodiment of the present invention utilizing (1) a separation step after the first reactor and (2) a separation of low molecular weight hydrocarbons from carbon dioxide in the reaction product of the second reactor is illustrated in the accompanying schematic drawing, Figure 4.
  • equimolar amounts of carbon dioxide and hydrogen are employed along with a cobalt catalyst.
  • Figure 4 the following discussion describes the manufacture of multicarbon hydrocarbons by applying the process of the instant invention to a natural gas consisting of 90% methane and 10% carbon dioxide.
  • Oxygen separation from air via membrane-pressure swing adsorption processing is well known and produces oxygen having less then 10 % nitrogen. For this example, 95 + % oxygen is produced in reactor 1, removed via line 4 and charged to reactor 2.
  • Natural gas containing 10% carbon dioxide, is fed into the system via line 3 and is heated to about 900° C by passing through reactor 14 and multiple heat exchanger 6.
  • the oxygen and heated natural gas in volumetric ratio of about 0.5 are introduced into noncatalytic partial combustion reactor 2 operating at a temperature of 1100° C under a pressure of 10 atmospheres.
  • carbon dioxide from condenser 15 via line 5 and through multiple heat exchanger 6, is charged to the oxidizer 2.
  • One method of utilizing the heat generated during oxidation for heating the subsequent carbon dioxide/hydrogen reaction is by the use of two concentric reactors.
  • the outer reactor being the partial oxidation zone and the inner reactor being the Reverse Water Gas Shift Reaction zone as shown in Figure 4, vessels 2 and 7.
  • the gaseous carbon dioxide and hydrogen in line 9 are passed through the multiple heat exchanger 6 wherein the temperature is raised to about 900° C, and is then recycled to the noncatalytic converter 7.
  • the water from line 18 is vaporized by heating to 100° C in vaporizer 12. All of the steam generated in vaporizer 12 is added through line 13 to the carbon monoxide stream in line 21 to give a combined mixture having a 3:2 carbon monoxide: water ratio which is preferred for cobalt catalysts.
  • This mixture is charged through line 22 to the Koelbel-Engelhardt reactor, 14 at a space velocity of about 30 per hour. Reactor 14 is maintained at 230° C and 10 atmospheres. Reactor 14 is kept at the desired temperature by boiling water under pressure in a reactor jacket.
  • separator 27 the carbon dioxide is first separated from the volatile hydrocarbons by absorption in aqueous monoethanolamine.
  • the unabsorbed volatile hydrocarbons are removed via line 28.
  • the carbon dioxide is regenerated by heating the absorbent solution to the boiling point and passing the resulting vapors through a condenser in separator 27 to liquify the water which is retumed to the monoethanolamine solution.
  • the resulting relatively dry carbon dioxide in line 5 is then recycled to the oxidizer 2 via the multiple heat exchanger 6, after removal of excess carbon dioxide via line 30.
  • the concentric oxidizer/reverse water gas shift reactor combination described in Fig. 4 is used in this example.
  • the outer reactor being the partial oxidation zone and the inner reactor being the Reverse Water Gas Shift
  • the effluent from oxidizer 2, carbon monoxide, hydrogen and retumed carbon dioxide are passed into the Reverse Water Gas Shift converter 7, via ports 8.
  • the converter 7 is maintained at a temperature of 1300° C by the heat generated in the partial oxidation reaction occurring in the surrounding reactor
  • phase separator 23 a hydrocarbon product having more than 4 carbon atoms in about 30% yield based on carbon monoxide entering reactor 14, is removed via line 24. Any excess water is removed through line 25.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Cette invention concerne un procédé unique de transformation de gaz naturel en hydrocarbures. Elle porte, plus précisément, sur une nouvelle combinaison d'étapes d'un traitement au titre duquel le gaz naturel est tout d'abord transformé en gaz de synthèse, l'hydrogène qu'il contient étant, dans une second temps, mis à réagir avec du dioxyde de carbone excédentaire ou recyclé dans un convertisseur à la vapeur d'eau à fonctionnement inversé en vue de produire un mélange d'eau et de monoxyde de carbone, lequel est alors mis en contact avec un catalyseur à base de métal afin de donner un mélange d'hydrocarbures de poids moléculaire supérieur et d'eau. Le dioxyde de carbone non réagi est ensuite renvoyé comme partie intégrante du courant d'amenée de gaz de synthèse.
PCT/US1995/011249 1995-09-08 1995-09-08 Transformation de gaz naturel en hydrocarbures de poids moleculaire eleve WO1997009293A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU35048/95A AU3504895A (en) 1995-09-08 1995-09-08 Natural gas conversion to higher hydrocarbons
PCT/US1995/011249 WO1997009293A1 (fr) 1995-09-08 1995-09-08 Transformation de gaz naturel en hydrocarbures de poids moleculaire eleve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1995/011249 WO1997009293A1 (fr) 1995-09-08 1995-09-08 Transformation de gaz naturel en hydrocarbures de poids moleculaire eleve

