[go: up one dir, main page]

WO1997017129A1 - Membrane immunoprotectrice - Google Patents

Membrane immunoprotectrice Download PDF

Info

Publication number
WO1997017129A1
WO1997017129A1 PCT/US1996/017707 US9617707W WO9717129A1 WO 1997017129 A1 WO1997017129 A1 WO 1997017129A1 US 9617707 W US9617707 W US 9617707W WO 9717129 A1 WO9717129 A1 WO 9717129A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
hydrogel
pores
polyvinyl alcohol
cross
Prior art date
Application number
PCT/US1996/017707
Other languages
English (en)
Inventor
Ronald L. Fournier
Jeffrey G. Sarver
Original Assignee
University Of Toledo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Toledo filed Critical University Of Toledo
Priority to AU76070/96A priority Critical patent/AU7607096A/en
Publication of WO1997017129A1 publication Critical patent/WO1997017129A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/009Sachets, pouches characterised by the material or function of the envelope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol

Definitions

  • Any foreign substance which is introduced into the body is generally subjected to an immune system reaction.
  • Many substances are basically inert and are not recognized and/or attacked by the immune
  • the body for relatively long periods of time. This might be for drug delivery or other applications such as artificial organs.
  • One particular artificial organ of interest is the bio-artificial pancreas. It is believed that
  • pancreatic islet transplantation may offer an ideal endocrine replacement therapy for paiie ⁇ is with diabetes mellitus.
  • Two major problems associated with such islet transplantation is recurrence of the original disease in the case of employing unprotected islet cells, and an immune rejection of foreign tissue.
  • Immunosuppressive therapy can be used in association with islet transplantation, but this has serious side effects. Both for drug delivery systems and for cellular
  • a membrane which will permit the flow of smaller molecules necessary for cellular functions while, at the same time, excluding larger molecules and cells associated with the immune system.
  • the ideal situation is a membrane which is suitable for use in an aqueous environment wherein the membrane will permit the passage of smaller molecules, i.e. less than about 20,000 Daltons, such as glucose, but will exclude larger molecules, i.e. greater than about 60,000 Daltons, such as the immunoglobulin molecules and other humoral components
  • polyvinyl alcohol membrane for entrapment of islet cells.
  • the polyvinyl alcohol membrane is produced by simply bonding crosslinked polyvinyl alcohol
  • biocompatible, immunoprotective membrane which is an extremely hydrophilic membrane which allows free transport of small
  • the immune system such as the immunoglobulins and other cellular components of the immune system such as T-cells and the like which are part of the immune system.
  • the porous, supporting membrane has a pore size and internal surface area per volume of gel
  • the supporting membrane is
  • hydrophilic membrane in a preferred embodiment is an open- celled foam material having thickness of 10 to about 200 ⁇ m.
  • preferred material is an open-celled polyethersulfone material such as that produced by Gelman Sciences and sold under the name Supor®.
  • the pore size should be from 0.01 ⁇ m, preferably 0.2 ⁇ m which would
  • FIG. 1 is a graph comparing membrane permeability of a membrane made according to the present invention and commercially available immunoprotective membranes.
  • FIG. 2 is a graph comparing the effective membrane diffusivity of a membrane made according to the present invention and commercially available immunoprotective membranes.
  • FIG. 3 is a graph showing permeability of an implanted membrane over a 6-month period.
  • the present invention is an immunoprotective membrane
  • the cross-linked hydrogel is designed to permit
  • the supportive membrane will be a biocompatible polymeric membrane which will not break down when implanted within the body, and which has a pore size of from 50 A to about 50 ⁇ m. At a pore size less than 50 A the supportive membrane itself would physically exclude immunoglobulins and therefore pore size any smaller than this is
  • the pore size will be from about 0.01 ⁇ m to about 20 ⁇ m and have a void volume of at least about 50% and preferably greater than 80%, preferably the membrane will have a pore size of 0.2 to 10 ⁇ m, although 0.2 ⁇ m is preferred since it is sufficient to
  • the membrane further should have a thickness that provides acceptable solute permeabilities for molecules less than about 20,000 Daltons. This acceptable permeability range is dependent on the types of cells being protected, their metabolic needs, the desired therapeutic response, and the overall device configuration.
  • Permeability of any solute may be defined as the ratio of the
  • the effective diffusivity is dependent on the solute size, and hence its diffusivity in water, and the nature of the gel system used, which is under experimental control. Also, the membrane thickness is a separately controllable variable. The ratio
  • D w , tor should be less than 0.01 and more preferably less than 0.001.
  • a preferred membrane will have a ratio D, ff ⁇ ct ⁇ v ⁇ / D ⁇ ,,,,, from 10" 6 to 0.001.
  • the thickness of the supporting membrane will generally be from 10 microns to 500 microns or more while maintaining the permeability of various solutes within the desired range.
  • the thickness is from 20 microns to 200 microns.
  • the permeability of a freely permeable solute such as glucose will generally be from 5 X 10 "5 to 5 x 10 "3 cm/sec.
  • a preferred glucose permeability would be at least 10"
  • the permeability will be from 10 "8 cm/sec to 10 "6 cm/sec.
  • a preferred permeability for this size solute would be less than 5 x
  • a hydrophilic support is preferred since it easily draws the aqueous
  • hydrogel solution into its porous structure.
  • a hydrophobic structure would not as easily draw into its porous structure the hydrogel material.
  • hydrophobic support can be used by treating its surface first
  • Hydrophilicity of a membrane can be defined by the water
  • membrane have a hydrophilicity defined by this test of at least about 20 dynes/cm.
  • the membrane For use in the present invention the membrane must be able to hold or support the hydrogel at elevated pressures, i.e., those pressures which would be encountered in the body. This pressure will be
  • the distance will be about 4 inches for a child and the pressure will be about
  • the membrane must hold the hydrogel at a pressure of 0.13 psi and preferably 0.4 psi (Gauge) to about 4 psi, and more preferably at least 1.5 psi. To accomplish this, the pores should have sufficient internal surface area to support the gel. Further, the pore size should be less than about
  • Tortuosity is the ratio of a typical pore path
  • the membrane is a mesh such as disclosed in Inoue, the tortuosity, by definition, is 1. If pores do
  • the tortuosity is greater than
  • the tortuosity be greater than 1 , and preferably should be about 1.2 to about 4.0 with 1.4 to 3.0 preferred.
  • the internal surface area pore size and tortuosity all combine to enable the membrane to hold the hydrogel at these elevated pressures.
  • the chemical composition of the supporting membrane can vary. Of course, it must be biologically acceptable and inert and preferably hydrophilic.
  • Useful materials include the polyesters such as
  • polyamides polyacrylonitriles, polyanhydrides, poly(orthoesters), low density polyethylene, high density polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinylpyrolidone, poly(lactide-co-glycolide), poly(etherurethane), poly(etherurethane urea) and polyethersulfones
  • the structure of the material can vary from compacted, non- woven webs to cellular structure, both open-cell and closed-cell.
  • preferred physical structure is an open-celled foam structure.
  • One such item is an open-celled foam structure.
  • open cellular polyethersulfone having an average pore size of 0.2 microns.
  • the immunoprotective membrane is formed by bonding either on the surface or within the pores to the supportive membrane a
  • hydrogel which is subsequently cross-linked, preferably while in the
  • Hydrogels are cross-linked polymer networks which have the ability to swell in water or aqueous solvent systems. The polymer structure is able to retain the solvent forming a swollen gel phase
  • hydrogels which can be used in the present invention.
  • the hydrogels can be of natural or synthetic organic or inorganic material. They are normally made of water
  • Common hydrogels include addition polymers of hydroxy alkyl(meth)acrylates, methyl vinyl ether, (meth)acrylamide, N-vinyl pyrrolidone, (meth)acrylic acid and its salts, N-
  • vinyl and C-vinyl pyrridines and salts thereof with poly(meth)acrylates such as glycol dimethacrylate.
  • poly(meth)acrylates such as glycol dimethacrylate.
  • crosslinked natural polymers such as collagen, glycosaminoglycans, or starch and cellulose derivatives
  • crosslinked synthetic polymers such as
  • polyvinyl alcohol may be used.
  • Suitable cross-linked materials can be prepared by reacting
  • poly(ethylene oxide) or poly(ethylene glycol) with a polyol e.g., 1 ,2,6- hexantriol
  • a polyisocyanate e.g., diphenyl-methane 4,4'-
  • insoluble domains block copolymers of e.g. polyethylene oxide with water-insoluble urethane
  • the preferred hydrogel is polyvinyl alcohol hydrogel crosslinked with gluteraldehyde.
  • hydrogel should be from about 60 to about 98%.
  • concentration of the hydrogel should be from about 60 to about 98%.
  • water in the hydrogel is a function of cross-linking.
  • the water content and amount of cross-linking are inversely proportional. Therefore, by increasing cross-linking one decreases water content but, at the same time, strengthens the hydrogel.
  • the hydrogel is applied to the supporting membrane using any standard technique.
  • One simple technique is to form an aqueous dispersion of the polymer and soak or dip the support membrane in the
  • the solution will migrate into the pores and fill the pores of the support membrane, in large part because of the hydrophilicity of the support membrane.
  • the polymer solution can then be crosslinked within the membrane pore.
  • hydrogel and coating or filling of a polyethersulfone open celled foam membrane.
  • the PVA/GA PES membrane is an effective semipermeable immunoisolation membrane system in which a glutaraldehyde (GA)
  • PVA hydrogel crosslinked polyvinyl alcohol hydrogel
  • PES polyethersulfone
  • Polyethersulfone filters (0.2 ⁇ m Supor-200, Gelman Sciences #60300) are treated with the PVA solution as follows:
  • the coated membrane had a thickness of 154.9 ⁇ 3.9 ⁇ m, a hydrogel water fraction of 86.0% ⁇ 0.6% and a total water fraction of
  • glutaraldehyde controls the water concentration of the polyvinyl alcohol hydrogel. By varying the concentration from nearly 0 to about 0.8% glutaraldehyde, the water content of the hydrogel can be varied from 97%
  • the water content be
  • glutaraldehyde concentration is established at about 0.1 %.
  • FIGS. 1 and 2 Comparisons are shown in FIGS. 1 and 2.
  • the membranes were implanted in rats and the permeability tested for various periods of implantation over a period of 6 months. These results are shown in
  • the membrane of the present invention can be formed in a variety of different shapes. It can be planar. It can be in the form of a tube or hollow fiber, or spiral wound configuration. It can also be used in
  • membrane can be folded upon itself and further physically clamped using plastic or stainless steel clamps to hold the sheets adjacent to each other to form an envelope. Alternately, they can be used in association with devices such as those disclosed in U.S. Patents 5,387,237 and
  • the semipermeable membrane of the present invention can be used both in vivo and in vitro as a size exclusion membrane.
  • the membrane of the present invention has a number of

