[go: up one dir, main page]

WO1997010354A1 - ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR - Google Patents

ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR Download PDF

Info

Publication number
WO1997010354A1
WO1997010354A1 PCT/JP1996/002588 JP9602588W WO9710354A1 WO 1997010354 A1 WO1997010354 A1 WO 1997010354A1 JP 9602588 W JP9602588 W JP 9602588W WO 9710354 A1 WO9710354 A1 WO 9710354A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
chain
human
region
added
Prior art date
Application number
PCT/JP1996/002588
Other languages
English (en)
French (fr)
Inventor
Masamichi Koike
Akiko Furuya
Kazuyasu Nakamura
Akihiro Iida
Hideharu Anazawa
Nobuo Hanai
Kiyoshi Takatsu
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU69438/96A priority Critical patent/AU690474B2/en
Priority to EP96930357A priority patent/EP0811691B1/en
Priority to CA2205007A priority patent/CA2205007C/en
Priority to DE69633973T priority patent/DE69633973T2/de
Priority to HK98104380.3A priority patent/HK1005096B/en
Priority to JP51183397A priority patent/JP3946256B2/ja
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to US08/836,561 priority patent/US6018032A/en
Priority to AT96930357T priority patent/ATE283926T1/de
Publication of WO1997010354A1 publication Critical patent/WO1997010354A1/ja
Priority to US10/283,349 priority patent/US7179464B2/en
Priority to US11/193,512 priority patent/US7238354B2/en
Priority to US11/595,909 priority patent/US20070048304A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7155Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/026Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a baculovirus

Definitions

  • the present invention relates to a monoclonal antibody and a humanized antibody that specifically bind to the human interleukin 5 receptor ⁇ -chain, which are useful for diagnosis or treatment of diseases such as chronic bronchial asthma, and a hybridoma producing the antibody and a transformant.
  • Interleukin-5 (hereinafter referred to as IL-5) is a type of lymphokine secreted by ⁇ cells and mast cells.
  • IL-5 in mice is known to act as a ⁇ cell differentiation and growth factor and an eosinophil differentiation and growth factor. In humans, it is known to mainly act as an eosinophil differentiation and growth factor [Advances in Immunology, 57, 145 (1994) Blood, 79, 3101 (1992)].
  • IL-5 exerts its action via a specific receptor (IL-5 receptor) expressed on the cell surface such as eosinophils.
  • the IL-5 receptor (hereinafter referred to as IL-5R) is composed of two different proteins in both human and mouse [ ⁇ chain (hereinafter referred to as IL-5R ⁇ ), ⁇ chain (hereinafter referred to as IL-5R / 3) )]. Furthermore, the binding of IL-5 to IL-5R is carried out by IL-5R ⁇ , and it is known that IL-5R) 3 does not itself exhibit binding ability to IL-5 [ ⁇ 0 ⁇ Journal (EMBO J.), 9, 4367 (1990) ⁇ , 2833 (1991), Journal of Experimental 'Medicine (J. Exp. Med.), ⁇ 7, 1523 (1993), Ibid., 341 (1992), Cell (66, 1175). 1991), Proceeding 'Ob the National.
  • IL-5R3 is interleukin-3 (hereinafter referred to as IL-3) and granulocyte macromolecule. It is known to be a component of receptors such as phage colony stimulating factor (hereinafter referred to as GM-CSF) [Proceeding of the National. Academi — 'Ob' Science (Proc. Natl. Acad. Sci.), 87, 9655 (1990), Cell, 66, 1165 (1991)].
  • GM-CSF phage colony stimulating factor
  • Eosinophils are known to increase in allergic diseases including chronic bronchial asthma. Significant infiltration of eosinophils is observed in the airways of patients with chronic bronchial asthma, and eosinophils themselves contain cytotoxic granule proteins, and the deposition of these proteins is associated with the airway tissue or atopic nature of patients with chronic bronchial asthma. Eosinophils are considered to play an important role in the pathogenesis of allergic diseases such as chronic bronchial asthma and atopic dermatitis because they are found at the lesion site in patients with dermatitis [Advances ⁇ In'Immology (Adv. Immunol.), 39, 177 (1986), Immunol. Today's (Immunol.
  • IL-5 acts specifically on eosinophils in humans, it is considered that IL-5R is specifically expressed on eosinophils, and IL-5R is expressed on human eosinophils. It can be used as a sphere-specific marker. Furthermore, since IL-5R; 3 is a cytodynamic receptor such as IL-3 and GM-CSF, it is considered that IL-5R is a marker specific to eosinophils. Therefore, eosinophils can be specifically detected by immunocellular staining using an anti-human IL-5R a chain antibody (hereinafter referred to as ML-5R antibody). However, no anti-hIL-5R ⁇ antibody capable of specifically detecting eosinophils is currently known.
  • ML-5R antibody an anti-human IL-5R a chain antibody
  • IL-5 has a prolonged life-span effect on human eosinophils in vitro [Journal of Immunology (J.I. unol.), H3, 2311 (1989)]. It has been clarified that it is an activator that is selective for eosinophils [Journal of Experimental Experimental Medicine (J. Exp. Med.), 167, 219 (1988)].
  • Anti-mouse IL-5R ⁇ antibody that can inhibit the biological activity of -5 [Japanese Patent Application Laid-Open No. 3-108497, International 'Immunology (Int. IJS unol.), 2, 181 (1990)] It is produced by using IL-5-dependent cells, which are highly expressed on the surface, as antigens.
  • human IL-5R is derived from human eosinophils [Journal of Experimental * Medicine (J. Exp. Med.),] 75, 341 (1992)], or human promyelocytic cells ( HL60)
  • a cDNA library prepared from [Cell, 66. 1175 (1991), JP-A-6-78772] was used as a mouse IL-5R ⁇ cDNA or partial amino acid sequence of mouse IL-5R. -54690, EMB0-Journal (EMBO J.). 9, 4367 (1990)].
  • L-5R is considered to have low immunogenicity.
  • anti-ML-5Ra antibody was produced using h [L-5Ra-expressing cells as an immunogen, but it was difficult.
  • soluble human IL-5R corresponding to amino acids 1 to 313 of the N-terminal amino acid sequence lacking the transmembrane region of IL-5Ra (hereinafter , Sh IL-5Ra) [Journal 'ob' Experimental 'Medicine Exp. Med.), ⁇ 5, 341 (1992)].
  • Sh IL-5Ra When sh IL-5R ⁇ is used as an immunogen to produce an anti-hi 5Ra antibody, it must be expressed on the cell surface to obtain an anti-hIL-5Ra antibody that can inhibit the biological activity of IL-5.
  • IL-5R is expressed not only in eosinophils but also in B cells, and in the same way as in humans, IL-5R extracellular region (hereinafter smlL- 5Ra) has been confirmed to be the expression of mRNA which is thought to encode only 5). It also reports that smIL-5R ⁇ is detected in the blood of mice transplanted with chronic B-cell leukemia (BCL1), which expresses IL-5R, or in mouse models of human autoimmune disease. [Journal of Immunological Methods 0. I thigh unol. Me thod), 167, 289 (1994)].
  • BCL1 chronic B-cell leukemia
  • IL-5R proliferation and activation of cells expressing IL-5R may be reflected in the amount of smIL-5R ⁇ secreted into the blood.
  • IL-5R is considered to be restricted to eosinophils, and the increase and activation of eosinophils is reflected in the amount of shIL-5R in blood and other sources. there is a possibility. Therefore, enabling the quantification of sh-5R is expected to be useful in clinical diagnosis.
  • Pigeon type A chimeric antibody is an antibody in which the antibody variable region (hereinafter, referred to as V region) is derived from a non-human animal antibody and the constant region (hereinafter, referred to as C region) is derived from a human antibody.
  • V region antibody variable region
  • C region constant region
  • the human CDR-grafted antibody is an antibody in which the CDR [complementary determining region] of the human antibody is replaced with a CDR of an antibody derived from an animal other than a human [Nature, 32 ⁇ , 522 (1986)], it has been reported that in monkey experiments, immunogenicity is reduced and the half-life in blood is increased by 4 to 5 times compared to mouse antibodies [Journal of Immunology (J. Immunology) J47, 1352 (1991)] However, to date, no humanized antibody against ML-5R ⁇ has been reported.
  • humanized antibodies that specifically bind to human IL-5R ⁇ reduce side effects due to the absence of antibodies against monoclonal antibodies derived from animals other than humans when administered to humans. It is expected to have a high therapeutic effect on allergic diseases such as chronic bronchial asthma and atopic dermatitis due to prolonged blood half-life.
  • Single-chain antibodies and disulfide-stabilized antibodies have smaller molecular weights than monoclonal or humanized antibodies. It has excellent translocation properties and clearance from the blood, is applied to imaging, etc., and is also used to produce complexes with toxins, and is expected to have therapeutic effects [Cancer Research. 55. 318 (1995)] Human IL-5R If single-chain antibodies and disulfide-stabilized antibodies that specifically bind to the It is expected to have high diagnostic and therapeutic effects on gynecological diseases. However, no single-chain antibody or disulfide-stabilized antibody against human IL-5R ⁇ -chain has been reported so far.
  • the present inventors have proposed an ML-5R that recognizes an epitope present at the ⁇ -terminal amino acids 1 to 313, which corresponds to the extracellular region lacking the transmembrane region of the human IL-5R ⁇ -chain and below. It has been found that an antibody against the a-chain can specifically react with the human inulin-leukin 5 receptor ⁇ -chain by immunocellular staining and suppress the biological activity of human inulin-leukin-5. By using these antibodies, diagnosis and treatment of the allergic disease can be performed.
  • the present invention provides an antibody that specifically reacts with human L-5R ⁇ -chain.
  • the antibodies in the present invention include monoclonal antibodies, humanized antibodies, single-chain antibodies, disulfide stabilized antibodies, and the like.
  • the monoclonal antibody in the present invention may be any antibody as long as it specifically reacts with the hIL-5Ra chain, and the antibody established by the following production method is preferable. That is, a ML-5Ra protein is prepared as an antigen and immunized to an animal capable of producing a hybridoma, such as a mouse, rat, hamster, or rabbit, to obtain a trait having antigen specificity.
  • an anti-IL-5Ra monoclonal antibody By inducing the cells, fusing the cells with a myeloma cell line, preparing a hybridoma capable of producing a monoclonal antibody, and culturing the hybridoma, an anti-IL-5Ra monoclonal antibody can be obtained.
  • the monoclonal antibody of the present invention recognizes the first to third epitopes from the N-terminal amino acid of the human IL-5R heavy chain, and specifically reacts with the human IL-5R a chain by immunohistological staining. Any monoclonal antibody that recognizes the epitope 1-31 from the N-terminal amino acid of the human IL-5R a-chain and that inhibits the biological activity of IL-5 can be used. be able to.
  • Monoclonal antibodies belonging to the former include monoclonal antibody KM1257 produced by hybridoma strain KM1257 (FERM BP-5133), and monoclonal antibodies belonging to the latter include monoclonal antibodies produced by hybridoma strain KM1259 (FERM BP-5134).
  • KM125 Specific examples thereof include the monoclonal antibody K1486 produced by No. 9 and hybridoma strain KM1486 (FERM BP-5651).
  • the monoclonal antibody of the present invention immunologically reacts with human IL-5R heavy chain, cells expressing human IL-5R ⁇ chain on the cell surface, human eosinophils, and the like. Further, the monoclonal antibody of the present invention reacts immunologically with soluble human IL-5R ⁇ -chain. Therefore, the present invention is to immunologically detect human IL-5R ⁇ chain, cells expressing human IL-5R ⁇ chain on the cell surface, human eosinophils and soluble human IL-5R chain, Methods for quantification are also provided. These detection and quantification results can be used for diagnosis and treatment of allergic diseases such as chronic bronchial asthma and atopic dermatitis.
  • allergic diseases such as chronic bronchial asthma and atopic dermatitis.
  • the present invention provides a humanized antibody that has fewer side effects, prolongs blood half-life, and inhibits the biological activity of IL-5, which is more desirable as a therapeutic agent, than a monoclonal antibody.
  • the humanized antibody in the present invention is a general term for a human chimeric antibody and a human CDR-grafted antibody.
  • a human chimeric antibody is defined as an antibody variable region heavy chain (hereinafter, referred to as VH) and a variable region light chain (hereinafter, referred to as VL) of a non-human animal and a constant region heavy chain (hereinafter, referred to as CH) of a human antibody. ) And the constant region light chain of a human antibody (hereinafter, referred to as CL).
  • the human-type CDR-grafted antibody refers to the human antibody VH and VL CDR sequences obtained from non-human animals. This means an antibody substituted with the VH and VL CDR sequences of the antibody, respectively.
  • the anti-h IL-5R a chain human chimeric antibody that inhibits the biological activity of IL-5 reacts with the human IL-5R a chain to produce an antibody that can inhibit the biological activity of L-5 CDNAs encoding VH and VL are obtained from the hybridoma and inserted into animal cell expression vectors having genes encoding human antibody CH and human antibody CL, respectively. Can be expressed and produced by introducing it into animal cells.
  • the human chimeric antibody and human CDR-grafted antibody of the present invention may belong to any of the immunoglobulin (Ig) classes, but are preferably IgG-type antibodies, and more preferably belong to IgG-type. Any of the immunoglobulin C regions such as gGl, IgG2, IG3, and IgG4 can be used.
  • the VH of the antibody is the amino acid of SEQ ID NO: 24.
  • An amino acid sequence, wherein CH is the human antibody IgGl, VL of the antibody comprises the amino acid sequence of SEQ ID NO: 25, and CL is a human antibody /. can give.
  • KM1399 (FERM BP-5650) is an example of a transformant that produces KM1399.
  • a transformant that produces KM7399 includes K7399 (FERM BP-5649).
  • an anti-hi 5R a-chain human CDR-grafted antibody that inhibits the biological activity of IL-5 is an antibody from non-human animals that can inhibit the biological activity of IL-5 by reacting with the human 5R a chain.
  • CDNA encoding the V region in which the VH and VL CDR sequences of any human antibody are substituted with the VH and VL CDR sequences of the human antibody, respectively, is constructed, and the genes encoding the human antibody CH and the human antibody CL are constructed.
  • the human-type CDR-grafted antibody expression vector can be constructed by inserting each into an animal cell expression vector, and can be expressed and produced by introducing it into animal cells.
  • VH of the antibody comprises the amino acid sequence of SEQ ID NO: 72
  • CH is the human antibody IgGl
  • VL of the antibody comprises the amino acid sequence of SEQ ID NO: 63
  • An antibody in which CL is a human antibody ⁇ is mentioned, and a specific example is KM8399.
  • a specific example of a human CDR-grafted antibody in which CH is the human antibody IgG4 is KM9399.
  • a transformant which produces KM8399 includes KM8399 (FERM BP-5648).
  • a transformant which produces KM9399 includes KM9399 (FERM BP-5647).
  • the humanized antibody of the present invention immunologically reacts with human IL-5R ⁇ -chain, cells expressing human IL-5R ⁇ -chain on the cell surface, human eosinophils, and the like. Therefore, the present invention can be used for diagnosis and treatment of allergic diseases such as chronic bronchial asthma and atopic dermatitis.
  • a single-chain antibody single cha in Fv; hereinafter, referred to as scFv
  • a disulfide-stabilized antibody disulfide destabili exhibiting binding to human IL-5R a chain
  • zed Fv hereinafter referred to as dsFv
  • a single-chain antibody is an antibody that binds one VH and one VL to a suitable peptide linker.
  • VH-L-VL or VL-L-VH Indicates a peptide.
  • V'H and VL contained in the scFv of the present invention either an anti-human IL-5R a chain monoclonal antibody or a human CDR-grafted antibody can be used.
  • the disulfide-stabilized antibody refers to a polypeptide in which one amino acid residue in each of VH and VL has been substituted with a cysteine residue, which is linked via a disulfide bond.
  • the amino acid residue to be substituted for the cysteine residue is selected based on the three-dimensional structure prediction of the antibody in accordance with the method shown by Reiter et al. [Protein Engineering, 7.97 (1994)]. be able to.
  • the VH or VL contained in the disulfide-stabilized antibody of the present invention any of a mouse anti-human IL-5R a chain monoclonal antibody and a human CDR-grafted antibody can be used.
  • a single-chain antibody that exhibits binding to the human I5R a chain is obtained from cDNAs encoding VH and VL from a hybridoma that produces an antibody that reacts with the human IL-5R a chain. It can be produced by constructing a chain antibody expression vector and introducing it into E. coli, yeast, or animal cells.
  • Examples of the single-chain antibody derived from the monoclonal antibody of the present invention include an antibody in which VH of the antibody contains the amino acid sequence of SEQ ID NO: 24 and VL of the antibody contains the amino acid sequence of SEQ ID NO: 25.
  • Examples of the single-chain antibody derived from the human CDR-grafted antibody of the present invention include an antibody in which VH of the antibody contains the amino acid sequence of SEQ ID NO: 72 and VL contains the amino acid sequence of SEQ ID NO: 63. .
  • a disulfide-stabilized antibody that exhibits binding to the human -5R a chain can be obtained by obtaining cDNAs encoding VH and VL from a hybridoma that produces an antibody that reacts with human-5R ⁇ chain, and converting it to an appropriate expression vector.
  • the expression vector can be expressed and produced by inserting the expression vector into E. coli, yeast, or animal cells.
  • Examples of the single-chain antibody derived from the monoclonal antibody of the present invention include an antibody in which VH of the antibody contains the amino acid sequence of SEQ ID NO: 24 and VL of the antibody contains the amino acid sequence of SEQ ID NO: 25.
  • VH of the antibody contains the amino acid sequence of SEQ ID NO: 72, and VL is the amino acid of SEQ ID NO: 63.
  • Antibodies that include the sequence.
  • Anti-human IL-5Ra chain monoclonal antibody that inhibits L-5 biological activity anti-human IL-5Ra chain humanized antibody that inhibits human IL-5 biological activity, anti-human IL-5Ra chain single-chain antibody
  • a method for producing an anti-human IL-5Ra chain disulfide stabilized antibody and a method for detecting and quantifying a human interleukin 5 receptor ⁇ -chain using the antibody.
  • Antigens required for producing anti-h-5Ra monoclonal antibodies include cells expressing hIL-5Ra on the cell surface or cell membrane fraction thereof, or CTLL-2 (h5R) Cell or its cell membrane fraction and the like can be used.
  • CTLL-2 (h5R) cells are cDNAs encoding full-length hIL-5Ra that have been cloned [L. Exp. Med., 175.341].
  • the full-length cDNA or a partial fragment thereof encoding hi5Ra can be expressed, for example, in an expression vector such as a commercially available pGEX [Pharmacia], pET for expression in a prokaryotic host cell such as Escherichia coli. It can be incorporated into the system [Novagen] or pMKexl described in (11) of Example 1 to express the full length or partial fragment of h-5Ra as it is or as a fusion protein.
  • the protein expressed by Escherichia coli can be purified by a method such as SDS-polyacrylamide electrophoresis or affinity chromatography depending on the properties of the fusion protein after disrupting the cells.
  • eukaryotic host cells such as insect cells and mammalian cells can also be used. it can.
  • the nucleotide sequence encoding the signal peptide in the cDM and the eukaryotic host should be used. It is preferable to replace with a base sequence encoding a signal peptide of a protein that can be highly expressed in E. coli.
  • the known protein signal peptide for example, human growth hormone, anti-ganglioside GD3 chimeric antibody KM871 (JP-A-5-304989) and the like are preferably used.
  • the expression vector thus constructed is transferred to a host cell by an electoral poration method [Japanese Patent Application Laid-Open No. 2577891 / Cytotechnology, 3, 133 (1990)], a lipofectin method [procedure of the za National Academy of Sciences (Pro Natl. Acad. Sci.), 84, 7413 (1987)].
  • an electoral poration method Japanese Patent Application Laid-Open No. 2577891 / Cytotechnology, 3, 133 (1990)]
  • a lipofectin method procedure of the za National Academy of Sciences (Pro Natl. Acad. Sci.), 84, 7413 (1987)].
  • an appropriate medium the full-length or partial fragment of hIL-5Ra can be produced in the cell or in the culture supernatant as it is or as a fusion protein.
  • a serum-free medium is preferably used in order to facilitate purification of a partial fragment of hIL-5Ra or its fusion protein produced in the culture superna
  • a recombinant baculovirus incorporating the full-length or partial fragment of the cDNA encoding hIL-5Ra was produced using a Bacterial Gold Starter Kit manufactured by Pharmingen, etc.
  • the full-length or partial fragment of hiR can be directly used as a fusion protein in cells or in the culture supernatant.
  • Full-length or partial fragments or fusion proteins of hIL-5R produced by animal cells or insect cells can be obtained by known protein purification methods, such as salting out, affinity chromatography, and ion exchange chromatography. It can be purified from a culture supernatant or the like and used as an antigen. In particular, when produced as a fusion protein with an immunoglobulin constant region, it is preferable to purify the protein using an affinity column on which protein A having specific affinity for the immunoglobulin constant region is immobilized. .
  • the animal used for immunization may be any animal, such as mouse, rat, hamster, rabbit, etc., as long as it can produce a mouse or an ibridoma.
  • an example using a mouse or a rat is used.
  • Immunization can be performed subcutaneously, intravenously or intraperitoneally with an appropriate adjuvant [eg, Freund's complete adjuvant (Co-lete Freund's Adjuvant) or aluminum hydroxide gel and pertussis vaccine].
  • an antigen eg, Freund's complete adjuvant (Co-lete Freund's Adjuvant) or aluminum hydroxide gel and pertussis vaccine.
  • Administer the antigen 5 to 10 times every 1 to 1 week after the first dose. Blood is collected from the fundus venous plexus 3 to 7 days after each administration, and the serum is reacted with the antigen by enzyme immunoassay [enzyme immunoassay (EL [SA method]: published by Medical Shoin 1976), etc. .
  • mice or rats whose sera showed a sufficient antibody titer were used as a source of antibody-producing cells.
  • spleens are excised from the immunized mice 3 to 7 days after the final administration of the antigenic substance, and spleen cells are collected.
  • the spleen is minced in a MEM medium (manufactured by Nissui Pharmaceutical Co., Ltd.), loosened with forceps, centrifuged (1. 200 rpm, 5 minutes), the supernatant is discarded, and tris-ammonium chloride buffer (pH 7.65) 1 ⁇ Treat for 2 minutes to remove red blood cells, wash three times with MEM medium, and provide as fusion splenocytes.
  • MEM medium manufactured by Nissui Pharmaceutical Co., Ltd.
  • myeloma cells cell lines obtained from mice or rats are used.
  • 8-azaguanine-resistant mouse derived from BALB / c
  • myeloma cell line P3-X63Ag8-U1 (P3-U1) [Current 'Topics' in' Microbiology and Immonology (Curr. Topics Microbiol) . Immunol.), 8J_, 1 (1978), ⁇ ⁇ .. Journal 'Ob' Immunology (Europ. J.
  • Recombinant protein such as the fusion protein with shIL-5R or hIL-5Ra described in 1 (1) above is coated on an appropriate plate, and the eighty-bridoma culture supernatant or the purified antibody obtained in 1 (6) is first purified. After reacting as an antibody, and further reacting an anti-mouse immunoglobulin antibody or an anti-rat immunoglobulin antibody labeled with biotin, an enzyme, a chemiluminescent substance or a radioactive compound as a second antibody, a reaction corresponding to the labeling substance is performed, Those which specifically react with hi5Ra are selected as hybridomas producing mouse anti-hIL-5R ⁇ monoclonal antibody.
  • Reaction of the culture supernatant of a transformant producing anti-h! L-5R ⁇ humanized antibody, single-chain antibody and disulfide-stabilized antibody or their purified antibody as the primary antibody is performed by using an anti-human immunoglobulin antibody labeled with biotin, an enzyme, a chemiluminescent substance, a radioactive compound, or the like as the second antibody, and performing a reaction according to the labeling substance.
  • a recombinant protein such as a fusion protein with slUL-5R ⁇ or hiL-5R ⁇ described in 1 (1) above is coated on an appropriate plate, and the hybridoma culture supernatant, anti-hIL-5R Labeled with a culture supernatant of a transformed strain producing ⁇ -humanized antibody, single-chain antibody and disulfide-stabilized antibody, or any of those purified antibodies, with biotin, enzyme, chemiluminescent substance, radioactive compound, etc. After reacting with mixed human IL-5, and reacting according to the labeling substance, the activity of inhibiting human 1L-5 binding to human IL-5R ⁇ can be measured. Using this method, hybridomas are screened to select those with high human 1L-5 inhibitory activity.
  • mice or nude mouse treated with pristane [2,6,10,14-tetramethyl pentane decane O. 5 ml intraperitoneally and bred for 2 weeks]
  • the mouse or rat anti-hi 5Ra monoclonal antibody-producing hybridoma cells obtained in (3) are injected intraperitoneally from 2 ⁇ 10 7 to 5 ⁇ 10 6 cells / animal. In 10 to 21 days, the hybridoma becomes ascites cancer.
  • mice Ascites was collected from the mice, centrifuged (3,000 ⁇ 11, 5 minutes) to remove solids, and then salted out with 40-50% saturated ammonium sulfate, hydroprilylic acid precipitation, DEAE-Sepharo
  • the mixture is passed through a column of Protein A-column or a column of Cell mouth Fine GSL2000 (manufactured by Seikagaku Corporation), and the IgG or IgM fraction is collected to obtain a purified monoclonal antibody.
  • the antibody subclass is determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit.
  • the protein content is calculated by the Lowry method or from the absorbance at 280 nm.
  • the expression vector for humanized antibody is an expression vector for animal cells into which genes encoding the C region of human antibody, CH and CL, are incorporated. It was constructed by inserting each of the encoding genes.
  • the C region of the human antibody for example, any C region of the human antibody such as Crl or Cr4 for the human antibody H chain and C / c for the human antibody L chain can be used.
  • the gene encoding the C region of the human antibody chromosomal DNA consisting of exons and introns can be used, and cDNA can also be used. Any expression vector for animal cells can be used as long as it can incorporate and express a gene encoding the human antibody C region.
  • the vector for expressing a humanized antibody can be either a type in which the antibody H chain or L chain is present on a separate vector or a type in which the antibody is present on the same vector (tandem type). Expression of tandem humanized antibodies in terms of ease of construction of antibody expression vectors, ease of introduction into animal cells, and balanced expression of antibody H and L chains in animal cells A vector for use is preferred [Journal of Immunological 'Methods (J. I. unol. Methods). 167, 271 (1994)]. (2) Obtaining cDNAs encoding VH and VL of antibodies from animals other than humans
  • Antibodies from animals other than humans for example, cDNAs encoding VH and VL of mouse anti-human IL-5R a chain monoclonal antibody are obtained as follows.
  • MRNA is extracted from cells producing an anti-human IL-5R a-chain monoclonal antibody, such as mouse anti-human IL-5R a-chain antibody-producing hybridoma, and cDNA is synthesized.
  • the synthesized cDNA is inserted into a vector such as a phage or plasmid to prepare a cDNA library.
  • a recombinant phage or recombinant plasmid having a cDNA encoding VH, and VL are encoded using a C region or a V region of a non-human animal antibody, for example, a mouse antibody, as a probe.
  • a recombinant phage or a plasmid containing cDNA is isolated.
  • the entire nucleotide sequence of VH and VL of the target antibody on the recombinant phage or recombinant plasmid is determined, and the entire amino acid sequence of VH and VL is deduced from the nucleotide sequence.
  • a cDNA encoding VH and VL of a non-human animal antibody is inserted upstream of the genes encoding CH and CL of the human antibody in the humanized antibody expression vector constructed in 2 (1) above, Chimeric antibody expression vectors can be constructed.
  • a restriction enzyme recognition sequence for cloning cDNA encoding VH and VL of an antibody of a non-human animal is provided upstream of the gene encoding CH and CL of the human antibody in the vector for expressing the chimeric antibody.
  • a human chimeric antibody expression vector can be produced by inserting a cDNA encoding the V region of an antibody of an animal other than a human into this cloning site via the synthetic DNA described below. .
  • Synthetic DNA consists of the base sequence at the 3 'end of the V region of an antibody of a non-human animal and the base sequence at the 5' end of the C region of a human antibody. It is manufactured using a DNA synthesizer so as to have a site.
  • VH and VL that form the antigen-binding site of the antibody are rich in changes in the four relatively conserved framework regions (hereinafter referred to as FR regions) and the sequences that link them.
  • FR regions relatively conserved framework regions
  • CDR sequence Each CDR amino acid sequence (CDR sequence) is the amino acid sequence of the known antibody V region [Sequences of Proteins of Immunological Interest]. , US Dept. Health and Human Services, 1991].
  • CDNAs encoding VH and VL of the human CDR-grafted antibody can be obtained as follows.
  • the FR amino acid sequence of the V region of a human antibody for transplanting the CDR of the V region of an antibody of an animal other than the target human is selected for each of VH and VL.
  • the amino acid sequence of the FR in the V region of the human antibody any amino acid sequence of the FR in the V region derived from a human antibody can be used.
  • the amino acid sequence of FR in the V region of the human antibody registered in the Protein Data Bank, the common amino acid sequence of each subgroup of FR in the V region of the human antibody [SEQ ID NO: -Immunological Callire 'Interest (Sequences of Proteins of Immunological Interest), US Dept. Health and Human Services, 1991].
  • the DNA sequence encoding the FR amino acid sequence of the V region of the selected human antibody is ligated to the DNA sequence encoding the amino acid sequence of the CDR of the V region of the target non-human animal antibody, Design a DNA sequence encoding the amino acid sequence of each of VH and VL.
  • CDR transplantation In order to obtain a DNA sequence designed for constructing an antibody variable region gene, several synthetic DNAs are designed for each chain so as to cover the entire DNA sequence, and a polymer sequence is used using them.
  • PCR Perform 'Chain' reaction (hereinafter, referred to as PCR) Design 6 synthetic DNAs for each strand based on the reaction efficiency in PCR and the length of DNA that can be synthesized. After the reaction, amplify the amplified fragment Subcloning is performed overnight, the nucleotide sequence is determined, and a plasmid containing a cDNA encoding the amino acid sequence of the V region of each chain of the target human CDR-grafted antibody is obtained. In addition, the entire sequence of both sense and antisense is synthesized using synthetic DNA consisting of about 100 bases, and they are annealed and ligated to encode the amino acid sequence of the V region of each chain of the target human CDR-grafted antibody. Can be constructed.
  • the human CDR-grafted antibody has the activity of the target non-human animal simply by grafting only the CDR of the V region of the antibody of the non-human animal between the FRs of the V region of the human antibody to the activity of the original non-human animal. It is known that the activity is lower than that of the antibody [Biotechnology-(BI0 / TECHN0L0GY), 9, 266 (1991)].
  • amino acid residues that are directly involved in binding to the antigen amino acid residues that interact with amino acid residues of the CDR, or the three-dimensional structure of the antibody
  • Amino acid residues that have a possibility of being involved in maintenance and the like have been modified to amino acid residues found in antibodies of non-human animals to increase the activity.
  • a method for producing a human CDR-grafted antibody applicable to any antibody has not yet been established, and at present, various trials and errors are required for each antibody.
  • the modification of the FR amino acid sequence of the V region of the selected human antibody can be achieved by performing the PCR described in 2 (5) above using various mutagenesis primers. After subcloning the amplified fragment after PCR into an appropriate vector, its base sequence is determined, and a vector containing the cDNA into which the desired mutation has been introduced (hereinafter referred to as an amino acid sequence-modified vector) is obtained.
  • modification of the amino acid sequence in a narrow region can be performed by a PCR mutagenesis method using a mutation-introducing primer consisting of 20 to 35 bases.
  • a sense mutation primer and an antisense mutation primer consisting of 20 to 35 bases including the DNA sequence encoding the amino acid residue after modification are synthesized, and the amino acid sequence of the V region to be modified is synthesized.
  • cDNAs encoding VL and VL can be inserted to construct a human CDR-grafted antibody expression vector.
  • a recognition sequence for a restriction enzyme appropriate for the 5'- and 3'-end synthetic DNA at the end of the synthetic DNA By introducing the gene, it can be inserted upstream of the gene encoding the C region of the desired human antibody so that they can be expressed in an appropriate form.
  • the expression vector (2) for expressing a human chimeric antibody and the expression vector (2) for expressing a human CDR-grafted antibody or one of them Transformation of the humanized antibody by introducing the modified vector into COS-7 cells (ATCC CRL1651) [Methods in Nucleic Acids Res., CRC Press, p.283 , 1991] to determine its activity.
  • Methods for introducing an expression vector into C0S-7 cells include the DEAE-dextran method [Methods in Nucleic Acids Res., CRC Press, p.283, 1991], Lipoff execution method [Proceeding of the National Academy of Sciences [ Pro (; . Natl. Acad. Sci., 84, 7413 (1987)]].
  • the activity of the humanized antibody in the culture supernatant can be measured by the enzyme immunoassay (EL1SA method) described in 1 (5) above.
  • the humanized chimeric antibody expression vector of 2 (3) and the human CDR-grafted antibody expression vector of 2 (7) were introduced into an appropriate host cell to obtain a humanized antibody.
  • a transformant strain that stably produces can be obtained.
  • Examples of a method for introducing an expression vector into a host cell include an electroporation method (Japanese Patent Application Laid-Open No. 2-258789, Cy to technology, 3.133, (1990)) and the like.
  • any cell can be used as long as it can express a humanized antibody.
  • mouse SP2 / 0-Agl4 cells ATCC CRL1581
  • mouse P3X63-Ag8.653 cells ATCC CRL1580
  • CH0 cells deficient in the dihydrofolate reductase gene hereinafter referred to as DHFR gene
  • DHFR gene CH0 cells deficient in the dihydrofolate reductase gene
  • Gil.16Ag.20 cells ATCC CRL1662, Hereinafter, referred to as YB2 / 0 cells).
  • a transformant capable of stably producing a humanized antibody is selected on an RPMI1640 medium containing G418 and FCS according to the method disclosed in Japanese Patent Application Laid-Open No. 2-257891.
  • a humanized antibody By culturing the obtained transformant in a medium, a humanized antibody can be produced and accumulated in the culture solution.
  • the activity of the humanized antibody in the culture solution is measured by the method described in 1 (5) above.
  • the transformant can increase the amount of humanized antibody produced using a DHFR gene amplification system or the like according to the method disclosed in Japanese Patent Application Laid-Open No. H2-257891.
  • the humanized antibody can be purified from the culture supernatant of the transformant using Protein A column [Antibodies. A Laboratory Manual, Cold Spring Harbor Laboratory, Chapter 8, 1988].
  • other purification methods used for ordinary proteins can be used.
  • purification can be performed by a combination of gel filtration, ion exchange chromatography, and ultrafiltration.
  • the molecular weight of the purified humanized antibody H chain, L chain or whole antibody molecule can be determined by polyacrylamide gel electrophoresis (SDS-PAGE) [Nature, 227, 680,
  • the reactivity of the purified humanized antibody and the inhibitory activity of the humanized antibody on IL-5 can be measured by the method described in 1 (5) above.
  • the humanized antibody of the present invention can specifically bind to human IL-5R a chain and inhibit the biological activity of IL-5. Therefore, the humanized antibody provided by the present invention is expected to inhibit the function of eosinophils whose differentiation and proliferation are regulated by IL-5. Therefore, it is considered that eosinophils are useful for the treatment of diseases associated with the formation of pathological conditions.
  • eosinophils are useful for the treatment of diseases associated with the formation of pathological conditions.
  • most of the amino acid sequence is derived from the amino acid sequence of a human antibody as compared to non-human animal antibodies, it does not show immunogenicity in a human body and its effect is expected to last for a long period of time. You.
  • the humanized antibody of the present invention can be used alone or together with at least one or more pharmaceutically acceptable auxiliaries.
  • a humanized antibody is dissolved in physiological saline, or an aqueous solution of glucose, lactose, mannitol, or the like to prepare a suitable pharmaceutical composition.
  • the humanized antibody is freeze-dried according to a conventional method, and sodium chloride is added thereto to prepare a powder injection.
  • the pharmaceutical composition can contain, if necessary, well-known additives in the pharmaceutical field, for example, pharmaceutically acceptable salts and the like.
  • the dose of the pharmaceutical composition varies depending on the age, symptoms, etc. of the patient, but 0.1 to 20 mg / kg / day of the humanized antibody is administered to mammals including humans. Dosing is performed once a day (single dose or daily dose) or intermittently by intravenous injection 1 to 3 times a week and once a few weeks.
  • an expression vector for a single-chain antibody of a non-human animal antibody or a single-chain antibody of a human CDR-grafted antibody can be constructed.
  • an appropriate host can be selected from Escherichia coli, yeast, animal cells, and the like. It is necessary to select an appropriate one for the host.
  • a single-chain antibody can be secreted extracellularly, transported to the periplasmic region, or retained inside the cell. .
  • CDM encoding a single-chain antibody must be ligated to cDNA encoding VH and cDNA encoding VL using synthetic DNA encoding a peptide linker having an appropriate restriction enzyme recognition sequence at both ends. Can be obtained by It is important that the linker peptide be optimized so that its addition does not interfere with the binding of VH, VL to the antigen, such as those shown by Pantoliano et al. [Biochemistry, 30, 10117 (1991)] or a modified version thereof can be used.
  • the single-chain antibody expression vector constructed in the above 3 (1) was subjected to an electoral poration method [Japanese Patent Laid-Open No. 2-257891, Cytotechnology, 3.133 (1990)] and the like. By introducing into a suitable host cell by the method, a transformant producing the desired single-chain antibody can be obtained. After the introduction of the expression vector, the activity of the single-chain antibody contained in the culture supernatant or the like can be measured by the method described in 1 (5) or the like.
  • Recovery and purification of the single-chain antibody of the present invention can be achieved by combining known techniques. For example, if the single-chain antibody is secreted into the medium, it can be concentrated by ultrafiltration and then achieved by performing antigen affinity chromatography or ion exchange chromatography or gel filtration. can do. Also, if transported to the periplasmic region of the host cell, the cell can be subjected to osmotic shock and enriched by ultrafiltration, followed by antigen affinity chromatography or ion exchange chromatography. This can be achieved by performing a graphic or gel filtration.
  • Single-chain antibodies which are insoluble and present as granules (inclusion bodies), repeatedly lyse cells, repeat centrifugation and washing to isolate granules, for example, solubilization with guanidine monohydrochloride, and It can be achieved by an operation of leading again to a structure having the activity of a single-chain antibody, followed by purification of the active molecule.
  • the activity of the purified single-chain antibody can be measured by the method described in 1 (5) or the like.
  • the single-chain antibody of the present invention can specifically bind to human L-5R a chain and inhibit the biological activity of IL-5. Therefore, the single-chain antibody provided by the present invention is expected to inhibit the function of eosinophils whose differentiation and proliferation are regulated by IL-5. Therefore, it is considered that eosinophils are useful for the treatment of diseases associated with the formation of pathological conditions.
  • the single chain antibody of the present invention can be used alone or in combination with at least one or more pharmaceutically acceptable auxiliaries. For example, a single-chain antibody is dissolved in a physiological saline solution or an aqueous solution of glucose, lactose, mannitol or the like to prepare a suitable pharmaceutical composition.
  • the single-chain antibody is freeze-dried according to a conventional method, and sodium chloride is added thereto to prepare a powder injection.
  • the pharmaceutical composition is If necessary, additives well known in the field of formulation, for example, pharmaceutically acceptable salts and the like can be contained.
  • the dose of the pharmaceutical composition varies depending on the age, symptoms, etc. of the patient, but the single-chain antibody is administered to mammals, including humans, in an amount of 0.1 to 20 mg / kg / day. Dosing may be by intravenous infusion once a day (single or daily administration) or intermittently one to three times a week and once every few weeks.
  • the disulfide-stabilized antibody is located at one amino acid residue at the appropriate position in the cDNA encoding the VH and VL of the antibody of a non-human animal or the cDNA encoding the VH and VL of a human CDR-grafted antibody. It can be prepared by modifying the corresponding DNA sequence to a DNA sequence corresponding to a cysteine residue, expressing and purifying it, and then forming a disulfide bond. Amino acid residues can be modified into cysteine residues by the mutagenesis method using PCR described in 2 (5) above.
  • any vector can be used as long as it can incorporate and express cDNAs encoding modified VH and modified VL.
  • PAGE107 [Cytotechnology, 3 ⁇ 133 (1990)]
  • pAGE 103 [Journal of Biochem., U307 (1987)]
  • PHSG274 [Gene 223 (1984)]
  • pKCR Proceeding of the National Academy of Sciences (Proc. Natl. Acad.
  • disulfide-stabilized antibody L chain expression vector and the disulfide-stabilized antibody H chain expression vector to form disulfide-stabilized antibodies include E. coli, yeast, and animal cells. Suitable from In this case, it is necessary to select an expression vector appropriate for each host. Also, by inserting a cDNA encoding an appropriate signal peptide into an expression vector, a disulfide-stabilized antibody can be secreted out of the cell, transported to the periplasmic region, or retained inside the cell. .
  • the disulfide-stabilized antibody H-chain expression vector or disulfide-stabilized antibody L-chain expression vector constructed in 4 (1) above was electroporated [Japanese Patent Laid-Open No. 2-257891, Cy to techno lgygy, 133 (1990)] to obtain a transformant that produces the desired disulfide-stabilized antibody H chain or disulfide-stabilized antibody L chain. it can.
  • the expression of the disulfide-stabilized antibody H chain or the disulfide-stabilized antibody L chain contained in the culture supernatant or the like can be confirmed by the method described in 1 (5) or the like. .
  • Recovery and purification of the disulfide-stabilized antibody H chain or the disulfide-stabilized antibody L chain can be achieved by combining known techniques. For example, if the disulfide-stabilized antibody H chain or disulfide-stabilized antibody L chain is secreted into the medium, it can be concentrated by ultrafiltration and achieved by performing various chromatographic or gel filtrations. can do. Alternatively, if transported to the periplasmic region of the host cells, the cells can be osmotically shocked and concentrated by ultrafiltration, followed by various chromatographic or gel filtrations. Can be achieved.
  • Disulfide-stabilized antibody H-chain or disulfide-stabilized antibody L-chain which is insoluble and exists as granules (inclusion body), can be obtained by repeated cell lysis, centrifugation and washing to isolate granules. For example, after solubilization with guanidine-hydrochloric acid, it can be achieved by performing various types of chromatography or gel filtration.
  • the purified disulfide stabilized antibody H chain and the disulfide stabilized antibody L An operation of mixing chains to form an active structure [refolding operation, Molecular-Immunology (Molecular Immunology), 32 ; 249 (1995)], followed by antigen affinity chromatography
  • an active disulfide-stabilized antibody can be purified by ion exchange chromatography or gel filtration.
  • the activity of the disulfide-stabilized antibody can be measured by the method described in 1 (5) or the like.
  • the disulfide-stabilized antibody of the present invention can specifically bind to human IL-5Ra chain and inhibit the biological activity of -5. Therefore, the disulfide-stabilized antibody provided by the present invention is expected to inhibit the function of eosinophils whose differentiation and proliferation are regulated by IL-5. Therefore, it is considered that eosinophils are useful for the treatment of diseases associated with pathogenesis.
  • the disulfide-stabilized antibody of the present invention can be used alone or together with at least one or more pharmaceutically acceptable auxiliaries.
  • a single-chain antibody or a disulfide-stabilized antibody is dissolved in physiological saline or an aqueous solution of glucose, lactose, mannitol, or the like to prepare an appropriate pharmaceutical composition.
  • the disulfide-stabilized antibody is freeze-dried according to a conventional method, and sodium chloride is added thereto to prepare a powder injection.
  • the pharmaceutical composition can contain, if necessary, additives well known in the field of pharmaceuticals, for example, pharmaceutically acceptable salts and the like.
  • the dose of the pharmaceutical composition varies depending on the age, symptoms, etc. of the patient, but 0.1 to 20 mg / kg / day of a disulfide-stabilized antibody is administered to mammals including humans. Dosing may be by intravenous injection once a day (single dose or daily dose) or intermittently 1 to 3 times a week, once every 1 to 3 weeks.
  • Suspended cells are used as is, adherent cells are treated with Tribcine EDTA After peeled off, immune cell staining buffer and suspended like (13 ⁇ 4BSA, 0.023 ⁇ 4EDTA, PBS containing 0.053 ⁇ 4 sodium azide) is dispensed one by 1 X10 5 ⁇ 2 X10 6 cells.
  • the purified antibody obtained in 1 (6) or 2 (9) was reacted, after the reaction was completed, the cells were washed with an immune cell staining buffer and labeled with a fluorescent dye such as FITC or phycoerythrin.
  • a buffer containing 50 to 500 When the monoclonal antibody labeled with biotin is reacted, add 50-500 l of streptavidin labeled with a fluorescent dye such as F [TC or phycoerythrin.
  • a fluorescent dye such as F [TC or phycoerythrin.
  • the monoclonal antibody labeled with a fluorescent dye such as FITC or phycoerythrin is reacted, the monoclonal antibody contains a concentration of about 0.1 to 50 g / ml.
  • IX10 CTL2 (h5R) cells IX10 are suspended in 501 normal medium and dispensed into a 96-well culture plate.
  • a normal medium containing 0.01 to 50 // g / ml of the purified antibody solution 25 1 obtained in the above 1 (6) or 2 (9) and further 0.4 to 40 ng / ml of human IL-5 is added, and C0 among 2 incubator primary, at 37, cultured for 24 to 72 hours under C0 2 53 ⁇ 4 stream.
  • the cell counting kit solution after adding at 10 ZlZ Ueru 37 ", C0 2 5% to 4 hours at the gas flow.
  • the absorbance at 450nm in a micro-well plate Bok reader Emax manufactured by Molecular Devices Corporation
  • the CTLL-2 (h5R) cell growth inhibitory activity of each antibody is calculated.
  • blood cell separation media such as polymorph phprep (Nicomed) or percoll (Pharmacia).
  • the ratio of eosinophils is determined by a method such as the Mei-Griyunto-Wald-Giemsa staining method (all staining methods: Medical and Dental Publishing Co., Ltd., 1988).
  • the monoclonal antibody suppresses IL-5-dependent prolongation of survival of human eosinophils. Check for activity.
  • the primary antibody was purified with 0.1 to 50 g / ml of the purified antibody obtained in 1 (6) or 2 (9) above.
  • the plate is coated as a body, and 0.1 to 10,000 ng / ml of the purified shIL-5R a or the sample of human serum obtained in the above 1 (1) is reacted.
  • the antibody used as the primary antibody among the purified antibodies obtained in the above (1) (6) or (9), labeled with biotin, an enzyme, a chemiluminescent substance or a radioactive compound as a second antibody was further used.
  • an anti-human IL-5R ⁇ antibody that recognizes a different epitope from the human IL-5R ⁇ antibody perform the reaction according to the labeling substance.
  • Draw a calibration curve based on the reactivity to purified SML-5R, and calculate the shIL-5R concentration in the sample.
  • the purified shIL-5Ra obtained in 1 (1) above is fractionated by SDS polyacrylamide electrophoresis (SD S-PAGE), and then transferred to a polyvinylidene difluoride membrane [hereinafter referred to as PVDF membrane (Millipore)].
  • PVDF membrane Polyvinylidene difluoride membrane
  • I do Immerse in PBS containing 1-10 ⁇ bovine serum albumin (BSA), leave at 4 ⁇ for blocking, and wash well with PBS containing 0.053 ⁇ 4 Tween.
  • the PVDF membrane is immersed in the culture supernatant of the hybridoma obtained in the above 1 (5) or the purified antibody solution obtained in the above 1 (6) for 2 hours at room temperature, and washed well with PBS containing 0.05 3 ⁇ 4 Tween. .
  • the PVDF membrane is immersed in a solution containing an anti-mouse immunoglobulin antibody or an anti-rat immunoglobulin antibody labeled with biotin, an enzyme, a chemiluminescent substance, a radioactive compound, etc. Wash well with BS. After thoroughly removing the washing solution, perform a reaction according to the labeling substance of the second antibody, and confirm whether or not it reacts with a protein that matches the molecular weight of the purified shlL-5Ra.
  • Anti-mouse immunoglobulin antibody or anti-rat immunoglobulin antibody diluted 10- to 1000-fold with PBS or the like is dispensed into 96-well plastic plates for ELISA. Alternatively, adsorb it by leaving it at room temperature for 2 hours or more. After washing the plate with PBS, aliquots of PBS containing 1 to 10% BSA etc. are dispensed in 300 1-wells and allowed to stand at 4 or at room temperature for 30 minutes or more to perform blocking. After washing the plate with PBS, the culture supernatant of the hybridoma obtained in 1 (5) above or the culture supernatant obtained in 1 (6) above was obtained.
  • the solution After dilution with PBS as needed, the solution is added at 5 to 25 a1 per lane, fractionated by SDS-PAGE, and transferred to a PVDF membrane or the like according to a standard method. Western blotting is performed on the PVDF membrane by the method shown in the above 5 (5) to detect shIL-5R ⁇ .
  • FIG. 1 is a diagram showing a construction process of plasmid PAGE210.
  • FIG. 2 shows a restriction map of plasmid pCAGGS-h5R.25.
  • FIG. 3 is a view showing a construction process of plasmid PAI234.
  • FIG. 4 is a diagram showing a construction process of plasmid PAI230.
  • FIG. 5 is a diagram showing a construction process of plasmid PAI282.
  • FIG. 6 is a diagram showing a construction process of plasmids PAI283 and PA1285.
  • FIG. 7 is a diagram showing a construction process of plasmids PAI 284 and PAI 289.
  • FIG. 8 is a view showing a construction process of plasmids PAI 294 and PAI 295.
  • FIG. 9 is a diagram showing a construction process of plasmids pA [299 and PM301.
  • FIG. 10 is a diagram showing a construction process of plasmid PA1292.
  • FIG. 11 is a diagram showing a construction process of plasmid PAI297.
  • FIG. 12 is a diagram showing a construction process of plasmid pMKexl.
  • FIG. 13 is a diagram showing a construction process of plasmid PAI263.
  • FIG. 14 shows the binding reactivity of the anti-human 1L-5R ⁇ monoclonal antibodies KM1257 and KM1259 to the human IL-5R human-human immunoglobulin constant region fusion protein in an enzyme immunoassay assay.
  • FIG. 15 is a diagram showing a construction process of plasmid pBSA.
  • FIG. 16 is a diagram showing a construction process of plasmid pBSAE.
  • FIG. 17 is a diagram showing a construction process of plasmid pBSH-S.
  • FIG. 18 is a diagram showing a construction process of plasmid pBSK-H.
  • FIG. 19 is a diagram showing a construction process of plasmids pBSH-SA and pBSK-HA.
  • FIG. 20 is a diagram showing a construction process of plasmids pBSH-SAE and pBSK-HAE.
  • FIG. 21 is a diagram showing a construction process of plasmids pBSH-SAEE and pBSK-HAEE.
  • FIG. 22 is a diagram showing a construction process of plasmid pBSK-HAEESal.
  • FIG. 23 is a diagram showing a construction process of plasmid pBSX-S.
  • FIG. 24 is a diagram showing a construction process of plasmid pBSX-SA.
  • FIG. 25 is a diagram showing a construction process of plasmid pBSSC.
  • FIG. 26 is a diagram showing a construction process of plasmid pBSMo.
  • FIG. 27 is a diagram showing a construction process of plasmid pBSMoS.
  • FIG. 28 is a view showing a step of constructing plasmid pChilgUUS.
  • FIG. 29 is a diagram showing a construction process of plasmid pMohC / c.
  • FIG. 30 is a view showing a construction process of plasmid pBSMoSal.
  • FIG. 31 is a diagram showing a construction process of plasmid pBSMoSalS.
  • FIG. 32 is a diagram showing a construction process of plasmid pBShCrl.
  • FIG. 33 is a diagram showing a construction step of plasmid pMohCr1.
  • FIG. 34 is a view showing a step of constructing a plasmid PMOTISP.
  • FIG. 35 is a diagram showing a construction process of a plasmid ⁇ ISP.
  • FIG. 36 is a view showing a construction process of plasmid PKANTEX93.
  • FIG. 37 is a diagram showing a construction process of plasmid PKANTEX1259H.
  • FIG. 38 is a diagram showing a construction process of plasmid PKANTEX1259.
  • FIG. 39 shows an electrophoresis pattern of anti-human IL-5R ⁇ -chain human chimeric antibody KM1399 by SDS-PAGE (using a 4-1 gradient gel). Electrophoresis was performed under non-reducing conditions on the left side and reducing conditions on the right side. M on the left indicates the high molecular marker, 1 indicates the KM1399, right M indicates the low molecular marker, and 1 indicates the migration pattern of KM1399. You.
  • Figure 40 shows the inhibitory activities of anti-human IL-5R heavy chain mouse antibody KM1259 and anti-human IL-5R ⁇ -chain human chimeric antibody KM1399 on the binding of human IL-5 and human IL-5R ⁇ -chain. Show.
  • the vertical axis indicates the inhibitory activity, and the horizontal axis indicates the antibody concentration. Indicates the activity of ⁇ 1259, and ⁇ indicates the activity of KM1399.
  • FIG. 41 is a diagram showing a construction process of plasmid PT1259.
  • FIG. 42 shows the evaluation of the activity of the anti-human IL-5R ⁇ -chain human chimeric antibody by transient expression using the plasmid PT1259.
  • the vertical axis shows the inhibitory activity on the binding of human-5 to human IL-5R heavy chain, and the horizontal axis shows the dilution factor of the transient expression culture supernatant.
  • FIG. 43 is a diagram showing a construction process of plasmid phKM1259HV0.
  • FIG. 44 is a diagram showing a construction process of plasmid phK1259LV0.
  • FIG. 45 is a view showing a construction process of plasmid PKANTEX1259HV0.
  • FIG. 46 is a diagram showing a construction process of plasmid PKANTEX1259HV0LV0.
  • FIG. 47 shows an SDS-PAGE (using a 4 to 15 gradient gel) electrophoresis pattern of anti-human IL-5R ⁇ -chain human CDR-grafted antibody # 8397. Electrophoresis was performed under non-reducing conditions on the left side and reducing conditions on the right side. ⁇ indicates the molecular weight marker and 1 indicates the migration pattern of 978397.
  • FIG. 48 shows the binding activities of the anti-human-5R ⁇ -chain human chimeric antibody KM1399 and the anti-human IL-5R heavy chain human CDR-grafted antibody # 8397 to the human IL-5R heavy chain.
  • the vertical axis indicates the binding activity to human I or 5R ⁇ -chain, and the horizontal axis indicates the antibody concentration. Hata shows activity of ⁇ 1399 and ⁇ shows activity of ⁇ 8397, respectively.
  • FIG. 49 shows the inhibitory activity of various modified versions of the anti-human IL-5R ⁇ -chain human CDR-grafted antibody on the binding between human IL-5 and human IL-5R ⁇ -chain in the culture supernatant for transient expression. The results of evaluating are shown. The vertical axis indicates the inhibitory activity, and the horizontal axis indicates each sample name. The relative activity values are shown with the activity of the chimeric antibody KM1399 as 100.
  • FIG. 50 shows the binding activity of various modified anti-human IL-5R ⁇ -chain human CDR-grafted antibodies to human IL-5R heavy chain.
  • the vertical axis shows the binding activity to human IL-5R ⁇ -chain, and the horizontal axis shows the antibody concentration.
  • is 1399
  • is HV. 0LV. 0, HV.2LV.0, HV.OLV.3, A: HV.3LV.3, Hata at the bottom: KM1399
  • indicates the activity of HV. ILV. 4
  • indicates the activity of HV. 2LV. 4
  • X indicates the activity of HV. 3LV. 4, respectively.
  • FIG. 51 is a view showing a construction step of plasmid pBShCr4.
  • FIG. 52 is a diagram showing a process for constructing plasmids KANTEX1259r4 and pKANTEX1259HV3LV0 ⁇ 4.
  • FIG. 53 shows SDS-PAGE of human anti-human IL-5R ⁇ -chain human chimeric antibody anti- ⁇ 7399 of human antibody IgG4 subclass, anti- ⁇ 7399, and human IL-5R ⁇ -chain human CDR-grafted antibody of human antibody IgG4 subclass ⁇ 9399 (4- 153 ⁇ 4 gradient gel is used). Electrophoresis was performed under non-reducing conditions on the left side and reducing conditions on the right side. M on the left shows the migration pattern of a high molecular marker, 1 shows K9399, 2 shows KM7399, M on the right shows the migration pattern of a low molecular marker, 1 shows KM9399, and 2 shows the migration pattern of KM7399.
  • Fig. 54 shows human antibody [anti-human IL-5R heavy chain human chimeric antibody K1399 of gGl subclass, anti-human IL-5R ⁇ -chain human chimeric antibody of human antibody IgG4 subclass 3997399, and human antibody IgG1 subclass.
  • the binding activity of anti-human IL-5R ⁇ -chain human CDR-grafted antibody ⁇ 8399 and human antibody IgG4 subclass anti-human IL-5R ⁇ -chain human CDR-grafted antibody ⁇ 9399 to human IL-5R ⁇ -chain is shown.
  • the vertical axis shows the binding activity to human IL-5R heavy chain, and the horizontal axis shows the antibody concentration.
  • shows activity of ⁇ 1399
  • Hata shows activity of 3997399
  • mouth shows activity of ⁇ 8399
  • painting shows activity of ⁇ 9399.
  • Fig. 55 shows the reactivity of anti-human IL-5R monoclonal antibody KM1257, KM1259.
  • FIG. 56 shows the inhibitory effect of anti-human IL-5R ⁇ -monoclonal antibodies KM1257, KM1259, KM1486, KM1399, ⁇ 7399, ⁇ 8399 and ⁇ 9999 on IL-5-dependent proliferation of human-5R-transfected CTLL-2 cells. The results of the study are shown.
  • FIG. 57 shows the results of analysis of the reactivity of the anti-human IL-5R monoclonal antibody KM1259 with human eosinophils by flow cytometry.
  • Figure 58 shows the anti-human IL-5R ⁇ monoclonal antibody K1257, KM1259, ⁇ 1486, ⁇ 1399, 3 shows the results of examining the inhibitory effects of KM7399, KM8399 and M9399 on human eosinophil survival.
  • Fig. 59 shows the anti-human 1L-5R monoclonal antibody KM1257 and labeled with biotin.
  • FIG. 3 shows the results of studies on a soluble human IL-5R ⁇ quantification system using KM1259.
  • FIG. 60 shows the results of detection of shIL-5Ra by Western blotting using an anti-human [L-5R ⁇ monoclonal antibody KM1257, KM1259 and KM1486.
  • FIG. 61 shows the results of immunoprecipitation of shIL-5Ra using anti-human IL-5R ⁇ monoclonal antibodies KM1257, M1259 and KM1486.
  • the expression vector for animal cells, PAGE210 was constructed as follows using the expression vector for animal cells, PAGE207 (Japanese Patent Application Laid-Open No. 6-46841) and pAGE148 (Japanese Patent Application Laid-Open No. 6-205694).
  • E down eight and the SV40 early promoter is from PAGE207 capacitors one (hereinafter, referred to as P SE), hygromycin resistance Yadenko and ampicillin (hereinafter, referred to as Ap)
  • P SE PAGE207 capacitors one
  • Ap hygromycin resistance Yadenko
  • Ap ampicillin
  • the DMA fragment obtained above was mixed with 501 PCR buffer [50 mM chloride rim, lOmM tris-hydrochloride (pH 8.3), 1.5 mM magnesium chloride, 0.2 mM deoxydenosine triphosphate (hereinafter, referred to as “the buffer”).
  • dATP 0.2 mM Deoxyguanosine triphosphate
  • dGTP a buffer solution comprising 0.2 mM deoxycytosine myric acid (hereinafter, referred to as dCTP), and 0.2 mM deoxythymidine triphosphate (hereinafter, referred to as dTTP).
  • Synthetic DNA having the base sequence shown and synthetic DNA having the base sequence shown in SEQ ID NO: 2 [both were synthesized using an automatic DNA synthesizer; 380A (manufactured by Applied Biosystems Co., Ltd.). And the same as described below), and bent DNA polymerase [New England BioLabs. Inc. (New England BioLabs.
  • the reaction mixture was precipitated with ethanol [Maniatis et al., Edited by Molecular Cloning, E.10, Cold.
  • the DNA fragment was recovered by Spring Harbor Laboratory 1989 ⁇ and redissolved in a buffer consisting of 201 mM Tris monohydrochloride ( ⁇ 8.5), 10 mM magnesium chloride, 10 mM potassium chloride and ImMDTT, and further 10 units of BamHl And reacted at 37 for 4 hours. After fractionation by Agarosu electrophoresis The reaction solution was recovered to about 0.3 ug to DM fragment of L.Okb.
  • plasmid PUC19 (Pharmacia Biotech) was dissolved in 30 ⁇ l of a buffer consisting of 10 mM Tris-HCl (PH7.5), lOm magnesium chloride, 50 mM sodium chloride and lmM DTT, and 10 units of Hindlll were added. After reacting for 4 hours with, a DNA fragment was recovered from the reaction solution by ethanol precipitation, and the solution was added to a buffer solution 301 comprising 20m Tris-hydrochloric acid (PH8.5), 10mM magnesium chloride, 10mM potassium chloride and lmM DTT. After re-dissolving, 10 units of BamHl were added and reacted at 37 * C for 4 hours. After fractionating the reaction solution by agarose electrophoresis, about 0.5 g of Hindi 11 / BamHI fragment of PUC19 was recovered.
  • PH7.5 Tris-HCl
  • lOm magnesium chloride 50 mM sodium chloride and lmM DTT
  • the construction of the ⁇ expression vector pAI230 was performed as follows. Add 3 / g of PAGE210 to a buffer solution consisting of lOm tris-hydrochloric acid (pH 7.5), lOm magnesium chloride, 50 mM sodium chloride and ImM DTT, then add 10 units of Hindi II and 37 hours for 4 hours. Reacted.
  • the DNA fragment was recovered from the reaction solution by ethanol precipitation, redissolved in 30 n1 of a buffer solution consisting of 20 mM Tris-hydrochloric acid (pH 8.5), lOmM magnesium chloride, lOmM potassium chloride and ImM DTT, and further 10 units of BamHl Was added and reacted at 37 for 4 hours. After fractionating the reaction solution by agarose electrophoresis, about 0.5 ng of the 9. Okb DNA fragment was recovered.
  • s IL-5R For efficient production by animal cells, modify the signal sequence of the cDNA encoding shIL-5R ⁇ by introducing an EcoRV recognition sequence at the 3 'end of the signal sequence, followed by synthesis. Using DNA, the signal sequence of human growth hormone [Science, 205, 602 (1979)] or anti-ganglioside GD3 chimeric antibody KM871 (Japanese Patent Laid-Open No. 5-304989) was modified according to the following procedure.
  • 3 g of the plasmid PAI234 obtained in Example 1 (2) was prepared from 10 mM tris-hydrochloric acid (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and ImM DTT.
  • 10 units of Hindi II were added and reacted at 37 for 4 hours.
  • the DNA fragment was recovered from the reaction solution by ethanol precipitation, redissolved in a buffer 301 consisting of 20 mM Tris monohydrochloride (PH8.5), 10 mM magnesium chloride, 10 mM potassium chloride and lmM DTT, and further dissolved in 10 units. BamHI was added and reacted at 37 for 4 hours. After fractionating the reaction solution by agarose electrophoresis, about 0.3 g of a DNA fragment of l. Okb was recovered.
  • plasmid PUC19 3 g was dissolved in a buffer solution consisting of lOmM tris-hydrochloride (pH 7.5), lOmM magnesium chloride, 50 mM sodium chloride and lmM DTT, and 10 units of Hinc II were added. After reacting for 4 hours, a DNA fragment was recovered from the reaction solution by ethanol precipitation, and about 0.5 g of a Hincl fragment of pUC19 was recovered.
  • the DNA fragment was recovered from the reaction solution by ethanol precipitation, redissolved in a buffer solution consisting of 20 mM Tris-hydrochloric acid ( ⁇ 8.5), 10 mM magnesium chloride, 10 mM potassium chloride and ImM DTT, and further dissolved in 10 units. BamHI was added and reacted at 37 "C for 4 hours. The reaction mixture was fractionated by agarose electrophoresis, and about 0.8 g of a 2.8 kb D fragment was recovered.
  • 3 g of the plasmid pAI234 was added to 30 I of a buffer consisting of 10 mM Tris-HCl (pH 7.5), lOm magnesium chloride, 50 mM sodium chloride and lmM DTT, and 10 units of Xbal were further added thereto. Allowed to react for hours.
  • the DNA fragment was recovered from the reaction solution by ethanol precipitation, redissolved in a buffer 301 consisting of 20 mM Tris-HCl (pH 8.5), 10 mM magnesium chloride, 10 mM potassium chloride and lmM DTT, and further 10 units of BamHI Was added and reacted at 37 for 4 hours. After fractionating the reaction solution by agarose electrophoresis, about 0.2 ⁇ g of a 0.8 kb DNA fragment was recovered.
  • a buffer solution 301 consisting of 50 mM tris-hydrochloric acid (pH 7.5), 10 mM magnesium chloride, 100 mM sodium chloride and lmM DTT, and 10 units of EcoRV are further added. Reacted.
  • the DNA fragment was recovered from the reaction solution by ethanol precipitation, redissolved in a buffer 30 1 consisting of 20 mM Tris-HCl (pH 8.5), 10 mM magnesium chloride, 10 mM potassium chloride and ImM DTT, and 10 units of BamHI were further dissolved.
  • the reaction was carried out at 37 for 4 hours. After fractionating the reaction solution by agarose electrophoresis, about 0.3 g of a 0.9 kb DNA fragment was recovered.
  • fusion protein between human 1L-5R ⁇ and human immunoglobulin constant region The extracellular region of human IL-5R and the human immunoglobulin constant region (hereinafter, referred to as Fc) are (Gly- Ser- A fusion protein (hereinafter referred to as ML-5R a -Fc) linked via a linker having an amino acid sequence of Gly) 4 was prepared according to the following procedure.
  • As the cDNA encoding the human immunoglobulin constant region the portion encoding the human IgGl constant region on the vector pChilgHB2 for expressing a human chimeric antibody H chain (JP-A-5-304989) was used.
  • the reaction solution 20 I was added to a buffer solution consisting of lOOmM tris-hydrochloric acid ( ⁇ 7.5), 100 mM magnesium chloride, 500 mM sodium chloride and lOmM DTT 2.5 w 1, distilled water 2.5 ⁇ 1 Then, 10 units of Hindi II was added thereto and reacted at 37 for 4 hours.
  • the reaction mixture is fractionated by agarose gel electrophoresis, the reaction mixture is fractionated by agarose gel electrophoresis, and the cDNA containing the extracellular region of hIL-5R is contained.1.Okb DNA About 0.5 g of the fragment was recovered.
  • PCR was performed under the same conditions as above using the PAI285 obtained in Example 1 (4) as a template and a synthetic DNA having the base sequence shown in SEQ ID NOS: 13 and 14 as a primer. After completion, the reaction mixture is fractionated by agarose gel electrophoresis, and the reaction mixture is fractionated by agarose gel electrophoresis. The DNA fragment containing the cDNA encoding the extracellular region of human IL-5R ⁇ 1. Ok DNA fragment About 0.5 ⁇ g was recovered.
  • 3 g of the plasmid PAI294 is added to a buffer 301 consisting of 10 mM Tris-HCl ( ⁇ 7.5), 10 mM magnesium chloride, 50 sodium chloride and ImMDTT, and 10 units of HindU 1 are further added. Reacted.
  • the DNA fragment was recovered from the reaction solution by ethanol precipitation, and redissolved in 30 ⁇ l of a buffer solution containing 20 mM Tris-hydrochloric acid (pH 8.5), 10 mM magnesium chloride, potassium chloride and ImMDTT. Further, 10 units of BamHI was added, and the mixture was reacted at 37 for 4 hours.
  • Example 3 g of PM285 obtained in Example 1 (4) or MI294 obtained in Example 1 (6) is composed of lOmM tris-hydrochloride ( ⁇ 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and lmM DTT. In addition to buffer 301, 10 units of Hindi 11 were added and reacted at 37 for 4 hours.
  • a DNA fragment was recovered from the reaction solution by ethanol precipitation, and 201 DNA polymerase I buffer [5 mM Tris-HCl (pH 7.5), ImM magnesium sulfate, 0.01 mM DTT, 5 g / ml bovine serum albumin, 0.08 mM dATP, Buffer solution consisting of 0.08 mM dGTP, 0.08 mM dCTP, and 0.08 mM dTTP, the same applies to the following.) The reaction was carried out for 30 minutes, and the 5 'protruding end generated by Hindi [I digestion was changed to a blunt end. Further, the reaction mixture was extracted with phenol-chloroform, followed by precipitation with ethanol.
  • a buffer solution consisting of 20 mM Tris-hydrochloric acid (pH 8.5), 10 mM magnesium chloride, 100 mM potassium chloride and ImM DTT, and 30 units of BamHI and 10 units of BamHI were used. Add And reacted at 3TC for 4 hours. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1. Okb DNA fragment containing cDNA encoding shIL-5R ⁇ was added to about 0.3, human IL-5R ⁇ and human immunoglobulin constant region About 0.3 g of a 1.7 kb DNA fragment containing cDNA encoding the fusion protein was recovered.
  • 3 Atg of the plasmid PVL1393 contained in the Pharmingen Bakuchi Golds Evening Kit was purified from 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, sodium chloride and ImM DTT. To 30 ⁇ l of the buffer solution, 10 units of EcoRI was further added, and the reaction was carried out at 37 for 4 hours. A DNA fragment was recovered from the reaction mixture by the ethanol precipitation method, dissolved in 20 / X1 DNA polymerase I buffer, 5 units of E. coli DNA polymerase I Klenow fragment was added, and the mixture was reacted at 22 for 30 minutes. The 5 'overhangs generated by EcoRI digestion were changed to blunt ends.
  • reaction solution was extracted with phenol-chloroform, and then subjected to ethanol precipitation.
  • the solution was added to a buffer (30 ⁇ m, 1 ⁇ m) containing 50 mM Tris-hydrochloric acid (PH7.5), lOmM magnesium chloride, lOOmM sodium chloride and ImM DTT. Further, 10 units of Bglll were added, and the mixture was reacted at 37 for 4 hours.
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 0.9 ⁇ g of a DNA fragment of about 9.6 kb was recovered.
  • DAI 292 or PAI 297 (ing) and 20 ng of linear baculovirus DNA were dissolved in 121 distilled water, a mixture of lipofectin 6n1 and distilled water 61 was added, and the mixture was allowed to stand at room temperature for 15 minutes.
  • 1 ⁇ 10 6 Sf9 cells were suspended in 2 ml of Sf900-11 medium (manufactured by Gibco) and placed in a 35 mm diameter plastic culture dish for cell culture. After adding the whole volume of the mixed solution of Bacchus virus DNA and lipofectin, the cells were cultured at 27 for 3 days, and 1 ml of the culture supernatant containing the recombinant virus was collected. After culturing for 3 days, another 1.5 ml of the culture supernatant containing the recombinant virus was obtained.
  • the recombinant virus obtained for use in protein expression was propagated by the following procedure.
  • the virus titer of the obtained recombinant virus solution was calculated by the following method (Bakuguchi Gold Starter Kit Manual manufactured by Pharmingen).
  • Plasmids were introduced into animal cells according to the method of Miyachi et al. Using the electo-portion method [Cytotechnology, 3, 133 (1990)].
  • RPMI 1640- FCS 10
  • FCS 10% a 7.5% NaHC0 3 1 / 40 volume, 200mM L — RPMI 1640 medium containing 3% of glutamine solution (manufactured by Gibco); 0.5% of penicillin / streptomycin solution (manufactured by Gibco, containing 5000units / ml ⁇ nisilin and 5000g / ml streptomycin) (Manufactured by Nissui Pharmaceutical Co., Ltd.)] and dispensed into a 96-well microtiter plate in 200 1 wells.
  • hygromycin manufactured by formic BUKO Co.
  • hygromycin manufactured by formic BUKO Co.
  • 50 ⁇ methorexate
  • hIL-5R ⁇ was purified from the culture supernatant as follows. After adding 29.2 g of sodium chloride and 20 ml of 1M tris-hydrochloric acid (pH 7.4) to 1 liter of the culture solution of the transformed strain according to ⁇ 289, the pH of the solution was adjusted to pH7 using 1N sodium hydroxide solution. Adjusted to 4. The column is filled with about 10 ml of Concanapalin A-Sepharose (Pharmacia) gel and washed with 50 ral of a buffer consisting of 20 mM tris-hydrochloric acid (pH 7.4) and 0.5 M sodium chloride at a flow rate of 0.5 ml / min. did.
  • the solution containing shIL-5R ⁇ prepared as described above was passed through a concanavalin A-cepharose column at a flow rate of 0.5 ml / min. After washing with 80 ml of a buffer consisting of 20 mM tris-hydrochloric acid (pH 7.4) and 0.5 M sodium chloride at a flow rate of 0.5 ml / min, 20 mM tris-hydrochloric acid (pH 7.4) and 0.5 M sodium chloride were used.
  • Buffer solution consisting of 15 ml of 0.5 M ⁇ -methyl mannoside, 20 mM tris-hydrochloric acid (PH 7.4) and 0.5 M sodium chloride to a concentration of 0-0.5 M
  • the protein adsorbed on Concanavalin A-Sepharose was eluted by changing the concentration linearly, and the eluate was fractionated in 1 ml fractions (fractions 1 to 30).
  • 20 ml of a buffer solution consisting of 1 M ⁇ -methylmannoside, 20 mM Tris-hydrochloric acid ( ⁇ 7.4) and 0.5 ⁇ sodium chloride was passed through the column to fractionate 2 ml each (fractions 31 to 40).
  • the protein concentration in each fraction was measured using a protein concentration measurement kit (manufactured by Bio-Rad), and fractions 10 to 40 with a high protein concentration were collected.
  • the protein solution was concentrated about 10-fold using Centricon 30 manufactured by Amicon, sealed in a dialysis tube, and dialyzed against PBS.
  • purified sh IL-5R a protein concentration 4 mg / ml, 3.5 ml).
  • hIL-5R ⁇ -Fc was obtained as follows.
  • the column was packed with about 5 ml of protein A-Sepharose 'gel and washed with 50 ml of PBS. After washing, about 1 liter of the culture of the above-described transformant with PAI301 was passed through a protein A-Sepharose column at a flow rate of 0.5 ml / min. After washing the column with 50 ml of PBS, the protein adsorbed on protein A-Sepharose was eluted by passing through 20 ml of 0.1 M citrate buffer (pH 3.0), and the eluate was fractionated 1 ml at a time.
  • shIL-5R ⁇ and h-5R a-Fc were performed according to the following procedure according to the manual attached to the Bakyulogo starter kit manufactured by Farmingen.
  • shIL-5Ra was obtained as follows. Six 6 ⁇ 10 6 Sf9 cells were suspended in 45 ml of Grace's Insect Medium (Gibco) containing 103 ⁇ 4FCS in a 225 cm 2 flask (Grainer) and cultured at 27 for 3 to 4 days. Includes transfer vectors pAI 292-derived recombinant virus obtained in 1 (8) and Gureisuzu Insect-medication ⁇ beam 30ml containing new culture supernatant was removed Example 1 at a concentration of about 1 x10 7 PFU / ml Lml of the solution was added.
  • the column was filled with about 10 ml of concanapalin A-cepharose gel, and washed with 50 ml of a buffer solution consisting of 20 mM Tris-hydrochloric acid (PH 7.4) and 0.5 M sodium chloride at a flow rate of 0.5 ml / min. After washing, 500 ml of the culture solution containing shIL-5R ⁇ prepared as described above was passed through a concanavalin A-Sepharose column at a flow rate of 0.5 ml / min.
  • the protein concentration contained in each fraction was measured using a protein concentration measurement kit (manufactured by Piolad), and 44 ml of the fraction having a high protein concentration was collected and dialyzed against 20 mM Tris-HCl (PH 7.4). Further, 40 ml of a protein-rich fraction was collected from 900 ml of the culture solution containing sIL-5R ⁇ prepared as described above and dialyzed against 20 mM tris-hydrochloric acid (pH 7.4).
  • the protein solution was combined and passed through a column filled with 10 ml of getylaminoethyl (DEAE) -Sepharose gel to adsorb the protein. Elution of shIL-5R ⁇ from the column was performed by linearly changing the sodium chloride concentration from 0 to 0.5 °, and 4 ml of a fraction containing high concentration of shIL-5R ⁇ was recovered.
  • the protein solution was sealed in a dialysis tube and dialyzed against PBS. As described above, purified shIL-5R (protein concentration: 400 g / ml, 4.5 ml) was obtained.
  • hIL-5R-Fc was obtained as follows. 6 x 10 6 Sf9 cells were suspended in 45 ml of Grace's Insect Medium (Gibco) containing 103 ⁇ 4FCS in a 225 cm 2 flask (Grainer) and 27 ml. Culture was performed for 3 to 4 days.
  • the column was packed with about 5 ml of Protein A-Sepharose gel, and washed with 50 ml of PBS. After washing, 450 ml of the above culture solution containing hlL-5R ⁇ -Fc was passed through a protein A-Sepharose column at a flow rate of 0.5 ml / min. After washing the column with 50 ml of PBS, the protein adsorbed on protein A-Sepharose was eluted by passing through 20 ml of 0.1 M citrate buffer (pH 3.0), and the eluate was separated by 1 ml. Painted. ⁇ ml was adjusted by adding 0.15 ml of 2M Tris-HCl ( ⁇ 90) to each fraction.
  • the protein concentration contained in each fraction was measured using a protein concentration measurement kit manufactured by Bio-Rad, Inc., and a fraction having a high protein concentration was collected.
  • the protein solution was concentrated about 3-fold using Centricon-30 manufactured by Amicon, sealed in a dialysis tube, and dialyzed against PBS. As described above, purified blue 5Ra-Fc (protein concentration: 0.4 mg / ml, 1.8 ml) was obtained.
  • shIL-5R ⁇ partial fragment by Escherichia coli is performed by inserting a DNA fragment containing cDNA encoding the shIL-5R ⁇ fragment into the Escherichia coli expression vector -pMKexl shown below to form PAI263, and introducing PAI263 into E. coli. It was done by doing.
  • the plasmid pGHA2 (Japanese Patent Application Laid-Open No. 60-221091) was added to a buffer 30I1 consisting of 50 mM Tris-hydrochloric acid (pH 7.5), 10 mM magnesium chloride, 100 mM sodium chloride and lmM DTT, followed by 10 units of EcoRl. At 37 for 4 hours. A DNA fragment was recovered from the reaction solution by ethanol precipitation, and a buffer solution consisting of 10 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and lmMDTT was added, and 10 units of Clal were added. Allowed to react for hours. The reaction solution was fractionated by agarose gel electrophoresis, and about 0.3 ag of the EcoRI / Clal fragment of pGHA2 containing the promoter region was recovered.
  • PAI234 obtained in FIG. 3 was added to a buffer solution 301 comprising 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 100 mM sodium chloride and ImM DTT, and 10 units of Pstl were further added. In addition, the reaction was carried out at 37 for 4 hours.
  • the DM fragment was recovered from the reaction mixture by ethanol precipitation, and 201 T4 DNA polymerase I buffer [33 mM tris- ⁇ -acid (pH 8.0), 66 mM potassium acetate, 10 mM magnesium acid, 0.5 mM DTT, 0.013 ⁇ 4BSA buffer), add 5 units of T4 DNA polymerase I (Takara Shuzo), react at 12 for 15 minutes, and convert the 5 'protruding end generated by Pstl digestion to blunt end .
  • reaction solution was extracted with phenol-chloroform, followed by ethanol precipitation, and a buffer solution consisting of 20 mM tris-hydrochloric acid (pH 8.5), lOm magnesium chloride, lOOmM potassium chloride and ImM DTT, and 30 units of BamHI was added and reacted at 37 for 4 hours.
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 0.3 kb of a DNA fragment of about 0.7 kb containing cDNA encoding the sh-5R ⁇ fragment was recovered.
  • the expression vector pMKexl for Escherichia coli obtained in FIG. 12 was dissolved in a buffer 301 consisting of 20 mM Tris monohydrochloride (PH8.5), lOm magnesium chloride, lOOmM potassium chloride and ImM DTT, and 10 units of BamHI were added. Was added and reacted at 37 for 4 hours.
  • the DNA fragment was recovered from the reaction solution by ethanol precipitation, and 50 mM Tris-HCl (pH 7.5), dissolved in 30 pi 1 of a buffer consisting of lOmM magnesium chloride, lOOmM sodium chloride and ImM DTT, further added 10 units of EcoRV, and reacted at 37 for 4 hours.
  • a DNA fragment was recovered from the reaction solution by ethanol precipitation. 50 ng of the cDNA encoding the shIL-5R ⁇ fragment obtained above and 100 ng of the EcoRV / BamHI fragment of pMKexl were dissolved in a 20 ⁇ 1 T4 DNA ligase buffer, and 200 units of T4 DNA ligase were added. In addition, the binding reaction was performed at 12 for 16 hours. Escherichia coli strain JM109 was transformed using the recombinant plasmid DNA thus obtained, and the plasmid PAI263 shown in FIG. 13 was obtained.
  • the above plasmid PAI263 was introduced into E. coli (Molecular Cloning. A Laboratory Manual, 2nd Edition published by Cold Spring Harbor Laboratory Press, 1989), and cultured for 3-4 hours in 400 ml of LB medium containing 200 g / ml of ampicillin. Then, 0.5 mM IPTG was added, and the cells were further cultured at 37 for 2 hours. Centrifuge 400 ml of the culture at 3,000 X for 15 minutes, and suspend the precipitate containing E. coli in 100 ml of buffer I [a buffer consisting of 10 mM Tris-HCl (PH8.0), lmM EDTA, and 150 mM sodium chloride]. did.
  • buffer I a buffer consisting of 10 mM Tris-HCl (PH8.0), lmM EDTA, and 150 mM sodium chloride.
  • the precipitate is suspended in 7 ml of Buffer I, and the cells are disrupted by sonication. This is centrifuged at 10,000 Xg for 30 minutes, and the precipitate is sample buffered for 500 1 SDS-polyacrylamide gel electrophoresis.
  • CTLL-2 cells transfected with the hIL-5 ⁇ gene [Journal of Experimental 'Medicine (J. Exp. Med.), ⁇ 7, 1523 (1993)], or CTLL-2 cells as a control [ATCC TIB 214] was prepared as follows. The cells are centrifuged (1,200 rpm, 5 minutes), washed twice with PBS, and then subjected to a cell disruption buffer [20 mM HEPES (pH 7.4), lmM EDTA, 0.5 mM PMSF, and 250 mM sucrose. And crushed using a homogenizer. After crushing, remove the precipitate by centrifugation at 5.500 ⁇ ⁇ ⁇ for 15 minutes, and then centrifuge at 35, OOOrpm to remove the cell membrane. The minute was collected as a precipitate.
  • a cell disruption buffer [20 mM HEPES (pH 7.4), lmM EDTA, 0.5 mM PMSF, and 250 mM sucrose.
  • Example 1 Various antigens 50 obtained from 1 (9), 1 (10), 1 (11) or 1 (12) of Example 1 were each treated with 2 mg of aluminum gel and pertussis vaccine (Chiba Prefectural Serum Institute) 1 ⁇ 10 9 cells At the same time, they were administered to 5-week-old female BALB / c mice or female SD rats. After 2 weeks, 50 g of protein was administered once a week for a total of 4 times. Blood is collected from the fundus venous plexus or the tail vein, and its serum antibody titer is examined by the enzyme immunoassay assay described in Example 1-3. did.
  • mice and 5 rats were immunized with the cell membrane fraction obtained in 1 (12) of Example 1 as an antigen, but no strong increase in antibody titer was observed. Also, 5 rats immunized with shIL-5R ⁇ obtained in 1 (9) of Example 1 or 10 rats immunized with sh5R ⁇ obtained in 1 (10) of Example 1 were used. However, no sufficient increase in antibody titer was observed.
  • the spleen is shredded in MEM medium (manufactured by Nissui Pharmaceutical Co., Ltd.), loosened with tweezers, centrifuged (l, 200 rpm, 5 minutes), the supernatant is discarded, and Tris-ammonium chloride buffer (pH7.65) is removed. ) For 1 to 2 minutes to remove red blood cells, washed three times with MEM medium, and used for cell fusion.
  • 2 'Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) Dissolve 550 mg of diammonium in 1 L of 0.1 M citrate buffer (PH4.2), and add 1 1 / ml of hydrogen peroxide immediately before use. And the absorbance at 0D415 nm was measured (NJ2001; manufactured by Nippon Inn-Med).
  • Biotin labeling of human IL-5 was performed according to the following procedure according to the protocol attached to the biotin labeling reagent (Biotin-LC-Hydrazide) of Pierce.
  • Biotin-LC-Hydrazide Biotin-LC-Hydrazide
  • Example 1 the antigen of Example 1 was used as the antigen.
  • the ML-5R ⁇ fragment obtained from (1 1) E. coli was used.
  • a plate was prepared by adsorbing shL-5R ⁇ produced by Escherichia coli in the same manner as described above and a bacterial protein of Escherichia coli as a control antigen. Serum reactivity was examined.
  • the 8-azaguanine-resistant mouse myeloma cell line ⁇ 3-1) 1 was cultured in a normal medium to secure 2 ⁇ 10 7 or more cells at the time of cell fusion and used as a parent strain for cell fusion.
  • Mouse spleen cells or rat spleen cells obtained in Example 1-2 and Example 1-4 After mixing with the myeloma cells obtained in the above at a ratio of 10: 1, centrifuging (1,200 rpm, ⁇ minutes), discarding the supernatant, thoroughly dissolving the precipitated cell group, and stirring. , by 37, polyethylene glyco one Roux 1000 (PEG-1000) 2g, added MEM medium 2ml and DMSO 0.7 ml of mixture 0.2 ⁇ lml / 10 8 mouse spleen cells, MEM medium 1 ⁇ 2Ml every 2 minutes After several additions, MEM medium was added to bring the total volume to 50 ml.
  • PEG-1000 polyethylene glyco one Roux 1000
  • the supernatant was discarded, the cells were loosened gently, and the cells were gently suspended in 100 ml of HAT medium by aspirating and aspirating with a female pipette.
  • the suspension was dispensed by 100 1 / Ueru play Bok for 96 Ueru culture, in 53 ⁇ 4C0 2 incubator one, were cultured in C0 2 53 ⁇ 4 under 10-14 days at 37.
  • the culture supernatant was examined by the enzyme immunoassay described in Example 1-3 to specifically react with hIL-5R a- Fc prepared from insect cell culture supernatant or shlL-5R produced by E. coli. After selecting a well, the medium was replaced with HT medium and normal medium, and cloning was repeated twice to establish a hybridoma strain producing an anti-human IL-5R ⁇ monoclonal antibody.
  • Example 1 On the other hand, out of 15 or 20 mice immunized with shIL-5Ra obtained in Example 1 (9) or 1 (10) in Example 1, one or two individuals having a high antibody titer were obtained. Selected 6 animals and produced hybridomas. More than 10,000 clones of hybridomas were screened, and specific reactivity against hIL-5Ra-expressing cells was observed in the method described in Example 3-1 below.81 Anti-hIL-5Ra monoclonal antibodies of 1 clone A production hybridoma was established. Among them, KM1257 was the monoclonal antibody that showed the strongest reactivity in the immunocytostaining method shown in Example 3-1, which will be described later.
  • Hypridoma KM1257 was designated as FERM BP-5133 on June 13, 1995 by the Institute of Microbial Industry and Technology (Tsukuba, Ibaraki, Japan). No. 1-3, Higashi 1-chome (the same applies to the following address). Among the 81 clones, only 6 clones showed a strong inhibitory effect on the biological activity of IL-5 shown in Example 3-2 described later, and among these clones, the monoclonal antibody showing the strongest inhibitory activity was shown. The antibodies were KM1259 and KM1486.
  • Hybridoma KM1259 was deposited as FERM BP-5134 on June 13, 1995, and hybridoma KM1486 was deposited as FERM BP-5651, September 3, 1996, with the Research Institute of Microbial and Industrial Technology, National Institute of Advanced Industrial Science and Technology. Was done.
  • an enzyme immunoassay using a subcluster typing kit was performed.
  • the antibody classes of KM1257, KM1259 and KM1486 were all IgGl.
  • the cDNAs encoding the humanized antibodies VH and VL were inserted upstream of the cDNA encoding the human antibody Crl and the cDNA encoding the human antibody C /, respectively, to obtain humanized IgGl and ⁇ humanized antibodies.
  • a tandem cassette type humanized antibody expression vector for expression in animal cells, No. 93 was constructed as follows based on the plasmid pSElUKl SEd kit 3 described in JP-A-2-2577891. The constructed humanized antibody expression vector was used for expression of a human chimeric antibody and a human CDR-grafted antibody in animal cells.
  • the V region of a human chimeric antibody or human CDR-grafted antibody is inserted into a vector for expression of a humanized antibody using a restriction enzyme Notl-Apal fragment (VH) and EcoIU-Spl I fragment (YL) in a cassette format to produce a human chimeric antibody.
  • VH Notl-Apal fragment
  • EcoIU-Spl I fragment YL
  • the restriction enzymes Apa I and EcoR present in the rabbit globin gene splicing of the plasmid pSElUKlSEd3 and the poly-signal Modification of the I site was performed as follows.
  • plasmid pBSA was added to a buffer 101 comprising 50 mM Tris-HCl (pH 7.5), lOm magnesium chloride, lOOm sodium chloride and Im DTT, and further 10 units of restriction enzyme EcoRl (Takara Shuzo Co., Ltd.) and reacted at 37 for 1 hour.
  • the reaction mixture was precipitated with ethanol, and DNA Blunting Kit (Takara Shuzo) was used to change the 5 'protruding end generated by EcoRI digestion to a blunt end.
  • a buffer solution 1 consisting of 10 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and ImMDTT, and 10 units of the restriction enzyme Hindi were added.
  • (manufactured by Takara Shuzo) was added and the reaction was performed at 37 for 1 hour.
  • the reaction solution was precipitated with ethanol, dissolved in 20 ⁇ l of a buffer consisting of lOmM Tris-HCl (pH 7.5), lOmM magnesium chloride and lmMDTT.
  • the plasmid pSElUKlSEdl-3 was added to a buffer consisting of lOmM Tris-HCl (pH 7.5), lOm magnesium chloride and lmDTT, and 10 units of restriction enzyme Sac11 (manufactured by Toyobo Co., Ltd.). 10 units of restriction enzyme ⁇ (manufactured by Sake Brewery Co., Ltd.) were added, and the reaction was carried out at 37 with 1 hour.
  • the reaction mixture was precipitated with ethanol, dissolved in 101 buffer solution consisting of 10 tris-hydrochloric acid ( ⁇ 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and ImMDTT, and further treated with 10 units of restriction enzyme Hindi II ( (Takara Shuzo) and reacted at 37 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, and a Hindi II-SacII fragment of about 2.42 kb and a Kpnl-Hindi 11 fragment of about 1.98 kb were each recovered in about 0.
  • plasmids pBSH-SA and pBSK-HA obtained above were added to a buffer 101 comprising 50 mM tris-hydrochloride (PH7.5), 10 mM magnesium chloride, 100 mM sodium chloride and lmMD TT, respectively.
  • PH7.5 tris-hydrochloride
  • 10 mM magnesium chloride 100 mM sodium chloride and lmMD TT
  • EcoRI EcoRI
  • Both reaction solutions were precipitated with ethanol, and the DNA Blunting Kit (manufactured by Takara Shuzo) was used to change the 5 'protruding ends generated by EcoRI digestion to blunt ends, and then fractionated by agarose gel electrophoresis. And a fragment of about 4.94 kb were recovered at about 0.5 / g.
  • each of the plasmids pBSH-SAE and pBSK-HAE obtained above was added to a buffer 101 comprising 50 mM Tris-hydrochloric acid (pH 7.5), 10 mM magnesium chloride, 100 mM sodium chloride and lm MDTT.
  • Ten units of restriction enzyme EcoRI (Takara Shuzo) was added and reacted at 37 for 1 hour. Both reaction solutions were precipitated with ethanol, and the DNA Blunting Kit (Takara Shuzo) was used. The 5 'protruding end generated by EcoRI digestion was changed to a blunt end, and then the DNA Ligation Kit (Takara Shuzo) was used. Connected.
  • Escherichia coli HB101 strain was transformed with each of the recombinant plasmid DNA solutions obtained in this manner, and plasmids pBSH-SAEE and pBSK-HAEE shown in FIG. 21 were obtained.
  • the reaction was carried out with the AutoRead Sequencing Kit (Pharmaciano, manufactured by Biotech) according to the attached instructions, followed by electrophoresis using an ALF DNA Sequencer (Pharmacia Biotech), and the nucleotide sequence was determined. However, it was confirmed that both Apa and EcoRI sites disappeared due to the above modification.
  • the plasmid pSElUKlSEcH-3 rabbit / 3- Oral bin gene splicing, introduction of the restriction enzyme Sal I site downstream of the poly A signal and the poly A signal of the SV40 early gene were performed as follows.
  • Example 3 // g of the plasmid pBSK-HAEE obtained in 1 (1) of Example 2 was added to a buffer 10/1 comprising 10 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride and lmMDTT, and further added. 10 units of restriction enzyme Nae [(Takara Shuzo) was added and reacted at 37 for 1 hour. The reaction solution was precipitated with ethanol, dissolved in 50 mM Tris-hydrochloric acid (pH 9.0) and a buffer solution consisting of 1 magnesium chloride, and further dissolved in 1 unit of alkaline phosphatase (E. coli C75, Takara Shuzo Co., Ltd.).
  • Escherichia coli HB101 strain was transformed using the thus obtained recombinant plasmid DM solution to obtain plasmid pBSK-HAEESal shown in FIG.
  • plasmid pBSK-HAEESal shown in FIG.
  • Using 10 g of the obtained plasmid react with AutoRead Sequencng Kit (Pharmacia Biotech) according to the instructions attached thereto, and perform electrophoresis with ALF DNA Sequencer (Pharmacia Biotech) to determine the nucleotide sequence.
  • AutoRead Sequencng Kit Pharmacia Biotech
  • ALF DNA Sequencer Pharmaacia Biotech
  • HSVtk Herpes simplex virus thymidine kinase
  • restriction enzyme Apal site present in the HSVtk gene polytk signal downstream of the Tn5 kanamycin phosphotransferase gene of plasmid pSElUKl SEd u3 was modified as follows.
  • the plasmid pBSA obtained in 1 (1) of Example 2 was added to 10 / xl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride and ImMDTT, and 10 units of the restriction enzyme Sac were added. l [(Toyobo Co., Ltd.) was added, and the mixture was reacted at 37 for 1 hour. The anti The reaction mixture was precipitated with ethanol, added to a buffer consisting of 101 mM Tris-HCl (pH 7.5), 100 mM sodium chloride, 100 mM magnesium chloride and ImMDTT, and further 10 units of restriction enzyme Xhol (Takara Shuzo) ) was added and reacted at 37 for 1 hour. Fractionated reaction mixture at Agarosugeru electrophoresis, 5 & approximately 2.96kb (: 1 Bok 1101 fragment was approximately 1 8 recovered.
  • a cDNA encoding human antibody C is present downstream of the promoter / enhancer of the terminal repeat of Moroni mouse leukemia virus, and a cDNA encoding the VL of a human chimeric antibody or a human CDR-grafted antibody VL.
  • a plasmid pMohC ⁇ having a humanized antibody L chain expression unit that can be inserted into the formula was constructed as follows. Plasmid pBluescript SK (-) (Stratagene) was added to a 10/1 buffer consisting of lOm Tris-HCl (pH 7.5), 10 mM magnesium chloride and ImMDTT, and an additional 10 units of restriction enzyme Sacl (Takara Shuzo) was added and reacted at 37 for 1 hour.
  • the reaction mixture was precipitated with ethanol, added to a buffer 10 i1 consisting of 10 mM Tris-hydrochloric acid (pH 7.5), 50 mM sodium chloride, 10 mM magnesium chloride and lmMDTT, and further 10 units of restriction enzyme Clal (Takara Shuzo) Was added and reacted at 37 for 1 hour.
  • the reaction mixture was precipitated with ethanol, the protruding ends generated by digestion with Sacl and Clal were changed to blunt ends using DNA Bluniing Kit (manufactured by Takara Shuzo), and fractionated by agarose gel electrophoresis. The fragments were recovered at about 1 / ig.
  • the collected DNA fragment 0.1 was added to a total of 20 I of sterile water, and ligated using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). Escherichia coli HB101 was transformed using the recombinant plasmid DNA solution obtained in this manner, and the plasmid pBSSC shown in FIG. 25 was obtained.
  • the reaction mixture is precipitated with ethanol, dissolved in a buffer consisting of 50 ⁇ -tris-hydrochloric acid (pH 7.5), lOOmM sodium chloride, 1OmM magnesium chloride and 1mM DTT, and 10 units of restriction enzyme Xhol (Takara Shuzo) ) was added and reacted at 37 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, and a Kpn-Xhol fragment of about 0.66 kb containing a terminal repeat sequence promoter / enhancer of Moroni murine leukemia virus was obtained.
  • a buffer 101 comprising 10 mM Tris-HCl (pH 7.5), 1 OmM magnesium chloride and 1 mM DTT, and 10 units of the restriction enzyme Kpnl (Takara Shuzo) Was added and reacted at 37 for 1 hour.
  • the reaction mixture was precipitated with ethanol, dissolved in 10 ⁇ 1 buffer consisting of lOmM Tris-HCl (pH 7.5), 50mM sodium chloride, lOmM magnesium chloride and lmMDTT, and further 10 units of restriction enzyme Hindlll (Takara Shuzo) Was added and reacted at 37 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, and an about 3.62 kb Kpn [-HiruUII fragment] was recovered.
  • synthetic DNAs having the nucleotide sequences of SEQ ID NOs: 16 and 17 were synthesized using an automatic DNA synthesizer (380A, manufactured by Applied Biosystems). 0.3 / ig of the obtained synthetic DNA was added to 15 il of sterilized water, and heated at 65 for 5 minutes.
  • 3 // g of the plasmid pChilgLAl described in JP-A-5-304989 was dissolved in a buffer 101 comprising 50 tris-hydrochloric acid (pH 7.5), lOOmM sodium chloride, lOmM magnesium chloride and lmMDTT. 10 units of restriction enzyme EcoR! (Takara Shuzo) and EcoRV (Takara Shuzo) were added and reacted for 1 hour. The reaction solution was fractionated by agarose gel electrophoresis, and an EcoRI-EcoRV fragment of about 9.70 kb was recovered at about 1 / zg.
  • the plasmid pBSMoS obtained above was dissolved in a buffer 10 1 consisting of 20 mM Tris-hydrochloride (pH 8.5), 100 mM potassium chloride, 1 OmM magnesium chloride and 1 mM DTT, and 10 units of the restriction enzyme Hpal were further added. (Takara Shuzo Co., Ltd.) and reacted at 37 for 1 hour.
  • the reaction solution was precipitated with ethanol, dissolved in 10 ⁇ l of a buffer solution consisting of 50 mM Tris-hydrochloric acid (pH 7.5), 100 mM sodium chloride, 10 mM magnesium chloride and lmMDTT, and further treated with 10 units of restriction enzyme EcoRI (Takara Shuzo).
  • the reaction was carried out at 37 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, and cut with an EcoRI fragment of about 3.66 kb. About 1 g of the piece was recovered.
  • the reaction solution was precipitated with ethanol and dissolved in a buffer solution consisting of 50 ⁇ -tris-hydrochloric acid ( ⁇ 7.5), lOOmM sodium chloride, lOmM magnesium chloride and lmMDTT, and further 10 units of restriction enzyme EcoRI ( (Takara Shuzo) and reacted at 37 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 0.31 tig of a Nla [V-EcoRI fragment of about 0.41 kb was recovered.
  • 0.1 / xg of the Hpa [-EcoRI fragment of pBSMoS obtained above and the NlalV-EcoIU fragment of pChilgLAlS 0.1 were added to a total of 201 sterile water, and the Ready-To-Go T4 DNA Ligase (Pharmacia Biotech) was added. (Manufactured by Sharp Corporation). Escherichia coli HB101 was transformed using the recombinant plasmid DNA solution obtained in this manner, and the plasmid pMohC shown in FIG. 29 was obtained.
  • a cDNA encoding the human antibody Crl exists downstream of the Moroni murine leukemia virus terminal repeat promoter / enhancer, and the VH of the human chimeric antibody or the human CDR-grafted antibody is coded cDNA.
  • a plasmid pMohC ⁇ 1 having a humanized antibody H chain expression unit capable of inserting the E. coli into a cassette was constructed as follows.
  • a buffer 101 comprising lOmM Tris-HCl (pH 7.5), 1 OmM magnesium chloride and 1 mM DTT, and 10 units of the restriction enzyme Kpnl (Takara Shuzo Co., Ltd.) was added and reacted at 37 for 1 hour.
  • the reaction solution was precipitated with ethanol, dissolved in a buffer 101 comprising 10 mM Tris-hydrochloric acid (pH 7.5), 50 mM sodium chloride, 10 mM magnesium chloride and lmMDTT, and further treated with 10 units of restriction enzyme Hindlll (Takara Shuzo Co., Ltd.).
  • 10 / zg of the plasmid pChilgHB2 described in JP-A-5-304989 was dissolved in 10 il of a buffer solution consisting of 50m tris-hydrochloric acid (pH 7.5), lOOmM sodium chloride, lOmM magnesium chloride and lmMDTT, and further dissolved in 10 l.
  • a unit of restriction enzyme Eco521 (manufactured by Toyobo Co., Ltd.) was added and the reaction was carried out at 37 for 1 hour.
  • the reaction mixture was precipitated with ethanol, dissolved in a buffer solution consisting of 30 mM sodium phosphate (pH 5.0), 100 mM sodium chloride, lmM zinc acetate and 10% glycerol, and further treated with 10 units of mung bean nuclease (Takara Shuzo). Was added and the reaction was carried out at 37 for 10 minutes. After extracting the phenol-chloroform form from the reaction solution, ethanol precipitation was performed, and the protruding ends were changed to blunt ends using a DNA Blunting Kit (Takara Shuzo).
  • the precipitate is dissolved in a buffer solution consisting of 10 mM Tris-HCl (pH 7.5), 1 OmM magnesium chloride and 1 DIMDTT, and 10 units of the restriction enzyme Apal (Takara Shuzo) is added. Allowed to react for hours.
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 0.7 g of an Apal-blunt-ended fragment of about 0.99 kb was recovered.
  • 3 // g of the plasmid pBluescript SK (-) (Stratagene) was added to a buffer 101 comprising lOmM tris-hydrochloride (PH7.5), 10 mM magnesium chloride and ImMDTT.
  • the restriction enzyme Apal (manufactured by Takara Shuzo) was added and reacted at 37 for 1 hour.
  • the reaction solution was precipitated with ethanol, added to a buffer solution consisting of 33 mM Tris-acetic acid (pH 7.9), IOmM magnesium acetate, 66 mM potassium phosphate, 0.5 mM DTT and 100 / zg / ml BSA, and further added 10 units.
  • the restriction enzyme Smal (Takara Shuzo Co., Ltd.) was added, and the mixture was reacted at 30 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 1 g of an Apai-SmaI fragment of about 3. Okb was recovered.
  • the reaction mixture was fractionated by agarose gel electrophoresis, and about 1 Okb 1803 561 fragment was recovered in about 1 ⁇ .
  • 3 ig of the plasmid pBSMoSalS obtained above was dissolved in 10 mM Tris-HCl (pH 7.5), 10 mM buffer consisting of lOmM magnesium chloride and ImMDTT, and further 10 units of restriction enzyme Apal (Takara Shuzo) was added and reacted at 37 for 1 hour.
  • the reaction mixture was precipitated with ethanol, dissolved in 10 mM buffer solution consisting of 10 mM Tris-HCl (pH 7.5), 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, and further 10 units of restriction enzyme Spel (Takara Shuzo Co., Ltd.). Was added and reacted at 37 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, and an approximately 3.66 kb Apai-Spe fragment was recovered.
  • PKANTEX93 Construction of tandem cassette-type humanized antibody expression vector PKANTEX93 Using tandem cassette-type humanized antibody expression vector using various plasmids obtained in 1 (1) to (5) of Example 2 PKANTEX93 was constructed as follows.
  • reaction solution was fractionated by agarose gel electrophoresis. Rabbit) Approximately 1.98 kb ⁇ [-11 containing the 3-globin gene splicing, polyA signal, SV40 early gene polyA signal and SV40 early gene promoter. (1 About 11 fragments were recovered.
  • the plasmid ⁇ 1SP obtained above was added to a buffer 101 consisting of 50 mM Tris-hydrochloric acid (pH 7.5), 100 mM sodium chloride, 10 mM magnesium chloride and lmMDTT. (Manufactured by Takara Shuzo Co., Ltd.) and a restriction enzyme Xho [were added and reacted at 37 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, About lg of a 9.06 kb Salmon Xhol fragment was recovered.
  • reaction solution was fractionated by agarose gel electrophoresis, and about 0.7 g of a Kpnl Sail fragment of about 1.37 kb containing rabbit / 3-globin gene splicing, poly A signal and SV40 early gene poly A signal was recovered.
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 0.7 g of a Kpnl-Xhol fragment of about 1.06 kb containing a humanized antibody L chain expression unit was recovered.
  • the PMOT SP Sal [-Xho [fragment 0.l ⁇ g], pBSK-HAEESal Kpnl-Sal I fragment 0.g obtained above, and the pMohC / Ligation was performed using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech) in addition to sterile water.
  • Escherichia coli HB101 strain was transformed using the recombinant plasmid DNA solution obtained in this manner to obtain a plasmid ⁇ TlSP shown in FIG.
  • the plasmid ⁇ 1SP obtained above was dissolved in a buffer consisting of 50 ⁇ tris-hydrochloride ( ⁇ 7.5), lOOmM sodium chloride, ⁇ magnesium chloride and lmMDTT, and further 10 units of restriction enzyme Xhol ( (Takara Shuzo) and reacted at 3T for 1 hour.
  • the reaction mixture was precipitated with ethanol, added to a buffer solution (l ⁇ ) consisting of lOmM tris-hydrochloric acid (pH 7.5), 1 OmM magnesium chloride and lmMDTT, and further added 10 units.
  • Restriction enzyme Sacll manufactured by Toyobo Co., Ltd.
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 0.26 g of a Sacil-Xhol fragment of about 8.49 kb was recovered.
  • 0.1 g of the approximately 1.5 kb cDNA fragment and 0.1 g of the approximately 1 Okb cDNA fragment were combined with the Lambda ZAPII vector [Lambda ZAP11 vector was digested with EcoRI, and the intestinal alkaline phosphatase was digested. 1 g (manufactured by Calf Intestine Alkaline Phosphatase: manufactured by Straugene) was dissolved in T4 ligase buffer 11. To this was added 175 units of T4 DNA ligase, and incubated at 12 for 24 hours. Further incubation was performed at room temperature for 2 hours.
  • each reaction solution is packaged in lambda phage using Gigapack Gold (Stratagene) according to a conventional method (Molecular Cloning, 2.95, Cold Spring Harbor Laboratory, 1989).
  • Gigapack Gold Molecular Cloning, 2.95-107, Cold Spring Harbor Laboratory. 1989
  • E. coli strain XU-Blue attached to Gigapack Gold Biotechniques.5_ ; 376 (1987)]
  • about 4,000 phage clones were obtained for each of the H chain cDNA library and L chain cDNA library of KM1257, KM1259 and KM1486.
  • Each phage prepared in 2 (2) of Example 2 was immobilized on a nitrocell orifice filter in accordance with a conventional method [Molecular Cloning].
  • 3 g of the humanized antibody expression vector PKANTEX93 was added to 10/1 buffer solution consisting of 10 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride and ImMDTT, and 10 units of restriction enzyme Apa [(Takara Shuzo) Was added and reacted at 37 for 1 hour.
  • the reaction mixture was precipitated with ethanol, and the buffer was added to 10 n1 of a buffer consisting of 50 mM Tris-HCl (pH 7.5), 100 mM sodium chloride, 100 mM magnesium chloride, lmMDTT, 100 g / ml BSA and 0.01% Triton X-100.
  • the reaction mixture was precipitated with ethanol and added to a buffer 10 1 consisting of 50 ⁇ -tris-hydrochloric acid (pH 7.5), 100 mM sodium chloride, 10 mM magnesium chloride, lmMDTT, 100 g / ml BSA and 0.01% Triton X-100. Further, 10 units of a restriction enzyme Notl (Takara Shuzo) was added, and the mixture was reacted at 37 for 1 hour. The reaction solution was fractionated by agarose gel electrophoresis, and about 0.5 ug of a Notl fragment of about 0.41 kb was recovered.
  • a buffer 10 1 consisting of 50 ⁇ -tris-hydrochloric acid (pH 7.5), 100 mM sodium chloride, 10 mM magnesium chloride, lmMDTT, 100 g / ml BSA and 0.01% Triton X-100. Further, 10 units of a restriction enzyme Notl (Takara Shuzo) was added, and the mixture
  • a synthetic DNA having the nucleotide sequence of SEQ ID NO: 46 or 47 was prepared using an automatic DNA synthesizer. (380A, manufactured by Applied Biosystems). 0.3 g each of the obtained synthetic DNA was added to 151 sterilized water, and heated at 65 for 5 minutes. After allowing the reaction solution to stand at room temperature for 30 minutes, a 10-fold buffer [500 tris-hydrochloric acid (pH 7.6), 100 mM magnesium chloride, 50 mM DTT] 2 w 1 and lOmM ATP 21 were added, and a further 10 minutes were added. A unit of T4 polynucleotide kinase was added and reacted at 37 for 30 minutes to phosphorylate the 5 'end.
  • 0.1 g of Apat No tl fragment derived from PKANTEX93 derived vector for expression of humanized antibody obtained above, 0.1 g of Ban l-Not tl fragment derived from plasmid PKM1259H, and phosphorylated synthetic DNA 0.05 / Z g was added to a total of 20 n1 of sterile water, and ligated using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). Escherichia coli HB101 was transformed using the recombinant plasmid DNA solution obtained in this manner to obtain plasmid KANTE 1259H shown in FIG.
  • a buffer 101 consisting of 50 mM Tris-hydrochloric acid (pH 7.5), 100 mM sodium chloride, 10 mM magnesium chloride, ImMDTT and 100 g / ml BSA.
  • a unit of restriction enzyme EcoRl (Takara Shuzo) and restriction enzyme Spll (Takara Shuzo) were added and reacted at 37 for 1 hour.
  • the reaction mixture was fractionated by agarose gel electrophoresis, and about 1 g of a 13.20 kb EcoRot Sp 1 fragment was recovered.
  • a buffer 101 consisting of 10 Tris-HCl (pH 7.5), 50 mM sodium chloride, 10 mM magnesium chloride, and ImMDTT, and an additional 10 units of restriction enzyme Avail (Takara Shuzo Co., Ltd.) was added and reacted at 37 for 1 hour.
  • the reaction solution is precipitated with ethanol, added to a buffer 101 comprising 50 mM Tris-hydrochloric acid (PH7.5), 100 mM sodium chloride, 10 mM magnesium chloride, ImMDTT, and further 10 units of restriction enzyme EcoRI (Takara Shuzo). Was added and reacted at 37 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 0.5 g of an Ava [I-EcoRI fragment of about 0.38 kb was recovered.
  • Synthesis D having the nucleotide sequence of SEQ ID NO: 48 or 49 was synthesized using an automatic DNA synthesizer (380A, manufactured by Applied Biosystems). The obtained combination 0.3 / g of the synthesized DNA was added to 151 sterile water and heated at 65 for 5 minutes. After allowing the reaction solution to stand at room temperature for 30 minutes, add 10-fold buffer [500 mM Tris-HCl (pH 7.6), 100 mM magnesium chloride, 50 mM DTT] 21 and 10 mM ATP 21 and further add 10 units. T4 polynucleotide kinase was added and reacted at 37 for 30 minutes to phosphorylate the 5 'end.
  • an automatic DNA synthesizer (380A, manufactured by Applied Biosystems).
  • the obtained combination 0.3 / g of the synthesized DNA was added to 151 sterile water and heated at 65 for 5 minutes. After allowing the reaction solution to stand at room temperature for 30 minutes, add 10-fold buffer [500
  • 0.1 g of the EcoRI-SplI fragment derived from the plasmid PKANTEX1259H obtained above, 0.1 wg of the Avall-EcoRI fragment derived from the plasmid PKM1259L, and phosphorylated synthetic DNA 0.05 were added to a total of 20 I of sterile water, and the Ready-To-Go T4 Ligation was performed using DNALigase (Pharmacia Biotech). Escherichia coli HB101 was transformed using the recombinant plasmid DNA solution obtained in this manner to obtain a plasmid PKANTEX1259 shown in FIG.
  • PKIntroduction of PKANTEX1259 an anti-human IL-5R ⁇ -chain human chimeric antibody expression vector into 2/0 cells, was carried out according to the method of Miyachi et al., Using electoporation [Site Technology-(Cytotechnology), 3, 133, (1990)]. I went in.
  • RPMU640-FCS 10-10 was placed in a 96-well microphone-mouthed Thai plate for 200 / well. Each was dispensed.
  • Jiene Tishin hereinafter, referred to as G418, Gibco
  • G418, Gibco Jiene Tishin
  • G418-resistant transformant colony appeared, and the culture supernatant was recovered from the confluent well.
  • the ELISA method shown below shows the activity of the anti-human [L-5R ⁇ -chain human chimeric chimeric antibody in the supernatant. Measured by 1 or ELISA method 2.
  • a solution of shIL-5Ra-Fc obtained from the insect cell culture supernatant of 1 (10) of Example 1 at a concentration of 5 ng / ml or further diluted with PBS was prepared, and a 96-well EIA plate was prepared.
  • the mixture was dispensed at a ratio of 50 1 / ⁇ into a tub (manufactured by Greiner) and allowed to stand at 4 overnight to adsorb. Washing Thereafter, PBS containing 1% bovine serum albumin (BSA) (13 ⁇ 4BSA-PBS) was added in an amount of 100 w 1 / ⁇ , and reacted at room temperature for 1 hour to block the remaining active groups.
  • BSA bovine serum albumin
  • Binding inhibition rate (%) 100 X 100
  • BSA bovine serum albumin
  • 13 ⁇ 4 BSA-PBS was discarded, and the culture supernatant of the transformed strain and various purified anti-human 1L-5R antibodies were dispensed at 50 1 / well and allowed to react at room temperature for 2 hours.
  • peroxididase-labeled anti-human [gG antibody manufactured by American Riki Rex Corporation
  • 13 ⁇ 4BSA-PBS was added at 50 ⁇ l / well and allowed to react at room temperature for 1 hour.
  • the ABTS substrate solution [2,2'azinobis (3-ethylbenzothiazoline-6-sulfonic acid) Dissolve 550 mg of ammonium in 1 L of 0.1 M citrate buffer (pH 4.2), add 1 l / ml of hydrogen peroxide immediately before use] and add 50 1 / well to develop color. The absorbance was measured.
  • the cells were suspended in a medium and cultured in a 5% CO 2 incubator at 37 for 1 to 2 weeks to induce a transformant having 50 nM MTX resistance.
  • the activity of the anti-human IL-5R a-chain human chimeric antibody in the culture supernatant was measured by the ELISA method described above.
  • transformants showing activity further increase the MTX concentration to 100 nM and 200 nM by the same culture method as above, and use 0.5 mg / ml G418, RPMI 1640-FCS (IO) medium containing 200 nM MTX.
  • a transformant capable of proliferating in E. coli and producing an anti-human IL-5R a-chain human chimeric antibody was obtained.
  • the resulting transformant was further cloned twice by limiting dilution to obtain a final transformant producing an anti-human IL-5R a-chain human chimeric antibody.
  • a transformant producing an anti-human-5R a-chain human chimeric antibody is KM1399 (FERM BP-5650), and the anti-human IL-5R a-chain human chimeric antibody produced by it is called KM1399. Named.
  • the transformed strain KM1399 was deposited as FERM BP-5650 on September 3, 1996, with the Research Institute of Microbial Industry and Technology of the Agency of Industrial Science and Technology.
  • the productivity of the anti-human IL-5R ⁇ -chain human chimeric antibody KM1399 of the transformed clone KM1399 was about 5 g / 10 6 cells / 24 hr.
  • Example 2-3 Purification of the anti-human IL-5R a-chain human chimeric antibody KM1399 from the culture supernatant
  • the anti-human IL-5R heavy chain human chimeric antibody producing strain KM1399 obtained in Example 2-3 (2) was The cells were suspended in a GIT medium (manufactured by Nippon Pharmaceutical Co., Ltd.) containing 5 mg / ml G418 and 200 nM MTX at a concentration of 1-2 ⁇ 10 5 cells / ml, and dispensed in 200 ml aliquots into 175 cm 2 flasks (Grainer One).
  • GIT medium manufactured by Nippon Pharmaceutical Co., Ltd.
  • the molecular weight of the antibody H chain is about 50 kDa
  • the molecular weight of the antibody L chain is about 25 kDa
  • the H and L chains of the correct molecular weight are shown.
  • the anti-human IL-5R ⁇ -chain human chimeric antibody KM1399 has a molecular weight of about 140 kilodaltons and is composed of two ⁇ chains and two L chains. Expression of a large human chimeric antibody was confirmed, and the ⁇ -terminal and L-chain ⁇ -terminal amino acid sequences of the purified anti-human IL-5R ⁇ -chain human chimeric antibody KM1399 were analyzed using a protein sequencer (470 ⁇ ). , Applied Biosystems) As a result of more analysis, correct amino acid sequence deduced was obtained.
  • the reactivity of anti-human IL-5R a-chain mouse antibody KM1259 and anti-human IL-5R a-chain human chimeric antibody KM1399 to human IL-5R a-chain was determined by ELISA method 1 described in Example 2-3 (2). Measured. The results are shown in FIG. As shown in FIG. 40, the anti-human IL-5R ⁇ -chain human chimeric antibody KM1399 has the same strong activity as the anti-human IL-5R a-chain mouse antibody KM1259. It was shown that.
  • PKANTEX1259 and its modified vector were used to evaluate the anti-human activity in COS-7 cells.
  • Transient expression of L-5R ⁇ -chain human chimeric antibody was performed using the lipofectamine method as follows.
  • 3 zg of the plasmid PKANTEX1259 was added to a buffer 10a1 consisting of 10 mM Tris-HCl (pH 7.5), 50 mM sodium chloride, 10 mM magnesium chloride and lmMDTT, and an additional 10 units of restriction enzyme 1U IU1I I [(Takara Shuzo) ) was added and reacted at 37 for 1 hour.
  • the reaction mixture was precipitated with ethanol, added to a buffer 101 comprising 50 mM Tris-hydrochloric acid (pH 7.5), 100 mM sodium chloride, 10 mM magnesium chloride and lmMDTT, and further added 10 units of restriction enzyme Mlul (Takara Shuzo).
  • reaction was carried out at 37 for 1 hour.
  • the reaction solution was subjected to ethanol precipitation, and the 5 ′ protruding end generated by restriction enzyme digestion was changed to a blunt end using DNA Blunting Kit (Takara Shuzo).
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 1 g of a DNA fragment of about 9.60 kb was recovered. Add 0.1 g of the recovered DNA fragment to a total volume of 20 n1 sterile water, and add Ready-To-Go T4 DNA Ligase
  • Escherichia coli HB101 was transformed using the recombinant plasmid DNA solution obtained in this manner to obtain a plasmid PT1259 shown in FIG.
  • a solution of goat anti-human IgG (chain) antibody (manufactured by Institute of Medical Biology) diluted 400-fold with PBS is dispensed into a 96-well microtiter plate in 50 a 1 Z wells. ⁇ Reacted. After removing the antibody solution, the mixture was reacted with 100 ⁇ l / well 1-BSA-PBS at 3TC for 1 hour to block the remaining active groups. 13 ⁇ 4BSA-PBS was discarded, and a transient expression culture supernatant or purified anti-human IL-5R ⁇ -chain human chimeric antibody K1399 was added at 50 501 / ⁇ , and reacted at room temperature for 1 hour.
  • a human CDR-grafted antibody was produced as follows.
  • subgroup I Based on the consensus sequence of subgroup I, the amino acid of anti-human IL-5R ⁇ -chain human CDR-grafted antibody VH was determined. An acid sequence was designed, and a cDNA encoding the amino acid sequence was constructed using a PCR method as follows.
  • Synthetic DNA having the nucleotide sequence of SEQ ID NOS: 50 to 55 was synthesized using an automatic DNA synthesizer (380A, manufactured by Applied Biosystems). Each synthesized DNA was adjusted to a final concentration of 0.1 mM Tris-HCl (pH 8.3), 50 mM potassium chloride, 1.5 mM magnesium chloride, 0.001% gelatin, 200 M dNTP, 0.5 M M13 primer.
  • 380A automatic DNA synthesizer
  • RV (Takara Shuzo), 0.5 M M13primer M4 (Takara Shuzo) and 2 units of TaKaRa Taq DNA polymerase (Takara Shuzo)
  • 501 mineral oil The plate was covered and set on a DNA thermocycler (P80, manufactured by Perkin-Elma Co., Ltd.), and a cycle of 94 for 2 minutes, 55 for 2 minutes, and 72 for 2 minutes was performed for 30 cycles.
  • the reaction solution was precipitated with ethanol, dissolved in 20 a1 of TE buffer, and fractionated by agarose gel electrophoresis to recover about 0.2 g of an amplified fragment of about 0.48 kb.
  • reaction solution is precipitated with ethanol, dissolved in 20 n 1 of a buffer solution consisting of 50 m Tris-hydrochloric acid (pH 9.0) and ImM magnesium chloride, and further 1 unit of alkaline phosphatase (E. coli C75, Takara Shuzo) Was added and the mixture was reacted at 37: for 1 hour to dephosphorylate the 5 'end. Further, the reaction mixture was extracted with phenol-chloroform and then subjected to ethanol precipitation, and dissolved in 20 w 1 of TE buffer.
  • a buffer solution consisting of 50 m Tris-hydrochloric acid (pH 9.0) and ImM magnesium chloride
  • alkaline phosphatase E. coli C75, Takara Shuzo
  • SEQ ID NO: 56 shows the nucleotide sequence and amino acid sequence of anti-human IL-5R ⁇ -chain human CDR-grafted antibody VH (hereinafter referred to as HV.0) contained in phK1259HV0.
  • Synthetic DNA having the nucleotide sequence of SEQ ID NOS: 57 to 62 was synthesized using an automatic DNA synthesizer (380A, manufactured by Applied Biosystems). Each synthesized DNA was adjusted to a final concentration of 0.1 AtM with 10 mM Tris-HCl (pH 8.3), 50 mM chloride, 1.5 mM magnesium chloride, 0.0013 ⁇ 4 gelatin, 200 M dNTP, 0.5 M fi M M13primer RV (Takara Shuzo), 0.5 M M13primer M4 (Takara Shuzo) and 2 units of TaKaRa Taq DNA polymerase (Takara Shuzo) The sample was covered with oil, set in a DNA thermal cycler (PJ480, manufactured by Perkin Elmer Inc.), and subjected to 30 cycles of 2 minutes at 94, 2 minutes at 55, and 2 minutes at 72.
  • PJ480 manufactured by Perkin Elmer Inc.
  • the reaction solution was precipitated with ethanol, dissolved in 201 TE buffer, and fractionated by 7-garose gel electrophoresis to recover about 0.2 g of an amplified fragment of about 0.43 kb.
  • 0.1 g of the amplified fragment 0.1 after PCR obtained above and 0.1 g of the Small fragment of pBluescript IPT SK (-) obtained in 5 (1) of Example 2 was used in a total amount of 20 n1.
  • the DNA was ligated using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech) in addition to sterilized water.
  • the recombinant plasmid DNA solution thus obtained was used to transform E. coli HB101.
  • LV.0 anti-human IL-5R heavy chain human CDR-grafted antibody VL
  • PKANTEX1259HV0LV0 an expression vector for anti-human IL-5R ⁇ -chain human CDR-grafted antibody, based on the consensus sequence of known human antibody V regions
  • Example 2-5 Using the humanized antibody expression vector ⁇ 93 constructed in Example 2-1, the plasmid phKM1259HV0 obtained in Example 2-5 (1) and the plasmid phKM1259LV0 obtained in Example 2-5 (2).
  • An expression vector -PKANTEX1259HV0LV0 for expression of an anti-human I 5R heavy chain human CDR-grafted antibody was constructed as follows.
  • plasmid pKMhl 259HV0 5 wg of the plasmid pKMhl 259HV0 is added to a buffer 101 comprising 10 mM Tris-HCl (pH 7.5), lOmM magnesium chloride and 1 mM DTT, and an additional 10 units of the restriction enzyme Apa I
  • 0.1 g of the Apal-Not [fragment derived from the PKANTEX93 expression vector for humanized antibody expression obtained in 3 (1) of Example 2 and the Apal-Notl fragment derived from the plasmid phKM1259HV0 obtained above 0.1 ⁇ g was added to a total of 201 sterile water, and ligated using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). Escherichia coli HB101 strain was transformed using the recombinant plasmid DNA solution obtained in this manner to obtain a plasmid PKANTEX1259HV0 shown in FIG.
  • a buffer 10a1 consisting of 50 mM Tris-HCl (pH 7.5), 100 mM sodium chloride, 100 mM magnesium chloride, lmMDTT, and 100 g / ml BSA. 10 units of restriction enzyme EcoRi (Takara ) And restriction enzyme SplI (Takara Shuzo) and reacted at 37 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 1 ⁇ g of an EcoRI-SplI fragment of about 13.20 kb was recovered.
  • plasmid phKM1259LV0 was added to 10 n1 of a buffer consisting of 50 mM Tris-HCl (pH 7.5), lOOmM sodium chloride, lOmM magnesium chloride, Im DTT, and 100 g / ml BSA.
  • the restriction enzyme EcoRI (Takara Shuzo) and the restriction enzyme Sppl (Takara Shuzo) were added, and the mixture was reacted at 37 for 1 hour.
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 0.5 g of EcoRI-SplI fragment of about 0.39 kb was recovered.
  • KM8397 is a transformant that produces an anti-human IL-5R a-chain human CDR-grafted antibody based on a known human antibody V region consensus sequence.
  • the IL-5R a-chain human CDR-grafted antibody was named KM8397.
  • the productivity of the anti-human ML-5R a-chain human CDR-grafted antibody KM8397 of the transformant KM8397 was about 4 / g / 10 6 cels / 24hr.
  • the molecular weight of the antibody H chain was about 50 kDa and the molecular weight of the antibody L chain was about 25 kDa, and the expression of the H and L chains with the correct molecular weight was confirmed.
  • the anti-human IL-5R ⁇ -chain human CDR-grafted antibody 978397 has a molecular weight of about 140 kilodaltons, and the correct size human consisting of two ⁇ chains and two L chains. Expression of the type CDR-grafted antibody was confirmed.
  • the reactivity of the anti-human IL-5R a-chain human chimeric antibody KM1399 and the anti-human IL-5R a-chain human CDR-grafted antibody KM8397 with the human IL-5R a-chain was determined by the ELISA described in Example 2-3 (2). It was measured by SA method 2. The results are shown in FIG. As shown in FIG. 48, the anti-human IL-5R a-chain human CDR-grafted antibody KM8397 is more effective against the human IL-5R a-chain than the anti-human IL-5R a-chain human chimeric antibody KM1399. It was shown to have about 1/2 reactivity.
  • the reactivity of the anti-human IL-5R ⁇ -chain human CDR-grafted antibody 978397 with the human IL-5R ⁇ -chain produced in Example 2-5 was about 1% lower than that of the anti-human 1L-5R ⁇ -chain human chimeric antibody KM1399. / 2. Therefore, the activity was increased by modifying the amino acid sequence of the V region of ⁇ 8397 by the following method.
  • SEQ ID NO: 64 was used as a mutagenesis primer, and the synthetic DNA having the nucleotide sequence of SEQ ID NOS: 50, 51, 52, 53, 64, and 55 was used in Example 2, 5 (1).
  • the plasmid phK1259HVl containing the cDNA encoding the modified version 1 VH (hereinafter referred to as HV.1) of the anti-human IL-5R ⁇ -chain human CDR-grafted antibody shown in SEQ ID NO: 65 was obtained by performing the method described above. Obtained.
  • the tyrosine at position 95 and the position 97 in position 97 in FR of SEQ ID NO: 56 were used in order to maintain the reactivity with the human 1L-5R ⁇ chain observed with the mouse antibody and the human chimeric antibody.
  • the amino acids of alanine in the above are changed to leucine and glycine, which are the amino acids found in the V region of the mouse antibody K1259 H chain.
  • Example 2-5 Plasmid containing the cDNA encoding the modified version 2 VH (hereinafter referred to as HV, 2) of the anti-human IL-5R ⁇ -chain human CDR-grafted antibody shown in SEQ ID NO: 68 by performing the method described in). phKM1259HV2 was obtained.
  • glutamic acid at position 46 and position 74 in position FR in FR of SEQ ID NO: 56 were used in order to maintain the reactivity with human IL-5R ⁇ chain observed with monoclonal antibodies and human chimeric antibodies.
  • the amino acids of threonine at position 95, tyrosine at position 95, and alanine at position 97 have been changed to alanine, arginine, oral glycine, and glycine, respectively, which are found in the V region of the KM1259 H chain of the mouse antibody.
  • the alanine at position 40 and the glutamate at position 46 in FR of SEQ ID NO: 56 were used to maintain the reactivity to the human 1L-5R heavy chain observed in the mouse antibody and human chimeric antibody.
  • Acid, arginine at position 67, alanine at position 72, threonine at position 74, alanine at position 79, tyrosine at position 95, and alanine at position 97 are amino acids found in mouse antibody KM1259 H chain V region. Arginine, alanine, lysine, serine, arginine, valine, leucine, and glycine, respectively.
  • the mutation was introduced in the manner described in Example 2-5 (1) using a mutation-introducing primer, and a modified version of VL of the desired anti-human IL-5R ⁇ -chain human CDR-grafted antibody was coded. A plasmid containing the cDNA to be obtained was obtained.
  • SEQ ID NOs: 73, 74 and 75 were used as the mutagenesis primers, and the examples were carried out using synthetic DNAs having the nucleotide sequences of SEQ ID NOs: 57, 58, 73, 74, 61 and 75.
  • the plasmid phKM1259LVl containing was obtained.
  • Example 2 was carried out using the sequences shown in SEQ ID NOs: 74, 75, 77 and 78 as mutagenesis primers and using synthetic DNAs having the nucleotide sequences of SEQ ID NOs: 57, 58, 77, 74, 78 and 75.
  • a plasmid phKM1259LV2 was obtained.
  • threonine at position 22 and position 37 in position 37 in FR of SEQ ID NO: 63 were used in order to maintain the reactivity with human IL-5R ⁇ chain observed with monoclonal and human chimeric antibodies.
  • the amino acids glutamine, lysine at position 45, serine at position 77, and phenylalanine at position 98 have been changed to the amino acids glycine, arginine, glutamic acid, aspartic acid, and parin, respectively, found in the V region of the KM1259 L chain of the monoclonal antibody. .
  • KM1259 light chain amino acids proline at position 22, threonine at position 22, glutamine at position 37, glutamine at position 38, lysine at position 45, serine at position 77, tyrosine at position 87, and phenylalanine at position 98
  • the amino acids found in the V region are changed to alanine, threonine, glycine, arginine, lysine, glutamic acid, aspartic acid, phenylalanine, and valine, respectively.
  • Example 2 was performed using the sequences shown in SEQ ID NOs: 80, 83, 85, 86 and 87 as mutagenic primers, and using synthetic DNA having the nucleotide sequences of SEQ ID NOs: 57, 80, 85, 86, 87 and 83.
  • VL hereinafter referred to as LV. 4
  • LV.4 the VL (hereinafter referred to as LV. 4) of the modified version 4 of the anti-human IL-5R ⁇ -chain human CDR-grafted antibody shown in SEQ ID NO: 88 was encoded.
  • a plasmid phKM1259LV4 containing the cDNA to be obtained was obtained.
  • the number of amino acids derived from the monoclonal antibody associated with the modification increases as the version progresses to LV.0, LV.1, LV.2, LV.3, and LV.4.
  • Example 2-5 The humanized antibody expression vector No. 93 constructed in Example 2-1, and the various modified versions of the anti-human IL-5R ⁇ -chain human CDR-grafted antibody obtained in Example 2-5 (1) and (2) According to the method described in Example 2-5 (3) using various plasmids containing cDNA encoding the V region, an anti-human I 5R ⁇ -chain human CDR-grafted antibody expression vector having various modified versions of the V region was prepared. It was constructed. Table 3 shows the combinations of various modified V regions used in the constructed expression vectors and the names of the expression vectors. Table 3
  • PKANTEX1259HVOLV3 pKANTEX1259HVlLV3 pKANTEX1259HV2LV3 pKANTEXl 259HV3LV3 LV.
  • PKANTEX1259HV0LV4 pKANTEXl 259HY1LV4 pKANTEXl 259HV2LV4 pKANTEXl 259HV3LV4
  • PKANTEX1259HYOLVO pKANTEX1259HV1LV0, PKANTEX1259HV2LVO, pKANTEX1259HV0LV1, KANTEX1259HV1 LV1
  • PKANTEX1259HV2LV1 pKANTEX1259HVOLV2
  • PKANTEX1259HV1LV2 pKANTEX1259HV2LV2
  • PKANTEX1259HV2LV2, pKANTEX1259HV0LV3, PKANTEX1259HV1LV3, PKANTEX1259HV2LV3 and pKANTEX1259HV3LV3 were modified into vectors for transient expression according to the method described in Example 2-4 (1).
  • the transient expression of anti-human IL-5R ⁇ -chain human CDR-grafted antibody having V regions of various modified versions was performed according to the method described in Example 2-4 (2). went.
  • transient expression of anti-human IL-5R ⁇ -chain human chimeric antibody KM1399 was performed as a control.
  • the binding activity to the human IL-5R ⁇ -chain in the culture supernatant was measured by the ELISA method 1 described in 3 (2) of Example 2, and the antibody concentration in the culture supernatant was measured in 4 (Example 2). 3) Measure the activity of the anti-human 1L-5R ⁇ -chain human CDR-grafted antibody having the V region of various modified versions based on the values of the EL [SA method described in 3) and the activity of the human chimeric antibody KM1399. The relative activity value when the value was set to 100 is shown in FIG. In the figures, various modified versions of the anti-human IL-5R ⁇ -chain human CDR-grafted antibody are represented by a combination of VH and VL. From Fig.
  • the activity tends to increase as the modification progresses to HV.0, HV.1, HV.2, and HV.3 for VH, and the activity of VL to LV.0 and LV.3 increases.
  • the activity was high, and the activity of LV.1 and LV.2 tended to decrease rather. Therefore, the anti-human IL-5R ⁇ of the combination of LV.0 and various modified VH, LV.3 and HV.0, LV.3 and HV.3, and LV.4 further modified from LV.3 and various modified VH More accurate activity evaluation using a purified antibody was performed on the chain human CDR-grafted antibody by the following method.
  • Expression in YB2 / 0 cells was performed using PKANTEX1259HV3LV4 according to the method described in Example 2-3 (2), and various anti-human IL-5R ⁇ -chain human CDR-grafted antibodies were isolated at 2 to 4 ⁇ g / 10 A transformant was produced with a productivity of 6 cels / 24hr.
  • Various anti-humans obtained A strain producing an IL-5R ⁇ -chain human CDR-grafted antibody was cultured and purified according to the method described in Example 2-3 (3), and various anti-human IL-5R ⁇ -chain human CDR-grafted antibodies were purified from l- 2 mg was obtained.
  • all anti-human IL-5R ⁇ -chain human CDR-grafted antibodies have a molecular weight of about 140 kilodaltons, and have the correct size human type consisting of two ⁇ chains and two L chains. Expression of the CDR-grafted antibody was confirmed.
  • the results of analysis of the amino acid sequences of the ⁇ -terminal and ⁇ -terminal of various purified anti-human IL-5R ⁇ -chain CDR-grafted antibodies by automatic Edman degradation using a protein sequencer (470 ⁇ , manufactured by Applied Biosystems) In each case, the expected correct amino acid sequence was obtained.
  • HV.3LV An anti-human IL-5R ⁇ -chain human CDR-grafted antibody HV.3LV that showed reactivity to human I-5R ⁇ -chain with the same strength as anti-human IL-5R ⁇ -chain human chimeric antibody K1399.
  • HV has the amino acid sequence shown in HV.3, but VL is the amino acid sequence shown in LV.0 and LV.4.
  • LV.0 is a sequence obtained by simply grafting the CDR to the human antibody FR, while LV.4 finds the amino acid at residue 11 of the human antibody FR in the monoclonal antibody to enhance the activity. This is a sequence that has been modified to amino acids.
  • Dynabeads coated with anti-CD19 antibody from 200 ml of healthy human peripheral blood were used to separate 1.1 ⁇ 10 7 B cells according to the attached instructions.
  • MRNA was obtained from the separated cells using QuickPrepmRNAPurificationKit (Pharmacia Biotech) according to the instruction manual attached to the kit. From the total amount of the obtained mRNA, cDNA was synthesized using the TimeSaver cDNA Synthesis Kit (Pharmacia Biotech) according to the instruction manual attached to the kit.
  • a sequence having homology to the 5 ′ and 3 ′ sides of the cDNA encoding the human antibody Cr4 shown in SEQ ID NOs: 89 and 90 [Nucleic acid. Nucleic Acid Research), H, 1789 (1986)] and the PCR described in 5 (1) of Example 2 was performed using the primer as a primer.
  • the 5 'and 3' primers used for PCR have recognition sequences for the restriction enzymes Apal and BamH ⁇ at their 5 'ends, respectively, and the resulting cDNA can be easily inserted into a humanized antibody expression vector. It was designed as follows.
  • reaction solution After purifying the reaction solution after PCR using QlAquick PCR Purification Kit (manufactured by Qiagen), the reaction solution was added to 30 ⁇ l of a buffer solution consisting of 1 OmM Tris-HCl (pH 7.5), 1 OmM magnesium chloride and ImMDTT. Further, 10 units of restriction enzyme Apal (manufactured by Takara Shuzo) was added and reacted at 37 for 1 hour. The reaction solution was precipitated with ethanol, added to a buffer 101 comprising 20 mM Tris-hydrochloric acid (pH 8.5), 100 mM potassium chloride, 100 mM magnesium chloride and ImMDTT, and further added 10 units of restriction enzyme BamHl (Takara Shuzo). And reacted at 30 for 1 hour. The reaction solution was fractionated by agarose gel electrophoresis, and about 0.5 ti g of an Apal-BamHl fragment of about 1. Okb was recovered.
  • a buffer solution consisting of 1 OmM
  • the reaction solution was fractionated by agarose gel electrophoresis, and about 2 Hg of an Apa BamHI fragment of about 3. Okb was recovered.
  • Each plasmid DNA was prepared from 10 clones of the transformant, and the nucleotide sequence was determined.As a result, the plasmid pBShCr4 shown in FIG. 51 containing the cDNA encoding the desired human antibody C ⁇ 4 was obtained. Was.
  • An expression vector for an anti-human IL-5R a-chain humanized antibody of the IgG4 subclass was constructed as follows.
  • Escherichia coli HB101 was transformed with each of the recombinant plasmid DNA solutions thus obtained, and the expression vector of the anti-human IL-5R ⁇ -chain human chimeric antibody of the IgG4 subclass shown in FIG. 52 was obtained.
  • Expression vectors for anti-human IL-5R ⁇ -chain human CDR-grafted antibodies of the subclasses PKANTEX1259r and IgG4 were obtained, PKANTEX1259HV3LV0r4.
  • KM7399 (FERM BP-5649) was obtained as a transformant producing an anti-human IL-5R heavy chain human chimeric antibody of the IgG4 subclass, and the lgG4 subclass anti-human IL-5R produced by the transformant was produced.
  • the ⁇ -chain human chimeric antibody was designated as # 7399. ⁇ ⁇ Transformed strain producing 7399 ⁇ 7399 was deposited as FERM ⁇ -5649 with the National Institute of Microbial Technology on September 3, 1996.
  • the productivity of the anti-human IL-5R ⁇ -chain human chimeric antibody ⁇ 7399 of the transformant ⁇ 7399 was about 3 ng / 10 6 cells / 24 hr.
  • KM9399 (FERM BP-5647) was obtained as a transformant that produces an anti-human IL-5R ⁇ -chain human CDR-grafted antibody of the IgG4 subclass, and the IgG4 subclass produced by it was used.
  • the RAS anti-human [L-5R ⁇ -chain human CDR-grafted antibody was named KM9399.
  • the productivity of the anti-human IL-5R heavy chain human CDR-grafted antibody KM9399 of the transformant KM9399 was about 7 g / 10 6 cels / 24r.
  • the transformant K9399 producing KM9399 was deposited as FERM BP-5647 on September 3, 1996 with the Research Institute of Microbial Industry and Technology of the Agency of Industrial Science and Technology.
  • Anti-human IL-5R ⁇ -chain human chimeric antibody producing strain of IgG4 subclass obtained in 7 (3) of Example 2 3997399 and anti-human IL-5R ⁇ -chain human CDR-grafted antibody producing strain of IgG4 subclass 9399 was cultured and purified according to the method described in Example 2, 3 (3), to obtain about 1 mg and 5 mg of 7399 and 9399, respectively.
  • Approximately 4 g of each of the purified anti-human IL-5R ⁇ -chain humanized antibodies KM7399 and KM9399 of the IgG4 subclass was subjected to electrophoresis according to the method described in Example 2, 3 (3), and the molecular weight was examined. The results are shown in FIG. As shown in Fig.
  • each anti-human IL-5R ⁇ -chain humanized antibody has a molecular weight of about 140 kilodaltons, and is the correct size human type consisting of two ⁇ chains and two L chains. The expression of the CDR-grafted antibody was confirmed.
  • the purified IgG4 subclass anti-human IL-5R ⁇ -chain humanized antibody ⁇ 7399 and ⁇ 9399 ⁇ and L chain ⁇ -terminal amino acid sequences were automatically analyzed using a protein sequencer (470 ⁇ , manufactured by Abride Biosystems). Analysis by Edman degradation gave the expected correct amino acid sequence.
  • Human antibody IgGl subclass anti-human IL-5R heavy chain human chimeric antibody KM1399, human antibody IgGl subclass anti-human IL-5R ⁇ -chain human CDR-grafted antibody KM8399, IgG4 subclass anti-human IL-5R chain human -Type chimeric antibody KM7399 and IgG4 subclass anti-human IL-5R ⁇ -chain human CDR-grafted antibody KM9399 reactivity to human IL-5R ⁇ -chain was measured by the EUSA method 2 described in Example 2-3 (2).
  • Figure 54 shows the results. As shown in Fig. 54, the anti-human IL-5R ⁇ -chain humanized antibody of the human antibody lgG4 subclass is a human IL- It was shown to have reactivity to the 5R ⁇ -chain.
  • the specificity of the anti-hIL-5R ⁇ monoclonal antibody and the anti-hIL-5R ⁇ humanized antibody was confirmed using immunostaining according to the following procedure.
  • CTLL-2 cells (ATCC TIB 214) into which human IL-5R gene has been introduced [hereinafter referred to as CTLL-2 (h5R) cells] [Journal 'ob' experimental med. exp. Med.), ⁇ 7, 1523 (1993)], or as a control CTLL 2 cells 5 chi 10 5 pieces of immunocyte staining buffer (13 ⁇ 4BSA, 0. 023 ⁇ 4EDTA, PBS containing 0. 053 ⁇ 4 sodium azide) And dispensed into a round-bottom 96-well plate in 100 1 wells.
  • immunocyte staining buffer 13 ⁇ 4BSA, 0. 023 ⁇ 4EDTA, PBS containing 0. 053 ⁇ 4 sodium azide
  • CTLL-2 (5R) cells show a proliferative response dependent on human IL-5 [Journal of Experimental Medicine 0. Exp. Med.], ⁇ 7, 1523 (1993)]
  • the effect of the obtained anti-IL-5R ⁇ antibody on human IL-5-dependent cell proliferation in CTLL-2 (h5R) cells was examined.
  • Cell proliferation was evaluated by a color development method using a cell counting kit (manufactured by Dojindo Laboratories).
  • CTLL-2 (h5R) cells were suspended in 501 normal media and dispensed into a 96-well culture plate.
  • C0 2 5% under a stream of Cell Counting Kit solution from example pressurized with 10/1 Z Ueru were incubated for 4 hours at 3 7.
  • the absorbance at 450 nm was measured using a microwell plate reader Emax (manufactured by Molecular Devices).
  • the CTLL-2 (h5R) cell proliferation inhibitory activity of each antibody was calculated by the following equation.
  • OD results without human IL-5 are shown in Fig. 56.
  • the monoclonal antibodies K1259 and KM1486, and the humanized antibodies KM1399, KM7399, KM8399 and KM9399 were all CTL2 (h5R). Although it inhibited human IL-5-dependent growth of cells, the monoclonal antibody KM1257 did not show such activity.
  • a polymorphonuclear leukocyte fraction was prepared from normal human blood, cultured for 3 days in the presence of human IL-5, and concentrated to eosinophils. The reactivity of the internal antibody was examined.
  • Polymorphic prep (polymoirhprep, manufactured by Nicomed Co., Ltd.) was dispensed into 8 tubes of 4 ml each in a 15 ml polypropylene centrifuge tube, and 6 ml of heparin-treated normal human blood was layered on each tube. This was centrifuged at 500 X g at room temperature for 30 minutes to separate and collect polymorphonuclear leukocytes. Polymorphonuclear leukocytes: 1.
  • the phycoerythrin-labeled streptavidin (manufactured by Vecton Dickinson) diluted 10-fold with the buffer solution for immunocytostaining was added at a concentration of 50 / ⁇ 1/1 / ⁇ .
  • the reaction was carried out at 4X: for 30 minutes.
  • the same washing procedure as above was performed three times, and then analysis was performed on the cells that were recognized as polymorphonuclear leukocytes by forward scatter with a flow cytometer (manufactured by Cole Yuichi) and 90 ° scatter.
  • a flow cytometer manufactured by Cole Yuichi
  • Fig. 57 shows the histogram obtained.
  • the anti-human IL-5R ⁇ -chain monoclonal antibody KM1259 showed clear reactivity. Since it was confirmed that 75% of the analyzed cells were eosinophils, anti-human IL-5R ⁇ -chain monoclonal KM1259 It was confirmed that it had reactivity to eosinophils.
  • a polymorphonuclear leukocyte fraction was prepared from normal human blood, and the effect of anti-IL-5R ⁇ antibody on eosinophil survival in the presence of human IL-5 was examined.
  • Polymorphprep (Polymorphprep, manufactured by Nicomed) was dispensed into 15 tubes of 15 ml each in a polypropylene tube having a capacity of 15 ml and 8 ml of heparin-treated normal human blood was layered on each tube. This was centrifuged at 500 X g at room temperature for 30 minutes to separate and collect polymorphonuclear leukocytes.
  • Percoll solution Percoll, manufactured by Pharmacia
  • Percoll stock solution 8 volumes of Percoll stock solution
  • 4 volumes of physiological saline was added to 6 volumes of Percoll stock solution to prepare a 603 ⁇ 4 percoll solution.
  • 5 ml of a 603 ⁇ 4 alcohol solution is dispensed into two 15 ml polypropylene centrifuge tubes, and the polymorphonuclear leukocytes suspended in the RPMI 1640 medium previously obtained are added here.
  • Dispense 2 ⁇ 10 6 cells in a 48-well cell culture plate add human IL-5 at a final concentration of 0.1 ng / ml, and add various final concentrations of 1 g / ml.
  • IL-5R antibody was added respectively.
  • Each antibody was cultured in 2 wells, and the volume of each well was adjusted to 1 ml. After culturing for 3 days at 37 in a CO 2 incubator, the entire cell suspension was recovered from each well after completion of the culture, and the cells were recovered by centrifugation (3, OOOrpnu for 1 minute).
  • the obtained cells were suspended in 100 w 1 of PBS, and 501 of them was used to prepare a sample using a cell sample preparation device: Cytospin 3 [Cytospin 3, manufactured by Shandon]. May-Gryundwald-Giemsa staining After staining with, 200 cells were observed for each specimen, and the number of eosinophils was determined. The results are shown in FIG. 58.
  • the monoclonal antibodies KM1259 and KM1486, and the humanized antibodies KM1399, M7399, KM8399 and KM9399 all had the activity to suppress eosinophil life extension by IL-5. Monoclonal antibody KM1257 did not show such activity.
  • BSA bovine serum albumin
  • the anti-human I5R ⁇ monoclonal antibody KM1259 labeled with biotin is labeled with a known method (enzyme antibody method: Interdisciplinary Planning, 1985) with 1% BSA-PBS to a concentration of 1 g / ml. Then, the mixture was added at 50 1 / well and reacted at room temperature for 2 hours. After washing with tween-PBS, avidin-labeled peroxidase (manufactured by Nichirei) 50 1 / well diluted 4000-fold with 13 ⁇ 4BSA-PBS was added and reacted at room temperature for 1 hour.
  • SML-5R can be measured by using the anti-human IL-5R ⁇ monoclonal antibody KM1257 and the biotin-labeled anti-human IL-5R ⁇ monoclonal antibody KM1259.
  • the sML-5Ra described in 1 (9) of Example 1 was heat-denatured in a sample buffer for SDS-PAGE containing 2_mercaptoethanol or in a sample buffer for SDS-PAGE without 2-mercaptoethanol.
  • the solution was subjected to electrophoresis on a commercially available gradient gel for SDS-PAGE (manufactured by Atto), followed by PVDF membrane (manufactured by Millipore).
  • the protein was transcribed.
  • the PVDF membrane was immersed in PBS containing 10% BSA and left at ⁇ for 4 minutes to perform blocking. After the blocking was completed, the membrane was washed well with PBS containing 0.05 Tween.
  • the PVDF membrane was immersed in the culture supernatant of the hybridoma obtained in 5 of Example 1 at room temperature for 2 hours, and washed thoroughly with 0.05% Tween-containing PBS. Further, the PVDF membrane was immersed in a solution of a peroxidase-labeled anti-mouse immunoglobulin antibody (manufactured by Wako Pure Chemical Industries, Ltd.) diluted 1000-fold with BSA-PBS at room temperature for 1 hour, and washed well with PBS containing 0.05 Tween. After thoroughly removing the washing solution, an ECL reagent (manufactured by Amersham) was applied to the PVFD membrane and reacted for 1 minute. Except for the excess reagent, the PVDF membrane was sandwiched between plastic films and placed in an X-ray film exposure cassette to expose the ECL film, and the reactivity of the antibody was confirmed.
  • a peroxidase-labeled anti-mouse immunoglobulin antibody manufactured by Wako Pure Chemical
  • Anti-mouse immunoglobulin antibody (manufactured by DAK0) diluted 50-fold with PBS was dispensed into 96-well plastic plates for EIA in 200 l Z-wells, and left overnight at 4 for adsorption. . After washing with PBS, PBS containing 13 ⁇ 4BSA was dispensed in 300 1 ⁇ 1 aliquots and left at room temperature for 1 hour to perform blocking. After washing with PBS, add the culture supernatant of the anti-human IL-5Ra monoclonal antibody KM1257, KM1259 or KM1486 obtained in Example 200, 200 1 each, and leave overnight at 4 to absorb the antibody. I let it.
  • the shIL-5Ra obtained in 1 of Example 1 was diluted with ⁇ BSA to a concentration of 10 g / ml and dispensed in 50 1 portions. .
  • 5-fold concentration of 2-mercaptoethanol-free SDS-PAGE sample buffer [0.31M Tris (pH 6.8), 10SDS, 50% glycerol]
  • SDS-PAGE sample buffer containing 2-mercaptoethanol [0.31M Tris (pH 6.8), 103 ⁇ 4SDS, 503 ⁇ 4glycerol, 25% 2-mercaptoethanol] is dispensed in 50 ⁇ IZ ⁇ wells and shaken For 2 hours at room temperature.
  • the reaction solution was added to 200 PBS, heated in a heat block, and then separated at 25 / zl using a commercially available gradient gel for SDS-PAGE (manufactured by Atto Kabushiki Kaisha). After electrophoresis, PV Transfer was performed on a DF membrane (Millipore). The PVDF membrane was subjected to Western blotting using KM1257 by the method described in Example 3-6 to detect shIL-5Ra. The results are shown in FIG. Both KM1257, K1259, and K1486 were found to immunoprecipitate shIL-5Ra. Industrial applicability
  • monoclonal antibodies KM1257, KM1259, and KM1486 that specifically bind to a human 1L-5 receptor ⁇ chain which is considered to be specifically expressed on human eosinophils.
  • a humanized antibody that is considered to be specifically expressed on human eosinophils and that can specifically bind to the L-5 receptor ⁇ -chain and inhibit the biological activity of human IL-5. , $ 8399, $ 7399 and $ 9399 are provided.
  • the antibody of the present invention is useful for immunological detection of human eosinophils in immune cell staining, diagnosis and treatment of allergic diseases by inhibiting the biological activity of IL-5, and the like.
  • humanized antibodies have lower immunogenicity than monoclonal antibodies, and their effects are expected to last for a long time.
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • GGT TCC AGA AGT GAC ATT GTG CTG ACC CAA TCT CCA GCT TCT TTG GCT 96 Gly Ser Arg Ser Asplie Val Leu Thr Gin Ser Pro Ala Ser Leu Ala
  • Sequence type nucleic acid
  • Trp lie Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書 ヒトインターロイキン 5受容体 α鎖に対する抗体
技 術 分 野
本発明は、 慢性気管支喘息などの疾患の診断あるいは治療に有用であるヒト インターロイキン 5受容体 α鎖に特異的に結合するモノクローナル抗体および ヒ卜化抗体ならびに該抗体を生産するハイプリドーマおよび形質転換株、 なら びに該モノクローナル抗体および該ヒト化抗体を用いてィン夕一ロイキン 5受 容体 α鎖を免疫学的に検出する方法、 ならびに該モノクローナル抗体およびヒ ト化抗体を用いる慢性気管支喘息等の診断および治療に関する。
背 景 技 術
インターロイキン— 5 (以下、 IL-5 と称す) は、 Τ細胞や肥満細胞などによ り分泌されるリンホカインの一種である。 マウスにおける IL-5は、 Β細胞の分 化および増殖因子、 好酸球の分化および増殖因子として作用することが知られ ている。 ヒトにおいては、 主として好酸球の分化および増殖因子として作用す ることが知られている [アドバンシ一ズ ·イン ·ィムノロジー(Advances in Immuno l ogy) , 57 , 145 (1994) ブラッド (Blood) , 79 , 3101 (1992) ] 。 IL-5 は好酸球などの細胞表面上に発現されている特異的な受容体 (IL- 5受容体) を 介してその作用を発現する。 IL- 5受容体 (以下、 IL- 5Rと称す) はヒト、 マウス ともに 2種類の異なる蛋白質 [ α鎖 (以下、 IL-5R αと称す) 、 β鎖(以下、 IL - 5R /3と称す) ] により構成されることが明らかにされている。 さらに、 IL- 5の IL-5R への結合は IL-5R αによって担われており、 IL-5R )3はそれ自体では IL-5に対する結合能を示さないことが知られている [ΕΜΒ0·ジャーナル (EMBO J. ), 9 , 4367 (1990) 、 同, !^, 2833 (1991) 、 ジャーナル ·ォブ 'エキスペリメン タル -メデイシン(J. Exp. Med. ) , Π7 , 1523 (1993)、 同, , 341 (1992) 、 セル(Ce l l) , 66 , 1175 (1991) 、 プロシーデイング 'ォブ ·ザ ·ナショナル . アカデミー 'ォブ 'サイエンス(Proc. Nat l. Acad. Sc i. ) , 89. 7041 (1992) ] 。 また、 IL- 5R 3はインターロイキン- 3 (以下、 IL- 3 と称す)および顆粒球マクロ ファージコロニー刺激因子 (以下、 GM- CSF と称す)などの受容体の構成成分であ ることが知られている [プロシーディング ·ォブ ·ザ ·ナショナル .ァカデミ —'ォブ 'サイエンス(Proc. Natl. Acad. Sci. ), 87, 9655(1990) 、セル(Cell), 66 , 1165(1991) ] 。
好酸球は慢性気管支喘息をはじめとするアレルギー性疾患において増加する ことが知られている。 慢性気管支喘息患者の気道には好酸球の著しい浸潤が認 められること、 好酸球自身が細胞傷害性を有する顆粒蛋白を含み、 その蛋白の 沈着が慢性気管支喘息患者の気道組織あるいはァトピー性皮庸炎患者の病変部 位に認められることなどから好酸球は慢性気管支喘息、 ァトピー性皮膚炎など のァレルギ一性疾患の病態形成において重要な働きをしているものと考えられ [アドバンシーズ ·イン 'ィムノロジー(Adv. Immunol. ), 39 , 177 (1986)、 ィ ムノロジ一' トウディ(Immunol. Today), _13 , 501 (1992)] 、 その動態を把握 することは臨床診断上有用である。 一方、 IL- 5 はヒトにおいては好酸球に対し て特異的に作用することから、 IL- 5R は好酸球に特異的に発現されているもの と考えられ、 IL- 5R はヒト好酸球特異的なマーカーとして利用することができ る。 さらに、 IL-5R ;3は IL- 3、 GM-CSF等のサイト力イン受容体であることから、 IL-5R ひが好酸球特異的マーカーであると考えられる。従って、抗ヒト IL-5R a 鎖抗体 (以下、 ML- 5R ひ抗体と称す) を用いた免疫細胞染色などにより、 特異 的に好酸球を検出することができる。 しかし、 現在特異的に好酸球を検出する ことが可能な抗 h IL-5R α抗体は知られていない。
一方、 実際に生体内において好酸球の増多、 浸潤に IL- 5が重要な働きをして いることは、 IL- 5遺伝子導入マウスにおいて著しい好酸球増多が認められるこ と [ジャーナル ·ォブ ·エキスペリメンタル ·メディシン Exp. Med. ). Π2, 1425 (1990), 同, 1J^, 429 (1991) 、 インタ一ナショナル ·ィムノロジー(Int. Immunol. ), 2 , 965 (1990)] 、 喘息モデル動物における好酸球の組織浸潤が抗 IL-5抗体の投与により抑制されること [アメリカン · レビュー ·ォブ · レスピ レイトリー 'ディジ一ズ(Am. Rev. Resir. Dis. ), 147 , 548 (1993) 、 同, 148 , 1623(1993)] などから明らかにされている。 また、 ヒト慢性気管支喘息患者の 気道粘膜組織、 アトピー性皮膚炎患者の病変部位において、 IL- 5 の発現が認め られることも報告されている [ジャーナル ·ォブ ·クリニカル ·ィンべスティ ゲ一シヨン(J. Clin. Invest. ), 87 , 1541 (1991) 、 ジャーナル ·ォブ ·ェキ スペリメンタル ' メデイシン(J. Exp. Med.), Π3 , 775 (1991) ] 。 さらに、 IL-5 はヒ卜好酸球に対して試験管内での寿命延長作用を示すこと [ジャーナ ル ·ォブ ·ィムノロジー(J. I隨 unol.), H3 , 2311 (1989) ] 、 好酸球選択的 な活性化因子であること [ジャーナル ·ォブ ·エキスペリメンタル ·メデイシ ン(J. Exp. Med.), 167 , 219 (1988) ] などが明らかにされている。
以上のことから、 IL- 5R に結合し、 IL- 5の生物活性を阻害できる抗体は好酸 球の活性を抑制し、 慢性気管支喘息などのアレルギー性疾患の治療に有用であ ることが期待される。 - 5の生物活性を阻害できる抗マウス IL-5R α抗体 [特 開平 3- 108497、 インターナショナル 'ィムノロジー(Int. I讓 unol.), 2 , 181 (1990)] は、 マウス IL- 5R をその細胞表面に多数発現している IL- 5依存性 細胞を抗原として用いることにより作製されている。 一方、 ヒトの場合、 IL - 5R を多数発現している細胞は知られておらず、 好酸球においてもその発現は極め て低いことが報告されている [セルラー'ィムノロジー(CeH. Immunol.), Π3, 484(1991) ] 。 このため、 抗マウス IL- 5R α抗体の作製と同様の方法により、 同等の機能を有する抗ヒト IL- 5R α抗体を得ることは困難である。 ΕΜΒ0·ジャ —ナル [EMBO J. ,]4, 3395 (1995)] には、 ヒト IL- 5R αに対する抗体として α 16と称する抗体の記載があるが、 これは【L- 5R αに対する中和活性がないもの である。
一方、 ヒト IL-5R ひの遺伝子はヒト好酸球 [ジャーナル ·ォブ ·エキスペリ メンタル *メディシン(J. Exp. Med.), ]75 , 341 (1992) ] 、 あるいはヒト前 骨髄球系細胞 (HL60) [セル(Cell), 66. 1175 (1991), 特開平 6-78772 ] より調 製した cDNAライブラリーをマウス IL-5R αの cDNAあるいはマウス IL- 5R ひの 部分アミノ酸配列 [特開平 6 - 54690、 EMB0 - ジャーナル(EMBO J. ). 9 , 4367 (1990) ]を基に合成したオリゴ DNA をプローブとしてスクリーニングする ことにより得られている。 この cDNAを宿主細胞に導入することにより、 細胞表 面に h IL- 5R αを発現した細胞が造成されているが、 この細胞における h IL- 5R の発現レベルは一細胞あたり 104 分子以下と極めて少ない [ジャーナル ·ォブ. エキスペリメンタル ' メディシン(J. Exp. Med. ) , Π7 , 1523 (1993) ] 。 従つ て、 この細胞を免疫原として用いて、 抗 h - 5R α抗体を作製した場合、 宿主細 胞由来の蛋白質に比較して、 h IL- 5R ひの相対的な量は極めて少なく、 また、 絶 対的な蛋白量としても極めて少ないことは明らかである。また、マウス IL-5R a とヒ卜 IL - 5R aの間にはアミノ酸レベルで 80% 近いホモロジ一が認められるこ と、マウス IL-5がヒ卜 IL- 5R に対しても高い結合活性を示すこと [ジャーナル . ォブ 'エキスペリメンタル 'メデイシン(L Exp. Med. ) , Π5 , 341 (1992) ] などから、 被免疫動物として一般的に利用されるマウスやラットに対して、 ヒ ト 【L- 5R ひは免疫原性が低いと考えられる。 実際、 h【L- 5R a発現細胞を免疫原 として抗 ML-5R a抗体を作製を行ったが、 困難であった。
ヒト好酸球の cDNAライブラリ一からの IL-5R a cDNAのクローニングにおい て、 IL- 5R aの膜貫通領域以下を欠く N末端アミノ酸配列 1 〜313 番目に相当 する可溶性ヒ卜 IL- 5R (以下、 sh IL- 5R aと称す) をコードする cDNAが得ら れている [ジャーナル'ォブ 'エキスペリメンタル'メディシン Exp. Med. ) , Π5 , 341 (1992) ] 。 sh IL-5R αを免疫原として用いて、 抗 h iレ 5R a抗体を作 製した場合、 IL-5の生物活性を阻害できる抗 hIL- 5R a抗体を取得するためには、 細胞表面に発現している IL- 5R aと同様な高次構造を保持している、 真核性宿 主細胞より分泌生産された sh【L- 5R ctを免疫原として用いることが必要である。 また、 同一蛋白においてもそのシグナルペプチドにより生産効率が著しく異な ることが明らかにされていることから [蛋白質核酸酵素、 、 2584 (1990) ] 、 分泌生産を行うにあたり、 適切なシグナルべプチドを選択する必要がある。 先に述べたように sh I L-5R aのみをコードするものと考えられている mRNAが 好酸球で発現されていることが明らかにされている。 マウスにおいては IL-5R は、 好酸球のみならず B細胞などにおいても発現されており、 かつヒ卜の場合 と同様に、 それらの細胞において IL- 5R ひの細胞外領域 (以下、 smlL-5R aと 称す) のみをコ一ドするものと考えられている mRNAの発現が確認されている。 また、 IL- 5R を発現しているマウス慢性 B細胞白血病株 (BCL1)を移植されたマ ウス、 あるいは、 ヒト自己免疫疾患のモデルマウスの血液中に smIL- 5R αが検 出されることも報告されている [ジャーナル ·ォブ ·ィムノロジカル ·メソッ ド 0. I腿 unol. Me thod) , 167, 289 (1994) ] 。 これらのことは、 IL- 5R を発現 している細胞の増多、 活性化状態が血液中に分泌されている smIL-5R αの量に 反映される可能性を示唆している。 ヒトの場合、 IL- 5R は好酸球に限られた発 現をするものと考えられており、 好酸球の増多、 活性化が血液中などの shIL-5R ひの量に反映される可能性がある。 従って、 sh -5R ひの定量を可能にするこ とは、 臨床診断上有用と期待される。
以上のことから、 ヒ卜 IL- 5R αに特異的に結合するモノクローナル抗体が取 得できればアレルギー性疾患の診断、 治療に有用であると考えられるが、 一般 にヒト以外の動物由来のモノクローナル抗体をヒ卜に投与すると、 異物として 認識されることによりヒト体内にヒト以外の動物由来のモノクローナル抗体に 対する抗体ができてしまう。 その結果、 投与されたヒト以外の動物抗体と反応 し、 副作用を引き起こしたり [ジャーナル ·ォブ ·クリニカル ·オンコロジ一
(J. Cl in. Oncol. ) , 2, 881 (1984) 、 ブラッド (Blood) ' 65, 1349 (1985) 、 ジャーナル ·ォブ ·ナショナル ·キャンサー ·インスティテユート U. Nat l. Cancer Ins t. ) . 80, 932 (1988) 、 プロシ一デイング.ォブ.ザ.ナショナル · アカデミー ·ォブ 'サイエンス (Proc. Nat l. Acad. Sc i. ) , 82, 1242 (1985) ] 、 抗体がはやくクリアランスされたり [ジャーナル ·ォブ ·ニュークレア一 ·メ ディシン (J. Nuc l. Med. ) , 26, 1011 (1985) 、 ブラッド (Blood) , 65, 1349
(1985) 、 ジャーナル ·ォブ ·ナショナル ·キャンサー ·インスティテュー卜
(J. Nat l. Cancer Ins t. ) , 80, 937 ( 1988) ] 、 抗体の治療効果を減じてし まうことが知られている [ジャーナル ·ォブ 'ィムノロジ一(J. Immunol. ) . _135, 1530 (1985) 、 キャンサー ' リサーチ (Cancer Res. ) , 46, 6489 (1986) ] 。 これらの問題点を解決するため、 遺伝子組換え技術を利用してヒト以外の動 物由来のモノクローナル抗体をヒト型キメラ抗体あるいはヒ卜型 CDR移植抗体
(再形成ヒト抗体) のようなヒト化抗体にすることが試みられている。 ヒ卜型 キメラ抗体は、 抗体可変領域 (以下、 V領域と称す) がヒト以外の動物抗体由 来で定常領域 (以下、 C領域と称す) がヒト抗体由来である抗体であり [プロシ 一ディング 'ォブ 'ザ'ナショナル'アカデミー.ォブ'サイエンス(Proc. Nat l. Acad. Sc i. ) , 81, 6851 (1984) ] 、 ヒトに投与した場合、 ヒ卜以外の動物由 来のモノクローナル抗体に対する抗体はほとんど惹起されず、 血中半減期が 6 倍のびることが報告されている [プロシーディング ·ォブ'ザ .ナショナル - アカデミー ·ォブ ·サイエンス (Pro Nat l. Acad. Sc i. ) . 86, 4220 (1989) ]。 ヒ卜型 CDR 移植抗体はヒ卜抗体の CDR [相補性決定領域; Complementar y Determi ning Region] をヒ卜以外の動物由来の抗体の CDR と置換した抗体であ り [ネイチヤー (Nature) , 32χ, 522 (1986) ] 、 サルを用いた実験でマウス 抗体に比べ免疫原性が低下し、 血中半減期が 4〜5倍伸びることが報告されてい る [ジャーナル ·ォブ ·ィムノロジー (J. Immuno l. . J47, 1352 ( 1991) ] 。 しかしながら、 これまでのところ ML- 5R αに対するヒト化抗体は報告されてい ない。
従って、 ヒト IL- 5R αに対して特異的に結合するヒ卜化抗体は、 ヒト体内に 投与したときにヒ卜以外の動物由来のモノクロ一ナル抗体に対する抗体が生じ ないことによる、 副作用の減少、 および血中半減期の延長により、 慢性気管支 喘息、 アトピー性皮 ί翁炎などのアレルギー疾患等に対する高い治療効果が期待 される。
さらに、 最近の蛋白質工学、 遺伝子工学の進歩により、 一本鎖抗体 [サイェ ンス (Sc ience) , 242, 423 (1988) ] あるいはジスルフィ ド安定化抗体 [モレキ ユラ一'ィムノロジー (Molecul ar Immunology) , 32( 249 (1995) ] といった、 より小さな抗体分子の作製が行われている。 一本鎖抗体やジスルフィ ド安定化 抗体はモノクローナル抗体あるいはヒ卜化抗体に比べ、 その分子量が小さいこ とから組織移行性、 血中からのクリアランスに優れ、 イメージング等への応用、 さらにはトキシンとの複合体の作製も行われ、 治療効果も期待されている [キ ヤンサ一·リサーチ (Cancer Research) . 55. 318 (1995) ] 。 ヒ卜 IL-5R α鎖特 異的に結合する一本鎖抗体およびジスルフィ ド安定化抗体ができれば、 アレル ギー疾患等に対する高い診断、治療効果が期待される。しかしながら、ヒト IL - 5R α鎖に対する一本鎖抗体およびジスルフィ ド安定化抗体についてもこれまでの ところ報告されていない。
発 明 の 開 示
本発明者らは、 ヒト I L- 5R α鎖の膜貫通領域以下を欠いた細胞外領域に相当 する、 Ν末端アミノ酸 1 〜313 番目に存在するェピ卜ープを認識する M L- 5R a 鎖に対する抗体が、 免疫細胞染色によりヒトイン夕ーロイキン 5受容体 α鎖に 特異的に反応すること、 およびヒトイン夕一ロイキン 5の生物活性を抑制する ことができることを見出した。 これらの抗体を用いれば、 前記アレルギー性疾 患の診断、 治療を行うことができる。
したがって、 本発明は、 ヒト【L- 5R α鎖に特異的に反応する抗体を提供する。 本発明における抗体は、 モノクローナル抗体、 ヒ卜化抗体、 一本鎖抗体、 ジス ルフィ ド安定化抗体などを含む。 本発明におけるモノクローナル抗体は、 h IL-5 R a鎖に特異的に反応するものであればいかなるものでもよいが、 以下に述べる 製造法によって確立したものが好適なものとしてあげられる。 すなわち、 ML- 5 R aタンパクを抗原として調製し、 それらをマウス、 ラッ卜、 ハムスター、 ラビ ット等、 ハイプリドーマを作製することが可能な動物に免疫することにより、 抗原特異性をもつ形質細胞を誘導し、 さらに、 それと骨髄腫細胞株とを融合さ せ、 モノクローナル抗体産生能を有したハイプリドーマを調製し、 これを培養 することにより、 抗 I L- 5R aモノクローナル抗体を取得できる。 本発明のモノク ローナル抗体としては、 ヒト I L- 5R ひ鎖の N末端アミノ酸から 1〜31 3 番目に 存在するェピトープを認識し、 かつ免疫組織染色によりヒト IL-5R a鎖に特異 的に反応するモノクローナル抗体、 およびヒト IL - 5R a鎖の N末端アミノ酸か ら 1〜31 3 番目に存在するェピトープを認識し、 かつ IL-5の生物活性を抑制す るモノクローナル抗体であれば、 いずれも用いることができる。 前者に属する モノクローナル抗体としては、 ハイブリド一マ株 KM1257 (FERM BP- 51 33) が生 産するモノクローナル抗体 KM1257、 後者に属するモノクローナル抗体としては、 ハイブリドーマ株 KM1259 (FERM BP- 5134) が生産するモノクローナル抗体 KM125 9およびハイブリド一マ株 KM1486 (FERM BP-5651 ) が生産するモノクローナル抗 体 K 1486が具体例としてあげられる。
本発明のモノクローナル抗体は、 ヒト IL- 5R ひ鎖、 ヒト IL-5R α鎖を細胞表 面に発現した細胞、 ヒ卜好酸球などと免疫学的に反応する。 また、 本発明のモ ノクローナル抗体は、 可溶性ヒト IL- 5R α鎖と免疫学的に反応する。 したがつ て、 本発明は、 ヒト IL- 5R α鎖、 ヒト IL-5R α鎖を細胞表面に発現した細胞、 ヒト好酸球および可溶性ヒト I L- 5R ひ鎖を免疫学的に検出、 定量する方法も提 供する。 これらの検出、 定量結果は、 慢性気管支喘息、 アトピー性皮虜炎など のアレルギー性疾患の診断および治療に利用することができる。
さらに、 本発明では、 モノクローナル抗体以上に、 副作用が少なく、 血中 半減期が延期され、 より治療薬として望ましい IL- 5の生物活性を阻害するヒト 化抗体を提供する。 本発明におけるヒト化抗体とは、 ヒ卜型キメラ抗体および ヒト型 CDR移植抗体の総称である。
ヒト型キメラ抗体とは、 ヒト以外の動物の抗体可変領域重鎖 (以下、 VHと称 す) および可変領域軽鎖 (以下、 VLと称す) とヒト抗体の定常領域重鎖 (以下、 CHと称す) およびヒト抗体の定常領域軽鎖 (以下、 CLと称す) とからなる抗体 を意味し、 ヒト型 CDR移植抗体とは、 ヒ卜の抗体の VHおよび VLの CDR配列をヒト 以外の動物の抗体の VHおよび VLの CDR配列でそれぞれ置換した抗体を意味する。 I L-5の生物活性を阻害する抗 h I L- 5R a鎖ヒ卜型キメラ抗体は、 ヒ卜 IL- 5R a鎖 に反応し、 【L- 5の生物活性を阻害できる抗体を生産するハイプリドーマより VH および VLをコードする cDNAを取得し、 ヒト抗体 CHおよびヒト抗体 CLをコ一ドす る遺伝子を有する動物細胞用発現ベクターにそれぞれ挿入してヒ卜型キメラ抗 体発現べクタ一を構築し、 動物細胞へ導入することにより発現させ製造するこ とができる。 本発明のヒ卜型キメラ抗体およびヒ卜型 CDR移植抗体はいずれのィ ムノグロブリン(I g)クラスに属するものでもよいが I gG 型のものが好適であ り、 さらに I gG型に属する I gGl、 I gG2、 I G3, IgG4といったィムノグロブリンの C領域のいずれも用いることができる。
本発明のヒト型キメラ抗体の例としては、 抗体の VHが配列番号 24記載のアミ ノ酸配列を含み、 CHがヒト抗体 IgGlであり、 抗体の VLが配列番号 25記載のアミ ノ酸配列を含み、 CLがヒト抗体/ である抗体があげられ、 KM1399と称するもの が具体例としてあげられる。 また、 CHがヒト抗体 IgG4であるヒト型キメラ抗体 としては KM7399と称するものが具体例としてあげられる。 KM1399を生産する形 質転換株としては KM1399 (FERM BP-5650) があげられる。 KM7399を生産する形 質転換株としては K 7399 (FERM BP-5649) があげられる。
また、 IL- 5の生物活性を阻害する抗 h iい 5R a鎖ヒト型 CDR移植抗体は、 ヒ卜 I い 5R a鎖 に反応し、 IL- 5の生物活性を阻害できるヒト以外の動物の抗体の VHお よび VLの CDR配列で任意のヒト抗体の VHおよび VLの CDR配列をそれぞれ置換した V領域をコードする cDNAを構築し、 ヒ卜抗体の CHおよびヒト抗体の CLをコードす る遺伝子を有する動物細胞用発現ベクターにそれぞれ挿入してヒト型 CDR移植 抗体発現ベクターを構築し、 動物細胞へ導入することにより発現させ製造する ことができる。 本発明のヒト型 CDR移植抗体の例としては、 抗体の VHが配列番号 72記載のアミノ酸配列を含み、 CHがヒト抗体 IgGlであり、 抗体の VLが配列番号 6 3記載のアミノ酸配列を含み、 CLがヒト抗体 κである抗体があげられ、 KM8399と 称するものが具体例としてあげられる。 また、 CHがヒト抗体 IgG4であるヒト型 C DR移植抗体としては KM9399と称するものが具体例としてあげられる。 KM8399を 生産する形質転換株としては KM8399 (FERM BP-5648) があげられる。 KM9399を 生産する形質転換株としては KM9399 (FERM BP- 5647) があげられる。
本発明のヒト化抗体は、 ヒ卜 IL-5R α鎖、 ヒト IL-5R α鎖を細胞表面に発現 した細胞、 ヒ卜好酸球などと免疫学的に反応する。 したがって、 本発明は、 慢 性気管支喘息、 アトピー性皮廣炎などのアレルギー性疾患の診断および治療に 利用することができる。
さらに、 本発明ではヒ卜 IL-5R a鎖に対して結合性を示す一本鎖抗体(s i ngl e cha i n Fv ;以下、 scFvと称す)あるいはジスルフィド安定化抗体(d i su l f i de s t ab i l i zed Fv ; 以下、 dsFvと称す)を提供する。
一本鎖抗体 (scFv) とは、 一本の VHと一本の VLとを適当なペプチドリンカ一
(以下、 Lと称す) を用いて連結した、 VH— L— VLないしは VL— L一 VHポリべ プチドを示す。 本発明の scFvに含まれる V'Hおよび VLは抗ヒト IL- 5R a鎖モノクロ ーナル抗体あるいはヒト型 CDR移植抗体のいずれをも用いることができる。
ジスルフイ ド安定化抗体 (dsFv) とは VHおよび VL中のそれぞれ 1アミノ酸残 基をシスティン残基に置換したポリペプチドをジスルフィ ド結合を介して結合 させたものをいう。 システィン残基に置換するアミノ酸残基は Re i terらにより 示された方法 [プロテイン エンジニアリング (Prote i n Engi neer ing) , 7. 6 97 (1994) ] に従って、 抗体の立体構造予測に基づいて選択することができる。 本発明のジスルフィド安定化抗体に含まれる VHあるいは VLはマウス型抗ヒ卜 IL - 5R a鎖モノクローナル抗体あるいはヒト型 CDR移植抗体のいずれをも用いるこ とができる。
ヒ卜 Iい 5R a鎖に対して結合性を示す一本鎖抗体は、 ヒト IL-5R a鎖に反応す る抗体を生産するハイブリ ドーマより VHおよび VLをコードする cDNAを取得し、 一本鎖抗体発現ベクターを構築し、 大腸菌、 酵母、 あるいは動物細胞へ導入す ることにより発現させ製造することができる。 本発明のモノクローナル抗体由 来の一本鎖抗体の例としては、 抗体の VHが配列番号 24記載のアミノ酸配列を含 み、 VLが配列番号 25記載のアミノ酸配列を含む抗体があげられる。 本発明のヒ ト型 CDR移植抗体由来の一本鎖抗体の例としては、 抗体の VHが配列番号 72記載の アミノ酸配列を含み、 VLが配列番号 63記載のアミノ酸配列を含む抗体があげら れる。
ヒト -5R a鎖に対して結合性を示すジスルフィ ド安定化抗体は、 ヒト - 5R α鎖に反応する抗体を生産するハイブリドーマより VHおよび VLをコードする cD NAを取得し、 適当な発現ベクターに挿入し、 該発現ベクターを大腸菌、 酵母、 あるいは動物細胞へ導入することにより発現させ製造することができる。 本発 明のモノクローナル抗体由来の一本鎖抗体の例としては、 抗体の VHが配列番号 2 4記載のアミノ酸配列を含み、 VLが配列番号 25記載のアミノ酸配列を含む抗体が あげられる。
本発明のヒト型 CDR移植抗体由来のジスルフィ ド安定化抗体の例としては、 抗体 の VHが配列番号 72記載のアミノ酸配列を含み、 VLが配列番号 63記載のアミノ酸 配列を含む抗体があげられる。
以下に、 ヒ卜 1L- 5Ra鎖に特異的に反応する、 あるいはヒト!L- 5の生物活性を 阻害する抗ヒト IL- 5Ra鎖モノクローナル抗体、 ヒ卜 IL-5の生物活性を阻害する 抗ヒト IL-5Ra鎖ヒ卜化抗体、 抗ヒト IL-5Ra鎖一本鎖抗体および抗ヒト IL- 5Ra 鎖ジスルフィ ド安定化抗体の製造法、 ならびに該抗体によるヒトインタ一ロイ キン 5受容体 α鎖の検出および定量法について、 説明する。
1. 抗 h - 5Raモノクローナル抗体の作製
(1) 抗原の調製
抗 h - 5Raモノクローナル抗体を作製するために必要な抗原としては、 hIL - 5 Raを細胞表面に発現した細胞あるいはその細胞膜画分、 または、 h【 5Ra発現 細胞である CTLL-2(h5 R)の細胞あるいはその細胞膜画分等を用いることができ る。 CTLL-2(h5 R)細胞は、 既にクローニングされている完全長の hIL- 5Raをコ ―ドする cDNA [ジャーナル ·ォブ ·ェクスペリメン夕ル ·メディシン(L Exp. Me d. ), 175 . 341 (1992) ] を動物細胞用発現ベクター、 たとえば pCAGGS [ジーン (Gene), ]08, 193 (1991)] に組み込み、 エレク卜ロボレ一シヨン法 [特開平 2 - 25 7891、 サイトテクノロジー(Cytotechnology), 3, 133(1990)] により該発現べ クタ一をマウス T 細胞株である CTLL- 2に導入することにより造成された h I L-5R a発現細胞である。
また、 hiい 5R aをコードする cDNAの全長もしくはその部分断片は、 例えば、 大腸菌などの原核性宿主細胞中で発現させるために、 発現ベクター、 たとえば 市販の pGEX [フアルマシア(Pharmacia) 社] 、 pET システム [ノバジェン(Nova gen) 社] あるいは実施例 1 の(11)で述べる pMKexlなどに組み込み、 h - 5Raの 全長または部分断片をそのままあるいは融合蛋白として発現させることができ る。 大腸菌により発現された蛋白質は、 菌体を破砕した後、 SDS-ポリアクリル ァミド電気泳動または融合蛋白質の性質に応じたァフィ二ティ一クロマトグラ フィ—などの方法により精製することができる。
IL-5R aの全長または部分断片をそのままあるいは融合蛋白として発現させ る方法としては、 昆虫細胞、 哺乳動物細胞等の真核性宿主細胞も用いることが できる。
哺乳動物細胞の場合、 例えば、 PAGE107 [サイ卜テクノロジ一(Cyto technolo gy) , 3 , 133 (1990) ] , pAGE103 [ジャーナル ·ォブ.バイオケミストリ(J. Β ioc em. ) , 101. . 1307 (1987) ] 、 実施例 1 の(1) で述べる pAGE210 等のベクタ 一内に h lL- 5R aをコードする cDNAの全長または部分断片を公知の方法を用いて 組み込み、 該蛋白質の発現ベクターを構築することができる。 また、 該 cDNAが コードする hiい 5R aの全長または部分断片をそのままあるいは融合蛋白として 効率的な発現を行うためには、 該 cDM中のシグナルぺプチドをコードする塩基 配列と真核性宿主中で高発現させることができる蛋白質のシグナルペプチドを コードする塩基配列とを入れ換えることが好ましい。 公知の蛋白質シグナルべ プチドとしては、 例えばヒト成長ホルモン、 抗ガングリオシド GD3 キメラ抗体 K M871 (特開平 5- 304989) などを用いることが好ましい。
このようにして構築した発現ベクターは宿主細胞にエレク卜口ポレーシヨン 法 [特開平 2- 257891、サイトテクノロジ一(Cytotechnology) , 3, 133 (1990 ) ]、 リポフエクチン法 [プロシ一ディング ·ォブ ·ザ ·ナショナル .アカデミー · ォブ ·サイエンス(Pro Nat l. Acad. Sc i. ) , 84 , 7413 (1987) ] などの公知 の方法を用いて導入することができる。 これらの細胞を適当な培地中で培養す ることにより、 細胞内あるいは培養上清中に h IL-5R aの全長あるいは部分断片 をそのままあるいは融合蛋白として生産することができる。 培地としては、 培 養上清中に生産された hIL-5R aの部分断片あるいはその融合蛋白質の精製を容 易にするため、 血清無添加の培地を用いることが好ましい。
また、 昆虫細胞の場合、 ファーミンジェン社製バキュ口ゴールドスターター キッ卜などを用いて、 h IL- 5R aをコードする cDNAの全長または部分断片を組み 込んだ組み換えバキュロウィルスを作製し、 Si9 や Sf21等の昆虫細胞 (いずれ もファーミンジェン社製) に該組み換えウィルスを感染させることにより、 細 胞内あるいは培養上清中に h iい 5Rひの全長あるいは部分断片をそのままあるい は融合蛋白として、 生産させることができる [バイオテクノロジー(Bi o/Techno logy) , 6 , 47 (1988) ] 。 動物細胞または昆虫細胞などにより生産された h I L-5Rひの全長あるいは部分 断片または融合蛋白は、 既知の蛋白質精製方法、 例えば塩析、 ァフィ二ティー クロマトグラフィー、 イオン交換クロマトグラフィーなどの方法に従って培養 上清などから精製し、 抗原として供することができる。 とくに免疫グロブリン の定常領域との融合蛋白質として生産された場合は、 免疫グロブリンの定常領 域に対して特異的な親和性を有するプロテイン A などを固定化したァフィニテ ィーカラムを用いて精製することが好ましい。
( 2 ) 動物の免疫と抗体産生細胞の調製
免疫に用いる動物としては、 マウス、 ラッ卜、 ハムスター、 ラビット等、 ノ、 イブリドーマを作製することが可能であれば、 いかなるものでもよいが、 本明 細書中においては、 マウスまたはラットを用いる例を説明する。 3 〜20週令の マウスまたはラットに、 sh I L- 5R ひあるいは h iい 5R aを細胞表面に発現してい る CTLL-2細胞 [ジャーナル 'ォブ.エキスペリメンタル ·メディシン(J. Exp. Med. ) . Π7 , 1523 (1993) ] を抗原として免疫し、 その動物の脾、 リンパ節、 末 梢血より抗体産生細胞を採取する。 免疫は、 動物の皮下、 静脈内または腹腔内 に、 適当なアジュバント [例えば、 フロインドの完全アジュバント(Co即 l e te F reund' s Adj uvan t)または、 水酸化アルミニウムゲルと百日咳菌ワクチンなど] とともに抗原を投与することにより行う。 抗原の投与は、 1 回目の投与の後 1 〜1 週間おきに 5 〜10回行う。 各投与後 3 〜7 日目に眼底静脈叢より採血し、 その血清が抗原と反応することを酵素免疫測定法 [酵素免疫測定法 (EL [ SA 法) :医学書院刊 1976年] などで調べる。
免疫に用いた sh IL-5R αまたは h【L- 5R aを細胞表面に発現している細胞に対 し、 その血清が十分な抗体価を示したマウスまたはラットを抗体産生細胞の供 給原として供する。
脾細胞と骨髄腫細胞の融合に供するにあたって、 抗原物質の最終投与後 3 〜7 日目に、 免疫したマウスより脾臓を摘出し、 脾細胞を採取する。 脾臓を MEM 培 地 (日水製薬社製) 中で細断し、 ピンセットでほぐし、 遠心分離 (1. 200rpm、 5 分) した後、 上清を捨て、 トリスー塩化アンモニゥム緩衝液 (pH7. 65) で 1 〜 2 分間処理し赤血球を除去し、 MEM培地で 3 回洗浄して融合用脾細胞として提 供する。
(3) 骨髄腫細胞の調製
骨髄腫細胞としては、 マウスまたはラッ卜から得られた株化細胞を使用する。 たとえば、 8-ァザグァニン耐性マウス (BALB/c由来) 骨髄腫細胞株 P3-X63Ag8 - U 1 (P3-U1) [カレント ' トピックス 'イン 'ミクロバイオロジー ·アンド .ィム ノロジ一(Curr. Topics Microbiol. Immunol. ), 8J_ , 1 (1978), ョ一口ビアン . ジャーナル 'ォブ 'ィムノロジー(Europ. J. Immunol. ), 6 , 511 (1976) ] 、 S P2/0-Agl4(SP-2) [ネィチヤ一(Nature), 276, 269 (1978)] 、 P3-X63-Ag8653(65 3) [ジャーナル 'ォブ 'ィムノロジー(J. Immunol. ) , , 1548(1979)] 、 P 3-X63-Ag8(X63) [ネイチヤー(Nature). 256. 495 (1975)] などが用いられる。 これらの細胞株は、 8-ァザグァニン培地 [RPMI- 1640 培地にグルタミン(1.5mM)
、 2-メルカプ卜エタノール (5 X10—5M ) 、 ジェン夕マイシン(10 g ) お よび牛胎児血清(FCS) (CSL社製、 10¾ ) を加えた培地 (以下、 正常培地とい う) に、 さらに 8-ァザグァニン(15 Aig/ml) を加えた培地] で継代するが、 細 胞融合の 3 〜4 日前に正常培地に継代し、融合当日 2 X107 個以上の細胞数を確 保する。
(4) 細胞融合
前記 1 (2) で免疫した抗体産生細胞と 1 (3) で得られた骨髄腫細胞を MEM培 地または PBS (リン酸ニナトリウム 1.83g 、 リン酸一カリウム 0.21g、 食塩 7.6 5g、 蒸留水 1 リットル、 pH7.2 ) でよく洗浄し、 細胞数が、 抗体産生細胞:骨 髄腫細胞 =5 〜10: 1 になるよう混合し、 遠心分離 (1,200ι·ρπκ 5 分) した後、 上清を捨て、 沈澱した細胞群をよくほぐした後、 攪拌しながら、 37でで、 ポリ エチレングライコール— 1000 (PEG_1000)2g、 MEM2mlおよびジメチルスルホキシ H(DMS0)0.7ml の混液 0.2 ~lml/108 抗体産生細胞を加え、 1 〜2 分間毎に MEM 培地 1 〜2ml を数回加えた後、 MEM培地を加えて全量が 50mlになるようにす る。 遠心分離 (900rpm、 5 分) 後、 上清を捨て、 ゆるやかに細胞をほぐした後、 メスピペットによる吸込み、 吹出しでゆるやかに細胞を HAT培地 [正常培地に ヒポキサンチン (10—4M ) 、 チミジン (1.5 X10—5M ) およびアミノプテリン (4 X10'7M ) を加えた培地] 100ml 中に懸濁する。
この懸濁液を 96ゥエル培養用プレートに 100 1/ゥエルずつ分注し、 5¾ C02 インキュベータ一中、 37"Cで 7 〜14日間培養する。
培養後, 培養上清の一部をとり 1 (5) に述べる酵素免疫測定法により、 前記 1 (1) で述べた shIL- 5R αまたは h - 5Rとの融合蛋白などの組み換え蛋白質に 特異的に反応するゥエルを選択する。 ついで、 限界希釈法によりクローニング を 2 回繰り返し [1 回目は、 HT培地 (HAT 培地からアミノプテリンを除いた培 地) 、 2 回目は、 正常培地を使用する] 、 安定して強い抗体価の認められたも のをマウスまたはラット抗 hiい 5Raモノクローナル抗体産生ハイブリドーマ株 として選択する。
(5) マウスまたはラッ卜抗ヒト IL- 5R aモノクローナル抗体の選択 マウスまたはラット抗 hiい 5Raモノクローナル抗体を産生するハイブリドー マの選択は、 アンチボディズ [Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Chapter 14(1988)] に述べられている方法などに従い、 以下に述べる測定法により行う。 これらの方法により、 後述する抗 hIL-5Raヒ 卜化抗体、 一本鎖抗体およびジスルフィ ド安定化抗体を産生する形質転換株の 培養上清中に含まれる抗 h IL-5R α抗体あるいはすべての精製抗 h -5R a抗体の 活性を測定することもできる。
前記 1 (1) で述べた shIL-5R ひまたは hIL-5Raとの融合蛋白などの組み換え 蛋白質を適当なプレートにコートし、 八イブリドーマ培養上清もしくは 1 (6) で得られる精製抗体を第一抗体として反応させ、 さらに第二抗体としてビォチ ン、 酵素、 化学発光物質あるいは放射線化合物等で標識した抗マウスィムノグ ロブリン抗体もしくは抗ラットイムノグロブリン抗体を反応させた後に標識物 質に応じた反応を行ない、 hiい 5Raに特異的に反応するものをマウス抗 hIL - 5R αモノクローナル抗体を生産するハイプリドーマとして選択する。
抗 h!L- 5R αヒト化抗体、 一本鎖抗体およびジスルフィ ド安定化抗体を産生す る形質転換株の培養上清もしくはそれらの精製抗体を第一抗体として反応させ た場合には、 第二抗体としてはピオチン、 酵素、 化学発光物質あるいは放射線 化合物等で標識した抗ヒトイムノグロプリン抗体を用い、 標識物質に応じた反 応を行なうことにより検出を行う。
また、前記 1 (1 ) で述べた slUL- 5R αまたは h iL- 5R αとの融合蛋白などの組 み換え蛋白質を適当なプレー卜にコートし、 ハイプリドーマ培養上清、 抗 h IL- 5R αヒト化抗体、 一本鎖抗体およびジスルフイ ド安定化抗体を産生する形質転 換株の培養上清、 もしくははそれらの精製抗体のいずれかと、 ピオチン、 酵素、 化学発光物質あるいは放射線化合物等で標識したヒト IL- 5とを混合して反応さ せた後、 標識物質に応じた反応を行うことにより、 ヒト 1L- 5のヒト IL-5R αへ の結合阻害活性を測定することができる。 この方法を用いてハイプリドーマの スクリーニングを行い、 ヒト 1L- 5阻害活性の高いものを選択する。
( 6 ) マウスまたはラットモノクローナル抗体の調製
プリスタン処理 [2, 6, 10, 14-テ卜ラメチルペン夕デカン(Pr i s t ane) O. 5ml を 腹腔内投与し、 2 週間飼育する] した 8 〜10週令のマウスまたはヌードマウス に、 前記 1 (3) で得られたマウスまたはラット抗 h iい 5R aモノクローナル抗体 産生ハイプリドーマ細胞 2 X 107 〜5 X 106細胞/ 匹を腹腔内に注射する。 10〜2 1日間でハイプリドーマは腹水癌化する。 このマウスから腹水を採取し、 遠心分 離 (3, 000卬11、 5 分) して固形分を除去後、 40〜50% 飽和硫酸アンモニゥムで 塩析し、 力プリル酸沈殿法、 DEAE- セファロ一スカラム、 プロテイン A- カラ ムあるいはセル口ファイン GSL2000 (生化学工業社製) のカラムに通塔し、 IgG あるいは I gM 画分を集め、 精製モノクローナル抗体とする。
抗体のサブクラスの決定は、 マウスモノクローナル抗体タイピングキットま たはラットモノクローナル抗体タイピングキットを用いて行う。 蛋白質量は、 ローリー法あるいは 280nm での吸光度より算出する。
2 . 抗ヒト IL- 5R aヒト化抗体の作製
( 1 ) ヒ卜化抗体発現用ベクターの構築
ヒ卜以外の動物の抗体からヒト化抗体を作製するために必要なヒ卜化抗体発 現用ベクターを構築する。 ヒト化抗体発現用ベクターとは、 ヒ卜抗体の C領域で ある CHおよび CLをコードする遺伝子が組み込まれた動物細胞用発現ベクターで あり、 動物細胞用発現ベクターにヒ卜抗体の CHおよび CLをコードする遺伝子を それぞれ挿入することにより構築されたものである。 ヒ卜抗体の C領域として は、 例えば、 ヒト抗体 H鎖では Crlや Cr4、 ヒト抗体 L鎖では C/c等の任意のヒ卜 抗体の C領域を用いることができる。 ヒト抗体の C領域をコードする遺伝子とし てはェキソンとイントロンより成る染色体 DNAを用いることができ、 また、 cDNA を用いることもできる。 動物細胞用発現ベクターとしては、 ヒト抗体 C領域をコ 一ドする遺伝子を組込み発現できるものであればいかなるものでも用いること ができる。 例えば、 PAGE107 [サイトテクノロジ一(Cytotechnology), 3^133(1 990)] 、 pAGE 103 [ジャーナル ·ォブ ·バイオケミストリ一(J. Biochem. ), 101, 1307 (1987)] 、 PHSG274 [ジーン(Gene) , , 223 (1984) ] 、 pKCR [プロシ一デ ィング ·ォブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイエンス(Proc. Natl. Ac ad. Sci.); 78, 1527 (1981) ], pSGl 3 d2-4 [サイトテクノロジー(Cytotechnology), 4.173 (1990)] 等があげられる。 動物細胞用発現ベクターに用いるプロモー夕一 とェンハンサ一としては、 SV40の初期プロモーターとェンハンサ一 [ジャーナ ル♦ォブ ·バイオケミストリー(J.Biochem. )1^_1307(1987)] 、 モロニ一マウ ス白血病ウィルスの LTR プロモーターとェンハンサー [バイオケミカル .アン ド ·バイオフィジカル · リサーチ ·コミュニケーションズ(Biochem. Biophys. Re s. Comun. ), H9^ 960(1987)] 、 および免疫グロブリン H鎖のプロモーター [セル (CelD^ii, 479 (1985)] とェンハンサー [セル(Cell), 33, 717 (1983)] 等があ げられる。
ヒ卜化抗体発現用ベクターは、 抗体 H鎖、 L鎖が別々のベクター上に存在する タイプあるいは同一のベクター上に存在するタイプ (タンデム型) のどちらで も用いることができるが、 ヒ卜化抗体発現ベクターの構築のしゃすさ、 動物細 胞への導入のし易さ、 動物細胞内での抗体 H鎖および L鎖の発現量のバランスが とれる等の点でタンデム型のヒ卜化抗体発現用ベクターの方が好ましい [ジャ 一ナル'ォブ'ィムノロジカル'メソッズ(J. I國 unol. Methods). 167, 271 (1994)]。 ( 2 ) ヒ卜以外の動物の抗体の VHおよび VLをコードする cDNAの取得
ヒ卜以外の動物の抗体、 例えば、 マウス抗ヒ卜 IL-5R a鎖モノクローナル抗体 の VHおよび VLをコードする cDNAは以下のようにして取得する。
抗ヒ卜 IL-5R a鎖モノクローナル抗体を産生する細胞、 例えば、 マウス抗ヒ卜 IL- 5R a鎖抗体産生ハイプリドーマ等より mRNAを抽出し、 cDNAを合成する。 合成 した cDNAを、 ファージあるいはプラスミドなどのベクターに挿入し、 cDNAライ ブラリーを作製する。 該ライブラリーより、 ヒト以外の動物の抗体、 例えば、 マウス抗体の C領域部分あるいは V領域部分をプローブとして用い、 VHをコード する cDNAを有する組換えファージあるいは組換えプラスミド、 および VLをコー ドする cDNAを有する組換えファ一ジあるいは組換えブラスミドをそれぞれ単離 する。 組換えファージあるいは組換えプラスミド上の目的とする抗体の VHおよ び VLの全塩基配列を決定し、 塩基配列より VHおよび VLの全アミノ酸配列を推定 する。
( 3 ) ヒト型キメラ抗体発現べクタ一の構築
前記 2 ( 1 )で構築したヒト化抗体発現用ベクターのヒト抗体の CHおよび CLを コードする遺伝子の上流に、 ヒト以外の動物の抗体の VHおよび VLをコードする c DNAを挿入し、 ヒト型キメラ抗体発現べクタ一を構築することができる。例えば、 キメラ抗体発現用ベクターのヒ卜抗体の CHおよび CLをコードする遺伝子の上流 にあらかじめヒト以外の動物の抗体の VHおよび VLをコードする cDNAをクロー二 ングするための制限酵素の認識配列を設けておき、 このクローニングサイ卜に ヒ卜以外の動物の抗体の V領域をコードする cDNAを下記に述べる合成 D N Aを 介して挿入することにより、 ヒ卜型キメラ抗体発現ベクターを製造することが できる。 合成 D N Aは、 ヒト以外の動物の抗体の V領域の 3'末端側の塩基配列と ヒ卜抗体の C領域の 5'末端側の塩基配列とからなるものであり、 両端に適当な制 限酵素部位を有するように D N A合成機を用いて製造する。
( 4 ) ヒト以外の動物の抗体の CDR配列の同定
抗体の抗原結合部位を形成する VH及び VLは、 配列の比較的保存された 4個のフ レームワーク領域 (以下、 FR領域と称す) とそれらを連結する配列の変化に富 んだ 3個の相補性決定領域 (CDR) から成っている [シーゲンシズ'ォブ 'プロテ インズ'ォブ'ィムノロジカル'インタレスト (Sequences of Proteins of Immun ologi cal I nteres t) , US De t. Heal th and Human Servi ces. 1991 ] 。 そして 各 CDRアミノ酸配列 (CDR配列) は、 既知の抗体の V領域のアミノ酸配列 [シ一ケ ンシズ 'ォブ 'プロテインズ'ォブ'ィムノロジカル 'イン夕レス卜 (Sequences of Proteins o f Immunological Interes t) , US Dept. Heal th and Human Servic es, 1991 ] と比較することにより同定することができる。
( 5 )ヒト型 CDR移植抗体の V領域をコードする cDNAの構築
ヒト型 CDR移植抗体の VHおよび VLをコードする cDNAは以下のようにして取得 することができる。
まず、 目的のヒ卜以外の動物の抗体の V領域の CDRを移植するためのヒト抗体 の V領域の FRのアミノ酸配列を VH、 VLそれぞれについて選択する。 ヒト抗体の V 領域の FRのアミノ酸配列としては、 ヒト抗体由来の V領域の FRのアミノ酸配列で あればいかなるものでも用いることができる。 例えば、 Protein Data Bankに登 録されているヒ卜抗体の V領域の FRのアミノ酸配列、 ヒ卜抗体の V領域の FRの各 サブグループの共通アミノ酸配列 [シーゲンシズ'ォブ'プロテインズ 'ォブ-ィ ムノロジカリレ'インタレスト (Sequences of Proteins of Immunological Inter est) , US Dept. Heal th and Human Services, 1991] があげられるが、 充分な 活性を有するヒト型 CDR移植抗体を創製するためには、 目的のヒ卜以外の動物の 抗体の V領域のアミノ酸配列と高い相同性を有することが望ましい。 次に、 選択 したヒト抗体の V領域の FRのアミノ酸配列をコ一ドする DNA配列と目的のヒト以 外の動物の抗体の V領域の CDRのアミノ酸配列をコードする DNA配列を連結させ て、 VH、 VLそれぞれのアミノ酸配列をコードする DNA配列を設計する。 CDR移植 抗体可変領域遺伝子を構築するために設計した DNA配列を得るためには、 全 DNA 配列をカバ一するように各鎖について数本の合成 DNAを設計し、 それらを用いて ポリメラ一" E 'チェイン ' リアクション (Polymerase Chain Reac t ion;以下、 PCRと称す) を行う。 PCRでの反応効率および合成可能な DNAの長さから各鎖につ いて、 好ましくは、 6本の合成 DNAを設計する。 反応後、 増幅断片を適当なべク 夕一にサブクロ一ニングし、 その塩基配列を決定し、 目的のヒト型 CDR移植抗体 の各鎖の V領域のアミノ酸配列をコードする cDNAを含むプラスミドを取得する。 また、 約 100塩基よりなる合成 DNAを用いてセンス、 アンチセンスともに全配列 を合成し、 それらをアニーリング、 連結することで、 目的のヒト型 CDR移植抗体 の各鎖の V領域のアミノ酸配列をコードする cDNAを構築することもできる。
( 6 ) ヒト型 CDR移植抗体の V領域のアミノ酸配列の改変
ヒ卜型 CDR移植抗体は目的のヒト以外の動物の抗体の V領域の CDRのみをヒト抗 体の V領域の FR間に、 単純に移植しただけでは、 その活性は基のヒト以外の動物 の抗体の活性に比べて低下してしまうことが知られている [バイォテクノロジ ― (BI0/TECHN0L0GY) , 9, 266 (1991) ] 。 そこでヒト抗体の V領域の FRのアミノ酸 配列のうち、 直接抗原との結合に関与しているアミノ酸残基、 CDRのアミノ酸残 基と相互作用をしているアミノ酸残基、 あるいは抗体の立体構造の維持に関与 している等の可能性を有するアミノ酸残基をもとのヒト以外の動物の抗体に見 出されるアミノ酸残基に改変し、 活性を上昇させることが行われている。 そし て、 それらのアミノ酸残基を効率よく同定するため、 X線結晶解析あるいはコン ピュー夕ーモデリング等を用いた抗体の立体構造の構築および解析を行ってい る。 しかし、 いかなる抗体にも適応可能なヒ卜型 CDR移植抗体の製造法は未だ確 立されておらず、 現状では個々の抗体によって種々の試行錯誤が必要である。 選択したヒト抗体の V領域の FRのアミノ酸配列の改変は各種の変異導入ブラ イマ一を用いて前記 2 ( 5 )に記載の PCRを行うことにより達成できる。 PCR後の 増幅断片を適当なベクターにサブクローニング後、 その塩基配列を決定し、 目 的の変異が導入された cDNAを含むベクター (以下、 アミノ酸配列改変ベクター と称す) を取得する。
また、 狭い領域のアミノ酸配列の改変であれば、 20〜35塩基からなる変異導 入プライマーを用いた PCR変異導入法により行うことができる。 具体的には、 改 変後のアミノ酸残基をコードする DNA配列を含む 20〜35塩基からなるセンス変 異プライマー及びアンチセンス変異プライマ一を合成し、 改変すべき V領域のァ ミノ酸配列をコードする cDNAを含むプラスミドを铸型として 2段階の PCRを行 う。 最終増幅断片を適当なベクターにサブクロ一ニング後、 その塩基配列を決 定し、 目的の変異が導入された cDNAを含むァミノ酸配列改変ベクターを取得す る。
(7) ヒト型 CDR移植抗体発現ベクターの構築
前記 2 (1)のヒト化抗体発現用べクタ一のヒト抗体の CH及び CLをコードする 遺伝子の上流に、 前記 2 (5)および 2 (6)で取得したヒト型 CDR移植抗体の VH及 び VLをコードする cDNAを挿入し、 ヒト型 CDR移植抗体発現べクタ一を構築するこ とができる。 例えば、 ヒト型 CDR移植抗体の VH及び VLのアミノ酸配列をコードす る cDNAを構築するための PCRの際に 5' -及び 3' -末端の合成 DNAの末端に適当な制 限酵素の認識配列を導入することで、 所望のヒト抗体の C領域をコードする遺伝 子の上流にそれらが適切な形で発現するように挿入することができる。
(8)ヒト化抗体の一過性 (卜ランジェン卜) 発現および活性評価
多種類のヒト化抗体の活性を効率的に評価するために、 前記 2 (3) のヒト 型キメラ抗体発現べクタ一、 および前記 2 (7)のヒト型 CDR移植抗体発現べクタ 一あるいはそれらの改変ベクターを COS- 7細胞 (ATCC CRL1651) に導入してヒト 化抗体の一過性発現 [メソッズ 'イン ·ヌクレイツク'アシッド 'リサーチ (Metho ds in Nucleic Acids Res. ) , CRC Press, p.283, 1991] を行い、 その活性を 測定することができる。
C0S-7細胞への発現ベクターの導入法としては、 DEAE-デキストラン法 [メソ ッズ ·イン 'ヌクレイック 'アシッド ·リサーチ (Methods in Nucleic Acids Re s. ) , CRC Press, p.283, 1991] 、 リポフエクシヨン法 [プロシーデイング- ォブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイエンス [Pro(;. Natl. Acad. S ci. , 84, 7413 (1987) ] 等があげられる。
ベクターの導入後、 培養上清中のヒト化抗体の活性は前記 1 (5) に記載の 酵素免疫測定法 (EL1SA法) 等により測定することができる。
(9) ヒト化抗体の安定 (ステーブル) 発現および活性評価
前記 2 (3) のヒト型キメラ抗体発現ベクターおよび前記 2 (7) のヒト型 C DR移植抗体発現ベクターを適当な宿主細胞に導入することによりヒ卜化抗体を 安定に生産する形質転換株を得ることができる。
宿主細胞への発現ベクターの導入法としては、エレクトロポレーシヨン法〔特 開平 2- 257891、 サイトテクノロジー (Cy to technology) , 3.133, (1990) 〕 等 があげられる。
ヒ卜化抗体発現ベクターを導入する宿主細胞としては、 ヒト化抗体を発現さ せることができる宿主細胞であれば、 いかなる細胞でも用いることができる。 例えば、 マウス SP2/0- Agl4細胞 (ATCC CRL1581) 、 マウス P3X63- Ag8.653細胞 (A TCC CRL1580) 、 ジヒドロ葉酸還元酵素遺伝子 (以下 DHFR遺伝子と称す) が欠損 した CH0細胞 [プロシーディング ·ォブ ·ザ ·ナショナル .アカデミー .ォブ . サイエンス (Proc. Natl. Acad. Sci. ) , 77, 4216, (1980) ] 、 ラッ卜 YB2/3 Ηし Ρ2. Gil.16Ag.20細胞 (ATCC CRL1662, 以下、 YB2/0細胞と称す) 等があげら れる。
ベクターの導入後、 ヒ卜化抗体を安定に生産する形質転換株は、 特開平 2-257 891に開示されている方法に従い、 G418および FCSを含む RPMI1640培地により選 択する。 得られた形質転換株を培地中で培養することで培養液中にヒ卜化抗体 を生産蓄積させることができる。 培養液中のヒ卜化抗体の活性は前記 1 (5) に記載の方法などにより測定する。 また、 形質転換株は、 特開平 2- 257891に開 示されている方法に従い、 DHFR遺伝子増幅系等を利用してヒト化抗体の生産量 を上昇させることができる。
ヒ卜化抗体は、 形質転換株の培養上清よりプロティン A力ラムを用いて精製す ることができる [アンチボディズ (Antibodies) . A Laboratory Manual, Cold Spring Harbor Laboratory, Chapter 8, 1988] 。 また、 その他に、 通常の蛋白 質で用いられる精製方法を使用することができる。 例えば、 ゲル濾過、 イオン 交換クロマトグラフィーおよび限外濾過等を組合せて行い、 精製することがで きる。 精製したヒト化抗体の H鎖、 L鎖あるいは抗体分子全体の分子量は、 ポリ アクリルアミドゲル電気泳動 (SDS- PAGE) [ネイチヤー (Nature) , 227, 680,
(1970) ] やウエスタンブロッテイング法 [アンチボディズ (Antibodies) , A
Laboratory Manual, Cold Spring Harbor Laboratory. Chapter 12. 1988] 等 で測定する。
精製したヒト化抗体の反応性、 また、 ヒ卜化抗体の IL- 5に対する阻害活性の 測定は前記 1 ( 5 ) に記載の方法などにより測定することができる。
( 1 0 )ヒト化抗体の使用方法
本発明のヒ卜化抗体はヒト IL-5R a鎖と特異的に結合し、 IL-5の生物活性を阻 害することができる。 このため、 本発明により提供されるヒト化抗体は IL- 5に より分化、 増殖が制御されている好酸球の機能を阻害することが期待される。 従って、 好酸球が病態の形成に関与している疾患においてその治療等に有用で あると考えられる。 また、 ヒト以外の動物の抗体に比べ、 ヒト抗体のアミノ酸 配列に由来する部分がほとんどであるため、 ヒ卜体内で免疫原性を示さず、 そ の効果が長期間にわたり持続することが期待される。 本発明のヒ卜化抗体は単 独でまたは少なくとも 1種以上の製剤上許容される補助剤と共に用いることが できる。 例えば、 ヒト化抗体を、 生理食塩水やグルコース、 ラクトース、 マン 二トール等の水溶液に溶解して適当な医薬組成物とする。 または、 ヒト化抗体 を常法に従って凍結乾燥し、 これに塩化ナトリゥムを加えることによって粉末 注射剤を作製する。 本医薬組成物は必要に応じ、 製剤分野で周知の添加剤、 例 えば、 製剤上許容される塩等を含有することができる。
本医薬組成物の投与量は、 患者の年齢、 症状等によって異なるが、 ヒトを含 む哺乳動物に対し、 ヒ卜化抗体を 0. l ~20mg/kg/日投与する。投与は、 1日 1回(単 回投与または連日投与) または間歇的に 1週間に 1 ~3回、 2、 3週間に 1回静脈注 射により行う。
3 . 抗ヒト IL- 5R a—本鎖抗体の作製
( 1 ) 一本鎖抗体発現ベクターの構築
前記 2 ( 2 ) 、 2 ( 5 ) および 2 ( 6 ) に記載のヒト以外の動物の抗体ある いはヒ卜型 CDR移植抗体の VHおよび VLをコードする cDNAを一本鎖抗体発現用べ クタ一に挿入することによりヒト以外の動物の抗体の一本鎖抗体あるいはヒト 型 CDR移植抗体の一本鎖抗体の発現ベクターを構築することができる。 ここで用 いる一本鎖抗体発現用べクタ一としてはヒト以外の動物の抗体あるいはヒト型
CDR移植抗体の VHおよび VLをコードする cDNAを組込み発現できるものであれば、 いかなるものでも用いることができる。 例えば、 PAGE107 [サイトテクノロジ -(Cytotechnology), 3, 133 (1990)] 、 pAGE103 [ジャーナル .ォブ.バイオケ ミストリ一(J.Biochem. ),巡, 1307 (1987)] 、 pHSG274 [ジーン(Gene), 27 , 22 3(1984)] 、 pKCR [プロシーデイング 'ォブ ·ザ ·ナショナル 'アカデミー .ォ ブ 'サイエンス(Pro Natl. Acad. Sci. U. S. A. ), 78, 1527 (1981)]、 pSGl /3d2-4 [サ イトテクノロジー(Cytoteclmology), , 173(1990)] 等があげられる。 一本鎖抗 体を発現させるための宿主としては、 大腸菌、 酵母、 動物細胞等の中から適切 なものを選択することができるが、 その場合の発現用べクタ一としては、 それ ぞれの宿主に適切なものを選択する必要がある。 また、 適切なシグナルべプチ ドをコードする cDNAを発現用べクタ一に挿入することで一本鎖抗体を細胞外に 分泌させ、 ペリプラズマ領域に輸送させ、 あるいは細胞内に留まらせることが できる。
選択された発現用ベクターに、 VH— L一 VLあるいは VL— L一 VH (Lはペプチド リンカ一) からなる一本鎖抗体をコードする cDNAを適切なプロモーター、 シグ ナルぺプチドの下流に挿入することにより、 目的の一本鎖抗体をコードする cDN Aが挿入された一本鎖抗体発現べクタ一を構築することができる。
一本鎖抗体をコードする cDMは、 VHをコードする cDNAと VLをコードする cDNA とを、 両端に適当な制限酵素の認識配列を有するペプチドリンカ一をコードす る合成 DNAを用いて連結することにより得ることができる。 リンカーべプチ ドは、 その付加が VH、 VLの抗原への結合に対して妨害しないように最適化する ことが重要で、 例えば Pantolianoらにより示されたもの [バイオケミストリ一 (Biochemistry) 、 30, 10117(1991)] あるいはそれを改変したものを用いるこ とができる。
( 2 )一本鎖抗体の発現および活性評価
前記 3 ( 1 )で構築した一本鎖抗体発現べクターをエレクト口ポレーシヨン法 [特開平 2-257891、 サイトテクノロジー(Cytotechnology), 3.133 (1990)] 等の 方法により適切な宿主細胞へ導入することにより、 目的の一本鎖抗体を生産す る形質転換株を取得することができる。 発現ベクターの導入後、 培養上清等に 含まれる一本鎖抗体の活性は前記 1 ( 5 ) に記載の方法等により測定すること ができる。
本発明の一本鎖抗体の回収および精製は公知の技術を組み合わせることによ り達成することができる。 例えば、 一本鎖抗体が培地中に分泌されるならば、 限外濾過により濃縮することができ、 次いで抗原ァフィ二ティークロマ卜グラ フィーもしくはイオン交換クロマトグラフィーまたはゲル璩過を実行すること により達成することができる。 また、 宿主細胞のペリプラズマ領域へと輸送さ れるならば、 その細胞に浸透圧ショックを与え、 限外璩過により濃縮すること ができ、 次いで抗原ァフィ二ティ一クロマトグラフィーもしくはイオン交換ク ロマ卜グラフィ一またはゲル濾過を実行することにより達成することができ る。 不溶性であり、 かつ顆粒 (インクル一ジョン ·ボディー) として存在して いる一本鎖抗体は、 細胞の溶解、 顆粒を単離するための遠心と洗浄を繰り返し、 例えばグァニジン一塩酸による可溶化、 および再度一本鎖抗体の活性を有する 構造へと導く操作、 それに続く活性分子の精製によって達成することができる。 そして、 精製された一本鎖抗体の活性は前記 1 ( 5 ) に記載の方法等により 測定することができる。
( 3 ) 一本鎖抗体の使用方法
本発明の一本鎖抗体はヒト【L-5R a鎖と特異的に結合し、 IL- 5の生物活性を阻 害することができる。 このため、 本発明により提供される一本鎖抗体は IL-5に より分化、 増殖が制御されている好酸球の機能を阻害することが期待される。 従って、 好酸球が病態の形成に関与している疾患においてその治療等に有用で あると考えられる。 本発明の一本鎖抗体は単独でまたは少なくとも 1種以上の製 剤上許容される補助剤と共に用いることができる。 例えば、 一本鎖抗体を、 生 理食塩水やグルコース、 ラク卜ース、 マンニトール等の水溶液に溶解して適当 な医薬組成物とする。 または、 一本鎖抗体を常法に従って凍結乾燥し、 これに 塩化ナ卜リゥムを加えることによつて粉末注射剤を作製する。 本医薬組成物は 必要に応じ、 製剤分野で周知の添加剤、 例えば、 製剤上許容される塩等を含有 することができる。
本医薬組成物の投与量は、 患者の年齢、 症状等によって異なるが、 ヒトを含 む哺乳動物に対し、一本鎖抗体を 0. l〜20mg/kg/日投与する。投与は、 1日 1回(単 回投与または連日投与) または間歇的に 1週間に 1〜3回、 2、 3週間に 1回静脈注 射により行う。
4. 抗ヒト lL-5Raジスルフイ ド安定化抗体の作製
(1)ジスルフィ ド安定化抗体の作製
ジスルフィ ド安定化抗体は、 ヒト以外の動物の抗体の VHおよび VLをコードす る cDNAあるいはヒト型 CDR移植抗体の VHおよび VLをコ一ドする cDNAのそれぞれ の適切な位置の 1アミノ酸残基に相当する DNA配列をシスティン残基に相当する DNA配列に改変し、 発現および精製したのち、 ジスルフイ ド結合を形成させるこ とで作製することができる。 アミノ酸残基のシスティン残基への改変は前記 2 (5) の PCRを用いた変異導入法により行うことができる。
得られた改変 VHおよび改変 VLをコードする cDNAを適切な発現用べクタ一に挿 入することによりジスルフイ ド安定化抗体 H鎖発現べクターおよびジスルフィ ド安定化抗体 L鎖発現べクタ一を構築することができる。 ここで用いるジスルフ ィド安定化抗体発現用ベクターとしては改変 VHおよび改変 VLをコードする cDNA を組込み発現できるものであれば、 いかなるものでも用いることができる。 例 えば、 PAGE107 [サイトテクノロジ一(Cytotechnology), 3^133(1990)] 、 pAGE 103 [ジャーナル.ォブ.バイオケミストリ一(J. Biochem.),l U307 (1987)]、 PHSG274 [ジーン(Gene) 223(1984)] 、 pKCR [プロシーデイング ·ォブ. ザ ·ナショナル ·アカデミー ·ォブ ·サイエンス(Proc. Natl. Acad. Sci. ), 78, 15 27 (1981)] 、 pSGl i3d2-4 [サイトテクノロジ一(Cytotechnology) 173(1990)] 等があげられる。 ジスルフィ ド安定化抗体を形成させるためにジスルフィ ド安 定化抗体 L鎖発現ベクターおよびジスルフィド安定化抗体 H鎖発現べクタ一を発 現させるための宿主としては、 大腸菌、 酵母、 動物細胞等の中から適切なもの を選択することができるが、 その場合の発現用ベクターとしては、 それぞれの 宿主に適切なものを選択する必要がある。 また、 適切なシグナルペプチドをコ ードする cDNAを発現用ベクターに挿入することでジスルフィ ド安定化抗体を細 胞外に分泌させ、 ペリプラズマ領域に輸送させ、 あるいは細胞内に留まらせる ことができる。
( 2 ) ジスルフイド安定化抗体の発現、 活性評価
前記 4 ( 1 ) で構築されたジスルフイド安定化抗体 H鎖発現べクタ一あるいは ジスルフィド安定化抗体 L鎖発現べクタ一をエレクトロボレ一シヨン法 [特開平 2 - 257891、 サイ卜テクノロジー(Cy t o techno l ogy) , 133 (1990) ] 等の方法によ り宿主細胞へ導入することにより、 目的のジスルフィ ド安定化抗体 H鎖あるいは ジスルフィド安定化抗体 L鎖を生産する形質転換株を取得することができる。 発 現ベクターの導入後、 培養上清等に含まれるジスルフィ ド安定化抗体 H鎖あるい はジスルフイ ド安定化抗体 L鎖の発現は前記 1 ( 5 ) に記載の方法等により確認 することができる。
ジスルフィ ド安定化抗体 H鎖あるいはジスルフィド安定化抗体 L鎖の回収およ び精製は公知の技術を組み合わせることにより達成することができる。 例えば、 ジスルフィ ド安定化抗体 H鎖あるいはジスルフィド安定化抗体 L鎖が培地中に分 泌されるならば、 限外濾過により濃縮することができ、 次いで各種クロマトグ ラフィーあるいはゲル濾過を実行することにより達成することができる。 また、 宿主細胞のペリプラズマ領域へと輸送されるならば、 その細胞に浸透圧ショッ クを与え、 限外濾過により濃縮することができ、 次いで各種クロマ卜グラフィ 一あるいはゲル濾過を実行することにより達成することができる。 不溶性であ り、 かつ顆粒 (インクルージョン ·ボディー) として存在しているジスルフィ ド安定化抗体 H鎖あるいはジスルフイ ド安定化抗体 L鎖は、 細胞の溶解、 顆粒を 単離するための遠心と洗浄の繰り返し、 例えばグァニジン-塩酸による可溶化 後、 各種クロマトグラフィーあるいはゲル濾過を実行することにより達成する ことができる。
そして、 精製されたジスルフィド安定化抗体 H鎖とジスルフィ ド安定化抗体 L 鎖を混合し、 活性を有する構造へと導く操作 [refolding操作, モレキュラー - ィムノロジ一 (Molecular Immunology) , 32; 249(1995)] によりジスルフイド結 合を形成させた後、 抗原ァフィ二ティ一クロマトグラフィーもしくはイオン交 換クロマトグラフィーまたはゲルろ過により活性を有するジスルフィ ド安定化 抗体を精製することができる。 ジスルフイド安定化抗体の活性は前記 1 (5) に記載の方法等により測定することができる。
(3) ジスルフイ ド安定化抗体の使用方法
本発明のジスルフィ ド安定化抗体はヒト IL-5Ra鎖と特異的に結合し、 - 5の 生物活性を阻害することができる。 このため、 本発明により提供されるジスル フィ ド安定化抗体は IL- 5により分化、 増殖が制御されている好酸球の機能を阻 害することが期待される。 従って、 好酸球が病態の形成に関与している疾患に おいてその治療等に有用であると考えられる。 本発明のジスルフィ ド安定化抗 体は単独でまたは少なくとも 1種以上の製剤上許容される補助剤と共に用いる ことができる。 例えば、 一本鎖抗体またはジスルフイド安定化抗体を、 生理食 塩水やグルコース、 ラクト一ス、 マンニ! ^一ル等の水溶液に溶解して適当な医 薬組成物とする。 または、 ジスルフイド安定化抗体を常法に従って凍結乾燥し、 これに塩化ナトリゥムを加えることによって粉末注射剤を作製する。 本医薬組 成物は必要に応じ、 製剤分野で周知の添加剤、 例えば、 製剤上許容される塩等 を含有することができる。
本医薬組成物の投与量は、 患者の年齢、 症状等によって異なるが、 ヒトを含 む哺乳動物に対し、 ジスルフィ ド安定化抗体を 0. l~20mg/kg/日投与する。 投与 は、 1日 1回 (単回投与または連日投与) または間歇的に 1週間に 1〜3回、 1、 3週 間に 1回静脈注射により行う。
5. 抗ヒ卜 IL-5Ra抗体を用いたヒ卜インターロイキン 5受容体 α鎖の検出お よび定量法
( 1) 抗ヒト IL- 5Ra抗体を用いた免疫細胞染色
浮遊細胞についてはそのまま、 付着細胞については卜リブシン EDTAにて細胞 をはがした後、 免疫細胞染色用緩衝液 (1¾BSA 、 0.02¾EDTA 、 0.05¾ アジ化ナ トリウムを含む PBS ) などに懸濁し、 1 X105 〜2 X106個ずつに分注する。 前 記 1 (4)で得られた抗ヒト 1L- 5R αモノクローナル抗体産生ハイプリドーマの 培養上清、 前記 2 (9)で得られた抗ヒ卜1ぃ51 αヒト化抗体形質転換株の培養上 清、 あるいは前記 1 (6)もしくは 2 (9)で得られた精製抗体、 または該精製抗体 を公知の方法 (酵素抗体法:学際企画刊 1985年) でピオチンなどの適当な標 識物質により標識したものを 0.1 〜50/zg/mlの濃度になるように免疫細胞染色 用緩衝液あるいは 10%動物血清を含む免疫細胞染色用緩衝液を用いて希釈した ものを 2O〜5O0 l ずつ分注し、 氷冷下で 30分間反応させる。 前記 1 (4) で得 られたマウス抗ヒト IL- 5R αモノクローナル抗体産生ハイブリド一マの培養上 清、 前記 2 (9)で得られた抗ヒ卜 IL-5R αヒト化抗体形質転換株あるいは前記 1 (6)もしくは前記 2 (9) で得られた精製抗体を反応させた場合、 反応終了後免疫 細胞染色用緩衝液で細胞を洗浄し、 FITCあるいはフィコエリスリンなどの蛍光 色素で標識した抗マウスィムノグロプリン抗体、 抗ラットイムノグロプリン抗 体あるいは抗ヒトイムノグロプリン抗体を 0. 1 ~50 ig/ml程度の濃度を含む免 疫細胞染色用緩衝液を 50~500 (i \ ずつ分注し、 氷冷下で 30分間遮光して反応 させる。 また、 ピオチン標識した該モノクローナル抗体を反応させた場合、 F[ TCあるいはフィコエリスリンなどの蛍光色素で標識したストレプトアビジンを 50-500 l ずつ分注し、 氷冷下で 30分間遮光して反応させる。 FITCあるいは フィコエリスリンなどの蛍光色素で標識した該モノクローナル抗体を反応させ た場合、 該モノクローナル抗体を 0.1 〜50 g/ml程度の濃度を含む免疫細胞染 色用緩衝液を 50~500 l ずつ分注し、 氷冷下で 30分間遮光して反応させる。 いずれの場合も、 反応後はよく免疫細胞染色用緩衝液で洗浄し、 セルソー夕一 により解析する。
(2) 抗ヒト IL- 5R α抗体を用いたヒト IL- 5依存性細胞の増殖抑制試験 得られた抗ヒ卜 IL-5R a抗体の生物活性阻害作用を示すために、 ヒト 1い 5依 存性細胞を用いて、 その細胞増殖に対する影響を検討した。 評価方法としては、 卜リチウム標識チミジンの細胞内への取り込み、 あるいは、 セルカウンティン グキットを用いた発色法などが挙げられる。 ここでは、 本発明で用いた発色法 について述べる。
CTLい 2(h5R)細胞 IX104個を 50 1の正常培地に懸濁して 96ゥエル培養用プレ —卜に分注する。 ここに前記 1 (6)もしくは 2 (9)で得られた 0.01〜50//g/mlの 精製抗体溶液 25 1、 さらに 0.4 〜40ng/ml のヒト IL- 5を含む正常培地を加えて C02インキュベータ一中、 37で、 C02 5¾気流下で 24〜72時間培養する。 その後、 セルカウンティングキット溶液を 10 zlZゥエルで加えてから 37" 、 C025 %気 流下で 4時間培養する。 培養終了後、 450nmの吸光度をマイクロウェルプレー卜 リーダー Emax (モレキュラーデバイス社製) にて測定し、 各抗体の CTLL- 2(h5R) 細胞増殖抑制活性を算出する。
(3) 抗ヒト IL-5Ra抗体によるヒト好酸球の生存抑制
ポリモルフプレップ (polymoi"phprep 、 ニコメッド社製) あるいはパーコー ル (percoll 、 フアルマシア社製) などの市販の血球分離用媒体を用いてヒト 末捎血中より好酸球を含むヒト多形核白血球画分を調製する。 正常培地に懸濁 し、 96、 48あるいは 24ゥエル細胞培養用プレートに、 得られた細胞を 1 X106 〜1 X107個 ウエル分注し、ヒト IL- 5を最終濃度が 0.001 〜10ng/ml となるよ うに加える。 さらに前記 1 (4) で得られた抗ヒト Iい 5R αモノクローナル抗体 産生ハイプリドーマの培養上清あるいは前記 2 (9)で得られた抗ヒト IL- 5R a ヒ卜化抗体産生形質転換株の培養上清、 または前記 1 (6) あるいは 2 (9)で得 られた精製抗体を加え C02インキュベータ一中、 3T 、 C02 5¾ 気流下で 2 〜5 日 間培養する。 培養終了後、 各ゥエルから細胞標本を作製し、 メイ ·グリユント ワルト ·ギムザ染色法 (染色法のすべて:医歯薬出版株式会社 1988年) など の方法にて染色し、 好酸球の割合を求める。 抗ヒト【L- 5R α抗体非存在下での 好酸球の割合と該抗体存在下での好酸球の割合とを比較することにより、 該モ ノクロ一ナル抗体に IL- 5依存性のヒト好酸球の生存延長に対する抑制活性があ るか否か確認する。
(4) モノクローナル抗体による shIL-5R a定量
前記 1 (6) あるいは 2 (9)で得られた 0.1〜50 g/mlの精製抗体を一次抗 体としてプレートコートし、 前記 1 (1) で得られた 0.1〜10, 000ng/ml の精製 shIL-5R a 、 もしくはヒ卜血清などの検体を反応させる。 プレートをよく洗浄 した後、 さらに第二抗体としてピオチン、 酵素、 化学発光物質あるいは放射線 化合物等で標識した前記 1 (6) あるいは 2 (9)で得られた精製抗体のうち一次 抗体として使用した抗ヒト IL- 5R α抗体とは異なるェピトープを認識する抗ヒ ト IL-5R α抗体を反応させた後、 標識物質に応じた反応を行なう。 精製 SML-5R に対する反応性をもとに検量線を描き、 検体中の shIL- 5R濃度を算出する。
(5) ウエスタンプロッティング法による shIL-5R αの検出
前記 1 (1) で得られた精製 shIL- 5Raを SDSポリアクリルアミド電気泳動 (SD S-PAGE) により分画後、 ポリビニリデンジフルオリド膜 [以下、 PVDF膜と称す (ミリポア社製) ] に転写する。 1~10¾牛血清アルブミン (BSA) を含む PBSに 浸して 4でにてー晚放置してブロッキング後、 0.05¾Tweenを含む PBSにてよく洗 浄する。 該 PVDF膜を前記 1 (5) で得られたハイプリドーマの培養上清あるいは 前記 1 (6) で得られた精製抗体溶液に室温で 2時間浸し、 0.05¾Tweenを含む PB Sにてよく洗浄する。 さらに第二抗体としてピオチン、 酵素、 化学発光物質、 放 射線化合物等で標識した抗マウスィムノグロブリン抗体または抗ラットイムノ グロプリン抗体を含む溶液に該 PVDF膜を室温で 1時間浸し、 0.05 Tweenを含む P BSにてよく洗浄する。 洗浄液をよく除いた後、 第二抗体の標識物質に応じた反 応を行い、 精製 shlL-5Raの分子量に一致する蛋白質と反応するか否かを確認す る。
(6) shIL-5Raの免疫沈降
96ゥエルの ELISA用プラスチックプレートに抗マウスィムノグロブリン抗体 あるいは抗ラットイムノグロブリン抗体を PBSなどで 10〜 1000倍に希釈したも のを 5O〜2O0 1ノウエルずつ分注し、 4でにてー晚あるいは室温にて 2時間以 上放置して吸着させる。 PBSにて該プレートを洗浄後、 1〜 1 0 %の BSAなどを 含む PBSなどを 300 1 ゥエルずつ分注して 4でにてー晚あるいは室温にて 30分以上放置してブロッキングを行う。 PBS にて該プレートを洗浄後、 前記 1 (5) で得られたハイプリドーマの培養上清あるいは前記 1 (6) で得られた 精製抗体溶液 (0· 01〜50 pi g/ml ) を 50~200 n I Zゥエルずつ加え、 4でにて 一晩放置して抗体を吸着させる。 該プレートを洗浄後、 前記 1 ( 1 ) で得られ た sh lL- 5R αを 1¾BSAを含む PBSなどで 0. 1〜 100 g/mlの濃度に希釈したもの を 50〜200 n 1 ウエルずつ分注し、 4ででー晚反応させる。 該プレートを 0. 05¾Tweenを含む PBSなどで洗浄後、 1〜 5倍濃度の SDS- PAGE用サンプルバッ ファーを 50〜200 a 1 /ゥエルずつ分注し、 30分以上室温で振とうする。 必要 に応じ PBSで希釈した後、 該溶液を 1レーン当たり 5〜25 a 1ずつ加えて SDS - PAGEにより分画後、 定法に従い PVDF膜などに転写を行う。 該 PVDF膜を前記 5 ( 5 )に示したような方法でウエスタンプロッティング法を行い、 sh IL-5R αを検 出する。
図 面 の 簡 単 な 説 明
第 1図は、 プラスミド PAGE210 の造成工程を示した図である。
第 2図は、 プラスミド pCAGGS-h5R. 25 制限地図を示した図である。
第 3図は、 プラスミド PAI 234の造成工程を示した図である。
第 4図は、 プラスミド PAI 230の造成工程を示した図である。
第 5図は、 プラスミド PAI 282の造成工程を示した図である。
第 6図は、 プラスミド PAI 283および PA1285の造成工程を示した図である。 第 7図は、 プラスミド PAI 284および PAI 289の造成工程を示した図である。 第 8図は、 プラスミド PAI 294および PAI 295の造成工程を示した図である。 第 9図は、 プラスミド pA【299および PM 301の造成工程を示した図である。 第 10図は、 プラスミド PA1292の造成工程を示した図である。
第 1 1図は、 プラスミド PAI 297の造成工程を示した図である。
第 12図は、 プラスミド pMKexlの造成工程を示した図である。
第 13図は、 プラスミド PAI 263の造成工程を示した図である。
第 14図は、 抗ヒト 1L-5R αモノクローナル抗体 KM1257および KM1259の酵素免 疫測定法におけるヒト IL- 5R ひーヒト免疫グロプリン定常領域融合蛋白に対す る結合反応性を示す。
第 15図は、 プラスミド pBSAの造成工程を示した図である。 第 16図は、 プラスミド pBSAEの造成工程を示した図である。
第 17図は、 プラスミド pBSH- Sの造成工程を示した図である。
第 18図は、 プラスミド pBSK-Hの造成工程を示した図である。
第 19図は、 プラスミド pBSH- SAおよび pBSK-HAの造成工程を示した図である。 第 20図は、 プラスミド pBSH- SAEおよび pBSK-HAEの造成工程を示した図である。 第 21図は、 プラスミド pBSH- SAEEおよび pBSK- HAEEの造成工程を示した図であ る。
第 22図は、 プラスミド pBSK-HAEESalの造成工程を示した図である。
第 23図は、 プラスミド pBSX-Sの造成工程を示した図である。
第 24図は、 プラスミド pBSX- SAの造成工程を示した図である。
第 25図は、 プラスミド pBSSCの造成工程を示した図である。
第 26図は、 プラスミド pBSMoの造成工程を示した図である。
第 27図は、 プラスミド pBSMoSの造成工程を示した図である。
第 28図は、 プラスミド pCh i lgUU Sの造成工程を示した図である。
第 29図は、 プラスミド pMohC /cの造成工程を示した図である。
第 30図は、 プラスミド pBSMoSalの造成工程を示した図である。
第 31図は、 プラスミド pBSMoSalSの造成工程を示した図である。
第 32図は、 プラスミド pBShC r lの造成工程を示した図である。
第 33図は、 プラスミド pMohC r 1の造成工程を示した図である。
第 34図は、 プラスミド PMO T I SPの造成工程を示した図である。
第 35図は、 プラスミド ρΜο κァ I SPの造成工程を示した図である。
第 36図は、 プラスミド PKANTEX93の造成工程を示した図である。
第 37図は、 プラスミド PKANTEX1259Hの造成工程を示した図である。
第 38図は、 プラスミド PKANTEX1259の造成工程を示した図である。
第 39図は、 抗ヒト IL- 5R α鎖ヒト型キメラ抗体 KM1399の SDS- PAGE (4〜1 グラジェン卜ゲルを使用) の電気泳動パターンを示す。 左側が非還元条件、 右 側が還元条件でそれぞれ電気泳動を行った。 左側の M が高分子マーカ一、 1 が KM1399, 右側の Mが低分子マーカー、 1が KM1399の泳動パターンをそれぞれ示 す。
第 40図は、抗ヒ卜 IL- 5Rひ鎖マウス抗体 KM1259と抗ヒ卜 IL- 5R α鎖ヒト型キ メラ抗体 KM1399のヒ卜 IL- 5とヒト IL- 5R α鎖の結合に対する阻害活性を示す。 縦軸は阻害活性、 横軸は抗体濃度をそれぞれ示す。 書が ΚΜ1259、 〇が KM1399の 活性をそれぞれ示す。
第 41図は、 プラスミド PT1259の造成工程を示した図である。
第 42図は、プラスミド PT1259を用いた抗ヒト IL- 5R α鎖ヒ卜型キメラ抗体の 一過性発現による活性評価を示す。 縦軸にヒ卜 - 5とヒト IL- 5Rひ鎖の結合に 対する阻害活性、 横軸に一過性発現培養上清の希釈倍率をそれぞれ示す。
第 43図は、 プラスミド phKM1259HV0の造成工程を示した図である。
第 44図は、 プラスミド phK 1259LV0の造成工程を示した図である。
第 45図は、 プラスミド PKANTEX1259HV0の造成工程を示した図である。
第 46図は、 プラスミド PKANTEX1259HV0LV0の造成工程を示した図である。 第 47図は、抗ヒ卜 IL- 5R α鎖ヒ卜型 CDR移植抗体 ΚΜ8397の SDS-PAGE (4〜15 グラジェントゲルを使用) の電気泳動パターンを示す。 左側が非還元条件、 右 側が還元条件でそれぞれ電気泳動を行った。 Μ が分子量マーカ一、 1 が ΚΜ8397 の泳動パターンをそれぞれ示す。
第 48図は、抗ヒ卜 - 5R α鎖ヒ卜型キメラ抗体 KM1399と抗ヒト IL- 5Rひ鎖ヒ ト型 CDR移植抗体 ΚΜ8397のヒト IL-5Rひ鎖に対する結合活性を示す。 縦軸はヒ 卜 Iい 5R α鎖に対する結合活性、 横軸は抗体濃度をそれぞれ示す。秦が ΚΜ1399、 〇が ΚΜ8397の活性をそれぞれ示す。
第 49図は、 一過性発現培養上清中の各種改変バージョンの抗ヒト IL- 5R α鎖 ヒ卜型 CDR移植抗体のヒ卜 IL-5とヒ卜 IL- 5R α鎖の結合に対する阻害活性を評 価した結果を示す。 縦軸は阻害活性、 横軸は各サンプル名をそれぞれ示す。 キ メラ抗体 KM1399の活性を 100とした時の相対活性値をそれぞれ示す。
第 50図は、 精製した各種改変バージョンの抗ヒト IL- 5R α鎖ヒ卜型 CDR移植 抗体のヒ卜 IL- 5R ひ鎖に対する結合活性を示す。 縦軸はヒト IL-5R α鎖に対す る結合活性、横軸は抗体濃度をそれぞれ示す。上段の ·が ΚΜ1399、〇が HV. 0LV. 0、 画が HV. 2LV. 0、口が HV. OLV. 3、 Aが HV. 3LV. 3、下段の秦が KM1399、〇が HV. ILV. 0、 ■が HV. 3LV. 0、 口が HV. OLV. 4、 ▲が HV. ILV. 4、 △が HV. 2LV. 4、 Xが HV. 3LV. 4 の活性をそれぞれ示す。
第 51図は、 プラスミド pBShC r 4の造成工程を示した図である。
第 52図は、 プラスミド KANTEX1259 r 4および pKANTEX1259HV3LV0 τ 4の造 成工程を示した図である。
第 53図は、ヒ卜抗体 IgG4サブクラスの抗ヒト IL- 5R α鎖ヒト型キメラ抗体抗 ΚΜ7399, ヒト抗体 IgG4サブクラスのヒ卜 IL-5R α鎖ヒト型 CDR移植抗体 ΚΜ9399 の SDS- PAGE (4〜15¾グラジェントゲルを使用) の電気泳動パターンを示す。 左 側が非還元条件、 右側が還元条件でそれぞれ電気泳動を行った。 左側の Mが高 分子マーカ一、 1が K 9399、 2が KM7399、右側の Mが低分子マーカー、 1が KM9399、 2が KM7399の泳動パターンをそれぞれ示す。
第 54図は、 ヒト抗体【gGlサブクラスの抗ヒ卜 IL- 5R ひ鎖ヒ卜型キメラ抗体 K 1399, ヒト抗体 IgG4サブクラスの抗ヒト IL-5R α鎖ヒト型キメラ抗体 ΚΜ7399、 ヒト抗体 IgGlサブクラスの抗ヒ卜 IL-5R α鎖ヒト型 CDR移植抗体 ΚΜ8399、 ヒト 抗体 IgG4サブクラスの抗ヒト IL-5R α鎖ヒ卜型 CDR移植抗体 ΚΜ9399 のヒ卜 IL-5R α鎖に対する結合活性を示す。縦軸はヒト IL- 5R ひ鎖に対する結合活性、 横軸は抗体濃度をそれぞれ示す。 〇が ΚΜ1399、 秦が ΚΜ7399、 口が Μ8399、 画が ΚΜ9399の活性をそれぞれ示す。
第 55図は、抗ヒト IL- 5R ひモノクローナル抗体 KM1257、 KM1259. KM1486, KM1399, ΚΜ7399, ΚΜ8399および ΚΜ9399のヒト IL-5R 遺伝子導入 CTLL- 2細胞との反応性を フローサイトメ一夕一にて解析した結果を示す。
第 56図は、抗ヒト IL-5R αモノク口一ナル抗体 KM1257、 KM1259、 KM1486、 KM1399, ΚΜ7399, ΚΜ8399および ΚΜ9399のヒト - 5R遺伝子導入 CTLL- 2細胞の IL-5依存性 増殖に対する抑制作用を検討した結果を示す。
第 57図は、 抗ヒト IL - 5R ひモノクローナル抗体 KM1259のヒト好酸球との反応 性をフローサイトメ一夕一にて解析した結果を示す。
第 58図は、抗ヒト IL - 5R αモノクローナル抗体 K 1257、 KM1259、 ΚΜ1486、 ΚΜ1399、 KM7399, KM8399および M9399のヒト好酸球生存抑制作用を検討した結果を示す。 第 59図は、 抗ヒト 1L-5R ひモノクローナル抗体 KM1257およびピオチン標識
KM1259による可溶性ヒト IL- 5R α定量系に関して検討した結果を示す。
第 60図は、 抗ヒト【L- 5R αモノクロ一ナル抗体 KM1257、 KM1259および KM1486 を用いたウェスタンプロッティング法による shIL- 5R aの検出を行った結果を 示す。
第 61図は、 抗ヒ卜 IL-5R αモノクローナル抗体 KM1257、 M1259および KM1486 を用いた shIL- 5R aの免疫沈降の結果を示す。
発明を実施するための最良の形態
実施例 1
1 . 抗原の調製
( 1 ) 動物細胞用発現ベクター PAGE210 の構築
動物細胞用発現べクタ一 PAGE207 (特開平 6-46841 ) と pAGE148 (特開平 6 - 205694) を用いて、 動物細胞用発現ベクター PAGE210 の構築を以下のように行 つた。
プラスミ ド PAGE207 あるいは PAGE148 の 3 g を 10mM トリスー塩酸 (pH7. 5) 、 10mM塩化マグネシウム、 50mM塩化ナトリウムおよび 1 ジチオスレ ィトール (以下、 DTT という) からなる緩衝液 30 1に溶解し、 さらに 10単位 の Cl a l、 および Kpnl (いずれも宝酒造社製、 以下、 特別な指示がない限り、 制 限酵素は宝酒造社製) を加えて 37でで 4 時間反応させた。 該反応液をァガロー ス電気泳動にて分画後、 PAGE207 からは SV40の初期プロモーターとェン八ンサ 一 (以下、 P SEという) 、 ハイグロマイシン耐性遣伝子およびアンピシリン (以 下、 Apという)耐性遣伝子を含む 4. 7k の DNA 断片を約 0. 5 g , pAGE148 か らはジヒドロ葉酸還元酵素 (以下、 dhf rという) 遺伝子を含む 4. 3kb の DNA 断 片を約 0. 5 n g 回収した。
このようにして得られた PAGE207 の Cl al- Kpnl 断片 50ng と pAGE148 の Kpnl -Cl al 断片50 とを20 1 の T4DNA リガーゼ緩衝液 [66mM トリスー塩酸 (pH7. 5) 、 6. 6mM塩化マグネシウム、 10mM DTTおよび 0. lmM アデノシン三リン 酸 (以下、 ATP という) からなる緩衝液、 以下同様] に溶解し、 T4DNA リガ一 ゼ (宝酒造社製、 以下同様) 200 単位を加え、 で 16時間結合反応を行った。 このようにして得られた組換えプラスミド DNA を用いて大腸菌 JM109 株を形質 転換し、 第 1図に示したプラスミド PAGE210 を得た。
(2) shIL-5R α発現べクタ一構築を目的とした shlL-5R cDNA のカセット 化
shIL-5R α発現べクタ一構築のため shIL- 5R a cDNA の 5'および 3'非翻訳領 域の改変、 並びに制限酵素認識配列の導入を以下に示す手順に従い PCR法 [マ ニァテイス(Maniatis)ら編集、 モレキュラー ' クローニング(Molecular Cloning) 、 14.2、 Cold Spring Harbor Laboratory 1989年] を用いて行った。 プラスミド pCAGGS- h5R.25 は shIL-5R cDNA が公知のプラスミド pCAGGS [ジーン (Gene), ]08 , 193 (1991)] に第 2図に示すように挿入されたものであ る [ジャーナル 'ォブ'ェクスペリメンタル ·メディシン U. Exp. Med. ). JJ5 , 341 (1992) ] 。 この pCAGGS-h5R.25 の 3 g を 30 1 の 50mM 卜リス一塩酸 (pH7.5) 、 10mM塩化マグネシウム、 lOOmM 塩化ナトリウムおよび ImM DTT から なる緩衝液に加え、 更に 10単位の EcoRI を加えて 37 で 4 時間反応させた。 該反応液をァガロース電気泳動にて分画後、 shIL- 5R a cDNA を含む 1.4kb の DNA 断片を約 0.3 g 回収した。
次に上記で得られた DMA 断片 lng を 50 1 の PCR緩衝液 [50mM塩化力リゥ ム、 lOmM 卜リス—塩酸(pH8.3) 、 1.5mM 塩化マグネシウム、 0.2mM デォキシァ デノシン三リン酸 (以下、 dATP という) 、 0.2mM デォキシグアノシン三リン酸
(以下、 dGTPという) 、 0.2mM デォキシシトシンミリン酸 (以下、 dCTPという) 、 0.2mM デォキシチミジン三リン酸 (以下、 dTTP という) からなる緩衝液] に溶 解し、 50pmolの配列番号 1に示した塩基配列を有する合成 DNA および配列番号 2に示した塩基配列を有する合成 DNA [いずれも自動 DNA 合成機; 380A (アブ ライド ·バイオシステムズ社; Applied Biosystems Co.. Ltd 製) を用いて合 成したもの、 以下同様] 、 さらにベント DNA ポリメラ一ゼ [ニュ一^ f ングラン ド ·バイオラボラトリーズ社 (New England BioLabs. Inc.) 製、 以下同様] 1.6 単位を加えて、 94でで 1 分間、 55でで 2 分間、 72"Cで 3 分間からなる一連の反 応条件下でパーキン ·エルマ一社製 DNAサ一マルサイクラ一を用いて (以下同 様) 30サイクルの PCR 反応を行った。反応終了後、該反応液 10 1 に lOOm ト リス一塩酸(PH7.5) 、 lOOmM 塩化マグネシウム、 500mM 塩化ナトリウムおよび lOmM DTTからなる緩衝液 2 1 、 8 1 の蒸留水、 10単位の Hindi II を加え 37でで 4 時間反応させた後、 該反応液よりエタノール沈殿 [マニアテイス (Maniatis)ら編集、 モレキュラー 'クロ一ニング (Molecular Cloning) 、 E.10、 Cold Spring Harbor Laboratory 1989年〗 により DNA断片を回収し、 20 1 の 20mM 卜リス一塩酸(ρΗ8· 5) 、 10mM塩化マグネシウム、 lOmM塩化カリウムおよび ImMDTT からなる緩衝液に再溶解し、更に 10単位の BamHl を加えて 37でで 4 時 間反応させた。 該反応液をァガロース電気泳動により分画後、 l.Okb の DM 断 片を約 0.3 u g 回収した。
一方プラスミド PUC19 (フアルマシア ·バイオテク社) 3 w g を 10mM トリ スー塩酸(PH7.5) 、 lOm 塩化マグネシウム、 50mM塩化ナトリウムおよび lmM DTT からなる緩衝液 30 μ 1 に溶解し、 Hindlll 10単位を加えて 37でで 4 時間反応 させた後、 該反応液よりエタノール沈殿により DNA断片を回収し、 20m トリス 一塩酸(PH8.5) 、 10mM塩化マグネシウム、 lOmM塩化カリウムおよび lmM DTT か らなる緩衝液 30 1 に再溶解し、更に 10単位の BamHl を加えて 37*Cで 4 時間 反応させた。 該反応液をァガロース電気泳動により分画後、 PUC19 の Hindi 11/BamHI 断片を約 0.5 g 回収した。
PUC19 の HindlH/BamHI 断片 100ng と shIL- 5R cDNA 断片 50ngとを 20 1 の T4DNA リガ一ゼ緩衝液に溶解し、 T4DNA リガーゼ 200 単位を加え、 12でで 16時間結合反応を行った。 このようにして得られた組換えプラスミド DNA を用 いて大腸菌 JM109 株を形質転換し、 第 3図に示したプラスミド PA1234を得た。 (3) ヒト可溶性 α発現ベクターの構築
実施例 1 (1) で得られた PAGE210 の Hindlll- BamH【 断片と 1 (2) で得られた PAI234の shIL-5R cDNA を含む Hindll I-BamHl 断片とを連結することにより sh!L-5R α発現ベクター pAI230の構築を以下のように行った。 PAGE210 の 3 / g を lOm 卜リス—塩酸 (pH7.5) 、 lOm 塩化マグネシウム、 50mM塩化ナトリウムおよび ImM DTT からなる緩衝液 30 1に加え、 更に 10単 位の Hindi II を加えて 37 で 4 時間反応させた。該反応液よりエタノール沈殿 により DNA 断片を回収し、 20mM トリス—塩酸(pH8.5) 、 lOmM塩化マグネシウム、 lOmM塩化カリウムおよび ImM DTT からなる緩衝液 30 n 1 に再溶解し、 更に 10 単位の BamHl を加えて 37 で 4 時間反応させた。該反応液をァガロース電気泳 動により分画後、 9. Okb の DNA 断片を約 0.5 n g回収した。
PAI234の 3 g を lOmM トリスー塩酸(ρΗ7· 5) 、 lOmM塩化マグネシウム、 50m 塩化ナトリウムおよび ImM DTT からなる緩衝液 30 n 1 に加え、 更に 10単位の Hindlll を加えて 37 で 4 時間反応させた。 該反応液よりエタノール沈殿によ り DNA 断片を回収し、 20mM トリスー塩酸(pH8.5) 、 10mM塩化マグネシウム、 lOmM 塩化カリウムおよび ImM DTT からなる緩衝液 30 n 1 に再溶解し、 更に 10単位 の BamHI を加えて 37でで 4 時間反応させた。該反応液をァガロース電気泳動に より分画後、 l.Okb の DNA 断片を約 0.3 μ, g 回収した。
次に PAGE210 の HincHII-BamHI 断片 300ng と pAI234の Hindi I卜 BamH【 断片 50ngとを T4DNA リガーゼ緩衝液 20 1 に溶解し、 T4DNA リガ一ゼ 200 単位を 加え、 12でで 16時間結合反応を行った。 このようにして得られた組換えプラス ミド DNA を用いて大腸菌 〗M109 株を形質転換し、 第 4図に示したプラスミド PAI230を得た。
(4) シグナル配列の改変
s IL-5R ひの動物細胞による効率的な生産を行うため、 shIL-5R αをコード する cDNA に関してそのシグナル配列の改変をシグナル配列の 3'末端側への EcoRV 認識配列の導入、 続いて合成 DNA を用いてヒト成長ホルモン [サイェン ス(Science), 205, 602(1979)]あるいは抗ガングリオシド GD3キメラ抗体 KM871 (特開平 5-304989) のシグナルシークェンスへの改変を以下の手順に従って行 つた。
実施例 1 (2)で得られたプラスミド PAI234 の 3 g を 10mM 卜リス一塩酸 (pH7.5) 、 10m\l塩化マグネシウム、 50mM塩化ナトリウムおよび ImM DTT からな る緩衝液 30 1に加え、更に 10単位の Hind i I I を加えて 37でで 4 時間反応さ せた。 該反応液よりエタノール沈殿により DNA 断片を回収し、 20mMトリス一塩 酸(PH8. 5) 、 10mM塩化マグネシウム、 10mM塩化カリウムおよび lmM DTT からな る緩衝液 30 1に再溶解し、更に 10単位の BamHI を加えて 37 で 4 時間反応 させた。 該反応液をァガロース電気泳動により分画後、 l . Okb の DNA 断片を約 0. 3 g 回収した。
一方プラスミド PUC19 の 3 g を lOmM トリス—塩酸(pH7. 5) 、 lOmM塩化マ グネシゥム、 50mM塩化ナトリウムおよび lmM DTT からなる緩衝液 30 1に溶解 し、 10単位の Hi nc I I を加えて 37でで 4 時間反応させた後、 該反応液よりエタ ノール沈殿により DNA 断片を回収し、 pUC19 の Hinc l l断片を約 0. 5 g 回収 した。
上記で得た DNA 断片約 l ng を PCR緩衝液 50 / 1 に溶解し、 50pmolの配列番 号 2に示した塩基配列を有する合成 DNA および配列番号 3に示した塩基配列を 有する合成 DNA 、 さらにベント DNA ポリメラーゼ 1. 6 単位を加えて、 94でで 1 分間、 48でで 2 分間、 72でで 3 分間からなる一連の反応条件下で 30サイクル の PCR 反応を行った。該反応液をァガロースゲルにて分画後、約 0. 9kb の ML- 5R αの一部をコードする cDNA断片 0. 5 / g を回収し、 そのうち 50ngの DNA と PUC19 の Hinc l l断片 100ng とを T4リガーゼ緩衝液 20 1 に溶解し、 T4DNA リ ガーゼ 200 単位を加え、 12でで 16時間結合反応を行った。 このようにして得ら れた組換えプラスミド DNA を用いて大腸菌 JM109 株を形質転換し、 第 5図に示 したプラスミド PAI 280を得た。得られたプラスミド PAI 280の 3 g を 30 w 1 の l OmM 卜リス一塩酸(pH7. 5) 、 10mM塩化マグネシウム、 50mM塩化ナトリウム および Im DTT からなる緩衝液に加え、更に 10単位の Xba lを加えて 37でで 4 時 間反応させた。 該反応液よりエタノール沈殿により DNA 断片を回収し、 20mM ト リス—塩酸(ρΗ8. 5) 、 l OmM塩化マグネシウム、 10mM塩化カリウムおよび ImM DTT からなる緩衝液 30 1に再溶解し、更に 10単位の BamHI を加えて 37"Cで 4 時 間反応させた。 該反応液をァガロース電気泳動により分画後、 2. 8kb の D 断 片を約 0. 8 g回収した。 一方、 プラスミド pAI 234の 3 g を 10mM トリスー塩酸(pH7. 5) 、 lOm 塩化 マグネシウム、 50mM塩化ナトリウムおよび lmM DTT からなる緩衝液 30 Iに加 え、 更に 10単位の Xba lを加えて 37 で 4 時間反応させた。 該反応液よりエタ ノール沈殿により DNA 断片を回収し、 20mMトリスー塩酸 (pH8. 5) 、 10mM塩化マ グネシゥム、 10mM塩化カリウムおよび lmM DTT からなる緩衝液 30 1に再溶解 し、 更に 10単位の BamHI を加えて 37でで 4 時間反応させた。 該反応液をァガ ロース電気泳動により分画後、 0. 8kb の DNA 断片を約 0. 2 μ. g 回収した。
次に PAI 280の Xba[- BamHI断片 200ng と pAI234の Xbal -BamHI断片 50ngとを T4リガ一ゼ緩衝液 20 u 1 に溶解し、 T4DNA リガーゼ 200 単位を加え、 12でで 16時間結合反応を行った。 このようにして得られた組換えプラスミド DNA を用 いて大腸菌 JM109 株を形質転換し、第 5図に示したプラスミド PAI 282を得た。 この pA【282の 3 g を 50mMトリスー塩酸(pH7. 5) 、 10mM塩化マグネシウム、 l OOmM 塩化ナトリウムおよび lmM DTT からなる緩衝液 30 1 に加え、 更に 10 単位の EcoRV を加えて 37でで 4 時間反応させた。該反応液よりエタノール沈殿 により DNA 断片を回収し、 20mM トリスー塩酸(pH8. 5) 、 l OmM塩化マグネシウム、 10mM塩化カリウムおよび ImM DTT からなる緩衝液 30 1 に再溶解し、 更に 10 単位の BamHI を加えて 37でで 4 時間反応させた。該反応液をァガロース電気泳 動により分画後、 0. 9kb の DNA 断片を約 0. 3 g 回収した。
配列番号 4、 5に示した塩基配列を有する合成 DNA のそれぞれ 1 g を 10 1 の蒸留水に溶解し、 95でで 5 分間加熱した後 30分間かけて室温まで冷却 しアニーリングを行った。実施例 1 (2) で得られた pUC19 の Hi nd Π - BamHI断片 100ng 、 pA 1282の EcoRV- BamHI 断片 50ng、 上記の通りアニーリングを行った配 列番号 4および 5に示した塩基配列を有する合成 DNA50ng とを T4DNA リガ一ゼ 緩衝液 20 1 に溶解し、 さらに T4DNA リガ一ゼ 200 単位を加え、 12 で 16時 間結合反応を行った。 このようにして得られた組換えプラスミド DNA を用いて 大腸菌 JM109 株を形質転換し、 第 6図に示したプラスミド PAI 283を得た。
配列番号 6および 9に示した塩基配列を有する合成 DNA をそれぞれ 1 を 10 1 の蒸留水に溶解し、 95でで 5 分間加熱した後 30分間かけて室温まで冷 却しアニーリングを行った。 該反応液に 500m トリス—塩酸(pH7.6) 、 lOOmM 塩化マグネシウム、 50mM DTT、 ImM EDTAからなる緩衝液 2.5 μ. 1、 10mM ATP溶 液 2.5 ^ L蒸留水 9 β 1 、 さらに T4ポリヌクレオチドキナーゼ(宝酒造社製) 5 単位を加え 37でで 2 時間リン酸化反応を行った。 これとは別に配列番号 7お よび 8に示した塩基配列を有する合成 DN Αをそれぞれ 1 i g を 10 i の蒸 留水に溶解し、 95でで 5 分間加熱した後 30分間かけて室温まで冷却しァニ一リ ングを行った。
PUC19 の Hindlll- BamHl 断片 lOOng 、 pA【282の EcoRV- BamHI 断片 50ng、 上 記のように調製した合成 DNA をそれぞれ 50ngを T4DNA リガーゼ緩衝液 20 1 に溶解し、 T4DNA リガ一ゼ 200 単位を加え、 12でで 16時間結合反応を行った。 このようにして得られた組換えプラスミド DNA を用いて大腸菌 JM109 株を形質 転換し、 第 6図に示したプラスミド ΡΑΙ285を得た。
(5) シグナル配列を改変した sh【L- 5R α発現べクタ一の構築
実施例 1 (1) で得られた PAGE210 の Hindll【- BamHI 断片と実施例 1 (4) で 得られた pA1283あるいは PAI285のヒト可溶性 Iい 5R cDNAを含む Hindi I卜 BamHI 断片とを連結することによりヒト可溶性 IL-5R ひ発現ベクター pAI284お よび PAI289の構築を以下のとおり行った。
PA1283および pAI285の 3 g を 10 卜リス—塩酸(pH7.5) 、10mM塩化マグ ネシゥム、 50mM塩化ナトリウムおよび 1 DTT からなる緩衝液 30 1に加え、 更に 10単位の Hindin を加えて 37でで 4 時間反応させた。 該反応液よりエタ ノール沈殿により DNA断片を回収し、 20mM トリスー塩酸(pH8.5) 、 lOmM塩化 マグネシウム、 lOmM塩化カリウムおよび ImMDTT からなる緩衝液 30 1に再溶 解し、 更に 10単位の BamHI を加えて 37でで 4 時間反応させた。 該反応液をァ ガロース電気泳動により分画後、 l. Okb の DNA 断片をそれぞれ約 0.3 /i g 回収 した。
PAGE210 の Hindi H- BamHI 断片 300ng と p/ 283 あるいは pA1285 の Hindi II- BamHI 断片 50ngとを T4DNA リガーゼ緩衝液 20 / 1 に溶解し、 T4DNA リ ガーゼ 200 単位を加え、 12でで 16時間結合反応を行った。 このようにして得ら れた組換えプラスミド DNA を用いて大腸菌 JM109 株を形質転換し、 第 7図に示 したプラスミド PA1284および PAI 289を得た。
( 6 ) ヒト 1L- 5R αとヒト免疫グロブリン定常領域との融合蛋白の作製 ヒト IL- 5R ひの細胞外領域とヒ卜免疫グロプリン定常領域(以下、 Fcと称す) とが (Gly- Ser-Gly) 4というアミノ酸配列のリンカーを介して結合された融合蛋 白 (以下、 ML- 5R a -Fc と称す) の作製を以下に示す手順に従って行った。 ヒ卜免疫グロブリン定常領域をコードする cDNAはヒト型キメラ抗体 H鎖発現 用べクタ一 pChi lgHB2 (特開平 5- 304989) 上のヒト IgGl定常領域をコードする 部分を用いた。まず、 pChi IgHB2 の約 lng を PCR緩衝液 50 1 に溶解し、 50pmol の配列番号 1 0に示した塩基配列を有する合成 DNA および配列番号 1 1に示し た塩基配列を有する合成 DNA 、 さらにベント DNA ボリメラーゼ 1. 6 単位を加え て、 94でで 1 分間、 48でで 2 分間、 72でで 3 分間からなる一連の反応条件下で 30サイクルの PCR反応を行った。 反応終了後、 該反応液 20 1 に 200mM トリ スー塩酸(PH8. 5) 、 lOOmM塩化マグネシウム、 lOOOmM塩化カリウムおよび l OmM からなる緩衝液 2. 5 し 蒸留水 2. 5 // 1、 10単位の BamHI を加え 37でで 4 時 間させた。反応終了後、該反応液をァガロース電気泳動により分画し、 ヒト IgGl 定常領域をコードする cDNAを含む 0. 7kb の DNA 断片を約 0. 5 p. 回収した。 実施例 1 (4)で得られた PAI 283 の約 lng を PCR緩衝液 50 1 に溶解し、 50pmolの配列番号 1 2に示した塩基配列を有する合成 DNA および配列番号 1 3 に示した塩基配列を有する合成 DNA 、 さらにベント DNA ポリメラーゼ 1. 6 単位 を加えて、 94でで 1 分間、 48でで 2 分間、 72でで 3 分間からなる一連の反応条 件下で 30サイクルの PCR 反応を行った。反応終了後、該反応液 20 I に lOOmM 卜リス一塩酸(ρΗ7· 5) 、 100mM 塩化マグネシウム、 500mM 塩化ナトリウムおよ び lOmM DTTからなる緩衝液 2. 5 w 1、 蒸留水 2. 5 ^ 1、 10単位の Hindi I I を加 え 37でで 4 時間反応させた。 反応終了後、 該反応液をァガロース電気泳動によ り分画し、 該反応液をァガロース電気泳動により分画後、 hIL- 5R ひの細胞外領 域をコードする cDNAを含む 1. Okb の DNA 断片を約 0. 5 g 回収した。
ヒ卜 IgGl定常領域をコードする cDNAを含む 0. 7kb の DNA 断片 50ng、 h IL-5R αの細胞外領域をコードする cDNA を含む DNA 断片 50ng、 pUC19 の Hindi H- BamHI 断片 lOOng を T4DNA リガーゼ緩衝液 20 i 1 に溶解し、 T4DNA リガーゼ 200 単位を加え、 i Cで 16時間結合反応を行った。 このようにして得られた組 換えプラスミド DNA を用いて大腸菌 JM109 株を形質転換し、 第 8図に示したプ ラスミド PAI294を得た。
一方、 実施例 1 (4) で得られた PAI285をテンプレートとして配列番号 1 3お よび 14に示した塩基配列を有する合成 DNA をプライマ一として用いて上記と 同様の条件で PCR 反応を行い、 反応終了後、 該反応液をァガロース電気泳動に より分画し、 該反応液をァガロース電気泳動により分画後、 ヒト IL- 5R αの細 胞外領域をコードする cDNAを含む 1. Ok の DNA断片を約 0.5 β g 回収した。 得られた DNA 断片 50ng、 ヒト IgGl定常領域をコードする cDNAを含む 0.7kb の DNA断片 50ng、 pUC19 の Hindi 11-BamHI 断片 lOOng を T4DNA リガーゼ緩衝液 20 1 に溶解し、 T4DNA リガーゼ 200 単位を加え、 12でで 16時間結合反応を 行った。 このようにして得られた組換えプラスミド DNA を用いて大腸菌 】M109 株を形質転換し、 第 8図に示したプラスミド PAI295を得た。
(7)融合蛋白発現ベクターの構築
実施例 1 (1)で得られた PAGE210 の Hindlll-BamHI 断片と実施例 1 (6)で得ら れた PAI294の hIL- 5R a- Fc をコードする cDNAを含む Hindi II- BamHI 断片とを 連結することにより hIL-5R α-Fc 発現ベクター PA1299の構築を以下のように行 つた。
プラスミド PAI294の 3 g を 10mMトリス—塩酸 (ρΗ7· 5) 、 10mM塩化マグネ シゥム、 50 塩化ナトリウムおよび ImMDTT からなる緩衝液 30 1に加え、 更 に 10単位の HindU 1 を加えて 37でで 4時間反応させた。該反応液よりェ夕ノ ール沈殿により DNA断片を回収し、 20mMトリス—塩酸(pH8.5) 、 lOmM塩化マグ ネシゥム、 ΙΟΟι 塩化カリウムおよび ImMDTT からなる緩衝液 30 μ. 1に再溶解 し、 更に 10単位の BamHI を加えて 37でで 4 時間反応させた。 該反応液をァガ ロース電気泳動により分画後、 ヒト IL-5R ひとヒト免疫グロブリン定常領域の 融合蛋白をコードする cDNAを含む 1.7kb の DM断片を約 0.4 u g 回収した。 PAGE210 の Hindlll-BamHI 断片 lOOng と pAI294の Hindi I卜 BamHI 断片 50ng とを T4DNA リガーゼ緩衝液 20 1 に溶解し、 T4DNA リガ一ゼ 200 単位を加え、 12でで 16時間結合反応を行つた。このようにして得られた組換えプラスミド DNA を用いて大腸菌 JM109 株を形質転換し、第 9図に示したプラスミド PAI299を得 た。
また、 上記と同様にして PAGE210 の Hindi II- BamHI 断片と実施例 1 (6) で得 られた PAI295の hIL- 5R a- Fc をコードする cDNAを含む Hindll I-BamHI 断片と を連結することにより ML- 5R α-Fc 発現ベクター pAI301の構築を行った。
(8) 昆虫細胞による sh【L- 5R ひ発現を行うための組み換えウィルスの作製 昆虫細胞による蛋白質の生産には目的遺伝子を組み込んだ組み換えウィルス の作製が必要であるが、 その作製にはトランスファーベクターと呼ばれる目的 蛋白質をコードする cDNAを特殊なプラスミドに組み込む過程と野生型ウィルス とトランスファ一ベクターを昆虫細胞にコトランスフエクシヨンし、 相同組み 換えにより組み換えウィルスを取得する過程を経る。 以上の過程についてファ 一ミンジェン社製バキュ口ゴールドスター夕一キッ卜 (製品番号 PM- 21001K ) を用いてそのマニュアルに従い以下の手順で行った。
実施例 1 (4) で得られた PM285あるいは実施例 1 (6) で得られた MI294の 3 g を lOmM トリスー塩酸(ρΗ7· 5) 、 10mM塩化マグネシウム、 50mM塩化ナトリ ゥムおよび lmM DTT からなる緩衝液 30 1に加え、 更に 10単位の Hindi 11 を 加えて 37でで 4 時間反応させた。該反応液よりエタノール沈殿により DNA 断片 を回収し、 20 1 の DNA ポリメラーゼ I緩衝液 [5mM トリスー塩酸(pH7.5) 、 ImM 硫酸マグネシウム、 0.01mMDTT、 5 g/ml牛血清アルブミン、 0.08mM dATP 、 0.08mM dGTP 、 0.08mM dCTP 、 0.08mM dTTP からなる緩衝液、 以下同様] に溶 解し、 5 単位の大腸菌 DNA ポリメラ一ゼ Iクレノー断片 (宝酒造社製、 以下同 様) を加え、 22でで 30分間反応させ、 Hindi【I 消化によって生じた 5'突出末端 を平滑末端に変えた。 さらに該反応液をフエノールークロロホルム抽出後、 ェ 夕ノール沈澱を行い、 20mMトリスー塩酸(pH8.5) 、 10mM塩化マグネシウム、 lOOmM 塩化カリウムおよび ImM DTT からなる緩衝液 30 n 1 と 10単位の BamHI を加え て 3TCで 4 時間反応させた。 該反応液をァガロースゲル電気泳動にて分画し、 sh IL-5R αをコードする cDNAを含む約 1. Okb の DNA 断片を約 0. 3 、 ヒト IL-5R αとヒ卜免疫グロブリン定常領域の融合蛋白をコードする cDNA を含む 1. 7kb の DNA断片を約 0. 3 g 回収した。
次にファーミンジェン社製バキュ口ゴールドス夕一夕ーキッ卜に含まれるプ ラスミド PVL1393 の 3 At g を 50mM トリス—塩酸(pH7. 5) 、 10mM塩化マグネシ ゥム、 ΙΟΟι 塩化ナトリウムおよび ImM DTT からなる緩衝液 30 μ 1に加え、 更 に 10単位の EcoRI を加えて 37でで 4 時間反応させた。 該反応液よりエタノー ル沈殿法により DNA 断片を回収し、 20 /X 1 の DNA ポリメラーゼ I緩衝液に溶 解し、 5 単位の大腸菌 DNA ポリメラ一ゼ Iクレノー断片を加え、 22でで 30分間 反応させ、 EcoRI 消化によって生じた 5'突出末端を平滑末端に変えた。 さらに 該反応液をフエノールークロロホルム抽出後、 エタノール沈澱を行い、 50mM ト リス—塩酸(PH7. 5) 、 l OmM塩化マグネシウム、 lOOmM塩化ナトリウムおよび ImM DTT からなる緩衝液 30 μ, 1に加え、更に 10単位の Bgl l l を加えて 37でで 4 時 間反応させた。該反応液をァガロースゲル電気泳動にて分画し、約 9. 6kb の DNA 断片を約 0. 9 μ. g 回収した。
次に上記で得られた PVL1393 の EcoI (平滑末端)一 Bgl 1 1断片 200ηと pA1285 あるいは PAI 294の Hindl l l (平滑末端) 一 BamHI断片 50ngとを T4DNA リガ一 ゼ緩衝液 20 1 に溶解し、 T4DNA リガーゼ 200 単位を加え、 12でで 16時間結 合反応を行った。 このようにして得られた組換えプラスミド DNA を用いて大腸 菌】M109 株を形質転換し、第 10図および第 11図に示したプラスミド pAI 292お よび PA1297を得た。
続く組み換えウィルスの作 は TMN-FHインセクトメディウム (ファーミンジ ェン社製) にて培養した昆虫細胞 Sf 9 (ファーミンジェン社製より入手) に線 状バキュロウィルス DNA [バキュロゴ一ルド'バキュロウィルス DNA (BaculoGol d bacu l ovi rus DNA) 、 ファーミンジェン社製] および作製したトランスファーべ クタ一 DNA をリポフエクチン法にて導入すること [蛋白質核酸酵素、 . 2701 (1992) ] により行い組み換えバキュロウィルスを以下のように作製した。 DAI 292あるいは PAI 297 ( i n g と線状バキュロウィルス DNA の 20ngとを 12 1 の蒸留水に溶解し、 さらにリポフエクチン 6 n 1 と蒸留水 6 1 とを 混和したものを加え室温で 15分間放置した。一方 Sf9 細胞 1 X 106 個を 2ml の Sf900- 1 1培地 [ギブコ(Gibco) 社製] に懸濁し、 直径 35mmの細胞培養用プラス チックシャーレに入れた。 ここに上記のプラスミド DNA 、 線状バキュ口ウィル ス DNA およびリポフエクチン混和溶液全量を加え 27でで 3 日間培養後、組み換 えウィルスを含む培養上清 1ml を採取した。シャーレには新たに Sf900- 1【培地 lml を加え、 さらに 27でで 3 日間培養し組み換えウィルスを含む培養上清をさ らに 1. 5ml 得た。
次に蛋白発現に用いるために得られた組み換えウィルスを以下の手順で増殖 させた。
Sf9 細胞 2 X 107個を 10mlの Sf 900- I I培地に懸濁し、 175cm2フラスコ (グラ イナ一社製) に入れて室温で 1 時間放置して細胞をフラスコに付着させた。 放 置後上清を除き新たに 15ml の TMN- FHィンセクトメディゥムと上記の組み換え ウィルスを含む培養上清のうち lml を加え 27でで 3 日間培養した。培養後上清 を 1. 500 Xgで 10分間遠心分離して細胞を除き、蛋白発現に使用する組み換え ウィルス溶液を得た。
得られた組み換えウィルス溶液についてウィルスの力価を以下の方法で算定 した (ファーミンジェン社製バキュ口ゴールドスターターキット ·マニュアル)。
Sf9 細胞 6 X 106個を 4ml の Sf900- I I培地に懸濁し、 直径 60誦の細胞培養用 プラスチックシャーレに入れ、 室温で 1 時間放置して細胞をシャーレに付着さ せた。次に上清を除き新たに Sf900- I I培地 400 1 と Sf900- I I培地で 10, 000 倍に希釈した上記組み換えウィルス溶液を加え室温で 1 時間放置した後、 培地 を除き 5ml の 1 低融点ァガロース [ァガ一プラーク ·ァガロース(Agarplaque Agarose) , ファーミンジェン社製] を含む培地 [滅菌した lml の 5¾ァガ一ブラ ークプラス ·ァガロース水溶液と 4ml の TMN- FHインセクトメディウムを混和し、 42でに保温したもの] を該シャーレに流し込んだ。 室温で 15分間放置した後、 乾燥を防ぐためビニルテープをシャーレにまき、 密閉可能なプラスチック製容 器に該シャーレを入れ、 27 で 6 日間培養した。 該シャーレに 0.0 二ユート ラルレツドを含む PBSlmlを加えさらに 1 日間培養した後、出現したプラークの 数を数えた。 以上の操作より該組み換えウィルス溶液はいずれも約 1 X107 プ ラークフォ一ミングユニット/ ml (以下、 PFU/ml と表記する) のウィルスを含 んでいることがわかった。
(9) 動物細胞における shIL-5R αあるいは hlL- 5R a- Fc の発現
動物細胞へのプラスミドの導入は、 宮地らの方法に従い、 エレクト口ポレー シヨン法 [サイトテクノロジー(Cytotechnology), 3, 133(1990)] を用いて行つ た。
実施例 1 (5) で得られた PAI289あるいは実施例 1 (7) で得られた pAI301の 4 g を 4 X106個の dhfr遺伝子を欠損した CH0細胞 [プロシ一ディング .ォ ブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイエンス(Proc. Natl. Acad. Sci. ), 77 , 4216(1980) ] へ導入後、 40mlの RPMI 1640- FCS (10) [FCS を 10% 、 7.5 % NaHC03を 1/40量、 200mM L —グルタミン溶液 (ギブコ社製) を 3 ¾; 、 ぺニシリ ン ·ストレプトマイシン溶液(ギブコ社製、 5000units/mlぺニシリンおよび 5000 g/mlストレプトマイシン含有)を 0.5%含む RPMI 1640培地(日水製薬社製)] に懸濁し、 96ウェルマイクロタイタ一プレートに 200 1ノウエルずつ分注し た。 C02 インキュベーターで 37で、 24時間培養した後、 ハイグロマイシン (ギ ブコ社製) を 0.5mg/mlになるように添加して 1 ~2 週間培養した。 形質転換株 のコロニーが出現し、 コンフルェントになったゥエルより細胞を回収し、 0.5mg/mlハイグロマイシン、 50πΜメソ卜レキセート (以下、 ΜΤΧ と称す) を含 む RPMI1640- FCS(10)培地に 1 ~2 X105 細胞/ ml になるように懸濁し、 24ゥェ ルプレー卜に 2ml/ゥエル分注した。 C02 インキュベーターで 37 で 1 〜2週 間培養して、 50nM MTX耐性クローンを誘導した。
上記で得られた 50nMMTX耐性クローンについて、 0.5mg/mlハイグロマイシン、 200nM MTX を含む RPMI1640- FCS(IO)培地に 1 ~2 X105 細胞/ ml になるように 懸濁し、 24ゥエルプレートに 2mlノウエル分注した。 C02インキュベーターで 37で で 1 〜2 週間培養して、 200nM MTX耐性クローンを誘導した。 さらに、 上記で得られた 200nM MTX 耐性クローンについて、 0. 5mg/mlハイグ ロマイシン、 500nM MTX を含む RPMI 1640-FCS (10)培地に 1 〜2 X 1 05 細胞/ ml に なるように懸濁し、 24ゥエルプレートに 2mlノウエル分注した。 C02 インキュべ 一夕一で 37でで 1 ~ 2週間培養して、 500nM MTX耐性クローンを誘導した。 上記形質転換株を CH0細胞用無血清培地 CHO- S-SFMI I 培地 (ギブコ社製) に 1 〜2 X 1 05 細胞/ ml になるように懸濁し、 225cm2フラスコ (グライナ一社製) に 100ml ずつ分注した。 C02 インキュベーターで、 37で、 5 〜7 日間培養し、 コンフルェントになった時点で培養液を回収した。
h IL-5R αの培養上清からの精製は以下のようにして行った。 ρΑΙ 289による形 質転換株の培養液 1 リットルに塩化ナトリウム 29. 2g 、 1M 卜リス一塩酸 (pH7. 4) 20ml を加えた後、 1N 水酸化ナトリウム溶液を用いて該溶液の pH を PH7. 4 に調整した。 カラムにコンカナパリン A—セファロース (フアルマシア 社製) ゲル約 10ml を充填し、 20mM 卜リス一塩酸(pH7. 4) 、 0. 5M塩化ナトリウ ムからなる緩衝液 50ralで 0. 5ml/分の流速で洗浄した。 洗浄後、 上記のように調 製した sh IL- 5R αを含む液を 0. 5ml/分の流速でコンカナバリン A—セファロ一 スカラムに通塔した。 さらに 20mM 卜リス—塩酸(pH7. 4) 、 0. 5M塩化ナトリウム からなる緩衝液 80ml で 0. 5ml/分の流速で洗浄した後、 20mM トリスー塩酸 (pH7. 4) 、 0. 5M塩化ナトリウムからなる緩衝液 15ml、 0. 5M α—メチルマンノサ イド、 20mM トリスー塩酸 (PH7. 4) 、 0. 5M塩化ナトリウムからなる緩衝液 15ml を用いてひ—メチルマンノサイドの濃度を 0〜0. 5M まで直線的に変化させるこ とによりコンカナバリン A—セファロースに吸着した蛋白質の溶出を行うと共 に lml ずつ溶出液を分画した (フラクション 1 〜30) 。 さらに、 1M α—メチ ルマンノサイド、 20mMトリス—塩酸(ρΗ7. 4) 、 0. 5Μ塩化ナトリウムからなる緩 衝液 20mlを通塔し、 2ml ずつ分画した (フラクション 31〜40) 。 各フラクショ ンに含まれる蛋白濃度を蛋白濃度測定キット (バイオラッド社製) を用いて測 定し、 蛋白濃度の高いフラクション 10〜40までを回収した。 該蛋白溶液をアミ コン社製セントリコンー 30を用いて約 10倍に濃縮し、透析用チューブに封入し て PBS に対して透析を行った。 以上のようにして、 精製 sh IL- 5R a (蛋白質濃 度 4mg/ml、 3.5ml) を 得た。
一方、 hIL- 5R α-Fc は以下のようにして得た。 カラムにプロテイン A—セフ ァロース 'ゲル約 5ml を充填し、 50mlの PBS で洗浄を行った。 洗浄後、 上記の PAI301による形質転換株の培養液約 1 リッ卜ルを 0.5ml/分の流速でプロテイン A—セファロースカラムに通塔した。さらに 50mlの PBS でカラムを洗浄後、 20ml の 0.1Mクェン酸緩衝液 (pH3.0) を通塔しプロテイン A—セファロースに吸着し た蛋白質の溶出を行うと共に 1ml ずつ溶出液を分画した。 各フラクションには 2M 卜リス—塩酸(pH9.0) 0.15ml を加えて pHを調整した。 各フラクションに含 まれる蛋白濃度を蛋白濃度測定キット (バイオラッド社製) を用いて測定し、 蛋白濃度の高いフラクションを回収した。 該蛋白溶液を透析用チューブに封入 して PBS に対して透析を行った。 以上のようにして精製 hIL- 5R a- Fc (蛋白質 濃度 1.8mg/mL 5.5ml ) を得た。
(10) 昆虫細胞による shIL- 5R αあるいは hlL-5R a- Fc の発現
ファーミンジェン社製バキュロゴ一ルドスタータ一キッ卜に添付されている マニュアルに従い以下の手順により shIL-5R αおよび h - 5R a- Fc の発現を行 つた。
培養液からの shIL-5R aおよび hIL-5R a- Fc の回収はコンカナパリン A—セ ファロースとジェチルアミノエチル(DEAE)—セファロース、 あるいはプロティ ン A—セファロ一ス (いずれもフアルマシア 'バイオテク社製) を用いてそれ ぞれ行った。
shIL- 5R aは以下のようにして得た。 Sf9 細胞 6 X106 個を 225cm2フラスコ (グライナ一社製) に 10¾FCS を含むグレイスズ ·インセクト · メディウム (Grace's Insect Medium 、 ギブコ社製) 45mlに懸濁し、 27 で 3 〜4 日間培 養した。 培養上清を除き新たに を含むグレイスズ ·インセクト ·メディ ゥム 30mlと実施例 1の 1 (8) で得られたトランスファーベクター pAI 292由来の 組み換えウィルスを約 1 xl07PFU/ml の濃度で含む溶液を lml 加えた。 さらに 27でで 1日間培養した後、 上清を除き新たに Sf900- II 培地 45ml を加え 2〜 3 日間培養した。培養終了後、 培養上请を回収し 1.500 Xg で 10分間遠心分離を 行い上清を得た。 該培養液に最終濃度 0. 5 Mとなるように塩化ナトリウムを加 え、 さらに 1/50容量の 1M トリスー塩酸(pH7. 4) を加えた後、 該溶液の pHを 1N 水酸化ナトリウム溶液を用いて PH7. 4 に調整した。
カラムにコンカナパリン A—セファロ一ス ·ゲル約 10mlを充填し、 20mM トリ ス—塩酸(PH7. 4) 、 0. 5M塩化ナトリウムからなる緩衝液 50ml で 0. 5ml/分の流 速で洗浄した。洗浄後、上記のように調整した shIL-5R αを含む培養液 500ml を 0. 5ml/分の流速でコンカナバリン A—セファロースカラムに通塔した。 さらに 20m 卜リス一塩酸 (pH7. 4) 、0. 5M塩化ナトリウムからなる緩衝液 80mlで 0. 5ml/ 分の流速で洗浄した後、 1M α —メチルマンノサイド、 20mM トリスー塩酸 (pH7. 4) 、 0. 5M塩化ナトリウムからなる緩衝液 60mlを通塔しコンカナパリン A 一セファロースに吸着した蛋白質の溶出を行うと共に 2ml ずつ溶出液を分画し た。 各フラクションに含まれる蛋白濃度を蛋白濃度測定キット (パイォラッド 社製) を用いて測定し、 蛋白濃度の高いフラクションを 44ml回収し、 20mM トリ スー塩酸(PH7. 4) に対して透析した。 さらに 900ml の上記のように調整した s IL-5R αを含む培養液より同様の操作により、 蛋白濃度の高いフラクション を 40ml回収し、 20mM 卜リス一塩酸(pH7. 4) に対して透析した。
透析後、 上記の該蛋白溶液を合わせて 10mlのジェチルアミノエチル (DEAE)— セファロース ·ゲルを充填したカラムに通塔し、 蛋白質を吸着させた。 カラム からの sh IL- 5R αの溶出は塩化ナトリウム濃度を 0〜0. 5Μまで直線的に変化さ せることにより行い、 shIL- 5R αを高濃度に含むフラクションを 4ml 回収した。 該蛋白溶液を透析用チューブに封入して PBS に対して透析を行った。 以上のよ うにして、 精製 shIL-5R ひ (蛋白質濃度 400 g/ml , 4. 5ml) を得た。
一方、 h IL-5R -Fc は以下のようにして得た。 Sf9 細胞 6 X 106個を 225cm2 フラスコ (グライナ一社製) に 10¾FCSを含むグレイスズ ·インセク卜 .メディ ゥム (Grace' s Insec t Med ium 、 ギブコ社製) 45mlに懸濁し、 27でで 3 〜4 日 間培養した。 培養上清を除き新たに 10¾FCSを含むグレイスズ ·インセク卜 ·メ ディウム 30mlと実施例 1の 1 (8) で得られたトランスファーベクター pA【297由 来の組み換えウィルスを約 1 X 107PFU/ml の濃度で含む溶液を lml 加えた。 さ らに 27でで 1 日間培養した後、上请を除き新たに Sf900- II培地 45mlを加え 2 〜 3 日間培養した。 培養終了後、 培養上清を回収し 1, 500 X で 10分間遠心分離 を行い上清を得た。
カラムにプロテイン A—セファロース ·ゲル約 5m〖 を充填し、 50mlの PBS で 洗浄を行った。 洗浄後上記の hlL- 5R α-Fc を含む培養液 450ml を 0.5ml/分の 流速でプロテイン A—セファロースカラムに通塔した。さらに 50mlの PBS で力 ラムを洗浄後、 20mlの 0.1Mクェン酸緩衝液 (pH3.0) を通塔しプロティン A—セ ファロ一スに吸着した蛋白質の溶出を行うと共に lml ずつ溶出液を分画した。 各フラクションには 0.15mlの 2M トリス—塩酸(ρΗ9· 0) を加えて ρΗを調整した。 各フラクションに含まれる蛋白濃度をバイオラッド社製蛋白濃度測定キッ卜を 用いて測定し、 蛋白濃度の高いフラクションを回収した。 該蛋白溶液をアミコ ン社製セントリコン— 30を用いて約 3 倍に濃縮し、 透析用チューブに封入し て PBS に対して透析を行った。 以上のようにして、 精製 Μい 5R a- Fc (蛋白質 濃度 0.4mg/ml、 1.8ml ) を得た。
(11) 大腸菌による shIL- 5R α部分断片の発現
大腸菌による shIL- 5R α部分断片の発現は、 以下に示す大腸菌用発現べクタ -pMKexl に shIL-5R α断片をコードする cDNA を含む DNA 断片を挿入して PAI263を造成し、 PAI263を大腸菌に導入することにより行った。
プラスミド pGHA2(特開昭 60- 221091 )の を 50mM卜リス—塩酸(pH7.5) 、 10mM塩化マグネシウム、 100mM 塩化ナトリウムおよび lmM DTT からなる緩衝液 30 I 1に加え、 更に 10単位の EcoRl を加えて 37でで 4 時間反応させた。 該反 応液よりエタノール沈殿により DNA断片を回収し、 lOmMトリスー塩酸 (pH7.5) 、 10mM塩化マグネシウム、 50mM塩化ナトリウムおよび lmMDTT からなる緩衝液 30 \ と 10単位の Clalを加えて 37でで 4 時間反応させた。 該反応液をァガロー スゲル電気泳動にて分画し、 プロモー夕一領域を含む pGHA2 の EcoRI/Clal断片 を約 0.3 a g 回収した。
プラスミド pTerm2(特開平 2-227075)の 3 u g を 50mMトリスー塩酸(pH7.5) 、 lOmM塩化マグネシウム、 100mM 塩化ナトリウムおよび lmM DTT からなる緩衝液 30 n 1に加え、 更に 10単位の EcoRI を加えて 37 で 4 時間反応させた。 該反 応液よりエタノール沈殿により DNA 断片を回収し、 ΙΟιΜトリスー塩酸 (pH8.4) 、 lOmM塩化マグネシウム、 lOOmM 塩化ナトリウムおよび ImM DTT からなる緩衝液 30 /2 Iと 10単位の Nsilを加えて 37でで 4 時間反応させた。該反応液をァガロ ースゲル電気泳動にて分画し、を含む pTerm2の EcoRI/Nsil断片を約 0.8 z g回 収した。
PGHA2 の EcoRI/Clal断片の 50ng、 pTerm2の EcoRI/Nsi I断片の lOOng と配列 番号 15に示した合成 DNA の lOOng とを 20 i l の T4DNA リガーゼ緩衝液に溶解 し、 T4DNA リガーゼ 200 単位を加え、 12 で 16時間結合反応を行った。 このよ うにして得られた組換えプラスミド DNA を用いて大腸菌 JM109 株を形質転換し、 第 12図に示したプラスミド pMKexlを得た。
一方、第 3図 で得られた PAI234の 3 μ. g を 50mMトリスー塩酸(pH7.5) 、10m 塩化マグネシウム、 lOOmM塩化ナトリウムおよび ImM DTT からなる緩衝液 30 1に加え、 更に 10単位の Pstl を加えて 37でで 4 時間反応させた。 該反応液よ りエタノール沈殿により DM断片を回収し、 20 1 の T4DNA ポリメラ一ゼ I 緩衝液 [33mM トリス―齚酸(pH8.0) 、 66m 酢酸カリウム、 10mM齚酸マグネシゥ ム、 0.5mM DTT 、 0.01¾BSAからなる緩衝液] に溶解し、 5 単位の T4DNAポリメ ラーゼ I (宝酒造社製) を加え、 12でで 15分間反応させ、 Pstl消化によって生 じた 5'突出末端を平滑末端に変えた。 さらに該反応液をフエノールークロロホ ルム抽出後、 エタノール沈澱を行い、 20mM トリスー塩酸 (pH8.5) 、 lOm 塩化マ グネシゥム、 lOOmM塩化カリウムおよび ImM DTT からなる緩衝液 30 1 と 10 単位の BamHI を加えて 37 で 4 時間反応させた。該反応液をァガロースゲル電 気泳動にて分画し、 sh - 5R α断片をコードする cDNAを含む約 0.7kb の DNA断 片を約 0.3 fi g 回収した。
第 1 2図で得られた大腸菌用発現ベクター pMKexlの を 20mMトリス一塩 酸(PH8.5) 、 lOm 塩化マグネシウム、 lOOmM 塩化カリウムおよび ImM DTT から なる緩衝液 30 1に溶解し、 10単位の BamHI を加えて 37でで 4 時間反応させ た。 該反応液よりエタノール沈殿により DNA 断片を回収し、 50mM トリス—塩酸 (pH7.5) 、 lOmM塩化マグネシウム、 lOOmM 塩化ナトリウムおよび ImM DTT から なる緩衝液 30 pi 1に溶解し、 更に 10単位の EcoRV を加えて 37でで 4 時間反応 させた。 該反応液よりエタノール沈殿により DNA 断片を約 1.5 n g 回収した。 以上のようにして得られた shIL- 5R α断片をコードする cDNA の 50ng と pMKexlの EcoRV/BamHI 断片の lOOng とを 20 ^ 1 の T4DNA リガーゼ緩衝液に溶 解し、 T4DNA リガ一ゼ 200 単位を加え、 12でで 16時間結合反応を行った。 この ようにして得られた組換えプラスミド DNA を用いて大腸菌 JM109 株を形質転換 し、 第 1 3図に示したプラスミド PAI263を得た。
上記のプラスミ ド PAI263 を大腸菌に導入し(Molecular Cloning. A Laboratory Manual, 2nd Edition published by Cold Spring Harbor Laboratory Press, 1989)、 200 g/mlのアンピシリンを含む LB培地 400ml中で、 3ΓΌ4 時 間培養後、 0.5mM の IPTGを添加し、 その後さらに 37で2 時間培養した。 培養液 400ml を 3, 000 X で 15分間遠心分離し、 大腸菌を含む沈殿を 100ml の緩衝 液 I [lOmM トリス—塩酸( PH8.0 ) 、 lmM EDTA 、 150mM 塩化ナトリウムから なる緩衝液] に懸濁した。 再び遠心分離後、 沈殿を 7ml の緩衝液 I で懸濁し、 超音波処理により菌体を破壊する。 これを 10, 000Xgで 30分間遠心分離し、 そ の沈殿を 500 1SDS 一ポリアクリルアミドゲル電気泳動用サンプルバッファー
[6mM トリス—塩酸(ρΗ6· 8) 、 2¾SDS 、 10¾ グリセロール、 5¾ 2—メルカプ卜 エタノールからなる緩衝液] に溶解し、 ボリアクリルアミドゲル電気泳動によ り分画し、 分子量約 27kDの精製 sML- 5R α断片を得た。
(12) ヒ卜 IL- 5R αを発現した細胞の細胞膜画分の調製
hIL-5 α遺伝子を導入した CTLL- 2細胞 [ジャーナル ·ォブ ·エキスペリメン タル ' メディシン(J. Exp. Med.), Π7 , 1523 (1993)] 、 あるいは対照として の CTLL- 2細胞 [ATCC TIB 214] からの膜成分の調製を以下のようにして行った。 該細胞を遠心分離 (1, 200rpm、 5分) し、 PBS にて 2 回洗浄後、 細胞破砕用 緩衝液 [20mM HEPES (pH7.4) 、 lmM EDTA, 0.5m PMSF、 250mM シユークロース からなる緩衝液] に懸濁しホモゲナイザ一を用いて破砕した。 破砕後 5.500ι·ριη で 15分間遠心分離して沈殿を除き、 さらに 35, OOOrpm で遠心分離して細胞膜画 分を沈殿として回収した。
2. 動物の免疫と抗体産生細胞の調製
実施例 1の 1(9)、 1(10) 、 1(11) あるいは 1(12) より得られた各種抗原 50 をそれぞれアルミニウムゲル 2mgおよび百日咳ワクチン (千葉県血清研究 所製) 1 X109細胞とともに 5 週令雌 BALB/cマウスあるいは雌 SDラットに投与 し、 2 週間後より 50 g の蛋白質を 1 週間に 1 回、 計 4 回投与した。 眼底静 脈叢あるいは尾静脈より採血し、 その血清抗体価を実施例 1の 3に示す酵素免 疫測定法で調べ、 十分な抗体価を示したマウスあるいはラットから最終免疫 3 日後に脾臓を摘出した。 この時、 実施例 1の 1(12) で得られた細胞膜画分を抗 原としてマウス 13匹、 ラット 5 匹を免疫したが、 抗体価の強い上昇は認められ なかった。 また、 実施例 1の 1 (9)で得られた shIL- 5R αを免疫したラット 5 匹 あるいは実施例 1の 1 (10)で得られた shlい 5R αを免疫したラット 1 0匹にお いても抗体価の十分な上昇は認められなかった。
脾臓を MEM 培地 (日水製薬社製) 中で細断し、 ピンセッ卜でほぐし、 遠心分 離 (l, 200rpm、 5 分) した後、 上清を捨て、 トリスー塩化アンモニゥム緩衝液 (pH7.65) で 1 〜2 分間処理し赤血球を除去し、 MEM 培地で 3 回洗浄し、 細胞 融合に用いた。
3. 酵素免疫測定法
実施例 1の 1(9)あるいは 1(10) で得られた SML-5R ひを免疫したマウスある いはラッ卜に由来する抗血清およびハイプリドーマの培養上清の測定は、 抗原 として、実施例 1の 1 (10) の昆虫細胞培養上清より得られた hIL-5R a- Fc を用 いて以下に示す 2種類の方法にしたがって行った。
(A) 96ゥエルの EIA用プレート (グライナ一社製) に、 PBS で 1 g/ml の濃度に希釈した hlL- 5R α-Fc および対照抗原として共通のヒト免疫グロプリ ン定常領域を有する抗 GD3 キメラ抗体 KM871 を 50 1/ゥエルで分注し、 4 X: で一晩放置して吸着させた。 洗浄後、 1 %牛血清アルブミン(BSA) を含む PBS ( BSA-PBS)を 100 1 / ゥエル加え、 室温 1 時間反応させて残っている活性 基をブロックした。 1¾BSA- PBS を捨て、 被免疫マウスあるいは被免疫ラット抗 血清およびハイプリドーマの培養上清を 50 1/ゥエルで分注し 2 時間反応さ せた。 tween-PBS で洗浄後、 ペルォキシダーゼ標識ゥサギ抗マウスィムノグロ ブリンあるいは抗ラットイムノグロブリン (DAK0社製) を 50 w 1/ゥエルで加 えて室温、 1 時間反応させ、 tween-PBS で洗浄後 ABTS基質液 [2, 2'アジノビス (3 -ェチルベンゾチアゾリン -6-スルホン酸) 二アンモニゥムの 550mg を 0. 1M クェン酸緩衝液 (PH4. 2) 1Lに溶解し、 使用直前に過酸化水素 1 1/ml を加え た溶液] を用いて発色させ 0D415nm の吸光度を測定した (NJ2001 ; 日本イン夕 ーメッド社製) 。
( B) さらに、 1L- 5 に対する中和活性を有するモノクローナル抗体をより高 い確率で選択する目的で、 ピオチン標識したヒト IL- 5と実施例 1の 1 (10)の昆 虫細胞培養上清より得られた sh【L- 5R α -Fc を利用し、 IL- 5の受容体への結合 阻害活性を指標としてスクリーニングを以下の手順で行った。 なお、 ピオチン 標識するのに用いた用いたヒ卜 【L- 5は、 ジャーナル ·ォブ ·ィムノロジカル · メソッズ [ Journal of Immunological Methods, ^25, 233 (1989) ] に記載された 方法により調製した。
ヒト IL- 5 のビォチン標識は、 ピアース社のピオチン標識用試薬 (Biot in - LC-Hydraz ide) に添付されているプロトコールに従い以下の手順で行った。 始 めに PBSに溶解した 1. 6mg/mlのヒト 【L- 5を標識用緩衝液(100mM齚酸ナトリウ ム、 0. 02¾NaN3、 pH5. 5) で平衡化した PD10カラム (フアルマシア社製) に通塔 して塩交換を行い、 蛋白質濃度の高い画分を 1ml 回収した。 該ヒト IL-5 溶液 0. 5mlに 30mMメタ過ヨウ素酸を含む標識用緩衝液 lmlを加え、遮光して 30分間 室温にて反応させた。 反応終了後、 標識用緩衝液で平衡化した PD10カラムに通 塔して未反応のメタ過ヨウ素酸を除き、 蛋白質濃度の高い画分を 1. 5ml 回収し た。 ここに前述した 5mMのピオチン標識用試薬を含む標識用緩衝液 20 a 1を加 え、 さらに室温にて 1時間反応させた。 反応終了後、 反応停止液 (0. 1M卜リス、 PH7. 5) を 50 1加えた後、 0. 05¾!NaN3を含む PBSにて平衡化した PD10カラムに 通塔して塩交換を行うとともに、 未反応の試薬を取り除いた。 得られたピオチ ン標識ヒト IL-5は 4 にて保存した。 実施例 1 の 1 (10)の昆虫細胞培養上清より得られた sh IL- 5R α -Fcを PBSで 5 g/ml の濃度に希釈し、 96ゥエルの EIA用プレート (グライナ一社製) に 50 H 1/ゥエルで分注し、 4でで一晩放置して吸着させた。 PBS にて洗浄後、 1 %牛 血清アルブミン(BSA) を含む PBS ( 1¾BSA-PBS) を 100 1 /ゥエル加え、 室温で 1時間反応させて残っている活性基をブロックした。さらに tween- PBSにて洗浄 後、 被免疫マウスあるいは被免疫ラット抗血清およびハイプリ ドーマの培養上 清と前述したピオチン標識ヒ卜 IL- 5をそれぞれ 50 1/ゥエルずつ分注し、 4で 一晩反応させた。 翌日 tween-PBSで洗浄後、 1¾BSA- PBSにて 4000倍に希釈した ペルォキシダーゼ標識アビジン D (ニチレイ社製) を 50 1/ゥエルで加えて室 温で 1時間反応させ、 tween- PBSで洗浄後、 ABTS基質液を 50 μ. 1/ゥエル加えて 発色させ、 0D415nmの吸光度を測定した。
また、実施例 1の 1 (1 1 ) で得られた 1UL-5R α断片を免疫したマウスあるいは ラッ卜に由来する抗血清および八イブリドーマの培養上清の測定に関しては、 抗原として実施例 1の 1 (1 1) の大腸菌により得られた ML- 5R α断片を用いた。 上記と同様の方法により大腸菌により生産した sh lL- 5R αおよび対照抗原とし て大腸菌の菌体蛋白を吸着させたプレー卜を作製し、 ハイプリドーマの培養上 清および被免疫マウスあるいは被免疫ラット抗血清の反応性を検討した。
さらに、実施例 1の 1 (12) で得られた h【L- 5R αを発現した細胞の膜画分を免 疫したマウスあるいはラットに由来する抗血清およびハイプリ ドーマの培養上 清の測定に関しては、 抗原として実施例 1の 1 (12) で得られた細胞膜画分を用 いた。 上記と同様の方法により IL- 5R α発現した細胞の膜画分および対照細胞 の膜画分を吸着させたプレートを作製し、 八イブリドーマの培養上清および被 免疫マウスあるいは被免疫ラット抗血清の反応性を検討した。
4 . マウス骨髄腫細胞の調製
8 -ァザグァニン耐性マウス骨髄腫細胞株 Ρ3- 1)1 を正常培地で培養し、 細胞融 合時に 2 X 107 以上の細胞を確保し、 細胞融合に親株として供した。
5 . ハイプリドーマの作製
実施例 1の 2 で得られたマウス脾細胞あるいはラッ卜脾細胞と実施例 1の 4 で得られた骨髄腫細胞とを 10:1になるよう混合し、遠心分離(l,200rpm、 δ 分) した後、 上清を捨て、 沈澱した細胞群をよくほぐした後、 攙拌しながら、 37で で、ポリエチレングライコ一ルー 1000(PEG-1000)2g、 MEM 培地 2ml および DMSO 0.7ml の混液 0.2 ~lml/108 マウス脾細胞を加え、 1 〜2 分間毎に MEM 培地 1 〜2ml を数回加えた後、 MEM 培地を加えて全量が 50mlになるようにした。 遠心 分離 (900rpm、 5 分) 後、 上清を捨て、 ゆるやかに細胞をほぐした後、 メスピ ペットによる吸込み、 吸出しでゆるやかに細胞を HAT 培地 100ml 中に懸镯した。 この懸濁液を 96ゥエル培養用プレー卜に 100 1/ゥエルずつ分注し、 5¾C02 インキュベータ一中、 37でで 10〜14日間 C02 5¾下で培養した。 この培養上清を 実施例 1の 3 に記載した酵素免疫測定法で調べ、 昆虫細胞培養上清より調製し た hIL-5R a- Fc 、あるいは大腸菌により生産した shlL-5R ひに特異的に反応す るゥエルを選び、 さらに HT培地と正常培地に換え、 2 回クローニングを繰り返 して、 抗ヒト IL- 5R αモノクローナル抗体を生産するハイブリド一マ株を確立 した。
実施例 1の 1 (11) で得られた hlL-5R α断片を免疫したマウス 6 匹、 あるい はラット 8 匹から得られたハイブリドーマ約 4000クローンをスクリーニングし た結果、 抗 h - 5R aモノクローナル抗体を得、 これを KM1074 と名付けたが、 IL-5R a鎖に対する反応性は、 後述する抗ヒト 1ぃ51 a鎖モノクローナル抗体 KM1257, KM1259に比較して極めて弱いものであった。
一方、 実施例 1の 1 (9)で得られた shIL-5R aあるいは実施例 1の 1 (10)を 免疫したマウス 15あるいは 20匹の中から高い抗体価を示した個体を 1 2ある いは 6匹選択し、 ハイブリドーマを作製した。 10000クローン以上のハイプリド 一マをスクリーニングし、 後述する実施例 3の 1に示した方法において hIL- 5R a発現細胞に対する特異的な反応性が認められる 8 1クローンの抗 hIL- 5R aモ ノクローナル抗体産生ハイプリドーマを確立した。 この中で後述する実施例 3 の 1に示す免疫細胞染色法において最も強い反応性を示したモノクローナル抗 体は、 KM1257であった。 ハイプリドーマ KM1257は FERM BP- 5133として、 平成 7年 6月 1 3日付けで工業技術院微生物工業技術研究所 (日本国茨城県つくば 巿東 1丁目 1番 3号、 以下、 所在住所は同様) に寄託された。 また、 この 8 1 クローンの中で後述する実施例 3の 2で示した IL- 5の生物活性の強い阻害作用 を示したものは 6クローンのみであり、 その中でも最も強い阻害活性を示した モノクローナル抗体は、 KM1259および KM1486であった。ハイブリドーマ KM1259 は FERM BP- 5134 として、 平成 7年 6月 1 3日付けで、 ハイブリドーマ KM1486 は FERM BP- 5651として、 平成 8年 9月 3日付けで、 それぞれ工業技術院微生物 工業技術研究所に寄託された。
モノクローナル抗体 KM 1 257、 KM1259および K 1486の反応性を第 14図に示す。 また、 抗体クラスはサブクラスタイピングキッ卜を用いた酵素免疫測定法を行 つた。 その結果 KM1257、 KM1259および KM1486の抗体クラスは、 すべて IgGlで あつ 7こ。
6 . モノクローナル抗体の精製
プリスタン処理した 8 週令ヌード雌マウス (Bal b/c) に 5で得られたハイブ リドーマ株を 5 〜20 X 106 細胞ノ匹それぞれ腹腔内に注射した。 10~21 日後に、 八イブリドーマは腹水癌化した。腹水のたまったマウスから、 腹水を採取(1 〜 8 ml/ 匹) し、 遠心分離 (3, 000rpm、 5 分) して固形分を除去した後力プリル 酸 沈 殿 法 ( Ant i bod i es - A Laboratory Manua l, Co ld Spr ing Harbor Laboratory. 1988 ) により精製し、 精製モノクローナル抗体とした。 実施例 2.抗ヒト Iい 5R a鎖ヒ卜化抗体の製造
1. タンデムカセット型のヒ卜化抗体発現用ベクター PKANTEX93の構築
ヒト化抗体の VH及び VLをコードする cDNAを、 それぞれヒト抗体 C r lをコード する cDNA及びヒ卜抗体 C / をコードする cDNAの上流に挿入し、 ヒト抗体 IgGl, κ 型のヒ卜化抗体を動物細胞で発現させるためのタンデムカセット型のヒト化抗 体発現用ベクター、 ΡΚΑΝΤΕΧ93を特開平 2- 257891に記載のプラスミド pSElUKl SEd 卜 3を基にして以下のようにして構築した。 構築したヒト化抗体発現用ベクター は、 ヒト型キメラ抗体及びヒ卜型 CDR移植抗体の動物細胞での発現に使用した。
( 1 ) ラビット; 3 -グロビン遺伝子スプライシング、 ポリ Aシグナルに存在す る制限酵素 Apa I及び EcoRI部位の改変
ヒト化抗体発現用ベクターにヒ卜型キメラ抗体あるいはヒト型 CDR移植抗体 の V領域を制限酵素 Notl-Apal断片 (VH) 及び EcoIU- Spl I断片 (YL) でカセット 式に挿入してヒト型キメラ抗体発現べクタ一あるいはヒ卜型 CDR移植抗体ヒト 化抗体発現ベクターを構築可能とするために、 プラスミド pSElUKlSEd卜 3のラビ ッ卜 グロビン遺伝子スプライシング、 ポリ Αシグナルに存在する制限酵素 Apa I及び Ec oR I部位の改変を以下のようにして行なった。
プラスミド pBluescript SK (-) (ストラタジーン社製) の 3 /gを 10mMトリス- 塩酸 (pH7.5) 、 10mM塩化マグネシウムおよび lniMDTTからなる緩衝液 lOwlに加 え、更に 10単位の制限酵素 Apa I (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をエタノール沈殿し、 DNA Blunting Kit (宝酒造社製) を用い、 Apal 消化によって生じた 3'突出末端を平滑末端に変えた後、 DNA Ligation Kit (宝 酒造社製) を用いて連結した。 このようにして得られた組換えプラスミド DNA溶 液を用いて大腸菌 HB101株を形質転換し、 第 15図に示したプラスミド pBSAを得 た。
さらに得られたプラスミド pBSAの 3 gを 50mMトリス-塩酸 (pH7.5) 、 lOm塩 化マグネシウム、 lOOm塩化ナ卜リゥムおよび Im DTTからなる緩衝液 10 1に加 え、 更に 10単位の制限酵素 EcoRl (宝酒造社製) を加えて 37でで 1時間反応させ た。 該反応液をエタノール沈殿し、 DNA Blunting Kit (宝酒造社製) を用い、 E coRI消化によって生じた 5'突出末端を平滑末端に変えた後、 DNA Ligation Kit
(宝酒造社製) を用いて連結した。 このようにして得られた組換えプラスミド!) NA溶液を用いて大腸菌 HB101株を形質転換し、 第 16図に示したプラスミド pBSAE を得た。
次に、 上記で得られたプラスミド pBSAEの 3/ gを 10m 卜リス-塩酸 (pH7.5) 、 10mM塩化マグネシウム、 50mM塩化ナトリゥムおよび ImMDTTからなる緩衝液 1 に加え、 更に 10単位の制限酵素 Hindi Π (宝酒造社製) を加えて 37でで 1時間反 応させた。 該反応液をエタノール沈殿し、 lOmMトリス-塩酸 (pH7.5) 、 lOmM塩 化マグネシウムおよび lmMDTTからなる緩衝液 20μ1に溶解し、 ずつに分け、 一つには更に 10単位の制限酵素 SacII (東洋紡績社製) を加え、 もう一つには更 に 10単位の制限酵素 Kpnl (宝酒造社製) を加えて各々 37 で 1時間反応させた。 両反応液をァガロースゲル電気泳動にて分画し、 各々約 2, 96kbの Hindi【卜 SacII 断片と約 2.96kbの KpiU-Hindlll断片を約 0.3 g回収した。
次に、 プラスミド pSElUKlSEdl-3の を lOmMトリス-塩酸 (pH7.5) 、 lOm塩 化マグネシウムおよび lm DTTからなる緩衝液 ΙΟίχΙに加え、 更に 10単位の制限酵 素 Sac 11 (東洋紡績社製) と 10単位の制限酵素 Κρηί (ま酒造社製) を加えて 37で で 1時間反応させた。該反応液をエタノール沈殿し、 10 1の10 トリス-塩酸(ρ Η7.5) 、 10mM塩化マグネシウム、 50mM塩化ナトリウムおよび ImMDTTからなる緩 衝液 10 1に溶解し、 更に 10単位の制限酵素 Hindi II (宝酒造社製) を加えて 37 で 1時間反応させた。 該反応液をァガロースゲル電気泳動にて分画し、 約 2.42kb の Hindi II- SacII断片と約 1.98kbの Kpnl- Hindi 11断片を各々約 0. 回収した。 次に、 上記で得られた pSElUKlSE(H- 3の Hindlll- SacII断片 0.1 gと pBSAEの Hi ndlll- SacII断片 0.1 gを全量 20 1の滅菌水に溶解し、 Ready- To- Go T4 DNA Li gase (フアルマシア バイオテク社製) を用いて連結した。 このようにして得 られた組換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 17図 に示したプラスミド pBSH- Sを得た。 また、 上記で得られた pSElUKlSEcH-3の Kpnl - HinHII断片 0.1 /zgと pBSAEの Kpn卜 Hindi II断片 0.1 gを全量 20 1の滅菌水に 溶解し、 Ready- To-Go T4 DNA Ligase (フアルマシア バイオテク社製) を用い て連結した。 このようにして得られた組換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 18図に示したプラスミド pBSK-Hを得た。
次に、 上記で得られたプラスミド pBSH- Sおよび pBSK- Hの 3 gを各々 10mMトリ ス-塩酸 (pH7.5) 、 10 塩化マグネシゥムぉょび1 017からなる緩衝液10 1に 加え、 更に 10単位の制限酵素 Apal (宝酒造社製) を加えて 37でで 1時間反応させ た。 両反応液をエタノール沈殿し、 各々 DNA Blunting Kit (宝酒造社製) を用 い、 Apal消化によって生じた 3'突出末端を平滑末端に変えた後、 DNA Ligation Kit (宝酒造社製) を用いて連結した。 このようにして得られた各々の組換えプ ラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 19図に示したプラス ミド pBSH-SAおよび pBSK- HAを得た。
次に、 上記で得られたプラスミド pBSH- SAおよび pBSK- HAの を各々 50mM卜 リス-塩酸 (PH7.5) 、 10mM塩化マグネシウム、 lOOmM塩化ナトリウムおよび lmMD TTからなる緩衝液 10 1に加え、 更に 1単位の制限酵素 EcoRI (宝酒造社製) を加 えて 37 で 10分間反応させ、 部分消化した。両反応液をエタノール沈殿し、 各々 DNA Blunting Kit (宝酒造社製) を用い、 EcoRI消化によって生じた 5'突出末端 を平滑末端に変えた後、 ァガロースゲル電気泳動にて分画し、 各々約 5.38kbの 断片と約 4.94kbの断片を約 0, 5//g回収した。 回収した各々の断片 0.1 igを全量 2 O i Iの滅菌水に溶解し、 Ready- To- Go T4 DNA Ligase (フアルマシア バイオテ ク社製) を用いて連結した。 このようにして得られた各々の組換えプラスミド D NA溶液を用いて大腸菌 HB101株を形質転換し、 第 20図に示したプラスミド pBSH - S AEおよび pBSK-HAEを得た。
次に、 上記で得られたプラスミド pBSH- SAEおよび pBSK- HAEの を各々 50m 卜リス-塩酸 (pH7.5) 、 lOmM塩化マグネシウム、 lOOmM塩化ナトリウムおよび lm MDTTからなる緩衝液 10 1に加え、 更に 10単位の制限酵素 EcoRI (宝酒造社製) を加えて 37 で 1時間反応させた。 両反応液をエタノール沈殿し、 各々 DNA Blun ting Kit (宝酒造社製) を用い、 EcoRI消化によって生じた 5'突出末端を平滑末 端に変えた後、 DNA Ligation Kit (宝酒造社製) を用いて連結した。 このよう にして得られた各々の組換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質 転換し、 第 21図に示したプラスミド pBSH- SAEEおよび pBSK- HAEEを得た。 得られ た各プラスミドの を用い、 AutoRead Sequencing Kit (フアルマシア ノ、' ィォテク社製) に添付の処方に従って反応後、 A. L. F. DNA Sequencer (フアル マシア バイオテク社製) により電気泳動し、 塩基配列を決定した結果、 上記 改変により Apaし EcoRI部位ともに消失したことを確認した。
(2) ラビット 3-グロビン遺伝子スプライシング、 ポリ Aシグナルおよび SV40 初期遺伝子ポリ Aシグナルの下流への制限酵素 Sail部位の導入
ヒ卜化抗体発現用べクタ一の抗体 H鎖、 L鎖の発現プロモーターを任意のプロ モータ一に変換可能とするために、 プラスミド pSElUKlSEcH-3のラビット /3-グ 口ビン遺伝子スプライシング、 ポリ Aシグナルおよび SV40初期遺伝子ポリ Aシグ ナルの下流への制限酵素 Sal I部位の導入を以下のようにして行つた。
実施例 2の 1 (1)で得られたプラスミド pBSK- HAEEの 3 // gを 10mM卜リス-塩酸 (p H7. 5) 、 10mM塩化マグネシウムおよび lmMDTTからなる緩衝液 10 / 1に加え、 更に 10単位の制限酵素 Nae【 (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応 液をエタノール沈殿し、 50mMトリス-塩酸 (pH9. 0) 、 1 塩化マグネシウムから なる緩衝液 20 1に溶解し、 更に 1単位のアルカリフォスファタ一ゼ (E. co l i C7 5、 宝酒造社製) を加えて 37でで 1時間反応させ、 5'末端を脱リン酸化した。 更 に該反応液をフエノール-クロ口ホルム抽出後、 エタノール沈殿を行ない、 10mM トリス-塩酸 (pH8. 0) 、 lm エチレンジァミン四酢酸ニナトリウムからなる緩衝 液 (以下、 TE緩衝液と称す) 20 1に溶解した。 該反応液の と 0. のリン 酸化 Sa i lリンカ一 (宝酒造社製) を全量が 20 1となるように滅菌水に加え、 Re ady-To-Go T4 DNA L igase (フアルマシア バイオテク社製)を用いて連結した。 このようにして得られた組換えプラスミド DM溶液を用いて大腸菌 HB101株を形 質転換し、 第 22図に示したプラスミド pBSK- HAEESalを得た。 得られたプラスミ ドの 10 gを用い、 AutoRead Sequenc i ng Ki t (フアルマシア バイオテク社製) に添付の処方に従って反応後、 A. L. F. DNA Sequencer (フアルマシア バイオ テク社製) により電気泳動し、 塩基配列を決定した結果、 ラビット /3 -グロビン 遺伝子スプライシング、 ポリ Aシグナルおよび SV40初期遺伝子ポリ Aシグナルの 下流に一箇所の制限酵素 Sai l部位が導入されたことを確認した。
( 3 ) ヘルぺスシンプレックスウィルスチミジンキナ一ゼ (以下 HSVtkと表記) 遺伝子のポリ Aシグナルに存在する制限酵素 Apal部位の改変
プラスミド pSElUKl SEd卜 3の Tn5 カナマイシンフォスホトランスフェラーゼ 遺伝子下流の HSVtk遺伝子ポリ Αシグナルに存在する制限酵素 Apal部位の改変を 以下のようにして行った。
実施例 2の 1 (1 )で得られたプラスミド pBSAの を 10mM卜リス-塩酸 (pH7. 5) 、 l OmM塩化マグネシウムおよび ImMDTTからなる緩衝液 10 /x lに加え、 更に 10 単位の制限酵素 Sac l【 (東洋紡績社製) を加えて 37でで 1時間反応させた。 該反 応液をエタノール沈殿し、 10 1の 50mMトリス-塩酸 (pH7.5) 、 lOOmM塩化ナ卜 リウム、 lOm塩化マグネシウムおよび ImMDTTからなる緩衝液に加え、 更に 10単 位の制限酵素 Xhol (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液を ァガロースゲル電気泳動にて分画し、 約 2.96kbの 5&(:1卜 1101断片を約1 8回収 した。
次に、 プラスミド pSElUKlSEdl - 3の 5 gを lO lの lOmMトリス-塩酸 (pH7.5) 、 1 Om塩化マグネシウムおよび 1 mMDTTからなる緩衝液に加え、 更に 10単位の制限 酵素 Sac Π (東洋紡績社製) を加えて 37 で 1時間反応させた。 該反応液をエタ ノール沈殿し、 50mM卜リス-塩酸 (pH7.5) 、 lOOmM塩化ナトリウム、 lOmM塩化マ グネシゥムおよび ImMDTTからなる緩衝液 IO に加え、 更に 10単位の制限酵素 Xh ol (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をァガロースゲル 電気泳動にて分画し、 約 4.25kbの Sac【I-XhoI断片を約 回収した。
次に、 上記で得られた pBSAの SacII-XhoI断片 0. 1 xgと pSElUKlSEcH- 3の Sacll - Xhol断片を全量 20 / lの滅菌水に加え、 Ready- To- Go T4 DNA Ligase (フアルマ シァ バイオテク社製) を用いて連結した。 このようにして得られた組換えプ ラスミド DISA溶液を用いて大腸菌 HB101株を形質転換し、 第 23図に示したプラス ミド pBSX- Sを得た。
次に、 上記で得られたプラスミド pBSX-Sの 3 gを 10mMトリス-塩酸 (pH7.5) 、 10mM塩化マグネシウムおよび ImMDTTからなる緩衝液 10μ 1に加え、 更に 10単位の 制限酵素 Apal (宝酒造社製) を加えて 37 で 1時間反応させた。 該反応液をエタ ノール沈殿し、 DNA Blum ing Kit (宝酒造社製) を用い、 Apal消化によって生 じた 3'突出末端を平滑末端に変えた後、 DNA Ligation Kit (宝酒造社製) を用 いて連結した。 このようにして得られた組換えプラスミド DNA溶液を用いて大腸 菌 HB101株を形質転換し、 第 24図に示したプラスミド pBSX- SAを得た。 得られた プラスミドの 10 gを用い、 AutoRead Sequencing Kit (フアルマシア バイオ テク社製) に添付の処方に従って反応後、 A.し F. DNA Sequencer (フアルマシ ァ バイオテク社製) により電気泳動し、 塩基配列を決定した結果、 HSVtk遺伝 子ポリ Aシグナルの制限酵素 Apa ^位が消失したことを確認した。 (4) ヒト化抗体 L鎖発現ユニットの構築
モロニ一マウス白血病ウィルスの末端反復配列のプロモータ一/ェンハンサ 一の下流にヒト抗体 C をコードする cDNAが存在し、 かつヒ卜型キメラ抗体ある いはヒト型 CDR移植抗体の VLをコード cDNAをカセット式に挿入可能なヒ卜化抗 体 L鎖発現ュニットを有するプラスミド pMohC κを以下のようにして構築した。 プラスミド pBluescript SK (-) (ストラタジーン社製) の を lOm 卜リス - 塩酸 (pH7.5) 、 10mM塩化マグネシウムおよび ImMDTTからなる緩衝液 10/ 1に加 え、 更に 10単位の制限酵素 Sacl (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をエタノール沈殿し、 10mMトリス-塩酸 (pH7.5) 、 50mM塩化ナ卜リウ ム、 10mM塩化マグネシウムおよび lmMDTTからなる緩衝液 10 i 1に加え、 更に 10単 位の制限酵素 Clal (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液を エタノール沈殿し、 DNA Bluniing Kit (宝酒造社製) を用い、 Saclおよび Clal 消化によって生じた突出末端を平滑末端に変えた後、 ァガロースゲル電気泳動 にて分画し、 約 2.96kbの DNA断片を約 1/ig回収した。 回収した DNA断片 0.1 を 全量 20 Iの滅菌水に加え、 Ready-To- Go T4 DNA Ligase (フアルマシア パイ ォテク社製) を用いて連結した。 このようにして得られた組換えプラスミド DNA 溶液を用いて大腸菌 HB101株を形質転換し、 第 25図に示したプラスミド pBSSCを 得た。
次に、 上記で得られたプラスミド pBSSCの 3 gを 10mMトリス-塩酸 (pH7.5) 、 lOm塩化マグネシウムおよび lmMDTTからなる緩衝液 10 1に加え、 更に 10単位の 制限酵素 Kpnl (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をエタ ノール沈殿し、 50mM卜リス-塩酸 (pH7.5) 、 lOOmM塩化ナトリウム、 lOm塩化マ グネシゥムおよび 1 m DTTからなる緩衝液 10 w 1に溶解し、 更に 10単位の制限酵素 Xhol (宝酒造社製) を加えて 37 で 1時間反応させた。 該反応液をァガロースゲ ル電気泳動にて分画し、 約 2.96kbの Kpn卜 Xhol断片を約 1 xg回収した。
次に、 特開平 6- 205694に記載のプラスミド PAGE147の 5 gを 10 卜リス-塩酸 (pH7.5) 、 10mM塩化マグネシウムおよび ImMDTTからなる緩衝液 10/x 1に加え、 更に 10単位の制限酵素 Kpnl (宝酒造社製) を加えて 37でで 1時間反応させた。 該 反応液をエタノール沈殿し、 50πιΜ卜リス-塩酸 (pH7.5) 、 lOOmM塩化ナトリウム、 1 OmM塩化マグネシゥムおよび 1 mMDTTからなる緩衝液 10 1に溶解し、 更に 10単位 の制限酵素 Xhol (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をァ ガロースゲル電気泳動にて分画し、 モロニ一マウス白血病ウィルスの末端反復 配列のプロモーター/ェンハンサーを含む約 0.66kbの Kpn卜 Xhol断片を約 0.
回収した。
次に、 上記で得られた pBSSCの Kpnl- Xhol断片 0.1 igと pAGE147の Kpnl-Xhol断 片 0. l gを全量 20//1の滅菌水に溶解し、 Ready- To- Go T4 DNA Ligase (フアル マシア バイオテク社製) を用いて連結した。 このようにして得られた組換え プラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 26図に示したブラ スミド pBSMoを得た。
次に、 上記で得られたプラスミド pBSMoの 3 gを 10mM卜リス-塩酸 (pH7.5) 、 1 OmM塩化マグネシゥムおよび 1 mMDTTからなる緩衝液 10 1に加え、 更に 10単位の 制限酵素 Kpnl (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をエタ ノール沈殿し、 lOmMトリス-塩酸 (pH7.5) 、 50mM塩ィヒナトリウム、 lOmM塩化マ グネシゥムおよび lmMDTTからなる緩衝液 10^1に溶解し、 更に 10単位の制限酵素 Hindlll (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をァガロー スゲル電気泳動にて分画し、 約 3.62kbの Kpn【- HiruUII断片を約 回収した。 次に、 配列番号 16、 17に記載の塩基配列を有する合成 DNAを自動 DNA合成機 (3 80A、 アプライド バイオシステムズ社製) を用いて合成した。 得られた合成 DN Aの 0.3 /igずつを 15 ilの滅菌水に加え、 65でで 5分間加熱した。 該反応液を室温 にて 30分間放置した後、 10倍緩衝液 [500m トリス-塩酸 (pH7.6) 、 lOOmM塩化マ グネシゥム、 50mMDTT]2 1と lOmMATP 2 1を加え、 更に 10単位の T4 ポリヌクレ ォチドキナーゼ (宝酒造社製) を加えて 37^:で 30分間反応させ、 5'末端をリン 酸化した。 上記で得られたプラスミド pBSMo由来の KpiU-HindlH断片 (3.66kb) 0. l gとリン酸化合成 DNA0.05 gを全量 20 1の滅菌水に加え、 Ready- To - Go T4
DNA Ligase (フアルマシア バイオテク社製) を用いて連結した。 このように して得られた組換えプラスミド DNA溶液を用いて大腸菌 HB 101株を形質転換し、 第 27図に示したプラスミド pBSMoSを得た。 得られたプラスミドの lO igを用い、 AutoRead Sequencing Kit (フアルマシア バイオテク社製) に添付の処方に従 つて反応後、 A.L.F. DNA Sequencer (フアルマシア バイオテク社製) により 電気泳動し、 塩基配列を決定した結果、 目的の合成 DNAが導入されたことを確認 した。
次に、 特開平 5- 304989に記載のプラスミド pChilgLAlの 3//gを 50 トリス-塩 酸 (pH7.5) 、 lOOmM塩化ナトリウム、 lOmM塩化マグネシウムおよび lmMDTTから なる緩衝液 10 1に溶解し、 更に 10単位ずつの制限酵素 EcoR! (宝酒造社製) お よび EcoRV (宝酒造社製) を加えて で 1時間反応させた。 該反応液をァガロ ースゲル電気泳動にて分画し、 約 9.70kbの EcoRI-EcoRV断片を約 l/zg回収した。 次に、 配列番号 18、 19に記載の塩基配列を有する合成 DNAを自動 DNA合成機 (380 アプライド バイオシステムズ社製) を用いて合成した。 得られた合成 DNA の 0. ずつを の滅菌水に加え、 65" で 5分間加熱した。 該反応液を室温 にて 30分間放置した後、 10倍緩衝液 [500mMトリス-塩酸 (pH7.6) 、 lOOmM塩化マ グネシゥム、 50mMDTT]2/Lt lと lOmMATP 2/ lを加え、 更に 10単位の T4 ポリヌクレ ォチドキナーゼ (宝酒造社製) を加えて 37でで 30分間反応させ、 5'末端をリン 酸化した。 上記で得られたプラスミド pChi【gLAl由来の EcoRI- EcoRV断片 (9.70k b) 0.1 igとリン酸化合成 DNA0. を全量 20 1の滅菌水に加え、 Ready- To- Go T4 DNA Ligase (フアルマシア バイオテク社製) を用いて連結した。 このよ うにして得られた組換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換 し、 第 28図に示したプラスミド pChilgLAlSを得た。
次に、 上記で得られたプラスミド pBSMoSの を 20mMトリス-塩酸 (pH8.5) 、 100mM塩化カリウム、 1 OmM塩化マグネシウムおよび 1 mMDTTからなる緩衝液 10 1 に溶解し、 更に 10単位の制限酵素 Hpal (宝酒造社製) を加えて 37でで 1時間反応 させた。 該反応液をエタノール沈殿し、 50mMトリス-塩酸 (pH7.5) 、 lOOmM塩化 ナトリゥム、 10mM塩化マグネシウムおよび lmMDTTからなる緩衝液 10μ 1に溶解 し、 更に 10単位の制限酵素 EcoRI (宝酒造社製) を加えて 37でで 1時間反応させ た。 該反応液をァガロースゲル電気泳動にて分画し、 約 3.66kbの Hpa卜 EcoRI断 片を約 1 g回収した。
次に、上記で得られたプラスミド pChilgLAlSの 10 zgを 20mMトリス-齚酸(pH7. 9) 、 50mM酢酸カリウム、 lOmM酢酸マグネシウム、 ImMDTTおよび 100/ g/mlBSAか らなる緩衝液 に溶解し、 更に 10単位の制限酵素 NlalV (ニューイングラン ド バイオラブズ社製) を加えて 37でで 1時間反応させた。 該反応液をェタノ一 ル沈殿し、 50πιΜ卜リス-塩酸 (ρΗ7· 5) 、 lOOmM塩化ナトリウム、 lOmM塩化マグネ シゥムおよび lmMDTTからなる緩衝液 10 1に溶解し、 更に 10単位の制限酵素 EcoR I (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をァガロースゲル 電気泳動にて分画し、 約 0.41kbの Nla【V- EcoRI断片を約 0.3;tig回収した。
次に、 上記で得られた pBSMoSの Hpa【- EcoRI断片を 0.1 /xgと pChilgLAlSの NlalV- EcoIU断片 0. を全量 20 1の滅菌水に加え、 Ready - To- Go T4 DNA Ligase (フ アルマシア バイオテク社製) を用いて連結した。 このようにして得られた組 換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 29図に示した プラスミド pMohC を得た。
(5) ヒト化抗体 H鎖発現ュニッ卜の構築
モロニ一マウス白血病ウィルスの末端反復配列のプロモーター/ェンハンサ —の下流にヒ卜抗体 Crlをコードする cDNAが存在し、 かつヒ卜型キメラ抗体あ るいはヒト型 CDR移植抗体の VHをコ一ド cDNAをカセット式に挿入可能なヒト化 抗体 H鎖発現ュニットを有するプラスミド pMohCァ 1を以下のようにして構築し た。
実施例 2の 1(4)で得られたプラスミド pBSMoの 3 gを 50mMトリス-塩酸 (pH7. 5) 、 lOOmM塩化ナトリウム、 lOmM塩化マグネシウムおよび lmMDTTからなる緩衝 液 10 1に加え、 更に 10単位の制限酵素 Xhol (宝酒造社製) を加えて 37でで 1時 間反応させた。 該反応液をエタノール沈殿し、 30mM醉酸ナトリウム (pH5.0) 、 lOOmM塩化ナトリウム、 1 酢酸亜鉛および 10 グリセロールからなる緩衝液 10 1に溶解し、更に 10単位のマングビーンヌクレアーゼ(宝酒造社製)を加えて 37で で 10分間反応させた。 該反応液をフエノール-クロロホルム抽出後、 エタノール 沈殿を行ない、 DNA Bluniing ΚΠ (宝酒造社製) を用い、 突出末端を平滑末端 に変えた後、 DNA Ligation Kit (宝酒造社製) を用いて連結した。 このように して得られた組換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 30図に示したプラスミド pBSMoSalを得た。 得られたプラスミドの を用 い、 AutoRead Sequencing Kit (フアルマシア バイオテク社製) に添付の処方 に従って反応後、 A.し F. DNA Sequencer (フアルマシア バイオテク社製) に より電気泳動し、 塩基配列を決定した結果、 モロニ一マウス白血病ウィルスの 末端反復配列のプロモータ一/ェン八ンサ一の上流の制限酵素 Xho I部位が消失 したことを確認した。
次に、上記で得られたプラスミド pBSMoSalの 3 gを lOmMトリス-塩酸(pH7.5)、 1 OmM塩化マグネシウムおよび 1 mMDTTからなる緩衝液 10 1に加え、 更に 10単位の 制限酵素 Kpnl (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をエタ ノール沈殿し、 10m トリス-塩酸 (pH7.5) 、 50mM塩化ナトリウム、 10mM塩化マ グネシゥムおよび lmMDTTからなる緩衝液 10 1に溶解し、 更に 10単位の制限酵素 Hindlll (宝酒造社製) を加えて 37 で 1時間反応させた。 該反応液をァガ口一 スゲル電気泳動にて分画し、 約 3.66kbの Kpnl- HindUI断片を約 1 / g回収した。 次に、 配列番号 20、 21に記載の塩基配列を有する合成 DNAを自動 DNA合成機 (3 80A、 アプライド バイオシステムズ社製) を用いて合成した。 得られた合成 DN Aの 0.3 /zgずつを 15/^1の滅菌水に加え、 65でで 5分間加熱した。 該反応液を室温 にて 30分間放置した後、 10倍緩衝液 [500mMトリス-塩酸 (pH7.6) 、 lOOmM塩化マ グネシゥム、 50ΠΜ)ΤΤ]2 1と lOmMATP 2 1を加え、 更に 10単位の T4 ポリヌクレ ォチドキナーゼ (宝酒造社製) を加えて 37でで 30分間反応させ、 5'末端をリン 酸化した。 上記で得られたプラスミド pBSMoSal由来の Kpnl-Hindin断片 (3.66k b) 0.1 t gとリン酸化合成 DNA0.05 gを全量 20 /xlの滅菌水に加え、 Ready-To-Go
T4 DNA Ligase (フアルマシア バイオテク社製) を用いて連結した。 このよ うにして得られた組換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換 し、 第 31図に示したプラスミド pBSMoSalSを得た。 得られたプラスミドの 10/ig を用い、 AutoRead Sequencing Kit (フアルマシア バイオテク社製) に添付の 処方に従って反応後、 A.L.F. DNA Sequencer (フアルマシア バイオテク社製) により電気泳動し、 塩基配列を決定した結果、 目的の合成 DNAが導入されたこと を確認した。
次に、 特開平 5- 304989に記載のプラスミド pChilgHB2の 10/zgを 50m トリス -塩 酸 (pH7.5) 、 lOOmM塩化ナトリウム、 lOmM塩化マグネシウムおよび lmMDTTから なる緩衝液 10 ilに溶解し、 更に 10単位の制限酵素 Eco521 (東洋紡績社製) を加 えて 37でで 1時間反応させた。 該反応液をエタノール沈殿し、 30m 鲊酸ナトリウ ム (pH5.0) 、 lOOmM塩化ナトリウム、 lmM酢酸亜鉛および 10%グリセロールから なる緩衝液 に溶解し、 更に 10単位のマングビーンヌクレア一ゼ (宝酒造社 製) を加えて 37でで 10分間反応させた。 該反応液をフエノール-クロ口ホルム抽 出後、 エタノール沈殿を行ない、 DNA Blunting Kit (宝酒造社製) を用い、 突 出末端を平滑末端に変えた。 エタノール沈殿後、 lOmMトリス-塩酸 (pH7.5) 、 1 OmM塩化マグネシウムおよび 1 DIMDTTからなる緩衝液 10 1に溶解し、 更に 10単位 の制限酵素 Apal (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をァ ガロースゲル電気泳動にて分画し、 約 0.99kbの Apal-平滑末端断片を約 0.7 g回 収した。
次に、 プラスミド pBluescript SK (-) (ストラタジーン社製) の 3//gを lOmMト リス-塩酸 (PH7.5) 、 10mM塩化マグネシウムおよび ImMDTTからなる緩衝液 10 1 に加え、 更に 10単位の制限酵素 Apal (宝酒造社製) を加えて 37でで 1時間反応さ せた。 該反応液をエタノール沈殿し、 33mMトリス-酢酸 (pH7.9) 、 I OmM酢酸マ グネシゥム、 66mM齚酸カリウム、 0.5mMDTTおよび lOO/zg/mlBSAからなる緩衝液 1 0 1に加え、 更に 10単位の制限酵素 Smal (宝酒造社製) を加えて 30 で 1時間反 応させた。 該反応液をァガロースゲル電気泳動にて分画し、 約 3. Okbの Apai-Sma I断片を約 l g回収した。
次に、 上記で得られた pChiIgHB2の Apa卜平滑末端断片 0. gと pBluescript S K (-)の Apal- Smal断片 0. を全量 20 の滅菌水に加え、 Ready-To-Go T4 DNA Ligase (フアルマシア バイオテク社製) を用いて連結した。 このようにして 得られた組換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 32 図に示したプラスミド pBShCr 1を得た。 次に、 上記で得られたプラスミド pBShC r lの 5 gを 10 1の10^トリス-塩酸 (pH7. 5) 、 lOmM塩化マグネシウムおよび ImMDTTからなる緩衝液に溶解し、 更に 10単位の制限酵素 Apal (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応 液をエタノール沈殿し、 10mMトリス-塩酸 (pH7. 5) 、 50mM塩化ナトリウム、 10m M塩化マグネシウムおよび 1 niMDTTからなる緩衝液 ΙΟ Ιに溶解し、 更に 10単位の 制限酵素 Spel (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をァガ ロースゲル電気泳動にて分画し、 約 1· Okbの八03卜5 61断片を約1 ^^回収した。 次に、 上記で得られたプラスミド pBSMoSalSの 3 i gを 10mM卜リス-塩酸 (pH7. 5) 、 lOmM塩化マグネシウムおよび ImMDTTからなる緩衝液 10 1に溶解し、 更に 1 0単位の制限酵素 Apal (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応 液をエタノール沈殿し、 lOmMトリス-塩酸 (pH7. 5) 、 50mM塩化ナトリウム、 10m M塩化マグネシウムおよび 1 mMDTTからなる緩衝液 10 ^ 1に溶解し、 更に 10単位の 制限酵素 Spel (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をァガ ロースゲル電気泳動にて分画し、 約 3. 66kbの Apai- Spe【断片を約 回収した。 次に、 上記で得られた pBShC r lの Apal- Spel断片 0. 1 z gと pBSMoSalSの Apal-Sp ei断片 0. 1 jtz gを全量 20 w Iの滅菌水に加え、 Ready- To - Go T4 DNA Ligase (ファ ルマシア バイオテク社製) を用いて連結した。 このようにして得られた組換 えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 33図に示したプ ラスミド pMohC r 1を得た。
( 6 ) タンデムカセット型のヒト化抗体発現用べクタ一 PKANTEX93の構築 実施例 2の 1 (1)〜(5)で得られた各種プラスミドを用いてタンデムカセット 型のヒ卜化抗体発現用ベクター PKANTEX93を以下のようにして構築した。
実施例 2の 1 (1)で得られたプラスミド pBSH-SAEEの 3 gを lOmMトリス-塩酸 (p H7. 5) 、 50mM塩化ナトリウム、 lOmM塩化マグネシウムおよび ImMDTTからなる緩 衝液 10 lに加え、 更に 10単位の制限酵素 Hind n i (宝酒造社製) を加えて 37で で 1時間反応させた。 該反応液をエタノール沈殿し、 50mMトリス-塩酸 (pH7. 5) 、 lOOmM塩ィ匕ナトリゥム、 10mM塩ィ匕マグネシウムおよび ImMDTTからなる緩衝液 10 1に溶解し、 更に 10単位の制限酵素 Sai l (宝酒造社製) を加えて 37でで 1時間反 応させた。 該反応液をァガロースゲル電気泳動にて分画し、 約 5.42kbの Hindni -Sail断片を約 l/ g回収した。
次に、 実施例 2の 1 (1)で得られたプラスミド pBSK-HAEEの 5 tigを lOmMトリス- 塩酸 (pH7.5) 、 lOmM塩化マグネシウムおよび lmMDTTからなる緩衝液 10 1に加 え、 更に 10単位の制限酵素 Kpnl (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をエタノール沈殿し、 lOmM卜リス-塩酸 (pH7.5) 、 50mM塩化ナトリウ ム、 10 塩化マグネシウムおよび lmMDTTからなる緩衝液 10 1に溶解し、 更に 10 単位の制限酵素 Hindi Π (宝酒造社製) を加えて 37 で 1時間反応させた。 該反 応液をァガロースゲル電気泳動にて分画し、 ラビッ卜 )3-グロビン遺伝子スプラ イシング、 ポリ Aシグナル、 SV40初期遺伝子ポリ Aシグナルおよび SV40初期遺伝 子プロモーターを含む約 1.98kbの Κρπ【- 11(1【11断片を約0. 回収した。
次に、 実施例 2の 1 (5)で得られたプラスミド pMohCrlの 5/ gを lOmMトリス-塩 酸 (pH7.5) 、 lOmM塩化マグネシウムおよび lmMDTTからなる緩衝液 10 1に加え、 更に 10単位の制限酵素 Kpnl (宝酒造社製) を加えて 37でで 1時間反応させた。 該 反応液をエタノール沈殿し、 10 1の50 トリス-塩酸 (pH7.5) 、 lOOmM塩化ナ トリウム、 10mM塩化マグネシウムおよび ImMDTTからなる緩衝液に溶解し、 更に 1 0単位の制限酵素 Sail (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応 液をァガロースゲル電気泳動にて分画し、 ヒト化抗体 H鎖発現ュニットを含む約 1.66kbの Kpnl- Sail断片を約 0.8/zg回収した。
次に、 上記で得られた pBSH- SAEEの Hindin- San断片 0. l/zg、 pBSK- HAEEの Kpn 卜 Hind【II断片 0· 1 および pMohCr 1の 1^111-8311断片0.1 を全量 20 1の滅 菌水に加え、 Ready- To- Go T4 DNA Ligase (フアルマシア バイオテク社製) を 用いて連結した。 このようにして得られた組換えプラスミド DNA溶液を用いて大 腸菌 HB101株を形質転換し、 第 34図に示したプラスミド pMorlSPを得た。
次に、上記で得られたプラスミド ρΜοτ 1SPの を 50mMトリス-塩酸(pH7.5)、 lOOmM塩化ナ卜リウム、 10mM塩化マグネシウムおよび lmMDTTからなる緩衝液 10 1に加え、 更に 10単位の制限酵素 Sail (宝酒造社製) および制限酵素 Xho [を加え て 37でで 1時間反応させた。 該反応液をァガロースゲル電気泳動にて分画し、 約 9.06kbの Sal卜 Xhol断片を約 l g回収した。
次に、 実施例 2の 1(2)で得られたプラスミド pBSK- HAEESalの 5 gを lOm トリ ス-塩酸 (PH7.5) 、 lOmM塩化マグネシウムおよび lmMDTTからなる緩衝液 IO Iに 加え、 更に 10単位の制限酵素 Kpn【 (宝酒造社製) を加えて 37でで 1時間反応させ た。 該反応液をエタノール沈殿し、 50mMトリス-塩酸 (pH7.5) 、 lOOmM塩化ナ卜 リウム、 10mM塩化マグネシウムおよび lmMDTTからなる緩衝液 10 1に溶解し、 更 に 10単位の制限酵素 Sail (宝酒造社製) を加えて 37でで 1時間反応させた。 該反 応液をァガロースゲル電気泳動にて分画し、 ラビット /3-グロビン遺伝子スプラ イシング、 ポリ Aシグナルおよび SV40初期遺伝子ポリ Aシグナルを含む約 1.37kb の Kpn卜 Sail断片を約 0.7 g回収した。
次に、 実施例 2の 1 (4)で得られたプラスミド pMohCKの 5 gを lOmMトリス-塩 酸 (pH7.5) 、 10mM塩化マグネシウムおよび ImMDTTからなる緩衝液 lO lに加え、 更に 10単位の制限酵素 Kpnl (宝酒造社製) を加えて 37でで 1時間反応させた。 該 反応液をエタノール沈殿し、 50mMトリス-塩酸(pH7.5) 、 lOOmM塩化ナトリウム、 10幽塩化マグネシウムおよび 1 m DTTからなる緩衝液 10 / 1に溶解し、 更に 10単位 の制限酵素 Xhol (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をァ ガロースゲル電気泳動にて分画し、 ヒト化抗体 L鎖発現ュニットを含む約 1.06kb の Kpnl-Xhol断片を約 0.7 g回収した。
次に、 上記で得られた PMOT SPの Sal【- Xho【断片 0. l^g、 pBSK- HAEESalの Kpnl -Sal I断片 0. gおよび pMohC/ の ¾111- 1101断片0.1 igを全量 20μ 1の滅菌水に 加え、 Ready-To-Go T4 DNA Ligase (フアルマシア バイオテク社製) を用いて 連結した。 このようにして得られた組換えプラスミド DNA溶液を用いて大腸菌 HB 101株を形質転換し、 第 35図に示したプラスミド ρΜοκ TlSPを得た。
次に、 上記で得られたプラスミド ρΜοκァ 1SPの を 50πιΜ卜リス-塩酸 (ρΗ7. 5) 、 lOOmM塩化ナトリウム、 ΙΟπιΜ塩化マグネシウムおよび lmMDTTからなる緩衝 液 こ溶解し、 更に 10単位の制限酵素 Xhol (宝酒造社製) を加えて 3T で 1 時間反応させた。 該反応液をエタノール沈殿し、 lOmM卜リス-塩酸 (pH7.5) 、 1 OmM塩化マグネシウムおよび lmMDTTからなる緩衝液 ΙΟμΙに加え、 更に 10単位の 制限酵素 Sacll (東洋紡績社製) を加えて 37°Cで 10分間反応させ、部分消化した。 該反応液をァガロースゲル電気泳動にて分画し、 約 8.49kbの Sacil- Xhol断片を 約 0.2 6g回収した。
次に、 実施例 2の 1 (3)で得られたプラスミド pBSX- SAの 3 gを 10 トリス-塩 酸 (pH7.5) 、 lOmM塩化マグネシウムおよび lmMDTTからなる緩衝液 ΙΟ Ιに加え、 更に 10単位の制限酵素 Sacil (東洋紡績社製) を加えて 37でで 1時間反応させた。 該反応液をエタノール沈殿し、 50mM卜リス-塩酸 (pH7.5) 、 lOOmM塩化ナ卜リウ ム、 lOmM塩化マグネシウムおよび lmMDTTからなる緩衝液 10^1に溶解し、 更に 10 単位の制限酵素 Xhol (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液 をァガロースゲル電気泳動にて分画し、 約 4.25kbの Sacn-Xhol断片を約 1 ig回 収した。
次に、 上記で得られた ρΜοκァ ISPの Sac II- Xhol断片 0.1 と pBSX- SAの Sad I - Xhol断片 0.1 tgを全量 20 x 1の滅菌水に加え、 Ready- To - Go T4 DNA Ligase (フ アルマシア バイオテク社製) を用いて連結した。 このようにして得られた組 換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 36図に示した プラスミド PKANTEX93を得た。
2. 抗ヒト Iい 5Ra鎖モノクローナル抗体をコードする cDNAの単離、 解析
( 1 ) 抗ヒト IL-5Ra鎖モノクローナル抗体生産ハイプリドーマからの mRNAの取 得
インビ卜ロジェン社製の mRNA抽出キットである Fast Trackを用い、 キットに 添付の使用説明書に従って、 マウス抗ヒ卜 IL-5Ra鎖モノクローナル抗体 KM125 7、 KM1259および KM1486生産ハイプリドーマ(それぞれ FER BP- 5133、 FERM BP - 5134、 FERM BP- 5651)の各 1 X108細胞より、 それぞれ mRNAを取得した。
(2) マウス抗ヒ卜 IL- 5Ra鎖モノクローナル抗体生産ハイプリドーマの H鎖お よび L鎖 cDNAライブラリ一の作製
実施例 2の 2(1)で取得した KM1257、 KM1259および KM1486の mRNAの各 5 ug か ら、 cDNA Synthesis Kit (フアルマシア バイオテク社製) を用い、 キットに 添付の使用説明書に従って、 両端に EcoRIアダプターを有する cD'Aをそれぞれ 合成した。 作製したそれぞれの cDNAの約 6 を 10 1の滅菌水に溶解後、 ァガ ロースゲル電気泳動にて分画し、 IgG型抗体の H鎖に対応する約 1.5kbの cDNA断片 と L鎖に対応する約 1. Okbの cDNA断片をそれぞれ約 0.1/zg 回収した。 次に、 それ ぞれの約 1.5kbの cDNA断片 0.1 gおよび約 1· Okbの cDNA断片 0. 1 fig と、 Lambda ZAPIIベクタ一 [Lambda ZAP11ベクターを EcoR Iで切断後、 ゥシ腸アルカリフォ スファタ一ゼ(Calf Intestine Alkaline Phosphatase)で処理したもの:ストラ 夕ジーン社製] 1 gを T4リガーゼ緩衝液 11. に溶解し、 T4 DNAリガーゼ 175 単位を加えて、 12でにて 24時間インキュベートし、 さらに室温にて 2時間イン キュベ一卜した。 それぞれの反応液のうち 4 ilを常法 [モレキュラー ·クロ一 ニング(Molecular Cloning) 、 2.95、 Cold Spring Harbor Laboratory, 1989] に従い、 ギガパックゴールド (ストラタジーン社製) を使用してラムダファー ジにパッケージングし、 これらを常法 [モレキュラー ·クローニング (Molecula r Cloning) 、 2.95 - 107、 Cold Spring Harbor Laboratory. 1989] に従って、 ギガパックゴールドに付属の大腸菌株 XU- Blue [バイオテクニクス(Biotechniq ues).5_; 376 (1987)] に感染させて、 KM1257, KM1259および KM1486の H鎖 cDNAラ イブラリーおよび L鎖 cDNAライブラリ一としてそれぞれ約 4千個のファージク ローンを取得した。
(3) 抗ヒ卜 IL-5Ra鎖モノクローナル抗体生産ハイプリ ドーマの H鎖および L鎖 をコードする cDNAのクローニング
実施例 2の 2 (2)で作製したそれぞれのファージを常法に従い、ニトロセル口一 スフィルタ一上に固定した [モレキュラー ·クローニング (Molecular Cloning)
、 2.12 、 Cold Spring Harbor Laboratory, 1989] 。 各二卜ロセルロースフィ ルターを用いて ECL ダイレクト ·ヌクレイツク ·ァシッド ·ラベリング ·アン ド ·ティテクシヨン 'システムズ (direct nucleic acid label 1 ing and detec tion systems) (アマシャム社製) に添付の使用説明書に従い、 マウス免疫グ ロブリンの C領域をコードする cDNA 鎖はマウス CT CDNAの断片 [セル(Cell),
18. 559 (1979)] 、 L鎖はマウス C κ cDNAの断片 [セル(Cel 1). 22. 197 (1980)] } をプローブとしてそれと強く結合したファージクローンを取得した。 次に、 Lam bda ZAPI 1ベクター (ストラタジーン社製) に添付の使用説明書に従い、 ファー ジクローンをプラスミド pBl uescr iptSK (-)に変換し、 最終的に KM1257の H鎖をコ 一ドする cDNAを含む組換えプラスミド PKM1257Hおよび KM1257の L鎖をコ一ドす る cDNAを含む組換えプラスミド PKM1257し K 1259の H鎖をコードする cDNA含む組 換えプラスミド PKM1259Hおよび KM1259の L鎖をコードする cDNAを含む組換えプ ラスミド PKM1259し K 1486の H鎖をコードする cDNAを含む組換えプラスミド pK l 486Hおよび KM1486の L鎖をコ一ドする cDNAを含む組換えプラスミド p M1486Lを 取得した。
( 4 ) 抗ヒト IL- 5R a鎖モノクローナル抗体の H鎖および L鎖をコードする cDNAの V領域の塩基配列の決定
実施例 2の 2 (3)で得られた各マウス抗ヒト IL-5R a鎖モノクローナル抗体の H 鎖および L鎖をコードする cDNAの V領域の塩基配列を、 得られたプラスミドの 10 を用い、 AutoRead Sequenc ing Ki t (フアルマシア バイオテク社製) に添 付の処方に従って反応後、 A. L. F. DNA Sequencer (フアルマシア バイオテク 社製) により電気泳動し、 決定した。 決定したそれぞれの cDNAの塩基配列より、 KM1257, KM1259および KM1486の H鎖および L鎖の V領域のアミノ酸配列を決定し た。 配列番号 22に KM1257の H鎖、 配列番号 23に KM1257の L鎖、 配列番号 24に KM125 9の H鎖、 配列番号 25に KM1259の L鎖、 配列番号 26に K 1486の H鎖、 配列番号 27に K M1486の L鎖のそれぞれの V領域の塩基配列およびアミノ酸配列を示す。
( 5 ) 抗ヒ卜 IL- 5Rひ鎖モノクローナル抗体の H鎖および L鎖の CDR配列の同定 実施例 2の 2 (4)で決定した各マウス抗ヒ卜 IL- 5R a鎖モノクローナル抗体の H 鎖および L鎖の V領域のアミノ酸配列より、 それぞれの H鎖および L鎖の CDR配列を 既知の抗体の V領域のアミノ酸配列 [シーケンシズ'ォブ'プロティンズ 'ォブ-ィ ムノロジカル'イン夕レス卜 (Sequences of Proteins of Immunological Inter est) , US Dept. Heal th and Human Services, 1991 ] と比較することによって 同定した。 配列番号 28、 29および 30に KM1257の H鎖の CDR1、 2および 3、 配列番号 31、 32および 33に KM1257の L鎖の CDR1、 2および 3、 配列番号 34、 35および 36に KM 1259の H鎖の CDR1、 2および 3、 配列番号 37、 38および 39に KM1259の L鎖の CDK1、 2 および 3、 配列番号 40、 41および 42に K 1486の H鎖の CDR1、 2および 3、 ならびに 配列番号 43、 44および 45に KM1486の L鎖の CDR1、 2および 3のそれぞれのアミノ酸 配列を示す。
3 . 抗ヒト IL- 5R a鎖ヒト型キメラ抗体の製造
ヒ卜 I L- 5の生物活性を阻害する活性を有する抗ヒト IL-5R a鎖モノクローナ ル抗体 KM1259に由来する抗ヒ卜 IL- 5R a鎖ヒ卜型キメラ抗体を以下のようにし て製造した。
( 1 ) 抗ヒト【い 5R a鎖ヒト型キメラ抗体の発現ベクター PKANTEX1259の構築 実施例 2の 1で構築したヒ卜化抗体発現用ベクタ一 PKANTEX93および実施例 2 の 2で得られたプラスミド PKM1259Hおよび PKM1259Lを用いた抗ヒト iL- 5R a鎖ヒ 卜型キメラ抗体の発現べクタ一 PKANTEX1259を以下のようにして構築した。
ヒト化抗体発現用ベクター PKANTEX93の 3 gを 10mM トリス-塩酸 (pH7. 5) 、 10mM塩化マグネシウムおよび ImMDTTからなる緩衝液 10 / 1に加え、更に 10単 位の制限酵素 Apa【 (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液 をエタノール沈殿し、 50mM トリス-塩酸 (pH7. 5) 、 l OOmM塩化ナトリウム、 lOmM 塩化マグネシウム、 lmMDTT、 100 g/mlBSAおよび 0. 01%トライトン X- 100から なる緩衝液 10 n 1 に加え、 更に 10単位の制限酵素 No t l (宝酒造社製) を加え て 37でで 1時間反応させた。 該反応液をァガロースゲル電気泳動にて分画し、 約 12. 75kbの Apa ! -No t l断片を約 1 g回収した。 次に、 プラスミド PKM1259H の 5 gを 10m トリス-塩酸 (pH7. 5) 、 l OmM塩化マグネシウムおよび lm DTT からなる緩衝液 10 1 に加え、 更に 10単位の制限酵素 Ban l (東洋紡績社製) を加えて 37でで 1時間反応させた。 該反応液をエタノール沈殿し、 50πιΜ卜リス -塩酸 (pH7. 5) 、 l OOmM塩化ナトリウム、 10mM塩化マグネシウム、 lmMDTT、 100 g/mlBSAおよび 0. 01¾トライトン X- 100からなる緩衝液 10 1 に加え、 更に 10単位の制限酵素 Not l (宝酒造社製) を加えて 37でで 1時間反応させた。 該反 応液をァガロースゲル電気泳動にて分画し、約 0. 41 kbの Ban卜 No t l断片を約 0. 5 u g回収した。
次に、 配列番号 46、 47に記載の塩基配列を有する合成 DNAを自動 DNA合成機 (380A、 アプライド バイオシステムズ社製) を用いて合成した。 得られた合 成 DNAの 0. 3 gずつを 15 1の滅菌水に加え、 65でで 5分間加熱した。 該反 応液を室温にて 30分間放置した後、 10倍緩衝液 [500 卜リス-塩酸 (pH7. 6) 、 100mM塩化マグネシウム、 50mMDTT] 2 w 1 と l OmM ATP 2 1を加え、 更に 10単 位の T4 ポリヌクレオチドキナーゼを加えて 37でで 30分間反応させ、 5'末端を リン酸ィ匕した。
上記で得られたヒト化抗体発現用べクタ一 PKANTEX93 由来の Apa卜 No t l 断片 0. 1 gとプラスミド PKM1259H由来の Ban l-No t l断片 0. 1 gとリン酸化合成 DNA0. 05 /Z gを全量 20 n 1の滅菌水に加え、 Ready- To- Go T4 DNA L igase (ファ ルマシア バイオテク社製) を用いて連結した。 このようにして得られた組換 えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 37図に示した プラスミド KANTE 1259Hを得た。
次に、得られたプラスミド PKANTEX1259Hの 3 μ. gを 50mMトリス-塩酸(pH7. 5)、 l OOmM塩化ナトリゥム、 10mM塩化マグネシウム、 ImMDTTおよび 100 g/mlBSA からなる緩衝液 10 1に加え、 更に 10単位の制限酵素 EcoRl (宝酒造社製) お よび制限酵素 Spl l (宝酒造社製) を加えて 37 で 1時間反応させた。 該反応液 をァガロースゲル電気泳動にて分画し、 約 13. 20kbの EcoR卜 Sp l【断片を約 1 g回収した。
次に、 プラスミド PKM1259しの 5 t gを 10 トリス-塩酸 (pH7. 5) 、 50mM塩 化ナトリウム、 10mM塩化マグネシウム、 ImMDTTからなる緩衝液 10 1に加え、 更に 10単位の制限酵素 Avai l (宝酒造社製) を加えて 37 で 1時間反応させた。 該反応液をエタノール沈殿し、 50mM トリス-塩酸 (PH7. 5) 、 lOOmM塩化ナトリ ゥム、 10mM塩化マグネシウム、 ImMDTTからなる緩衝液 10 1 に加え、 更に 10 単位の制限酵素 EcoRI (宝酒造社製) を加えて 37でで 1時間反応させた。 該反 応液をァガロースゲル電気泳動にて分画し、 約 0. 38kbの Ava【I - EcoRI断片を約 0. 5 g回収した。
次に、 配列番号 48、 49に記載の塩基配列を有する合成 D を自動 DNA合成機 (380A、 アプライド バイオシステムズ社製) を用いて合成した。 得られた合 成 DNAの 0, 3 / gずつを 15 1の滅菌水に加え、 65 で 5分間加熱した。 該反 応液を室温にて 30分間放置した後、 10倍緩衝液 [500mM トリス-塩酸 (pH7.6) 、 lOOmM塩化マグネシウム、 50mMDTT]2 1 と 10mM ATP 2 1を加え、 更に 10単 位の T4 ポリヌクレオチドキナーゼを加えて 37 で 30分間反応させ、 5'末端を リン酸化した。
上記で得られたプラスミド PKANTEX1259H由来の EcoRI-SplI断片 0.1 g、 プ ラスミド PKM1259L由来の Avall-EcoRI断片 0.1 w gおよびリン酸化合成 DNA0.05 を全量 20 Iの滅菌水に加え、 Ready- To- Go T4 DNALigase (フアルマシア バイオテク社製) を用いて連結した。 このようにして得られた組換えプラスミ ド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 38図に示したプラスミド PKANTEX1259を得た。
(2) PKANTEX1259を用いた抗ヒト IL- 5R α鎖ヒ卜型キメラ抗体のラッ卜ミエ口 一マ ΥΒ2/0細胞 (ATCC CRL1581) での発現
ΥΒ2/0細胞への抗ヒト IL- 5R α鎖ヒト型キメラ抗体発現ベクター PKANTEX1259 の導入は宮地らの方法に従い、 エレクト口ポレーシヨン法 [サイ卜テクノロジ -(Cytotechnology), 3, 133, (1990)] にて行った。
実施例 2の 3(1)で得られた PKANTEX1259の 4 / gを 4X106個の YB2/0細胞へ 導入後、 RPMU640- FCS(10)を 96ウェルマイク口タイ夕一プレートに 200 \/ ゥエルずつ分注した。 5¾C02インキュベーター内で 37で、 24時間培養後、 ジエネ ティシン (以下、 G418と称す、 ギブコ社製) を 0.5mg/mlになるように添加して さらに 1~2週間培養した。 G418耐性を有する形質転換株のコロニーが出現し、 コンフルェントになったゥエルより培養上清を回収し、 上清中の抗ヒト 【L - 5R α鎖ヒト型キメラ抗体の活性を以下に示す ELISA法 1あるいは ELISA法 2により 測定した。
EUSA法 1
実施例 1の 1 (10)の昆虫細胞培養上清より得られた sh IL-5R a -Fcを PBSで 5 n g/ mlの濃度、あるいはさらに希釈した溶液を調整し、 96ゥエルの EIA用プレー卜(グ ライナー社製) に 50 1/ゥエルで分注し、 4でで一晩放置して吸着させた。 洗浄 後、 1 %牛血清アルブミン(BSA) を含む PBS ( 1¾BSA-PBS) を 100 w 1 /ゥエル加え、 室温で 1時間反応させて残つている活性基をブロックした。 1 ¾BSA- PBSを捨て、 形質転換株の培養上清あるいは精製した 40 g/mlの各種抗ヒト Iい 5R α抗体を 2 5 / 1 ウエル、 さらに実施例 1の 3で調製した 0. 4 g/mlのピオチン標識ヒト 1L -5を 25 1 /ゥエル分注し、 室温で 4時間反応させた。 0. O^Tween- PBSで洗浄後、 1 BSA- PBSにて 4000倍に希釈したペルォキシダーゼ標識アビジン D (ニチレイ社 製) を 50 / 1/ゥエルで加えて室温で 1時間反応させ、 0. 05%Tween-PBSで洗浄後、 ABTS基質液 [2, 2'アジノビス (3-ェチルベンゾチアゾリン- 6 -スルホン酸) ニァ ンモニゥムの 550mgを 0. 1Mクェン酸緩衝液 (pH4. 2) 1Uこ溶解し、 使用直前に過 酸化水素 1 i l/mlを加えた溶液] を 50 1/ゥエル加えて発色させ、 OD415nmの吸 光度を測定した。 抗体を加えない場合の吸光度の値を阻害率 0 %とし、 抗体のビ ォチン化標識 I L- 5に対する阻害率を次式により算出し、 各サンプルを評価した。
A C
結合阻害率 (%) = 100 X 100
B - C
A:抗体添加時の ODliii
B: 抗体非添加時の OD
C: ビ才チン標識ヒ ト IL-5非添加時の OD i
EL I SA法 2
実施例 1の 1 (10)の昆虫細胞培養上清より得られた sh I L-5R aを PBSで' 2 g/ml の濃度、 あるいはさらに希釈した溶液を調整し、 96ゥエルの E 用プレート (グ ライナー社製) に 50 1/ゥエルで分注し、 4でで一晩放置して吸着させた。 洗浄 後、 1 %牛血清アルブミン(BSA) を含む PBS ( 1¾BSA-PBS) を 100 1 /ゥエル加え、 室温で 1時間反応させて残っている活性基をブロックした。 1¾BSA- PBSを捨て、 形質転換株の培養上清、 精製した各種の抗ヒ卜 1L- 5Rひ抗体を 50 1/ゥエルで分 注し、 室温で 2時間反応させた。 0. 05¾Tween- PBSで洗浄後、 1¾BSA- PBSにて 500倍 に希釈したペルォキシダ一ゼ標識抗ヒト【gG抗体 (アメリカン 力レックス社製) を 50 μ 1/ゥエルで加えて室温で 1時間反応させ、 0. 05%Tween-PBSで洗浄後、 ABTS 基質液 [2, 2'アジノビス (3-ェチルベンゾチアゾリン -6-スルホン酸) 二アンモ 二ゥムの 550mgを 0. 1Mクェン酸緩衝液 (pH4. 2) 1Lに溶解し、 使用直前に過酸化 水素 1 l/mlを加えた溶液] を 50 1/ゥエル加えて発色させ、 0D415nmの吸光度 を測定した。
培養上清中に抗ヒ卜 IL- 5Rひ鎖ヒ卜型キメラ抗体の活性が認められた形質転 換株について、 0. 5mg/ml G418、 50n MTX (シグマ社製) を含む RPNU 1640- FCS (1 0)培地に懸濁し、 5%C02インキュベーター内で 37で、 1〜2週間培養し、 50nM MTX 耐性を有する形質転換株を誘導した。 形質転換株がゥエルにコンフルェン卜に なった時点で培養上清中の抗ヒト IL- 5R a鎖ヒト型キメラ抗体の活性を上記の E L I SA法により測定した。 活性の認められた形質転換株については、 上記と同様 の培養方法により、 さらに MTX濃度を 100nM、 200nMと上げて行き、 0. 5mg/ml G41 8、 200nM MTX含む RPMI 1640- FCS (I O)培地で増殖可能でかつ、 抗ヒト IL- 5R a鎖ヒ ト型キメラ抗体を生産する形質転換株を得た。 得られた形質転換株については さらに 2回の限界希釈法によるクローニングを経て、 最終的な抗ヒト IL-5R a鎖 ヒト型キメラ抗体を生産する形質転換株とした。 抗ヒト -5R a鎖ヒト型キメラ 抗体を生産する形質転換株の例としては KM1399 (FERM BP-5650) があげられ、 それが生産する抗ヒ卜 IL- 5R a鎖ヒト型キメラ抗体を KM1399と命名した。 形質転 換株 KM1399は FERM BP-5650として、 平成 8年 9月 3日付で、 工業技術院微生物ェ 業技術研究所に寄託された。 形質転換クローン KM1399の抗ヒト I L-5R α鎖ヒト型 キメラ抗体 KM1399の生産性は約 5 g/106ce l l s/24hrであった。
( 3 ) 抗ヒト IL- 5R a鎖ヒト型キメラ抗体 KM1399の培養上清からの精製 実施例 2の 3 (2)で得られた抗ヒト IL-5Rひ鎖ヒト型キメラ抗体生産株 KM1399 を 0. 5mg/ml G418, 200nM MTX含む GIT培地 (日本製薬社製) に 1〜2 X 105細胞 /ml となるように懸濁し、 175cm2フラスコ (グライナ一社製) に 200mlずつ分注 した。 5 C02インキュベータ一内で 37·Ό、 5〜7日間培養し、 コンフルェントにな つた時点で培養上清を回収した。 該培養上清約 1. 0Lよりプロセップ Α (バイオ プロセシング社製) カラムを用いて精製抗ヒト 〖い 5R α鎖ヒト型キメラ抗体 K 1399を約 3mg取得した。精製抗ヒト IL- 5R α鎖ヒト型キメラ抗体 KM1399の約 を、 公知の方法 [ネィチヤ一 (Nature) . 227, 680 (1970〕 ] に従って電 気泳動し、 分子量を調べた。 その結果を第 39図に示す。 第 39図に示したよう に、 還元条件下では抗体 H鎖の分子量は約 50キロダルトン、 抗体 L鎖の分子量 は約 25キロダルトンであり、 正しい分子量の H鎖および L鎖の発現が確認され た。 また、 非還元条件下では抗ヒト IL- 5R α鎖ヒト型キメラ抗体 KM1399の分子 量は約 140キロダルトンであり、 2本の Η鎖および 2本の L鎖からなる正しい大 きさのヒト型キメラ抗体の発現が確認された。 また、 精製抗ヒト IL- 5R α鎖ヒ ト型キメラ抗体 KM1399の Η鎖、 L鎖の Ν末端アミノ酸配列をプロテインシ一ケ ンサー (470Α、 アプライド バイオシステムズ社製) を用いて自動エドマン分 解により解析した結果、 予想される正しいアミノ酸配列が得られた。
( 4 ) 抗ヒ卜 IL-5R α鎖ヒ卜型キメラ抗体 KM1399のヒト 1L-5R α鎖に対する反 応性 (EU SA法 1 )
抗ヒト I L- 5R a鎖マウス抗体 KM1259および抗ヒト IL- 5R a鎖ヒト型キメラ抗体 KM1399のヒト IL- 5R a鎖に対する反応性を実施例 2の 3 (2) に記載の ELISA法 1に より測定した。 その結果を第 40図に示す。 第 40図に示したように、 抗ヒト IL- 5R α鎖ヒト型キメラ抗体 KM1399は抗ヒ卜 IL-5R a鎖マウス抗体 KM1259と同等の強 ぃヒト IL-5R a鎖に対する反応性を有していることが示された。
4 . COS- 7細胞 (ATCC CRL1651 ) を用いた抗ヒト IL- 5R α鎖ヒト型キメラ抗体の 一過性発現
下記で述べる抗ヒ卜 IL- 5R α鎖ヒ卜型 CDR移植抗体杭の各種バージョンの活 性評価をより迅速に行なうために、 PKANTEX1259およびその改変べクタ一を用い て COS- 7細胞における抗ヒ卜 1 L-5R α鎖ヒト型キメラ抗体の一過性発現をリポ フエクトァミン法を用いて以下のようにして行なった。
( 1 ) PKANTEX1259の改変ベクターの構築
動物細胞における一過性発現の効率は導入された発現ベクターのコピー数に 依存していることから、 大きさのより小さい発現ベクターの方が発現効率がよ いことが考えられた。 そこで PKANTEX1259 の抗体発現に影響を及ぼさないと考 えられる領域を欠失させ、 より小さな抗ヒ卜 IL- 5R 'ひ鎖ヒト型キメラ抗体発現 ベクター、 ΡΠ 259を以下のようにして構築した。
プラスミド PKANTEX1259の 3 z gを 10mMトリス-塩酸 (pH7. 5) 、 50mM塩化ナ トリウム、 10mM塩化マグネシウムおよび lmMDTTからなる緩衝液 10 a 1に加え、 更に 10単位の制限酵素 1U IU1I I [ (宝酒造社製) を加えて 37でで 1時間反応させ た。 該反応液をエタノール沈殿し、 50mM トリス-塩酸 (pH7. 5) 、 lOOm 塩化ナ トリウム、 10mM塩化マグネシウムおよび lmMDTTからなる緩衝液 10 1に加え、 更に 10単位の制限酵素 Mlul (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をエタノール沈殿し、 DNA Blunt ing Ki t (宝酒造社製) を用い、 制限 酵素消化によって生じた 5 ' 突出末端を平滑末端に変えた。 該反応液をァガロー スゲル電気泳動にて分画し、 約 9. 60kbの DNA断片を約 1 g回収した。 回収し た DNA断片 0. 1 gを全量 20 n 1の滅菌水に加え、 Ready- To- Go T4 DNA Ligase
(フアルマシア バイオテク) を用いて連結した。 このようにして得られた組 換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 41図に示し たプラスミド PT1259を得た。
(2) PT1259を用いた抗ヒト IL- 5R α鎖ヒト型キメラ抗体の一過性発現
1 X 105細胞/ mlの COS- 7細胞をで 6ゥエルプレート (ファルコン社製) に 2ml ウエルずつ分注し、 37 でー晚培養した。 100 a 1の OPTI- MEM培地 (ギブコ 社製) に PT1259の 2 gを加え、 更に 100 1 の OPTI- MEM培地 (ギブコ社製) に 10 a 1 のリポフエク卜ァミン · リエージェント (LIPOFECTAMINE Reagent, ギブコ社製) を添加した溶液を加え、 室温で 40分間反応させ、 DNA -リボソーム の複合体を形成させた。 前記した C0S-7細胞を 2mlの ΟΡΤί-MEM培地 (ギブコ社 製) で 2回洗浄後、 DNA-リボソームの複合体を含む溶液を添加し、 37でで 7時 間培養後、 溶液を除去し、 10¾ίの FCSを含む DMEM培地 (ギブコ社製) を 2ml添加 し、 37でで培養した。 培養後、 72 時間の時点で培養上清を回収し、 培養上清中 の抗ヒト 1L-5R α鎖ヒ卜型キメラ抗体の活性評価を実施例 2の 3 (2)に記載の ELISA法 1で行なった。その結果を第 42図に示す。第 42図に示したように PT1259 を導入した COS- 7細胞の培養上清中に濃度依存的な活性が見られ、抗ヒ卜 IL - 5R α鎖ヒト型キメラ抗体の発現が確認された。 以上の結果より、 ΡΚΑΝΤΕΧ93の大き さを小さくしたベクターを作製し、 COS- 7細胞に導入することで一過性発現系で 各種発現ベクター由来のヒ卜化抗体の活性評価を行うことが可能であることが 示された。 また、 後述する各種抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体の活性を 正確に比較するために、 下記 4 (3) に記載の EL1SA法により一過性発現培養上 清中の抗体濃度を測定した。
(3) EL1SA法による一過性発現培養上清中のヒト化抗体濃度の測定
96ウェルマイクロタイタ一プレートにャギ抗ヒト IgG (ァ- chain)抗体 (医学 生物学研究所製)を PBSにて 400倍希釈した溶液を 50 a 1Zゥエルずつ分注し、 4でにてー晚反応させた。抗体溶液を除去後、 100 u.1/ゥエルの 1¾BSA- PBSで 3TC、 1時間反応させ、 残っている活性基をブロックした。 1¾BSA- PBSを捨て、 これに 一過性発現培養上清あるいは精製した抗ヒ卜 IL- 5R α鎖ヒト型キメラ抗体 K 1399を 50 ί 1/ゥエル加え、 室温で 1時間反応させた。 反応後、 溶液を除去し、 0.05¾Tween- PBSで洗浄後、 ペルォキシダーゼ標識マウス抗ヒ卜 κ L鎖抗体 (ザ ィメット社製) を 1¾BSA- PBSにて 500倍希釈した溶液を 50 1/ゥエル加え、 室 温で 1 時間反応させた。 0.05¾Tween-PBSで洗浄後、 ABTS基質液 [2, 2'アジノ ビス(3-ェチルベンゾチアゾリン- 6-スルホン酸)二アンモニゥムの 550ingを 0.1M クェン酸緩衝液 (PH4.2) 1Lに溶解し、 使用直前に過酸化水素 1 1/ml を加え た溶液] を 50 1/ゥエル加えて発色させ、 0D415mnの吸光度を測定した。
5. 抗ヒト iL- 5Ra鎖ヒト型 CDR移植抗体の製造
ヒ卜 IL-5の生物活性を阻害する活性を有するマウス抗ヒト IL-5Ra鎖モノク ローナル抗体 KM1259および抗ヒト【L-5Ra鎖ヒト型キメラ抗体 KM1399と同等の 活性を有する抗ヒト Iい 5Ra鎖ヒト型 CDR移植抗体を以下のようにして製造し た。
(1) 既知のヒ卜抗体 VHの共通配列を基礎とする抗ヒト IL- 5R a鎖ヒト型 CDR 移植抗体の VHをコードする cDNAの構築
カバッ卜らは [シーゲンシズ 'ォブ 'プロテインズ'ォブ ·ィムノロジカル'イン 夕レス卜 (Sequences of Proteins of Immunological Interest) , US Dept. Heal th and Human Serv i ces, 1991、 以下同様] 、 既知のさまざまなヒト抗体 VH を FR の配列の相同性からサブグループ Ι〜Ι Π (HSG Ι ~ Ι Ι Ι ) に分類し、 各サブグル ープ毎に共通配列を同定した。 そこで、 それら共通配列を基礎として抗ヒ卜 IL-5R α鎖ヒ卜型 CDR移植抗体 VHのァミノ酸配列を設計することとした。まず、 基礎とする共通配列を選択するために、 マウス抗ヒ卜 IL- 5R α鎖抗体 KM1259の VHの FR配列と、各サブグループのヒ卜抗体 VHの共通配列の FR配列との間の相 同性を調べた (第 1表) 。 第 1表
マウス KM1259VHの FR配列と、 各サブグループのヒ卜抗体 VHの共通配列の FR 配列との間の相同性 )
HSG I HSGI I HSGI I I
72. 1 50. 6 55. 2 その結果、 サブグループ I と最も相同性が高いことが確認され、 サブグルー プ Iの共通配列を基礎として抗ヒト IL-5R α鎖ヒト型 CDR移植抗体 VHのァミノ 酸配列を設計し、 該アミノ酸配列をコードする cDNAを PCR法を用いて以下のよ うにして構築した。
配列番号 50から 55の塩基配列を有する合成 DNAを自動 DNA合成機(380A、 ァ プライド バイオシステムズ社製) を用いて合成した。 合成した各 DNA を最終 濃度が 0. 1 となるように 10mM トリスー塩酸 (pH8. 3) 、 50mM塩化カリウム、 1. 5mM塩化マグネシウム、 0. 001%ゼラチン、 200 M dNTP、 0. δ M M13pr imer RV (宝酒造社製)、 0. 5 M M13pr imer M4 (宝酒造社製)および 2単位の TaKaRa Taq DNA ポリメラ一ゼ (宝酒造社製) よりなる緩衝液 50 a 1 に加え、 50 1 の鉱 油で覆い、 DNAサ一マルサイクラ一 (P 80、 パーキン エルマ一社製) にセッ 卜し、 94 にて 2分間、 55でにて 2分間、 72でにて 2分間のサイクルを 30サイ クル行なった。 該反応液をエタノール沈殿し、 20 a 1の TE緩衝液に溶解後、 ァ ガロースゲル電気泳動にて分画し、 約 0. 48kbの増幅断片を約 0. 2 g回収した。 次に、 プラスミド pB luescr ipt SK (-) (ストラタジーン社製) の 3 μ gを 33mM 卜リス-酢酸 (pH7. 9) 、 l OmM酢酸マグネシウム、 66mM酢酸カリウム、 0. 5m DTT および 100 fi g/mlBSAからなる緩衝液 10 1 に加え、 更に 10単位の制限酵素 Sma l (宝酒造社製) を加えて 30でで 1時間反応させた。 該反応液をエタノール 沈殿し、 50m 卜リス-塩酸 (pH9. 0) 、 ImM塩化マグネシウムからなる緩衝液 20 n 1 に溶解し、 更に 1 単位のアルカリフォスファターゼ (E. co l i C75、 宝酒造 社製) を加えて 37 :で 1時間反応させ、 5'末端を脱リン酸化した。 更に該反応 液をフエノール-クロ口ホルム抽出後、 エタノール沈殿を行ない、 20 w 1 の TE 緩衝液に溶解した。
次に、 上記で得られた PCR後の増幅断片 0. 1 gと pB l uescr i p t SK (-)の Sma l 断片 0. 1 g相当を全量 20 1 の滅菌水に加え、 Ready- To- Go T4 DNA L i gase (フアルマシア バイオテク社製) を用いて連結した。 このようにして得られ た組換えプラスミド DNA溶液を用いて大腸菌 HB101 株を形質転換した。 形質転 換株の 10個のクローンより各プラスミド DNAを調製し、 塩基配列の決定を行な つた結果、 目的の抗ヒト IL- 5R α鎖ヒ卜型 CDR移植抗体 VHのアミノ酸配列をコ —ドする cDNA を含む第 43 図に示したプラスミ ド phKM1259HV0 を得た。 phK 1259HV0に含まれる抗ヒト I L-5R α鎖ヒト型 CDR移植抗体 VH (以下 HV. 0と 表記) の塩基配列およびアミノ酸配列を配列番号 56に示した。
( 2 ) 既知のヒト抗体 VLの共通配列を基礎とする抗ヒト IL- 5R α鎖ヒト型 CDR 移植抗体の VLをコードする cDNAの構築
力バットらは、 既知のさまざまなヒト抗体 VL をその FRの配列の相同性から サブグループ i〜I V (HSG I ~ IV) に分類し、 各サブグループ毎に共通配列を同 定した。 そこで、 それら共通配列を基礎として抗ヒト IL- 5R α鎖ヒト型 CDR移 植抗体 VLのアミノ酸配列を設計することとした。 まず、 基礎とする共通配列を 選択するために、 マウス抗ヒ卜 I L-5R α鎖抗体 KM1259の VLの FR配列と、 各サ ブグループのヒ卜抗体 VLの共通配列の FR配列との間の相同性を調べた (第 2 表) 。 第 2表
マウス KM1259VLの FR配列と、 各サブグループのヒ卜抗体 VLの共通配列の FR 配列との間の相同性 )
HSG I HSGI I HSGI I I HSGIV
73. 8 57. 5 60. 0 65. 0 その結果、 サブグループ I と最も相同性が高いことが確認され、 サブグルー プ 1の共通配列を基礎として抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体 VLのァミノ 酸配列を設計し、 該アミノ酸配列をコードする cDNAを PCR法を用いて以下のよ うにして構築した。
配列番号 57から 62の塩基配列を有する合成 DNAを自動 DNA合成機(380A、 ァ プライド バイオシステムズ社製) を用いて合成した。 合成した各 DNA を最終 濃度が 0. 1 At Mとなるように 10mM トリス-塩酸 (pH8. 3) 、 50mM塩化力リゥム、 1. 5mM塩化マグネシウム、 0. 001¾ゼラチン、 200 M dNTP、 0. 5 fi M M13pr imer RV (宝酒造社製)、 0. 5 M M13pr imer M4 (宝酒造社製)および 2単位の TaKaRa Taq DNA ポリメラーゼ (宝酒造社製) よりなる緩衝液 50 a 1 に加え、 50 1 の鉱 油で覆い、 DNAサーマルサイクラ一 (PJ480、 パーキン エルマ一社製) にセッ トし、 94 にて 2分間、 55でにて 2分間、 72 にて 2分間のサイクルを 30サイ クル行なった。 該反応液をエタノール沈殿し、 20 1 の TE緩衝液に溶解後、 7 ガロースゲル電気泳動にて分画し、 約 0. 43kbの増幅断片を約 0. 2 g回収した。 次に、 上記で得られた PCR後の増幅断片 0. 1 と実施例 2の 5 (1)で得られ た pBl uescr ipt SK (-)の Sma l断片 0. 1 g相当を全量 20 n 1の滅菌水に加え、 Ready- To- Go T4 DNA L igase (フアルマシア バイオテク社製) を用いて連結し た。 このようにして得られた組換えプラスミド DNA溶液を用いて大腸菌 HB101 株を形質転換した。 形質転換株の 10個のクローンより各プラスミド DNAを調製 し、 塩基配列の決定を行なった結果、 目的の抗ヒト IL- 5R α鎖ヒト型 CDR移植 抗体 VLのアミノ酸配列をコードする cDNAを含む第 44図に示したプラスミド phKM1259LV0を得た。 phKM1259LV0に含まれる抗ヒ卜 IL- 5Rひ鎖ヒ卜型 CDR移植 抗体 VL (以下 LV. 0と表記) の塩基配列およびアミノ酸配列を配列番号 63に示 した。
( 3 ) 既知のヒト抗体 V領域の共通配列を基礎とした抗ヒト IL- 5R α鎖ヒ卜型 CDR移植抗体の発現ベクター PKANTEX1259HV0LV0の構築
実施例 2の 1 で構築したヒ卜化抗体発現用ベクター ρΚΑΝΤΕΧ93、 実施例 2の 5 (1)で得られたプラスミド phKM1259HV0および実施例 2の 5 (2)で得られたブラ スミド phKM1259LV0を用いて抗ヒト Iい 5Rひ鎖ヒ卜型 CDR移植抗体の発現べクタ -PKANTEX1259HV0LV0を以下のようにして構築した。
プラスミド pKMh l 259HV0の 5 w gを 10mMトリス-塩酸 (pH7. 5) 、 l OmM塩化マグネ シゥムおよび 1 mMDTTからなる緩衝液 10 1に加え、 更に 10単位の制限酵素 Apa I
(宝酒造社製)を加えて 37でで 1時間反応させた。該反応液をエタノール沈殿し、 50mMトリス-塩酸 (pH7. 5) 、 l OOmM塩化ナトリウム、 l OmM塩化マグネシウム、 lm MDTT、 100 /^/111185八ぉょび0. 01¾トラィトン X- 100からなる緩衝液 1に加え、 更に 10単位の制限酵素 Not I (宝酒造社製) を加えて 37でで 1時間反応させた。 該 反応液をァガロースゲル電気泳動にて分画し、 約 0. 44kbの Apa l- No t l断片を約 0.
回収した。
次に、 実施例 2の 3 (1 )で得られたヒ卜化抗体発現用ベクター PKANTEX93 由来 の Apal- No t [ 断片 0. 1 g と上記で得られたプラスミド phKM1259HV0 由来の Apal-No t l断片 0. 1 ^ gを全量 20 1の滅菌水に加え、 Ready- To- Go T4 DNA L igase (フアルマシア バイオテク社製) を用いて連結した。 このようにして得られ た組換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換し、 第 45図に 示したプラスミド PKANTEX1259HV0を得た。
次に、 得られたプラスミド PKANTEX1259HV0 の 3 y g を 50mM トリス-塩酸 (pH7. 5) 、 l OOmM塩化ナトリウム、 l OmM塩化マグネシウム、 lmMDTTおよび 100 . g/mlBSAからなる緩衝液 10 a 1に加え、 更に 10単位の制限酵素 EcoRi (宝酒 造社製) および制限酵素 Spl l (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をァガロースゲル電気泳動にて分画し、 約 13. 20kbの EcoRI- Spl l断片 を約 1 μ g回収した。
次に、 プラスミド phKM1259LV0の 5 gを 50mM 卜リス-塩酸 (pH7. 5) 、 lOOmM 塩化ナトリウム、 lOmM塩化マグネシウム、 Im DTTおよび 100 g/mlBSAからな る緩衝液 10 n 1に加え、 更に 10単位の制限酵素 EcoRI (宝酒造社製) および制 限酵素 Spl l (宝酒造社製) を加えて 37でで 1時間反応させた。 該反応液をァガ ロースゲル電気泳動にて分画し、約 0. 39kbの EcoRI-Spl I断片を約 0. 5 g回収 した。
上記で得られたプラスミド PKANTEX1259HVO由来の EcoRI- Spl l断片 0. 1 / g とプラスミド phKM1259LV0由来の EcoRI- Spl I断片 0. 1 u gを全量 20 n 1の滅菌 水に加え、 Ready- To- Go T4 DNA Ligase (フアルマシア バイオテク社製) を用 いて連結した。 このようにして得られた組換えプラスミド DNA溶液を用いて大 腸菌 HB101株を形質転換し、 第 46図に示したプラスミド PKANTEX1259HV0LV0を 得た。
( 4 ) PKANTEX1259HV0LVOを用いた既知のヒ卜抗体 V領域の共通配列を基礎とし た抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体のラットミエローマ YB2/0細胞 (ATCC CRL1581) での発現
PKANTEX1259HV0LV0を用いて既知のヒト抗体 V領域の共通配列を基礎とした抗 ヒト IL- 5R α鎖ヒト型 CDR移植抗体の ΥΒ2/0細胞での発現を実施例 2の 3 (2)に 記載の方法に従つて行った。
その結果、 既知のヒ卜抗体 V領域の共通配列を基礎とした抗ヒ卜 IL-5R a鎖ヒ 卜型 CDR移植抗体を生産する形質転換株としては KM8397があげられ、 それが生産 する抗ヒト IL-5R a鎖ヒト型 CDR移植抗体を KM8397と命名した。 形質転換株 KM839 7の抗ヒ ML-5R a鎖ヒ卜型 CDR移植抗体 KM8397の生産性は約 4 / g/106cel l s/24hr であった。
( 5 ) 抗ヒト IL- 5R a鎖ヒ卜型 CDR移植抗体 KM8397の培養上清からの精製 実施例 2の 5 (4) で得られた抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体生産クロ —ン KM8397 を実施例 2の 3 (3)に記載の方法に従い培養、 精製し、 K 8397を約 2mg取得した。精製抗ヒト IL- 5Rひ鎖ヒト型 CDR移植抗体 KM8397の約 4 gを、 実施例 2の 3 (3)に記載の方法に従い電気泳動し、 分子量を調べた。 その結果を 第 47図に示す。第 47図に示したように、還元条件下では抗体 H鎖の分子量は約 50キロダルトン、 抗体 L鎖の分子量は約 25キロダルトンであり、 正しい分子量 の H鎖および L鎖の発現が確認された。 また、 非還元条件下では抗ヒ卜 IL-5R α鎖ヒ卜型 CDR移植抗体 ΚΜ8397の分子量は約 140キロダルトンであり、 2本の Η 鎖および 2本の L鎖からなる正しい大きさのヒト型 CDR移植抗体の発現が確認さ れた。 また、 精製抗ヒト IL- 5R α鎖 CDR移植抗体 ΚΜ8397の Η鎖、 L鎖の Ν末端 アミノ酸配列をプロテインシーケンサー (470Α、 アプライド バイオシステム ズ社製) を用いて自動エドマン分解により解析した結果、 予想される正しいァ ミノ酸配列が得られた。
( 6 ) 抗ヒト IL-5R α鎖ヒト型 CDR移植抗体 ΚΜ8397のヒ卜 IL- 5R α鎖に対する 反応性 (EL I SA法 2)
抗ヒト IL- 5R a鎖ヒト型キメラ抗体 KM1399および抗ヒト IL- 5R a鎖ヒト型 CDR 移植抗体 KM8397のヒト IL- 5R a鎖に対する反応性を実施例 2の 3 (2) に記載の EL I SA法 2により測定した。 その結果を第 48図に示す。 第 48図に示したように、 抗 ヒ卜 IL- 5R a鎖ヒト型 CDR移植抗体 KM8397は抗ヒト I L- 5R a鎖ヒト型キメラ抗体 K M1399に比べ、 ヒト IL-5R a鎖に対して約 1/2の反応性を有していることが示され た。
6 . 抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体 ΚΜ8397の V領域のアミノ酸配列の改 変による活性の上昇
実施例 2の 5で製造した抗ヒト IL- 5R α鎖ヒ卜型 CDR移植抗体 ΚΜ8397のヒト IL-5R α鎖に対する反応性は抗ヒト 1L-5R α鎖ヒト型キメラ抗体 KM1399に比べ、 約 1/2に低下した。 そこで、 ΚΜ8397の V領域のアミノ酸配列の改変による活性 の上昇を以下のような方法で行った。
( 1 )抗ヒト IL- 5R α鎖ヒ卜型 CDR移植抗体 ΚΜ8397の VHのアミノ酸配列の改変 配列番号 56に示した抗ヒ卜 IL- 5R α鎖ヒ卜型 CDR移植抗体 ΚΜ8397の VHのァ ミノ酸を変異させ、 各種改変バージョンの抗ヒト IL- 5R α鎖ヒ卜型 CDR移植抗 体の VHを作製した。 変異させるアミノ酸としては抗ヒト IL- 5R α鎖マウス抗体 KM1259の V領域のコンピューター三次元構造モデルを参考にし、 かつランダム に選択した。変異の導入方法としては変異導入プライマーを用いて実施例 2の 5 項 (1 ) に記載の方法を行い、 目的の抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体の改 変バージョンの VHをコードする cDNAを含むプラスミドを得た。
実際には、 変異導入プライマーとして配列番号 64に示した配列を用い、 配列 番号 50、 51、 52、 53、 64、 55の塩基配列を有する合成 DNAを用いて実施例 2の 5 (1 ) に記載の方法を行うことにより配列番号 65に示した抗ヒト IL-5R α鎖ヒ ト型 CDR移植抗体の改変バージョン 1の VH (以下 HV. 1と表記)をコードする cDNA を含むプラスミド phK 1259HVl を得た。 HV. 1 のアミノ酸配列においてはマウス 抗体およびヒト型キメラ抗体で認められたヒ卜 1L-5R α鎖に対する反応性を保 持する目的で、 配列番号 56の FR中の 95位のチロシン、 97位のァラニンの各ァ ミノ酸をマウス抗体 K 1259H鎖 V領域に見いだされるアミノ酸であるロイシン、 グリシンにそれぞれ変えている。
また、 変異導入プライマーとして配列番号 64、 66、 67に示した配列を用い、 配列番号 50、 51、 66、 67、 64、 55の塩基配列を有する合成 DNAを用いて実施例 2の 5 ( 1 ) に記載の方法を行うことにより配列番号 68に示した抗ヒト I L-5R α 鎖ヒト型 CDR移植抗体の改変バージョン 2の VH (以下 HV, 2と表記) をコードす る cDNAを含むプラスミド phKM1259HV2を得た。 HV. 2のアミノ酸配列においては モノクローナル抗体およびヒト型キメラ抗体で認められたヒト IL- 5R α鎖に対 する反応性を保持する目的で、 配列番号 56の FR中の 46位のグルタミン酸、 74 位のスレオニン、 95位のチロシン、 97位のァラニンの各アミノ酸をマウス抗体 KM1259H鎖 V領域に見いだされるアミノ酸であるァラニン、 アルギニン、 口イシ ン、 グリシンにそれぞれ変えている。
また、 変異導入プライマーとして配列番号 69、 70、 71に示した配列を用い、 配列番号 50、 51、 69、 70、 71、 55の塩基配列を有する合成 DNAを用いて実施例 2の 5 ( 1 ) に記載の方法を行うことにより配列番号 72に示した抗ヒト IL-5R α 鎖ヒト型 CDR移植抗体の改変バージョン 3の VH (以下 HV, 3と表記) をコードす る cDNAを含むプラスミド phKM1259HV3を得た。 HV. 3のアミノ酸配列においては マウス抗体およびヒト型キメラ抗体で認められたヒト 1L- 5R ひ鎖に対する反応 性を保持する目的で、 配列番号 56の FR中の 40位のァラニン、 46位のグルタミ ン酸、 67位のアルギニン、 72位のァラニン、 74位のスレオニン、 79位のァラ ニン、 95位のチロシン、 97位のァラニンの各アミノ酸をマウス抗体 KM1259H鎖 V領域に見いだされるアミノ酸であるアルギニン、 ァラニン、 リジン、 セリン、 アルギニン、 バリン、 ロイシン、 グリシンにそれぞれ変えている。
結果として、 HV. 0、 HV. 1、 HV. 2、 HV. 3 とバージョンが進むにつれて改変に伴 うマウス抗体由来のアミノ酸の数が増加するようになっている。
( 2 )抗ヒト I L- 5R α鎖ヒト型 CDR移植抗体 KM8397の VLのアミノ酸配列の改変 配列番号 63に示した抗ヒ卜 IL- 5R α鎖ヒト型 CDR移植抗体 ΚΜ8397の VLのァ ミノ酸を変異させ、 各種改変パージョンの抗ヒト IL- 5R α鎖ヒト型 CDR移植抗 体の VLを作製した。変異させるアミノ酸としては抗ヒ卜 I L-5R α鎖抗体 KM1259 の V 領域のコンピューター三次元構造モデルを参考にし、 かつランダムに選択 した。 変異の導入方法としては変異導入プライマーを用いて実施例 2の 5 (1 ) に記載の方法を行い、 目的の抗ヒ卜 IL- 5R α鎖ヒト型 CDR移植抗体の改変バー ジョンの VLをコードする cDNAを含むプラスミドを得た。
実際には、 変異導入プライマ一として配列番号 73、 74、 75に示した配列を用 い、 配列番号 57、 58、 73、 74、 61、 75の塩基配列を有する合成 DNAを用いて実 施例 2の 5 ( 1 )に記載の方法を行うことにより配列番号 76に示した抗ヒト IL-5R α鎖ヒト型 CDR移植抗体の改変バージョン 1の VL (以下 LV. 1 と表記) をコード する cDNAを含むプラスミド phKM1259LVlを得た。 LV. 1のアミノ酸配列において はモノクローナル抗体およびヒ卜型キメラ抗体で認められたヒト IL- 5R α鎖に 対する反応性を保持する目的で、 配列番号 63の FR中の 37位のグルタミン、 45 位のリジン、 98位のフエ二ルァラニンの各アミノ酸をモノクローナル抗体
KM1259L鎖 V領域に見いだされるアミノ酸であるアルギニン、 グルタミン酸、 バ リンにそれぞれ変えている。 また、 変異導入プライマーとして配列番号 74、 75、 77、 78に示した配列を用 い、 配列番号 57、 58、 77、 74、 78、 75の塩基配列を有する合成 DNAを用いて実 施例 2の 5 (1 )に記載の方法を行うことにより配列番号 79に示した抗ヒ卜 IL - 5R α鎖ヒト型 CDR移植抗体の改変バージョン 2の VL (以下 LV. 2と表記) をコード する cDNAを含むプラスミド phKM1259LV2を得た。 LV. 2のアミノ酸配列において はモノクローナル抗体およびヒト型キメラ抗体で認められたヒト IL-5R α鎖に 対する反応性を保持する目的で、 配列番号 63の FR中の 22位のスレオニン、 37 位のグルタミン、 45位のリジン、 77位のセリン、 98位のフエ二ルァラニンの各 アミノ酸をモノクローナル抗体 KM1259L鎖 V領域に見いだされるアミノ酸であ るグリシン、 アルギニン、 グルタミン酸、 ァスパラギン酸、 パリンにそれぞれ 変えている。
また、 変異導入プライマーとして配列番号 74、 80、 81、 82、 83に示した配列 を用い、 配列番号 57、 80、 81、 74、 82、 83の塩基配列を有する合成 DNAを用い て 5 (1 ) に記載の方法を行うことにより配列番号 84に示した抗ヒト IL-5R α鎖 ヒト型 CDR移植抗体の改変バージョン 3の VL (以下 LV. 3と表記) をコードする cDNAを含むプラスミド phKM1259LV3を得た。 LV. 3のアミノ酸配列においてはモ ノクローナル抗体およびヒト型キメラ抗体で認められたヒト IL- 5R α鎖に対す る反応性を保持する目的で、 配列番号 63の FR中の 7位のセリン、 8位のプロリ ン、 22位のスレオニン、 37位のグルタミン、 38位のグルタミン、 45位のリジ ン、 77位のセリン、 87位のチロシン、 98位のフエ二ルァラニンの各アミノ酸を モノクローナル抗体 KM1259L鎖 V領域に見いだされるアミノ酸であるァラニン、 スレオニン、 グリシン、 アルギニン、 リジン、 グルタミン酸、 ァスパラギン酸、 フエ二ルァラニン、 バリンにそれぞれ変えている。
また、 変異導入プライマーとして配列番号 80、 83、 85、 86、 87に示した配列 を用い、 配列番号 57、 80、 85、 86、 87、 83の塩基配列を有する合成 DNAを用い て実施例 2の 5 (1 ) に記載の方法を行うことにより配列番号 88に示した抗ヒ卜 IL - 5R α鎖ヒト型 CDR移植抗体の改変バージョン 4の VL (以下 LV. 4と表記) を コ一ドする cDNAを含むプラスミド phKM1259LV4を得た。 LV. のアミノ酸配列に おいてはモノクローナル抗体抗体およびヒト型キメラ抗体で認められたヒ卜
IL-5R α鎖に対する反応性を保持する目的で、配列番号 63の FR中の 7位のセリ ン、 8位のプロリン、 22位のスレオニン、 37位のグルタミン、 38位のグルタミ ン、 44位のプロリン、 45位のリジン、 71位のフエ二ルァラニン、 77位のセリ ン、 87 位のチロシン、 98 位のフエ二ルァラニンの各アミノ酸をマウス抗体 KM1259L鎖 V領域に見いだされるアミノ酸であるァラニン、 スレオニン、 グリシ ン、 アルギニン、 リジン、 パリン、 グルタミン酸、 チロシン、 ァスパラギン酸、 フエ二ルァラニン、 バリンにそれぞれ変えている。
結果として、 LV. 0、 LV. 1、 LV. 2、 LV. 3、 LV. 4 とバージョンが進むにつれて改 変に伴うモノクローナル抗体由来のアミノ酸の数が増加するようになっている。
( 3 )各種改変バージョンの V領域を有する抗ヒ卜 IL- 5R α鎖ヒト型 CDR移植抗 体の製造
実施例 2の 1 で構築したヒト化抗体発現用ベクター ΡΚΑΝΤΕΧ93 と実施例 2の 5 (1)および (2)で得られた抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体の各種改変バー ジョンの V領域をコードする cDNA を含む各種プラスミドを用いて実施例 2の 5 (3)に記載の方法に従い、 各種改変バージョンの V 領域を有する抗ヒト Iい 5R α鎖ヒト型 CDR移植抗体発現ベクターを構築した。 構築した発現ベクターで用 いた各種改変バージョンの V領域の組合せおよび発現ベクターの名称を第 3表 に示す。 第 3表
ΗΥ. 0 ΗΥ. HV. 2 HV. 3
LY. 0 P ANTEX1259HVOLVO pKANTEX1259HYlLV0 pKANTEX1259HV2LVO pKANTEX1259HV3LV0 LV. 1 PKANTEX1259HY0LV1 p ANTEX1259HVlLVl pKANTEX1259HV2LVl
LV. 2 PKANTEX1259HVOLV2 pKANTEX1259HVlLV2 pKANTEX1259HV2LV2
LV. 3 PKANTEX1259HVOLV3 pKANTEX1259HVlLV3 pKANTEX1259HV2LV3 pKANTEXl 259HV3LV3 LV. 4 PKANTEX1259HV0LV4 pKANTEXl 259HY1LV4 pKANTEXl 259HV2LV4 pKANTEXl 259HV3LV4 上記発現ベクターのうち、 PKANTEX1259HYOLVO、 pKANTEX1259HVlLV0、 PKANTEX1259HV2LVO 、 pKANTEX1259HV0LVl 、 KANTEX1259HV1 LV1 、
PKANTEX1259HV2LV1 、 pKANTEX1259HVOLV2 、 PKANTEX1259HV1LV2 、
PKANTEX1259HV2LV2 、 pKANTEX1259HV0LV3 、 PKANTEX1259HV1LV3 、 PKANTEX1259HV2LV3および pKANTEX1259HV3LV3の計 13種類を実施例 2の 4 (1)に 記載の方法に従って一過性発現用のベクターに改変した。 それら一過性発現用 ベクターを用いて実施例 2の 4 (2)に記載の方法に従い、各種改変パージョンの V 領域を有する抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体の一過性発現を行った。 コ ントロールとして同時に抗ヒ卜 IL- 5R α鎖ヒ卜型キメラ抗体 KM1399の一過性発 現を行った。 培養上清中のヒト IL- 5R α鎖に対する結合活性を実施例 2の 3 (2) に記載の ELI SA法 1により測定し、 また、 培養上清中の抗体濃度を実施例 2の 4 (3) に記載の EL【SA法により測定し、 両者の値より各種改変バージョンの V領 域を有する抗ヒト 1 L-5R α鎖ヒト型 CDR移植抗体の活性をヒト型キメラ抗体 KM1399の活性を 100としたときの相対活性値で第 49図に示した。 なお、 図中で は各種改変バージョンの抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体は VHと VLの組合 せで表示した。 第 49図より VHに関しては HV. 0、 HV. 1、 HV. 2、 HV. 3と改変が進 むにつれて活性が高くなる傾向が認められ、 VLに関しては LV. 0、 LV. 3で活性が 高く、 LV. 1、 LV. 2 ではむしろ活性が低下する傾向が認められた。 そこで、 LV. 0 と各種改変 VH、 LV. 3と HV. 0、 LV. 3と HV. 3、 LV. 3をさらに改変した LV. 4と各種 改変 VH、 の組合せの抗ヒト IL-5R α鎖ヒト型 CDR移植抗体について精製抗体を 用いたより正確な活性評価を以下のような方法で行った。
上記で述べた計 10種類の抗ヒト IL- 5R α鎖ヒ卜型 CDR移植抗体の発現べクタ 一、 すなわち pKANTEX1259HVOLVO、 pKANTEX1259HVlLVO、 pKANTEX1259HV2LVO, PKANTEX1259HV3LVO 、 pKANTEX1259HVOLV3 、 pKANTEX1259HV3LV3 、 PKANTEX1259HV0LV4, PKANTEX1259HV1LV4 pKANTEX1259HV2LV4および
PKANTEX1259HV3LV4を用いて実施例 2の 3 (2)に記載の方法に従い YB2/0細胞 での発現を行い、 各種の抗ヒ卜 IL- 5R α鎖ヒト型 CDR 移植抗体を 2〜4 μ g/106cel l s/24hrの生産性で生産する形質転換株を得た。 得られた各種の抗ヒト IL-5R α鎖ヒト型 CDR移植抗体を生産する株を実施例 2の 3 (3) に記載の方法 に従い培養、 精製し、 各種の抗ヒト IL-5R α鎖ヒト型 CDR移植抗体を l〜2mg取 得した。各種の精製抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体の約 4 μ gを、実施例 2の 3 (3)に記載の方法に従い電気泳動し、 分子量を調べた。 その結果、 いずれ の抗ヒト IL- 5R α鎖ヒト型 CDR移植抗体とも還元条件下では抗体 Η鎖の分子量は 約 50キロダルトン、抗体 L鎖の分子量は約 25キロダルトンであり、正しい分子 量の Η鎖および L鎖の発現が確認された。 また、 非還元条件下ではいずれの抗 ヒト IL-5R α鎖ヒト型 CDR移植抗体も分子量は約 140キロダルトンであり、 2本 の Η鎖および 2本の L鎖からなる正しい大きさのヒト型 CDR移植抗体の発現が確 認された。 また、 各種の精製抗ヒト IL- 5R α鎖 CDR移植抗体の Η鎖、 L鎖の Ν末 端アミノ酸配列をプロテインシーケンサー (470Α、 アプライド バイオシステ ムズ社製) を用いて自動エドマン分解により解析した結果、 いずれも予想され る正しいアミノ酸配列が得られた。
上記で得られた各種の精製抗ヒ卜 IL-5R α鎖ヒト型 CDR移植抗体のヒト IL- 5R α鎖に対する反応性を実施例 2の 3 (2) に記載の ELISA法 2により測定した結 果を第 50図に示した。 なお、 図中では各種改変バージョンの抗ヒト 1L-5R α鎖 ヒト型 CDR移植抗体は VHと VLの組合せで表示した。第 50図に示したように 10 種類の精製抗ヒ卜 IL- 5R α鎖ヒ卜型 CDR移植抗体のうち、 HV. 3LV. 0 および HV. 3LV. 4が抗ヒト IL-5R α鎖ヒト型キメラ抗体 KM1399と同等の強さのヒト - 5R a鎖に対する反応性を有していることが示された。
抗ヒト IL-5R α鎖ヒト型キメラ抗体 K 1399と同等の強さのヒ卜 Iい 5R α鎖に 対する反応性を示した抗ヒ卜 IL- 5R α鎖ヒト型 CDR移植抗体 HV. 3LV. 0および HV. 3LV. 4のアミノ酸配列を比較すると、 HVについてはどちらも HV. 3に示すァ ミノ酸配列を有するが、 VLは LV. 0と LV. 4に示すアミノ酸配列である。 LV. 0が CDRを単純にヒト抗体の FRに移植した配列であるのに対して、 LV. 4は活性を高 めるためにヒト抗体の FRの 1 1 残基のアミノ酸をモノクローナル抗体に見出さ れるアミノ酸に改変した配列である。 しかし、 第 50図の結果から実際はァミノ 酸残基の改変が活性の上昇にはほとんど寄与していない。 これらの事実から、 抗ヒ卜 IL- 5R α鎖ヒ卜型キメラ抗体 KM1399と同等の強さのヒト IL-5R α鎖に対 する反応性を有し、 かつモノクローナル抗体由来のアミノ酸が少なくヒ卜に対 する抗原性が低下することが期待される HV. 3LV. 0 を抗ヒト IL-5R α鎖ヒ卜型 CDR移植抗体とした。 HV, 3LV. 0は ΚΜ8399と命名し、 ΚΜ8399を生産する形質転換 株 ΚΜ8399は FERM ΒΡ-5648として、 平成 8年 9月 3日 付で、 工業技術院微生物 工業技術研究所に寄託された。
抗ヒ卜 IL- 5R α鎖ヒ卜型 CDR移植抗体 ΚΜ8399の製造にあたっては、 他のヒト 型 CDR移植抗体の製造と同様に、 もととなる抗ヒト IL-5R α鎖モノクローナル 抗体 KM1259の CDRのみを単純にヒト抗体の FRに移植した抗ヒト IL- 5R α鎖ヒ卜 型 CDR移植抗体 ΚΜ8397ではその活性がモノクローナル抗体 KM1259の約 1/2に低 下してしまった。 そこで上記のように Η鎖、 L鎖の V領域の FRのいくつかのァ ミノ酸をモノクローナル抗体 KM1259に見出されるアミノ酸に改変し、 活性の上 昇を検討した。 改変の過程で VHに関しては改変に従い活性が上昇したが、 一方、 VL に関しては少数のアミノ酸残基の改変では、 むしろ活性が低下し、 改変残基 数を増加させることにより活性は上昇するが、 それは改変しない VLと同程度レ ベルまでしか上昇しないという結果が得られた。 この原因についてはより詳細 な解析 (X線結晶解析等) を待たねばならないが、 恐らく抗体の VHと VLの相互 作用が関与しており、 その結果は用いる個々の抗体で異なることが考えられる。 こうした問題から現在でもすベての抗体に適応可能で効率的なヒ卜型 CDR移植 抗体の製造法は確立されておらず、 本実施例のような試行錯誤が必要である。 そして、 こうした試行錯誤の積み重ねにより、 より効率的なヒ卜型 CDR移植抗 体の製造法が確立されると考えられる。 本実施例は、 はじめての抗ヒト IL- 5R α鎖ヒ卜型 CDR移植抗体の製造の例であり、 効率的なヒト型 CDR移植抗体の製 造における示唆を与えるものである。
7 . ヒ卜抗体 IgG4サブクラスの抗ヒ卜 IL-5Rひ鎖ヒ卜化抗体の製造
( 1 ) ヒト抗体 igG4サブクラスの C領域 (Cァ 4) をコードする cDNAの単離、 解析
健常人末梢血 200ml より抗 CD19 抗体がコーティングされたダイナビーズ (DYNABEADS M-450 Pan-B(CD19) : 日本ダイナル社製) および DETACHaBEAD (日 本ダイナル社製) を用い、 添付の使用説明書に従って 1.1 X107個の B細胞を分 離した。分離した細胞より QuickPrepmRNAPurificationKit (フアルマシア バ ィォテク社製) を用い、 キットに添付の使用説明書に従って mRNAを取得した。 取得した mRNAの全量から TimeSaver cDNA Synthesis Kit (フアルマシア バイ ォテク社製) を用い、 キットに添付の使用説明書に従って cDNAを合成した。 得 られた cDNAの全量を用いて、配列番号 89、 90に示したヒト抗体 C r 4のをコー ドする cDNAの 5' 側と 3' 側に相同性を持つ配列 [ヌクレイツク ·ァシッド . リサーチ(Nucleic Acid Research), H , 1789(1986) ] の合成 DNAをプライマ 一として実施例 2の 5 (1) に記載の PCRを行った。 PCRに用いた 5' 側と 3' 側 のプライマーはその 5' 端にそれぞれ制限酵素 Apal と BamH〖の認識配列を有し ており、 得られた cDNAをヒト化抗体発現ベクターに容易に挿入できるように設 計した。 PCR後の反応液を QlAquick PCR Purification Kit (キアジェン社製) を用レ て精製後、 1 OmM卜リス -塩酸 (pH7.5)、 1 OmM塩化マグネシウムおよび ImMDTT からなる緩衝液 30 μ 1に加え、 更に 10単位の制限酵素 Apal (宝酒造社製) を 加えて 37でで 1時間反応させた。 該反応液をエタノール沈殿し、 20mM トリス- 塩酸 (pH8.5) 、 lOOmM塩化カリウム、 lOmM塩化マグネシウム、 ImMDTTからなる 緩衝液 10 1に加え、更に 10単位の制限酵素 BamHl (宝酒造社製)を加えて 30 で 1時間反応させた。 該反応液をァガロースゲル電気泳動にて分画し、 約 1. Okb の Apal-BamHl断片を約 0.5 ti g回収した。
次に、 プラスミド pBluescriptSK (-) (ストラ夕ジ一ン社製) の 3 // gを lOmM 卜リス-塩酸 (pH7.5)、 lOmM塩化マグネシウムおよび ImMDTTからなる緩衝液 10 . 1に加え、 更に 10単位の制限酵素 Apal (宝酒造社製) を加えて 37でで 1時間 反応させた。 該反応液をエタノール沈殿し、 20mM卜リス-塩酸 (pH8.5) 、 lOOmM 塩化カリウム、 10mM塩化マグネシウム、 ImMDTTからなる緩衝液 10 1に加え、 更に 10単位の制限酵素 BamHl (宝酒造社製) を加えて 30でで 1時間反応させた。 該反応液をァガ口一スゲル電気泳動にて分画し、 約 3. Okbの Apa卜 BamHI断片を 約 2 H g回収した。 上記で得られた PCR増幅断片の Apa l -BamHI断片 1 n gと pBl uescr i ptSK (-) の Apa l- BamHI断片 0· 1 gを全量 20 μ. 1の滅菌水に加え、 Ready- To- Go T4 DNA Ligase (フアルマシア バイオテク社製) を用いて連結した。 このようにして 得られた組換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換した。 形質転換株の 10個のクローンより各プラスミド DNAを調製し、 塩基配列の決定 を行なった結果、目的のヒト抗体 C τ 4をコードする cDNAを含む第 51図に示し たプラスミド pBShC r 4を得た。
( 2 ) ヒト抗体【gG4サブクラスの抗ヒト Iい 5Rひ鎖ヒト化抗体の発現ベクター の構築
実施例 2の 7 (1)で得られたヒト抗体 C r 4をコードする cDNAを含むプラスミ ド pBShC r 4および実施例 2の 3 (1)で得られた抗ヒ卜 IL- 5R a鎖ヒト型キメラ抗 体 KM1399の発現ベクター PKANTEX1259および実施例 2の 6 (3)で得られた抗ヒト1 L-5R α鎖ヒト型 CDR移植抗体 ΚΜ8399の発現べク夕一 pKANTEXl 259HV3LV0を用い て、 ヒト抗体 IgG4サブクラスの抗ヒ卜 IL- 5R a鎖ヒト化抗体の発現ベクターを以 下のようにして構築した。
ヒト抗体 Cァ 4をコードする cDNAを含むプラスミド pBShCァ 4の 4 gを 10mM 卜リス-塩酸 (pH7. 5)、 l OmM塩化マグネシウムおよび lmMDTTからなる緩衝液 10 1に加え、 更に 10単位の制限酵素 Apa i (宝酒造社製) を加えて 37でで 1時間 反応させた。 該反応液をエタノール沈殿し、 20mM トリス-塩酸 (pH8. 5) 、 l OOmM 塩化カリウム、 l OmM塩化マグネシウム、 lmMDTTからなる緩衝液 10 1に加え、 更に 10単位の制限酵素 BamHI (宝酒造社製) を加えて 30でで 1時間反応させた。 該反応液をァガロースゲル電気泳動にて分画し、 約 1. Okbの Apa卜 BamHI断片を 約 1 g回収した。
次に、抗ヒト IL-5R α鎖ヒト型キメラ抗体 KM1399の発現ベクター ρΚΑΝΤΕΧ1259 および抗ヒ 卜 【L- 5R α鎖ヒ 卜型 CDR 移植抗体 ΚΜ8399 の発現べクタ一 pKANTEXl 259HV3LV0の各 3 gを 10mMトリス-塩酸 (ρΗ7· 5) 、 l OmM塩化マグネ シゥムおよび lmMDTTからなる緩衝液 10 n 1に加え、更に 10単位の制限酵素 Apai
(宝酒造社製) を加えて 37でで 1時間反応させた。 各反応液をエタノール沈殿 し、 20m 卜リス-塩酸 (pH8. 5) 、 l OOmM塩化カリウム、 l OmM塩化マグネシウム、 lmMDTTからなる緩衝液 10 n 1に加え、更に 10単位の制限酵素 BamHl (宝酒造社 製) を加えて 30でで 1時間反応させた。 各反応液をァガロースゲル電気泳動に て分画し、 それぞれ約 12. 59kbの Apa卜 BamHI断片を約 2 g回収した。
上記で得られたプラスミド pBShC r 4由来の Apa卜 BamHI断片 0. 1 /z gとブラ スミド PKANTEX1259由来の Apa l- BamHI断片 0. 1 g、 また、 プラスミド pBShC r 4由来の Apa卜 BamHI 断片 0. 1 μ. gとプラスミド pKANTEX1259HV3LV0由来の Apal -BamHI断片 0. 1 gをそれぞれ全量 20 1の滅菌水に加え、 Ready - To-Go T4 DNA L igase (フアルマシア バイオテク社製) を用いて連結した。 このように して得られた各組換えプラスミド DNA溶液を用いて大腸菌 HB101株を形質転換 し、第 52図に示した IgG4サブクラスの抗ヒト IL-5R α鎖ヒト型キメラ抗体の発 現べクタ一 PKANTEX1259 r および IgG4サブクラスの抗ヒト IL-5R α鎖ヒト型 CDR移植抗体の発現べクタ一 PKANTEX1259HV3LV0 r 4を得た。
( 3 ) ヒ卜抗体 IgG4サブクラスの抗ヒト IL- 5R α鎖ヒ卜化抗体のラットミエ ローマ ΥΒ2/0細胞 (ATCC CRL1581 ) での発現
実施例 2の 7 (2)で得られた IgG4サブクラスの抗ヒト IL- 5R α鎖ヒト型キメラ 抗体の発現べクタ一 PKANTEX1259 r 4および IgG4サブクラスの抗ヒト IL- 5R a 鎖ヒ卜型 CDR移植抗体の発現ベクター PKANTEX1259HV3LV0ァ 4を用いてヒ卜抗体 I gG4サブクラスの抗ヒト IL- 5R α鎖ヒト化抗体の ΥΒ2/0細胞での発現を実施例 2の 3 (2)に記載の方法に従い行った。
その結果、 IgG4サブクラスの抗ヒト IL- 5Rひ鎖ヒ卜型キメラ抗体を生産する 形質転換株としては KM7399 (FERM BP- 5649)が得られ、 それが生産する lgG4サブ クラスの抗ヒト IL-5R α鎖ヒ卜型キメラ抗体を ΚΜ7399と命名した。 Κ 7399を 生産する形質転換株 Κ 7399は FERM ΒΡ-5649として平成 8年 9月 3日 付で、 ェ 業技術院微生物工業技術研究所に寄託された。 形質転換株 ΚΜ7399の抗ヒ卜 IL- 5R α鎖ヒ卜型キメラ抗体 ΚΜ7399の生産性は約 3 n g/106ce l l s/24hrであった。 また、 IgG4サブクラスの抗ヒ卜 IL-5R α鎖ヒ卜型 CDR移植抗体を生産する形 質転換株としては KM9399 (FERM BP- 5647)が得られ、 それが生産する I gG4サブク ラスの抗ヒト【L- 5R α鎖ヒト型 CDR移植抗体を KM9399と命名した。 形質転換株 KM9399 の抗ヒ卜 IL- 5R ひ鎖ヒ卜型 CDR移植抗体 KM9399 の生産性は約 7 g/106cel l s/24 rであった。 KM9399を生産する形質転換株 K 9399は FERM BP- 5647として平成 8年 9月 3日 付で、工業技術院微生物工業技術研究所に寄託さ れた。
( 4 ) ヒト抗体 IgG4サブクラスの抗ヒ卜 Iい 5R a鎖ヒト化抗体の培養上清からの 精製
実施例 2の 7 (3) で得られた IgG4サブクラスの抗ヒ卜 IL- 5R α鎖ヒト型キメ ラ抗体生産株 ΚΜ7399および IgG4サブクラスの抗ヒ卜 IL-5R α鎖ヒト型 CDR移植 抗体生産株 Κ 9399を実施例 2の 3 (3)に記載の方法に従い培養、 精製し、 ΚΜ7399, Κ 9399をそれぞれ約 lmg、5mg取得した。精製した IgG4サブクラスの抗ヒ卜 IL-5R α鎖ヒト化抗体 KM7399、 KM9399の各約 4 gを、 実施例 2の 3 (3)に記載の方法 に従い電気泳動し、 分子量を調べた。 その結果を第 53図に示す。 第 53図に示 したように、 還元条件下では各抗体 H鎖の分子量は約 50キロダルトン、 抗体 L 鎖の分子量は約 25キロダル卜ンであり、 正しい分子量の H鎖および L鎖の発現 が確認された。 また、 非還元条件下では各抗ヒ卜 IL- 5R α鎖ヒト化抗体の分子 量は約 140キロダルトンであり、 2本の Η鎖および 2本の L鎖からなる正しい大 きさのヒト型 CDR移植抗体の発現が確認された。 また、 精製した IgG4サブクラ スの抗ヒト IL- 5R α鎖ヒト化抗体 ΚΜ7399および ΚΜ9399の Η鎖、 L鎖の Ν末端ァ ミノ酸配列をプロテインシーケンサー (470Α、 アブライド バイオシステムズ 社製) を用いて自動エドマン分解により解析した結果、 予想される正しいアミ ノ酸配列が得られた。
( 5 ) ヒト抗体 IgG4サブクラスの抗ヒト IL-5R α鎖ヒト化抗体のヒ卜【L- 5R α 鎖に対する反応性 (ELISA法 2)
ヒト抗体 IgGlサブクラスの抗ヒト IL-5Rひ鎖ヒト型キメラ抗体 KM1399、 ヒト 抗体 IgGlサブクラスの抗ヒト IL-5R α鎖ヒ卜型 CDR移植抗体 KM8399、 IgG4サブ クラスの抗ヒト IL-5R 鎖ヒ卜型キメラ抗体 KM7399および IgG4サブクラスの 抗ヒト IL- 5R α鎖ヒ卜型 CDR移植抗体 KM9399のヒ卜 IL- 5R α鎖に対する反応性 を実施例 2の 3 (2) に記載の EU SA法 2により測定した。 その結果を第 54図に 示す。第 54図に示したように、 ヒト抗体 lgG4サブクラスの抗ヒト IL- 5R α鎖ヒ ト化抗体はヒト抗体 IgGlサブクラスの抗ヒト Iい 5R α鎖ヒト化抗体と同等の強 さのヒト IL- 5R α鎖に対する反応性を有していることが示された。 実施例 3 .
1 . 抗 h IL- 5R α抗体の特異性の確認
抗 h IL- 5R αモノクローナル抗体および抗 h IL-5R αヒト化抗体の特異性を免 疫細胞染色を用いて以下の手順に従い確認した。
CTLL-2 細胞 (ATCC TIB 214) にヒ卜 IL- 5R 遣伝子を導入した細胞 [以下、 CTLL-2 (h5R)細胞と称す] [ジャーナル 'ォブ 'エキスペリメンタル .メデイシ ン(J. Exp. Med. ) , Π7, 1523 (1993) ] 、 あるいは対照として CTLL- 2細胞 5 Χ 105 個を免疫細胞染色用緩衝液 (1¾BSA 、 0. 02¾EDTA 、 0. 05¾ アジ化ナトリウムを 含む PBS )に懸濁して丸底 96ゥエルプレートに 100 1 ウエルで分注した。
4 " 、 350 X gで 1 分間遠心分離後、 上清を除き、 10 g/ml ML- 5Rひ抗体を 含む免疫細胞染色用緩衝液 50 1を加えて 4 でで 30分間反応させた。反応後、 免疫細胞染色用緩衝液を 200 n 1 /ゥエルで加え 4 で、 350 X g で 1 分間遠心 分離後上清を除き細胞の洗浄を行った。 この洗浄操作をさらに 2 回行った後、 染色バッファ一で 30倍希釈した FITC標識抗マウスィムノグロブリン抗体ある いは F ITC標識抗ヒトイムノグロブリン抗体 (いずれも和光純薬社製) を含む免 疫細胞染色用緩衝液 50 1 を加えて 4 でで 30分間反応させた。 反応後、 上記 と同様の洗浄操作を 3 回行った後フローサイトメ一ター (コール夕一社製) を 用いて解析を行った。
結果を第 55図に示す。 モノクローナル抗体 KM1257、 KM1259および KM1486、 ならびにヒト化抗体 KM1399、 KM7399、 K 8399および KM9399ともに CTLL- 2細胞 には反応せず CT -2 (h5R) 細胞に特異的に反応した。 この結果、 モノクロ一ナ ル抗体 KM1257、 KM1259および KM1486、 ならびにヒト化抗体 KM1399、 KM7399, KM8399および KM9399は ML- 5R αを特異的に認識することが明らかとなった。 2 . 抗 iL- 5R α抗体による IL- 5の生物活性の阻害作用
CTLL-2 ( 5R) 細胞はヒト IL-5に依存して増殖応答を示す [ジャーナル'ォブ · エキスペリメンタル ·メディシン 0. Exp. Med. ) , Π7, 1523 (1993) ] ことか ら、得られた抗 IL-5R α抗体の CTLL- 2 (h5R) 細胞におけるヒ卜 IL-5依存性細胞 増殖に対する影饗を検討した。 細胞増殖は、 セルカウンティングキット (同仁 化学研究所製) を用いて発色法にて評価を行った。
CTLL- 2 (h5R)細胞 1 X 104個を 50 1の正常培地に懸濁して 96ゥエル培養用プ レートに分注した。これに正常培地で希釈した 40 a g/ml各種抗 IL- 5R α抗体溶 液 25 iL 1ノウエル、 さらに実施例 1の 3の方法で調製した 0. 4ng/ml ヒト - 5 を含む正常培地 25 n 1ノウエルを混合し、 C02インキュベータ一中、 37でで 44 時間培養した。 さらに、 セルカウンティングキット溶液を 10 / 1 Zゥエルで加 えてから C02 5 %気流下、 3 7でで 4時間培養した。 培養終了後、 450nmの吸光 度をマイクロウェルプレートリーダー Emax (モレキュラーデバイス社製) にて 測定した。 各抗体の CTLL- 2 (h5R)細胞増殖抑制活性を次式により算出した。
A C
増殖抑制率 (%) = 100 一 X 100
B C
A:抗体添加時の ODti
B: 抗体非添加時の OD i
C: ヒ ト IL-5非添加時の OD 結果を第 5 6図に示すが、 モノクローナル抗体 K 1259および KM1486, ならび にヒト化抗体 KM1399、 KM7399, KM8399および KM9399はいずれも CTLい 2 (h5R) 細胞のヒ卜 IL- 5依存性増殖を阻害したが、 モノクローナル抗体 KM1257にはこ のような活性が認められなかつた。
3 . ヒ卜好酸球の免疫細胞染色
正常人血液より多形核白血球画分を調製し、 3 日間ヒ卜 IL-5の存在下で培養 し好酸球を濃縮した後に、 フローサイトメ一夕一を用いて抗 1UL-5R αモノクロ ーナル抗体の反応性を検討した。
15ml容量のポリプロピレン製遠心管にポリモルフプレツプ(polymoirhprep 、 ニコメッド社製) を 4ml ずつ 8 本に分注しそれぞれにへパリン処理をした正常 人血 6 mlを重層した。 これを 500 X g 、 室温で 30分間遠心分離して多形核白 血球を分離、 回収した。 多形核白血球が 1. 25 X 107個/ 10ml となるように正常培 地に懸濁し、 細胞培養用ディッシュ 4枚に 10mlずつ分注し、 最終濃度が 2ng/ml となるようにヒ卜 IL- 5を加え、 C02 インキュべ一夕一中、 37でで 3日間培養し た。 培養終了後細胞を遠心分離 (1,200ΓΡΠΙ、 5分) し、 免疫細胞染色用緩衝液 で 5 X 106個/ ml になるように細胞を懸濁し、 5 X 105 個を丸底 96ゥエルプレ 一卜に分注した。 4で、 350 X gで 1分間遠心分離後上淸を除き、 公知の方法
(酵素抗体法:学際企画刊 1985年) でピオチン標識したモノクローナル抗体 KM1259あるいは対照としてピオチン標識した抗ヒト顆粒球コロニー刺激因子モ ノクロ一ナル抗体 KM341 [ァグリカルチュラル ·アンド ·バイオロジカル ·ケ ミストリー(Agr. Biol. Chem. ) , 53 , 1095 (1989) ] を 10 g/mlの濃度で 10% 正常マウス血清を含む免疫細胞染色用緩衝液 50 1を加えて 4 で 30分間反 応させた。 反応後、 免疫細胞染色用緩衝液を 200 1ノウエルに加え 4で、 350 X g で 1 分間遠心分離後上清を除き細胞の洗浄を行った。 この洗浄操作をさら に 2 回行った後、免疫細胞染色用緩衝液で 10倍に希釈したフィコエリスリン標 識ス卜レプトアビジン (べクトン 'ディッキンソン社製) を 50 /^ 1 /ゥエル カロ えて 4 X:で 30分間反応させた。 反応後、 上記と同様の洗浄操作を 3 回行った 後フローサイトメ一夕一 (コール夕一社製) にて前方散乱、 90度散乱にて多形 核白血球と認められる細胞に関して解析を行った。 また、 同じ細胞をメイ -グ リユントワルト ·ギムザ染色法(染色法のすべて:医歯薬出版株式会社 1988年) にて染色し多形核白血球に関して観察したところ、 75% が好酸球であることを 確認した。
第 5 7図に得られたヒストグラムを示す。 抗ヒ卜 IL-5R α鎖モノクローナル 抗体 KM1259は明らかな反応性を示した。解析した細胞の 75% は好酸球であるこ とが確かめられていることから、抗ヒト IL-5R α鎖モノクローナル KM1259はヒ W ト好酸球に対する反応性を有していることが確認された。
4 . 抗 IL-5R α抗体を用いたヒト好酸球の生存抑制
正常人血液より多形核白血球画分を調製し、 ヒ卜 IL- 5の存在下での好酸球生 存に対する抗 IL-5R α抗体の作用を検討した。
15ml容量のポリプロビレン製遠心管にポリモルフプレップ(po lymorphprep、 ニコメッド社製) を 4miずつ 15本に分注しそれぞれにへパリン処理をした正常 人血 8mlを重層した。 これを 500 X g、 室温で 30分間遠心分離して多形核白血球 を分離、 回収した。
9 容量のパーコール溶液 (Perco l l、 フアルマシア社製) に 1容量の滅菌した 1. 5M食塩水を加えパーコールストック溶液を調製した。 8 容量のパーコールス トック溶液に 1容量の生理食塩水を加え 80¾パ一コール溶液を調製し、 6容量の パーコールストック溶液に 4容量の生理食塩水を加え 60¾パーコール溶液を調製 した。 混在する単核球を除く目的で、 15ml 容量のポリプロピレン製遠心管 2本 に 5mlの 60¾パ一コール溶液を分注し、 ここに先に得られた RPMI 1640培地に懸 濁した多形核白血球を重層し、 500 X g、 室温で 30分間遠心分離して沈殿した多 形核白血球を分離、 回収した。 さらに混在する赤血球を除く目的で、 5mlの 80% パ一コール溶液を 2本の 15ml容量のポリプロピレン製遠心管に分注し、 ここに 先に得られた RPMH 640培地に懸濁した多形核白血球を重層し、 500 X g、 室温で 30分間遠心分離してパーコール層に浮遊している多形核白血球を分離、 回収し た。
48ゥエルの細胞培養用プレートに 2 X 106個 ゥエルの細胞を分注し、 最終濃 度 0. l ng/mlのヒ卜 IL- 5を添加し、 さらに最終濃度 1 g/mlの各種抗 IL- 5R 抗体をそれぞれ添加した。 各抗体につき 2 ゥエル培養し、 各ゥエルの液量は最 終的に 1ml となるように調製した。 CO 2インキュベータ一中、 37でで 3日間培養 し、 培養終了後各ゥエルから全量の細胞懸濁液を回収し、 遠心分離 (3, OOOrpnu 1分) して細胞を回収した。得られた細胞を 100 w 1の PBSに懸濁し、 そのうち の 50 1を用いて細胞標本作製装置:サイトスピン 3 [Cy tospi n3、 シャンドン (Shandon)社製] にて標本を作製した。 メイ ·グリユントワルト ·ギムザ染色法 にて染色後、 各標本に関して 200個の細胞を観察し、 好酸球の数を求めた。 結果を第 5 8図に示すが、 モノクローナル抗体 KM1259および KM1486、 ならび にヒト化抗体 KM1399、 M7399, KM8399および KM9399はいずれも IL- 5による好 酸球寿命延長を抑制する活性が認められたが、 モノクローナル抗体 KM1257には このような活性が認められなかつた。
5 . 抗 Mい 5R α抗体を用いた sh iL-5R ひの検出
96ゥエルの EIA用ブレー卜 (グライナ一社製) に、 抗ヒ卜 IL- 5R αモノク ローナル抗体 KM1257を 10 g/ml の濃度に PBS で希釈し、 50 1/ゥエルずつ 分注し、 4 でで一晩放置して吸着させた。洗浄後、 1 牛血清アルブミン(BSA) を 含む PBS を 100 1 / ゥエル加え、室温 1 時間反応させて残っている活性基を ブロックした。 1¾BSA- PBS を捨て、 1000〜0. l ng/mlの濃度に 1¾BSA- PBS で希釈 した実施例 1の 1 (9)で得られた精製 sh IL- 5R αを 4 でで一晩反応させた。 tween-PBS で洗浄後、 公知の方法 (酵素抗体法:学際企画刊 1985年) でピオ チン標識した抗ヒト Iい 5R αモノクローナル抗体 KM1259を 1 g/mlの濃度に 1 %BSA-PBS で希釈して 50 1/ゥエルずつ加えて室温にて 2 時間反応させた。 tween-PBS で洗浄後、 4000倍に 1¾BSA- PBSで希釈したアビジン標識ペルォキシ ダ一ゼ (ニチレイ社製) 50 1/ゥエルを加えて室温にて 1 時間反応させた。 tween-PBS で洗浄後 ABTS基質液 [2· 2-アジノビス (3-ェチルベンゾチアゾール -6- スルホン酸) アンモニゥム] を用いて発色させ 0D415nni の吸光度を測定し た (NJ2001 : 日本イン夕一メッド社製) 。
結果を第 5 9図に示す。 この結果、 抗ヒト I L-5R αモノクローナル抗体 KM1257およびピオチン標識抗ヒト IL-5R αモノクローナル抗体 KM1259を用い ることにより SML-5R ひを測定することができることが明らかとなった。
6 .ウエスタンプロッティング法による sh IL- 5R aの検出
実施例 1の 1 ( 9 ) で述べた sML- 5R aを 2_メルカプトエタノールを含む SDS- PAGE用サンプルバッファーあるいは 2-メルカプトエタノールを含まない SDS-PA GE用サンプルバッファ一中にて加熱変性させた。 該溶液を市販の SDS- PAGE用グ ラジェントゲル (アト一社製) にて電気泳動した後、 PVDF膜 (ミリポア社製) に蛋白質を転写した。 該 PVDF膜を 10¾BSAを含む PBSに浸して 4でにてー晚放置し てブロッキングを行い、 ブロッキング終了後 0. 05 Tweenを含む PBSにてよく洗浄 した。 該 PVDF膜を実施例 1の 5で得られたハイプリドーマの培養上清に室温で 2時間浸し、 0. 05¾Tweenを含む PBSにてよく洗浄した。 さらにペルォキシダーゼ 標識抗マウスィムノグロブリン抗体 (和光純薬社製) を BSA- PBSで 1000倍希釈 した溶液に該 PVDF膜を室温で 1時間浸し、 0. 05¾Tweenを含む PBSにてよく洗浄し た。 洗浄液をよく除いた後、 ECL試薬 (アマシャム社製) を該 PVFD膜にかけ 1分 間反応させた。 過剰量の試薬を除きプラスチックフィルムに該 PVDF膜を挟んで X 線フィルム感光用カセッ卜に入れて ECL用フィルムを感光させ、 抗体の反応性を 確認した。
結果を第 6 0図に示す。 KM1257は反応性を示したが、 KM1259、 KM1486は反応 性を示さなかった。
7. shIL- 5R aの免疫沈降
96ゥエルの EIA用プラスチックプレートに抗マウスィムノグロプリン抗体 (DA K0社製) を PBSで 50倍希釈したものを 200 l Zゥエルずつ分注し、 4でにて一晩 放置して吸着させた。 PBSで洗浄後、 1¾BSAを含む PBSを 300 1 ゥエルずつ分注 して室温で 1時間放置し、 ブロッキングを行った。 PBSにて洗浄後、 実施例で得 られた抗ヒ卜 IL-5R aモノクローナル抗体である KM1257、 KM1259あるいは KM1486 の培養上清を 200 1ずつ加え、 4でにて一晩放置して抗体を吸着させた。 プレ ートを洗浄後、 実施例 1の 1で得られた shIL- 5R aを 10 g/mlの濃度に^ BSAで 希釈したものを 50 1ずつ分注し、 4ででー晚反応させた。 プレートを 0. 05¾Twe enを含む PBSにて洗浄後、 5倍濃度の 2-メルカプトエタノールを含まない SDS-PA GE用サンプルバッファー [0. 31Mトリス(pH6. 8)、 10¾SDS、 50%グリセロール] あ るいは 2-メルカプトエタノールを含む SDS- PAGE用サンプルバッファー [0. 31Mト リス(pH6. 8)、 10¾SDS、 50¾グリセロール、 25% 2-メルカプトエタノール] を 50 ^ I Zゥエルずつ分注し、 振とうしながら室温で 2時間放置した。 200 の PBS に該反応液を加え、 ヒー卜ブロックにて加熱した後、 市販の SDS- PAGE用グラジ ェントゲル (アト一社製) にて 25 /z lの該溶液を分離した。 電気泳動終了後、 PV DF膜 (ミリポア社製) に転写を行った。 該 PVDF膜を実施例 3の 6に示した方法 で KM1257を用いてウェス夕ンブロッティングを行い、 shIL- 5R aを検出した。 結果を第 6 1図に示す。 KM1257、 K 1259, K 1486ともに shIL-5R aを免疫沈降 することが明らかとなった。 産業上の利用可能性
本発明により、 ヒト好酸球上に特異的に発現されていると考えられるヒト 1L- 5受容体 α鎖に特異的に結合するモノクローナル抗体 KM1257、 KM1259および KM14 86が提供される。 また、 ヒト好酸球上に特異的に発現されていると考えられる ヒト【L-5受容体 α鎖に特異的に結合し、 かつヒト IL- 5の生物活性を阻害できる ヒ卜化抗体 ΚΜ1399、 ΚΜ8399, ΚΜ7399および ΚΜ9399が提供される。 本発明の抗体 は免疫細胞染色におけるヒト好酸球の免疫学的検出、 IL- 5の生物活性の阻害に よるアレルギー性疾患の診断、 治療等に有用である。 特にヒト化抗体において はモノク口一ナル抗体よりも免疫原性が低く、 その効果が長期にわたり持続す ることが期待される。
配 列 表
配列番号: 1
配列の長さ : 32
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 D N A
配列:
CAAAGCTTAC CATGATCATC GTGGCGCATG TA 32 配列番号: 2
配列の長さ : 32
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 D N A
配列:
CAGGATCCCT ACTTACCCAC ATAAATAGGT TG 32 配列番号: 3
配列の長さ : 27
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 D N A
配列:
CAGATATCTC ACTTCTCCCA CCTGTCA 27 配列番号: 4
配列の長さ : 88
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 D N A
配列:
AGCTTCCACC ATGGAGTTTG GGCTCAGCTG GCTTTTTCTT GTCCTTGTTT TCAAAGGTGT 60 TCAGTGTGAC TTACTTCCTG ATGAAAAG 88 配列番号: 5
配列の長さ : 84
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CTTTTCATCA GGAAGTAAGT CACACTGAAC ACCTTTGAAA ACAAGGACAA GAAAAAGCCA 60 GCTGAGCCCA AACTCCATGG TGGA 84 配列番号: 6
配列の長さ : 51
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
AGCTTCCACC ATGGCTACAG GCTCCCGGAC GTCCCTGCTC CTGGCTTTTG G 51 配列番号: 7
配列の長さ : 58
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CCTGCTCTGC CTGCCCTGGC TTCAAGAGGG CAGTGCCGAC TTACTTCCTG ATGAAAAG 58 配列番号: 8
配列の長さ : 64
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CTTTTCATCA GGAAGTAAGT CGGCACTGCC CTCTTGAAGC CAGGGCAGGC AGAGCAGGCC 60 AAAA 64 配列番号: 9
配列の長さ : 41
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GCCAGGAGCA GGGACGTCCG GGAGCCTGTA GCCATGGTGG A 41 ill 配列番号: 10
配列の長さ : 39
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GGCAGCGGCG GTTCCGGTGA GCCCAAATCT TGTGACAAA 39 配列番号: 1 1
配列の長さ : 34
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CAGGATCCCC CGTCGCACTC ATTTACCCGG AGAC 34 配列番号: 12
配列の長さ : 34
配列の型:核酸
鎖の数:一本鎖
卜ポロジ一:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CAAAGCTTCC ACCATGGAGT TTGGGCTCAG CTGG 34 配列番号: 13
配列の長さ : 39
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
ACCGGAACCG CCGCTGCCCT TACCCACATA AATAGGTTG 39 配列番号: 14
配列の長さ : 34
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CAAAGCTTCC ACCATGGCTA CAGGCTCCCG GACG 34 配列番号: 15
配列の長さ : 76
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CGATAAGCTA TGAAAACTAC AGCCTTGGAG GAAGCTTAAA TGAGCTCGAT ATCAAGGCCT 60 ACCCGGGCGC CATGCA 76 配列番号: 16
配列の長さ : 32
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CACTCAGTGT TAACTGAGGA GCAGGTGAAT TC 32 配列番号: 17
配列の長さ : 40
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
AGCTGAATTC ACCTGCTCCT CAGTTAACAC TGAGTGGTAC 40 配列番号: 18
配列の長さ : 21
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DMA
配列:
AATTCGTACG GTGGCTGCAC C 21 配列番号: 19
配列の長さ : 17
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GGTGCAGCCA CCGTACG 17 配列番号: 20
配列の長さ : 26
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CTCGCGACTA GTGGGCCCGC GGCCGC 26 配列番号: 21
配列の長さ : 34
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
AGCTGCGGCC GCGGGCCCAC TAGTCGCGAG GTAC 34 配列番号: 22
配列の長さ : 21
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類: cDNA
配列の特徴:
特徴を表す記号: sig peptide
存在位置: 1..57
特徴を決定した方法: S
特徴を表す記号: domain
存在位置: 148..162
特徴を決定した方法: S
他の情報: CDR1
特徴を表す記号: domain
存在位置: 205..255
特徴を決定した方法: S
他の情報: CDR2
特徴を表す記号: domain
存在位置: 352..387
特徴を決定した方法: S
他の情報: CDR3
配列:
ATG AAC TTC GGG CTC AGC TTG ATT TTC CTT GCC CTC ATT TTA AAA GGT 48 Met Asn Phe Gly Leu Ser Leu lie Phe Leu Ala Leu He Leu Lys Gly
-15 -10 -5 Ill : m :
II: ^暴 a
IZI OZl 911 on
J3S J9S ΙΒΛ JiU 1ΒΛ J3S Jill uio dJi JAI l D V3I 331 31033V 313 VDI 33V V9D VV3 1DD 091 3VI
SOI 001 96 dsv 13N BIV 3JV -iAi usv 3JV SJV ¾1V SAQ JAX 丄
3V0 D1V 130 ODD 3V13VV 100 1VI 3113D3 ODD VOV V30 101 3VI IVl
06 58 08
13W BIV -im dsv ni3 jas sAi nai Ai3 J9S ni3 nai JAI nai JIU 9ZZ 01V 133 VDV 3VD 3V3131 DVV DID 1933DV 01V VV33X3 3VI 013 33V
91 01 99 usv sAi BIV usy dsy 3JV Jas 1¾Λ J4X 3JV sAq naq J3s dsy 88Z 3VV DVV 33D IVV 3VD VDV 331 310 33V 311 V33 003 OVV Dll IDV 3V0
09 S9 OS
o d aqd S!H ail JAi jas A13 Λ13 jas jas an Ι¾Λ 丄 ni3 Οί^ V33 III 3V3 31V 3VI IDV 10D 100 IDV 3DV IIV ODD VDO 310 DDI 0V3
Ofr 5£ OS oid 3JV sAi dsy J3S ail "ID 3JV ail dJi BIV }3W 3 dsv Z6I 033 DOV OVV 3V0 V3I IIV VV3 3D3 IIV D91 I3D 3IV 300 IVl 3V9 IDV
9Z OZ 51
34d Λΐο J9S Biv ¾1V sA3 J9S nai sAi nai J9 M3 oJd m dll IDV 311 VDO 13133D V3D 101 DDI 313 VVV 013 301 030 V03丄;):)
01 S I 【- sAi ΙΒΛ nai dsy A]3 Aig jas naq }^\ sA^ uio \
96 3VV DID VII DVD V39309 131 3V0 DID DII DV3 DI9 OVO 1DI WD 313 SlO/96dT/X3fI frSeOI/L6 OM 鎖の数:二本鎖
トポロジー:直鎖状
配列の種類: cDNA
配列の特徴:
特徴を表す記号: sig peptide
存在位置: 1..60
特徴を決定した方法: S
特徴を表す記号: domain
存在位置: 130..174
特徴を決定した方法: S
他の情報: CDR1
特徴を表す記号: domain
存在位置: 220..240
特徴を決定した方法: S
他の情報: CDR2
特徴を表す記号: domain
存在位置: 337..363
特徴を決定した方法: S
他の情報: CDR3
配列:
ATG GAG AAA GAC ACA CTC CTG CTA TGG GTC CTG CTT CTC TGG GTT CCA 48 Met Glu Lys Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro -20 -15 -10 -5
GGT TCC AGA AGT GAC ATT GTG CTG ACC CAA TCT CCA GCT TCT TTG GCT 96 Gly Ser Arg Ser Asp lie Val Leu Thr Gin Ser Pro Ala Ser Leu Ala
- 1 1 5 10 6ΐΙ
^ m:一 口
鹩本ニ: ^a> :
m: ½2S u: in on sAi d\\ nig 3 VVV 31V WD
SOI 001 96 nai 3JV Jm A]3 A]o Ai aqj jqi dJi OJJ dsv sAq jas UIQ ui3 fr8S 'Jil 30V 33V 3DD VD9 I9D 31103V 001 933 113 IVD DVV IDV VV3 3V3
06 98 08 sAo Gild JAi }3W δΐν B1V dsv dsy nig ]3N OJJ SIH USV "31 101 311 IVl DIV V3D 13D IVD IV0 OVD DV001V 133 1V3 31V DVV 313
SI Oi 99
-13S and dsy -iaS ^i J3S aqj SJV BJV oii I¾A人 13 10V 311 3V3 V3V 93D 131333 I3V 333 IDV III 03V 33D 133 310 ODD
09 S9 05 ^
•I3S M3 uio usv J3S ¾1V ¾1V JAi 9]i naq naq sAq OJJ J9S uio Aio
O Z 331 V90 VV3 3VV DDI V3D I3D IVl 3IV 313 313 OVV 333 V3I 9V3 VOD
O 98 OS o d sAi ui3 uio a ijd dJi usv law aqd usv Ι^Λ M3 usv s!H dsy ΙΒΛ
261 m VVV m m Oil DDI OVV 31V III IVV OIO ODD IVV IVD IV3丄丄 3
92 OZ SI
J3S nig usv Biv 3JV sAo jas an J¾ 3JV "ID nd-] jas Ι^Λ
HI IDV VV3 OVV ODD V3V 331331 3IV 33V 33D 33V 3V3 DD3 VI3 131 DID SZO/96dT/13d WC01/.6 ΟΛ\ 配列の特徴:
特徴を表す記号: sig peptide
存在位置: 1..57
特徴を決定した方法: S
特徴を表す記号: domain
存在位置: 148..162
特徴を決定した方法: S
他の情報: CDR1
特徴を表す記号: domain
存在位置: 205..255
特徴を決定した方法: S
他の情報: CDR2
特徴を表す記号: domain
存在位置: 352..387
特徴を決定した方法: S
他の情報: CDR3
配列:
ATG GAA TGG AGT TGG ATA TTT CTC TTT CTC CTG TCA GGA ACT GCA GGT 48 Met Glu Trp Ser Trp lie Phe Leu Phe Leu Leu Ser Gly Thr Ala Gly
-15 -10 - 5
GTC CAC TCT GAG GTC CAG CTG CAA CAG TCT GGA CCT GAG CTG GTA AAG 96 Val His Ser Glu Val Gin Leu Gin Gin Ser Gly Pro Glu Leu Val Lys
-1 1 5 10
CCT GGG GCT TCA GTG AAG ATG TCC TGC AAG GCT TCT GGA TAC ACA TTC 144 Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe
15 20 25 09 ·Ί : m^
3 Ud3d Sis: ^SS ¾¾凝封 :難 ω m: -^α^^ 篛 Φ二: ^o?ii : m
92: ¼ ½9S
\Z\ OZI 911 on
J3S 1ΒΛ JiU Jill M3 ui3 AID 丄 JAi
D V3I 331 DID V3V DI3 I3V 33V 300 ODD 9313VI 901 001 S6 dsy Aj3 ri9q 丄 JA丄 3』v 311 SA3 Π91 JA丄 3VD m 913 m IDD IVl 3V1 ODV丄丄 V V0D WD V3V 00D 191313 IVl
06 98 08
1¾Λ E1V J3S dsv nig J3S na "ID 13W "丄 ΙΒΛ m 313030丄:)丄 DVD 3VD 13133V 31330V I3V 313 DV9 DIV:) V丄 : V3V
Oi 99
J3S J3S 3JV dsv J9S Ji SJV nig
3DV DDI 331 m V3I 13V 013 VDV 333 OVV 30D VVV 3丄丄 9DV 09 OS
USV -ΐΛχ SAl dsy usy ■ΐΑχ OJj usy 311 ail d" BIV on IVV 3V13VV I3V 009 IVD IVV 3VI 133 IVV 11V IVl V33丄丄 V DDI 039
OS
nai A]3 uio A13 ojj ail 1¾Λ JAi J9S Jm
Ζ6Ϊ 113393 DVD 13D 133 ODV 3V3 VVV DID m 3V3丄丄\ 丄丄 3丄 VI 13V 13V SZ0/96df/X3d PSZ01/L6 O 特徴を決定した方法: s
特徴を表す記号: domain
存在位置: 130..162
特徴を決定した方法: S
他の情報: CDR1
特徴を表す記号: domain
存在位置: 208..228
特徴を決定した方法: S
他の情報: CDR2
特徴を表す記号: domain
存在位置: 325..351
特徴を決定した方法: S
他の情報: CDR3
配列:
ATG ATG TCC TCT GCT CAG TTC CTT GGT CTC CTG TTG CTC TGT TTT CAA 48 Met Met Ser Ser Ala Gin Phe Leu Gly Leu Leu Leu Leu Cys Phe Gin
- 20 -15 -10 -5
GAT ATC AGA TGT GAT ATC CAG ATG ACA CAG GCT ACA TCC TCC CTG TCT 96 As 〖le Arg Cys Asp He Gin Met Thr Gin Ala Thr Ser Ser Leu Ser
-1 1 5 10
GCC TCT CTG GGA GAC AGA GTC ACC ATC GGT TGC GGG ACA AGT GAG GAC 144 Ala Ser Leu Gly Asp Arg Val Thr lie Gly Cys Gly Thr Ser Glu Asp
15 20 25
ATT ATC AAT TAT TTA AAC TGG TAT CGG AAG AAA CCA GAT GGA ACT GTT 192 lie 【le Asn Tyr Leu Asn Trp Tyr Arg Lys Lys Pro Asp Gly Thr Val
30 35 40 GAA CTC CTG ATC TAC CAC ACA TCA AGA TTA CAG TCA GGA GTC CCA TCA 240
Glu Leu Leu He Tyr His Thr Ser Arg Leu Gin Ser Gly Val Pro Ser
45 50 55 60
AGG TTC AGT GGC AGC GGG TCT GGA ACA GAT TAT TCT CTC ACC ATT AGT 288
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr lie Ser
65 70 75
GAC CTG GAG CAA GAA GAT ATT GCC ACT TAC TTT TGC CAA CAG GGT TAT 336
Asp Leu Glu Gin Glu Asp lie Ala Thr Tyr Phe Cys Gin Gin Gly Tyr
80 85 90
ACG CTT CCG TAC ACG GTC GGA GGG GGG ACC AAG TTG GAA ATA AAA C 382
Thr Leu Pro Tyr Thr Val Gly Gly Gly Thr Lys Leu Glu He Lys
95 100 105 107 配列番号: 26
配列の長さ : 412
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類: CDNA
配列の特徴:
特徴を表す記号: sig peptide
存在位置: 1..57
特徴を決定した方法: S
特徴を表す記号: domain
存在位置: 148..162
特徴を決定した方法: S
他の情報: CDR1
特徴を表す記号: domain 91 Oi S9
usv J3S J3 J ill dsv ^iv ¾IV 311 Jill B1V sAi EIV UID 3iy sAq OJJ 88Z DVV 331331 V3V 3V0 V33 V30 VIV 13V 033 OVV 333 DV3311 OVV D33
09 SS 09
dsv J3S sAi jqi usv usv ¾1V OJJ dsy an 3JV ail cU丄 nig 0Π 3VD 131 VVV I3V IVV 10D IVV 030133 IVO IIV 09V V30 IIV DDI DVO
o Βε οε nai A uio nio OJJ SJV ui sAq |¾Λ d l siH 13N JAi jqx dsv sAq
Z6i 013 m m IOD DDV OVD DVV DID OOI ovo oiv ivi oov OVD VVV
OZ 91 311 usv a ild jas BlV Jill s jas nai usv Ι^Λ J3S ¾1V ^io OJJ frl 丄丄 V 3VV Dil ODD 131 I3D V3V 3DI 331 Oil DVV 3ID V3133090D V33
01 5 I 1-
1ΒΛ nai nig Biv J3S «10 uiD na \ \ n|3 J3S usy 1¾Λ 96 DID lid DVD V3D ODD 131 DVO 0V3013 OVD IID 9VD V31 IVV 3ID
9- 01- Sl-
^10 Jill ΙΒΛ Ι¾Λ BlV 13W "3134d 3Md all 1¾Λ dJl J3S sAo sAi 8fr ODD V3V IID DID V30 DIV 91331131131V 110 001 30V DDI VVV OIV
棚 s: ¾ つ
m · :璽 u!Binop: ¾ ^ 拏 ¾¾¾ S: ¾ :つ 凝 ¾
88SI0/96df/13d fS€0I/Z,6 O 9ZI
s: ¾ :つ 襯封 οοε --U2: Β?}¾ u!mnop:
: m fCD S: ¾ つ 襯封 ^Ll · 9Ι: S5>¾ u!Binop: ^2I .¾¾¾¾¾
IH03: ¾ S: ¾ つ ¾ ^ 凝^
801 -·6Ι: S5>¾ U!BUIOP: ½21 -¾¾¾¾¾ :職
LZ:
811 9Π Oil
•ias J3S Ι¾Λ m nai J¾ jqi Ajg uio Z D V3I 331319 V3V 313 I3V 33V 393 VV3
SOI 001 36 dJi JAi dsy aw sqa 3jy ii9i 3JV naq Aig jqi s¾ JAX JAI 8S 390 DDI IVl 3V0111311 D03 V13 D93 V13 V00 IDD 13V 1013VI丄 VI
06 98 08
1BA Biv -nil dsv nio ja Jqi nai jas J9S naq uig naq ιΛχ BIV Jm 9£g 31333313V DVD DVO 131 V3V 0133DV 3DV 313 DVD 3133V133D V3V S20/96dr/XDd ^Se0l ,6 OAV 配列:
TCC AGA GGA CAA ATT GTT CTC ACC CAG TCT CCA GCA ATC ATG TCT GCA 48 Ser Arg Gly Gin lie Val Leu Thr Gin Ser Pro Ala lie Met Ser Ala
-1 1 5 10
TCT CCA GGG GAG AAG GTC ACC ATG ACC TGC AGT GCC AGT TCA AGT GTA 96 Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val
15 20 25
AGT TAC ATG CAC TGG TAC CAG CAG AAG TCA GGC ACC TCC CCC AAA AGA 144 Ser Tyr Met His Trp Tyr Gin Gin Lys Ser Gly Thr Ser Pro Lys Arg
30 35 40 45
TGG ATT TAT GAC ACA TCC AAA CTG GCT TCT GGA GTC CCT GCT CGC TTC 192 Trp lie Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe
50 55 60
AGT GGC AGT GGG TCT GGG ACC TCT TAC TCT CTC ACA ATC AGC AGC ATG 240 Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr He Ser Ser Met
65 70 75
GAG GCT GAA GAT GCT GCC ACT TAT TAC TGC CAG CAG TGG AGT AGT AAC 288 Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gin Gin Trp Ser Ser Asn
80 85 90
CCA CCC ATC ACG TTC GGA GGG GGG ACC AAG CTG GAA ATA AAA C 331 Pro Pro He Thr Phe Gly Gly Gly Thr Lys Leu Glu He Lys
95 100 105 107
配列番号: 28
配列の長さ : 5
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ぺプチド 配列:
Asp Tyr Gly Met Ala 配列番号: 29
配列の長さ : 17
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
Ala He Ser Ser Gly Gly Ser Tyr lie His Phe Pro Asp Ser Leu Lys Gly 配列番号: 30
配列の長さ : 12
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
Arg Gly Phe Tyr Gly Asn Tyr Arg Ala Met Asp Tyr 配列番号: 31
配列の長さ : 15
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド 配列:
Arg Ala Asn Glu Ser Val Asp His Asn Gly Val Asn Phe Met Asn 配列番号: 32
配列の長さ: 7
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
Ala Ala Ser Asn Gin Gly Ser 配列番号: 33
配列の長さ : 9
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
Gin Gin Ser Lys Asp Val Pro Trp Thr 配列番号: 34
配列の長さ: 5
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド 配列:
Ser Tyr Val lie His 配列番号: 35
配列の長さ : 17
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
Tyr lie Asn Pro Tyr Asn Asp Gly Thr Lys Tyr Asn Glu Arg Phe Lys Gly 配列番号: 36
配列の長さ : 12
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
Glu Gly lie Arg Tyr Tyr Gly Leu Leu Gly Asp Tyr 配列番号: 37
配列の長さ : 11
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド 配列:
Gly Thr Ser Glu Asp lie lie Asn Tyr Leu Asn 配列番号: 38
配列の長さ : 7
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
His Thr Ser Arg Leu Gin Ser 配列番号: 39
配列の長さ : 9
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
Gin Gin Gly Tyr Thr Leu Pro Tyr Thr 配列番号: 40
配列の長さ : 5
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド 配列:
Asp Thr Tyr Met His 配列番号: 41
配列の長さ : 17
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ぺプチド
配列:
Arg He Asp Pro Ala Asn Gly Asn Thr Lys Ser Asp Pro Lys Phe Gin Ala 配列番号: 42
配列の長さ : 9
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
Gly Leu Arg Leu Arg Phe Phe Asp Tyr 配列番号: 43
配列の長さ : 10
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド 配列:
Ser Ala Ser Ser Ser Val Ser Tyr Met His 配列番号: 44
配列の長さ : 7
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
Asp Thr Ser Lys Leu Ala Ser 配列番号: 5
配列の長さ : 10
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列:
Gin Gin Trp Ser Ser Asn Pro Pro lie Thr 配列番号: 46
配列の長さ : 39
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA 配列:
GCACCACTCT CACAGTCTCC TCAGCCAGTA CTAAGGGCC 39 配列番号: 47
配列の長さ : 31
配列の型:核酸
鎖の数:一本鎖
卜ポロジ一:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CTTAGTACTG GCTGAGGAGA CTGTGAGAGT G 31 配列番号: 48
配列の長さ : 20
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GACCAAGTTG GAAATAAAAC 20 配列番号: 49
配列の長さ : 21
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA 配列:
GTACGTTTTA TTTCCAACTT G 21 配列番号: 50
配列の長さ : 97
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CAGGAAACAG CTATGACGCG GCCGCCACCA TGGAATGGAG TTGGATATTT CTCTTTCTCC 60 TGTCAGGAAC TGCAGGTGTC CACTCTGAGG TCCAGCT 97 配列番号: 51
配列の長さ : 96
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GAATGTGTAT CCAGAAGCCT TGCAGGAAAC CTTCACTGAA GCCCCAGGCT TCTTCACCTC 60 AGCTCCAGAC TGCACCAGCT GGACCTCAGA GTGGAC 96 配列番号: 52
配列の長さ : 96
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状 配列の種類:他の核酸 合成 DNA
配列:
AGGCTTCTGG ATACACATTC ACTAGTTATG TTATTCACTG GGTGCGACAG GCCCCTGGTC 60 AGGGCCTTGA GTGGATGGGA TATATTAATC CTTACA 96 配列番号: 53
配列の長さ : 98
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
TGTAGGCTGT GCTCGTGGAC GTGTCTGCAG TGATTGTGAC TCTGCCTTTG AACCTCTCAT 60 TGTACTTAGT CCCATCATTG TAAGGATTAA TATATCCC 96 配列番号: 54
配列の長さ : 96
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GTCCACGAGC ACAGCCTACA TGGAGCTCAG TTCGCTGAGA TCTGAGGACA CGGCGGTGTA 60 TTACTGTGCG AGAGAAGGAA TTAGGTACTA TGGTCT 96 配列番号: 55
配列の長さ: 100
配列の型:核酸 鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GTTTTCCCAG TCACGACGGG CCCTTGGTGG AGGCTGAGGA GACTGTGACC AGGGTGCCTT 60 GGCCCCAGTA GTCTCCCAGT AGACCATAGT ACCTAATTCC 100 配列番号: 56
配列の長さ : 421
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴:
特徴を表す記号: s i g pept i de
存在位置: 1. . 57
特徴を決定した方法: S
特徴を表す記号: domain
存在位置: 148. . 162
特徴を決定した方法: S
他の情報: CDR1
特徴を表す記号: domai n
存在位置: 205. . 255
特徴を決定した方法: S
他の情報: CDR2
特徴を表す記号: domain
存在位置: 352. . 378
特徴を決定した方法: S LSI
goi ooi 36 dsv naq ri9i Ala JAi JAi 3jy ail "13 §JV BIV sAo JAi 丄 3V0 m DID VID I0D IVl 3V1 DDV丄丄 V V30 WD VDV ODD 1313VI IVl
06 98 08
1ΒΛ BIV dsv nig J3S Biv nai jas ias t\3i nio jaw BIV im 010 D3D DDV 3V0 DVD 131 VOV DID DDI IDV DID DVD DIV 3V13D!) V3V
Si Oi, 99 jas i L Ja Jqi dsy BIV m 311 Jill I¾A S V sAi 3JV I 3 3DV 93V DDI DDV 3V9 V00 I3V 31V V3V 313 VDV ODD VVV ]丄丄 33V m
09 39 09
usv JAi sAi jqi Ai3 dsy usy JAi OJJ usy an JA丄 ^ID 13N 丄 ni3 on IVV 0V1 DV 13V 0 IVO IVV 3VI 133 IVV IIV IVl VOD 31V DDI DVD
Sfr Ofr 9S OS
Π3Ί "ID ojd BIV uig 3jy l¾A dJI SIH ail 1ΒΛ 丄 J3S Jqi
Z6I 113 3033V3 130133 ODD DV3 VD3 DID 0013V3丄丄 V 113 IVl IDV 13V
SI
m Λ13 J9S BIV sAi sAo J9S Ι^Λ sAq ]ΒΛ J3 BIV OJJ
311 VDV 3V1 VOD 1311339VV 3313311ID 3VV DID V3I I3D 333133
01 S
sAi sAi ΙΒΛ nig BIV J3S ^ID 1¾Λ nai ui3 ΙΒΛ niO as siH 1¾Λ
96 DVV OVV 9ID DVD 130 VD31319V3 DID 9133V33190V31313V3310
9- 01- 91-
AIO BIV Jill Ai3 jas nai naq ai^ naq aqj an dJi J3S lJj, ni3 J9N
130 VOD IDV V33 V31013313 III 313 III VIV DDI IDV ODI WO OIV 棚 : m^o S 0/96dT/XDd PS 0l/L6 OM TAC TGG GGC CAA GGC ACC CTG GTC ACA GTC TCC TCA G 421 Tyr Trp Gly Gi n Gly Thr Leu Val Thr Val Ser Ser
110 1 15 120 121
配列番号: 57
配列の長さ : 87
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CAGGAAACAG CTATGACGAA TTCCACCATG ATGTCCTCTG CTCAGTTCCT TGGTCTCCTG 60 TTGCTCTGTT TTCAAGACAT CAGATGT 87 配列番号: 58
配列の長さ : 83
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GATGGTGACT CTGTCTCCTA CAGAGGCAGA CAGGGAGGAT GGAGACTGTG TCATCTGGAT 60 ATCACATCTG ATGTCTTGAA AAC 83 配列番号: 59
配列の長さ : 92
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状 配列の種類:他の核酸 合成 DNA
配列:
TAGGAGACAG AGTCACCATC ACTTGCGGGA CAAGTGAGGA CATTATCAAT TATTTAAACT 60 GGTATCAACA GAAACCAGGG AAAGCCCCTA AG 92 配列番号: 60
配列の長さ : 90
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
TTCCAGACCC GCTGCCACTG AACCTTGATG GGACTCCTGA CTGTAATCTT GATGTGTGGT 60 AGATCAGGAG CTTAGGGGCT TTCCCTGGTT 90 配列番号: 61
配列の長さ : 88
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CAGTGGCAGC GGGTCTGGAA CAGATTTCAC TCTCACCATT AGTAGTCTGC AACCTGAAGA 60 TTTTGCCACT TACTACTGCC AACAGGGT 88 配列番号: 62
配列の長さ : 91
配列の型:核酸 鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GTTTTCCCAG TCACGACCGT ACGTTTTATT TCCACCTTGG TCCCTTGGCC GAACGTGTAC 60 GGAAGCGTAT AACCCTGTTG GCAGTAGTAA G 91 配列番号: 63
配列の長さ : 382
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴:
特徴を表す記号: s ig pept i de
存在位置: 1. . 60
特徴を決定した方法: S
特徴を表す記号: domai n
存在位置: 130. . 162
特徴を決定した方法: S
他の情報: CDR1
特徴を表す記号: doma i n
存在位置: 208. . 228
特徴を決定した方法: S
他の情報: CDR2
特徵を表す記号: doma i n
存在位置: 325. . 351
特徴を決定した方法: S 他の情報: CDR3
配列:
ATG ATG TCC TCT GCT CAG TTC CTT GGT CTC CTG TTG CTC TGT TTT CAA 48 Met Met Ser Ser Ala Gin Phe Leu Gly Lea Leu Leu Leu Cys Phe Gin
-20 -15 -10 -5
GAT ATC AGA TGT GAT ATC CAG ATG ACA CAG TCT CCA TCC TCC CTG TCT 96 Asp lie Arg Cys Asp 〖le Gin Met Thr Gin Ser Pro Ser Ser Leu Ser
- 1 1 5 10
GCC TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC GGG ACA AGT GAG GAC 144 Ala Ser Val Gly Asp Arg Val Thr lie Thr Cys Gly Thr Ser Glu Asp
15 20 25
ATT ATC AAT TAT TTA AAC TGG TAT CAA CAG AAA CCA GGG AAA GCC CCT 192 lie lie Asn Tyr Leu Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro
30 35 40
AAG CTC CTG ATC TAC CAC ACA TCA AGA TTA CAG TCA GGA GTC CCA TCA 240 Lys Leu Leu lie Tyr His Thr Ser Arg Leu Gin Ser Gly Val Pro Ser 45 50 55 60
AGG TTC AGT GGC AGC GGG TCT GGA ACA GAT TTC ACT CTC ACC ATT AGT 288 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser
65 70 75
AGT CTG CAA CCT GAA GAT TTT GCC ACT TAC TAC TGC CAA CAG GGT TAT 336 Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Gly Tyr
80 85 90
ACG CTT CCG TAC ACG TTC GGC CAA GGG ACC AAG GTG GAA ATA AAA C 382 Thr Leu Pro Tyr Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys
95 100 105 107 配列番号: 64
配列の長さ : 96
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GTCCACGAGC ACAGCCTACA TGGAGCTCAG TTCGCTGAGA TCTGAGGACA CGGCGGTGTA 60 TCTCTGTGGG AGAGAAGGAA TTAGGTACTA TGGTCT 96 配列番号: 65
配列の長さ : 421
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴:
特徴を表す記号: s ig pept ide
存在位置: 1. . 57
特徴を決定した方法: S
特徴を表す記号: domai n
存在位置: 148. . 162
特徴を決定した方法: S
他の情報: CDR1
特徴を表す記号: doma i n
存在位置: 205. . 255
特徴を決定した方法: S
他の情報: CDR2 2
06 S8 08
1ΒΛ Fiv im dsy ni3 jas SJV nai jas J3S nai a\ law ΐΑχ BIV -"ΙΙ
98S 019 D30 D3V 3V39VD 131 VOV 013031 I9V 3139VD DIV 3VI 330 VDV
Si OL S9
J3S Jill -nil dsv BIV Jqi ail J¾ 1¾Λ 3 V s^i aqj gjy ni3
882 30V 03V DDI 33V DVD VDD 13V 31V VDV dlD VDV 333 VVV 31133V 3V3
09 S9 09
usv ^l sAi jqi Aio dsy usy JA丄 OJJ usy ail J Aig jaw cU丄 u U IVV 3VI OVV 13V 0D3 IVD IVV 3VX 3 IVV丄丄 V IVl VDD 9IV 331 i)V3 Sfr 0 98 οε nai Aio uio Λ!3 OJJ EIV ui3 SJV Ι¾Λ 丄 IH 311 ΙΒΛ 3S -"11 Z6I 113 ODD DVD IDD 13333D 9V3 V93 DID 0913V3 IIV IID IVl IDV丄:) V
02 SI a lid m AID -ias BIV sAi sAo jas 1ΒΛ sAi I¾A J9S ¾1V Aio OJJ n\ 311 V3V 3VI V03131 IDD OVV 301331 IID OVV DID V31 I3D DDD丄:):)
01 9 Ϊ l- s^l sAi ΐΒΛ ni3 B]y AJ3 ja ujg ΙΒΛ naq UJ I¾A "10 J3S s!H 1¾Λ 96 DVV OVV 3丄 3 DV3133 VOO 1313V3 DID 0133V3310 OVO 131 V3 DID
S- 01- 91-
Λ13 BIV Jm Π3ΐ aqj naq a j an dJi jas 丄 nig i9[v
8 133 VDD I3V VD3 V3X 013313 III 313 III VIV 331 I3V DDI WO 'J丄 V 圆:腿
S: ¾ つ ¾¾¾凝封 m · 9ε:喜 u!Binop: ¼2| -¾¾¾¾# SZ0/96<ir/XDcI PS£0l/L6 ΟΛ\ TAT CTC TGT GGG AGA GAA GGA ATT AGG TAC TAT GGT CTA CTG GGA GAC 384
Tyr Leu Cys Gly Arg Glu Gly lie Arg Tyr Tyr Gly Leu Leu Gly Asp
95 100 105
TAC TGG GGC CAA GGC ACC CTG GTC ACA GTC TCC TCA G 421
Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser
110 115 120 121 配列番号: 66
配列の長さ : 96
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
AGGCTTCTGG ATACACATTC ACTAGTTATG TTATTCACTG GGTGCGACAG GCCCCTGGTC 60 AGGGCCTTGC GTGGATGGGA TATATTAATC CTTACA 96 配列番号: 67
配列の長さ : 98
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
TGTAGGCTGT GCTCGTGGAC CTGTCTGCAG TGATTGTGAC TCTGCCTTTG AACCTCTCAT 60 TGTACTTAGT CCCATCATTG TAAGGATTAA TATATCCC 96 W 配列番号: 68
配列の長さ : 421
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴:
特徴を表す記号: sig peptide
存在位置: 1..57
特徴を決定した方法: S
特徴を表す記号: domain
存在位置: 148..162
特徴を決定した方法: S
他の情報: CDR1
特徴を表 記号: domain
存在位置: 205..255
特徴を決定した方法: S
他の情報: CDR2
特徴を表 記号: domain
存在位置: 352..378
特徴を決定した方法: S
他の情報: CDR3
配列:
ATG GAA TGG AGT TGG ATA TTT CTC TTT CTC CTG TCA GGA ACT GCA GGT 48 Met Glu Trp Ser Trp lie Phe Leu Phe Leu Leu Ser Gly Thr Ala Gly
-15 -10 -5 96: ^
69:
Ul QZ\ 911 on
J3S 1ΒΛ -IMI ΙΒΛ nai "10 ^io dJi iRi D V3133131D VDV DID D1333V 30D WD 330 DDI 3VI
SOI 001 96 dsv AID nai nai Aig JA丄 αΛχ §jy an Aio nig 8JV SAO nai 丄 8S 3V0 VDD 313 V13 103 IVl 3V1 D3V 11V V33 VVO VDV ODD 101313 IVl
06 98 08
ΙδΛ BIV Jill dsv "19 s 3JV naq jas J3S nai ni3 la^ JAi BJV Jill m DID D3D 93V 3V90V3131 V3V 013331 IDV DD DVO 01V 3V1300 VDV
31 01 99
■I3S Jill J3S 3JV dsv BIV Jill ail J¾ Ι^Λ SJV Ajg sAq 3¾d 3i\f n\ 3DV 33V 331 ODV DVD VDO IDV DIV V]V 3ID VDV 3DD VVV 311 DDV DVD
09 5S 05
usv JAi s人 i Ji ^io dsy usv 0Jd usv all JAi A]g jaw ( 丄 BIV
IVV 3V1 DVV 13V DDD 1V3 IVV 3V1133 IVV丄丄 V 1VI V33 DIV 091 ODD fr S8 οε nai Λΐ3 ins Ai3 ojj BIV ui33iy IB\ dJi SIR ail Ι¾Λ Ai J3S J Hi
Z6I ID 039 m 10313333D DVO VD3 DID 9313V3 IIV 110 IVl IOV丄:) V
U OZ SI
3M<I m JAx Λ13 J3S BIV SAl SAO J^S ]B\ SAl IBA J3S OJd \ 3ii ovi VOD IOI IDD ODI 301 UD DVV DID VDI IDD DDD JJ:)
01 9 I I- s人 1 sAq Ι¾Λ ΠΙ3 BIV UI9 I¾A "31 "19 1¾Λ J9S SIH 1¾Λ
96 DVV OVV 010 DVO I3D VDO 131 DVO DID 3133V33103V01313V3313 SZ0/96dT/13<I WEOl 6 ΟΛ\ 鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
AGGCTTCTGG ATACACATTC ACTAGTTATG TTATTCACTG GGTGCGACAG AGGCCTGGTC 60 AGGGCCTTGC GTGGATGGGA TATATTAATC CTTACA 96 配列番号: 70
配列の長さ: 98
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
TGTAGACTGT GCTCGTGGAC CTGTCTGAAG TGATTGTGAC TTTGCCTTTG AACCTCTCAT 60 TGTACTTAGT CCCATCATTG TAAGGATTAA TATATCCC 98 配列番号: 71
配列の長さ : 96
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GTCCACGAGC ACAGTCTACA TGGAGCTCAG TTCGCTGAGA TCTGAGGACA CGGCGGTGTA 60 TCTCTGTGGG AGAGAAGGAA TTAGGTACTA TGGTCT 96 配列番号: 72
配列の長さ: 421
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴:
特徴を表す記号: s ig pept i de
存在位置: 1. . 57
特徴を決定した方法: S
特徴を表す記号: domai n
存在位置: 148. . 162
特徴を決定した方法: S
他の情報: CDR1
特徴を表す記号: domain
存在位置: 205. . 255
特徴を決定した方法: S
他の情報: CDR2
特徴を表す記号: domain
存在位置: 352. . 378
特徴を決定した方法: S
他の情報: CDR3
配列:
ATG GAA TGG AGT TGG ATA TTT CTC TTT CTC CTG TCA GGA ACT GCA GGT 48 Met Glu Trp Ser Trp H e Phe Leu Phe Leu Leu Ser Gly Thr Al a Gly
-15 - 10 -5 en m :
ZL: ½s½a
Figure imgf000151_0001
■I3S J3S 1¾Λ Jm ΙΕΛ 091 jqi A]3 uig Λ]3 dJ丄 JAi I 3 V3I 331 313 VDV DID 01333V 3D3 VV3 309 301 :) VI
901 001 S6 dsv Π31 nai Λΐ3 JAI 丄 3JV ail ni33JV Afg sAo naq JAI fr8S 3VD VDD DID VI3 100 IVl 3VI OOV 11V VDD WD VDV D93 191 313 IVl
06 S8 08
Ι¾Λ BIV -nil dsv "ID §JV naq J3s J3S naq nio law JA丄 Ι¾Λ Jqi m DID ODD 33V DVD DVD 131 VDV DID 031 IDV 310 DVD 31V 3V1 DID VDV
SI OZ, 99
J3S JM1 J3S 3JV dsy J3S JMI 311 J¾ Ι¾Λ sAq Λ13 sAi 3qj gjy nio 88Z ODV D3V 331 DDV 3V0 V3I 13V 3IV V3V 31D VVV 3D3 VVV 311 ODV 9VD
09 S3 09
usy JAI sAi J¾ ΛΙ3 dsv usv ·^丄 OJJ usy d\] JAi A13 jaw dJi BIV
IVV 3VI DVV 丄] V 333 IVD IVV 3VI 133 IVV IIV IVl V9D 3IV 9D1 D30 9fr S8 02 rial Ai ui3 A]3 ojj 3JV ui33JV 1ΒΛ dJi SIH 311 1¾Λ J jas J¾
Z6I 113300 0V3 ID3 ID3 39V 0V3 V03 DI9 DDI 3V3 丄丄 V IID IVl IOV I V
32 OZ 91
3 d -im J^I ΛΙ3 J3S BIV SA1 SAO -I3S 1¾Λ SAl \ \ J3S BIV OJd
HI 311 VDV 3V1 V9913113D OVV 391 331 1133VV 010 V3I 130 303丄:):)
01 5 I I-
SA1 sAi 1ΒΛ nj3 BIV J3S UIO I^A "13 IBA nio jgs SIR Ι^Λ 96 3VV OVV 3丄 30V9 I3D V03 131 0V3 3丄 3 DID 3V3 310 OVO 131 3V3 3ID SlO/96dT/XDd frS£0l/L6 ΟΛΛ 鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
TAGGAGACAG AGTCACCATC ACTTGCGGGA CAAGTGAGGA CATTATCAAT TATTTAAACT 60 GGTATCGGCA GAAACCAGGG AAAGCCCCTG AA 92 配列番号: 74
配列の長さ : 90
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
TTCCAGACCC GCTGCCACTG AACCTTGATG GGACTCCTGA CTGTAATCTT GATGTGTGGT 60 AGATCAGGAG TTCAGGGGCT TTCCCTGGTT 90 配列番号: 75
配列の長さ : 91
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GTTTTCCCAG TCACGACCGT ACGTTTTATT TCCACCTTGG TCCCTTGGCC GACCGTGTAC 60 GGAAGCGTAT AACCCTGTTG GCAGTAGTAA G 91 配列番号: 76
配列の長さ : 382
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴:
特徴を表す記号: s i g pept i de
存在位置: 1. . 60
特徴を決定した方法: S
特徴を表す記号: domai n
存在位置: 130. . 162
特徴を決定した方法: S
他の情報: CDR1
特徴を表す記号: domain
存在位置: 208. . 228
特徴を決定した方法: S
他の情報: CDR2
特徴を表す記号: domain
存在位置: 325. . 351
特徴を決定した方法: S
他の情報: CDR3
配列:
ATG ATG TCC TCT GCT CAG TTC CTT GGT CTC CTG TTG CTC TGT TTT CAA 48 Me t Met Ser Ser Al a Gi n Phe Leu Gly Leu Leu Leu Leu Cys Phe Gin -20 -15 -10 -5 GAT ATC AGA TGT GAT ATC CAG ATG ACA CAG TCT CCA TCC TCC CTG TCT 96 Asp lie Arg Cys Asp He Gin Met Thr Gin Ser Pro Ser Ser Leu Ser
- 1 1 5 10
GCC TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC GGG ACA AGT GAG GAC 144 Ala Ser Val Gly Asp Arg Val Thr lie Thr Cys Gly Thr Ser Glu Asp
15 20 25
ATT ATC AAT TAT TTA AAC TGG TAT CGG CAG AAA CCA GGG AAA GCC CCT 192 lie He Asn Tyr Leu Asn Trp Tyr Arg Gin Lys Pro Gly Lys Ala Pro
30 35 40
GAA CTC CTG ATC TAC CAC ACA TCA AGA TTA CAG TCA GGA GTC CCA TCA 240 Glu Leu Leu He Tyr His Thr Ser Arg Leu Gin Ser Gly Val Pro Ser 45 50 55 60
AGG TTC AGT GGC AGC GGG TCT GGA ACA GAT TTC ACT CTC ACC ATT AGT 288 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser
65 70 75
AGT CTG CAA CCT GAA GAT TTT GCC ACT TAC TAC TGC CAA CAG GGT TAT 336 Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Gly Tyr
80 85 90
ACG CTT CCG TAC ACG GTC GGC CAA GGG ACC AAG GTG GAA ATA AAA C 382 Thr Leu Pro Tyr Thr Val Gly Gin Gly Thr Lys Val Glu lie Lys
95 100 105 107 配列番号: 77
配列の長さ : 92
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA 配列:
TAGGAGACAG AGTCACCATC GGTTGCGGGA CAAGTGAGGA CATTATCAAT TATTTAAACT 60 GGTATCGGCA GAAACCAGGG AAAGCCCCTG AA 92 配列番号: 78
配列の長さ : 88
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CAGTGGCAGC GGGTCTGGAA CAGATTTCAC TCTCACCATT AGTGACCTGC AACCTGAAGA 60 TTTTGCCACT TACTACTGCC AACAGGGT 88 配列番号: 79
配列の長さ : 382
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴:
特徴を表す記号: s ig pept i de
存在位置: 1. . 60
特徴を決定した方法: S
特徴を表す記号: doma in
存在位置: 130. . 162
特徴を決定した方法: S
他の情報: CDR1 特徴を表す記号: dom in
存在位置: 208..228
特徴を決定した方法: S
他の情報: CDR2
特 i¾を表す己号: domain
存在位置: 325..351
特徴を決定した方法: S
他の情報: CDR3
配列:
ATG ATG TCC TCT GCT CAG TTC CTT GGT CTC CTG TTG CTC TGT TTT CAA 48
Met Met Ser Ser Ala Gin Phe Leu Gly Leu Leu Leu Leu Cys Phe Gin
- 20 -15 -10 -5
GAT ATC AGA TGT GAT ATC CAG ATG ACA CAG TCT CCA TCC TCC CTG TCT 96
Asp lie Arg Cys Asp He Gin Met Thr Gin Ser Pro Ser Ser Leu Ser
-1 1 5 10
GCC TCT GTA GGA GAC AGA GTC ACC ATC GGT TGC GGG ACA AGT GAG GAC 144 Ala Ser Val Gly Asp Arg Val Thr lie Gly Cys Gly Thr Ser Glu Asp
15 20 25
ATT ATC AAT TAT TTA AAC TGG TAT CGG CAG AAA CCA GGG AAA GCC CCT 192 He lie Asn Tyr Leu Asn Trp Tyr Arg Gin Lys Pro Gly Lys Ala Pro
30 35 40
GAA CTC CTG ATC TAC CAC ACA TCA AGA TTA CAG TCA GGA GTC CCA TCA 240 Glu Leu Leu lie Tyr His Thr Ser Arg Leu Gin Ser Gly Val Pro Ser 45 50 55 60
AGG TTC AGT GGC AGC GGG TCT GGA ACA GAT TTC ACT CTC ACC ATT AGT 288 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr He Ser
65 70 75 GAC CTG CAA CCT GAA GAT TTT GCC ACT TAC TAC TGC CAA CAG GGT TAT 336
Asp Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Gly Tyr
80 85 90
ACG CTT CCG TAC ACG GTC GGC CAA GGG ACC AAG GTG GAA ATA AAA C 382
Thr Leu Pro Tyr Thr Val Gly Gin Gly Thr Lys Val Glu lie Lys
95 100 105 107 配列番号: 80
配列の長さ : 83
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GATGGTGACT CTGTCTCCTA CAGAGGCAGA CAGGGAGGAT GTAGCCTGTG TCATCTGGAT 60 ATCACATCTG ATGTCTTGAA AAC 23 配列番号: 81
配列の長さ : 92
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
TAGGAGACAG AGTCACCATC GGTTGCGGGA CAAGTGAGGA CATTATCAAT TATTTAAACT 60 GGTATCGGAA GAAACCAGGG AAAGCCCCTG AA 92 配列番号: 82
配列の長さ : 88
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
CAGTGGCAGC GGGTCTGGAA CAGATTTCAC TCTCACCATT AGTGACCTGC AACCTGAAGA 60 TTTTGCCACT TACTTTTGCC AACAGGGT 88 配列番号: 83
配列の長さ : 91
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GTTTTCCCAG TCACGACCGT ACGTTTTATT TCCACCTTGG TCCCTTGGCC GACCGTGTAC 60 GGAAGCGTAT AACCCTGTTG GCAAAAGTAA G 91 配列番号: 84
配列の長さ : 382
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴:
特徵を表す記号: s ig pept i de LSI
32 02
OJJ BIV sAq Λΐ9 oJd sAi sAi 3jy ·ΐΛ丄 cUi usv naq JAJ, usy an an
Z6I 13333D VVV 330 V33 VVV OVV D33 IVl DDI 3VV VII 1VI IVV OIV JiV
SZ OZ SI
dsv "ID J9S JiU A sA] Λΐ3 an J¾ Ι¾Λ 3 V dsy Λ!3 Ι¾Λ jas BIV \ 3VO 0V310V V3V 331 IDD 31V 33V 31D VDV DVD V33 VID 13133D
01 9 I l-
J3S Π3Ί J9S as -im BIV U19 i law uio ail dsv sA3 Sjy ail dsy 96 1DI 013331331 V3V I3D 0V3 VDV OIV OV331V丄 V31DI VDV 3IV丄 V3 S- 01- 51- - uiO aild sA3 nai n9i nsi Π9ΐ Λ13 Π9ΐ aqj ui3 EIV J3S Jas l^N 8fr 111131313 Dll D133D 190113311 DVD 133131 DDI DIV OIV
棚 鬧: m t D u!Binop: 拏¾凝封 :
S : ¾ ^つ ¾¾¾凝 m - :裏¾¾# u!Buiop: 拏 ¾激¾
TO:職
291 · οει:
09 · : S?}¾#S 0/96dI7丄: 3d »-S£0l/i.6 OW GAA CTC CTG ATC TAC CAC ACA TCA AGA TTA CAG TCA GGA GTC CCA TCA 240 G lu Leu Leu He Tyr Hi s Thr Ser Arg Leu Gin Ser Gly Va l Pro Ser
45 50 55 60
AGG TTC AGT GGC AGC GGG TCT GGA ACA GAT TTC ACT CTC ACC ATT AGT 288 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr l i e Ser
65 70 75
GAC CTG CAA CCT GAA GAT TTT GCC ACT TAC TTT TGC CAA CAG GGT TAT 336 Asp Leu Gin Pro Glu Asp Phe Al a Thr Tyr Phe Cys Gin Gi n Gl y Tyr
80 85 90
ACG CTT CCG TAC ACG GTC GGC CAA GGG ACC AAG GTG GAA ATA AAA C 382 Thr Leu Pro Tyr Thr Val Gly G i n Gly Thr Lys Val Gl u H e Lys
95 100 105 配列番号: 85
配列の長さ : 92
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
TAGGAGACAG AGTCACCATC GGTTGCGGGA CAAGTGAGGA CATTATCAAT TATTTAAACT 60 GGTATCGGAA GAAACCAGGG AAAGCCGTTG AA 92 配列番号: 86
配列の長さ : 90
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状 配列の種類:他の核酸 合成 DNA
配列:
TTCCAGACCC GCTGCCACTG AACCTTGATG GGACTCCTGA CTGTAATCTT GATGTGTGGT 60 AGATCAGGAG TTCAACGGCT TTCCCTGGTT 90 配列番号: 87
配列の長さ : 88
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DMA
配列:
CAGTGGCAGC GGGTCTGGAA CAGATTATAC TCTCACCATT AGTGACCTGC AACCTGAAGA 60 TTTTGCCACT TACTTTTGCC AACAGGGT 88 配列番号: 88
配列の長さ : 382
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴:
特徴を表す記号: s i g pept ide
存在位置: 1. . 60
特徴を決定した方法: S
特徴を表す記号: domai n
存在位置: 130. . 162
特徴を決定した方法: S 091
Si OA 39
3S ail 』 丄 Π91 j qi JAI dsy J¾ AIQ ja Aig J3 A]Q J3S 3 d §JV IOV IIV 33V 3D I3V IVl IVO V3V VOO 1313D030V 333 IOV 311 OOV 09 99 OS ^
J3S 0Jd A J3s ui3 Π91 3JV J3S J¾ SIH ^ll n9i naq njg V3丄 V33 DID VOD V31 DVD VII VDV V31 V3V 3V33VI 3IV DID 3D WO
Ofr 9S 08
JBA B|V sAq AI3 OJJ sAi sAi 3JV JA^ d" usv ngq JAI usv 311 3[ I
C61 IID 339 VVV 309 V33 VVV 9VV D33 IVI DDI 3VV Vll IVI IVV 31V丄丄 V
02 SI dsv ni3 J3S Jqi M3 sA3 A]o an jm 3JV dsv l^A J3S BIV 3V30V9 IDV V3V DDD 331100 OIV 33V OID VOV 3VD VOO VIO 13133D
01 G 1 l-
J3 J3S J3S m BIV U1D -im law uiD 311 dsv sAo 3JV all dsy
96 丄 !)丄:) 331331 VDV 1309V3 V3V OIV CV331V 1VD IDl VDV 31V IVD
9- 01- 91- OZ- uio 3qd sA3 1131 nsq naq nai A]3 nai aq uio EIV J^S J3S law
8t WD III 101313 DII DID 313 IDD 1133113V3130131331 OIV 31V 柳 zmd:腿 <w s: ¾ っ ¾¾¾凝 # ΐ9ε ' :菌 # zmd: m ^ s: ¾ つ
m■駕:喜
SrO/96df/XDd S£0l/L6 OM W
GAC CTG CAA CCT GAA GAT TTT GCC ACT TAC TTT TGC CAA CAG GGT TAT 336 Asp Leu Gin Pro Glu Asp Phe Ala Thr Tyr Phe Cys Gin Gin Gly Tyr
80 85 90
ACG CTT CCG TAC ACG GTC GGC CAA GGG ACC AAG GTG GAA ATA AAA C 382 Thr Leu Pro Tyr Thr Val Gly Gin Gly Thr Lys Val Glu lie Lys
95 100 105 107 配列番号: 89
配列の長さ : 25
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
GCTTCCACCA AGGGCCCATC CGTCT 25 配列番号: 90
配列の長さ : 30
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列:
AAGGATCCTG GCACTCATTT ACCCAGAGAC 30 配列番号: 91
配列の長さ : 313
配列の型:アミノ酸 鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:蛋白質
配列:
Asp Leu Leu Pro Asp Glu Lys He Ser Leu Leu Pro Pro Val Asn 1 5 10 15
Phe Thr He Lys Val Thr Gly Leu Ala Gin Val Leu Leu Gin Trp
20 25 30
Lys Pro Asn Pro Asp Gin Glu Gin Arg Asn Val Asn Leu Glu Tyr
35 40 45
Gin Val Lys lie Asn Ala Pro Lys Glu Asp Asp Tyr Glu Thr Arg
50 55 60 lie Thr Glu Ser Lys Cys Val Thr He Leu His Lys Gly Phe Ser
65 70 75
Ala Ser Val Arg Thr lie Leu Gin Asn Asp His Ser Leu Leu Ala
80 85 90
Ser Ser Trp Ala Ser Ala Glu Leu His Ala Pro Pro Gly Ser Pro
95 100 105
Gly Thr Ser Val Val Asn Leu Thr Cys Thr Thr Asn Thr Thr Glu
110 115 120
Asp Asn Tyr Ser Arg Lea Arg Ser Tyr Gin Val Ser Leu His Cys
125 130 135
Thr Trp Leu Val Gly Thr Asp Ala Pro Glu Asp Thr Gin Tyr Phe
140 145 150
Leu Tyr Tyr Arg Tyr Gly Ser Trp Thr Glu Glu Cys Gin Glu Tyr
155 160 165
Ser Lys Asp Thr Leu Gly Arg Asn lie Ala Cys Trp Phe Pro Arg
170 175 180
Thr Phe lie Leu Ser Lys Gly Arg Asp Trp Leu Ala Val Leu Val
185 190 195
Asn Gly Ser Ser Lys His Ser Ala He Arg Pro Phe Asp Gin Leu
200 205 210
Phe Ala Leu His Ala lie Asp Gin He Asn Pro Pro Leu Asn Val
215 220 225
Thr Ala Glu He Glu Gly Thr Arg Leu Ser lie Gin Trp Glu Lys
230 235 240 Pro Val Ser Ala Phe Pro He His Cys Phe Asp Tyr Glu Val Lys
245 250 255 lie His Asn Thr Arg Asn Gly Tyr Leu Gin He Glu Lys Leu Met
260 265 270
Thr Asn Ala Phe lie Ser lie lie Asp Asp Leu Ser Lys Tyr Asp
275 280 285
Val Gin Val Arg Ala Ala Val Ser Ser Met Cys Arg Glu Ala Gly
290 295 300
Leu Trp Ser Glu Trp Ser Gin Pro lie Tyr Val Gly Lys
305 310 313

Claims

請 求 の 範 囲
( 1) ヒ卜インターロイキン 5受容体 α鎖に特異的に反応する抗体。
(2) 抗体がモノクローナル抗体、 ヒト化抗体、 一本鎖抗体およびジスル フィ ド安定化抗体から選ばれる請求項 1記載の抗体。
( 3 ) 抗体がモノク口一ナル抗体である請求項 2記載の抗体。
(4) ヒトインターロイキン 5受容体 α鎖の Ν末端アミノ酸から 1〜313 番目に存在するェピトープを認識し、 かつ免疫細胞染色によりヒトイン夕一口 ィキン 5受容体 α鎖に特異的に反応する請求項 3記載のモノク口一ナル抗体。
(5) ヒトイン夕ーロイキン 5受容体 α鎖の Ν末端アミノ酸から 1〜313 番目に存在するェピ卜一プを認識し、 かつヒ卜インターロイキン 5の生物活性 を抑制する請求項 3記載のモノクローナル抗体。
(6) 〖gGlサブクラスに属し、 その抗体重鎖 (H鎖) 可変領域 (V領域) の CDRの配列が下記に定義されるアミノ酸配列:
CDR1 : Asp Tyr Gly Met Ala
CDR2: Ala lie Ser Ser Gly Gly Ser Tyr lie His Phe Pro Asp Ser Leu Lys Gly
CDR3: Arg Gly Phe Tyr Gly Asn Tyr Arg Ala Met Asp Tyr
であり、抗体軽鎖(L鎖) V領域の CDRの配列が下記に定義されるアミノ酸配列:
CDR1 : Arg Ala Asn Glu Ser Val Asp His Asn Gly Val Asn Phe Met Asn
CDR2: Ala Ala Ser Asn Gin Gly Ser
CDR3: Gin Gin Ser Lys Asp Val Pro Trp Thr
である、 請求項 4記載のモノクローナル抗体。
(7) ハイブリドーマ K 1257 (FERMBP-5133) が生産する請求項 6記載の モノクローナル抗体 KM1257。
(8) IgGlサブクラスに厲し、 その抗体 H鎖 V領域の CDRの配列が下記に定 義されるアミノ酸配列:
CDR1 : Ser Tyr Val lie His
CDR2: Tyr I le Asn Pro Tyr Asn Asp Gly Thr Lys Tyr Asn Glu Arg Phe Lys Gly CDR3: Glu Gly H e Arg Tyr Tyr Gly Leu Leu Gly Asp Tyr
であり、 抗体 L鎖 V領域の CDRの配列が下記に定義されるアミノ酸配列:
CDR1 : Gly Thr Ser Glu Asp H e l ie Asn Tyr Leu Asn
CDR2: Hi s Thr Ser Arg Leu Gin Ser
CDR3: Gin Gin Gly Tyr Thr Leu Pro Tyr Thr
である、 請求項 5記載のモノクローナル抗体。
( 9 ) ハイプリドーマ KM1259 (FERM BP-5134) が生産する請求項 8記載の モノクローナル抗体 KM1259。
(10) IgGlサブクラスに属し、 その抗体 貞 領域の CDRの配列が下記に定 義されるアミノ酸配列:
CDR1 : Asp Thr Tyr Met Hi s
CDR2: Arg He Asp Pro Al a Asn Gly Asn Thr Lys Ser Asp Pro Lys Phe Gin Al a CDR3: Gly Leu Arg Leu Arg Phe Phe Asp Tyr
であり、 抗体 L鎖 V領域の CDRの配列が下記に定義されるアミノ酸配列:
CDR1 : Ser Ala Ser Ser Ser Val Ser Tyr Met Hi s
CDR2: Asp Thr Ser Lys Leu Al a Ser
CDR3: Gin Gin Trp Ser Ser Asn Pro Pro He Thr
である、 請求項 5記載のモノクローナル抗体。
(11 ) ハイプリドーマ KM1486 (FERM BP-5651) が生産する請求項 1 0記載の モノクローナル抗体 KM 1486。
(12) 請求項 6記載のモノクローナル抗体を生産するハイプリドーマ
KM1257 (FERM BP-5133) 0
(13) 請求項 8記載のモノクローナル抗体を生産するハイプリドーマ
KM1259 (FERM BP- 5134)。
(14) 請求項 1 0記載のモノクローナル抗体を生産するハイプリドーマ ■ 486 (FERM BP- 5651)。
(15) 抗体がヒト化抗体である請求項 2記載の抗体。
( 16) ヒ卜ィンターロイキン 5受容体 α鎖の N末端アミノ酸から 1 ~313 番目に存在するェピトープを認識し、 かつ免疫細胞染色によりヒ卜インター口 ィキン 5受容体 α鎖に特異的に反応する請求項 1 5記載のヒト化抗体。
( 1 7) ヒ卜イン夕一ロイキン 5受容体 α鎖の Ν末端アミノ酸から 1〜313 番目に存在するェピ卜一プを認識し、 かつヒトイン夕一ロイキン 5の生物活性 を抑制する請求項 1 5記載のヒト化抗体。
( 1 8) ヒ卜抗体 IgG型に属する請求項 1 6または 1 7記載の抗体。
( 19) ヒト化抗体がヒ卜型キメラ抗体である請求項 1 5、 1 6または 1 7 記載の抗体。
(20) ヒト型キメラ抗体がヒト以外の動物の抗体の H鎖 V領域および L鎖 V 領域とヒト抗体の H鎖定常領域 (C領域) と L鎖 C領域とからなるキメラ抗体で ある請求項 1 9記載の抗体。
(21 ) 抗体の H鎖 V領域が配列番号 2 4記載のアミノ酸配列を含み、 L鎖 V 領域が配列番号 2 5記載のアミノ酸配列を含む請求項 2 0記載の抗体。
(22) 抗体の H鎖 V領域が配列番号 2 6記載のアミノ酸配列を含み、 L鎖 V 領域が配列番号 2 7記載のアミノ酸配列を含む請求項 2 0記載の抗体。
(23) 抗体 H鎖 C領域がヒト抗体 I gGlサブクラスである請求項 2 1記載の 抗体 KM1399。
(24) 抗体 H鎖 C領域がヒト抗体 IgG4サブクラスである請求項 2 1記載の 抗体 KM7399。
(25) 請求項 2 3記載の抗体を生産する形質転換株 KM1399 (FER BP- 5650)。
(26) 請求項 2 4記載の抗体を生産する形質転換株 KM7399 (FERM BP- 5649)。
(27) ヒト化抗体がヒト型 CDR移植抗体である請求項 1 5記載の抗体。
(28) ヒト型 CDR移植抗体がヒ卜の抗体の H鎖 V領域および L鎖 V領域の CDR配列をヒト以外の動物の抗体の H鎖 V領域と L鎖 V領域の CDR配列でそれぞ れ置換した CDR移植抗体である請求項 1 7記載の抗体。
(29) 抗体の H鎖 V領域の CDR配列が請求項 8記載のモノクローナル抗体の H鎖 V領域の CDR配列を含み、 L鎖 V領域の CDR配列が請求項 8記載のモノクロ ーナル抗体の L鎖 V領域の CDR配列を含む請求項 2 8記載の抗体。
(30) 抗体の H鎖 V領域の CDR配列が請求項 1 0記載のモノクローナル抗体 の H鎖 V領域の CDR配列を含み、 L鎖 V領域の CDR配列が請求項 1 0記載のモノ クローナル抗体の L鎖 V領域の CDR配列を含む請求項 2 8記載の抗体。
(31) 抗体 H鎖 C領域がヒ卜抗体 I gGlサブクラスである請求項 2 9記載の 抗体 KM8399。
(32) 抗体 H鎖 C領域がヒト抗体 I gG4サブクラスである請求項 2 9記載の 抗体 KM9399。
(33) 請求項 3 1記載の抗体を生産する形質転換株 KM8399 (FERM BP- 5648)。
(34) 請求項 3 2記載の抗体を生産する形質転換株 KM9399 (FERM BP- 5647)。
(35) 夕ンデム力セットベクター pKANTEX93。
(36) タンデムカセッ卜ベクター PKANTEX93を含有する形質転換体を用いた ヒト化抗体の製造法。
(37) 抗体が一本鎖抗体である請求項 2記載の抗体。
(38) ヒ卜インターロイキン 5受容体 α鎖の N末アミノ酸から 1〜3 1 3 番目に存在するェピトープを認識し、 ヒトインターロイキン 5の生物活性を抑 制する請求項 3 7記載の一本鎖抗体。
(39) 一本鎖抗体が、 ヒト化抗体の Η鎖 V領域および L鎖 V領域を含む請求 項 3 8記載の抗体。
(40) Η鎖 V領域および L鎖 V領域の CDR配列が請求項 8記載のモノクロー ナル抗体の Η鎖 V頜域および L鎖 V領域の CDR配列を含む請求項 3 8記載の一本 鎖抗体。
(41 ) Η鎖 V領域および L鎖 V領域の CDR配列が請求項 1 0記載のモノクロ ーナル抗体の Η鎖 V領域および L鎖 V領域の CDR配列を含む請求項 3 8記載の一 本鎖 体。
(42) 抗体がジスルフィド安定化抗体である請求項 2記載の抗体。
(43) ヒトインターロイキン 5受容体 α鎖の Ν末アミノ酸から 1〜3 1 3番 目に存在するェピ卜ープを認識し、 かつヒトインターロイキン 5の生物活性を 抑制する請求項 4 2記載のジスルフィ ド安定化抗体。
(44) ジスルフィ ド安定化抗体が、 ヒ卜化抗体の H鎖 V領域および L鎖 V 領域を含む請求項 43記載の抗体。
(45) H鎖 V領域および L鎖 V領域の CDR配列が請求項 8記載のモノクロ一 ナル抗体の H鎖 V領域および L鎖 V領域の CDR配列を含む請求項 43記載のジス ルフィ ド安定化抗体。
(46) H鎖 V領域および L鎖 V領域の CDR配列が請求項 10記載のモノクロ ーナル抗体の H鎖 V領域および L鎖 V領域の CDR配列を含む請求項 43記載の一 本鎖抗体。
(47) ヒトインターロイキン 5受容体 α鎖に反応性を有する請求項 6、 8 または 1 0記載のモノクローナル抗体の Η鎖 V領域または L鎖 V領域の CDR配列 を含むペプチド。
(48) ヒトインターロイキン 5受容体 α鎖の全長あるいは部分断片をその ままあるいは融合蛋白として発現可能なベクタ一を宿主細胞に導入し、 培養発 現させ、 単離、 精製して得られる蛋白質からなるヒトインターロイキン 5受容 体 鎖抗原
(49) 配列番号 9 1記載のアミノ酸配列を有する、 請求項 48記載のヒト インターロイキン 5受容体 α鎖抗原。
(50) 請求項 1〜 1 1、 1 5〜24、 27〜 32および 37〜 46記載の抗 体を用いてヒトインタ一ロイキン 5受容体 α鎖を免疫学的に検出する方法。
(51) 請求項 1〜1 1、 1 5〜24、 27~ 32および 37〜46記載の 抗体を用いてヒ卜インタ一ロイキン 5受容体ひ鎖を細胞表面に発現した細胞を 免疫学的に検出する方法。
(52) 請求項 1〜: 1 1、 1 5〜24、 27〜 32および 37〜 46記載の 抗体を用いてヒト好酸球を免疫学的に検出する方法。
(53) 請求項 1~1 1、 1 5〜24、 27〜 32および 37〜 46記載の抗 体を用いて可溶性ヒ卜インターロイキン 5受容体 α鎖を免疫学的に検出および 定量する方法。
(54) 請求項 1~ 1 1、 1 5〜24、 27〜 32および 37〜 46記載の 抗体による好酸球増多の予防方法。
(55) 請求項 1〜 1 1、 1 5〜24、 27〜 32および 37 ~ 46記載の 抗体による慢性気管支喘息などのアレルギー性疾患の治療方法。
(56) 請求項 1〜 1 1、 1 5〜24、 27〜 32および 37〜 46記載の 抗体による好酸球増多を伴う疾患の治療方法。
(57) 請求項;!〜 1 1、 1 5~24、 27〜 32および 37〜 46記載の 抗体を有効成分とする好酸球増多抑制剤。
(58) 請求項 1〜: 1 1、 1 6〜24、 27〜 32および 37〜 46記載の 抗体を有効成分とするアレルギー性疾患治療剤。
PCT/JP1996/002588 1995-09-11 1996-09-11 ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR WO1997010354A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP96930357A EP0811691B1 (en) 1995-09-11 1996-09-11 Antibody againts alpha-chain of human interleukin 5 receptor
CA2205007A CA2205007C (en) 1995-09-11 1996-09-11 Antibody against human interleukin-5 receptor .alpha. chain
DE69633973T DE69633973T2 (de) 1995-09-11 1996-09-11 Antikörper gegen die alpha-kette von humanem interleukin 5 rezeptor
HK98104380.3A HK1005096B (en) 1995-09-11 1996-09-11 Antibody againts alpha-chain of human interleukin 5 receptor
JP51183397A JP3946256B2 (ja) 1995-09-11 1996-09-11 ヒトインターロイキン5受容体α鎖に対する抗体
AU69438/96A AU690474B2 (en) 1995-09-11 1996-09-11 Antibody againts alpha-chain of human interleukin 5 receptor
US08/836,561 US6018032A (en) 1995-09-11 1996-09-11 Antibody against human interleukin-5-receptor α chain
AT96930357T ATE283926T1 (de) 1995-09-11 1996-09-11 Antikörper gegen die alpha-kette von humanem interleukin 5 rezeptor
US10/283,349 US7179464B2 (en) 1995-09-11 2002-10-29 Method of treatment by administering an antibody to human interleukin-5 receptor α chain
US11/193,512 US7238354B2 (en) 1995-09-11 2005-08-01 Method of treating atopic dermatitis using antibody against human interleukin-5 receptor alpha chain
US11/595,909 US20070048304A1 (en) 1995-09-11 2006-11-13 Method of treating allergy using antibody against human interleukin-5 receptor alpha chain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/232384 1995-09-11
JP23238495 1995-09-11

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US08/836,561 A-371-Of-International US6018032A (en) 1995-09-11 1996-09-11 Antibody against human interleukin-5-receptor α chain
US08836561 A-371-Of-International 1996-09-11
US09/434,122 Division US6538111B1 (en) 1995-09-11 1999-11-05 Antibody against human interleukin-5 receptor alpha chain

Publications (1)

Publication Number Publication Date
WO1997010354A1 true WO1997010354A1 (en) 1997-03-20

Family

ID=16938396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002588 WO1997010354A1 (en) 1995-09-11 1996-09-11 ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR

Country Status (11)

Country Link
US (5) US6018032A (ja)
EP (1) EP0811691B1 (ja)
JP (1) JP3946256B2 (ja)
KR (1) KR100259828B1 (ja)
CN (1) CN1241944C (ja)
AT (1) ATE283926T1 (ja)
AU (1) AU690474B2 (ja)
CA (1) CA2205007C (ja)
DE (1) DE69633973T2 (ja)
ES (1) ES2233974T3 (ja)
WO (1) WO1997010354A1 (ja)

Cited By (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064754A1 (fr) * 2000-03-03 2001-09-07 Kyowa Hakko Kogyo Co., Ltd. Anticorps a recombinaison genique et son fragment
WO2002030954A1 (fr) * 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Procede de purification d'un anticorps
JP2002525580A (ja) * 1998-09-10 2002-08-13 イミュノテク 好塩基球及び好酸球の検出又は定量のための方法
EP1086956A4 (en) * 1998-05-20 2002-08-21 Kyowa Hakko Kogyo Kk RECOMBINANT GENE ANTIBODIES
JP2003310275A (ja) * 2002-04-30 2003-11-05 Kyowa Hakko Kogyo Co Ltd ヒトインスリン様成長因子に対する遺伝子組換え抗体
JP2005027671A (ja) * 1998-05-20 2005-02-03 Kyowa Hakko Kogyo Co Ltd 遺伝子組換え抗体
WO2005028515A1 (ja) 2003-09-24 2005-03-31 Kyowa Hakko Kogyo Co., Ltd. ヒトインスリン様成長因子に対する遺伝子組換え抗体
WO2005035583A1 (ja) * 2003-10-08 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. Il-5受容体に特異的に結合する抗体組成物
WO2006046689A1 (ja) 2004-10-28 2006-05-04 Kyowa Hakko Kogyo Co., Ltd. 子宮内膜症治療剤
WO2006106905A1 (ja) * 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
JP2007510434A (ja) * 2003-11-12 2007-04-26 シェーリング コーポレイション 多重遺伝子発現のためのプラスミドシステム
WO2007066698A1 (ja) 2005-12-06 2007-06-14 Kyowa Hakko Kogyo Co., Ltd. 抗perp遺伝子組換え抗体
WO2007142277A1 (ja) 2006-06-06 2007-12-13 Kyowa Hakko Kirin Co., Ltd. ヘパリン結合上皮細胞増殖因子様増殖因子に結合するモノクローナル抗体
WO2008026603A1 (fr) 2006-08-28 2008-03-06 Kyowa Hakko Kirin Co., Ltd. Agent anti-tumoral
EP1914244A2 (en) 1999-04-09 2008-04-23 Kyowa Hakko Kogyo Co., Ltd. Method of modulating the activity of functional immune molecules
WO2008090959A1 (ja) 2007-01-24 2008-07-31 Kyowa Hakko Kirin Co., Ltd. エフェクター活性が増強された遺伝子組換え抗体組成物
WO2008090960A1 (ja) 2007-01-24 2008-07-31 Kyowa Hakko Kirin Co., Ltd. ガングリオシドgm2に特異的に結合する遺伝子組換え抗体組成物
KR100855299B1 (ko) 2007-02-16 2008-08-29 건국대학교 산학협력단 인간 il-32 특이 항원결정기를 갖는 단일클론항체,특이항체분비 융합 세포주 및 항체들을 이용한 il-32측정법
WO2008114733A1 (ja) 2007-03-16 2008-09-25 Kyowa Hakko Kirin Co., Ltd. 抗Claudin-4抗体
AU2003260335B2 (en) * 2002-07-31 2009-01-08 D. Collen Research Foundation Vzw Anti-idiotypic antibodies against factor VIII inhibitor and uses thereof
US7504104B2 (en) 2001-08-31 2009-03-17 Kyowa Hakko Kogyo Co., Ltd. Human CDR-grafted antibody and antibody fragment thereof
WO2009072628A1 (ja) 2007-12-05 2009-06-11 Kyowa Hakko Kirin Co., Ltd. ヘパリン結合上皮細胞増殖因子様増殖因子に結合するモノクローナル抗体
US7601352B1 (en) * 1999-05-26 2009-10-13 Lay Line Genomics S.P.A. Monoclonal antibodies and antigen binding fragments thereof capable of binding TrkA and inhibiting the functional activation of TrkA
WO2010001908A1 (ja) 2008-06-30 2010-01-07 協和発酵キリン株式会社 抗cd27抗体
WO2010008075A1 (ja) 2008-07-17 2010-01-21 協和発酵キリン株式会社 抗システムascアミノ酸トランスポーター2(asct2)抗体
WO2010018847A1 (ja) 2008-08-13 2010-02-18 協和発酵キリン株式会社 遺伝子組換えプロテインs組成物
WO2010040766A1 (en) 2008-10-07 2010-04-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Neutralizing antibodies and fragments thereof directed against platelet factor-4 variant 1 (pf4v1)
US7722876B2 (en) * 2002-05-10 2010-05-25 Istituto Superiore Di Sanita Toxin-related antibodies with antimicrobial and antiviral activity
WO2010064456A1 (ja) * 2008-12-05 2010-06-10 中外製薬株式会社 抗nr10抗体、およびその利用
WO2010064697A1 (ja) * 2008-12-05 2010-06-10 中外製薬株式会社 抗nr10抗体、およびその利用
WO2010074266A1 (ja) 2008-12-26 2010-07-01 協和発酵キリン株式会社 抗cd4抗体
JP2010527356A (ja) * 2007-05-14 2010-08-12 メディミューン,エルエルシー 好酸球レベルを低下させる方法
WO2010106051A1 (en) 2009-03-17 2010-09-23 Universite De La Mediterranee Btla antibodies and uses thereof
WO2010123012A1 (ja) 2009-04-20 2010-10-28 協和発酵キリン株式会社 アミノ酸変異が導入されたIgG2を有する抗体
WO2011016568A1 (ja) 2009-08-07 2011-02-10 協和発酵キリン株式会社 抗アミロイドβオリゴマーヒト化抗体
WO2011016567A1 (ja) 2009-08-07 2011-02-10 協和発酵キリン株式会社 抗アミロイドβオリゴマーヒト化抗体
WO2011030841A1 (ja) 2009-09-10 2011-03-17 協和発酵キリン株式会社 ヒトccケモカイン受容体4(ccr4)に特異的に結合する抗体組成物を含む医薬
EP2314685A1 (en) 2000-10-06 2011-04-27 Kyowa Hakko Kirin Co., Ltd. Cells producing antibody compositions
JP4689124B2 (ja) * 1999-09-30 2011-05-25 協和発酵キリン株式会社 ガングリオシドgd3に対するヒト型相補性決定領域移植抗体およびガングリオシドgd3に対する抗体の誘導体
WO2011108502A1 (ja) 2010-03-02 2011-09-09 協和発酵キリン株式会社 改変抗体組成物
WO2011118739A1 (ja) 2010-03-26 2011-09-29 協和発酵キリン株式会社 新規修飾部位導入抗体および抗体フラグメント
WO2011155607A1 (ja) 2010-06-11 2011-12-15 協和発酵キリン株式会社 抗tim-3抗体
WO2012010696A1 (en) 2010-07-23 2012-01-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for cancer management targeting co-029
JPWO2010064697A1 (ja) * 2008-12-05 2012-05-10 中外製薬株式会社 抗nr10抗体、およびその利用
WO2012080351A1 (en) 2010-12-15 2012-06-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd277 antibodies and uses thereof
WO2012085132A1 (en) 2010-12-22 2012-06-28 Orega Biotech Antibodies against human cd39 and use thereof
WO2012101125A1 (en) 2011-01-24 2012-08-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Specific antibodies against human cxcl4 and uses thereof
WO2012131004A2 (en) 2011-03-31 2012-10-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies directed against icos and uses thereof
WO2012153707A1 (ja) 2011-05-09 2012-11-15 株式会社ペルセウスプロテオミクス トランスフェリン受容体を特異的に認識できる抗体
WO2012156532A1 (en) 2011-05-19 2012-11-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-human-her3 antibodies and uses thereof
WO2012175692A1 (en) 2011-06-22 2012-12-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-axl antibodies and uses thereof
WO2012175691A1 (en) 2011-06-22 2012-12-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-axl antibodies and uses thereof
WO2012176779A1 (ja) 2011-06-20 2012-12-27 協和発酵キリン株式会社 抗erbB3抗体
EP2543678A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
EP2543679A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
EP2543677A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
US8431127B2 (en) 2007-12-05 2013-04-30 Chugai Seiyaku Kabushiki Kaisha Method for treating pruritus comprising administering an NR10 antagonist
US8597911B2 (en) 2003-06-11 2013-12-03 Chugai Seiyaku Kabushiki Kaisha Process for producing antibodies
WO2014001368A1 (en) 2012-06-25 2014-01-03 Orega Biotech Il-17 antagonist antibodies
WO2014007198A1 (ja) 2012-07-02 2014-01-09 協和発酵キリン株式会社 抗bmp9抗体を有効成分とする、腎性貧血、がん性貧血などの貧血に対する治療剤
WO2014033327A1 (en) 2012-09-03 2014-03-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies directed against icos for treating graft-versus-host disease
WO2014054804A1 (ja) 2012-10-05 2014-04-10 協和発酵キリン株式会社 ヘテロダイマータンパク質組成物
WO2014073641A1 (ja) 2012-11-08 2014-05-15 国立大学法人 宮崎大学 トランスフェリン受容体を特異的に認識できる抗体
EP2733153A1 (en) 2012-11-15 2014-05-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the preparation of immunoconjugates and uses thereof
WO2014079886A1 (en) 2012-11-20 2014-05-30 Sanofi Anti-ceacam5 antibodies and uses thereof
WO2014087863A1 (ja) 2012-12-07 2014-06-12 協和発酵キリン株式会社 抗folr1抗体
WO2014183885A1 (en) 2013-05-17 2014-11-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Antagonist of the btla/hvem interaction for use in therapy
US8895266B2 (en) 2000-10-06 2014-11-25 Kyowa Hakko Kirin Co., Ltd Antibody composition-producing cell
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
WO2015034052A1 (ja) 2013-09-05 2015-03-12 国立大学法人 宮崎大学 ヒトインテグリンa6b4と特異的に反応する抗体
US9028821B2 (en) 2006-06-08 2015-05-12 Chugai Seiyaku Kabushiki Kaisha Method of treating an inflammatory disease comprising administering an NR 10 antibody antagonist
WO2015067986A1 (en) 2013-11-07 2015-05-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Neuregulin allosteric anti-her3 antibody
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
WO2015158851A1 (en) 2014-04-16 2015-10-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the prevention or the treatment of bleeding episodes
US9228017B2 (en) 2009-03-19 2016-01-05 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
WO2016016442A1 (en) 2014-08-01 2016-02-04 INSERM (Institut National de la Santé et de la Recherche Médicale) An anti-cd45rc antibody for use as drug
WO2016059220A1 (en) 2014-10-16 2016-04-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Tcr-activating agents for use in the treatment of t-all
US9399680B2 (en) 2007-12-05 2016-07-26 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding anti-NR10 antibodies
US9441037B2 (en) 2013-08-12 2016-09-13 Astrazeneca Ab Methods for reducing exacerbation rates of asthma using benralizumab
US9441047B2 (en) 2013-08-12 2016-09-13 Astrazeneca Ab Methods for improving asthma symptoms using benralizumab
US9441046B2 (en) 2013-08-12 2016-09-13 Astrazeneca Ab Methods for increasing forced expiratory volume in asthmatics using benralizumab
WO2016146844A1 (en) 2015-03-18 2016-09-22 Janssen Vaccines & Prevention B.V. Assays for recombinant expression systems
WO2016162368A1 (en) 2015-04-07 2016-10-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Non-invasive imaging of tumor pd-l1 expression
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
WO2016194897A1 (ja) * 2015-06-01 2016-12-08 国立大学法人富山大学 肺高血圧症の治療薬及び治療方法
WO2017005847A1 (en) 2015-07-07 2017-01-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to myosin 18a and uses thereof
EP3153526A1 (en) 2008-01-31 2017-04-12 INSERM - Institut National de la Santé et de la Recherche Médicale Antibodies against human cd39 and use thereof for inhibiting t regulatory cells activity
WO2017060397A1 (en) 2015-10-09 2017-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of subjects suffering from melanoma metastases
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US9688762B2 (en) 2007-09-26 2017-06-27 Chugai Sciyaku Kabushiki Kaisha Modified antibody constant region
WO2017144668A1 (en) 2016-02-26 2017-08-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity for btla and uses thereof
US9809653B2 (en) 2012-12-27 2017-11-07 Sanofi Anti-LAMP1 antibodies and antibody drug conjugates, and uses thereof
US9868948B2 (en) 2008-04-11 2018-01-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
WO2018015340A1 (en) 2016-07-18 2018-01-25 Sanofi Bispecific antibody-like binding proteins specifically binding to cd3 and cd123
US20180030136A1 (en) * 2015-01-28 2018-02-01 Glaxosmithkline Intellectual Property Development Limited Icos binding proteins
WO2018020000A1 (en) 2016-07-29 2018-02-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies targeting tumor associated macrophages and uses thereof
WO2018073387A1 (en) 2016-10-20 2018-04-26 Sanofi Anti-chikv antibodies and uses thereof
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
WO2018091720A1 (en) 2016-11-21 2018-05-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the prophylactic treatment of metastases
WO2018139404A1 (ja) 2017-01-24 2018-08-02 協和発酵キリン株式会社 放射線障害の治療又は予防剤並びに治療又は予防方法
WO2018158398A1 (en) 2017-03-02 2018-09-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to nectin-4 and uses thereof
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
WO2019013308A1 (ja) 2017-07-13 2019-01-17 協和発酵キリン株式会社 抗bril抗体及び該抗体を用いたbril融合タンパク質の安定化方法
WO2019017401A1 (ja) 2017-07-18 2019-01-24 協和発酵キリン株式会社 抗ヒトccr1モノクローナル抗体
WO2019020480A1 (en) 2017-07-24 2019-01-31 INSERM (Institut National de la Santé et de la Recherche Médicale) ANTIBODIES AND PEPTIDES FOR TREATING HCMV RELATED DISEASES
WO2019057933A1 (en) 2017-09-21 2019-03-28 Imcheck Therapeutics Sas ANTIBODIES HAVING SPECIFICITY FOR BTN2 AND USES THEREOF
US10253091B2 (en) 2009-03-19 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
WO2019070164A1 (ru) 2017-10-03 2019-04-11 Закрытое Акционерное Общество "Биокад" МОНОКЛОНАЛЬНОЕ АНТИТЕЛО К IL-5Rα
WO2019093342A1 (ja) 2017-11-08 2019-05-16 協和発酵キリン株式会社 CD40とEpCAMに結合するバイスペシフィック抗体
WO2019117208A1 (ja) 2017-12-12 2019-06-20 協和発酵キリン株式会社 抗bmp10抗体及び該抗体を有効成分とする、高血圧および高血圧性疾患に対する治療剤
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
US10450381B2 (en) 2010-11-17 2019-10-22 Chugai Seiyaku Kabushiki Kaisha Methods of treatment that include the administration of bispecific antibodies
WO2020004492A1 (ja) 2018-06-26 2020-01-02 協和キリン株式会社 Cell Adhesion Molecule3に結合する抗体
WO2020004490A1 (ja) 2018-06-26 2020-01-02 協和キリン株式会社 コンドロイチン硫酸プロテオグリカン-5に結合する抗体
US10544227B2 (en) 2015-04-14 2020-01-28 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition for prevention and/or treatment of atopic dermatitis comprising IL-31 antagonist as active ingredient
WO2020067541A1 (ja) 2018-09-28 2020-04-02 協和キリン株式会社 抗体組成物
WO2020094609A1 (en) 2018-11-06 2020-05-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of acute myeloid leukemia by eradicating leukemic stem cells
WO2020105621A1 (ja) 2018-11-20 2020-05-28 株式会社ペルセウスプロテオミクス 細胞内への鉄の取り込み阻害剤
WO2020120786A1 (en) 2018-12-14 2020-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Isolated mhc-derived human peptides and uses thereof for stimulating and activating the suppressive function of cd8+cd45rclow tregs
WO2020138487A1 (ja) 2018-12-28 2020-07-02 協和キリン株式会社 TfRに結合するバイスペシフィック抗体
WO2020169472A2 (en) 2019-02-18 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing phenotypic changes in macrophages
WO2020188086A1 (en) 2019-03-20 2020-09-24 Imcheck Therapeutics Sas Antibodies having specificity for btn2 and uses thereof
WO2020193520A1 (en) 2019-03-25 2020-10-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Treatment of taupathy disorders by targeting new tau species
WO2020230901A1 (ja) 2019-05-15 2020-11-19 協和キリン株式会社 Cd40とgpc3に結合するバイスペシフィック抗体
WO2020230899A1 (ja) 2019-05-15 2020-11-19 協和キリン株式会社 Cd40とfapに結合するバイスペシフィック抗体
WO2020245326A1 (en) 2019-06-06 2020-12-10 Immatics Biotechnologies Gmbh Sorting with counter selection using sequence similar peptides
US10906978B2 (en) 2015-01-23 2021-02-02 Sanofi Anti-CD3 antibodies, anti-CD123 antibodies and bispecific antibodies specifically binding to CD3 and/or CD123
WO2021023624A1 (en) 2019-08-02 2021-02-11 Orega Biotech Novel il-17b antibodies
WO2021023657A1 (en) 2019-08-02 2021-02-11 Immatics Biotechnologies Gmbh Modified bi specific anti cd3 antibodies
WO2021023658A1 (en) 2019-08-02 2021-02-11 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding mage-a
WO2021045184A1 (ja) 2019-09-04 2021-03-11 株式会社ペルセウスプロテオミクス 多血症治療薬
WO2021049606A1 (ja) 2019-09-13 2021-03-18 協和キリン株式会社 DcR3改変体
WO2021058763A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance antibodies and uses thereof
WO2021058729A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof
WO2021066167A1 (ja) 2019-10-02 2021-04-08 国立大学法人九州大学 ヘパリン様物質の製造方法、組換え細胞及びその製造方法
WO2021099600A1 (en) 2019-11-22 2021-05-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Inhibitors of adrenomedullin for the treatment of acute myeloid leukemia by eradicating leukemic stem cells
WO2021107082A1 (ja) 2019-11-27 2021-06-03 株式会社ペルセウスプロテオミクス 癌性腹膜炎の治療薬
WO2021116119A1 (en) 2019-12-09 2021-06-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to her4 and uses thereof
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
WO2021144020A1 (en) 2020-01-15 2021-07-22 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding prame
US11072666B2 (en) 2016-03-14 2021-07-27 Chugai Seiyaku Kabushiki Kaisha Cell injury inducing therapeutic drug for use in cancer therapy
WO2021162098A1 (ja) 2020-02-14 2021-08-19 協和キリン株式会社 Cd3に結合するバイスペシフィック抗体
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
WO2021201236A1 (ja) 2020-04-01 2021-10-07 協和キリン株式会社 抗体組成物
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
WO2021228956A1 (en) 2020-05-12 2021-11-18 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to treat cutaneous t-cell lymphomas and tfh derived lymphomas
CN114075282A (zh) * 2020-08-20 2022-02-22 南京融捷康生物科技有限公司 Il-5的结合分子及其制备方法和应用
US11260125B2 (en) 2019-11-20 2022-03-01 Chugai Seiyaku Kabushiki Kaisha Anti-IL31RA antibody-containing formulations
WO2022048883A1 (en) 2020-09-04 2022-03-10 Merck Patent Gmbh Anti-ceacam5 antibodies and conjugates and uses thereof
WO2022075439A1 (ja) 2020-10-08 2022-04-14 国立大学法人東海国立大学機構 抗トランスフェリンレセプター抗体の薬効又は感受性の判定方法
US11377503B2 (en) 2018-06-18 2022-07-05 Innate Pharma Antibodies that bind human CD39 and inhibit ATPase activity of a soluble extracellular domain human CD39 polypeptide
WO2022184805A1 (en) 2021-03-03 2022-09-09 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding sars-cov-2 antigenic peptides in complex with a major histocompatibility complex protein
WO2022233956A1 (en) 2021-05-05 2022-11-10 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding prame
WO2023006919A1 (en) 2021-07-29 2023-02-02 Institut National De La Sante Et De La Recherche Medicale (Inserm) HUMANIZED ANTI-HUMAN βIG-H3 PROTEIN AND USES THEREOF
WO2023006828A1 (en) 2021-07-27 2023-02-02 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding ct45
US11578136B2 (en) 2017-03-16 2023-02-14 Innate Pharma Compositions and methods for treating cancer
WO2023027177A1 (ja) 2021-08-26 2023-03-02 協和キリン株式会社 Cd116およびcd131に結合するバイスペシフィック抗体
WO2023027164A1 (ja) 2021-08-26 2023-03-02 株式会社ペルセウスプロテオミクス Ros(活性酸素種)産生増強剤
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
WO2023153471A1 (ja) 2022-02-09 2023-08-17 国立研究開発法人医薬基盤・健康・栄養研究所 Fcrl1に結合する抗体又は該抗体断片
WO2023170240A1 (en) 2022-03-09 2023-09-14 Merck Patent Gmbh Anti-ceacam5 antibodies and conjugates and uses thereof
WO2023204181A1 (ja) 2022-04-19 2023-10-26 学校法人東海大学 Nk細胞腫瘍の治療剤
US11851476B2 (en) 2011-10-31 2023-12-26 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
WO2024034638A1 (ja) 2022-08-10 2024-02-15 協和キリン株式会社 抗fgf23抗体又は該抗体断片
WO2024056668A1 (en) 2022-09-12 2024-03-21 Institut National de la Santé et de la Recherche Médicale New anti-itgb8 antibodies and its uses thereof
US12168044B2 (en) 2016-03-16 2024-12-17 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers
WO2025012417A1 (en) 2023-07-13 2025-01-16 Institut National de la Santé et de la Recherche Médicale Anti-neurotensin long fragment and anti-neuromedin n long fragment antibodies and uses thereof
WO2025021968A1 (en) 2023-07-27 2025-01-30 Immatics Biotechnologies Gmbh Antigen binding proteins against mageb2
WO2025032158A1 (en) 2023-08-08 2025-02-13 Institut National de la Santé et de la Recherche Médicale Method to treat tauopathies
WO2025073890A1 (en) 2023-10-06 2025-04-10 Institut National de la Santé et de la Recherche Médicale Method to capture circulating tumor extracellular vesicles
US12421322B2 (en) 2017-11-01 2025-09-23 Chugai Seiyaku Kabushiki Kaisha Antibody variant and isoform with lowered biological activity
US12441804B2 (en) 2015-04-14 2025-10-14 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition for prevention and/or treatment of atopic dermatitis comprising IL-31 antagonist as active ingredient

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018032A (en) * 1995-09-11 2000-01-25 Kyowa Hakko Kogyo Co., Ltd. Antibody against human interleukin-5-receptor α chain
US6986890B1 (en) * 1996-11-21 2006-01-17 Kyowa Hakko Kogyo Co., Ltd. Anti-human VEGF receptor Flt-1 monoclonal antibody
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
EP1229125A4 (en) * 1999-10-19 2005-06-01 Kyowa Hakko Kogyo Kk PROCESS FOR PREPARING A POLYPEPTIDE
WO2001060405A1 (fr) * 2000-02-15 2001-08-23 Kyowa Hakko Kogyo Co., Ltd. Inducteur de l'apoptose specifique a l'eosinophilie
US20030023043A1 (en) * 2000-03-02 2003-01-30 Kazuhisa Uchida Method of separating and purifying protein
WO2001064711A1 (fr) * 2000-03-02 2001-09-07 Kyowa Hakko Kogyo Co., Ltd. Procede de separation et de purification de proteine
FR2807767B1 (fr) * 2000-04-12 2005-01-14 Lab Francais Du Fractionnement Anticorps monoclonaux anti-d
WO2001098361A2 (en) * 2000-06-22 2001-12-27 Genentech, Inc. Agonist anti-trk-c monoclonal antibodies
US7064191B2 (en) * 2000-10-06 2006-06-20 Kyowa Hakko Kogyo Co., Ltd. Process for purifying antibody
WO2003017935A2 (en) * 2001-08-23 2003-03-06 Genmab A/S Human antibodies specific for interleukin 15 (il-15)
EP1500400A4 (en) 2002-04-09 2006-10-11 Kyowa Hakko Kogyo Kk MEDICAMENT CONTAINING ANTIBODY COMPOSITION
EP1587834B1 (en) 2002-12-23 2011-07-06 Schering Corporation Uses of il-23 mammalian cytokine; related reagents
US20050226867A1 (en) * 2003-10-08 2005-10-13 Kyowa Hakko Kogyo Co., Ltd. IL-5R-specific antibody composition
TW200530269A (en) 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
AU2005227896B2 (en) * 2004-03-23 2008-11-13 Eli Lilly And Company Anti-myostatin antibodies
CA2828464A1 (en) 2011-03-01 2012-09-07 Novo Nordisk A/S Antagonistic dr3 ligands
PL2691417T5 (pl) 2011-03-29 2025-02-10 Roche Glycart Ag Warianty fc przeciwciała
MX2014004968A (es) * 2011-11-01 2014-08-01 Medimmune Llc Metodos para reducir la frecuencia y la gravedad de exacerbaciones agudas de asma.
NZ702201A (en) 2012-07-13 2018-01-26 Roche Glycart Ag Bispecific anti-vegf/anti-ang-2 antibodies and their use in the treatment of ocular vascular diseases
WO2015057668A1 (en) 2013-10-15 2015-04-23 Medimmune, Llc Methods for treating chronic obstructive pulmonary disease using benralizumab
RU2021137159A (ru) * 2013-10-24 2022-01-11 Астразенека Аб Стабильные водные составы на основе антител
CA3004117A1 (en) 2015-11-03 2017-05-11 Janssen Biotech, Inc. Antibodies specifically binding pd-1 and their uses
WO2017077391A2 (en) 2015-11-04 2017-05-11 Astrazeneca Ab Dipeptidyl peptidase-4 and periostin as predictors of clinical response to eosinophil-targeted therapeutic agents in eosinophilic diseases
BR112018010766A8 (pt) 2015-11-27 2019-02-26 Csl Ltd proteínas de ligação ao cd131 e usos das mesmas
CN109313201B (zh) * 2016-06-14 2022-04-01 高级生物设计公司 用于监测细胞凋亡的特异于γ-谷氨酰基-L-ε-赖氨酸(GGEL)的单克隆抗体
CN109942706A (zh) 2017-12-21 2019-06-28 三生国健药业(上海)股份有限公司 结合人il-5的单克隆抗体、其制备方法和用途
US12398209B2 (en) 2018-01-22 2025-08-26 Janssen Biotech, Inc. Methods of treating cancers with antagonistic anti-PD-1 antibodies
CN111100210B (zh) * 2019-01-30 2022-04-19 武汉九州钰民医药科技有限公司 一种Fc融合蛋白及其应用
TW202110479A (zh) 2019-05-16 2021-03-16 瑞典商阿斯特捷利康公司 使用貝那利珠單抗治療增強型患者群體慢性阻塞性肺病之方法
TW202126688A (zh) 2019-09-27 2021-07-16 瑞典商阿斯特捷利康公司 使用貝那利珠單抗治療遲發性氣喘之方法
TW202214692A (zh) 2020-06-05 2022-04-16 瑞典商阿斯特捷利康公司 治療患有鼻瘜肉的患者的重度氣喘之方法
CN111825763B (zh) * 2020-07-15 2022-04-19 扬州大学 流感病毒ha蛋白茎部特异性单克隆抗体及其制备方法和应用
KR102697770B1 (ko) * 2020-09-14 2024-08-23 아주대학교산학협력단 인간 IL-5Rα에 결합하는 항체 및 이의 용도
KR102697769B1 (ko) 2020-09-14 2024-08-23 아주대학교산학협력단 인터루킨-4 수용체 알파 서브유닛과 인터루킨-5 수용체 알파 서브유닛에 동시에 결합하는 이중특이항체 및 이의 용도
CA3204307A1 (en) 2020-12-17 2022-06-23 Astrazeneca Ab Anti-il5r antibody formulations
CN115043937B (zh) * 2022-03-31 2023-06-02 深圳市人民医院 靶向新冠病毒的纳米抗体及其制备方法和应用
WO2025062362A1 (en) 2023-09-21 2025-03-27 Astrazeneca Ab Il-5r-alpha antibodies for treating eosinophilic granulomatosis with polyangiitis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257891A (ja) * 1989-03-31 1990-10-18 Kyowa Hakko Kogyo Co Ltd 組換え動物細胞による蛋白質の製造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900039B2 (ja) 1989-09-22 1999-06-02 聖志 高津 マウスインターロイキン5レセプターに対する抗体
US5453491A (en) * 1990-09-11 1995-09-26 Kiyoshi Takatsu Murine interleukin-5 receptor
TW280833B (ja) * 1990-12-27 1996-07-11 Hoffmann La Roche
AR248044A1 (es) 1992-02-06 1995-05-31 Schering Corp Una secuencia de adn que codifica anticuerpos monoclonales humanizados contra interleuquinas humanas, metodo de obtencion y de seleccion de dichos anticuerpos, vector recombinante y celula huesped.
JP3108497B2 (ja) 1992-02-13 2000-11-13 株式会社巴技研 重錘式引張試験機の油圧装置
US6018032A (en) * 1995-09-11 2000-01-25 Kyowa Hakko Kogyo Co., Ltd. Antibody against human interleukin-5-receptor α chain
US6639385B2 (en) * 2001-08-07 2003-10-28 General Motors Corporation State of charge method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257891A (ja) * 1989-03-31 1990-10-18 Kyowa Hakko Kogyo Co Ltd 組換え動物細胞による蛋白質の製造

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CANCER RESEARCH, (January 1995), Vol. 55, No. 2, KEITH O. WEBBER et al., "Rapid and Specific Uptake of Anti-Tac Disulfide-Stabilized Fv by Interleukin-2 Receptor-Bearing Tumors", p. 318-323. *
EMBO. J., (July 1995), Vol. 14, No. 14, SIGRID CORNELIS et al., "Detailed Analysis of the IL-5-IL-5Ralpha Interaction: Characterization of Crucial Residues on the Ligand and the Receptor", p. 3395-3402. *
FASEB J., (April 1995), Vol. 9, No. 6, H. DEFEX L. et al., "Characterization of Anti IL-5 Receptor Monoclonal Antibodies Using Surface Plasmon Resonance", p. A1502. *
IMMUNOLOGY, (1991), Vol. 72, No. 4, M. KORENAGA et al., "The Role of Interleukin-5 in Protective Immunity to Strongyloides Venezuelesis Infection in Mice", p. 502-507. *
J. EXP. MED., (1992), Vol. 175, No. 2, YOSHIYUKI MURATA et al., "Molecular Cloning and Expression of the Human Interleukin 5 Receptor", p. 341-351. *
J. EXP. MED., (1993), Vol. 177, No. 6, SATOSHI TAKAKI et al., "Reconstitution of the Functional Receptors for Murine and Human Interleukin 5", p. 1523-1529. *
MOLECULAR IMMUNOLOGY, (1995), Vol. 32, No. 4, KEITH O. WEBBER et al., "Preparation and Characterization of a Disulfide-Stabilized Fv Fragment of the Anti-Tac Antibody: Comparison with its Single-Chain Analog", p. 249-258. *
SCIENCE, (1988), Vol. 242, ROBERT E. BIRD et al., "Single-Chain Antigen-Binding Proteins", p. 423-426. *

Cited By (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1086956A4 (en) * 1998-05-20 2002-08-21 Kyowa Hakko Kogyo Kk RECOMBINANT GENE ANTIBODIES
JP2005027671A (ja) * 1998-05-20 2005-02-03 Kyowa Hakko Kogyo Co Ltd 遺伝子組換え抗体
JP2002525580A (ja) * 1998-09-10 2002-08-13 イミュノテク 好塩基球及び好酸球の検出又は定量のための方法
EP2275540A2 (en) 1999-04-09 2011-01-19 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
EP2278003A2 (en) 1999-04-09 2011-01-26 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
US10233247B2 (en) 1999-04-09 2019-03-19 Kyowa Hakko Kirin Co., Ltd Method of modulating the activity of functional immune molecules
EP1914244A2 (en) 1999-04-09 2008-04-23 Kyowa Hakko Kogyo Co., Ltd. Method of modulating the activity of functional immune molecules
EP2275541A2 (en) 1999-04-09 2011-01-19 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
EP2270150A2 (en) 1999-04-09 2011-01-05 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
EP2270149A2 (en) 1999-04-09 2011-01-05 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
EP2270148A2 (en) 1999-04-09 2011-01-05 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
EP2270147A2 (en) 1999-04-09 2011-01-05 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
EP2264166A2 (en) 1999-04-09 2010-12-22 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
EP3031917A1 (en) 1999-04-09 2016-06-15 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
US7601352B1 (en) * 1999-05-26 2009-10-13 Lay Line Genomics S.P.A. Monoclonal antibodies and antigen binding fragments thereof capable of binding TrkA and inhibiting the functional activation of TrkA
US8486401B2 (en) 1999-05-26 2013-07-16 Lay Line Genomics S.P.A. Monoclonal antibodies binding to TrkA and acting as NGF-antagonist molecules and their use for treating pain induced by NGF
JP4689124B2 (ja) * 1999-09-30 2011-05-25 協和発酵キリン株式会社 ガングリオシドgd3に対するヒト型相補性決定領域移植抗体およびガングリオシドgd3に対する抗体の誘導体
US6989145B2 (en) 2000-03-03 2006-01-24 Kyowa Hakko Kogyo Co., Ltd. Recombinant antibody and antibody fragment
EP1992644A1 (en) 2000-03-03 2008-11-19 Kyowa Hakko Kogyo Co., Ltd Antibodies against CCR4 and its fragments
US7666418B2 (en) 2000-03-03 2010-02-23 Kyowa Hakko Kirin Co., Ltd. Method for treating Th2-mediated disease
US8632996B2 (en) 2000-03-03 2014-01-21 Kyowa Hakko Kirin Co., Ltd. Method for producing recombinant antibody and antibody fragment thereof
US8197814B2 (en) 2000-03-03 2012-06-12 Kyowa Hakko Kirin Co., Ltd. Method for treating the Th2-mediated disease
WO2001064754A1 (fr) * 2000-03-03 2001-09-07 Kyowa Hakko Kogyo Co., Ltd. Anticorps a recombinaison genique et son fragment
US8895266B2 (en) 2000-10-06 2014-11-25 Kyowa Hakko Kirin Co., Ltd Antibody composition-producing cell
JP2013231032A (ja) * 2000-10-06 2013-11-14 Kyowa Hakko Kirin Co Ltd 抗体組成物
EP2314685A1 (en) 2000-10-06 2011-04-27 Kyowa Hakko Kirin Co., Ltd. Cells producing antibody compositions
EP2314686A1 (en) 2000-10-06 2011-04-27 Kyowa Hakko Kirin Co., Ltd. Cells producing antibody compositions
WO2002030954A1 (fr) * 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Procede de purification d'un anticorps
EP3263702A1 (en) 2000-10-06 2018-01-03 Kyowa Hakko Kirin Co., Ltd. Cells producing antibody compositions
US10233475B2 (en) 2000-10-06 2019-03-19 Kyowa Hakko Kirin Co., Ltd Antibody composition-producing cell
US9409982B2 (en) 2000-10-06 2016-08-09 Kyowa Hakko Kirin Co., Ltd Antibody composition-producing cell
EP3690043A1 (en) 2000-10-06 2020-08-05 Kyowa Kirin Co., Ltd. Antibody composition-producing cell
US10590203B2 (en) 2001-08-31 2020-03-17 Kyowa Kirin Co., Ltd. Human CDR-grafted antibody and antibody fragment thereof
US7842797B2 (en) 2001-08-31 2010-11-30 Kyowa Hakko Kirin Co., Ltd. Human CDR-grafted antibody and antibody fragment thereof
US7504104B2 (en) 2001-08-31 2009-03-17 Kyowa Hakko Kogyo Co., Ltd. Human CDR-grafted antibody and antibody fragment thereof
US8900584B2 (en) 2001-08-31 2014-12-02 Kyowa Hakko Kirin Co., Ltd. Human CDR-grafted antibody and antibody fragment thereof
US10131711B2 (en) 2001-08-31 2018-11-20 Kyowa Hakko Kirin Co., Ltd. Human CDR-grafted antibody and antibody fragment thereof
JP2003310275A (ja) * 2002-04-30 2003-11-05 Kyowa Hakko Kogyo Co Ltd ヒトインスリン様成長因子に対する遺伝子組換え抗体
US7722876B2 (en) * 2002-05-10 2010-05-25 Istituto Superiore Di Sanita Toxin-related antibodies with antimicrobial and antiviral activity
AU2003260335B2 (en) * 2002-07-31 2009-01-08 D. Collen Research Foundation Vzw Anti-idiotypic antibodies against factor VIII inhibitor and uses thereof
US8597911B2 (en) 2003-06-11 2013-12-03 Chugai Seiyaku Kabushiki Kaisha Process for producing antibodies
WO2005028515A1 (ja) 2003-09-24 2005-03-31 Kyowa Hakko Kogyo Co., Ltd. ヒトインスリン様成長因子に対する遺伝子組換え抗体
WO2005035583A1 (ja) * 2003-10-08 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. Il-5受容体に特異的に結合する抗体組成物
JPWO2005035583A1 (ja) * 2003-10-08 2007-11-22 協和醗酵工業株式会社 Il−5受容体に特異的に結合する抗体組成物
JP2007510434A (ja) * 2003-11-12 2007-04-26 シェーリング コーポレイション 多重遺伝子発現のためのプラスミドシステム
JP2008061650A (ja) * 2003-11-12 2008-03-21 Schering Corp 多重遺伝子発現のためのプラスミドシステム
US8192736B2 (en) 2004-10-28 2012-06-05 Kyowa Hakko Kirin Co., Ltd Remedy for endometriosis
JPWO2006046689A1 (ja) * 2004-10-28 2008-05-22 協和醗酵工業株式会社 子宮内膜症治療剤
WO2006046689A1 (ja) 2004-10-28 2006-05-04 Kyowa Hakko Kogyo Co., Ltd. 子宮内膜症治療剤
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
US11168344B2 (en) 2005-03-31 2021-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
WO2006106905A1 (ja) * 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US9777066B2 (en) 2005-06-10 2017-10-03 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
WO2007066698A1 (ja) 2005-12-06 2007-06-14 Kyowa Hakko Kogyo Co., Ltd. 抗perp遺伝子組換え抗体
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US10934344B2 (en) 2006-03-31 2021-03-02 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
WO2007142277A1 (ja) 2006-06-06 2007-12-13 Kyowa Hakko Kirin Co., Ltd. ヘパリン結合上皮細胞増殖因子様増殖因子に結合するモノクローナル抗体
US9028821B2 (en) 2006-06-08 2015-05-12 Chugai Seiyaku Kabushiki Kaisha Method of treating an inflammatory disease comprising administering an NR 10 antibody antagonist
US9745378B2 (en) 2006-06-08 2017-08-29 Chugai Seiyaku Kabushiki Kaisha Antibodies that bind to cytokine receptor NR10
WO2008026603A1 (fr) 2006-08-28 2008-03-06 Kyowa Hakko Kirin Co., Ltd. Agent anti-tumoral
WO2008090960A1 (ja) 2007-01-24 2008-07-31 Kyowa Hakko Kirin Co., Ltd. ガングリオシドgm2に特異的に結合する遺伝子組換え抗体組成物
WO2008090959A1 (ja) 2007-01-24 2008-07-31 Kyowa Hakko Kirin Co., Ltd. エフェクター活性が増強された遺伝子組換え抗体組成物
KR100855299B1 (ko) 2007-02-16 2008-08-29 건국대학교 산학협력단 인간 il-32 특이 항원결정기를 갖는 단일클론항체,특이항체분비 융합 세포주 및 항체들을 이용한 il-32측정법
WO2008114733A1 (ja) 2007-03-16 2008-09-25 Kyowa Hakko Kirin Co., Ltd. 抗Claudin-4抗体
US9815895B2 (en) 2007-05-14 2017-11-14 Biowa, Inc. Methods of reducing basophil levels
JP2010527356A (ja) * 2007-05-14 2010-08-12 メディミューン,エルエルシー 好酸球レベルを低下させる方法
US8501176B2 (en) 2007-05-14 2013-08-06 Medimmune, Llc Methods of reducing eosinophil levels
US9688762B2 (en) 2007-09-26 2017-06-27 Chugai Sciyaku Kabushiki Kaisha Modified antibody constant region
US12116414B2 (en) 2007-09-26 2024-10-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US12122840B2 (en) 2007-09-26 2024-10-22 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US11332533B2 (en) 2007-09-26 2022-05-17 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
US11248053B2 (en) 2007-09-26 2022-02-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
WO2009072628A1 (ja) 2007-12-05 2009-06-11 Kyowa Hakko Kirin Co., Ltd. ヘパリン結合上皮細胞増殖因子様増殖因子に結合するモノクローナル抗体
US8431127B2 (en) 2007-12-05 2013-04-30 Chugai Seiyaku Kabushiki Kaisha Method for treating pruritus comprising administering an NR10 antagonist
US9399680B2 (en) 2007-12-05 2016-07-26 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding anti-NR10 antibodies
US11685792B2 (en) 2008-01-31 2023-06-27 Inserm (Institut National De La Sante Et De La Recherche Medicale) Antibodies against human CD39 and use thereof for inhibiting T regulatory cells activity
US10662253B2 (en) 2008-01-31 2020-05-26 Inserm (Institut National De La Sante Et De La Recherche Medicale) Antibodies against human CD39 and use thereof for inhibiting T regulatory cells activity
EP3153526A1 (en) 2008-01-31 2017-04-12 INSERM - Institut National de la Santé et de la Recherche Médicale Antibodies against human cd39 and use thereof for inhibiting t regulatory cells activity
US11359194B2 (en) 2008-04-11 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US10472623B2 (en) 2008-04-11 2019-11-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US11371039B2 (en) 2008-04-11 2022-06-28 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US9868948B2 (en) 2008-04-11 2018-01-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US9890377B2 (en) 2008-04-11 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
WO2010001908A1 (ja) 2008-06-30 2010-01-07 協和発酵キリン株式会社 抗cd27抗体
WO2010008075A1 (ja) 2008-07-17 2010-01-21 協和発酵キリン株式会社 抗システムascアミノ酸トランスポーター2(asct2)抗体
WO2010018847A1 (ja) 2008-08-13 2010-02-18 協和発酵キリン株式会社 遺伝子組換えプロテインs組成物
WO2010040766A1 (en) 2008-10-07 2010-04-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Neutralizing antibodies and fragments thereof directed against platelet factor-4 variant 1 (pf4v1)
JPWO2010064697A1 (ja) * 2008-12-05 2012-05-10 中外製薬株式会社 抗nr10抗体、およびその利用
WO2010064697A1 (ja) * 2008-12-05 2010-06-10 中外製薬株式会社 抗nr10抗体、およびその利用
RU2487136C2 (ru) * 2008-12-05 2013-07-10 Чугаи Сейяку Кабусики Кайся Антитело против nr10 и его применение
WO2010064456A1 (ja) * 2008-12-05 2010-06-10 中外製薬株式会社 抗nr10抗体、およびその利用
WO2010074266A1 (ja) 2008-12-26 2010-07-01 協和発酵キリン株式会社 抗cd4抗体
EP3002296A1 (en) 2009-03-17 2016-04-06 Université d'Aix-Marseille Btla antibodies and uses thereof
WO2010106051A1 (en) 2009-03-17 2010-09-23 Universite De La Mediterranee Btla antibodies and uses thereof
US10066018B2 (en) 2009-03-19 2018-09-04 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US9228017B2 (en) 2009-03-19 2016-01-05 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US10253091B2 (en) 2009-03-19 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
EP2993188A1 (en) 2009-04-20 2016-03-09 Kyowa Hakko Kirin Co., Ltd. Antibody containing igg2 having amino acid mutation introduced therein
WO2010123012A1 (ja) 2009-04-20 2010-10-28 協和発酵キリン株式会社 アミノ酸変異が導入されたIgG2を有する抗体
WO2011016568A1 (ja) 2009-08-07 2011-02-10 協和発酵キリン株式会社 抗アミロイドβオリゴマーヒト化抗体
WO2011016567A1 (ja) 2009-08-07 2011-02-10 協和発酵キリン株式会社 抗アミロイドβオリゴマーヒト化抗体
WO2011030841A1 (ja) 2009-09-10 2011-03-17 協和発酵キリン株式会社 ヒトccケモカイン受容体4(ccr4)に特異的に結合する抗体組成物を含む医薬
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
WO2011108502A1 (ja) 2010-03-02 2011-09-09 協和発酵キリン株式会社 改変抗体組成物
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
WO2011118739A1 (ja) 2010-03-26 2011-09-29 協和発酵キリン株式会社 新規修飾部位導入抗体および抗体フラグメント
EP3363499A1 (en) 2010-06-11 2018-08-22 Kyowa Hakko Kirin Co., Ltd. Anti-tim-3 antibody
WO2011155607A1 (ja) 2010-06-11 2011-12-15 協和発酵キリン株式会社 抗tim-3抗体
WO2012010696A1 (en) 2010-07-23 2012-01-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for cancer management targeting co-029
US10450381B2 (en) 2010-11-17 2019-10-22 Chugai Seiyaku Kabushiki Kaisha Methods of treatment that include the administration of bispecific antibodies
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
WO2012080769A1 (en) 2010-12-15 2012-06-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd277 antibodies and uses thereof
WO2012080351A1 (en) 2010-12-15 2012-06-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd277 antibodies and uses thereof
WO2012085132A1 (en) 2010-12-22 2012-06-28 Orega Biotech Antibodies against human cd39 and use thereof
WO2012101125A1 (en) 2011-01-24 2012-08-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Specific antibodies against human cxcl4 and uses thereof
WO2012131004A2 (en) 2011-03-31 2012-10-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies directed against icos and uses thereof
EP3590969A1 (en) 2011-03-31 2020-01-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies directed against icos and uses thereof
WO2012153707A1 (ja) 2011-05-09 2012-11-15 株式会社ペルセウスプロテオミクス トランスフェリン受容体を特異的に認識できる抗体
WO2012156532A1 (en) 2011-05-19 2012-11-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-human-her3 antibodies and uses thereof
WO2012176779A1 (ja) 2011-06-20 2012-12-27 協和発酵キリン株式会社 抗erbB3抗体
WO2012175692A1 (en) 2011-06-22 2012-12-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-axl antibodies and uses thereof
WO2012175691A1 (en) 2011-06-22 2012-12-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-axl antibodies and uses thereof
WO2013008099A1 (en) 2011-07-08 2013-01-17 Inserm ( Institut National De La Sante Et De La Recherche Medicale) Antibodies for the treatment and prevention of thrombosis
EP2543679A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
WO2013008100A1 (en) 2011-07-08 2013-01-17 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods for the treatment and prevention of thrombosis
WO2013008098A1 (en) 2011-07-08 2013-01-17 Inserm ( Institut National De La Sante Et De La Recherche Medicale) Antibodies for the treatment and prevention of thrombosis
EP2543678A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
EP2543677A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
US11851476B2 (en) 2011-10-31 2023-12-26 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
WO2014001368A1 (en) 2012-06-25 2014-01-03 Orega Biotech Il-17 antagonist antibodies
WO2014007198A1 (ja) 2012-07-02 2014-01-09 協和発酵キリン株式会社 抗bmp9抗体を有効成分とする、腎性貧血、がん性貧血などの貧血に対する治療剤
WO2014033327A1 (en) 2012-09-03 2014-03-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies directed against icos for treating graft-versus-host disease
WO2014054804A1 (ja) 2012-10-05 2014-04-10 協和発酵キリン株式会社 ヘテロダイマータンパク質組成物
WO2014073641A1 (ja) 2012-11-08 2014-05-15 国立大学法人 宮崎大学 トランスフェリン受容体を特異的に認識できる抗体
EP2733153A1 (en) 2012-11-15 2014-05-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the preparation of immunoconjugates and uses thereof
EP3594243A1 (en) 2012-11-20 2020-01-15 Sanofi Anti-ceacam5 antibodies and uses thereof
US10457739B2 (en) 2012-11-20 2019-10-29 Sanofi Anti-CEACAM5 antibodies and uses thereof
US9617345B2 (en) 2012-11-20 2017-04-11 Sanofi Anti-CEACAM5 antibodies and uses thereof
US11332542B2 (en) 2012-11-20 2022-05-17 Sanofi Anti-CEACAM5 antibodies and uses thereof
WO2014079886A1 (en) 2012-11-20 2014-05-30 Sanofi Anti-ceacam5 antibodies and uses thereof
WO2014087863A1 (ja) 2012-12-07 2014-06-12 協和発酵キリン株式会社 抗folr1抗体
US9809653B2 (en) 2012-12-27 2017-11-07 Sanofi Anti-LAMP1 antibodies and antibody drug conjugates, and uses thereof
WO2014183885A1 (en) 2013-05-17 2014-11-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Antagonist of the btla/hvem interaction for use in therapy
US9441046B2 (en) 2013-08-12 2016-09-13 Astrazeneca Ab Methods for increasing forced expiratory volume in asthmatics using benralizumab
US9441037B2 (en) 2013-08-12 2016-09-13 Astrazeneca Ab Methods for reducing exacerbation rates of asthma using benralizumab
US9441047B2 (en) 2013-08-12 2016-09-13 Astrazeneca Ab Methods for improving asthma symptoms using benralizumab
US10030071B2 (en) 2013-09-05 2018-07-24 University Of Miyazaki Antibody which specifically reacts with human integrin A6B4
WO2015034052A1 (ja) 2013-09-05 2015-03-12 国立大学法人 宮崎大学 ヒトインテグリンa6b4と特異的に反応する抗体
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
WO2015067986A1 (en) 2013-11-07 2015-05-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Neuregulin allosteric anti-her3 antibody
WO2015158851A1 (en) 2014-04-16 2015-10-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the prevention or the treatment of bleeding episodes
WO2016016442A1 (en) 2014-08-01 2016-02-04 INSERM (Institut National de la Santé et de la Recherche Médicale) An anti-cd45rc antibody for use as drug
US11001643B2 (en) 2014-09-26 2021-05-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
WO2016059220A1 (en) 2014-10-16 2016-04-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Tcr-activating agents for use in the treatment of t-all
EP3812398A2 (en) 2015-01-23 2021-04-28 Sanofi Anti-cd3 antibodies, anti-cd123 antibodies and bispecific antibodies specifically binding to cd3 and/or cd123
EP4039710A2 (en) 2015-01-23 2022-08-10 Sanofi Anti-cd3 antibodies, anti-cd123 antibodies and bispecific antibodies specifically binding to cd3 and/or cd123
US10906978B2 (en) 2015-01-23 2021-02-02 Sanofi Anti-CD3 antibodies, anti-CD123 antibodies and bispecific antibodies specifically binding to CD3 and/or CD123
US20180030136A1 (en) * 2015-01-28 2018-02-01 Glaxosmithkline Intellectual Property Development Limited Icos binding proteins
US11130811B2 (en) 2015-01-28 2021-09-28 Glaxosmithkline Intellectual Property Development Limited ICOS binding proteins
WO2016146844A1 (en) 2015-03-18 2016-09-22 Janssen Vaccines & Prevention B.V. Assays for recombinant expression systems
US12359001B2 (en) 2015-04-01 2025-07-15 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
WO2016162368A1 (en) 2015-04-07 2016-10-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Non-invasive imaging of tumor pd-l1 expression
US10544227B2 (en) 2015-04-14 2020-01-28 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition for prevention and/or treatment of atopic dermatitis comprising IL-31 antagonist as active ingredient
US11773173B2 (en) 2015-04-14 2023-10-03 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition for prevention and/or treatment of atopic dermatitis comprising IL-31 antagonist as active ingredient
US12441804B2 (en) 2015-04-14 2025-10-14 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition for prevention and/or treatment of atopic dermatitis comprising IL-31 antagonist as active ingredient
JPWO2016194897A1 (ja) * 2015-06-01 2018-03-22 国立大学法人富山大学 肺高血圧症の治療薬及び治療方法
US10479836B2 (en) 2015-06-01 2019-11-19 National University Corporation University Of Toyama Method for treating pulmonary hypertension with interleukin-5 receptor antibody
WO2016194897A1 (ja) * 2015-06-01 2016-12-08 国立大学法人富山大学 肺高血圧症の治療薬及び治療方法
WO2017005847A1 (en) 2015-07-07 2017-01-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to myosin 18a and uses thereof
WO2017060397A1 (en) 2015-10-09 2017-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of subjects suffering from melanoma metastases
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
WO2017144668A1 (en) 2016-02-26 2017-08-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity for btla and uses thereof
US11072666B2 (en) 2016-03-14 2021-07-27 Chugai Seiyaku Kabushiki Kaisha Cell injury inducing therapeutic drug for use in cancer therapy
US12168044B2 (en) 2016-03-16 2024-12-17 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers
WO2018015340A1 (en) 2016-07-18 2018-01-25 Sanofi Bispecific antibody-like binding proteins specifically binding to cd3 and cd123
WO2018020000A1 (en) 2016-07-29 2018-02-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies targeting tumor associated macrophages and uses thereof
US12227560B2 (en) 2016-10-20 2025-02-18 Sanofi Anti-CHIKV antibodies and uses thereof
WO2018073387A1 (en) 2016-10-20 2018-04-26 Sanofi Anti-chikv antibodies and uses thereof
US11286295B2 (en) 2016-10-20 2022-03-29 Sanofi Anti-CHIKV monoclonal antibodies directed against the E2 structural protein
WO2018091720A1 (en) 2016-11-21 2018-05-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the prophylactic treatment of metastases
WO2018139404A1 (ja) 2017-01-24 2018-08-02 協和発酵キリン株式会社 放射線障害の治療又は予防剤並びに治療又は予防方法
US11208491B2 (en) 2017-01-24 2021-12-28 Kyowa Kirin Co., Ltd. Treatment or prevention method of radiation damage by administration of IL-5 receptor alpha chain binding antibody
US11999788B2 (en) 2017-01-24 2024-06-04 Kyowa Kirin Co., Ltd. Treatment or prevention method of radiation damage by administration of IL-5 receptor alpha chain binding antibody
JPWO2018139404A1 (ja) * 2017-01-24 2019-11-14 協和キリン株式会社 放射線障害の治療又は予防剤並びに治療又は予防方法
WO2018158398A1 (en) 2017-03-02 2018-09-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to nectin-4 and uses thereof
US11578136B2 (en) 2017-03-16 2023-02-14 Innate Pharma Compositions and methods for treating cancer
WO2019013308A1 (ja) 2017-07-13 2019-01-17 協和発酵キリン株式会社 抗bril抗体及び該抗体を用いたbril融合タンパク質の安定化方法
WO2019017401A1 (ja) 2017-07-18 2019-01-24 協和発酵キリン株式会社 抗ヒトccr1モノクローナル抗体
WO2019020480A1 (en) 2017-07-24 2019-01-31 INSERM (Institut National de la Santé et de la Recherche Médicale) ANTIBODIES AND PEPTIDES FOR TREATING HCMV RELATED DISEASES
WO2019057933A1 (en) 2017-09-21 2019-03-28 Imcheck Therapeutics Sas ANTIBODIES HAVING SPECIFICITY FOR BTN2 AND USES THEREOF
US12173075B2 (en) 2017-10-03 2024-12-24 Joint Stock Company “Biocad” Anti-IL-5RAlpha monoclonal antibody
WO2019070164A1 (ru) 2017-10-03 2019-04-11 Закрытое Акционерное Общество "Биокад" МОНОКЛОНАЛЬНОЕ АНТИТЕЛО К IL-5Rα
US12421322B2 (en) 2017-11-01 2025-09-23 Chugai Seiyaku Kabushiki Kaisha Antibody variant and isoform with lowered biological activity
WO2019093342A1 (ja) 2017-11-08 2019-05-16 協和発酵キリン株式会社 CD40とEpCAMに結合するバイスペシフィック抗体
WO2019117208A1 (ja) 2017-12-12 2019-06-20 協和発酵キリン株式会社 抗bmp10抗体及び該抗体を有効成分とする、高血圧および高血圧性疾患に対する治療剤
US12202907B2 (en) 2018-06-18 2025-01-21 Innate Pharma Nucleic acids encoding and methods of producing proteins comprising antibody chains
US11377503B2 (en) 2018-06-18 2022-07-05 Innate Pharma Antibodies that bind human CD39 and inhibit ATPase activity of a soluble extracellular domain human CD39 polypeptide
WO2020004490A1 (ja) 2018-06-26 2020-01-02 協和キリン株式会社 コンドロイチン硫酸プロテオグリカン-5に結合する抗体
WO2020004492A1 (ja) 2018-06-26 2020-01-02 協和キリン株式会社 Cell Adhesion Molecule3に結合する抗体
WO2020067541A1 (ja) 2018-09-28 2020-04-02 協和キリン株式会社 抗体組成物
WO2020094609A1 (en) 2018-11-06 2020-05-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of acute myeloid leukemia by eradicating leukemic stem cells
WO2020105621A1 (ja) 2018-11-20 2020-05-28 株式会社ペルセウスプロテオミクス 細胞内への鉄の取り込み阻害剤
WO2020120786A1 (en) 2018-12-14 2020-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Isolated mhc-derived human peptides and uses thereof for stimulating and activating the suppressive function of cd8+cd45rclow tregs
WO2020138487A1 (ja) 2018-12-28 2020-07-02 協和キリン株式会社 TfRに結合するバイスペシフィック抗体
WO2020169472A2 (en) 2019-02-18 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing phenotypic changes in macrophages
WO2020188086A1 (en) 2019-03-20 2020-09-24 Imcheck Therapeutics Sas Antibodies having specificity for btn2 and uses thereof
WO2020193520A1 (en) 2019-03-25 2020-10-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Treatment of taupathy disorders by targeting new tau species
WO2020230901A1 (ja) 2019-05-15 2020-11-19 協和キリン株式会社 Cd40とgpc3に結合するバイスペシフィック抗体
WO2020230899A1 (ja) 2019-05-15 2020-11-19 協和キリン株式会社 Cd40とfapに結合するバイスペシフィック抗体
WO2020245326A1 (en) 2019-06-06 2020-12-10 Immatics Biotechnologies Gmbh Sorting with counter selection using sequence similar peptides
US11840577B2 (en) 2019-08-02 2023-12-12 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding MAGE-A
WO2021023657A1 (en) 2019-08-02 2021-02-11 Immatics Biotechnologies Gmbh Modified bi specific anti cd3 antibodies
US12269881B2 (en) 2019-08-02 2025-04-08 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding MAGE-A
WO2021023624A1 (en) 2019-08-02 2021-02-11 Orega Biotech Novel il-17b antibodies
WO2021023658A1 (en) 2019-08-02 2021-02-11 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding mage-a
WO2021045184A1 (ja) 2019-09-04 2021-03-11 株式会社ペルセウスプロテオミクス 多血症治療薬
WO2021049606A1 (ja) 2019-09-13 2021-03-18 協和キリン株式会社 DcR3改変体
WO2021058729A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof
WO2021058763A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance antibodies and uses thereof
WO2021066167A1 (ja) 2019-10-02 2021-04-08 国立大学法人九州大学 ヘパリン様物質の製造方法、組換え細胞及びその製造方法
US11260125B2 (en) 2019-11-20 2022-03-01 Chugai Seiyaku Kabushiki Kaisha Anti-IL31RA antibody-containing formulations
US11723976B2 (en) 2019-11-20 2023-08-15 Chugai Seiyaku Kabushiki Kaisha Methods of administering anti-IL31A antibody-containing formulations
US12171830B2 (en) 2019-11-20 2024-12-24 Chugai Seiyaku Kabushiki Kaisha Anti-IL-31RA antibody-containing formulations
WO2021099600A1 (en) 2019-11-22 2021-05-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Inhibitors of adrenomedullin for the treatment of acute myeloid leukemia by eradicating leukemic stem cells
WO2021107082A1 (ja) 2019-11-27 2021-06-03 株式会社ペルセウスプロテオミクス 癌性腹膜炎の治療薬
WO2021116119A1 (en) 2019-12-09 2021-06-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to her4 and uses thereof
WO2021144020A1 (en) 2020-01-15 2021-07-22 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding prame
WO2021162098A1 (ja) 2020-02-14 2021-08-19 協和キリン株式会社 Cd3に結合するバイスペシフィック抗体
WO2021201236A1 (ja) 2020-04-01 2021-10-07 協和キリン株式会社 抗体組成物
WO2021228956A1 (en) 2020-05-12 2021-11-18 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to treat cutaneous t-cell lymphomas and tfh derived lymphomas
CN114075282B (zh) * 2020-08-20 2024-01-02 南京融捷康生物科技有限公司 Il-5的结合分子及其制备方法和应用
CN114075282A (zh) * 2020-08-20 2022-02-22 南京融捷康生物科技有限公司 Il-5的结合分子及其制备方法和应用
WO2022048883A1 (en) 2020-09-04 2022-03-10 Merck Patent Gmbh Anti-ceacam5 antibodies and conjugates and uses thereof
WO2022075439A1 (ja) 2020-10-08 2022-04-14 国立大学法人東海国立大学機構 抗トランスフェリンレセプター抗体の薬効又は感受性の判定方法
WO2022184805A1 (en) 2021-03-03 2022-09-09 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding sars-cov-2 antigenic peptides in complex with a major histocompatibility complex protein
WO2022233956A1 (en) 2021-05-05 2022-11-10 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding prame
US12209137B2 (en) 2021-07-27 2025-01-28 Emmatics Biotechmiogieg GmbH Antigen binding proteins specifically binding CT45
WO2023006828A1 (en) 2021-07-27 2023-02-02 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding ct45
WO2023006919A1 (en) 2021-07-29 2023-02-02 Institut National De La Sante Et De La Recherche Medicale (Inserm) HUMANIZED ANTI-HUMAN βIG-H3 PROTEIN AND USES THEREOF
WO2023027177A1 (ja) 2021-08-26 2023-03-02 協和キリン株式会社 Cd116およびcd131に結合するバイスペシフィック抗体
WO2023027164A1 (ja) 2021-08-26 2023-03-02 株式会社ペルセウスプロテオミクス Ros(活性酸素種)産生増強剤
WO2023153471A1 (ja) 2022-02-09 2023-08-17 国立研究開発法人医薬基盤・健康・栄養研究所 Fcrl1に結合する抗体又は該抗体断片
WO2023170240A1 (en) 2022-03-09 2023-09-14 Merck Patent Gmbh Anti-ceacam5 antibodies and conjugates and uses thereof
WO2023170239A1 (en) 2022-03-09 2023-09-14 Merck Patent Gmbh Methods and tools for conjugation to antibodies
WO2023204181A1 (ja) 2022-04-19 2023-10-26 学校法人東海大学 Nk細胞腫瘍の治療剤
WO2024034638A1 (ja) 2022-08-10 2024-02-15 協和キリン株式会社 抗fgf23抗体又は該抗体断片
WO2024056668A1 (en) 2022-09-12 2024-03-21 Institut National de la Santé et de la Recherche Médicale New anti-itgb8 antibodies and its uses thereof
WO2025012417A1 (en) 2023-07-13 2025-01-16 Institut National de la Santé et de la Recherche Médicale Anti-neurotensin long fragment and anti-neuromedin n long fragment antibodies and uses thereof
WO2025021968A1 (en) 2023-07-27 2025-01-30 Immatics Biotechnologies Gmbh Antigen binding proteins against mageb2
WO2025032158A1 (en) 2023-08-08 2025-02-13 Institut National de la Santé et de la Recherche Médicale Method to treat tauopathies
WO2025073890A1 (en) 2023-10-06 2025-04-10 Institut National de la Santé et de la Recherche Médicale Method to capture circulating tumor extracellular vesicles

Also Published As

Publication number Publication date
CA2205007C (en) 2010-12-14
CN1241944C (zh) 2006-02-15
JP3946256B2 (ja) 2007-07-18
DE69633973D1 (de) 2005-01-05
EP0811691A1 (en) 1997-12-10
DE69633973T2 (de) 2005-12-22
AU6943896A (en) 1997-04-01
CA2205007A1 (en) 1997-03-20
HK1005096A1 (en) 1998-12-24
US20030096977A1 (en) 2003-05-22
ATE283926T1 (de) 2004-12-15
KR970707160A (ko) 1997-12-01
US6538111B1 (en) 2003-03-25
ES2233974T3 (es) 2005-06-16
EP0811691A4 (en) 2000-01-05
AU690474B2 (en) 1998-04-23
US7238354B2 (en) 2007-07-03
EP0811691B1 (en) 2004-12-01
US6018032A (en) 2000-01-25
US20050272918A1 (en) 2005-12-08
KR100259828B1 (ko) 2000-06-15
CN1189190A (zh) 1998-07-29
US20070048304A1 (en) 2007-03-01
US7179464B2 (en) 2007-02-20

Similar Documents

Publication Publication Date Title
WO1997010354A1 (en) ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR
KR102143476B1 (ko) 항bmp9 항체를 유효 성분으로 하는, 신장성 빈혈, 암성 빈혈 등의 빈혈에 대한 치료제
CN112703013B (zh) Cd3抗原结合片段及其应用
TW200938630A (en) Humanized antibodies specific for von willebrand factor
TW201127402A (en) Anti-CD27 humanized monoclonal antibody
WO2007142277A1 (ja) ヘパリン結合上皮細胞増殖因子様増殖因子に結合するモノクローナル抗体
TW202337898A (zh) 新穎的抗-tslp抗體
TW201831512A (zh) Tim-3抗體、其抗原結合片段及醫藥用途
CN117683133A (zh) 一种抗tigit免疫抑制剂及应用
JP7672532B2 (ja) アイソフォーム選択的抗tgf-ベータ抗体及び使用方法
JPH10257893A (ja) ガングリオシドgm2に対するヒト型相補性決定領域(cdr)移植抗体
TW202233687A (zh) 貓抗體恆定區中之突變
TW202346356A (zh) 抗cd3抗體、其製備方法及應用
CN110959014B (zh) 抗人ccr1单克隆抗体
KR20230079148A (ko) 개과 항체 변이체
KR102790528B1 (ko) 항bmp10 항체 및 해당 항체를 유효 성분으로 하는, 고혈압 및 고혈압성 질환에 대한 치료제
WO1999060025A1 (fr) Anticorps recombines de gene
WO2019238074A1 (zh) 一种高亲和力高生物活性的lag-3抗体及其应用
WO2023143534A1 (zh) 一种特异性识别4-1bb的抗体、其制备方法及其用途
WO2023001155A1 (zh) 一种磷脂酰肌醇蛋白聚糖3抗体及其应用
CN115772544A (zh) 抗vegf-a和ang-2的aav载体
CN116368153A (zh) Zip12抗体
JP5095416B2 (ja) 抗perp遺伝子組換え抗体
JP3679406B2 (ja) 遺伝子組換え抗体
TWI814094B (zh) 貓抗體變異體

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191210.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR CA CN CZ HU JP KR MX NO NZ PL RO SG SI SK UA US VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2205007

Country of ref document: CA

Ref document number: 2205007

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 08836561

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970703159

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996930357

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1019970703159

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996930357

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019970703159

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996930357

Country of ref document: EP