Publications (1)

Publication Number Publication Date
WO1997009293A1 true WO1997009293A1 (fr) 1997-03-13

Family

ID=22249749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/011249 WO1997009293A1 (fr) 1995-09-08 1995-09-08 Transformation de gaz naturel en hydrocarbures de poids moleculaire eleve

Country Status (2)

Country Link
AU (1) AU3504895A (fr)
WO (1) WO1997009293A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963932A1 (fr) * 2010-12-23 2012-02-24 Commissariat Energie Atomique Procede de recyclage ameliore du co2 par reaction inverse du gaz a l'eau (rwgs)
US8946308B2 (en) 2008-12-17 2015-02-03 Saudi Basic Industries Corporation Process for increasing the carbon monoxide content of a syngas mixture
WO2017072649A1 (fr) * 2015-10-30 2017-05-04 Sabic Global Technologies B.V. Procédés et systèmes de production de gaz de synthèse à partir de dioxyde de carbone et d'hydrogène
WO2017077420A1 (fr) * 2015-11-03 2017-05-11 Sabic Global Technologies B.V. Procédé de production de gaz de synthèse à partir de co2 et h2
WO2017118884A1 (fr) * 2016-01-05 2017-07-13 Sabic Global Technologies B.V. Systèmes et procédés de production de monoxyde de carbone par réduction du dioxyde de carbone avec du soufre élémentaire
WO2020114899A1 (fr) * 2018-12-03 2020-06-11 Shell Internationale Research Maatschappij B.V. Procédé et réacteur pour convertir le dioxyde de carbone en monoxyde de carbone
US11511263B2 (en) * 2018-10-18 2022-11-29 Beijing Guanghe New Energy Technology Co., Ltd. Methods for producing long-chain hydrocarbon molecules using heat source
JP2023517755A (ja) * 2020-03-17 2023-04-26 ノルディック エレクトロフューエル エーエス 炭化水素の製造
WO2023139258A1 (fr) * 2022-01-24 2023-07-27 Topsoe A/S Conversion de co2 et de h2 en gaz de synthèse
EP4161869A4 (fr) * 2020-06-04 2025-01-08 Hydro-Québec Méthode et réacteur pour la production de gaz de synthèse à partir d'une source de carbone et d'hydrogène en présence d'une oxy-flamme
EP4442643A4 (fr) * 2021-11-30 2025-03-26 Sekisui Chemical Co., Ltd. Dispositif de production de gaz
US12435286B2 (en) 2020-06-01 2025-10-07 Shell Usa, Inc. Process and reactor for converting carbon dioxide into carbon monoxide, involving a catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274064A (en) * 1936-09-01 1942-02-24 Standard Catalytic Co Preparation of carbon monoxid-hydrogen gas mixtures for hydrogenation
US2472219A (en) * 1945-02-13 1949-06-07 Standard Oil Co Synthesis of hydrocarbons

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274064A (en) * 1936-09-01 1942-02-24 Standard Catalytic Co Preparation of carbon monoxid-hydrogen gas mixtures for hydrogenation
US2472219A (en) * 1945-02-13 1949-06-07 Standard Oil Co Synthesis of hydrocarbons