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • External Artificial Organs (AREA)

Abstract

L'invention porte sur une membrane de filtration sur gel, une membrane immunoprotectrice notamment, constituée par remplissage des pores d'une membrane de support à l'aide d'hydrogel ensuite réticulé en état d'hydratation. La membrane de support est une membrane poreuse dont la dimension des pores est inférieure à 20 νm et dont la tortuosité est supérieure à 1 et, de préférence, à 1,2. Dans un mode de réalisation préféré, cette membrane de support est un polyéther sulfone à alvéoles ouvertes dont les pores sont remplis d'un hydrogel d'alcool polyvinylique hydraté réticulé avec de l'aldéhyde glutarique alors qu'il se trouve en état d'hydratation. Cette membrane peut être utilisée dans des applications multiples et différentes, comme l'administration de médicaments, la filtration in vitro et in vivo et, par exemple, pour la protection de cellules des îlots pancréatiques pour obtenir un pancréas bio-artificiel.
PCT/US1996/017707 1995-11-09 1996-11-06 Membrane immunoprotectrice WO1997017129A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU76070/96A AU7607096A (en) 1995-11-09 1996-11-06 Immunoprotective membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US649195P 1995-11-09 1995-11-09
US60/006,491 1995-11-09

Publications (1)

Publication Number Publication Date
WO1997017129A1 true WO1997017129A1 (fr) 1997-05-15

Family

ID=21721148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/017707 WO1997017129A1 (fr) 1995-11-09 1996-11-06 Membrane immunoprotectrice

Country Status (2)

Country Link
AU (1) AU7607096A (fr)
WO (1) WO1997017129A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017377A1 (fr) * 1996-10-18 1998-04-30 Mcmaster University Membranes microporeuses et leurs utilisations
WO1999038604A1 (fr) * 1998-01-29 1999-08-05 Sartorius Ag Membranes poreuses expansees constituees de polymeres thermoplastiques, et leur procede et dispositif de production
WO2002068100A1 (fr) * 2001-02-27 2002-09-06 Gradipore Limited Membranes polymeres et utilisations correspondantes
WO2003008078A3 (fr) * 2001-07-20 2003-06-26 Univ Mcmaster Membranes microporeuses asymetriques remplies de gel
WO2004073843A1 (fr) * 2003-02-19 2004-09-02 Mcmaster University Materiaux composites porteur de gels poreux
EP1773485A4 (fr) * 2004-06-07 2009-06-03 Natrix Separations Inc Materiau composite stable comprenant des gels poreux supportes
US7604746B2 (en) 2004-04-27 2009-10-20 Mcmaster University Pervaporation composite membranes
US7883767B2 (en) 2004-09-30 2011-02-08 Mcmaster University Composite material comprising layered hydrophilic coatings
KR101132746B1 (ko) * 2010-03-26 2012-04-06 가톨릭대학교 산학협력단 면역 억제 기능을 가지는 인공 혈관, 인공 혈관을 이용한 인공 췌장, 및 인공 혈관의 제조 방법
WO2012037101A3 (fr) * 2010-09-14 2012-07-05 Natrix Separations Inc. Membranes de chromatographie pour la purification de composés chiraux
AU2011203555B2 (en) * 2003-02-19 2013-03-14 Merck Millipore Ltd. Composite materials comprising supported porous gels
US9062194B2 (en) 2010-05-06 2015-06-23 Wetenschappelijk En Technisch Centrum Van De Belgische Textielnijverheid Methods and compositions for textile layers and coatings
WO2017175065A3 (fr) * 2016-04-04 2017-12-21 Beta-O2 Technologies Ltd. Dispositif implantable pour implanter des cellules ayant des capacités anti-inflammatoires et vascularisantes et leurs procédés de production
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
CN109078391A (zh) * 2018-08-03 2018-12-25 闽江学院 一种水凝胶填充多孔滤材制备的复合滤芯
WO2019004382A1 (fr) * 2017-06-29 2019-01-03 富士フイルム株式会社 Membrane d'immunoisolation, procédé de production de membrane d'immunoisolation, chambre de greffe et dispositif de greffe
WO2019004381A1 (fr) * 2017-06-29 2019-01-03 富士フイルム株式会社 Chambre de greffe, procédé de production de chambre de greffe, dispositif de greffe et procédé de fusion de membrane poreuse
US10478778B2 (en) 2015-07-01 2019-11-19 3M Innovative Properties Company Composite membranes with improved performance and/or durability and methods of use
US10618008B2 (en) 2015-07-01 2020-04-14 3M Innovative Properties Company Polymeric ionomer separation membranes and methods of use
US10737220B2 (en) 2015-07-01 2020-08-11 3M Innovative Properties Company PVP- and/or PVL-containing composite membranes and methods of use
US10766004B2 (en) 2013-12-30 2020-09-08 3M Innovative Properties Company Composite membranes and methods of use
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
CN116710155A (zh) * 2020-10-28 2023-09-05 株式会社可乐丽 免疫隔离装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220152A (en) * 1978-05-08 1980-09-02 Pfizer Inc. Delivery system
JPS5962351A (ja) * 1982-09-30 1984-04-09 Asahi Chem Ind Co Ltd 陰イオン交換体及びその製造方法
US4879316A (en) * 1987-02-26 1989-11-07 The University Of Tennessee Research Corporation Interpenetrating polymer network ion exchange membranes and method for preparing same
US5041225A (en) * 1989-07-12 1991-08-20 Eddie Norman Hydrophilic semi-permeable PTFE membranes and their manufacture
US5104729A (en) * 1990-08-20 1992-04-14 Monsanto Company Process for surface modifying a support membrane and product produced
US5443727A (en) * 1990-10-30 1995-08-22 Minnesota Mining And Manufacturing Company Articles having a polymeric shell and method for preparing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220152A (en) * 1978-05-08 1980-09-02 Pfizer Inc. Delivery system
JPS5962351A (ja) * 1982-09-30 1984-04-09 Asahi Chem Ind Co Ltd 陰イオン交換体及びその製造方法
US4879316A (en) * 1987-02-26 1989-11-07 The University Of Tennessee Research Corporation Interpenetrating polymer network ion exchange membranes and method for preparing same
US5041225A (en) * 1989-07-12 1991-08-20 Eddie Norman Hydrophilic semi-permeable PTFE membranes and their manufacture
US5104729A (en) * 1990-08-20 1992-04-14 Monsanto Company Process for surface modifying a support membrane and product produced
US5443727A (en) * 1990-10-30 1995-08-22 Minnesota Mining And Manufacturing Company Articles having a polymeric shell and method for preparing same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258276B1 (en) 1996-10-18 2001-07-10 Mcmaster University Microporous membranes and uses thereof
WO1998017377A1 (fr) * 1996-10-18 1998-04-30 Mcmaster University Membranes microporeuses et leurs utilisations
WO1999038604A1 (fr) * 1998-01-29 1999-08-05 Sartorius Ag Membranes poreuses expansees constituees de polymeres thermoplastiques, et leur procede et dispositif de production
RU2203127C2 (ru) * 1998-01-29 2003-04-27 Сарториус Аг Вспененные пористые мембраны из термопластичных полимеров, а также способ и устройство для их изготовления
WO2002068100A1 (fr) * 2001-02-27 2002-09-06 Gradipore Limited Membranes polymeres et utilisations correspondantes
US7169847B2 (en) * 2001-02-27 2007-01-30 Life Therapeutics, Inc. Polymeric membranes and uses thereof
US7247370B2 (en) 2001-07-20 2007-07-24 Mcmaster University Asymmetric gel-filled microporous membranes
WO2003008078A3 (fr) * 2001-07-20 2003-06-26 Univ Mcmaster Membranes microporeuses asymetriques remplies de gel
AU2009230738B2 (en) * 2003-02-19 2011-08-04 Merck Millipore Ltd. Composite materials comprising supported porous gels
JP2011149024A (ja) * 2003-02-19 2011-08-04 Natrix Separations Inc 支持型多孔質ゲルを含んでなる複合材
AU2011203555B2 (en) * 2003-02-19 2013-03-14 Merck Millipore Ltd. Composite materials comprising supported porous gels
AU2004212641B2 (en) * 2003-02-19 2009-08-06 Merck Millipore Ltd. Composite materials comprising supported porous gels
US8367809B2 (en) 2003-02-19 2013-02-05 Natrix Separations Inc. Composite materials comprising supported porous gels containing reactive functional groups
EP2143482A1 (fr) * 2003-02-19 2010-01-13 Natrix Separations Inc. Matériaux composites porteur de gels poreux
EP2143481A1 (fr) * 2003-02-19 2010-01-13 Natrix Separations Inc. Matériaux composites porteur de gels poreux
WO2004073843A1 (fr) * 2003-02-19 2004-09-02 Mcmaster University Materiaux composites porteur de gels poreux
US7316919B2 (en) 2003-02-19 2008-01-08 Nysa Membrane Technologies Composite materials comprising supported porous gels
US7604746B2 (en) 2004-04-27 2009-10-20 Mcmaster University Pervaporation composite membranes
AU2005251838B2 (en) * 2004-06-07 2011-04-21 Merck Millipore Ltd. Stable composite material comprising supported porous gels
EP1773485A4 (fr) * 2004-06-07 2009-06-03 Natrix Separations Inc Materiau composite stable comprenant des gels poreux supportes
US7883767B2 (en) 2004-09-30 2011-02-08 Mcmaster University Composite material comprising layered hydrophilic coatings
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US11884701B2 (en) 2008-09-02 2024-01-30 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US10981949B2 (en) 2008-09-02 2021-04-20 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
KR101132746B1 (ko) * 2010-03-26 2012-04-06 가톨릭대학교 산학협력단 면역 억제 기능을 가지는 인공 혈관, 인공 혈관을 이용한 인공 췌장, 및 인공 혈관의 제조 방법
US9062194B2 (en) 2010-05-06 2015-06-23 Wetenschappelijk En Technisch Centrum Van De Belgische Textielnijverheid Methods and compositions for textile layers and coatings
WO2012037101A3 (fr) * 2010-09-14 2012-07-05 Natrix Separations Inc. Membranes de chromatographie pour la purification de composés chiraux
JP2013537316A (ja) * 2010-09-14 2013-09-30 ナトリックス セパレイションズ インコーポレーテッド キラル化合物精製用クロマトグラフィー膜
US10874990B2 (en) 2011-05-17 2020-12-29 Merck Millipore Ltd. Layered tubular membranes for chromatography, and methods of use thereof
US10195567B2 (en) 2011-05-17 2019-02-05 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10766004B2 (en) 2013-12-30 2020-09-08 3M Innovative Properties Company Composite membranes and methods of use
US10618008B2 (en) 2015-07-01 2020-04-14 3M Innovative Properties Company Polymeric ionomer separation membranes and methods of use
US10737220B2 (en) 2015-07-01 2020-08-11 3M Innovative Properties Company PVP- and/or PVL-containing composite membranes and methods of use
US10478778B2 (en) 2015-07-01 2019-11-19 3M Innovative Properties Company Composite membranes with improved performance and/or durability and methods of use
WO2017175065A3 (fr) * 2016-04-04 2017-12-21 Beta-O2 Technologies Ltd. Dispositif implantable pour implanter des cellules ayant des capacités anti-inflammatoires et vascularisantes et leurs procédés de production
WO2019004381A1 (fr) * 2017-06-29 2019-01-03 富士フイルム株式会社 Chambre de greffe, procédé de production de chambre de greffe, dispositif de greffe et procédé de fusion de membrane poreuse
US11576370B2 (en) 2017-06-29 2023-02-14 Fujifilm Corporation Chamber for transplantation, method for manufacturing chamber for transplantation, device for transplantation, and method for fusion welding porous membranes
WO2019004382A1 (fr) * 2017-06-29 2019-01-03 富士フイルム株式会社 Membrane d'immunoisolation, procédé de production de membrane d'immunoisolation, chambre de greffe et dispositif de greffe
CN109078391A (zh) * 2018-08-03 2018-12-25 闽江学院 一种水凝胶填充多孔滤材制备的复合滤芯
CN116710155A (zh) * 2020-10-28 2023-09-05 株式会社可乐丽 免疫隔离装置
EP4238591A4 (fr) * 2020-10-28 2024-10-09 Kuraray Co., Ltd. Dispositif d'immunoisolation

Also Published As

Publication number Publication date
AU7607096A (en) 1997-05-29

Similar Documents

Publication Publication Date Title
WO1997017129A1 (fr) Membrane immunoprotectrice
US5807636A (en) Durable hydrophilic surface coatings
US4298002A (en) Porous hydrophilic materials, chambers therefrom, and devices comprising such chambers and biologically active tissue and methods of preparation
JP2875469B2 (ja) 創傷ドレッシング
DE69705841T2 (de) Materialien und verfahren zur immobilisierung von bioaktiven spezien auf polymerischen unterlagen
JP2021074557A (ja) ポロゲン材料、製造方法、および使用
US5833665A (en) Polyurethane-biopolymer composite
ES2623475T3 (es) Composiciones de porógenos, métodos para hacerlas y usos
JP3046623B2 (ja) ポリウレタン―生体高分子複合体
Hinrichs et al. Fabrication and characterization of an asymmetric polyurethane membrane for use as a wound dressing
Matsuda et al. Evaluation of a bilayer artificial skin capable of sustained release of an antibiotic
Inoue et al. Experimental hybrid islet transplantation: application of polyvinyl alcohol membrane for entrapment of islets
FI70241C (fi) Skumplast vars haolrum utgoeres av oeppna celler eller porer och vilken innehaoller partiklar av vattenoloeslig hydrofil polymer som aer svaellbar till en gel i vatten
CN109982727B (zh) 免疫隔离膜、移植用室及移植用器件
JPS6317458B2 (fr)
CA2083741A1 (fr) Membranes non absorbantes a base de proteines pour pansements
Dai et al. Gel-impregnated pore membranes with mesh-size asymmetry for biohybrid artificial organs
Shabbir et al. Effect of hydrophilic and hydrophobic polymer on in vitro dissolution and permeation of bisoprolol fumarate through transdermal patch
US11771806B2 (en) Chamber for transplantation and device for transplantation
EP0466794A1 (fr) Article poreux
JPH07505786A (ja) 生存可能な細胞の培養法および体液中の化合物濃度の調整法
PT1667746E (pt) Implante bioartificial e seu uso e processo para reduzir o risco de formação de tecido conjuntivo após implantação
EP4238591A1 (fr) Dispositif d'immunoisolation
Nublat et al. Ammonium bicarbonate as porogen to make tetracycline-loaded porous bioresorbable membranes for dental guided tissue regeneration: failure due to tetracycline instability
Thacharodi et al. Collagen membrane controlled transdermal delivery of propranolol hydrochloride

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97518267

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA