WO1997018694A1 - Plasma jet reactor - Google Patents
Plasma jet reactor Download PDFInfo
- Publication number
- WO1997018694A1 WO1997018694A1 PCT/CH1996/000405 CH9600405W WO9718694A1 WO 1997018694 A1 WO1997018694 A1 WO 1997018694A1 CH 9600405 W CH9600405 W CH 9600405W WO 9718694 A1 WO9718694 A1 WO 9718694A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma
- reactor
- reaction chamber
- reactor according
- flow
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 239000010453 quartz Substances 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 33
- 239000000126 substance Substances 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000004907 flux Effects 0.000 claims 1
- 230000001681 protective effect Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000004157 plasmatron Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32055—Arc discharge
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/48—Generating plasma using an arc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
- H01J37/32467—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
- H01J37/32477—Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
- H01J37/32495—Means for protecting the vessel against plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32935—Monitoring and controlling tubes by information coming from the object and/or discharge
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/44—Plasma torches using an arc using more than one torch
Definitions
- the present invention relates to a plasma jet reactor.
- the invention relates to the field of plasma technology and can be applied in surface treatment processes (sterilization, cleaning, pickling, modification, deposition of coatings and films) of monolithic and dispersed materials, as well as for obtaining and processing chemicals in the fields of electronics, automotive, metallurgy, chemistry, food industry, medicine and many other fields.
- This plasma jet reactor is due to the specific configuration of the plasma flow, which is shaped like a funnel, which ensures the efficient introduction and treatment by plasma of different products. This allows in particular to use this plasma jet reactor for the sterilization of surfaces, cleaning, pickling, depositing films.
- the radiation in the plasma flow which is especially important when materials with an intense radiation spectrum are introduced into the plasma flow.
- the return gas streams entrain plasma, vapors and the products of chemical reactions which are then partially deposited on the electrode chambers, on the fasteners and on the walls of the reactor chamber. The result of the presence of these return currents and of the radiation is that, in the end, the working time of the reactor is reduced.
- the plasma jet reactor according to the prior art makes it difficult to organize a plasma flow of controllable composition and subjects the environment to toxic exhaust gases. This is mainly due to the fact that this reactor does not have a sealed chamber. In addition, the plasma jet reactor according to the prior art does not contain a device for scanning the plasma flow, which makes it difficult to uniformly treat large surfaces.
- the object of the present invention is to provide a plasma jet reactor which does not have the drawbacks mentioned above, this in particular thanks to the use of a hermetic reaction chamber, of an electromagnetic system for scanning the flow of plasma, and an exhaust gas extraction device
- the plasma jet reactor according to the present invention widens the known technical and functional capacities, in particular by substantially increasing the working time of the reactor.
- the invention relates to a plasma jet reactor with a multiple-jet plasma generator, containing two or more than two pairs of electrode chambers (cathodes and anodes), connected to direct current sources, generating ⁇ jets of plasma, the trajectory of which is formed by a magnetic field so that the jets create a single flow, the central zone at a lower temperature than the peripheral zones, the central zone into which the chemical and / or the material to be treated is introduced , the reactor further comprising a hermetic reaction chamber, an exhaust gas suction device, and an electromagnetic device for scanning the plasma flow
- the walls of the reaction chamber can be made of transparent quartz and / or protected by a current of gas directed along these walls.
- the reactor may also have one or more of the following characteristics -
- the reaction chamber can be provided with a gas distributor making it possible to blow a gas flow coaxially or coplanar with the plasma flow;
- the reactor can be provided with a mechanism for moving the plasma generator and the gas distributor relative to the reaction chamber;
- the reactor can be provided with a device for suction of the exhaust gases from the reaction chamber, said device also ensuring the suction of gases coming from the external space surrounding the reaction chamber;
- the scanning device can be shaped so as to act on at least one of the factors that are the intensity, the voltage and the amplitude of the current supplying the windings, to control the shape, the orientation, and the movement , especially in a spiral, of the plasma flow.
- the optimal parameters to be applied depending on the object to be treated and / or the products to be used can be controlled by the scanning device.
- FIG. 1 shows a sectional view of the plasma jet reactor according to the invention
- the references in FIG. 1 are as follows:
- FIG. 2 shows in schematic view the device for electromagnetic scanning and displacement of the plasma flows according to the invention, in a four-jet configuration, the references in FIG. 2 are the following: a. Location and supply of electromagnets b Formation of the ampere tilt force F
- the purpose of the protective chamber is to suppress the flow of circulation along the plasma jet and to avoid a return of the active gases to the electrode chambers and the fixing elements.
- the protective chamber 18 is formed by a concave flange 2 and a cooled flat diaphragm 3 with a central opening 4.
- the protective chamber are arranged the following elements: - the electrode chambers 1 fixed to the concave flange 2, - the electromagnetic device for scanning the plasma flow as detailed in FIG. 2, - and the supply conduit 5 for the introduction of the chemical components and / or of the product to be treated into the plasma flow.
- the room is ventilated by a gas flow crossing the flange 2 and distributed over its entire surface.
- the flow rate of this gas is chosen so as to exclude the appearance of return current inside the protection chamber.
- the criterion for the optimum choice of gas flow rate is the absence of deposit of product coming from the plasma on the surface of the electrode chambers, on that of the fixing elements and on that of the flange 2, during the operation of the plasma generator. .
- the gas flow envelops the plasma jet and accompanies it through the orifice of the diaphragm.
- This organization of the flows makes it possible to decrease the mixing of the plasma with the surrounding gases and therefore to increase the length of the high temperature zone of the jet resulting from the plasma, which, in turn, increases the interaction time of the plasma with the components.
- the diaphragm 3, the orifice 4 of which is relatively small forms a screen against a large part of the plasma radiation 7 directed towards the electrode chambers.
- the reaction chamore is the enclosure where chemical reactions take place and the treatment of the products introduced into the plasma flow and / or the treatment of the surface of an object. Thanks to this enclosure, these actions take place in an environment of controlled composition and with protection of the medium surrounding the chamber against toxic gases coming from the reaction zone.
- the reaction chamber 19 of the reactor is formed from the diaphragm 3 with a gas distributor 12, a quartz wall 9 and a table 10 on which the object to be treated is fixed 11.
- a gas distributor 12 On the outside of the flat diaphragm 3 is placed the gas distributor 12 which creates a gas flow accompanying the plasma jet.
- the gas flow has a longitudinal velocity distribution (parallel to the direction of flow of the plasma flow) which represents a momentarily decreasing function, from the speed of the outer layers of the plasma jet to zero, or a value close to 0, corresponding to the speed of the protective gas injected along the quartz walls 9 to protect them, between the latter and the fixing device 13.
- the protective chamber can move along the reaction chamber (the mechanism ensuring the movement is not shown in Figure 1) in order to be able to optimally choose the distance from the plasma generator to the treated object on the table 10.
- the opening point 4 ensures that, during movement, the entire reactor remains sealed.
- the reaction chamber is provided with a manifold 15 for the suction and cooling of the exhaust gases.
- the collector 15 has a channel 16 and two metal deflectors 17, which form with the surface of the table 10 an adjustable narrow gap.
- the collector is connected to a vacuum cleaner (not shown in Figure 1). The vacuum cleaner sucks in the gases coming from the reaction chamber as well as from the outside space.
- the proposed reactor can be axisymmetric or planosymmetric.
- the reactor is equipped with an electromagnetic system for scanning plasma flows.
- the scanning of the plasma flow is based on the synchronized lateral movement of all the plasma jets coming from the electrode chambers, jets crossed by the electric current. When these jets move, the resulting plasma flow moves in the resulting direction.
- the electromagnetic device is shown in Figure 2 for the case of a plasma generator with four nozzles. Electromagnets are placed at the base of the jets, at the outlet of the nozzles of the electrode chambers. Each electromagnet has a magnetic conductor with two branches and two independent windings Wl and W2.
- the windings Wl and W2 energized Ul and U2, create magnetic fields perpendicular to one another H 1 and H2, the resulting field being H. If a smoidal voltage over time is applied to the windings Wl and W2, with a phase difference of 90 °, a rotating magnetic field is created. The resulting ampere force F will also be rotating. This will cause the plasma jet to rotate around the axis of flow of the jet. The direction of rotation of the plasma jet is opposite to that of rotation of the magnetic field, the frequency coincides.
- the four jets have a synchronized rotation which causes the rotation of the resulting plasma flow. If the amplitude of the supply voltage of the windings is varied in time, one can obtain a rotary movement in a spiral flow to the plasma velocity and r enve FIG Variant data the shape of the function of time voltages Ul and U2, their amplitude and the phase difference, other kinds of movement of the plasma jet can be obtained.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
A reactor comprising, in addition to the conventional components, a sealed reaction chamber, an exhaust gas suction device and an electromagnetic plasma stream scanning device. The walls of the reaction chamber are made of transparent quartz and protected by a gas flow directed therealong.
Description
Réacteur à jet de plasma Plasma jet reactor
La présente invention concerne un réacteur à jet de plasma.The present invention relates to a plasma jet reactor.
L'invention se rapporte au domaine de la technologie des plasmas et peut être appliquée dans les processus de traitement des surfaces (stérilisation, nettoyage, décapage, modification, dépôt de revêtements et de films) des matériaux monolithes et dispersés, ainsi que pour l'obtention et le traitement de produits chimiques, dans les domaines de l'électronique, de l'automobile, de la métallurgie, de la cnimie, de l'industrie alimentaire, de la médecine et dans bien d'autres domaines encore.The invention relates to the field of plasma technology and can be applied in surface treatment processes (sterilization, cleaning, pickling, modification, deposition of coatings and films) of monolithic and dispersed materials, as well as for obtaining and processing chemicals in the fields of electronics, automotive, metallurgy, chemistry, food industry, medicine and many other fields.
On connaît un réacteur à j et de plasma basé sur un générateur de plasma à quatre buses tel que décrit dans le document "Bases de la réalisation de la méthode de traitement dynamique par plasma des surfaces solides", Koulik P. P. et autres, "Plasmokhimia 1987", Moscou 1987, part 2, pp 58 à 96 Ce générateur, qui contient deux chambres à électrodes-anodes et deux chambres à électrodes-cathodes, génère quatre jets de plasma dont les trajectoires sont formées à l'aide d'un champ magnétique extérieur de manière à ce que les jets de plasma forment un flux de plasma unique dont la température dans la zone centrale est surbaissée. C'est précisément dans cette zone centrale que les agents chimiques ou le matériau à traiter sont introduits. La construction des chambres à électrodes (anode et cathode) correspond à la description qui en est donnée dans le document "Le plasmatron à deux jets Frounze", Genbaïev G. G. et V. S. Enguelsht, 1983.There is known a j and plasma reactor based on a plasma generator with four nozzles as described in the document "Bases of the realization of the dynamic plasma treatment method of solid surfaces", Koulik PP and others, "Plasmokhimia 1987 ", Moscow 1987, part 2, pp 58 to 96 This generator, which contains two electrode-anode chambers and two electrode-cathode chambers, generates four plasma jets whose trajectories are formed using a magnetic field outside so that the plasma jets form a single plasma flow whose temperature in the central area is lowered. It is precisely in this central area that the chemical agents or the material to be treated are introduced. The construction of the electrode chambers (anode and cathode) corresponds to the description given in the document "The Plasmatron with two jets Frounze", Genbaïev G. G. and V. S. Enguelsht, 1983.
L'avantage de ce réacteur à jets de plasma est dû à la configuration spécifique du flux de plasma, qui a la forme d'un entonnoir, ce qui assure l'introduction efficace et le traitement par le plasma de différents produits. Cela permet en particulier d'utiliser ce réacteur à jets de plasma pour la
stérilisation de surfaces, leur nettoyage, décapage, le dépôt de films .The advantage of this plasma jet reactor is due to the specific configuration of the plasma flow, which is shaped like a funnel, which ensures the efficient introduction and treatment by plasma of different products. This allows in particular to use this plasma jet reactor for the sterilization of surfaces, cleaning, pickling, depositing films.
L'exploitation du réacteur à jet tel que résuLtant des deux documents précités a révélé certains inconvénients parmi lesquels on peut relever que la génération des jets et du flux de plasma s'accompagne de la formation de tourbillons toroïdaux. Les flux de gaz qui en résultent viennent réchauffer les chambres à électrodes et les éléments de fixation.The operation of the jet reactor as resulting from the two above-mentioned documents revealed certain drawbacks among which it can be noted that the generation of the jets and of the plasma flow is accompanied by the formation of toroidal vortices. The resulting gas flows heat the electrode chambers and the fasteners.
Ce même effet est encore augmenté par la radiation du flux de plasma qui est surtout important quand on introduit dans le flux de plasma des matières dont le spectre de radiation est intense. En outre, les courants gazeux de retour entraînent du plasma, les vapeurs et les produits des réactions chimiques qui se déposent ensuite partie] lement sur les cnambres à électrodes, sur les éléments de fixation et sur les parois de la chambre du réacteur. Le résultat de la présence de ces courants de retour et de la radiation est que, en fin de compte, la durée de travail du réacteur est diminuée .This same effect is further increased by the radiation in the plasma flow, which is especially important when materials with an intense radiation spectrum are introduced into the plasma flow. In addition, the return gas streams entrain plasma, vapors and the products of chemical reactions which are then partially deposited on the electrode chambers, on the fasteners and on the walls of the reactor chamber. The result of the presence of these return currents and of the radiation is that, in the end, the working time of the reactor is reduced.
Cette réduction du temps de travail est due au suréchauffement des chambres à électrodes qui résulte aussi bien de l'augmentation du flux de chaleur que de la diminution du pouvoir d'échange de chaleur, vu la formation de couches de produits chimiques (d'habitude des oxydes) avec petite conduction thermique. En outre, ces couches de produits chimiques sont, continuellement ou sporadiquement, emportées par le flux de plasma et réapparaissent ainsi dans le jet, rendant la composition de celui-ci incontrôlable.This reduction in working time is due to the overheating of the electrode chambers which results from both the increase in the heat flow and the decrease in the heat exchange power, given the formation of layers of chemicals (usually oxides) with small thermal conduction. In addition, these layers of chemicals are, continuously or sporadically, carried away by the plasma flow and thus reappear in the jet, making its composition uncontrollable.
Le réacteur à jets de plasma selon l'art antérieur rend difficile l'organisation d'un flux de plasma de composition contrôlable et soumet l'environnement à des gaz d'échappement toxiques. Cela résulte pour l'essentiel du fait que ce réacteur ne comporte pas de chambre hermétique.
De plus, le réacteur à jet de plasma selon l'art antérieur ne contient pas de dispositif de scanning du flux de plasma, ce qui rend difficile le traitement uniforme de surfaces de grandes dimensionsThe plasma jet reactor according to the prior art makes it difficult to organize a plasma flow of controllable composition and subjects the environment to toxic exhaust gases. This is mainly due to the fact that this reactor does not have a sealed chamber. In addition, the plasma jet reactor according to the prior art does not contain a device for scanning the plasma flow, which makes it difficult to uniformly treat large surfaces.
Le but de la présente invention est de proposer un réacteur à jet de plasma ne présentant pas les inconvénients mentionnés plus haut, cela en particulier grâce à l'utilisation d'une chambre hermétique de réaction, d'un système électromagnétique de scanning du flux de plasma, et d'un dispositif d'aspiration des gaz d'échappementThe object of the present invention is to provide a plasma jet reactor which does not have the drawbacks mentioned above, this in particular thanks to the use of a hermetic reaction chamber, of an electromagnetic system for scanning the flow of plasma, and an exhaust gas extraction device
De plus, le réacteur à jet de plasma selon la présente invention élargit les capacités techniques et fonctionnelles connues, notamment en augmentant de façon substantielle le temps de travail du réacteurIn addition, the plasma jet reactor according to the present invention widens the known technical and functional capacities, in particular by substantially increasing the working time of the reactor.
A cette fin, l'invention concerne ur réacteur à jet de plasma avec générateur de plasma à jets multiples, contenant deux ou plus de deux paires de chambres à électrodes (cathodes et anodes) , connectées à des sources de courant continu, générant αes jets de plasma dont la trajectoire est formée par un champ magnétique de manière que les jets créent un flux unique αont la zone centrale a une température surbaissée par rapport aux zones périphériques, zone centrale dans laquelle est introduit le produit chimique et/ou le matériau à traiter, le réacteur comportant en outre une chambre de réaction hermétique, un dispositif d'aspiration des gaz d'échappement, et un dispositif électromagnétique de scanning du flux de plasmaTo this end, the invention relates to a plasma jet reactor with a multiple-jet plasma generator, containing two or more than two pairs of electrode chambers (cathodes and anodes), connected to direct current sources, generating α jets of plasma, the trajectory of which is formed by a magnetic field so that the jets create a single flow, the central zone at a lower temperature than the peripheral zones, the central zone into which the chemical and / or the material to be treated is introduced , the reactor further comprising a hermetic reaction chamber, an exhaust gas suction device, and an electromagnetic device for scanning the plasma flow
Selon des modes d'exécution, les parois de la chambre de réaction peuvent être fabriquées en quartz transparent et/ou protégées par un courant de gaz dirigé le long de ces paroisAccording to embodiments, the walls of the reaction chamber can be made of transparent quartz and / or protected by a current of gas directed along these walls.
Le réacteur peut encore présenter l'une ou plusieurs des caractéristiques suivantes
- la chambre de réaction peut être pourvue d'un distributeur de gaz permettant de souffler un flux de gaz coaxialement ou coplanairement au flux de plasma;The reactor may also have one or more of the following characteristics - The reaction chamber can be provided with a gas distributor making it possible to blow a gas flow coaxially or coplanar with the plasma flow;
- le réacteur peut être pourvu d'un mécanisme de déplacement du générateur de plasma et du distributeur de gaz par rapport à la chambre de réaction;- The reactor can be provided with a mechanism for moving the plasma generator and the gas distributor relative to the reaction chamber;
- le réacteur peut être pourvu d'un dispositif d'aspiration des gaz d'échappement de la chambre de réaction, le dit dispositif assurant également l'aspiration des gaz provenant de l'espace extérieur entourant la chambre de réaction;- The reactor can be provided with a device for suction of the exhaust gases from the reaction chamber, said device also ensuring the suction of gases coming from the external space surrounding the reaction chamber;
- le dispositif de scanning peut être conformé de manière à agir sur au moins l'un des facteurs que sont l'intensité, la tension et l'amplitude du courant alimentant les bobinages, pour commander la forme, l'orientation, et le mouvement, notamment en spirale, du flux de plasma.- the scanning device can be shaped so as to act on at least one of the factors that are the intensity, the voltage and the amplitude of the current supplying the windings, to control the shape, the orientation, and the movement , especially in a spiral, of the plasma flow.
- les paramètres optimaux à appliquer en fonction de l'objet à traiter et/ou des produits à utiliser peuvent être commandés par le dispositif de scanning.- the optimal parameters to be applied depending on the object to be treated and / or the products to be used can be controlled by the scanning device.
La description qui suit s'appuie sur le dessin où:The following description is based on the drawing where:
la figure 1 montre une vue en coupe du réacteur à jet de plasma selon l'invention, les repères de la figure 1 sont les suivants :FIG. 1 shows a sectional view of the plasma jet reactor according to the invention, the references in FIG. 1 are as follows:
1. Chambres à électrodes1. Electrode chambers
2. Bride concave2. Concave flange
3. Diaphragme plat3. Flat diaphragm
4. Ouverture centrale4. Central opening
5. Conduit d'alimentation en composantes chimiques5. Chemical component supply line
6. Jets de plasma6. Plasma jets
7. Flux de plasma7. Plasma flow
8. Alimentation en gaz8. Gas supply
9. Parois en quartz
10 . Table9. Quartz walls 10. Table
11. Objet traité11. Subject matter
12. Distributeur de gaz12. Gas distributor
13 Dispositif de fixation13 Fixing device
14 Joint14 Seal
15 Collecteur15 Collector
16. Canal16. Channel
17. Déflecteurs17. Deflectors
18. Chambre de protection 19 Chambre de réaction;18. Protection chamber 19 Reaction chamber;
la figure (2) montre en vue schématique le dispositif de scanning électromagnétique et de déplacement des flux de plasma selon l'invention, dans une configuration à quatre jets, les repères de la figure 2 sont les suivants: a. Emplacement et alimentation des électroaimants b Formation de la force d'inclinaison d'ampère FFIG. 2 shows in schematic view the device for electromagnetic scanning and displacement of the plasma flows according to the invention, in a four-jet configuration, the references in FIG. 2 are the following: a. Location and supply of electromagnets b Formation of the ampere tilt force F
1 Jets de plasma (anode et cathode)1 Plasma jets (anode and cathode)
2 Eiectroaimants U 1, U2 - source de courant, W 1, W2 enroulement .2 Electromagnets U 1, U2 - current source, W 1, W2 winding.
En regard de la figure 1, on constate que la chambre de protection a pour but de supprimer les flux de circulation le long du jet de plasma et d'éviter un retour des gaz actifs vers les chambres à électrodes et les éléments de fixationWith reference to FIG. 1, it can be seen that the purpose of the protective chamber is to suppress the flow of circulation along the plasma jet and to avoid a return of the active gases to the electrode chambers and the fixing elements.
La chambre de protection 18 est formée par une bride concave 2 et un diaphragme plat refroidi 3 avec une ouverture centrale 4. Dans la chambre de protection sont disposés les éléments suivants: - les chambres à électrodes 1 fixées à la bride concave 2,- le dispositif électromagnétique de scanning du flux de plasma tel que détaillé à la figure 2, - et le conduit d'alimentation 5 pour l'introduction des composantes chimiques et/ou du produit à traiter dans le flux de plasma.The protective chamber 18 is formed by a concave flange 2 and a cooled flat diaphragm 3 with a central opening 4. In the protective chamber are arranged the following elements: - the electrode chambers 1 fixed to the concave flange 2, - the electromagnetic device for scanning the plasma flow as detailed in FIG. 2, - and the supply conduit 5 for the introduction of the chemical components and / or of the product to be treated into the plasma flow.
Dans le plan de l'ouverture du diaphragme se rencontrent les jets 6 à travers lesquels passe le courant et qui forment le flux de plasma. La chambre est ventilée par un flux de gaz
traversant la bride 2 et distribué sur toute sa surface. Le débit de ce gaz est choisi de manière à exclure 1 'atpparition de courant de retour à 1 ' intérieur de la chambre de protection.In the plane of the diaphragm opening meet the jets 6 through which the current passes and which form the plasma flow. The room is ventilated by a gas flow crossing the flange 2 and distributed over its entire surface. The flow rate of this gas is chosen so as to exclude the appearance of return current inside the protection chamber.
Le critère pour le choix optimum du débit de gaz est 1 ' absence de dépôt de produit venant du plasma sur la surface des chambres à électrodes, sur celle des éléments cle fixation et sur celle de la bride 2, lors du fonctionnement du générateur de plasma.The criterion for the optimum choice of gas flow rate is the absence of deposit of product coming from the plasma on the surface of the electrode chambers, on that of the fixing elements and on that of the flange 2, during the operation of the plasma generator. .
Le flux de gaz enveloppe le jet de plasma et l'accompagne à travers l'orifice du diaphragme. Cette organisation des flux permet de diminuer le mélange du plasma aux gaz environnants et donc d'augmenter la longueur de la zone de haute température du jet résultant de plasma, qui, à son tour, augmente le temps d'interaction du plasma avec les composantes introduites par le conduit 5 En plus, le diaphragrre 3, dont l'orifice 4 est relativement restreint forme un écran contre une grande partie de la radiation du plasma 7 orientée vers les cnambres à électrodes.The gas flow envelops the plasma jet and accompanies it through the orifice of the diaphragm. This organization of the flows makes it possible to decrease the mixing of the plasma with the surrounding gases and therefore to increase the length of the high temperature zone of the jet resulting from the plasma, which, in turn, increases the interaction time of the plasma with the components. introduced by the conduit 5 In addition, the diaphragm 3, the orifice 4 of which is relatively small, forms a screen against a large part of the plasma radiation 7 directed towards the electrode chambers.
La chamore à réaction est l'enceinte où ont lieu les réactions chimiques et le traitement des produits introduits dans le flux de plasma et/ou le traitement de la surface d'un objet Grâce à cette enceinte, ces actions ont lieu dans un environnement de composition contrôlée et avec une protection du milieu entourant la chambre contre les gaz toxiques provenant de la zone de réaction.The reaction chamore is the enclosure where chemical reactions take place and the treatment of the products introduced into the plasma flow and / or the treatment of the surface of an object. Thanks to this enclosure, these actions take place in an environment of controlled composition and with protection of the medium surrounding the chamber against toxic gases coming from the reaction zone.
La chambre de réaction 19 du réacteur est formée du diaphragme 3 avec un distributeur de gaz 12, une paroi en quartz 9 et une table 10 sur laquelle est fixé l'objet à traiter 11. Sur la partie extérieure du diaphragme plat 3 est placé le distributeur de gaz 12 qui crée un flux de gaz accompagnant le jet de plasma. Le flux de gaz a une distribution de vitesses longitudinales (parallèlement à la direction d'écoulement du flux de plasma) qui représente une
fonction momentanément diminuante, depuis la vitesse des couches extérieures du jet de plasma jusqu'à zéro, ou une valeur voisine de 0, correspondant à la vitesse du gaz protecteur injecté le long des parois de quartz 9 pour la protection de celles-ci, entre celle-ci et le dispositif de fixation 13.The reaction chamber 19 of the reactor is formed from the diaphragm 3 with a gas distributor 12, a quartz wall 9 and a table 10 on which the object to be treated is fixed 11. On the outside of the flat diaphragm 3 is placed the gas distributor 12 which creates a gas flow accompanying the plasma jet. The gas flow has a longitudinal velocity distribution (parallel to the direction of flow of the plasma flow) which represents a momentarily decreasing function, from the speed of the outer layers of the plasma jet to zero, or a value close to 0, corresponding to the speed of the protective gas injected along the quartz walls 9 to protect them, between the latter and the fixing device 13.
Cela permet d'éliminer les courants de circulation dans la chambre de réaction et de protéger la paroi de quartz 9 à la fois des dépôts chimiques et du flux de chaleur convective.This makes it possible to eliminate the circulation currents in the reaction chamber and to protect the quartz wall 9 both from chemical deposits and from the convective heat flow.
La chambre de protection peut se déplacer le long de la chambre de réaction (le mécanisme assurant le déplacement n'est pas représenté sur la figure 1) dans le but de pouvoir choisir de manière optimale la distance du générateur de plasma à l'objet traité sur la table 10. Le point d'ouverture 4 assure que, lors du déplacement, l'ensemble du réacteur reste hermétique.The protective chamber can move along the reaction chamber (the mechanism ensuring the movement is not shown in Figure 1) in order to be able to optimally choose the distance from the plasma generator to the treated object on the table 10. The opening point 4 ensures that, during movement, the entire reactor remains sealed.
La chambre de réaction est pourvue d'un collecteur 15 pour l'aspiration et le refroidissement des gaz d'échappement. Le collecteur 15 a un canal 16 et deux déflecteurs métalliques 17, qui forment avec la surface de la table 10 un interstice étroit réglable. Le collecteur est raccordé à un aspirateur (non représenté sur la figure 1) . L'aspirateur aspire les gaz provenant de la chambre de réaction tout comme de l'espace extérieur Le réacteur proposé peut être axisymétπque ou planosymétrique .The reaction chamber is provided with a manifold 15 for the suction and cooling of the exhaust gases. The collector 15 has a channel 16 and two metal deflectors 17, which form with the surface of the table 10 an adjustable narrow gap. The collector is connected to a vacuum cleaner (not shown in Figure 1). The vacuum cleaner sucks in the gases coming from the reaction chamber as well as from the outside space. The proposed reactor can be axisymmetric or planosymmetric.
Pour le traitement des surfaces de grandes dimensions, le réacteur est pourvu d'un système électromagnétique de scanning des flux de plasma. Le scanning du flux de plasma est basé sur le déplacement latéral synchronisé de tous les jets de plasma issus des chambres à électrodes, jets traversés par le courant électrique. Quand ces jets se déplacent, le flux résultant de plasma se déplace dans la direction résultante.
Le dispositif électromagnétique est montré à La figure 2 pour le cas d'un générateur de plasma à quatre buses. A la base des jets, à la sortie des tuyères des chambres à électrodes, sont placés des électroaimants. Chaque électroaimant a un conducteur magnétique à deux branches et deux enroulements indépendants Wl et W2. A l'endroLt où se trouvent les jets de plasma (figure 2b) , les enrouLements Wl et W2 , mis sous tension Ul et U2 , créent des champs magnétiques perpendiculaires 1 'un à l'autre H 1 et H2, le champ résultant étant H. Si une tension smoidale dans le temps est appliquée aux enroulement Wl et W2 , avec une différence de phases de 90°, un champ magnétique tournant se crée. La force d'ampère résultante F sera aussi tournante Celle-ci entraînera le jet de plasma dans un mouvement tournant autour de l'axe d'écoulement du jet Le sens de rotation du jet de plasma est inverse de celui de rotation du champ magnétique, la fréquence coïncide. La connexion des enroulements, dans le cas de quatre jets illustré sur la figure 2a, les quatre jets ont une rotation synchronisée ce qui provoque la rotation du flux de plasma résultant. Si l'amplitude de la tension d'alimentation des enrouLements est variée dans le temps, on peut obtenir un mouvement rotatif en spirale du flux de plasma à la vitesse et à l'envergure données Variant la forme de la fonction du temps des tensions Ul et U2, leur amplitude et la différence de phases, on peut obtenir d'autres sortes de mouvement du jet de plasma.For the treatment of large surfaces, the reactor is equipped with an electromagnetic system for scanning plasma flows. The scanning of the plasma flow is based on the synchronized lateral movement of all the plasma jets coming from the electrode chambers, jets crossed by the electric current. When these jets move, the resulting plasma flow moves in the resulting direction. The electromagnetic device is shown in Figure 2 for the case of a plasma generator with four nozzles. Electromagnets are placed at the base of the jets, at the outlet of the nozzles of the electrode chambers. Each electromagnet has a magnetic conductor with two branches and two independent windings Wl and W2. At the location where the plasma jets are located (Figure 2b), the windings Wl and W2, energized Ul and U2, create magnetic fields perpendicular to one another H 1 and H2, the resulting field being H. If a smoidal voltage over time is applied to the windings Wl and W2, with a phase difference of 90 °, a rotating magnetic field is created. The resulting ampere force F will also be rotating. This will cause the plasma jet to rotate around the axis of flow of the jet. The direction of rotation of the plasma jet is opposite to that of rotation of the magnetic field, the frequency coincides. The connection of the windings, in the case of four jets illustrated in FIG. 2a, the four jets have a synchronized rotation which causes the rotation of the resulting plasma flow. If the amplitude of the supply voltage of the windings is varied in time, one can obtain a rotary movement in a spiral flow to the plasma velocity and r enve FIG Variant data the shape of the function of time voltages Ul and U2, their amplitude and the phase difference, other kinds of movement of the plasma jet can be obtained.
En outre, si une composante de tension constante est appliquée aux enroulements Wl, la grandeur et la direction de cette composante déterminant le déplacement stationnaire des jets de plasma issus des chambres à électrodes, ce qui permet de varier la forme du flux de plasma. La forme du flux de plasma nécessaire pour l'introduction et le traitement des composantes chimiques ou des produits, se conserve lors du mouvement du scanning du flux de plasma.
In addition, if a constant voltage component is applied to the windings W1, the magnitude and the direction of this component determining the stationary displacement of the plasma jets coming from the electrode chambers, which makes it possible to vary the shape of the plasma flow. The shape of the plasma flow necessary for the introduction and treatment of chemical components or products is preserved during the scanning movement of the plasma flow.
Claims
1. Réacteur à jet de plasma avec générateur de plasma à jets multiples, contenant deux ou plus de deux paires de chambres à électrodes (cathodes et anodes) , connectées à des sources de courant continu, générant des jets de plasma dont la trajectoire est formée par un champ magnétique de manière que les jets créent un flux unique dont la zone centrale a une température surbaissée par rapport aux zones périphériques, zone centrale dans laquelle est introduit le produit chimique et/ou le matériau à traiter, caractérisé par le fait que le réacteur comporte en outre une chambre de réaction hermétique, un dispositif d'aspiration des gaz d'échappement, et un dispositif électromagnétique de scanning du flux de plasma.1. Plasma jet reactor with multi-jet plasma generator, containing two or more pairs of electrode chambers (cathodes and anodes), connected to direct current sources, generating plasma jets whose trajectory is formed by a magnetic field so that the jets create a single flux, the central zone of which has a lowered temperature compared to the peripheral zones, central zone into which the chemical and / or the material to be treated is introduced, characterized in that the The reactor further includes an airtight reaction chamber, an exhaust gas suction device, and an electromagnetic device for scanning the plasma flow.
2. Réacteur selon la revendication 1, caractérisé par le fait que les parois de la chambre de réaction sont fabriquées en quartz transparent.2. Reactor according to claim 1, characterized in that the walls of the reaction chamber are made of transparent quartz.
3. Réacteur selon l'une des revendications 1 ou 2 , caractérisé par le fait que les parois de la chambre de réaction sont protégées par un courant de gaz dirigé le long de ces parois3. Reactor according to one of claims 1 or 2, characterized in that the walls of the reaction chamber are protected by a stream of gas directed along these walls
4. Réacteur selon l'une des revendications précédentes, caractérisé par le fait que la chambre de réaction est pourvue d'un distributeur de gaz permettant de souffler un flux de gaz coaxialement ou coplanairement au flux de plasma.4. Reactor according to one of the preceding claims, characterized in that the reaction chamber is provided with a gas distributor making it possible to blow a gas flow coaxially or coplanar with the plasma flow.
5. Réacteur selon l'une des revendications précédentes, caractérisé par le fait que le réacteur est pourvu d'un mécanisme de déplacement du générateur de plasma et du distributeur de gaz par rapport à la chambre de réaction.5. Reactor according to one of the preceding claims, characterized in that the reactor is provided with a mechanism for moving the plasma generator and the gas distributor relative to the reaction chamber.
6. Réacteur selon l'une des revendications précédentes, caractérisé par le fait que le réacteur est pourvu d'un dispositif d'aspiration des gaz d'échappement de la chambre de réaction, le dit dispositif assurant également l'aspiration des gaz provenant de 1 ' espace extérieur entourant la chambre de réaction.6. Reactor according to one of the preceding claims, characterized in that the reactor is provided with a device for suction of the exhaust gases from the reaction chamber, the said device also ensuring the suction gases from the outside space surrounding the reaction chamber.
7. Réacteur selon l'une des revendications précédentes, caractérisé par le fait que le dispositif de scanning est conformé de manière à agir sur au moins l'un des facteurs que sont l'intensité, la tension et l'amplitude du courant alimentant les bobinages, pour commander la forme, l'orientation, et le mouvement, notamment en spirale, du flux de plasma.7. Reactor according to one of the preceding claims, characterized in that the scanning device is shaped so as to act on at least one of the factors that are the intensity, the voltage and the amplitude of the current supplying the windings, to control the shape, the orientation, and the movement, in particular in spiral, of the plasma flow.
8. Réacteur selon l'une des revendications précédentes, caractérisé par le fait que les paramètres optimaux à appliquer en fonction de l'objet à traiter et/ou des produits à utiliser sont commandés par le dispositif de scanning. 8. Reactor according to one of the preceding claims, characterized in that the optimal parameters to be applied depending on the object to be treated and / or the products to be used are controlled by the scanning device.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CH321195 | 1995-11-13 | ||
| CH3211/95 | 1995-11-13 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1997018694A1 true WO1997018694A1 (en) | 1997-05-22 |
Family
ID=4251061
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CH1996/000405 WO1997018694A1 (en) | 1995-11-13 | 1996-11-13 | Plasma jet reactor |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO1997018694A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002039791A1 (en) * | 2000-11-10 | 2002-05-16 | Apit Corp. S.A. | Atmospheric plasma method for treating sheet electricity conducting materials and device therefor |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5810818A (en) * | 1981-07-14 | 1983-01-21 | Shimadzu Corp | Plasma chemical vapor deposition device |
| US4853250A (en) * | 1988-05-11 | 1989-08-01 | Universite De Sherbrooke | Process of depositing particulate material on a substrate |
| WO1993016573A1 (en) * | 1992-02-18 | 1993-08-19 | Opa (Overseas Publishers Association) Amsterdam, B.V. | Method of control of plasma stream and plasma apparatus |
| GB2271044A (en) * | 1990-12-26 | 1994-03-30 | Opa | Device for plasma-arc processing of material |
-
1996
- 1996-11-13 WO PCT/CH1996/000405 patent/WO1997018694A1/en active Application Filing
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5810818A (en) * | 1981-07-14 | 1983-01-21 | Shimadzu Corp | Plasma chemical vapor deposition device |
| US4853250A (en) * | 1988-05-11 | 1989-08-01 | Universite De Sherbrooke | Process of depositing particulate material on a substrate |
| GB2271044A (en) * | 1990-12-26 | 1994-03-30 | Opa | Device for plasma-arc processing of material |
| WO1993016573A1 (en) * | 1992-02-18 | 1993-08-19 | Opa (Overseas Publishers Association) Amsterdam, B.V. | Method of control of plasma stream and plasma apparatus |
Non-Patent Citations (1)
| Title |
|---|
| PATENT ABSTRACTS OF JAPAN vol. 007, no. 084 (E - 169) 7 April 1983 (1983-04-07) * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002039791A1 (en) * | 2000-11-10 | 2002-05-16 | Apit Corp. S.A. | Atmospheric plasma method for treating sheet electricity conducting materials and device therefor |
| US6949716B2 (en) | 2000-11-10 | 2005-09-27 | Apit Corp. S.A. | Process for treating with an atmospheric plasma electrically conductive materials and a device therefor |
| EP1613133A3 (en) * | 2000-11-10 | 2011-04-27 | Apit Corp. SA | Atmospheric plasma method for treating sheet electricity conducting materials and device therefor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5174826A (en) | Laser-assisted chemical vapor deposition | |
| US5356672A (en) | Method for microwave plasma assisted supersonic gas jet deposition of thin films | |
| EP0049380B1 (en) | Apparatus for a plasma-enhanced chemical deposition | |
| JP2553947B2 (en) | Plasma reactor device and material treatment method | |
| US5256205A (en) | Microwave plasma assisted supersonic gas jet deposition of thin film materials | |
| CA2098652A1 (en) | Device for forming unstable or energized gaseous molecules and use of said device | |
| EP2271790A2 (en) | Device and process for chemical vapor phase treatment | |
| FR2815888A1 (en) | PLASMA GAS TREATMENT DEVICE | |
| WO1995016802A1 (en) | Use of an excited gas forming apparatus | |
| EP1488669A1 (en) | Atmospheric plasma surface treatment method and device for same | |
| FR2724123A1 (en) | DEVICE FOR STABILIZING A CONTINUOUS CHEMICAL REACTION BETWEEN SEVERAL BODIES IN A PLASMA | |
| FR2604050A1 (en) | APPARATUS AND METHOD FOR CREATING A MONOENERGETIC BEAM OF PARTICLES AND PRODUCTS OBTAINED BY THEIR IMPLEMENTATION | |
| EP0595084A1 (en) | Apparatus for carrying out chemical reactions | |
| EP0186558B1 (en) | Device for the irradiation of matter by an electron beam | |
| EP0000309B1 (en) | Hollow-beam generator producing monokinetic electrons along helicoidal paths | |
| JP4313046B2 (en) | Method and apparatus for generating active gas curtain for surface treatment | |
| EP0914241B1 (en) | Method for treating a surface by dry process and device for implementing same | |
| US20100203253A1 (en) | Plasma system and method of producing a functional coating | |
| WO1997018694A1 (en) | Plasma jet reactor | |
| KR20010089723A (en) | Large area plasma source | |
| KR101003731B1 (en) | Gas phase material conversion and treatment using arc plasma flame | |
| FR2678956A1 (en) | DEVICE AND METHOD FOR DEPOSITING DIAMOND BY DCPV ASSISTED BY MICROWAVE PLASMA. | |
| Camps et al. | Characterization of the combination of microwave and laser ablation plasmas | |
| CN1489426A (en) | Constant-pressure radio frequency cold plasma system and spray gun thereof | |
| EP3560299B1 (en) | Dbd plasma reactor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 97518475 Format of ref document f/p: F |
|
| 122 | Ep: pct application non-entry in european phase |