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946308B2 (en) 2008-12-17 2015-02-03 Saudi Basic Industries Corporation Process for increasing the carbon monoxide content of a syngas mixture
US9249079B2 (en) 2008-12-17 2016-02-02 Saudi Basic Industries Corporation Process for increasing the carbon monoxide content of a syngas mixture
FR2963932A1 (fr) * 2010-12-23 2012-02-24 Commissariat Energie Atomique Procede de recyclage ameliore du co2 par reaction inverse du gaz a l'eau (rwgs)
WO2017072649A1 (fr) * 2015-10-30 2017-05-04 Sabic Global Technologies B.V. Procédés et systèmes de production de gaz de synthèse à partir de dioxyde de carbone et d'hydrogène
WO2017077420A1 (fr) * 2015-11-03 2017-05-11 Sabic Global Technologies B.V. Procédé de production de gaz de synthèse à partir de co2 et h2
WO2017118884A1 (fr) * 2016-01-05 2017-07-13 Sabic Global Technologies B.V. Systèmes et procédés de production de monoxyde de carbone par réduction du dioxyde de carbone avec du soufre élémentaire
US11511263B2 (en) * 2018-10-18 2022-11-29 Beijing Guanghe New Energy Technology Co., Ltd. Methods for producing long-chain hydrocarbon molecules using heat source
WO2020114899A1 (fr) * 2018-12-03 2020-06-11 Shell Internationale Research Maatschappij B.V. Procédé et réacteur pour convertir le dioxyde de carbone en monoxyde de carbone
US11964872B2 (en) 2018-12-03 2024-04-23 Shell Usa, Inc. Process and reactor for converting carbon dioxide into carbon monoxide
JP2023517755A (ja) * 2020-03-17 2023-04-26 ノルディック エレクトロフューエル エーエス 炭化水素の製造
JP7528243B2 (ja) 2020-03-17 2024-08-05 ノルディック エレクトロフューエル エーエス 炭化水素の製造
US12435286B2 (en) 2020-06-01 2025-10-07 Shell Usa, Inc. Process and reactor for converting carbon dioxide into carbon monoxide, involving a catalyst
EP4161869A4 (fr) * 2020-06-04 2025-01-08 Hydro-Québec Méthode et réacteur pour la production de gaz de synthèse à partir d'une source de carbone et d'hydrogène en présence d'une oxy-flamme
EP4442643A4 (fr) * 2021-11-30 2025-03-26 Sekisui Chemical Co., Ltd. Dispositif de production de gaz
WO2023139258A1 (fr) * 2022-01-24 2023-07-27 Topsoe A/S Conversion de co2 et de h2 en gaz de synthèse

Also Published As

Publication number Publication date
AU3504895A (en) 1997-03-27

Similar Documents

Publication Publication Date Title
US5714657A (en) Natural gas conversion to higher hydrocarbons
US4833170A (en) Process and apparatus for the production of heavier hydrocarbons from gaseous light hydrocarbons
EP0575579B1 (fr) Procédé pour la préparation d'olefines
US4973453A (en) Apparatus for the production of heavier hydrocarbons from gaseous light hydrocarbons
AU2009326172B2 (en) Integrated gas refinery
EP0269297B1 (fr) Procédé pour la production d'hydrocarbures aromatiques comprenant l'utilisation de produits secondaires
US5478370A (en) Method for producing synthesis gas
US20080312347A1 (en) Production of Hydrocarbons from Natural Gas
WO2007005126A1 (fr) Fabrication de melanges de gaz de synthese destines a la conversion en methanol ou en liquides fischer-tropsch
US6596781B1 (en) Integrated process for preparing Fischer-Tropsch products and acetic acid from synthesis gas
US9695097B2 (en) Ethanol production via dimethylether recycle
WO2007142739A2 (fr) Production de gaz de synthèse et utilisation
CN101351423A (zh) 通过二甲醚生产轻质烯烃
JP2001510140A (ja) メタノール及び水素の製造方法
US5004862A (en) Process for recycling and purifying condensate from a hydrocarbon or alcohol synthesis process
AU2003295625B2 (en) Process for the preparation of linear alpha-olefins from synthesis gas over a cobalt catalyst
EP0253540A1 (fr) Procédé de conversion de gaz de synthèse
US5053581A (en) Process for recycling and purifying condensate from a hydrocarbon or alcohol synthesis process
WO1997009293A1 (fr) Transformation de gaz naturel en hydrocarbures de poids moleculaire eleve
CA2146178C (fr) Procede etage pour la synthese d'hydrocarbures
ZA200606884B (en) Co-production of hydrocarbons and dimethyl ether
AU774093B2 (en) Natural gas conversion to hydrocarbons and ammonia
Istadi et al. Co-generation of C2 hydrocarbons and synthesis gases from methane and carbon dioxide: a thermodynamic analysis
WO1995024367A1 (fr) Conversion du gaz naturel en hydrocarbures superieurs
GB2293334A (en) Process for carrying out chemical equilibrium reactions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase