WO1997018295A1 - Rendement accru des levures par utilisation de solutes/osmoprotecteurs compatibles - Google Patents
Rendement accru des levures par utilisation de solutes/osmoprotecteurs compatibles Download PDFInfo
- Publication number
- WO1997018295A1 WO1997018295A1 PCT/AU1996/000719 AU9600719W WO9718295A1 WO 1997018295 A1 WO1997018295 A1 WO 1997018295A1 AU 9600719 W AU9600719 W AU 9600719W WO 9718295 A1 WO9718295 A1 WO 9718295A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yeast
- glycerol
- concentration
- dough
- sugar
- Prior art date
Links
- 240000004808 Saccharomyces cerevisiae Species 0.000 title claims abstract description 169
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 320
- 238000000034 method Methods 0.000 claims abstract description 25
- 230000003834 intracellular effect Effects 0.000 claims abstract description 12
- 239000006071 cream Substances 0.000 claims description 26
- 235000012470 frozen dough Nutrition 0.000 claims description 11
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 8
- 229930006000 Sucrose Natural products 0.000 claims description 8
- 239000005720 sucrose Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 5
- 239000008103 glucose Substances 0.000 claims description 5
- 229930091371 Fructose Natural products 0.000 claims description 4
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 4
- 239000005715 Fructose Substances 0.000 claims description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 4
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 2
- 150000003863 ammonium salts Chemical class 0.000 claims description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 141
- 235000000346 sugar Nutrition 0.000 description 40
- 230000000694 effects Effects 0.000 description 25
- 230000003204 osmotic effect Effects 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000007792 addition Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 10
- 235000011073 invertase Nutrition 0.000 description 10
- 239000001573 invertase Substances 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 238000000855 fermentation Methods 0.000 description 7
- 230000004151 fermentation Effects 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 210000005253 yeast cell Anatomy 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 235000013312 flour Nutrition 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000008723 osmotic stress Effects 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 230000007279 water homeostasis Effects 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011067 equilibration Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000000065 osmolyte Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 241000235036 Debaryomyces hansenii Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108010041921 Glycerolphosphate Dehydrogenase Proteins 0.000 description 1
- 102000000587 Glycerolphosphate Dehydrogenase Human genes 0.000 description 1
- 244000294411 Mirabilis expansa Species 0.000 description 1
- 235000015429 Mirabilis expansa Nutrition 0.000 description 1
- 241000235006 Torulaspora Species 0.000 description 1
- 241000235033 Zygosaccharomyces rouxii Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000016127 added sugars Nutrition 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 101150053419 dps2 gene Proteins 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000010037 flour treatment agent Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000013536 miso Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000020004 porter Nutrition 0.000 description 1
- 230000028160 response to osmotic stress Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000013555 soy sauce Nutrition 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT OF FLOUR OR DOUGH FOR BAKING, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS
- A21D6/00—Other treatment of flour or dough before baking, e.g. cooling, irradiating or heating
- A21D6/001—Cooling
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT OF FLOUR OR DOUGH FOR BAKING, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS
- A21D8/00—Methods for preparing or baking dough
- A21D8/02—Methods for preparing dough; Treating dough prior to baking
- A21D8/04—Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
- A21D8/047—Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes with yeasts
Definitions
- yeasts Many industrial applications of yeast involve exposure to high osmotic pressures, exerted by various ionic and non-ionic chemicals or solutes (eg. salts and sugars).
- baker's yeast may be exposed to high osmotic pressures in production (eg., during fermentation and drying or freezing) and application (eg., plain and sugar doughs, frozen doughs).
- industrial yeasts in general may be subjected to high osmotic pressures in fermentations involving, for example, production of alcohol (potable and non-potable), soy sauce, miso etc.
- High external osmotic pressures result in removal of water from cells and increased concentration of internal solutes.
- glycerol as compatible solutes in osmoregulation of yeasts and other organisms in hyperosmotic environments (for example, see 3- 8).
- truly salt- and osmo-tolerant yeast eg., Debaryomyces hansenii, Zygosaccharomyces rouxii, Torulaspora delbruckii
- Saccharomyces cerevisiae baker's yeast which are not considered truly osmotolerant strains, show increased glycerol production but also leak much of this from the cell (5-8).
- the present inventors have found that the performance of yeast for high osmotic processes can be improved by the addition of compatible solutes such as glycerol to yeast biomass. As will be understood by those experienced in this area there are a number of factors in assessing the performance of yeast. These include, for example, fermentative activity, leavening activity, time taken to proof doughs and retention of activity during storage. Improvement in any one these criteria would be viewed as an increase in performance.
- the present invention consists in a method of increasing the performance of yeast the method comprising exposing the yeast to at least one compatible solute/osmoprotectant for a period of time sufficient to result in an intracellular concentration of the at least one compatible solute/osmoprotectant of at least 70 ⁇ Moles/gram dry veast.
- the yeast is exposed to the at least one compatible solute/osmoprotectant for a period of time sufficient to result in an intracellular concentration of the at least one compatible solute/osmoprotectant of at least lOO ⁇ Moles/gram dry yeast.
- the compatible solutes/osmoprotectants is preferably selected from the group consisting of glycerol, trehalose, sucrose, maltose, glucose, fructose, mannose, ammonium salts, amino compounds, and combinations thereof.
- the most preferred compatible solute/osmoprotectant is glycerol. Where the solute is glycerol it is preferred that the yeast is exposed to the glycerol for a sufficient period of time to result in an intracellular concentration of glycerol of at least lOO ⁇ Moles/gram dry yeast equivalents.
- the yeast is exposed to glycerol at a concentration of at least 0.1M and preferably at a concentration of at least 0.2M.
- concentration of glycerol is at least 0.4M.
- the yeast is exposed to the compatible solute for at least 24 hours.
- the yeast is in the form of yeast having greater than 18% dry yeast material.
- the present invention consists in a yeast product produced by the method of the present invention, preferably a cream yeast or compressed yeast product.
- the present invention consists in a frozen dough product including a yeast prepared by the method of the present invention.
- the present invention consists in a cream yeast product characterised in that the yeast has an internal glycerol concentration of at least lOO ⁇ Moles/gram dry yeast equivalents.
- the present invention consists in compressed yeast product characterised in that the yeast has an internal glycerol concentration of at least lOO ⁇ Moles/gram dry yeast equivalents.
- Figures 1 and 2 show uptake of glycerol by yeast stored at 4°C (•, yeast with no added glycerol: ⁇ . ⁇ , ⁇ yeast plus 0.2M glycerol added). Significant benefit from glycerol addition is not observed until at least 24 hr contact time, therefore optimal application would be by stirring into cream at chilled temperatures and mixing gently for preferably >24hr.
- Figure 3 shows CO z gas -producing activity and stability (retention of activity with storage time) of yeast cream in 16% sugar doughs (O, yeast plus 0.2M glycerol; •, yeast with no added glycerol). Benefit is observable in sugar dough application of cream yeast where the level of glycerol proposed gives marked improvement in stability of product.
- Figure 4 gives the activity and stability of compressed yeast made from glycerol-treated or non-glycerol-treated cream (O, yeast plus 0.2M glycerol; •, yeast with no added glycerol). Benefit is observable in sugar dough application of compressed yeast made from glycerol-treated cream where the level of glycerol proposed gives marked improvement in stability of product.
- Figure 5 shows plain dough activity and stability of yeast cream in plain doughs (O, yeast plus 0.2M glycerol; •, yeast with no added glycerol). Benefit is observable in plain dough application of cream yeast where the level of glycerol proposed gives improvement in activity and some improvement in stability of product.
- Figure 6 shows plain dough activity and stability of compressed yeast made from glycerol -treated or non-glycerol-treated cream yeast
- FIG. 7 shows proof times for 10% sugar frozen doughs that have been stored at -21°C for up to 8 weeks.
- A Yeast at 4°C for one day
- B Yeast at 4°C for three days
- C Yeast at 4°C for seven days
- D Yeast at 4°C for twenty one days.
- ⁇ doughs made with yeast containing no added glycerol
- ⁇ doughs made with yeast to which glycerol was added at 0.2M
- A doughs made with yeast to which glycerol was added at 0.3M).
- Figure 8 gives proof times for 10% sugar frozen doughs that have been stored at -21°C for up to 8 weeks.
- A Yeast at 4°C for one day
- B Yeast at 4°C for three days
- C Yeast at 4°C for seven days
- D Yeast at 4°C for twenty one days.
- ⁇ doughs made with yeast containing no added glycerol
- ⁇ doughs made with yeast to which glycerol was added at 0.4M.
- Glycerol (food grade) was obtained from Henkel Australia. Bakers' flour was purchased from Defiance mills (Sydney, Australia); sugar from CSR (Sydney, Australia); Shortening was DPS2; Bread improver was Bakerine Special for activity testing and Bakedoh for Bake testing - both obtained from Mauri Integrated Ingredients (Sydney, Australia). Salt was Analar. Industrially produced yeast was obtained from Burns Philp & Co. Ltd. factories.
- Such yeast preparations can be taken and glycerol mixed in, preferably whilst maintaining a cool temperature of the yeast ( ⁇ 10°C, and preferably ⁇ 4°C). Mixing time is as rapid as possible whilst achieving as homogenous mixing as possible.
- Yeast can then be stored ( ⁇ 10°C, and preferably ⁇ 4°C) as crumble to allow glycerol to equilibrate across membranes prior to making into blocks, or use as crumble in its own right.
- Compressed yeast was suspended in water then added to the dry ingredients, together with the salt solution. The complete dough was mixed for three minutes, reaching a final dough temperature of 30°C. The finished dough was transferred to a standard Fermentograph tin then put into the SJA apparatus. Tests were carried out for two hours knocking the dough down after the first hour.
- the finished dough was transferred to a standard Fermentograph tin then put into the SJA apparatus. Tests were carried out for two hours knocking the dough down after the first hour.
- Glycerol was added to cream yeast as described previously and compressed yeast samples prepared. These were stored refrigerated for up to 21 days and at intervals yeast was used for preparing frozen doughs.
- the dough composition used is set out in Table 5.
- Mixing time was determined by Farinograph and water absorption by Extensograph. Ingredients were weighed into a bucket, other components (except water) added so as to not come into contact with each other, mixed for 1 minute and then water added. The dough was mixed until fully developed. Final dough temperatures were 20 +/-2°C. Seven 520g dough pieces were produced and moulded (six inch Mono Moulder), one being tested immediately for proof time (time to rise to 120 mm) and the other six were blast frozen at -40°C until the core temperature was — -5°C. Frozen doughs were then stored at -21°C for 1, 4 and 8 weeks: two doughs were defrosted (at 4°C for 16 hours prior to proof testing) and tested at each time.
- Figures 7 and 8 show that addition of glycerol to yeast cream followed by a sufficient period for glycerol to enter yeast cells and subsequent preparation of compressed yeast significantly improved stability of 10% sugar dough over eight weeks storage at -21°C.
- the proof times of the resulting frozen 10% sugar doughs increased only slightly from 1 week to 8 weeks storage at -21°C.
- Untreated yeast suffered an increase in proof time due to initial freezing and especially 0.4 M glycerol additions significantly reduced the loss on freezing. Benefits were related to the amount of glycerol added in the range 0.2 to 0.4 M (total water basis).
- the 0.2 M and 0.3 M treatments gave similar results for doughs made after 1, 7 and 14 days storage of the yeast at 4°C, but after 21 days storage the 0.3 M addition gave significantly better results than the 0.2 M addition.
- 0.4 M glycerol addition resulted in significantly better frozen 10% sugar doughs than the 0.2 M or 0.3 M treatments.
- the performance of the treated material relative to the control became greater as storage time of the yeast (as either cream or compressed at 4°C) prior to dough production progressed: the longer untreated yeast was kept at 4°C prior to frozen 10% sugar dough production, the worse the keeping of the activity (at -21°C) became - this occurred to a lesser extent for the 0.2 and 0.3 M treated yeast and did not occur significantly for the 0.4 M glycerol treated yeast.
- yeast biomass is given a "head start' in subsequent osmotically stressing applications.
- an osmoprotectant/ compatible solute such as glycerol
- glycerol-treated yeast achieve a crucial level of osmotic equilibration earlier than non-glycerol-treated yeast cells. Accordingly, in the case of glycerol, a natural osmoprotectant made by many yeast strains, it is important to allow added glycerol to soak into (or be taken up by) yeast cells so that they are pre-loaded with a significant concentration of protectant prior to industrial application.
- yeast Because the basal content of osmoprotectant in yeast product is not normally high enough to cope with immediate osmostress when mixed into a sugar dough, yeast has to make glycerol and so sits in a lag phase, during which little gas production occurs, until it achieves a critical concentration that provides osmotic stability. Only then does gas production become significant. Hence addition of glycerol with enough time to allow this to equilibrate across the yeast membrane, should give the yeast a "head start" by reducing the amount of intrinsic glycerol manufacture to reach the critical concentration.
- strains of yeast may be engineered or selected (by recombinant technology or breeding/ fusion) for improved glycerol production and retention at, or in excess of, say, >0.4 mMol glycerol/ gram dry yeast within 30 min in a high sugar dough system, preferably with as made invertase levels being below 10 units of activity.
- One such approach might be to boost the level of glycerol-3-phosphate dehydrogenase in yeasts as this is induced by salt and sugar stress and forms part of the high osmotic glycerol response (10,11).
- Another approach is to boost the levels of substrates intracellularly available for glycerol synthetic enzymes.
- Yet another way to increase glycerol production in yeast is to induce this process by treatment with salts or other osmolytes, which is a well known phenomenon and is already used in the industry (12,13).
- any manipulation would also benefit from having cells modified to retain glycerol in non-osmotic stress conditions, e.g. manipulation of glycerol channel/porter proteins.
- GPDl which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Molecular and Cellular Biology, 14, 4135-4144.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mycology (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Food Science & Technology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Botany (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU74868/96A AU7486896A (en) | 1995-11-14 | 1996-11-13 | Improved yeast performance using compatible solutes/osmoprotectants |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPN6548A AUPN654895A0 (en) | 1995-11-14 | 1995-11-14 | Improved yeast performance |
AUPN6548 | 1995-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997018295A1 true WO1997018295A1 (fr) | 1997-05-22 |
Family
ID=3790873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1996/000719 WO1997018295A1 (fr) | 1995-11-14 | 1996-11-13 | Rendement accru des levures par utilisation de solutes/osmoprotecteurs compatibles |
Country Status (2)
Country | Link |
---|---|
AU (1) | AUPN654895A0 (fr) |
WO (1) | WO1997018295A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6770360B2 (en) | 1998-06-12 | 2004-08-03 | Avery Dennison Corporation | Multilayered thermoplastic film and sign cutting method using the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0435606A2 (fr) * | 1989-12-26 | 1991-07-03 | Ichinobe Baking Co. Ltd | Pâte à pain |
-
1995
- 1995-11-14 AU AUPN6548A patent/AUPN654895A0/en not_active Abandoned
-
1996
- 1996-11-13 WO PCT/AU1996/000719 patent/WO1997018295A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0435606A2 (fr) * | 1989-12-26 | 1991-07-03 | Ichinobe Baking Co. Ltd | Pâte à pain |
Non-Patent Citations (1)
Title |
---|
DERWENT ABSTRACT, Accession No. 89-316351, Class D16; & CS,A,87 08359, (BREIEROVA E.), 12 September 1989. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6770360B2 (en) | 1998-06-12 | 2004-08-03 | Avery Dennison Corporation | Multilayered thermoplastic film and sign cutting method using the same |
Also Published As
Publication number | Publication date |
---|---|
AUPN654895A0 (en) | 1995-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hernandez-Lopez et al. | Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains | |
CA1082041A (fr) | Agent pour retarder le rassissement des produits de boulangerie | |
CN101019567B (zh) | 一种耐贮存面包及其制备方法 | |
ES2142920T5 (es) | Procedimiento de obtencion de una biomasa y fermento de panificacion. | |
US4328250A (en) | Active dried bakers' yeast | |
US3404984A (en) | Process of making a frozen bacterial concentrate | |
CA1096231A (fr) | Traduction non-disponible | |
PL194119B1 (pl) | Zaczyn piekarniczy, sposób wytwarzania zaczynu piekarniczego oraz zastosowanie zaczynu piekarniczego | |
JP5907161B2 (ja) | 新規パン酵母 | |
DE69623644T2 (de) | Verwendung einer desaminierenden oxidase zum backen | |
DE69226555T2 (de) | Backhefestämme, deren Verfahren zur Herstellung, und zugehörige trockene und frische Hefe | |
Jenson | Bread and baker’s yeast | |
US4346115A (en) | Fermentation of acid-containing doughs | |
Myers et al. | Loading ofSaccharomyces cerevisiaewith glycerol leads to enhanced fermentation in sweet bread doughs | |
US4642237A (en) | Stable oxidant alpha-amylase concentrates for use in baking | |
EP0878996B2 (fr) | Nouvelles levures de panification sensibles au froid | |
JP2020535820A (ja) | 微生物を含む製パン改良剤 | |
WO1997018295A1 (fr) | Rendement accru des levures par utilisation de solutes/osmoprotecteurs compatibles | |
EP0927518A1 (fr) | Levure sèche instantanée à utiliser dans les procédés de cuisson de pâte à pain congelée | |
JPS6015291B2 (ja) | パン生地 | |
JP2022537706A (ja) | 切断可能な生のパン種ブロック | |
JPH11169180A (ja) | 冷凍生地耐性および高糖生地耐性実用パン酵母 | |
AU7320900A (en) | Novel baker's yeast and doughs containing the same | |
MXPA06008580A (es) | Nueva levadura de panaderia resistente a una alta concentracion de azucar en la masa y a la presencia de acidos organicos debiles. | |
TWI324180B (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 97518440 Format of ref document f/p: F |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |