WO1997011344A1 - Ensemble table vibrante et procede de commande associe - Google Patents
Ensemble table vibrante et procede de commande associe Download PDFInfo
- Publication number
- WO1997011344A1 WO1997011344A1 PCT/JP1995/001850 JP9501850W WO9711344A1 WO 1997011344 A1 WO1997011344 A1 WO 1997011344A1 JP 9501850 W JP9501850 W JP 9501850W WO 9711344 A1 WO9711344 A1 WO 9711344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- load
- acceleration
- measuring
- transfer function
- control device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 24
- 230000001133 acceleration Effects 0.000 claims abstract description 63
- 238000005259 measurement Methods 0.000 claims abstract description 10
- 238000012546 transfer Methods 0.000 claims description 31
- 238000012545 processing Methods 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 19
- 230000005284 excitation Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 11
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 3
- 241001634822 Biston Species 0.000 description 1
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/022—Vibration control arrangements, e.g. for generating random vibrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/04—Monodirectional test stands
Definitions
- the present invention relates to a shaking table device as a vibrating and wiping device, and a control method thereof, and more particularly to a shaking table with improved reproducibility of a vibration acceleration, and a control method thereof.
- the shaking table is a device for testing the vibration of a structure, and is a device that vibrates a structure by roughly moving a table on which a structure to be a test object is to be placed by a vibrator.
- the table may be held by an appropriate receiver.
- shaking tables are used in seismic testing of structures. Since the purpose of the seismic test is to evaluate the response of the structure to a specified acceleration waveform, it is necessary to accurately reproduce the specified acceleration waveform using a table. For this reason, a predetermined acceleration waveform is set as the target bales, and a sensor for displacement, acceleration, etc. is installed on the shaking table to measure the motion state of the table, and is fed back to the control device of the vibration exciter to generate the excitation acceleration wave. (For example, Sugano, “Servo mechanism of three-dimensional six-degree-of-freedom shaking table,” Mechanical Design, Vol. 35, No. 4, April 1991, April 25, p. 25 ⁇ 28 pages).
- the specimen placed on the table is relatively light, these methods can provide a highly accurate excitation waveform.However, if the specimen is heavy, it will be vibrated. In some cases, the generated load applied to the table is large, and the predetermined excitation acceleration waveform force may not be applied. In particular, when a vibration near the natural frequency of the specimen is applied, the reaction force from the specimen acts to limit the movement of the table, so that a problem occurs in that the excitation acceleration waveform becomes small.
- the present invention has been made in order to solve the above-described problems, and it is an object of the present invention to obtain a high-accuracy excitation acceleration waveform regardless of the influence of a supply object on a table, particularly, without being affected by a change in its dynamic characteristics. It is an object of the present invention to provide a shaking table that can be controlled and a control method thereof.
- a table for mounting a supply body, IB driving means for driving the table, first measuring means for measuring the motion of the table, and the first measuring means The detection table of the measuring means is feed-hacked, compared with the target, and a control device for controlling the driving means based on the deviation is provided on the excitation table as the second measuring means.
- Load measuring means for detecting the load applied from the wiper on the table, and feedback means for feeding back the detected bales of the load measuring means to the control device are provided, and the shaking table is driven by correcting the connection difference. I do.
- the feedback means may include a filter having a transfer function inverse to a transfer function from a position where the load detected by the load measuring means is fed back to a point where a driving force for driving the table is generated.
- the transfer function to the drive means for K-moving the table may be considered.
- Such a filter can be provided as hardware means such as a gas circuit, or can be realized by numerical means such as a DSP (Digital Signal Processor).
- DSP Digital Signal Processor
- the load measuring means may be provided between the table and the specimen.
- the load measuring means may be provided between the driving means and the table.
- an acceleration detector is provided as the first measuring means.
- a processing means may be provided for reducing the load obtained by multiplying the acceleration detected by the acceleration detector by the mass of the table from the load detected by the E load cell.
- the shaking table includes a table for mounting a specimen, a driving unit for driving the table, a first measuring unit for measuring the motion JI8 of the table, and a first measuring unit.
- the detection table is fed back and compared with the target t, and based on the deviation, the shaking table provided with the control device for controlling the driving means is provided with a hydraulic exciter as the driving means, Means for detecting the pressure difference of the piston portion of the vibrator, processing means for multiplying the pressure difference by the pressure receiving area of the front biston portion, and means for correcting the deviation based on the processing result of the processing means May be provided.
- the shaking table control method of the present invention includes a table for mounting a supply object, a JB moving means for moving the table K, a first measuring means for measuring the movement of the table, A control device for feeding back the detected bale of the first measuring means and comparing it with a target value, and for controlling the preceding IB driving means based on the deviation, a control method of a shaking table for vibrating the table
- the load applied to the table from the supply body is measured, the load is filtered, the processing result is subtracted from the target acceleration waveform, and the moving means is controlled based on the processing result.
- the filter processing may be performed by an inverse transfer function of a transfer function from the subtraction processing unit of the filter processing result and the target acceleration waveform to the IB moving means.
- the shaking table of the present invention includes a table installed on a base via a bearing, on which a specimen is mounted, a vibrator fixed on the front base, and vibrating the table; An acceleration detection unit for detecting acceleration; a load cell provided on the table, on which the specimen is placed, and a load applied to the front K table from the specimen, and a load detected by the single cell and the acceleration, A control device for controlling the vibrator based on the following formula: wherein the control device corrects the load, compares the corrected load with a target member, and compares the corrected load with a target member.
- Means for reducing the difference, and means for inputting the determined deviation to the vibrator, wherein the means for correcting the load comprises a transfer function from the comparing means to the previous SS vibration tt.
- the load is compensated for by the inverse transfer function of It may be.
- the shaking table of the present invention includes a table installed on a base via a sleeve support, on which a supply body is placed, a hydraulic exciter fixed on the base and exciting the table, An acceleration detector for detecting an acceleration of the hydraulic exciter; a means for detecting a differential pressure of a piston portion of the hydraulic exciter; and a control device for controlling the hydraulic exciter, the control device comprising: Means for calculating the load by multiplying the table by the mass of the table, means for correcting the load, means for comparing the corrected load and the desired value, means for widening the deviation, and means for widening the deviation.
- the control device may be a means for correcting the front load by a function, and the control device may control the front hydraulic exciter based on the differential pressure and the acceleration.
- the driver applied to the table from the driving means can offset the load applied to the table from the supply body, and is not affected by fluctuations in the dynamic characteristics of the supply body. Acceleration or acceleration waveform can be reproduced with high accuracy.
- FIG. 1 is a schematic diagram showing one embodiment of the present invention.
- FIG. 2 is a diagram showing one configuration example of a conventional shaking table.
- FIG. 3 is a block diagram showing a control state of a conventional shaking table.
- FIG. 4 is a schematic view of a conventional hydraulic exciter.
- FIG. 5 is a block diagram showing a control state of one embodiment of the present invention.
- FIG. 6 is an explanatory diagram of one method of feedback of a load signal in one embodiment of the present invention.
- FIG. 7 is an explanatory diagram of one method of feedback of a load signal in one embodiment of the present invention.
- FIG. 8 is an explanatory diagram of one method of feedback of a load signal in one embodiment of the present invention.
- FIG. 9 shows an example of the configuration of the load measuring means in one embodiment of the present invention.
- FIG. 10 shows an example of the configuration of the load measuring means in one embodiment of the present invention.
- the table 1 is supported on the base 7 via the W receiver 5. However, the wheel bearing 5 is not always necessary depending on the configuration of the shaking table.
- the table 1 is connected to a vibrator 2 also installed on a foundation 7.
- the acceleration measurement means 4 is installed in Table 1 above.
- the vibrator is controlled using at least the measurement bales measured by the acceleration measuring means 4 as a feedback signal so that the target waveform input by the control device 3 is realized.
- a test object 6 to be tested is installed on the table 1, and various sensors (not shown) installed on the test object generate a vibration response to acceleration excitation realized by the table. Measured.
- FIG. 3 schematically shows the control state of the shaking table.
- the target waveform X such as an earthquake acceleration waveform is input to the control device 3 of the shaker in the form of a pressure signal proportional to the acceleration to be achieved, for example.
- an appropriate processing P is applied to X.
- Deviation compared to the applied signal Calculate signal Z.
- Appropriate processing Q is applied to the deviation signal Z to output a K motion signal for excitation.
- the excitation tt generates a table driving force F based on this signal.
- the transfer function between Z and F is denoted by A.
- the acceleration Y is realized.
- the transfer function from F to Y is (1 ZM).
- the specimen 6 is mounted on the tape holder 1
- the specimen vibrates due to the acceleration Y, and a load F 'is applied from the specimen to the table.
- the number of transfer of acceleration Y and load F ' is represented by C.
- the acceleration signal is fed back, but depending on the case, the speed and displacement may be fed back.
- the target signal of not only the acceleration but also the displacement and the velocity is output by the process P, and the calculation of the deviation ⁇ is performed as a vector. Therefore, P and B are single-input multiple-output, and Q is multi-input single-output processing.
- the transfer function of X and Y under the no-load condition is expressed by the following equation.
- ⁇ ⁇ (1 + AQB / M) -1 AQP / M ⁇ X
- the control device and the shaker are used so that the inside of ⁇ becomes almost 1 in the usage range.
- the transfer function changes as in the following equation.
- ⁇ ⁇ (1 + AQB / M- C) "IAQP / M ⁇ X (2) Therefore, the controller adjusted under the condition of equation (1) has the dynamic characteristics of the shaking table If the value of C is known in advance, the accuracy can be maintained by adjusting the IS within ⁇ of equation (2) so that it is almost 1 within the usable range.
- FIG. 4 is a schematic diagram of one configuration example of a shaking table using a hydraulic exciter. This figure shows an example where not only acceleration but also velocity and displacement are used as feedback signals.
- the target acceleration signal is input to the response model circuit, for example, in the form of a voltage signal. This circuit corresponds to P.
- the response model circuit outputs three waveforms, that is, velocity and displacement, in addition to acceleration, and inputs them to the servo amplifier.
- the acceleration, and possibly the speed and the displacement of the actual table are detected by the respective sensors, and the detection signals are also input to the servo amplifier. These sensors correspond to B.
- Q corresponds to Servo No.
- g motion signal is output from these symbols and applied to the servo valve.
- the servo valve controls the flow rate and direction of the pressure oil supplied to the shaker, and moves the table in the direction in which the deviation between the target and the actual motion concept becomes smaller. In other words, the servo valve works so that the deviation signal always becomes 0.
- the transfer function between the drive signal applied to the servo valve and the load applied to the table is A.
- FIG. 1 is a configuration diagram of one embodiment of the present invention.
- a measuring means 8 for measuring the load applied from the supply body 6 to the table 1 is provided.
- the staff was used as the feedback signal of the shaker control device 3.
- the load applied to the table by the specimen is measured, and the signal for generating the load by the vibrator, which is the drive means of the table, is superimposed on the input signal of the vibrator so as to cancel this load! Therefore, the acceleration can be accurately reproduced without being affected by fluctuations in the dynamic characteristics of the supply object.
- FIG. 5 schematically shows the control situation of FIG.
- the load F 'applied to the table 1 from the supply body 6 is measured, and a filter signal represented by a block D is given as a feedback signal to the control device 3 by performing a process. It corrects the target waveform X.
- D it is not necessary for D to strictly satisfy this condition, but it is sufficient if D has this characteristic in the frequency range where the shaking table is used. For example, for a shaking table used for seismic testing, D
- the load measurement bales are input directly to the exciter control device as feedback signals. It is not necessary to adopt such a configuration. For example, as shown in FIG. 6, it is also possible to perform a subtraction process from the original target waveform signal on the load cell «I signal that has been subjected to the filtering process» and input this as a target waveform to the control device. The same effect as the example can be obtained.
- This processing can be implemented by an analog circuit or a digital circuit such as a DSP.
- the position where the load measurement signal is fed back is not limited to the above embodiment.
- processing D is the inverse transfer function of the transfer function from the position fi where the signal is fed back to the JB power F.
- Fig. 9 shows an IS with a load cell 9 installed between the specimen 6 and the table 1.
- the load applied to the table 1 from the specimen 6 is transmitted via the load cell 9, so that the desired load can be measured.
- the measurement signal from the load cell 9 is converted by the converter 10 into a signal such as a voltage signal that can be used by the control device.
- FIG. 10 shows an embodiment of another operative weight measuring means.
- a load cell 9 is installed between the shaker 2 and the table 1.
- the load cell 9 measures the load applied to the table 1 from the specimen 6 and the resultant force due to the weight of the table 1, so the processing unit 11 measures the acceleration of the table 1 and measures the table 1
- the desired force is obtained by multiplying the mass to calculate the neutral force and calculating from the measured value of the load cell.
- the above processing can be configured by an analog circuit, or can be performed by a digital circuit such as DSP. Further, the processing device 11 converts these processing results into an appropriate form and outputs it as a measurement signal.
- the supply body 6 can be firmly fixed to the table, and therefore, the strength of the fixing portion has little effect on the test results.
- the vibration test result of the test piece 6 is less affected by the presence of the load cell.
- load measuring means is not limited to the embodiment shown here, and other means may be used.
- a similar effect can be obtained when the test is applied to another test.
- a vibration test in which a specimen is excited by a random wave having a predetermined power spectrum
- a waveform having the power spectrum is prepared in advance, and the present invention is used for the sieve. By doing so, the intended purpose can be achieved by faithfully reproducing the waveform.
- the vibration direction of the table is one horizontal direction.
- the description has been made using the configuration example in which the table is supported by the sleeve supports.
- the exciter was explained using a hydraulic exciter as an example.
- the present invention is not limited to the embodiments described herein. That is, the present invention can be applied to a case where the table has another configuration and the vibrator is a vibrator other than the hydraulic vibrator, for example, a magnetic vibrator. Can be obtained.
- the transfer function A in FIGS. 5 to 8 is changed to that of the electromagnetic exciter, the transfer function D may be changed accordingly.
- the present invention can be applied to a shaking table having more than one tt of freedom, and the same effect can be obtained.
- the present invention can take various forms without departing from the spirit of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Vibration Prevention Devices (AREA)
Description
明 細 害
振勖台およびその制御方法 技術分野
本発明は、加振拭 »装置である振勳台装置、 および、 その制御方法に係り、特に 加振加速度再現性を向上させた振勳台、 および、 その制御方法に関するものである。 背景技術
振勖台は、構造物の振動試験装置であり、 供試体である構造物を設置するための テーブルを加振機により粗動し構造物を加振する装置である。 テーブルは適当な « 受けにより保持されることもある。
振動台の一つの使用分野として構造物の耐震試験がある。 耐震試験の目的は、所 定の加速度波形に対する構造物の応答を評価することであるので、 テーブルにより 所定の加速度波形を精度よく再現することが必要である。 このため所定の加速度波 形を目標俵とし、振勖台に変位 ·加速度などのセンサーを設置してテーブルの運動 状態を計測し、 加振機の制御装置にフィードバックすることにより、加振加速度波 形の高精度化を図っている (例えば、 菅野、 「3次元 6自由度振動台のサーボ機 構」、機械設計、 第 3 5卷第 4号、 1 9 9 1年 4月、 2 5頁〜 2 8頁)。
テーブル上に設置された供試体が比較的軽量である場合には、 これらの方法で高 精度な加振波形が得られるが、 供轼体の重量が大きい場合には、加振されることに より発生しテーブルに加わる荷重が大きく、所定の加振加速度波形力 られない場 合がある。 特に、供試体の固有振動数付近の振動数の加振においては、供試体から の反力がテーブルの運動を制限するように働くため、加振加速度波形が小さくなる という問題が発生する。
そこで、 平井 ·松崎、 「電気油圧式振動試験機に関する研究(第 3報) 」、 日本 機械学会綸文集、 4 2卷 3 6 1号、 2 7 4 4頁〜 2 7 5 1頁に開示されているよう に、加振機の制御回路に供轼体のモデルを搭載して補 Λすることにより加振加速度 波形を向上する手法が提案されている。 また、特開昭 5 9— 1 9 7 9 0 2号公報に 開示されているように、供試体を搭載した状態において目標加速度波形として比較 的小さい振幅のランダム波を入力し、 実 ISに得られた加振加速度波形との間の伝達 関数を算出し、 実際の加振時にはその逆伝達関数を通した波形を目標加振波形とす ることも行われている。
これらの手法では、 加振中に供試体の動的な特性が変化せず固有振動数 ·減衰な どが一定である場合には効果があり、加速度の再現性は良好なものとなる。 しかし、
供轼体に非線形性がある場合などでは応答振幅などに依存するため、 これらの特性 は加振中に変化する場合もある。 たとえば、 供拭体が損 «するまで加振する場合で は供弒体の麵性が急変し動的な特性が変化する。 また、地 «の液状化を再現するよ うな加振拭 Iでも、液状化が発生することにより供轼体の動的な特性が大きく変化 する。 このような場合には、前 εの手法によっても得られる加速度波形が所定のも のと異なってしまうことがある。
また、 耐震拭驗以外の分野においても、構造物を所定のスぺクトル密度を持った ランダム波形の加速度で加振し 5 ^の評価を行うこと;^必要となる場合がある。 こ のような場合にも耐震轼驗の場合と同様の現象により、所定のスぺクトル密度が得 られない場合がある。 この問題を解决するために前記の手法を含めた ¾々の手法が 行われているが、供轼体の非線形性などの原因により加振精度が低下することもあ る。 発明の開示
本発明は上述の問題点を解决するためになされたもので、 テーブル上の供轼体の 影響によらず、特にその動特性の変化に左右されず、精度の高い加振加速度波形を 得ることのできる振勖台、 および、 その制御方法を提供することを目的としている。 本発明の振勖台では、供轼体を搭載するためのテーブルと、 このテーブルを駆動 する IB動手段と、 テーブルの運動状慂を計 する第 1の計脷手段と、前記第 1の計 測手段の検出镇をフィードハ'ックして目棵值と比較し、 その偏差に基づいて前記駆 動手段を制御する制御装置とを備えた振励台において、第 2の計測手段として前 E テーブルに供拭体から加わる荷重を検出する荷重計測手段と、 この荷重計測手段の 検出俵を前お制御装置にフィードバックするフィードバック手段とを設け、前記儡 差を補正して振勖台を駆勖する。
このとき、 前記フィードバック手段に、 荷重計測手段の検出值である荷重が フィードバックされる位置からテーブルを駆勖する駆動力が発生されるまでの伝達 関数の逆伝達関数をフィルタを備えてもよい。 一つの好適な態様においては、 テー ブルを K動する駆動手段までの伝達関数を考慮すればよいであろう。
また、 このようなフィル夕は «気回路等のハード的手段として設けることもでき るし、 D S P (Digital Signal Processor)等の数値 手段によっても実現でき る。 このフィルタを数镇演算手段によって設ける場合には、 このフィルタは制御装 置に設けられるということもできる。
また、本発明の振動台においては、荷重計測手段をテーブルと供試体との間に設 けてもよい。
また、本発明の振動台においては、 荷重計測手段を駆勖手段とテーブルとの間に 設けてもよい。
また、 本発明の振動台においては、 前記第 1の計測手段として加速度検出器を備
え、 前 Eロードセルで検出された荷重から前記加速度検出器で検出した加速度に テーブルの質量を乗じた傢を滅箅する処理手段を備えてもよい。
また、 本発明の振動台は、供試体を搭載するためのテーブルと、 このテーブルを 駆動する駆動手段と、 テーブルの運動状 JI8を計測する第 1の計測手段と、 前記第 1 の計測手段の検出肇をフィードバックして目標 tと比較し、 その偏差に基づいて前 記《動手段を制御する制御装置とを備えた振動台において、 前記駆勐手段として油 圧加振機を備え、前記油圧加振機のピストン部分の差圧を検出する手段と、 この差 圧に前 ビストン部分の受圧面積を乗じる処理手段と、前記処理手段の処理結果に 基づ t、て前お偏差を補正する手段とを備えて構成されてもよい。
また、 本発明の振勖台の制御方法は、供轼体を搭載するためのテーブルと、 この テーブルを K動する JB動手段と、 テーブルの運動状懇を計測する第 1の計測手段と、 前記第 1の計澜手段の検出俵をフィードバックして目標値と比較し、 その偏差に基 づいて前 IB駆動手段を制御する制御装置とを備え、 前記テーブルを加振する振動台 の制御方法において、 前記テーブルに供轼体からテーブルに加わる荷重を計測し、 その荷重をフィルター処理し、 この処理結果を目標とする加速度波形から減算処理 し、 この処理結果に基づいて前 動手段を制御する。
このとき、前纪フィルター処理をこのフィルター処理結果と目標とする加速度波 形との減算処理部から前記 IB動手段までの間の伝達関数の逆伝達関数で処理するよ うにしてもよい。
また、 本発明の振勐台は、 基礎の上に軸受けを介して設置され供試体を載せる テーブルと、前お基 の上に固定され前記テーブルを加振する加振機と、 前記テー ブルの加速度を検出する加速度検出恭と、前記テーブル上に設けられ前記供試体を 載せてこの供試体から前 Kテーブルにかかる荷重を検出するロードセルと、 この 口一ドセルで検出された荷重と前記加速度とに基づ t、て前記加振機を制御する制御 装置とを備え、 前記制御装置は、前記荷重を補正する手段と、 この補正した荷重と 目標僚との偏差を求める比較手段と、 この倡差を增轜する手段と、 この增轜された 偏差を前記加振機に入力する手段とを備え、 前記荷重を補正する手段は、 前記比較 手段から前 SS加振 ttまでの間の伝達関数の逆伝達関数により、前記荷重を補正する ようにしてもよい。
また、 本発明の振動台は、 基礎の上に袖受けを介して設置され供轼体を載せる テーブルと、前記基 ¾の上に固定され前記テーブルを加振する油圧加振機と、 前記 テーブルの加速度を検出する加速度検出 «と、 前記油圧加振機のピストン部分の差 圧を検出する手段と、 前お油圧加振機を制御する制御装置とを備え、前記制御装置 は、前記差圧に前記テーブルの質量を乗じて荷重を求める手段と、 前お荷重を補正 する手段と、 この補正した荷重と目樣値との偏差を求める比較手段と、 この偏差を 增幅する手段と、 この增幅された偏差を前記加振機に入力する手段とを備え、 前記 荷重を補正する手段は、前記比較手段から前記加振機までの間の伝達関数の逆伝達
関数により前 荷重を補正する手段であり、 前記制御装置は前記差圧と前記加速度 とに基づ t、て前 12油圧加振機を制御するようにしてもよい。
本発明によれば、駆動手段からテーブルに加えられる駆勖カは供轼体からテープ ルに加わる荷重を相殺することができるので、供轼体の動的特性の変動等に左右さ れることなく、 加速度または加速度波形を高精度で再現することができる。 図面の簡単な説明
第 1図は本発明の一実施例を示す模式図である。
第 2図は従来の振動台の一構成例を示す図である。
第 3図は従来の振動台の制御状態を示すプロック図である。
第 4図は従来の油圧加振機の模式図である。
第 5図は本発明の一実施例の制御状態を示すプロック図である。
第 6図は本発明の一実施例における荷重信号のフィードバックの一方法の説明図 である。
第 7図は本発明の一実施例における荷重信号のフィ一ドバックの一方法の説明図 である。
第 8図は本発明の一実施例における荷重信号のフィードバックの一方法の説明図 である。
第 9図は本発明の一実施例における荷重計測手段の一構成例である。
第 1 0図は本発明の一実 »例における荷重計測手段の一構成例である。 発明を実施するための最良の形態
以下、本発明の一実施例について図面を参照しながら詳細に説明する。
まず、 第 2図により従来の振動台の一構成例を説明する。 テーブル 1は W受け 5 を介して基 7上に支持されている。 ただし、 輪受け 5は振動台の構成によっては 必ずしも必要とは限らない。 前記テーブル 1は同じく基礎 7に設置されている加振 機 2に連锆されている。 前 ¾テ一ブル 1には加速度計測手段 4が設置されている。 前記加振機は制御装置 3により入力される目標波形を実現するように少なくとも前 記加速度計測手段 4による計測俵をフィードバック信号として制御される。 前記 テーブル 1上には試験対象である供轼体 6が設置されており、供試体上に設置され ている様々なセンサー (図示せず) により、 テーブルにより実現される加速度加振 に対する振動応答が計測される。
この振動台の制御の状態を模式的に示したものが第 3図である。 地震加速度波形 などの目標波形 Xは、 例えば実現すべき加速度に比例する «圧信号の形で加振機の 制御装置 3に入力される。 テーブル 1で実現された加速度 Y (正確には、 テーブル 1上に設置された加速度計測手段 4による計測値)がフィードバックされブロック Bで示される処理が施された後、 Xに適当な処理 Pを施された信号と比較され偏差
信号 Zを算出する。 この偏差信号 Zに適当な処理 Qを施して加振 の K動信号が出 力される。加振 ttではこの信号に基づいてテーブル駆動力 Fを発生させる。 Zと F の伝達関数を Aで表している。 その結果、加速度 Yが実現される。 有効 K量が Mで あるとき、 Fから Yの伝達関数は (1 ZM) である。 このとき、供轼体 6がテープ ノレ 1に搭載されていると、加速度 Yにより供試体が振動し、 テーブルに供試体から 荷重 F' が加わることになる。 加速度 Yと荷重 F' の伝達閼数を Cで表している。 なお、振勖台の場合、 少なくとも加速度侰号がフィードバックされるが、 場合に よっては速度 ·変位などがフィードバックされることもある。 その場合は、 処理 P によって加速度のみならず変位 ·速度の目標信号が出力され、偏差倌号の算出はべ クトルとして行われることになる。 したがって、 P, Bは一入力多出力であり、 Q は多入力一出力の処理である。
無負荷の状想 (供試体が搭載されていない場合) の Xと Yの伝達関数は、 次式で 表される。 Υ = { ( 1 + A Q B /M) -1 A Q P/M} X (1) 制御装置や加振機は、 { } 内が使用範囲でほぼ 1になるように調整して使用される。 ところが、供試体が搭載されている場合には伝達関数は、次式のように変化する。 Υ = { ( 1 + A Q B /M- C ) "I A Q P /M} X (2) 従って、 (1)式の条件のもとで調整された制御装置は、 Cが加わることにより振動 台の動特性が変化し実現加速度の精度が悪化する。 Cが予めわかっている場合は (2)式の { } 内を使用範囲でほぼ 1になるように IS整することで精度を維持するこ とができるが、 Cに非線形性があり振幅依存性があったり、 時間的に変化したりす る場合には調整が困難である。
また、仮に Cを測定等によって知ることができるとしても、供試体を載せ変える 毎にこのような測定を行い、 さらに制御装置の講整を行うには時間と労力を必要と する。
ブロック A、 B、 P、 Qについて、 油圧加振機を例にとり説明する。 第 4図は油 圧加振機を使用した振動台の一構成例の模式図である。 本図ではフィ一ドバック信 号として加速度のみではなく、 速度、変位を用いた例を示している。 目標加速度信 号が例えば電圧信号の形態で応答モデル回路に入力される。 この回路が Pにあたる。 応答モデル回路からは、 加速度のほかにその速度と変位の 3つの波形が出力され サーボ増幅器に入力される場合もある。 一方、実際のテーブルの少なくとも加速度、 場合によっては、速度、 および、変位は、 それぞれのセンサーによって検出され、 その検出信号もまたサーボ増幅器に入力される。 これらのセンサー類が Bにあたる。
また、 サーボ增幅恭が Qにあたる。 そして、 これらの倌号から |g動信号が出力され サーボ弁に印加される。 サーボ弁には加振機に供給される圧油の流量と方向を制御 しテーブルを目標と実 の運動状想の偏差が小さくなる方向に勖かす。 つまり、 偏 差倌号が常に 0になるようにサーボ弁が勳作する。 サーボ弁に印加される駆動信号 とテーブルに加わる荷重の間の伝達関数が Aである。
以下、本発明の一実 »例を説明する。第 1図は本発明の一実施例の構成図である。 これは第 2図に示した振動台において、加速度を計測する第 1の検出手段に対する 第 2の検出手段として、供轼体 6からテーブル 1に加わる荷重の計測手段 8を設け、 その計《0僚を加振機制御装置 3のフィードバック信号としたものである。 この構成 においては、供試体によりテーブルに加わる荷重を計 «Iし、 この荷重を相殺するよ うにテーブルの駆動手段である加振機で荷重を発生させる信号を加振機の入力信号 に重!!するので、供轼体の動的特性の変動等に左右されることなく、 高精度に加速 度を再現することができる。
第 1図の制御の状況を模式的に示したものが第 5図である。 これは、第 3図のブ ロック図に加えて、供轼体 6からテーブル 1に加わる荷重 F' を計測し制御装置 3 へのフィードバック侰号としブロック Dで表されるフィルタ一処理を施して目標波 形 Xを補正するものである。
このブロック図で表されている本発明の一実施例の振勖台の目標信号 Xと実現加 速度 Yの伝達関数は次式で表される。
Y = [ ( 1 + A Q B /M- { 1 - A Q P D } C ) "1 A Q P/M] X (3) したがって、 Dを D = (A Q P ) "I (4) と設定することにより、 Cによらず、無負荷の状想の伝達関数を得ることができる。 したがって、 Cに非線形性があり振幅依存性があったり、 時闓的に変化したりする 堤合においても、 高精度な加速度再現性が得られる。
言い換えるならば、 テーブルに載せる供試体毎に制御装置の特性を W整すること なく、常に所望の加振状態を得ることができる。 もし、制御装置の特性が無負荷状 態(供試体が無い状態)で ft適に動作するように ¾整されていれば、供試体に関係 なく常に無負荷状態での加振状態を得ることができる。
なお、 Dは厳密にこの条件を满たす必要はなく、 振動台を使用する振動数範囲で この特性を持っていればよい。 例えば、 耐震試験に使用する振動台の場合には D
( 〜 3 0 H zの範囲である。 また、多少の誤差があっても実用的に許容される加速 度再現性が得られればよい。
なお、 第 1図、 および、 第 5図では荷重計測俵は直接フィードバック信号として 加振機の制御装置に入力されている。 し力、し、必ずしもこのような構成をとる必要 はない。 例えば、 第 6図に示したようにフィルタ処理を »した荷重計 «I信号を本来 の目標波形信号から滅算処理をし、 これを制御装置に目標波形として入力すること も可能であり、 前記実 ¾例と同じ効果を得ることができる。 この処理はアナログ回 路により構成することもできるし、 D S Pなどのデジタル回路により実施すること も可能である。
また、 荷重計測信号をフィードバックする位置は上記実施例に限定されるもので はない。 例えば、第 7図に示されるように、 Pの処理を施したあとにフィードバッ クすることも可能である。 この場合、
D = (A Q) "I (5) となる。 また、 第 8図に示すように Qの処理を行った後にフィードバックすること も可能である。 この場合は
D = (A) "I (6) となる。 要するに処理 Dは信号がフィードバックされる位 fiから JB動力 Fの間の伝 達関数の逆伝達関数とすればよ t、。
次に、荷重計測手段のいくつかの実施例につ t、て説明する。
第 9図は、供試体 6とテーブル 1の間にロードセル 9を設 ISしたものである。 供 試体 6からテーブル 1に加わる荷重はロードセル 9を経由して伝達されるので所望 の荷重の計測が可能である。 ロードセル 9での計測信号は変換器 1 0により電圧信 号など制御装 ϋで使用可能な信号に変換される。
第 1 0図は、 別の術重計測手段の一実施例である。加振機 2とテーブル 1の間に ロードセル 9を設置したものである。 このロードセル 9には供試体 6からテーブル 1に加わる荷重とテーブル 1の Κ量による Μ性力の合力が計測されるので、 処理装 置 1 1によりテーブル 1の加速度を計測し予めわかっているテーブル質量を乗ずる ことにより憒性カを算出し、 ロードセルの計測値から减算することで所望の荷重を 得る。 なお、 上記の処理はアナログ回路により構成することもできるし、 D S Pな どのデジタル回路により実施することも可能である。 さらに、 処理装置 1 1ではこ れらの処理結果を適当な形に変換し計測信号として出力する。
本実施例によれば、 テーブルに供轼体 6を強固に固定することができ、 従って、 固定部の強度等が試験結果に与える影響が少ない。 つまり、供試体 6がロードセル 上に設置される構造に比べて、 供試体 6の振動試験結果にロードセルの存在が影響 しにくいという特徴がある。
加振機として油圧加振機を使用した場合には、 ビストン部分の差圧に受圧面積を 乗じたものが前お第 1 0図で示した実施例においてロードセル 9で計測される荷重 と同等になる。 従って、以下、 同様の処理を施し荷重計測値とすることも可能であ る。 この場合は、 ロードセル 9を設ける必要がなく、構造を簡略化できる。
なお、 荷重計測手段は、 ここに示した実施例に限定されるものではなく、他の手 段を用いてもかまわない。
以上の実 Λ例では耐震試験に遠用するのを例として説明を述べたが、他の振動轼 驗に邃用する場合にも同様の効果を得ることができる。 例えば、所定のパワースぺ クトルを持つランダム波で供轼体を加振するような振動試 を実 »する場合には、 そのパワースぺクトルを持つ波形を予め用意しておき、 本発明を邃用することによ り忠実に波形を再現することで所期の目的を達成することができる。
また、 上記実施例では、 テーブルの加振方向が水平一方向の場合について説明し た。 また、 テーブルが袖受けによって支持されている構成例を用いて説明した。 ま た、加振機が油圧加振機を例にとって说明した。 しかし、 本発明はここで説明した 実施例に K定されるものではない。すなわち、 テーブルが他の構成をとり、 また、 加振機が油圧加振機以外の加振機、例えば、 鼋磁加振機であっても、 本発明を適用 することができ、 同様の効果がえられる。 この場合、第 5図乃至第 8図における伝 達関数 Aが電磁加振機のものに変更されるので、 これに伴って伝達関数 Dを変更す ればよい。
また、一 ttより多くの自由度を持つ振動台においても適用でき同様の効果が得ら れる。 要するに、本発明の主旨を逸 J!ftしない範囲で様々な形態をとることができる。
Claims
( 1 )供拭体を搭載するためのテーブルと、 このテーブルを駆動する駆動手段と、 テーブルの道動状據を計測する第 1の計測手段と、 前記第 1の計測手段の検出僮を フィードバックして目標傢と比較し、 その偏差に基づいて前 駆動手段を制御する 制御装置とを備えた振勖台において、
第 2の計測手段として前記テーブルに供轼体から加わる荷重を検出する荷重計測 手段と、 この荷重計測手段の検出俵を前記制御装置にフィ一ドバツクするフィード バック手段とを設け、 前お偏差を補正して振動台を粗動することを特徵とする振動 台。
( 2 )蹐求の範囲 (1 ) に記載の振動台において、 前記フィードバック手段に前記 荷重計測手段の検出值がフィードバックされる部位から前お駆動手段までの間の伝 逮関数の逆伝達関数を伝達関数とするフィルタを備えたことを特徴とする振動台。
( 3 )請求の範囲 (1 ) または (2 ) に記載の振勖台において、荷重計測手段は、 テーブルと供轼体との間に設けられたロードセルであることを特徴とする振動台。
( 4 )請求の範囲 (1 ) または (2 ) に記載の振勳台において、荷重計測手段は、 前記 JB動手段とテーブルとの間に設けられたロードセルであることを特徴とする振 動台。
( 5 )請求の範囲 (4 ) に記載の振勳台において、 前記第 1の計測手段として加速 度検出 ¾を備え、前記ロードセルで検出された荷重から前記加速度検出器で検出し た加速度にテーブルの質量を乗じた镲を滅箅する処理手段を備えたことを特徵とす る 口。
( 6 )供試体を搭載するためのテーブルと、 このテーブルを駆勳する駆動手段と、 テーブルの運動状態を計測する第 1の計測手段と、 前記第 1の計測手段の検出値を フィードバックして目標僮と比較し、 その徧差に基づいて前記駆動手段を制御する 制御装置とを備えた振動台において、
前 sa駆動手段として油圧加振機を備え、前記油圧加振機のビス卜ン部分の差圧を 検出する手段と、 この差圧に前記ピストン部分の受圧面積を乗じる処理手段と、 前 記処理手段の処理結果に基づいて前 £偏差を補正する手段とを備えたことを特徴と する振動台。
( 7 )供試体を搭載するためのテーブルと、 このテーブルを租動する駆動手段と、 テーブルの運勖状態を計測する第 1の計測手段と、 前記第 1の計測手段の検出値を
フィードハ'ックして目標傪と比較し、 その偏差に基づいて前記駆動手段を制御する 制御装置とを備え、前おテーブルを加振する振勖台の制御方法において、
前 Eテーブルに供轼体からテーブルに加わる荷重を計測し、 その荷重をフィル ター処理し、 この処理結果を目標とする加速度波形から滅鎵処理し、 この処理結果 に基づいて前お JB動手段を制御することを特徴とする振勖台の制御方法。
( 8 )請求の範囲 (7 ) に E裁の振動台の制御方法において、前記フィルター処理 は、 このフィルター処理結果と目標とする加速度波形との 処理から前お 動手 段までの間の伝達関数の逆伝達関数で処理することを特徴とする振勳台の制御方法。
( 9 )基礎の上に軸受けを介して設置され供轼体を載せるテーブルと、 前お基 ¾の 上に固定され前記テーブルを加振する加振機と、前記テーブルの加速度を検出する 加速度検出 »と、 前記テーブル上に設けられ前 IB供試体を載せてこの供轼体から前 記テーブルにかかる荷重を検出するロードセルと、 このロードセルで検出された荷 重と前お加速度とに基づ I、て前お加振機を制御する制御装置とを備え、
前お制御装置は、前記荷重を補正する手段と、 この補正した荷重と目標傢との偏 差を求める比較手段と、 この偏差を增輻する手段と、 この増幅された偏差を前お加 振機に入力する手段とを備え、
前記荷重を補正する手段は、 前お比較手段から前記加振機までの間の伝達関数の 逆伝達関数により、前記荷重を補正する手段であることを特徵とする振動台。
( 1 0 )基 ¾の上に軸受けを介して設置され供試体を載せるテーブルと、 前お基礎 の上に固定され前 £テーブルを加振する油圧加振機と、前記テーブルの加速度を検 出する加速度検出《と、前記油圧加振機のピストン部分の差圧を検出する手段と、 前記油圧加振機を制御する制御装置とを備え、
前記制御装置は、前記差圧に前記テーブルの質量を乗じて荷重を求める手段と、 前記荷重を補正する手段と、 この補正した荷重と目標値との儷差を求める比較手段 と、 この偏差を增輻する手段と、 この增幅された偏差を前記加振機に入力する手段 とを備え、
前記荷重を補正する手段は、 前記比較手段から前記加振 ttまでの間の伝達関数の 逆伝達関数により前お荷重を補正する手段であり、 前纪制御装置は前記差圧と前記 加速度とに基づいて前記油圧加振機を制御することを特微とする振動台。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/043,348 US6189385B1 (en) | 1995-09-18 | 1995-09-18 | Shaking table and method of controlling the same |
PCT/JP1995/001850 WO1997011344A1 (fr) | 1995-09-18 | 1995-09-18 | Ensemble table vibrante et procede de commande associe |
JP51256097A JP3361529B2 (ja) | 1995-09-18 | 1995-09-18 | 振動台およびその制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1995/001850 WO1997011344A1 (fr) | 1995-09-18 | 1995-09-18 | Ensemble table vibrante et procede de commande associe |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997011344A1 true WO1997011344A1 (fr) | 1997-03-27 |
Family
ID=14126270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/001850 WO1997011344A1 (fr) | 1995-09-18 | 1995-09-18 | Ensemble table vibrante et procede de commande associe |
Country Status (3)
Country | Link |
---|---|
US (1) | US6189385B1 (ja) |
JP (1) | JP3361529B2 (ja) |
WO (1) | WO1997011344A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008233075A (ja) * | 2007-02-23 | 2008-10-02 | Nagoya Institute Of Technology | 振動試験装置 |
JP2010266398A (ja) * | 2009-05-18 | 2010-11-25 | Shimadzu Corp | 材料試験機 |
JP2012237634A (ja) * | 2011-05-11 | 2012-12-06 | Hitachi Plant Technologies Ltd | 振動試験装置及びその制御方法 |
JP2017227247A (ja) * | 2016-06-21 | 2017-12-28 | カヤバ システム マシナリー株式会社 | シリンダ制御装置 |
CN107884150A (zh) * | 2017-12-22 | 2018-04-06 | 中国地震局工程力学研究所 | 基于楼面响应谱的振动台离线迭代控制方法 |
CN109655219A (zh) * | 2019-01-15 | 2019-04-19 | 武汉菲仕运动控制系统有限公司 | 一种振动台控制方法及系统 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997011344A1 (fr) | 1995-09-18 | 1997-03-27 | Hitachi, Ltd. | Ensemble table vibrante et procede de commande associe |
JP4092877B2 (ja) * | 2001-01-26 | 2008-05-28 | 株式会社日立プラントテクノロジー | 適応制御装置および振動台 |
JP4158367B2 (ja) | 2001-09-17 | 2008-10-01 | 株式会社日立プラントテクノロジー | 振動試験装置ならびに振動応答評価方法 |
JP2003270080A (ja) | 2002-03-15 | 2003-09-25 | Hitachi Industries Co Ltd | 振動試験装置および振動試験方法 |
ITTO20040411A1 (it) * | 2004-06-21 | 2004-09-21 | Olivetti Jet S P A | Dispositivo di rilevamento di grandezze fisiche, particolarmente di umidita', e relativo metodo di rilevamento. |
JP4479664B2 (ja) * | 2006-01-24 | 2010-06-09 | 株式会社豊田中央研究所 | 多連式試験システム |
US8281659B2 (en) * | 2009-07-15 | 2012-10-09 | Ata Engineering, Inc. | Methods and apparatus for vibration testing using multiple sine sweep excitation |
US9377375B2 (en) | 2012-05-16 | 2016-06-28 | Venturedyne, Ltd. | Repetitive shock vibration testing system and method |
US9317044B2 (en) | 2012-11-07 | 2016-04-19 | Crystal Instruments Corporation | Mechanical vibration system and control method with limited displacement |
CN103196643B (zh) * | 2013-03-04 | 2015-08-19 | 同济大学 | 主轴-刀柄结合面非线性动态特性参数识别方法 |
CN105705927A (zh) * | 2013-09-09 | 2016-06-22 | Mts系统公司 | 具有柔性致动器组件和迭代获得的驱动的测试系统 |
CN109323940A (zh) * | 2018-08-02 | 2019-02-12 | 天津航天瑞莱科技有限公司 | 基于液压振动台的母线疲劳试验装置以及试验方法 |
CN113534254B (zh) * | 2021-06-16 | 2022-03-29 | 北京工业大学 | 一种基于幂指数法的地震模拟振动台频域前馈补偿方法 |
CN113820085B (zh) * | 2021-08-12 | 2023-07-07 | 广州大学 | 一种用于地震模拟振动台的加速度分层控制方法 |
CN117990324B (zh) * | 2024-04-03 | 2024-06-07 | 实链检测(浙江)有限公司 | 一种地震模拟台试验方法 |
CN118032253B (zh) * | 2024-04-12 | 2024-07-05 | 苏州东菱振动试验仪器有限公司 | 一种振动台随机功率谱复现控制方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53116859A (en) * | 1977-03-23 | 1978-10-12 | Hitachi Ltd | Hydraulic type vibration tester |
JPS5512975B2 (ja) * | 1973-03-07 | 1980-04-05 | ||
JPH0510158B2 (ja) * | 1984-09-05 | 1993-02-08 | Hitachi Ltd |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2217536C2 (de) * | 1972-04-12 | 1974-05-09 | Carl Schenck Maschinenfabrik Gmbh, 6100 Darmstadt | Anordnung zur Regelung einer dynamischen Prüfanlage, insbesondere für eine hydraulisch angetriebene |
US4061017A (en) * | 1975-11-17 | 1977-12-06 | Time/Data Corporation | Structural analysis system |
JPS6048008B2 (ja) | 1978-07-15 | 1985-10-24 | 旭光学工業株式会社 | カメラの焦点検出装置 |
JPS55114930A (en) * | 1979-02-28 | 1980-09-04 | Hitachi Ltd | Stable control unit of vibration test machine |
JPS59197902A (ja) | 1983-04-26 | 1984-11-09 | Mitsubishi Heavy Ind Ltd | 振動台の運転制御装置 |
US4537077A (en) * | 1984-02-08 | 1985-08-27 | Mts Systems Corporation | Load dynamics compensation circuit for servohydraulic control systems |
US5179516A (en) * | 1988-02-18 | 1993-01-12 | Tokkyo Kiki Kabushiki Kaisha | Variation control circuit having a displacement detecting function |
US5060519A (en) * | 1988-02-18 | 1991-10-29 | Tokkyo Kiki Kabushiki Kaisha | Active control precision damping table |
US4991107A (en) * | 1988-12-15 | 1991-02-05 | Schlumberger Technologies Limited | Vibration control system |
IL89983A (en) * | 1989-04-17 | 1992-08-18 | Ricor Ltd Cryogenic & Vacuum S | Electromagnetic vibrating system |
DE69018837T2 (de) * | 1990-05-21 | 1995-08-24 | Marcos A Underwood | Adaptive regelung für tests mit sinusmehrfacherregung. |
US5299459A (en) * | 1990-05-21 | 1994-04-05 | Underwood Marcos A | Adaptive control method for multiexciter sine tests |
JPH0819865B2 (ja) | 1991-06-29 | 1996-02-28 | いすゞ自動車株式会社 | エンジンの排気ブレ−キ装置 |
JP2768058B2 (ja) | 1991-07-02 | 1998-06-25 | 株式会社日立製作所 | 構造物の振動試験装置、振動試験方法及び振動応答解析装置 |
US5422834A (en) | 1991-07-02 | 1995-06-06 | Hitachi, Ltd. | Simulation method and system for simulating drive mechanism |
US5737239A (en) | 1995-02-13 | 1998-04-07 | Hitachi, Ltd. | Shaking test method and system for a structure |
WO1997011344A1 (fr) | 1995-09-18 | 1997-03-27 | Hitachi, Ltd. | Ensemble table vibrante et procede de commande associe |
-
1995
- 1995-09-18 WO PCT/JP1995/001850 patent/WO1997011344A1/ja active Application Filing
- 1995-09-18 US US09/043,348 patent/US6189385B1/en not_active Expired - Lifetime
- 1995-09-18 JP JP51256097A patent/JP3361529B2/ja not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5512975B2 (ja) * | 1973-03-07 | 1980-04-05 | ||
JPS53116859A (en) * | 1977-03-23 | 1978-10-12 | Hitachi Ltd | Hydraulic type vibration tester |
JPH0510158B2 (ja) * | 1984-09-05 | 1993-02-08 | Hitachi Ltd |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008233075A (ja) * | 2007-02-23 | 2008-10-02 | Nagoya Institute Of Technology | 振動試験装置 |
JP2010266398A (ja) * | 2009-05-18 | 2010-11-25 | Shimadzu Corp | 材料試験機 |
JP2012237634A (ja) * | 2011-05-11 | 2012-12-06 | Hitachi Plant Technologies Ltd | 振動試験装置及びその制御方法 |
JP2017227247A (ja) * | 2016-06-21 | 2017-12-28 | カヤバ システム マシナリー株式会社 | シリンダ制御装置 |
CN107884150A (zh) * | 2017-12-22 | 2018-04-06 | 中国地震局工程力学研究所 | 基于楼面响应谱的振动台离线迭代控制方法 |
CN107884150B (zh) * | 2017-12-22 | 2023-10-03 | 中国地震局工程力学研究所 | 基于楼面响应谱的振动台离线迭代控制方法 |
CN109655219A (zh) * | 2019-01-15 | 2019-04-19 | 武汉菲仕运动控制系统有限公司 | 一种振动台控制方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
JP3361529B2 (ja) | 2003-01-07 |
US6189385B1 (en) | 2001-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997011344A1 (fr) | Ensemble table vibrante et procede de commande associe | |
Kumme | Investigation of the comparison method for the dynamic calibration of force transducers | |
KR920016831A (ko) | 가진장치(加振裝置) 및 그 제어방법 | |
US5648902A (en) | Method for measuring a damping force of a shock absorber in a suspension system for a motor vehicle and a measuring system thereof | |
JP3268092B2 (ja) | 車両ロードシミュレータ | |
US7282655B2 (en) | Electronic balance having a position control mechanism | |
Sanderson | Direct measurement of moment mobility: Part II: An experimental study | |
CN104380069A (zh) | 使用延迟来匹配相位特性的换能器加速度补偿 | |
CN116699177A (zh) | 一种加速度计性能测试装置、方法及系统 | |
CN107257914B (zh) | 用于检查惯性传感器的设备和方法 | |
Champoux et al. | Moment excitation of structures using two synchronized impact hammers | |
JP2002156308A (ja) | 振動台及びその制御装置、並びに制御方法 | |
JPH0735646A (ja) | リーフスプリングの特性測定装置 | |
JPH03295437A (ja) | 車両振動試験方法 | |
JP2001133357A (ja) | 振動試験システム | |
JP3935645B2 (ja) | 車重計測装置及び車重計測方法 | |
JP4092878B2 (ja) | 振動台及びその制御装置並びに制御方法 | |
JPH10281925A (ja) | 振動試験装置 | |
Boulandet et al. | A sensorless method for measuring the point mobility of mechanical structures | |
JP3223852B2 (ja) | 空気力測定装置並びにその測定装置を用いた揚力・モーメント測定システム装置 | |
JP3252794B2 (ja) | 振動発生体の励振力測定装置および方法 | |
JP3503087B2 (ja) | 音波による振動再現装置 | |
JPH10239149A (ja) | 加振機における振動ピックアップの支持装置 | |
JP3730197B2 (ja) | 疲労試験機およびその可変ゲイン校正方法 | |
JP4475550B2 (ja) | 電磁型振動体のリアルタイム制御方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 09043348 Country of ref document: US |