WO1997019481A1 - Accumulateur solide a electrode negative de carbone hydrogene desordonnee - Google Patents
Accumulateur solide a electrode negative de carbone hydrogene desordonnee Download PDFInfo
- Publication number
- WO1997019481A1 WO1997019481A1 PCT/US1996/018644 US9618644W WO9719481A1 WO 1997019481 A1 WO1997019481 A1 WO 1997019481A1 US 9618644 W US9618644 W US 9618644W WO 9719481 A1 WO9719481 A1 WO 9719481A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- battery
- electrode material
- solid state
- insulating
- Prior art date
Links
- 239000007787 solid Substances 0.000 title claims abstract description 53
- 150000001721 carbon Chemical class 0.000 title claims abstract description 10
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 75
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 71
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 239000004020 conductor Substances 0.000 claims abstract description 32
- 239000007774 positive electrode material Substances 0.000 claims abstract description 22
- 239000007773 negative electrode material Substances 0.000 claims abstract description 20
- 239000011810 insulating material Substances 0.000 claims abstract description 19
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 14
- 239000001257 hydrogen Substances 0.000 claims abstract description 14
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 14
- 238000007599 discharging Methods 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 48
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 26
- 239000010409 thin film Substances 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- 239000010408 film Substances 0.000 claims description 3
- 239000012777 electrically insulating material Substances 0.000 claims description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 150000003376 silicon Chemical class 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- -1 hydrogen ions Chemical class 0.000 abstract description 6
- 239000003575 carbonaceous material Substances 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 90
- 239000007784 solid electrolyte Substances 0.000 description 29
- 229920000642 polymer Polymers 0.000 description 19
- 229910052782 aluminium Inorganic materials 0.000 description 18
- 239000003792 electrolyte Substances 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 239000011244 liquid electrolyte Substances 0.000 description 15
- 229910052987 metal hydride Inorganic materials 0.000 description 15
- 150000004681 metal hydrides Chemical class 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 12
- 238000013461 design Methods 0.000 description 8
- 238000004880 explosion Methods 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 229910003307 Ni-Cd Inorganic materials 0.000 description 7
- 239000010416 ion conductor Substances 0.000 description 7
- 239000005518 polymer electrolyte Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000003607 modifier Substances 0.000 description 5
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 229910001935 vanadium oxide Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910002640 NiOOH Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 210000003850 cellular structure Anatomy 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000005518 electrochemistry Effects 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229910017759 LaH3 Inorganic materials 0.000 description 1
- MKGYHFFYERNDHK-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Ti+4].[Li+] Chemical compound P(=O)([O-])([O-])[O-].[Ti+4].[Li+] MKGYHFFYERNDHK-UHFFFAOYSA-K 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006388 chemical passivation reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940117927 ethylene oxide Drugs 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000011076 safety test Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/188—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates generally to solid state ionic conductors and more specifically to electrically insulating ionic conductors useful as solid state electrolyte and thin-film all solid state batteries employing these ionic conductors
- Rechargeable batteries are used in almost every aspect of daily life
- a wide variety of industrial, commercial and consumer applications exist Larger capacity battery uses include such applications as fork lifts, golf carts, uninterruptable power supplies for protection of electronic data storage, and even energy storage for power production facilities
- weight is a significant factor Because a large component of the total weight of the vehicle is the weight of the batteries, reducing the weight of the cells is a significant consideration in designing batteries to power electric vehicles
- a rechargeable electrochemical cell is ideally suited to serve as a portable power source due to its small size, light weight, high power capacity and long operating life
- a rechargeable cell may operate as an "install and forget" power source With the exception of periodic charging, such a rechargeable cell typically performs without attention and rarely becomes the limiting factor in the life of the device it powers
- Present rechargeable battery systems can be classified into two groups those employing liquid electrolytes and those employing solid electrolytes
- Liquid electrolyte systems have been around for many decades and are the most well known to the general public Examples of liquid electrolyte rechargeable battery systems include lead-acid, nickel cadmium, and the more recent nickel-metal hydride systems A more recent advancement is the solid electrolyte rechargeable battery systems
- the solid electrolyte devices have several distinct advantages over those based on liquid electrolytes These include (1 ) the capability of pressure-packaging or hard encapsulation to yield extremely rugged assemblies, (2) the extension of the operating temperature range since the freezing and/or boi ng-off of the liquid phase, which drastically affect the device performance when employing liquid electrolytes are no longer a consideration, (3) solid electrolyte devices are truly leak-proof, (4) they have long shelf life due to the prevention of the corrosion of electrodes and of loss of solvent by drying out which occur when using liquid electrolytes, (5) solid electrolytes permit micro-miniaturization, and (6) the do not require heavy, rigid battery cases which are essentially "dead weight" because they provide no additional capacity to
- Oxide ion conductors such as zirconia are operated at high temperatures due to their low conductivity at ambient temperatures
- Chloride ion conductors such as PbCI 2 and BaCI 2 have similar temperature restrictions
- Silver ion such as AgBr, AgCI, and Agl also show low room temperature ionic conductivity
- lithium-polymer batteries have received the most widespread interest Reports in 1979 that lithiated poly ⁇ ethylene-oxide (PEO) possesses lithium ion conductivity raised the expectations for a solid state battery employing PEO as solid electrolyte Indeed, if PEO, or other polymers, were a true solid electrolyte with practical ionic conductivities and a cationic transfer number of 1 , a stable interface with the lithium electrode and good charging uniformity could be realized The expectations, no doubt, were stimulated by the relative success of the true solid electrolyte "B" Alumina, in the Sodium Sulphur battery
- Solid electrolytes consist of solid atomic structures which selectively conduct a specific ion through a network of sites in a two or three dimensional matrix If the activation energy for mobility is sufficiently low, the solid electrolyte can serve as both the separator and electrolyte in a battery This can allow one to fabricate an all solid state cell An important aspect of such electrolytes is that they selectively conduct only one type of ion If that ion features reversible electrochemistry with both the positive and negative electrode of the battery, and if the solid electrolyte itself is inert to the electrodes, the cell will enjoy a uniform and reversible electrochemistry with no composition change and no passivation or side
- Lithium batteries are very poor in this respect Over discharge will result in plating lithium on the positive electrode which can result in a spontaneous chemical reaction with severe safety implications Overcharge is likely to result in electrolyte degradation that can generate some volatile gasses as well as increase cell impedance
- Overcharge is likely to result in electrolyte degradation that can generate some volatile gasses as well as increase cell impedance
- These problems are particularly severe for lithium cells because 1 ) degradation occurs during cycle life, therefore, even if initial capacities are matched very closely, it is unreasonable to expect that the degradation rate will be identical for all cells, 2) the cells tend to develop soft or hard shorts, thereby making it impossible to maintain the cells at the same state of charge at all times, and 3) cell capacity is dependent on temperature, therefore cells that are physically cooler due to their location will deliver less capacity than others
- solid state battery systems of the present invention meet the requirements discussed hereinabove and provide gravimetric and volumetric energy densities of unparalleled performance
- the battery includes a substrate material layer which provides support for the battery and at least one multilayered electrochemical cell deposited onto the substrate
- Each cell of the battery includes a layer of negative electrode material, the negative electrode material being capable of electrochemically adsorbing and desorbing ions during charge and discharge thereof, respectively
- the multilayered electrochemical cell additionally contains a layer of positive electrode material, the positive electrode material being capable of electrochemically desorbing and adsorbing ions during charge and discharge thereof respectively
- the multilayered electrochemical cell contains a layer of insulating/conducting material disposed between the layer of positive electrode material and the layer of negative electrode material
- the insulating/conducting material is electrically insulating and capable of readily conducting or transporting ions from the positive electrode to the negative electrode while the battery is charging and from the negative electrode to the positive electrode while the battery is discharging
- That battery additionally includes an electrically conductive layer deposited on top of the last of said at least one multilayered electrochemical cells
- the positive electrode layer includes lithium nickelate or amorphous vanadium oxide and the negative electrode mate ⁇ al includes disordered hydrogenated carbon or lithium metal
- one electrode provides a source of lithium ions, while the other provides a source of hydrogen tons
- the solid state lithium or lithium/proton conducting material includes a hthiated or thiated/hydrogenated electrical insulator material, which may be a hthiated or hthiated/hydrogenated silicon nitride material
- the hthiated silicon nitride material preferably has an atomic ratio of between about 20% and about 50% lithium, between about 20% and about 40% silicon and about 20% to about 50 % nitrogen while the hthiated/hydrogenated silicon nitride material preferably has an atomic ratio of between about 10 to 40 atomic % lithium, about 10 to 40 atomic % hydrogen, about 20 to 40 atomic % silicon, and about 20 to 50 atomic % nitrogen
- the substrate material is formed from an electrically conductive mate ⁇ al and acts as
- Figure 1 is a cross-sectional depiction of a first embodiment of the solid state battery of the instant invention specifically illustrating the individual layers thereof
- Figure 2 is a cross-sectional depiction of a second embodiment of the solid state battery of the instant invention specifically illustrating the individual layers thereof, including plural electrochemical cells and current collectors therebetween
- Figure 1 is a cross-sectional depiction of a thin-film solid state battery of the present invention
- reference numeral 1 is the substrate of the thin-film battery
- the substrate provides support for the battery and may also serve as the bottom electrical terminal of the battery
- Substrate 1 may be formed from an electrically conductive metal such as aluminum, nickel, copper or stainless steel, or it may be formed from a light weight, electrically insulating polymer or ceramic material If the substrate 1 is formed of an electrically insulating material or is reactive with the battery electrode materials, then an electrically conductive bottom battery terminal layer 2 is deposited onto the substrate
- the material used to form the battery terminal layer 2 may be an electrically conductive metal such as aluminum, nickel or copper, or may even be an electrically conductive ceramic or oxide material
- the substrate 1 plus any battery terminal layer 2 should be only as thick as needed to perform their support and conduction functions Any additional thickness will only increase the "dead weight" of the battery Typically the total thickness of the substrate 1 plus the battery terminal layer 2 will not be greater than about
- the thin-film negative electrode layer 3 is typically between about 1 and 15 microns thick and is formed from a material which electrochemically adsorbs and desorbs ions such as ionic hydrogen during charging and discharging thereof, respectively Typically the layer is formed from electrochemical hydrogen storage materials such as metal hydride materials These metal hydride material may be any of those already known any used in liquid electrolyte nickel-metal hydride batteries These materials may be AB 2 or AB 5 type metal hydride materials They may be amorphous, polycrystallme, microcrystalline, nanocrystalline, single crystal or multi-structural materials They may include only a single compositional phase or may include multiple compositional phases An extensive review of the known metal hydride materials useful in electrochemical cells is given in U S Patent No 5,096,667, the disclosure of which is incorporated herein by reference
- new metal hydride systems can be developed to take advantage of the environmental differences between an alkaline liquid electrolyte system and the new thin-film solid electrolyte systems
- a liquid electrolyte system there is generally a problem with corrosion of the electrode due to the caustic nature of the alkaline electrolyte Therefore, elements which provide corrosion resistance must be added to the negative electrode material to mitigate corrosion damage
- the solid electrolyte system of the present invention no such corrosion problems will occur due to the absence of caustic liquids and as such, no corrosion inhibitor materials will need to be added to the negative electrode
- metallic lithium or lithium intercalated disordered hydrogenated carbon can be used as the negative electrode layer 3
- the positive electrode layer 5 is typically between 5 and 20 microns thick and is formed from a material which electrochemically desorbs and adsorbs ions such as ionic hydrogen during charging and discharging thereof, respectively Typically the layer is formed from a transition metal hydroxide such as nickel hydroxide material
- the nickel hydroxide material can be any of those material known in the prior art for use in rechargeable battery systems They may also be advanced active materials like the locally ordered, disordered, high capacity, long cycle life positive electrode material disclosed in U S Patent Application Se ⁇ al No s 7/975,031 filed November 12, 1992 and 8/027,973 filed March 8, 1993, the disclosures of which are incorporated herein by reference These materials include a solid solution nickel hydroxide electrode material having a multiphase structure and at least one compositional modifier to promote said multiphase structure
- the multiphase structure comprises at least one polycrystallme ⁇ -phase including a polycrystallme ⁇ - phase unit cell comprising spacedly disposed plates with at least one ion incorporated around
- the positive electrode layer 5 can be formed from a material such as lithium nickelate (L ⁇ N ⁇ 0 4 ), lithium cobaltate or (L ⁇ Co0 4 ) lithium manganate (L ⁇ Mn0 4 ), vanadium oxide, titanium disulfide, etc
- a thin-film solid state electrolyte layer 4 This layer is typically between about 0 5 and 2 microns thick, but may be as thin as 1000 Angstroms if the layer onto which it is deposited has a low degree of surface roughness
- the type of ionic conductivity required of the solid electrolyte is dependent on the electrochemical reactions involved in the cell Since the charging cycle electrode reactions of the instant rechargeable protonic battery are M + H + + e -CHARGE> MH , and N ⁇ (OH) 2 -CHARGE> NiOOH + H + + e , the solid state electrolyte layer 4 which separates the positive electrode layer 5 and the negative electrode layer 3 must be a proton conductor That is, the solid electrolyte material must be capable of readily conducting or transporting protons from the positive electrode layer 5 to the negative electrode layer 3 while the battery is charging and from the negative electrode layer 3 to the positive electrode layer 5 while the battery is discharging The solid electrolyte layer 4 must also be electrical
- the charging electrode reactions are
- Solid lithium conductors useful as the ionic conductor layer 4 are hthiated silicon nitride (L ⁇ 8 S ⁇ N 4 ), lithium phosphate (L ⁇ P0 4 ), lithium titanium phosphate (L ⁇ T ⁇ P0 4 ) and lithium phosphonit ⁇ de (L ⁇ P0 4 . x N x where 0 ⁇ x ⁇ 1 )
- a top battery terminal layer 6 is deposited on top of the positive electrode layer 5
- the battery terminal layer 6 is typically between 1 and 5 microns thick and is formed from an electrically conductive material such as a metal or an electrically conductive ceramic or oxide Specifically, aluminum, copper or nickel may be used
- FIG. 2 there is depicted therein a solid state battery of the instant invention containing multiple stacked electrochemical cells
- the reference numeral of the layers of this battery correspond to those of the battery depicted in Figure 1
- a layer of current collecting material 7 is deposited between positive electrode layer 5 or one cell and the negative electrode layer 3 of the adjacent cell
- This layer is formed of an electrically conductive material and is typically between 1000 angstroms and 0 5 microns thick
- this layer is formed from a metal such as aluminum, copper or nickel and is resistant to the conduction of protons
- a one square meter multiple cell thin-film solid state battery of the type depicted in Figure 2 having 10 cells will serve as an example of the efficacy of the present design
- Each cell contains a positive electrode layer 5 which is formed from conventional nickel hydroxide and is about 10 microns thick
- Each cell also contains a negative electrode layer 3 of metal hydride material and is about 4 microns thick
- each cell contains a solid state electrolyte layer 4 formed from hydrogenated silicon nitride material and is about 2 microns thick
- current collector layers 7 which are formed of aluminum and are about 0 5 microns thick
- the cells are deposited onto an aluminum substrate 1 which also serves as the bottom battery terminal 2
- the substrate 1 is about 100 microns thick
- On top of the positive electrode layer 5 of the final cell is deposited a top battery terminal layer 6 which is formed of aluminum and is about 5 microns thick
- This battery would have a Specific Capacity calculated as follows
- EXAMPLE 2 Another example of the solid state battery having the same structure and dimensions as that in Example 1 , but using advanced nickel hydroxide active materials and assuming about 1 7 electron transfer give a specific capacity as calculated below
- each of the 10 cells contains a positive electrode layer 5 which is formed from lithium nickelate (L ⁇ N ⁇ 0 2 ) and is about 10 microns thick
- Each cell also contains a negative electrode layer 3 of disordered hydrogenated carbon material and is about 4 microns thick
- each cell contains a solid state electrolyte layer 4 formed from hthiated silicon nitride material and is about 2 microns thick
- current collector layers 7 which are formed of aluminum and are about 0 5 microns thick
- the cells are deposited onto an aluminum substrate 1 which also serves as the bottom battery terminal 2
- the substrate 1 is about 100 microns thick
- On top of the positive electrode layer 5 of the final cell is deposited a top battery terminal layer 6 which is formed of aluminum and is about 5 microns thick
- This battery would have a Specific Capacity calculated as follows
- each of the 10 cells contains a positive electrode layer 5 which is formed from amorphous vanadium oxide (a-V 2 0 5 ) and is about 10 microns thick
- Each cell also contains a negative electrode layer 3 of lithium metal which is about 19 microns thick
- each cell contains a solid state electrolyte layer 4 formed from hthiated silicon nitride material and is about 2 microns thick
- the composition of the hthiated silicon nitride film is typically about 20 to 50 atomic % lithium, about 20 to 40 atomic % silicon, and about 20 to 50 atomic % nitrogen
- current collector layers 7 which are formed of molybdenum and are about 0 5 microns thick
- the cells are deposited onto an aluminum or nickel substrate 1 which also serves as the bottom battery terminal 2
- the substrate 1 is about 50 to 100 microns thick
- On top of the positive electrode layer 5 of the final cell is deposited a top terminal layer 6 which
- This battery would have a Specific Capacity calculated as follows
- Each of the 10 cells contain a positive electrode layer 5 which is formed from lithium nickelate (L ⁇ N ⁇ 0 2 ) (which can be partially or totally substituted by L ⁇ Co0 2 or L ⁇ Mn0 2 ) and is about 10 microns thick
- Each cell also contains a negative electrode layer 3 of hydrogenated carbon material and is about 4 microns thick
- each cell contains a solid state electrolyte layer 4 formed from hthiated/hydrogenated silicon nitride material and is about 2 microns thick
- the composition of the hthiated/hydrogenated silicon nitride is typically about 10 to 40 atomic % lithium, about 10 to 40 atomic % hydrogen, about 20 to 40 atomic % silicon, and about 20 to 50 atomic % nitrogen
- Between the cells are current collector layers 7 which are formed of aluminum or nickel and are about
- This battery can be thought of as a half-charged battery That is, initially the positive electrode is L ⁇ N ⁇ 0 2 and the negative electrode is hydrogenated carbon The "as deposited" cell is in a half charged state During formation (i e full charging) hydrogen ions are transferred to the lithium nickelate material according to the following reactions
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96941420A EP0867050A4 (fr) | 1995-11-24 | 1996-11-20 | Accumulateur solide a electrode negative de carbone hydrogene desordonnee |
AU10569/97A AU1056997A (en) | 1995-11-24 | 1996-11-20 | A solid state battery having a disordered hydrogenated carbon negative electrode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US56295295A | 1995-11-24 | 1995-11-24 | |
US08/562,952 | 1995-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997019481A1 true WO1997019481A1 (fr) | 1997-05-29 |
Family
ID=24248474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/018644 WO1997019481A1 (fr) | 1995-11-24 | 1996-11-20 | Accumulateur solide a electrode negative de carbone hydrogene desordonnee |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0867050A4 (fr) |
AU (1) | AU1056997A (fr) |
WO (1) | WO1997019481A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1177589A4 (fr) * | 1999-04-02 | 2002-09-25 | Excellatron Solid State Llc | Batterie au lithium a couche mince |
WO2004093223A3 (fr) * | 2003-04-14 | 2005-06-23 | Massachusetts Inst Technology | Batteries a couches minces integrees sur circuits integres en silicium |
US7011768B2 (en) | 2002-07-10 | 2006-03-14 | Fuelsell Technologies, Inc. | Methods for hydrogen storage using doped alanate compositions |
US7063918B2 (en) | 2000-10-23 | 2006-06-20 | The University Of Maryland, College Park | Nanoscale solid-state polymeric battery system |
US7169489B2 (en) | 2002-03-15 | 2007-01-30 | Fuelsell Technologies, Inc. | Hydrogen storage, distribution, and recovery system |
US7279222B2 (en) | 2002-10-02 | 2007-10-09 | Fuelsell Technologies, Inc. | Solid-state hydrogen storage systems |
EP1852933A4 (fr) * | 2005-02-02 | 2008-03-19 | Geomatec Co Ltd | Pile secondaire solide a couche mince |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4810599A (en) * | 1987-03-27 | 1989-03-07 | Japan Synthetic Rubber Co., Ltd. | Structure suitable for solid electrochemical elements |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5512387A (en) * | 1993-11-19 | 1996-04-30 | Ovonic Battery Company, Inc. | Thin-film, solid state battery employing an electrically insulating, ion conducting electrolyte material |
US5376475A (en) * | 1994-03-16 | 1994-12-27 | Ovonic Battery Company, Inc. | Aqueous lithium-hydrogen ion rechargeable battery |
-
1996
- 1996-11-20 WO PCT/US1996/018644 patent/WO1997019481A1/fr active Application Filing
- 1996-11-20 AU AU10569/97A patent/AU1056997A/en not_active Abandoned
- 1996-11-20 EP EP96941420A patent/EP0867050A4/fr not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4810599A (en) * | 1987-03-27 | 1989-03-07 | Japan Synthetic Rubber Co., Ltd. | Structure suitable for solid electrochemical elements |
Non-Patent Citations (1)
Title |
---|
See also references of EP0867050A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1177589A4 (fr) * | 1999-04-02 | 2002-09-25 | Excellatron Solid State Llc | Batterie au lithium a couche mince |
CN100365851C (zh) * | 1999-04-02 | 2008-01-30 | 艾克塞勒庄固态有限责任公司 | 薄锂膜电池 |
US7063918B2 (en) | 2000-10-23 | 2006-06-20 | The University Of Maryland, College Park | Nanoscale solid-state polymeric battery system |
US7169489B2 (en) | 2002-03-15 | 2007-01-30 | Fuelsell Technologies, Inc. | Hydrogen storage, distribution, and recovery system |
US7011768B2 (en) | 2002-07-10 | 2006-03-14 | Fuelsell Technologies, Inc. | Methods for hydrogen storage using doped alanate compositions |
US7279222B2 (en) | 2002-10-02 | 2007-10-09 | Fuelsell Technologies, Inc. | Solid-state hydrogen storage systems |
WO2004093223A3 (fr) * | 2003-04-14 | 2005-06-23 | Massachusetts Inst Technology | Batteries a couches minces integrees sur circuits integres en silicium |
EP1852933A4 (fr) * | 2005-02-02 | 2008-03-19 | Geomatec Co Ltd | Pile secondaire solide a couche mince |
Also Published As
Publication number | Publication date |
---|---|
EP0867050A1 (fr) | 1998-09-30 |
AU1056997A (en) | 1997-06-11 |
EP0867050A4 (fr) | 2007-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5985485A (en) | Solid state battery having a disordered hydrogenated carbon negative electrode | |
US5552242A (en) | Solid state battery using a hydrogenated silicon nitride electrolyte | |
CA2190856C (fr) | Dispositif servant a effectuer un depot de materiaux de batterie a semi-conducteurs et a couches minces | |
US5376475A (en) | Aqueous lithium-hydrogen ion rechargeable battery | |
US9673478B2 (en) | Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage | |
US11749833B2 (en) | Solid state bipolar battery | |
Beck et al. | Rechargeable batteries with aqueous electrolytes | |
US10403930B2 (en) | Electrochemical nanofluid or particle suspension energy conversion and storage device | |
WO2011038233A1 (fr) | Accumulateurs rechargeables à haute performance comprenant des conducteurs ioniques semi-conducteurs rapides | |
EP2507858A1 (fr) | Accumulateur lithium-ion et procédé de fabrication de celui-ci | |
US20100291444A1 (en) | Multilayer coatings for rechargeable batteries | |
Julien | Solid state batteries | |
WO1997019481A1 (fr) | Accumulateur solide a electrode negative de carbone hydrogene desordonnee | |
Chikkannanavar et al. | Advances and developments in batteries and charging technologies | |
US12074274B2 (en) | Solid state bipolar battery | |
US20230369586A1 (en) | Stable lithium metal sulfide coatings for solid-state batteries | |
CN116741924A (zh) | 用于车载电池单池诊断的参比电极和参比电极制造的方法 | |
Van Schalkwijk | Lithium rechargeable batteries | |
Tarascon et al. | Rechargeable Li-ion Batteries for Satellite Applications: Pros and Cons | |
Iwakura et al. | T. Minami (Editor in Chief), M. Tatsumisago, M. Wakihara | |
Julien et al. | Applications of solid-state ionic materials | |
Leal et al. | ANALYSIS OF POWER AND ENERGY IN ELECTROCHEMICAL PORTABLE POWER SYSTEMS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR CA FI JP KR MX NO RU SG UA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |
Free format text: AU |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1996941420 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 97519877 Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1996941420 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |