[go: up one dir, main page]

WO1997023593A1 - Composition detergente comprenant une enzyme et un retardateur de liberation - Google Patents

Composition detergente comprenant une enzyme et un retardateur de liberation Download PDF

Info

Publication number
WO1997023593A1
WO1997023593A1 PCT/US1996/016558 US9616558W WO9723593A1 WO 1997023593 A1 WO1997023593 A1 WO 1997023593A1 US 9616558 W US9616558 W US 9616558W WO 9723593 A1 WO9723593 A1 WO 9723593A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
acid
alkyl
chelating agent
detergent composition
Prior art date
Application number
PCT/US1996/016558
Other languages
English (en)
Inventor
Kevin Cullen
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Publication of WO1997023593A1 publication Critical patent/WO1997023593A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/046Insoluble free body dispenser
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/361Phosphonates, phosphinates or phosphonites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase

Definitions

  • This invention relates to detergent compositions containing an enzyme and a calcium chelating agent, wherein a means is provided for delaying the release to the wash solution of the calcium chelating agent relative to the release of the enzyme.
  • detergents is that enzyme activity in the wash is sensitive to the presence of other chemical components in the wash solution. In particular, it has been established that a certain level of calcium ion is necessary to ensure
  • a granular detergent composition comprising a detergent builder selected from phosphates, carbonates, bicarbonates, silicates, polyacetates, carboxylates, polycarboxylates and polyhydroxysulfonates and a 'non-dusting article' containing an enzyme dispersed in a water soluble resin.
  • This article will act such as to delay the release of the enzyme to the wash solution, in direct contrast to the present invention which requires early enzyme release to the wash solution as has been found to provide good soil/stain removal performance.
  • compositions suitable for use in laundry and machine dishwashing methods having enhanced soil/stain removal It is therefore an object of the present invention to provide compositions suitable for use in laundry and machine dishwashing methods having enhanced soil/stain removal.
  • a calcium chelating agent wherein a means is provided for delaying the release to a wash solution of said calcium chelating agent relative to the release of said enzyme such that in the T50 test method herein described the time to achieve a concentration that is 50% of the ultimate concentration of the enzyme is less than 60 seconds and the time to achieve a concentration that is 50% of the ultimate concentration of the calcium chelating agent is more than 90 seconds.
  • a calcium chelating agent wherein a means is provided for delaying the release to a wash solution of said calcium chelating agent relative to the release of said enzyme such that in the T50 test method herein described the time to achieve a concentration that is 50% of the ultimate concentration of said enzyme is at least 30 seconds less than the time to achieve a concentration that is 50% of the ultimate concentration of said calcium chelating agent.
  • the detergent compositions are free of bleach.
  • An essential component of the detergent compositions is an enzyme.
  • Suitable enzymes include the commercially available lipases, amylases, neutral and alkaline proteases, cellulases, pectinases, lactoses and
  • peroxidases that is enzymes having lipolytic, amylolytic, proteolytic, cellulolytic, pectolytic, lactolytic and peroxidolytic activity respectively, conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
  • Protease enzymes are especially preferred as the enzyme component.
  • Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor
  • Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
  • Amylases are also preferred. Suitable amylases include, for example, ⁇ -amylases obtained from a special strain of B licheniformis, described in more detail in GB-1,269,839 (Novo). Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl and BAN by Novo Industries A/S. Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
  • Lipolytic enzyme which are also preferred may be present at levels of active lipolytic enzyme of from 0.0001% to 4% active enzyme by weight, preferably 0.001% to 1% by weight, most preferably from 0.001% to 0.5% by weight of the compositions.
  • the lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Thermomyces sp. or
  • Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein.
  • a preferred lipase is derived from Pseudomonas pseudoalcaligenes, which is described in Granted European Patent, EP-B-0218272.
  • Another preferred lipase herein is obtained by cloning the gene from
  • Humicola lanuginosa and expressing the gene in Aspergillus oryza, as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent
  • the detergent compositions of the present invention comprise a calcium chelating agent.
  • calcium chelating agent it is meant herein a component which act to sequester (chelate) calcium ions.
  • the component may also have chelation capacity for other metal ions, but in a preferred aspect it preferentially it binds calcium ions in a wash solution.
  • the calcium chelating agent should also preferably have a binding affinity for calcium that is stronger than that of any of the enzyme components of the detergent composition.
  • the calcium chelating agent preferably has a stability constant, pK(Ca) at pH 10.5, which represents the sum of the (pH independent) Ca ++ binding constant and (pH dependent) H + binding constant, of at least 4.0, preferably at least 6.0, more preferably at least 8.0.
  • the calcium chelating agent is generally present at a level of from 0.005% to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
  • Calcium chelating agents which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
  • a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
  • any salts/complexes are water soluble.
  • the molar ratio of said counter cation to the calcium chelating agent is preferably at least 1:1.
  • Preferred calcium chelating agents for use herein are the organic
  • phosphonates such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
  • diethylene triamine penta (methylene phosphonate) which has a pK(Ca) of about 9.95 at pH 10.5, ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra
  • Ethylenediamine tetraacetic acid is also a suitable calcium chelating agent herein.
  • a means for delaying the release to a wash solution of the calcium chelating agent relative to the release of the enzyme.
  • Said means may comprise a means for delaying the release of the calcium chelating agent to the wash solution.
  • said means may comprise a means for enhancing the rate of release of the enzyme to the solution.
  • the delayed release means can include coating the calcium chelating component with a coating or mixture of coatings designed to provide the delayed release.
  • the coating may therefore, for example, comprise a poorly water soluble material, or be a coating of sufficient thickness that the kinetics of dissolution of the thick coating provide the controlled rate of release.
  • the coating material may be applied using various methods. Any coating material is typically present at a weight ratio of coating material to chelant of from 1 :99 to 1 :2, preferably from 1 :49 to 1 :9.
  • Suitable coating materials include triglycerides (e.g. partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil) mono or diglycerides,
  • microcrystalline waxes g., gelatin, cellulose, fatty acids and any mixtures thereof.
  • Suitable coating materials can comprise the alkali and alkaline earth metal sulphates, silicates and carbonates, including calcium carbonate.
  • Preferred as a coating material is sodium silicate of SiO 2 : Na 2 O ratio from 1.6 : 1 to 3.4 : 1, preferably 2.8 : 1, applied as an aqueous solution to give a level of from 2% to 10%, (normally from 3% to 5%) of silicate solids by weight of the percarbonate.
  • Magnesium silicate can also be included in the coating.
  • Any inorganic salt coating materials may be combined with organic binder materials to provide composite inorganic salt/organic binder coatings.
  • Suitable binders include the C 10 -C 20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole of alcohol and more preferably the C 1 5 -C 20 primary alcohol ethoxylates containing from 20 - 100 moles of ethylene oxide per mole of alcohol.
  • binders include certain polymeric materials.
  • Polyvinylpyrrolidones with an average molecular weight of from 12,000 to 700,000 and polyethylene glycols (PEG) with an average molecular weight of from 600 to 10,000 are examples of such polymeric materials.
  • Copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the polymer are further examples of polymeric materials useful as binder agents. These polymeric materials may be used as such or in combination with solvents such as water, propylene glycol and the above mentioned C 10 -C 20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole. Further examples of binders include the C 10 -C 20 mono- and diglycerol ethers and also the C 10 -C 20 fatty acids.
  • Cellulose derivatives such as methylcellulose, carboxymethylcellulose, ethyl hydroxyethylcellulose and hydroxyethylcellulose, and homo- or copolymeric polycarboxylic acids or their salts are other examples of binders suitable for use herein.
  • One method for applying the coating material involves agglomeration.
  • Preferred agglomeration processes include the use of any of the organic binder materials described hereinabove. Any conventional
  • agglomerator/ mixer may be used including, but not limted to pan, rotary drum and vertical blender types. Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of bleaching agent.
  • Suitable means of providing the required delayed release include mechanical means for altering the physical characteristics of the chelant to control its solubility and rate of release. Suitable protocols could include compaction, mechanical injection, manual injection, and adjustment of the solubility of the bleach compound by selection of particle size of any particulate component.
  • particle size Whilst the choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired delayed release kinetics, it is desirable that the particle size should be more than 500 micrometers, preferably having an average particle diameter of from 800 to 1200 micrometers.
  • Additional protocols for providing the means of delayed release include the suitable choice of any other components of the detergent composition matrix such that when the composition is introduced to the wash solution the ionic strength environment therein provided enables the required delayed release kinetics to be achieved.
  • Enhanced rate of release - means
  • the enhanced release means can include coating the enzyme component with a coating designed to provide the enhanced release.
  • the coating may therefore, for example, comprise a highly, or even effervescently, water soluble material.
  • a suitable protocol could include deliberate selection of the particle size of the enzyme component.
  • the choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired enhanced release kinetics.
  • the release of the calcium chelating agent relative to that of the enzyme component is such that in the T50 test method herein described the time to achieve a concentration that is 50% of the ultimate concentration of said enzyme is less than 60 seconds, preferably less than 50 seconds, more preferably less than 40 seconds, and the time to achieve a concentration that is 50% of the ultimate concentration of said calcium chelating agent is more than 90 seconds, preferably from 90 to 300 seconds, more preferably from 120 to 240 seconds.
  • the T50 for the enzyme component is at least 30 seconds less than the T50 for the calcium chelating agent.
  • the ultimate amount in a typical wash solution is from 0.1 to 100 KNPU, but preferably is from 0.5 to 50 KPNU, more preferably from 3 to 30 KNPU and most preferably from 6 to 30 KPNU.
  • the enzyme is an amylase
  • the ultimate amount in a typical wash solution is from 1 to 200 KNU, but preferably is from 10 to 100 KNU, more preferably from 40 to 80 KNU.
  • the ultimate amount in a typical wash solution is from 1 to 300 KLU, but preferably is from 10 to 200 KLU, more preferably from 10 to 100 KLU.
  • the ultimate amount in the wash is typically from 10 to 1200 CEVU, but preferably is from 50 to 1000 CEVU, more preferably from 80 to 500 CEVU.
  • the ultimate wash concentration of any calcium chelating agent is typically from 0.0005% to 0.25% by weight, but preferably is more than 0.005%, more preferably more than 0.0075%.
  • delayed release kinetics herein are defined with respect to a 'TA test method' which measures the time to achieve A% of the ultimate
  • the standard conditions involve a 1 litre glass beaker filled with 1000 ml of distilled water at 20°C, to which 10g of composition is added.
  • the contents of the beaker are agitated using a magnetic stirrer set at 100 rpm.
  • the magnetic stirrer is pea/ovule-shaped having a maximum dimension of 1.5cm and a minimum dimension of 0.5cm.
  • the ultimate concentration/level is taken to be the concentration/level attained 10 minutes after addition of the composition to the water-filled beaker.
  • Suitable analytical methods are chosen to enable a reliable determination of the incidental, and ultimate in solution concentrations of the component of concern, subsequent to the addition of the composition to the water in the beaker.
  • Such analytical methods can include those involving a continuous
  • monitoring of the level of concentration of the component including for example photometric and conductrimetric methods.
  • methods involving removing titres from the solution at set time intervals, stopping the disssolution process by an appropriate means such as by rapidly reducing the temperature of the titre, and then determining the concentration of the component in the titre by any means such as chemical titrimetric methods, can be employed.
  • Suitable graphical methods including curve fitting methods, can be employed, where appropriate, to enable calculation of the the TA value from raw analytical results.
  • the particular analytical method selected for determining the concentration of the component will depend on the nature of that component, and of the nature of the composition containing that component.
  • the detergent compositions of the invention may also contain additional detergent components.
  • additional detergent components and levels of incorporation thereof will depend on the physical form of the composition, and the nature of the cleaning operation for which it is to be used.
  • compositions of the invention may for example, be formulated as hand and machine laundry detergent compositions, including laundry additive compositions and compositions suitable for use in the pretreatment of stained fabrics and machine dishwashing compositions.
  • compositions suitable for use in a machine washing method eg: machine laundry and machine dishwashing methods
  • the compositions of the invention preferably contain one or more additional detergent components selected from surfactants, builders, bleaches, heavy metal ion sequestrants, organic polymeric compounds, suds suppressors, lime soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors.
  • Laundry compositions can also contain, as additional detergent components, softening agents.
  • the detergent compositions of the invention may contain as an optional detergent component a surfactant selected from anionic, cationic, nonionic ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
  • the surfactant is typically present at a level of from 0.1% to 60% by weight. More preferred levels of incorporation of surfactant are from 1% to 35% by weight, most preferably from 1% to 20% by weight.
  • the surfactant is preferably formulated to be compatible with the enzyme components present in the composition.
  • the surfactant is most preferably formulated such that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.
  • ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
  • any anionic surfactants useful for detersive purposes can be included in the compositions. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
  • salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
  • anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12 -C 1 8 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C 6 -C 14 diesters), N-acyl sarcosinates.
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • Anionic sulfate surfactants suitable for use herein include the linear and branched primary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C 5 -C 17 acyl-N-(C 1 -C 4 alkyl) and -N-(C 1 -C 2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C 6 -C 18 alkyl sulfates which have been ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C 6 -C 18 alkyl sulfate which has been ethoxylated with from about 0.5 to about 20, preferably from about 0.5 to about 5, moles of ethylene oxide per molecule.
  • Anionic sulfonate surfactant Anionic sulfonate surfactant
  • Anionic sulfonate surfactants suitable for use herein include the salts of C 5 -C 20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C 6 -C 22 primary or secondary alkane sulfonates, C 6 -C 24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol
  • Anionic carboxylate surfactant is sodium sulfonate, sodium oleyl glycerol sulfonates, and any mixtures thereof.
  • Anionic carboxylate surfactants suitable for use herein include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
  • Preferred alkyl ethoxy carboxylates for use herein include those with the formula RO(CH 2 CH 2 O) x CH 2 COO-M + wherein R is a C 6 to C 18 alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than about 20 %, and the amount of material where x is greater than 7, is less than about 25 %, the average x is from about 2 to 4 when the average R is C 13 or less, and the average x is from about 3 to 10 when the average R is greater than C 13 , and M is a cation, preferably chosen from alkali metal, alkaline earth metal, ammonium, mono-, di-, and tri-ethanol-ammonium, most preferably from sodium, potassium, ammonium and mixtures thereof with magnesium ions.
  • the preferred alkyl ethoxy carboxylates are those where R is a C 12 to C 18 alkyl
  • Alkyl polyethoxy polycarboxylate surfactants suitable for use herein include those having the formula RO-(CHR 1 -CHR 2 -O)-R 3 wherein R is a C 6 to C 18 alkyl group, x is from 1 to 25, R 1 and R 2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical,
  • R 1 or R 2 is a succinic acid radical or hydroxysuccinic acid radical
  • R 3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof
  • Preferred soap surfactants are secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
  • the secondary carbon can be in a ring structure, e.g. as in p-octyl benzoic acid, or as in alkyl- substituted cyclohexyl carboxylates.
  • the secondary soap surfactants should preferably contain no ether linkages, no ester linkages and no hydroxyl groups. There should preferably be no nitrogen atoms in the head-group (amphiphilic portion).
  • the secondary soap surfactants usually contain 11-15 total carbon atoms, although slightly more (e.g., up to 16) can be tolerated, e.g. p-octyl benzoic acid.
  • a highly preferred class of secondary soaps comprises the secondary carboxyl materials of the formula R 3 CH(R 4 )COOM, wherein R 3 is CH 3 (CH 2 )x and R 4 is CH 3 (CH 2 ) y , wherein y can be O or an integer from 1 to 4, x is an integer from 4 to 10 and the sum of (x + y) is 6- 10, preferably 7-9, most preferably 8.
  • Another preferred class of secondary soaps comprises those carboxyl compounds wherein the carboxyl substituent is on a ring hydrocarbyl unit, i.e., secondary soaps of the formula R 5 -R 6 -COOM, wherein R 5 is C 7 -C 10 , preferably C 8 -C 9 , alkyl or alkenyl and R 6 is a ring structure, such as benzene, cyclopentane and cyclohexane. (Note: R 5 can be in the ortho, meta or para position relative to the carboxyl on the ring.)
  • Still another preferred class of secondary soaps comprises secondary carboxyl compounds of the formula C ⁇ 3 (CHR) k -(CH 2 ) m -(CHR) n - CH(COOM)(CHR) o -(CH2) p -(CHR) q -CH 3 , wherein each R is C 1 -C 4 alkyl, wherein k, n, o, q are integers in the range of 0-8, provided that the total number of carbon atoms (including the carboxylate) is in the range of 10 to 18.
  • the species M can be any suitable, especially water-solubilizing, counterion.
  • Especially preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid.
  • Alkali metal sarcosinate surfactant selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid.
  • alkali metal sarcosinates of formula R-CON (R 1 ) CH 2 COOM, wherein R is a C 5 -C 17 linear or branched alkyl or alkenyl group, R 1 is a C 1 -C 4 alkyl group and M is an alkali metal ion.
  • R is a C 5 -C 17 linear or branched alkyl or alkenyl group
  • R 1 is a C 1 -C 4 alkyl group
  • M is an alkali metal ion.
  • any anionic surfactants useful for detersive purposes can be included in the compositions.
  • Exemplary, non-limiting classes of useful nonionic surfactants are listed below.
  • Nonionic polyhydroxy fatty acid amide surfactant Nonionic polyhydroxy fatty acid amide surfactant
  • Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R 2 CONR 1 Z wherein : R1 is H, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferable C1-C4 alkyl, more preferably C 1 or C 2 alkyl, most preferably C 1 alkyl (i.e., methyl); and R 2 is a C 5 -C 31 hydrocarbyl, preferably straight-chain C 5 -C 19 alkyl or alkenyl, more preferably straight-chain C 9 -C 17 alkyl or alkenyl, most preferably straight-chain C 1 1 -C 17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be
  • polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use herein.
  • the polyethylene oxide condensates are preferred.
  • These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 18 carbon atoms in either a straight chain or branched chain
  • Nonionic ethoxylated alcohol surfactant
  • alkyl ethoxylate condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use herein.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
  • Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
  • Nonionic ethoxylated/ propoxylated fatty alcohol surfactant Nonionic ethoxylated/ propoxylated fatty alcohol surfactant
  • ethoxylated/propoxylated fatty alcohols are suitable surfactants for use herein, particularly where water soluble.
  • the ethoxylated fatty alcohols are the C 10 -C 18 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C 12 -C 18 ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40.
  • the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
  • the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein.
  • the hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility.
  • Examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
  • condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein.
  • the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
  • this type of nonionic surfactant include certain of the commercially available
  • Tetronic TM compounds marketed by BASF.
  • Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
  • Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
  • the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.
  • the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • the preferred alkylpolyglycosides have the formula
  • R 2 O(C n H 2n O)t(glycosyl) x
  • R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3; t is from 0 to 10, preferably 0, and X is from 1.3 to 8, preferably from 1.3 to 3, most preferably from 1.3 to 2.7.
  • the glycosyl is preferably derived from glucose.
  • Fatty acid amide surfactants suitable for use herein are those having the formula: R 6 CON(R 7 ) 2 wherein R 6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R 7 is selected from the group consisting of hydrogen, C 1 -C 4 alkyl, C 1 -C 4 hydroxyalkyl, and -(C 2 H 4 O) x H, where x is in the range of from 1 to 3.
  • Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
  • a suitable example of an alkyl aphodicarboxylic acid for use herein is Miranol(TM) C2M Cone, manufactured by Miranol, Inc., Dayton, NJ.
  • Amine oxides useful herein include those compounds having the formula R 3 (OR 4 ) x N 0 (R 5 ) 2 wherein R 3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms, preferably 8 to 18 carbon atoms; R 4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, preferably 2 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R 5 is an alkyl or hydyroxyalkyl group containing from I to 3, preferably from 1 to 2 carbon atoms, or a polyethylene oxide group containing from 1 to 3, preferable 1, ethylene oxide groups.
  • the R 5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • amine oxide surfactants in particular include C 10 -C 18 alkyl dimethyl amine oxides and C 8 -C 18 alkoxy ethyl dihydroxyethyl amine oxides.
  • Examples of such materials include dimethyloctylamine oxide,
  • diethyldecylamine oxide bis-(2-hydroxyethyl)dodecylamine oxide, dimethyldodecylamine oxide, dipropyltetradecylamine oxide,
  • methylethylhexadecylamine oxide dodecylamidopropyl dimethylamine oxide, cetyl dimethylamine oxide, stearyl dimethylamine oxide, tallow dimethylamine oxide and dimethyl-2-hydroxyoctadecylamine oxide.
  • Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
  • betaines useful herein are those compounds having the formula
  • R(R') 2 N + R 2 COO- wherein R is a C 6 -C 18 hydrocarbyl group, preferably a C 10 -C 16 alkyl group or C 10-16 acylamido alkyl group, each R 1 is typically C 1 -C 3 alkyl, preferably methyl, m and R 2 is a C 1 -C 5 hydrocarbyl group, preferably a C 1 -C 3 alkylene group, more preferably a C 1 -C 2 alkylene group.
  • suitable betaines include coconut
  • acylamidopropyldimethyl betaine hexadecyl dimethyl betaine; C 12-14 acylamidopropylbetaine; C 8-14 acylamidohexyldiethyl betaine; 4[C 14-16 acylmethylamidodiethylammonio]-1-carboxybutane; C 16-18
  • acylamidodimethylbetaine C 12-16 acylamidopentanediethyl-betaine; [C 12 - 16 acylmethylamidodimethylbetaine.
  • Preferred betaines are C 12-18 dimethyl-ammomo hexanoate and the C 10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines.
  • Complex betaine surfactants are also suitable for use herein.
  • sultaines useful herein are those compounds having the formula
  • R is a C 6 -C 18 hydrocarbyl group, preferably a C 10 -C 16 alkyl group, more preferably a C 12 -C 13 alkyl group, each R 1 is typically C 1 -C 3 alkyl, preferably methyl, and R 2 is a C 1 -C 6 hydrocarbyl group, preferably a C 1 -C 3 alkylene or, preferably, hydroxyalkylene group.
  • Ampholytic surfactants can be incorporated into the detergent compositions herein. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched.
  • Cationic surfactants can also be used in the detergent compositions herein.
  • Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C 6 -C 16 , preferably C 6 -C 10 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • the detergent compositions of the present invention contain as a preferred optional component a water-soluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition.
  • Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, silicates and mixtures of any of the foregoing.
  • the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates,
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran - cis -dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
  • Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
  • the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • Citrate has a pK(Ca) at pH 10.5 of 3.50.
  • the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
  • Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions can also be used but are not preferred at wash conditions less that about 50°C, especially less than about 40 °C.
  • carbonate builders are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
  • Suitable silicates include the water soluble sodium silicates with an SiO 2 : Na 2 O ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.4 being preferred, and 2.0 ratio being most preferred.
  • the silicates may be in the form of either the anhydrous salt or a hydrated salt.
  • Sodium silicate with an SiO 2 : Na 2 O ratio of 2.0 is the most preferred silicate.
  • Silicates are preferably present in the detergent compositions in accord with the invention at a level of from 5% to 50% by weight of the composition, more preferably from 10% to 40% by weight.
  • Partially soluble or insoluble builder compound Partially soluble or insoluble builder compound
  • the detergent compositions of the present invention may contain a partially soluble or insoluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
  • a partially soluble or insoluble builder compound typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
  • partially water soluble builders include the crystalline layered silicates.
  • Examples of largely water insoluble builders include the sodium aluminosilicates.
  • Crystalline layered sodium silicates have the general formula
  • NaMSi x O 2x+ 1 ⁇ y H 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20.
  • Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
  • x in the general formula above has a value of 2, 3 or 4 and is preferably 2.
  • the most preferred material is ⁇ -Na 2 Si 2 O 5 , available from Hoechst AG as NaSKS-6.
  • the crystalline layered sodium silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, water-soluble ionisable material.
  • the solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof.
  • Suitable aluminosilicate zeolites have the unit cell formula
  • aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
  • the aluminosilicate ion exchange materials can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeoilte MAP, Zeolite HS and mixtures thereof. Zeolite A has the formula
  • the detergent compositions of the invention may contain as a preferred optional component a heavy metal ion sequestrant
  • a heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
  • Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
  • Heavy metal ion sequestrants which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
  • a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
  • any salts/complexes are water soluble.
  • the molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least 1:1.
  • Suitable heavy metal ion sequestrants for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid,
  • ethylenediamine diglutaric acid 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
  • EDDS ethylenediamine-N,N-disuccinic acid
  • Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof.
  • Examples of such preferred sodium salts of EDDS include Na 2 EDDS and Na 3 EDDS.
  • Examples of such preferred magnesium complexes of EDDS include MgEDDS and Mg 2 EDDS.
  • EDDS is also a good calcium chelating agent, having a pK(Ca) at pH 10.5 of 4.96.
  • Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
  • the iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfbnic acid sequestrants described in EP-A-516,102 are also suitable herein.
  • the ⁇ -alanine-N,N'-diacetic acid, aspartic acid-N,N-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
  • EP-A-476,257 describes suitable amino based sequestrants.
  • EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein.
  • EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant.
  • Glycinamide-N,N-disuccinic acid is also suitable.
  • Preferred enzyme-containing compositions herein may comprise from about 0.001% to about 10%, preferably from about 0.005% to about 8%,most preferably from about 0.01% to about 6%, by weight of an enzyme stabilizing system.
  • the enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme.
  • Such stabilizing systems can comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acid, boronic acid, and mixtures thereof.
  • Such stabilizing systems can also comprise reversible enzyme inhibitors, such as reversible protease inhibitors.
  • compositions herein may further comprise from 0 to about 10%, preferably from about 0.01% to about 6% by weight, of chlorine bleach scavengers, added to prevent chlorine species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions.
  • chlorine bleach scavengers While chlorine levels in water may be small, typically in the range from about 0.5 ppm to about 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme during washing is usually large; accordingly, enzyme stability in-use can be problematic.
  • Suitable chlorine scavenger anions are widely available, and are illustrated by salts containing ammonium cations or sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
  • Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used.
  • EDTA ethylenediaminetetracetic acid
  • MEA monoethanolamine
  • Other conventional scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate
  • tetrahydrate sodium perborate monohydrate and sodium percarbonate, as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, malate, tartrate, salicylate, etc. and mixtures thereof can be used if desired.
  • Organic polymeric compounds are particularly preferred components of the detergent compositions in accord with the invention.
  • organic polymeric compound it is meant essentially any polymeric organic compound
  • Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1% to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions.
  • organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of the latter type are disclosed in GB-A-1, 596,756.
  • salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000.
  • organic polymeric compounds include the polymers of acrylamide and acrylate having a molecular weight of from 3,000 to
  • polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
  • Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000 are also suitable herein.
  • organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose.
  • organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
  • the detergent compositions contain an organic peroxyacid bleaching system.
  • the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound.
  • the production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
  • Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches.
  • a preformed organic peroxyacid is incorporated directly into the composition.
  • Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
  • Inorganic perhydrate bleaches are also envisaged.
  • Inorganic perhydrate salts are a preferred source of hydrogen peroxide. These salts are normally incorporated in the form of the alkali metal, preferably sodium salt at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
  • inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts.
  • the inorganic perhydrate salts are normally the alkali metal salts.
  • the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
  • the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
  • Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
  • Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaBO 2 H 2 O 2 or the tetrahydrate
  • Alkali metal percarbonates particularly sodium percarbonate are preferred perhydrates herein.
  • Sodium percarbonate is an addition compound having a formula corresponding to 2Na 2 CO 3 .3H 2 O 2 , and is available commercially as a crystalline solid.
  • Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
  • Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid.
  • peroxyacid bleach precursors may be represented as where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
  • Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
  • Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes.
  • Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789.
  • Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP- A-0170386.
  • L group The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
  • Preferred L groups are selected from the group consisting of: and mixtures thereof, wherein R 1 is an alkyl, aryl, or alkaryl group
  • R 3 is an alkyl chain containing from 1 to 8 carbon atoms
  • R 4 is H or R 3
  • Y is H or a solubilizing group. Any of R 1 , R 3 and R 4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups
  • the preferred solubilizing groups are -SO 3 -M + , -CO 2 -M + , -SO 4 -M + , -N + (R 3 ) 4 X- and O ⁇ - -N(R 3 ) 3 and most preferably -SO 3 -M + and -CO 2 -M + wherein R 3 is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator.
  • M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
  • Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
  • Preferred precursors of this type provide peracetic acid on perhydrolysis.
  • Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N 1 N 1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
  • TAED Tetraacetyl ethylene diamine
  • alkyl percarboxylic acid precursors include sodium 3,5,5-trimethyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium
  • nonanoyloxybenzene sulfonate NOBS
  • sodium acetoxybenzene sulfonate ABS
  • Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae: or wherein R 1 is an alkyl group with from 1 to 14 carbon atoms, R 2 is an alkylene group containing from 1 to 14 carbon atoms, and R 5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
  • Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
  • Perbenzoic acid precursor compounds provide perbenzoic acid on
  • Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas.
  • Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole.
  • Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
  • Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
  • cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammmonium group, preferably an ethyl or methyl ammonium group
  • Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a hatide ion.
  • the peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof precursor compound as described hereinbefore.
  • the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter
  • Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022;
  • Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides.
  • Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyi ammonium methylene benzoyl caprolactams and the trialkyi ammonium methylene alkyl caprolactams.
  • precursor compounds of the benzoxazin-type as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
  • R 1 is H, alkyl, alkaryl, aryl, or arylalkyl.
  • the organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
  • a preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae: wherein R 1 is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R 2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and R 5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
  • Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
  • organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and
  • diperoxyhexadecanedioc acid Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
  • compositions optionally contain a transition metal containing bleach catalyst.
  • a transition metal containing bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid,
  • bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include Mn IV 2 (u-O) 3 (1 A,4,7-trimethyl-1,4,7- triazacyclononane) 2 -(PF 6 ) 2 , Mn III 2 (u-O) 1 (u-OAc) 2 (1,4,7-trimethyl-1,4,7-triazacyclononane) 2 -(ClO 4 ) 2 , MnI V 4 (u-O) 6 (1,4,7-triazacyclononane) 4 -(ClO 4 ) 2 , Mn III Mn IV 4 (u-O) 1 (u-OAc) 2 -(1,4,7-trimethyl-1,4,7-triazacyclononane) 2 -(ClO 4 ) 3 , and mixtures thereof.
  • ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl- 1,4,7-triazacyclononane, 2-methyl-1,4,7-triazacyclononane, 1,2,4,7-tetramethyl-1,4,7-triazacyclononane, and mixtures thereof.
  • bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7-triazacyclononane)(OCH 3 ) 3- (PF 6 ).
  • Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups.
  • binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands including N 4 Mn III (u-O) 2 Mn IV N 4 ) + and [Bipy 2 Mn III (u-O) 2 Mn IV bipy 2 ]-(ClO 4 ) 3 .
  • bleach catalysts are described, for example, in European patent application No. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S.4,601,845
  • compositions of the invention may contain a lime soap dispersant compound, which has a lime soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6.
  • the lime soap dispersant compound is preferably present at a level of from 0.1% to 40% by weight, more preferably 1% to 20% by weight, most preferably from 2% to 10% by weight of the compositions.
  • a lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions.
  • LSDP lime soap dispersing power
  • Surfactants having good lime soap dispersant capability will include certain amine oxides, betaines, sulfobetaines, alkyl ethoxysulfates and ethoxylated alcohols.
  • Polymeric lime soap dispersants suitable for use herein are described in the article by M.K. Nagarajan and W.F. Masler, to be found in Cosmetics and Toiletries, Volume 104, pages 71-73, (1989).
  • Examples of such polymeric lime soap dispersants include certain water-soluble salts of copolymers of acrylic acid, methacrylic acid or mixtures thereof, and an acrylamide or substituted acrylamide, where such polymers typically have a molecular weight of from 5,000 to 20,000. Suds suppressing system
  • the detergent compositions of the invention when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to 10%, most preferably from 0.1% to 5% by weight of the composition.
  • Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
  • antifoam compound any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
  • Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a siticone component. Such silicone antifoam compounds also typically contain a silica component.
  • silicone antifoam compounds as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
  • Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
  • Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The
  • monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • Suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C 18 -C 40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra
  • fatty esters e.g. fatty acid triglycerides
  • fatty acid esters of monovalent alcohols e.g. fatty acid esters of monovalent alcohols
  • aliphatic C 18 -C 40 ketones e.g. stearone
  • N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra
  • alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
  • a preferred suds suppressing system comprises
  • antifoam compound preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination
  • silica at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound; wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight;
  • a dispersant compound most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by weight;
  • a particularly preferred silicone glycol rake copolymer of this type is DCO544, commercially avatiable from DOW Corning under the tradename DCO544;
  • an inert carrier fluid compound most preferably comprising a C 16 - C 18 ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
  • a highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms.
  • EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
  • the detergent compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
  • the polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof. a) Polyamine N-oxide polymers
  • Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula :
  • R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
  • the N-O group can be represented by the following general
  • R1, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyctic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.
  • the N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
  • Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and
  • polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.
  • a preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromatic,heterocyctic or alicyctic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • R is an aromatic,heterocyctic or alicyctic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • R is an aromatic,heterocyctic or alicyctic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
  • the polyamine N-oxides can be obtained in almost any degree of
  • the degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
  • the average molecular weight is within the range of 500 to 1000,000.
  • Suitable herein are coploymers of N-vinylimidazole and N-vinylpyrrolidone having an average molecular weight range of from 5,000 to 50,000.
  • the preferred copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2.
  • the detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000.
  • PVP polyvinylpyrrolidone
  • Suitable polyvinylpyrrolidones are commercially vailable from ISP
  • PVP K-15 is also available from ISP Corporation. Other suitable
  • the detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents.
  • Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000.
  • e Polyvinylimidazole
  • the detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent.
  • Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
  • the detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
  • Hydrophilic optical brighteners useful herein include those having the structural formula:
  • R 1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl
  • R 2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino
  • M is a salt-forming cation such as sodium or potassium.
  • R 1 is anilino
  • R 2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
  • the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation.
  • Tinopal-UNPA-GX is the preferred hydrophilic optical bnghtener useful in the detergent compositions herein.
  • R 1 is anilino
  • R 2 is N-2-hydroxyethyl-N-2-methylamino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
  • R 1 is anilino
  • R 2 is morphilino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
  • Fabric softening agents can also be incorporated into laundry detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1 400 898. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A-1 514 276 and EP-B-0 011 340.
  • Levels of smectite clay are normally in the range from 5% to 15%, more preferably from 8% to 12% by weight, with the material being added as a dry mixed component to the remainder of the formulation.
  • Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight, whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight.
  • compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
  • the detergent compositions of the invention can be formulated in any desirable form such as powders, granulates, pastes, liquids and gels.
  • the compositions are preferably not in tablet-form. Most preferably, the compositions are in granular form. Liquid compositions
  • the detergent compositions of the present invention may be formulated as liquid detergent compositions.
  • Such Liquid detergent compositions typically comprise from 94% to 35% by weight, preferably from 90% to 40% by weight, most preferably from 80% to 50% by weight of a liquid carrier, e.g., water, preferably a mixture of water and organic solvent.
  • the detergent compositions of the present invention may also be in the form of gels.
  • Such compositions are typically formulated with polyakenyl polyether having a molecular weight of from about 750,000 to about
  • the detergent compositions of the invention are preferably in the form of solids, such as powders and granules. Granular form is preferred.
  • the particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5% of particles are greater than 1.4mm in diameter and not more than 5% of particles are less than 0.15mm in diameter.
  • the bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 450 g/titre, more usually at least 600 g/titre and more preferably from 650 g/titre to 1200 g/titre.
  • Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrial cup disposed below the funnel.
  • the funnel is 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base.
  • the cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
  • the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
  • the filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement e.g. a knife, across its upper edge.
  • the filled cup is then weighed and the value obtained for the weight of powder doubled to provide the bulk density in g/titre.
  • granular detergent compositions in accordance with the present invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation.
  • compositions of the invention may be used in essentially any washing or cleaning method, including machine laundry and dishwashing methods.
  • a preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollowware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the invention.
  • an effective amount of the machine dishwashing composition it is typically meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
  • Machine laundry methods herein comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention.
  • the detergent can be added to the wash solution either via the dispenser drawer of the washing machine or by a dispensing device.
  • an effective amount of the detergent composition it is typically meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 titres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
  • a dispensing device containing an effective amount of detergent product is introduced into the drum of a, preferably front-loading, washing machine before the commencement of the wash cycle.
  • the dispensing device is a container for the detergent product which is used to deliver the product directly into the drum of the washing machine. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
  • the dispensing device containing the detergent product is placed inside the drum.
  • water is introduced into the drum and the drum periodically rotates.
  • the design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its immersion in the wash water.
  • the device may possess a number of openings through which the product may pass.
  • the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product.
  • the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of components such as water-soluble builder and heavy metal ion sequestrant components in the drum of the washing machine at this stage of the wash cycle.
  • Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
  • Especially preferred dispensing devices for use in accord with the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346.
  • An article by J.Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette”.
  • the support ring is provided with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
  • Two sets of two identical test solutions were prepared, by addition to a beaker of 1 litre of a defined grade of water, followed by protease enzyme at a level of 0.0002% active enzyme by weight of the solution, and sufficient buffering agent to achieve a constant pH of 9.
  • proteolytic activity of the first test solution of each set was measured at 49°C and the buffer pH, using a standard enzymatic assay involving measurement of the reaction of the enzyme with an excess of N,N-dimethylcasein substrate (Analytical Methods. Book 11 - Synthetic
  • pre-prepared swatches obtained from the EMPA institute were also employed.
  • DETPMP calcium chelator
  • a base wash solution was prepared by addition with stirring of the base detergent to 1 litre of water in the Tergotometer pots.
  • laundry detergent compositions were prepared values being expressed as percentages by weight of the compositions in accord with the invention:
  • bleach-containing machine dishwashing compositions were prepared (parts by weight) in accord with the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention concerne une composition détergente contenant (a) une enzyme et (b) un agent chélateur calcique. En outre, un agent permet de retarder la libération de l'agent chélateur calcique par rapport à la libération de l'enzyme, dans la solution lessivielle. Dans une réalisation préférée, la composition détergente est exempte d'agent de blanchiment.
PCT/US1996/016558 1995-10-12 1996-10-15 Composition detergente comprenant une enzyme et un retardateur de liberation WO1997023593A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9520923.5A GB9520923D0 (en) 1995-10-12 1995-10-12 Detergent compositions
GB9520923.5 1995-10-12

Publications (1)

Publication Number Publication Date
WO1997023593A1 true WO1997023593A1 (fr) 1997-07-03

Family

ID=10782214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/016558 WO1997023593A1 (fr) 1995-10-12 1996-10-15 Composition detergente comprenant une enzyme et un retardateur de liberation

Country Status (2)

Country Link
GB (1) GB9520923D0 (fr)
WO (1) WO1997023593A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034011A3 (fr) * 1997-12-24 2000-02-10 Genencor Int Methode amelioree pour tester une enzyme preferee et/ou une composition detergente preferee
WO2003014458A1 (fr) * 2001-08-10 2003-02-20 Henkel Kommanditgesellschaft Auf Aktien Procede de lavage
US8802181B2 (en) 2006-10-05 2014-08-12 S & P Ingredient Development, Llc Low sodium salt composition
US9247762B1 (en) 2014-09-09 2016-02-02 S & P Ingredient Development, Llc Salt substitute with plant tissue carrier
US9474297B2 (en) 2005-09-14 2016-10-25 S&P Ingredient Development, Llc Low-sodium salt composition
US9629384B2 (en) 2005-09-14 2017-04-25 S & P Ingredient Development, Llc Low sodium salt composition
US11051539B2 (en) 2017-09-18 2021-07-06 S & P Ingredient Development, Llc Low sodium salt substitute with potassium chloride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254283A (en) * 1991-01-17 1993-10-19 Genencor International, Inc. Isophthalic polymer coated particles
US5281357A (en) * 1993-03-25 1994-01-25 Lever Brothers Company, Division Of Conopco, Inc. Protease containing heavy duty liquid detergent compositions comprising capsules comprising non-proteolytic enzyme and composite polymer
US5318714A (en) * 1988-03-14 1994-06-07 Novo Nordisk A/S Stabilized particulate composition
US5453216A (en) * 1994-04-28 1995-09-26 Creative Products Resource, Inc. Delayed-release encapsulated warewashing composition and process of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318714A (en) * 1988-03-14 1994-06-07 Novo Nordisk A/S Stabilized particulate composition
US5254283A (en) * 1991-01-17 1993-10-19 Genencor International, Inc. Isophthalic polymer coated particles
US5281357A (en) * 1993-03-25 1994-01-25 Lever Brothers Company, Division Of Conopco, Inc. Protease containing heavy duty liquid detergent compositions comprising capsules comprising non-proteolytic enzyme and composite polymer
US5453216A (en) * 1994-04-28 1995-09-26 Creative Products Resource, Inc. Delayed-release encapsulated warewashing composition and process of use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034011A3 (fr) * 1997-12-24 2000-02-10 Genencor Int Methode amelioree pour tester une enzyme preferee et/ou une composition detergente preferee
US7122334B2 (en) 1997-12-24 2006-10-17 Genencor International, Inc. Method of assaying wash performance of enzymes on a microtiter plate
WO2003014458A1 (fr) * 2001-08-10 2003-02-20 Henkel Kommanditgesellschaft Auf Aktien Procede de lavage
US9474297B2 (en) 2005-09-14 2016-10-25 S&P Ingredient Development, Llc Low-sodium salt composition
US9629384B2 (en) 2005-09-14 2017-04-25 S & P Ingredient Development, Llc Low sodium salt composition
US8802181B2 (en) 2006-10-05 2014-08-12 S & P Ingredient Development, Llc Low sodium salt composition
US9549568B2 (en) 2006-10-05 2017-01-24 S & P Ingredient Development, Llc Low sodium salt composition
US9247762B1 (en) 2014-09-09 2016-02-02 S & P Ingredient Development, Llc Salt substitute with plant tissue carrier
US11051539B2 (en) 2017-09-18 2021-07-06 S & P Ingredient Development, Llc Low sodium salt substitute with potassium chloride

Also Published As

Publication number Publication date
GB9520923D0 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
US5965505A (en) Detergents containing a heavy metal sequestrant and a delayed release peroxyacid bleach system
US6046149A (en) Detergent compositions
EP0755429B1 (fr) Detergents contenant un agent sequestrant les metaux lourds
US6207632B1 (en) Detergent composition comprising a cationic surfactant and a hydrophobic peroxyacid bleaching system
US5755992A (en) Detergents containing a surfactant and a delayed release peroxyacid bleach system
GB2294695A (en) A method of washing laundry
EP0755434B1 (fr) Detergents contenant un adjuvant de lavage et une enzyme liberee avec un retard
US6313086B1 (en) Detergent compositions containing and effervescent
EP0713910B1 (fr) Compositions détergentes
EP0755435A1 (fr) Compositions detergentes
US6559113B2 (en) Detergents containing a builder and a delayed released enzyme
EP0755432A1 (fr) Detergents contenant une enzyme et un systeme de peroxyacide de blanchiment a liberation retardee
CA2232205A1 (fr) Particule detergente
JP3174068B2 (ja) 洗剤組成物
WO1997023593A1 (fr) Composition detergente comprenant une enzyme et un retardateur de liberation
CA2187306C (fr) Detergents contenant un tensioactif et une enzyme a liberation retardee
EP0789747A1 (fr) Detergents de blanchiment contenant un activateur de blanchiment place en etroite proximite avec un silicate en couches ou une argile
EP0788538A1 (fr) Detergents contenant un tensioactif et une source d'un agent de blanchiment du type peroxyacide libere avec un retard
EP0861315B1 (fr) Detergents liberant dans une solution de lavage un agent de blanchiment au peroxyacide faible immediatement suivi par la liberation d'un peroxyacide fort
WO1995028465A1 (fr) Detergents contenant un adjuvant et une source de peroxyacide de blanchiment a liberation prolongee
CA2269475C (fr) Compositions detergentes
GB2307914A (en) Detergent compositions
WO1995028454A1 (fr) Compositions detergentes
GB2323372A (en) An effervescent laundry detergent composition
EP0710712A1 (fr) Compositions de blanchiment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA MX US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: CA