WO1997033588A9 - Iron complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxide - Google Patents
Iron complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxideInfo
- Publication number
- WO1997033588A9 WO1997033588A9 PCT/US1997/003348 US9703348W WO9733588A9 WO 1997033588 A9 WO1997033588 A9 WO 1997033588A9 US 9703348 W US9703348 W US 9703348W WO 9733588 A9 WO9733588 A9 WO 9733588A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- aryl
- acid
- groups
- solution
- Prior art date
Links
- 239000003446 ligand Substances 0.000 title claims description 40
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 title claims description 37
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 title claims description 15
- 150000002505 iron Chemical class 0.000 title description 7
- 239000003054 catalyst Substances 0.000 title description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 19
- 208000035475 disorder Diseases 0.000 claims abstract description 8
- 206010063837 Reperfusion injury Diseases 0.000 claims abstract description 7
- 230000006378 damage Effects 0.000 claims abstract description 7
- 201000001320 Atherosclerosis Diseases 0.000 claims abstract description 6
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims abstract description 6
- 208000014674 injury Diseases 0.000 claims abstract description 6
- 230000000302 ischemic effect Effects 0.000 claims abstract description 6
- 208000006011 Stroke Diseases 0.000 claims abstract description 5
- 208000027418 Wounds and injury Diseases 0.000 claims abstract description 5
- 239000007800 oxidant agent Substances 0.000 claims abstract description 4
- 230000001590 oxidative effect Effects 0.000 claims abstract description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 3
- -1 cycloalkenylalkyl Chemical group 0.000 claims description 189
- 239000000203 mixture Substances 0.000 claims description 48
- 125000000217 alkyl group Chemical group 0.000 claims description 40
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 37
- 125000004432 carbon atom Chemical group C* 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 26
- 239000001257 hydrogen Substances 0.000 claims description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims description 24
- 229920006395 saturated elastomer Polymers 0.000 claims description 24
- 150000001450 anions Chemical class 0.000 claims description 19
- 235000001014 amino acid Nutrition 0.000 claims description 17
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 150000001413 amino acids Chemical class 0.000 claims description 12
- 125000004122 cyclic group Chemical group 0.000 claims description 12
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 11
- 125000003118 aryl group Chemical group 0.000 claims description 11
- 201000010099 disease Diseases 0.000 claims description 11
- 125000000623 heterocyclic group Chemical group 0.000 claims description 10
- 150000002431 hydrogen Chemical group 0.000 claims description 10
- 150000002678 macrocyclic compounds Chemical class 0.000 claims description 9
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 8
- 239000004202 carbamide Substances 0.000 claims description 8
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000012990 dithiocarbamate Substances 0.000 claims description 6
- 150000004820 halides Chemical class 0.000 claims description 6
- 210000000056 organ Anatomy 0.000 claims description 6
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 claims description 6
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 5
- 125000000304 alkynyl group Chemical group 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 claims description 5
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 5
- 239000002552 dosage form Substances 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 4
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims description 4
- 229910002651 NO3 Inorganic materials 0.000 claims description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 4
- 239000002671 adjuvant Substances 0.000 claims description 4
- 125000003342 alkenyl group Chemical group 0.000 claims description 4
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 4
- 125000005119 alkyl cycloalkyl group Chemical group 0.000 claims description 4
- 235000008206 alpha-amino acids Nutrition 0.000 claims description 4
- DKSMCEUSSQTGBK-UHFFFAOYSA-M bromite Chemical compound [O-]Br=O DKSMCEUSSQTGBK-UHFFFAOYSA-M 0.000 claims description 4
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 4
- JGJLWPGRMCADHB-UHFFFAOYSA-N hypobromite Chemical compound Br[O-] JGJLWPGRMCADHB-UHFFFAOYSA-N 0.000 claims description 4
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 claims description 4
- 239000003456 ion exchange resin Substances 0.000 claims description 4
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 4
- 230000001404 mediated effect Effects 0.000 claims description 4
- 231100000252 nontoxic Toxicity 0.000 claims description 4
- 230000003000 nontoxic effect Effects 0.000 claims description 4
- LLYCMZGLHLKPPU-UHFFFAOYSA-M perbromate Chemical compound [O-]Br(=O)(=O)=O LLYCMZGLHLKPPU-UHFFFAOYSA-M 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 4
- 239000003981 vehicle Substances 0.000 claims description 4
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 claims description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims description 3
- 206010027476 Metastases Diseases 0.000 claims description 3
- 201000004681 Psoriasis Diseases 0.000 claims description 3
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 claims description 3
- 208000007536 Thrombosis Diseases 0.000 claims description 3
- 206010052779 Transplant rejections Diseases 0.000 claims description 3
- 150000001371 alpha-amino acids Chemical class 0.000 claims description 3
- 125000006448 cycloalkyl cycloalkyl group Chemical group 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 208000028867 ischemia Diseases 0.000 claims description 3
- 239000012948 isocyanate Substances 0.000 claims description 3
- 150000002513 isocyanates Chemical class 0.000 claims description 3
- 230000009401 metastasis Effects 0.000 claims description 3
- 201000008482 osteoarthritis Diseases 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 3
- CVHZOJJKTDOEJC-UHFFFAOYSA-M 1,1-dioxo-1,2-benzothiazol-3-olate Chemical compound C1=CC=C2C([O-])=NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-M 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 2
- 208000005623 Carcinogenesis Diseases 0.000 claims description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 208000005189 Embolism Diseases 0.000 claims description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 2
- 206010033645 Pancreatitis Diseases 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 claims description 2
- 206010038687 Respiratory distress Diseases 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 claims description 2
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 claims description 2
- 125000003282 alkyl amino group Chemical group 0.000 claims description 2
- 150000004789 alkyl aryl sulfoxides Chemical class 0.000 claims description 2
- 125000005360 alkyl sulfoxide group Chemical group 0.000 claims description 2
- 150000001356 alkyl thiols Chemical class 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 125000001769 aryl amino group Chemical group 0.000 claims description 2
- 125000005361 aryl sulfoxide group Chemical group 0.000 claims description 2
- 150000001504 aryl thiols Chemical class 0.000 claims description 2
- 229940072107 ascorbate Drugs 0.000 claims description 2
- 235000010323 ascorbic acid Nutrition 0.000 claims description 2
- 239000011668 ascorbic acid Substances 0.000 claims description 2
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 claims description 2
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Inorganic materials [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 claims description 2
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 claims description 2
- 230000036952 cancer formation Effects 0.000 claims description 2
- 231100000504 carcinogenesis Toxicity 0.000 claims description 2
- 229910001919 chlorite Inorganic materials 0.000 claims description 2
- 229910052619 chlorite group Inorganic materials 0.000 claims description 2
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 claims description 2
- 229940001468 citrate Drugs 0.000 claims description 2
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims description 2
- 208000009190 disseminated intravascular coagulation Diseases 0.000 claims description 2
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 claims description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 claims description 2
- OUUQCZGPVNCOIJ-UHFFFAOYSA-N hydroperoxyl Chemical group O[O] OUUQCZGPVNCOIJ-UHFFFAOYSA-N 0.000 claims description 2
- ICIWUVCWSCSTAQ-UHFFFAOYSA-M iodate Chemical compound [O-]I(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-M 0.000 claims description 2
- 150000002540 isothiocyanates Chemical class 0.000 claims description 2
- 150000007524 organic acids Chemical class 0.000 claims description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 2
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 claims description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 claims description 2
- 230000002265 prevention Effects 0.000 claims description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 claims description 2
- 229960001860 salicylate Drugs 0.000 claims description 2
- 208000010110 spontaneous platelet aggregation Diseases 0.000 claims description 2
- 229940086735 succinate Drugs 0.000 claims description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 claims description 2
- OKQKDCXVLPGWPO-UHFFFAOYSA-N sulfanylidenephosphane Chemical compound S=P OKQKDCXVLPGWPO-UHFFFAOYSA-N 0.000 claims description 2
- 229940095064 tartrate Drugs 0.000 claims description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims description 2
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 claims description 2
- 239000001226 triphosphate Substances 0.000 claims description 2
- 235000011178 triphosphate Nutrition 0.000 claims description 2
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 claims description 2
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 claims description 2
- 206010033647 Pancreatitis acute Diseases 0.000 claims 1
- 201000003229 acute pancreatitis Diseases 0.000 claims 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 claims 1
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 claims 1
- 208000037816 tissue injury Diseases 0.000 claims 1
- 102000019197 Superoxide Dismutase Human genes 0.000 abstract description 13
- 108010012715 Superoxide dismutase Proteins 0.000 abstract description 13
- 239000003814 drug Substances 0.000 abstract description 7
- 208000027866 inflammatory disease Diseases 0.000 abstract description 5
- 229940124597 therapeutic agent Drugs 0.000 abstract description 3
- 208000037906 ischaemic injury Diseases 0.000 abstract 1
- 230000000451 tissue damage Effects 0.000 abstract 1
- 231100000827 tissue damage Toxicity 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 124
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 72
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 67
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 66
- 229910001868 water Inorganic materials 0.000 description 58
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 50
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 50
- 239000007787 solid Substances 0.000 description 50
- 239000002904 solvent Substances 0.000 description 45
- 230000015572 biosynthetic process Effects 0.000 description 40
- 150000001875 compounds Chemical class 0.000 description 40
- 238000003786 synthesis reaction Methods 0.000 description 39
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 38
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 36
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 36
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 35
- 238000005160 1H NMR spectroscopy Methods 0.000 description 32
- 238000003756 stirring Methods 0.000 description 32
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 26
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 26
- 239000000047 product Substances 0.000 description 25
- 229910052717 sulfur Inorganic materials 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical class [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 24
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 21
- 239000010410 layer Substances 0.000 description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 19
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 229940024606 amino acid Drugs 0.000 description 16
- 239000003921 oil Substances 0.000 description 16
- 235000019198 oils Nutrition 0.000 description 16
- 238000007792 addition Methods 0.000 description 15
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 14
- 238000001914 filtration Methods 0.000 description 14
- 239000000843 powder Substances 0.000 description 14
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 239000000706 filtrate Substances 0.000 description 11
- 229910052742 iron Inorganic materials 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 10
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 10
- 150000004985 diamines Chemical group 0.000 description 10
- 150000002506 iron compounds Chemical class 0.000 description 10
- 239000007983 Tris buffer Substances 0.000 description 9
- 238000002425 crystallisation Methods 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000000284 extract Substances 0.000 description 9
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000006260 foam Substances 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 8
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 7
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 7
- 238000007323 disproportionation reaction Methods 0.000 description 7
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 7
- 238000012933 kinetic analysis Methods 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 6
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000012300 argon atmosphere Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 6
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 5
- 108010016626 Dipeptides Proteins 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 5
- 150000004698 iron complex Chemical class 0.000 description 5
- 239000012280 lithium aluminium hydride Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 5
- SSJXIUAHEKJCMH-PHDIDXHHSA-N (1r,2r)-cyclohexane-1,2-diamine Chemical compound N[C@@H]1CCCC[C@H]1N SSJXIUAHEKJCMH-PHDIDXHHSA-N 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- JTNCEQNHURODLX-UHFFFAOYSA-N 2-phenylethanimidamide Chemical compound NC(=N)CC1=CC=CC=C1 JTNCEQNHURODLX-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- SORGEQQSQGNZFI-UHFFFAOYSA-N [azido(phenoxy)phosphoryl]oxybenzene Chemical compound C=1C=CC=CC=1OP(=O)(N=[N+]=[N-])OC1=CC=CC=C1 SORGEQQSQGNZFI-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 229910000085 borane Inorganic materials 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 4
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium superoxide Chemical compound [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 229910000104 sodium hydride Inorganic materials 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 102000001189 Cyclic Peptides Human genes 0.000 description 3
- 108010069514 Cyclic Peptides Proteins 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 125000003963 dichloro group Chemical group Cl* 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- YDCHPLOFQATIDS-UHFFFAOYSA-N methyl 2-bromoacetate Chemical compound COC(=O)CBr YDCHPLOFQATIDS-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 239000003642 reactive oxygen metabolite Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- SSJXIUAHEKJCMH-WDSKDSINSA-N (1s,2s)-cyclohexane-1,2-diamine Chemical compound N[C@H]1CCCC[C@@H]1N SSJXIUAHEKJCMH-WDSKDSINSA-N 0.000 description 2
- BZNDDHWTEVCBAD-BQBZGAKWSA-N (2s)-2-[[(2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoyl]amino]propanoic acid Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)OC(C)(C)C BZNDDHWTEVCBAD-BQBZGAKWSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- VDKFCCZUCXYILI-UHFFFAOYSA-N 2-[(4-methylphenyl)sulfonylamino]acetic acid Chemical compound CC1=CC=C(S(=O)(=O)NCC(O)=O)C=C1 VDKFCCZUCXYILI-UHFFFAOYSA-N 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- CWNPOQFCIIFQDM-UHFFFAOYSA-N 3-nitrobenzyl alcohol Chemical compound OCC1=CC=CC([N+]([O-])=O)=C1 CWNPOQFCIIFQDM-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- VGCXGMAHQTYDJK-UHFFFAOYSA-N Chloroacetyl chloride Chemical compound ClCC(Cl)=O VGCXGMAHQTYDJK-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 229910010084 LiAlH4 Inorganic materials 0.000 description 2
- 229910017673 NH4PF6 Inorganic materials 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000004103 aminoalkyl group Chemical group 0.000 description 2
- 239000012062 aqueous buffer Substances 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical compound NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 2
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 150000001924 cycloalkanes Chemical class 0.000 description 2
- YMHQVDAATAEZLO-UHFFFAOYSA-N cyclohexane-1,1-diamine Chemical compound NC1(N)CCCCC1 YMHQVDAATAEZLO-UHFFFAOYSA-N 0.000 description 2
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000005206 flow analysis Methods 0.000 description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- KYLWSYIIJMLCEZ-UHFFFAOYSA-N iron;9,10,11,12,13-pentazabicyclo[12.3.1]octadeca-5,7,9,11,13-pentaene Chemical compound [Fe].C1C2=NN=NN=NC=CC=CCCCC1CCC2 KYLWSYIIJMLCEZ-UHFFFAOYSA-N 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- VVOFSHARRCJLLA-CHWSQXEVSA-N n-[(1r,2r)-2-aminocyclohexyl]-4-methylbenzenesulfonamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)N[C@H]1[C@H](N)CCCC1 VVOFSHARRCJLLA-CHWSQXEVSA-N 0.000 description 2
- VVOFSHARRCJLLA-STQMWFEESA-N n-[(1s,2s)-2-aminocyclohexyl]-4-methylbenzenesulfonamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)N[C@@H]1[C@@H](N)CCCC1 VVOFSHARRCJLLA-STQMWFEESA-N 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229940124530 sulfonamide Drugs 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- BQJPKBATABFXHF-HZPDHXFCSA-N tert-butyl n-[(1r,2r)-2-aminocyclohexyl]-n-(4-methylphenyl)sulfonylcarbamate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)N(C(=O)OC(C)(C)C)[C@H]1[C@H](N)CCCC1 BQJPKBATABFXHF-HZPDHXFCSA-N 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- TXTWXQXDMWILOF-UHFFFAOYSA-N (2-ethoxy-2-oxoethyl)azanium;chloride Chemical compound [Cl-].CCOC(=O)C[NH3+] TXTWXQXDMWILOF-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- HIWPNSZECWIVEV-UHFFFAOYSA-N 1,2,3,4,5-pentazacyclopentadecane Chemical compound C1CCCCCNNNNNCCCC1 HIWPNSZECWIVEV-UHFFFAOYSA-N 0.000 description 1
- PEEVYAVAFWYTMQ-UHFFFAOYSA-N 1,4,7,10,13-pentakis-(4-methylphenyl)sulfonyl-1,4,7,10,13-pentazacyclopentadecane Chemical compound C1=CC(C)=CC=C1S(=O)(=O)N1CCN(S(=O)(=O)C=2C=CC(C)=CC=2)CCN(S(=O)(=O)C=2C=CC(C)=CC=2)CCN(S(=O)(=O)C=2C=CC(C)=CC=2)CCN(S(=O)(=O)C=2C=CC(C)=CC=2)CC1 PEEVYAVAFWYTMQ-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- MEEODXYHMDQUGA-UHFFFAOYSA-N 1-ethylcyclohexene Chemical group [CH2]CC1=CCCCC1 MEEODXYHMDQUGA-UHFFFAOYSA-N 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- 125000006069 2,3-dimethyl-2-butenyl group Chemical group 0.000 description 1
- GFIWSSUBVYLTRF-UHFFFAOYSA-N 2-[2-(2-hydroxyethylamino)ethylamino]ethanol Chemical compound OCCNCCNCCO GFIWSSUBVYLTRF-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- IYRVONMVYJQART-ZFWWWQNUSA-N 2-[[(1s,2s)-1,2-diaminocyclohexyl]-(4-methylphenyl)sulfonylamino]acetic acid Chemical compound C1=CC(C)=CC=C1S(=O)(=O)N(CC(O)=O)[C@]1(N)[C@@H](N)CCCC1 IYRVONMVYJQART-ZFWWWQNUSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- 125000006027 3-methyl-1-butenyl group Chemical group 0.000 description 1
- ZLBWZEARBDLCFH-UHFFFAOYSA-N 3h-pyridine-2,6-dione Chemical compound O=C1CC=CC(=O)N1 ZLBWZEARBDLCFH-UHFFFAOYSA-N 0.000 description 1
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 description 1
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 1
- OCDIAWYQMCPHAM-UHFFFAOYSA-N 4-methyl-n-[2-[(4-methylphenyl)sulfonyl-[2-[(4-methylphenyl)sulfonylamino]ethyl]amino]ethyl]benzenesulfonamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NCCN(S(=O)(=O)C=1C=CC(C)=CC=1)CCNS(=O)(=O)C1=CC=C(C)C=C1 OCDIAWYQMCPHAM-UHFFFAOYSA-N 0.000 description 1
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- WUKHFITWVAAEFR-UHFFFAOYSA-N 9,10,11,12,13-pentazabicyclo[12.3.1]octadeca-5,7,9,11,13-pentaene Chemical compound C1C2=NN=NN=NC=CC=CCCCC1CCC2 WUKHFITWVAAEFR-UHFFFAOYSA-N 0.000 description 1
- GVMDGIZYFQHJII-UHFFFAOYSA-N 9,10,11,12,13-pentazabicyclo[12.3.1]octadeca-9,11,13-triene Chemical compound C1C2=NN=NN=NCCCCCCCC1CCC2 GVMDGIZYFQHJII-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical class NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000007059 Strecker synthesis reaction Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 206010047163 Vasospasm Diseases 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000004171 alkoxy aryl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-M benzoate Chemical compound [O-]C(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-M 0.000 description 1
- 125000005874 benzothiadiazolyl group Chemical group 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000003678 cyclohexadienyl group Chemical group C1(=CC=CCC1)* 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000001470 diamides Chemical class 0.000 description 1
- SPWVRYZQLGQKGK-UHFFFAOYSA-N dichloromethane;hexane Chemical compound ClCCl.CCCCCC SPWVRYZQLGQKGK-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- SNQQJEJPJMXYTR-UHFFFAOYSA-N dimethyl pyridine-2,6-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=N1 SNQQJEJPJMXYTR-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 125000005066 dodecenyl group Chemical group C(=CCCCCCCCCCC)* 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000003821 enantio-separation Methods 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 239000000066 endothelium dependent relaxing factor Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- JCXLZWMDXJFOOI-WCCKRBBISA-N ethyl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.CCOC(=O)[C@H](C)N JCXLZWMDXJFOOI-WCCKRBBISA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- NXHYGKKKHBDTCT-UHFFFAOYSA-N iron;1,2,3,4,5-pentazacyclopentadecane Chemical compound [Fe].C1CCCCCNNNNNCCCC1 NXHYGKKKHBDTCT-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000005468 isobutylenyl group Chemical group 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 150000002527 isonitriles Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- BUIMWOLDCCGZKZ-UHFFFAOYSA-N n-hydroxynitramide Chemical class ON[N+]([O-])=O BUIMWOLDCCGZKZ-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 238000005897 peptide coupling reaction Methods 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229940031826 phenolate Drugs 0.000 description 1
- XQYMIMUDVJCMLU-UHFFFAOYSA-N phenoxyperoxybenzene Chemical compound C=1C=CC=CC=1OOOC1=CC=CC=C1 XQYMIMUDVJCMLU-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 125000005592 polycycloalkyl group Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 229940124606 potential therapeutic agent Drugs 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- CJVCXRMYJNMDTP-UHFFFAOYSA-N pyridine-2,3-dicarboxamide Chemical compound NC(=O)C1=CC=CN=C1C(N)=O CJVCXRMYJNMDTP-UHFFFAOYSA-N 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000003307 reticuloendothelial effect Effects 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical group 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- BQJPKBATABFXHF-HOTGVXAUSA-N tert-butyl n-[(1s,2s)-2-aminocyclohexyl]-n-(4-methylphenyl)sulfonylcarbamate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)N(C(=O)OC(C)(C)C)[C@@H]1[C@@H](N)CCCC1 BQJPKBATABFXHF-HOTGVXAUSA-N 0.000 description 1
- 125000005063 tetradecenyl group Chemical group C(=CCCCCCCCCCCCC)* 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000005958 tetrahydrothienyl group Chemical group 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000004001 thioalkyl group Chemical group 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical class CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Definitions
- the present invention relates to compounds effective as catalysts for dismutating superoxide and, more particularly, relates to iron(II) or iron(III) complexes of nitrogen-containing fifteen-membered
- the enzyme superoxide dismutase catalyzes the conversion of superoxide into oxygen and hydrogen peroxide according to equation (1) (hereinafter referred to as dismutation).
- Reactive oxygen metabolites derived from superoxide are postulated to contribute to the tissue pathology in a number of
- O 2 - + O 2 - + 2H+ ⁇ O2 + H 2 O 2 (1) inflammatory diseases and disorders, such as reperfusion injury to the ischemic myocardium, inflammatory bowel disease, rheumatoid arthritis, osteoarthritis,
- the iron complexes of nitrogen-containing fifteen-membered macrocyclic ligands that are low molecular weight mimics of superoxide dismutase (SOD) are useful as therapeutic agents and avoid many of the problems associated with SOD enzymes.
- SOD superoxide dismutase
- compositions in unit dosage form useful for dismutating superoxide comprising (a) a therapeutically or prophylactically effective amount of an iron complex of the invention and (b) a nontoxic, pharmaceutically acceptable carrier, adjuvant or vehicle.
- a method of preventing or treating a disease or disorder which is medicated, at least in part, by superoxide comprising administering to a subject in need of such prevention or treatment, a therapeutically or
- the present invention is directed to iron complexes of nitrogen-containing fifteen-membered macrocyclic ligands which catalyze the conversion of superoxide into oxygen and hydrogen peroxide. These complexes are represented by the formula:
- heterocycle which does not contain a hydrogen attached to the nitrogen, the hydrogen attached to the nitrogen as shown in the above formula, which nitrogen is also in the macrocyclic ligand or complex, and the R groups attached to the same carbon atoms of the macrocycle are absent.
- X, Y and Z represent suitable ligands or charge- neutralizing anions which are derived from any
- X, Y and Z are independently selected from the group consisting of halide, oxo, aquo, hydroxo, alcohol, phenol, dioxygen, peroxo, hydroperoxo, alkylperoxo, arylperoxo, ammonia, alkylamino, arylamino, heterocycloalkyl amino,
- alkyl sulfonic acid isonitrile, nitrate, nitrite, azido, alkyl sulfonic acid, aryl sulfonic acid, alkyl sulfoxide, aryl sulfoxide, alkyl aryl sulfoxide, alkyl sulfenic acid, aryl sulfenic acid, alkyl sulfinic acid, aryl sulfinic acid, alkyl thiol carboxylic acid, aryl thiol carboxylic acid, alkyl thiol thiocarboxylic acid, aryl thiol thiocarboxylic acid, alkyl carboxylic acid (such as acetic acid, trifluoroacetic acid, oxalic acid), aryl carboxylic acid (such as benzoic acid, phthalic acid), urea, alkyl urea, aryl urea, alkyl aryl urea,
- phosphine alkyl phosphine oxide, aryl phosphine oxide, alkyl aryl phosphine oxide, alkyl phosphine sulfide, aryl phosphine sulfide, alkyl aryl phosphine sulfide, alkyl phosphonic acid, aryl phosphonic acid, alkyl phosphinic acid, aryl phosphinic acid, alkyl phosphinous acid, aryl phosphinous acid, phosphate, thiophosphate, phosphite, pyrophosphite, triphosphate, hydrogen
- hexafluoroantimonate hypophosphite, iodate, periodate, metaborate, tetraaryl borate, tetra alkyl borate, tartrate, salicylate, succinate, citrate, ascorbate, saccharinate, amino acid, hydroxamic acid,
- thiotosylate and anions of ion exchange resins, or systems where one or more of X, Y and Z are independently attached to one or more of the "R" groups, wherein n is an integer from 0 or 1.
- the preferred ligands from which X, Y and Z are selected include halide, organic acid, nitrate and bicarbonate anions.
- alkyl alone or in combination, means a straight-chain or branched-chain alkyl radical containing from 1 to about 22 carbon atoms, preferably from about 1 to about 18 carbon atoms, and most preferably from about 1 to about 12 carbon atoms.
- radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl and eicosyl.
- alkenyl alone or in combination, means an alkyl radical having one or more double bonds.
- alkenyl radicals include, but are not limited to, ethenyl, propenyl, 1-butenyl, cis-2-butenyl, trans-2-butenyl, iso-butylenyl, cis-2-pentenyl, trans-2- ⁇ entenyl,
- alkynyl alone or in combination, means an alkyl radical having one or more triple bonds.
- alkynyl groups include, but are not limited to, ethynyl, propynyl (propargyl), 1-butynyl, 1-octynyl, 9-octadecynyl, 1,3-pentadiynyl, 2,4-pentadiynyl,
- cycloalkyl alone or in combination means a cycloalkyl radical containing from 3 to about 10, preferably from 3 to about 8, and most preferably from 3 to about 6, carbon atoms.
- cycloalkyl radicals include, but are not limited to, cyclopropyl,
- cyclobutyl cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and perhydronaphthyl.
- cycloalkylalkyl means an alkyl radical as defined above which is substituted by a cycloalkyl radical as defined above.
- examples of cycloalkylalkyl radicals include, but are not limited to, cyclohexylmethyl, cyclopentylmethyl, (4-isopropylcyclohexyl)methyl,
- cycloalkylcycloalkyl means a cycloalkyl radical as defined above which is substituted by another cycloalkyl radical as defined above.
- cycloalkylcycloalkyl radicals include, but are not limited to, cyclohexylcyclopentyl and
- cyclohexylcyclohexyl cyclohexylcyclohexyl.
- cycloalkenyl alone or in combination, means a cycloalkyl radical having one or more double bonds. Examples of cycloalkenyl radicals include, but are not limited to, cyclopentenyl,
- cycloalkenylalkyl means an alkyl radical as defined above which is substituted by a cycloalkenyl radical as defined above.
- examples of cycloalkenylalkyl radicals include, but are not limited to, 2-cyclohexen-1- ylmethyl, 1-cyclopenten-1-ylmethyl, 2-(1-cyclohexen-1- yl) ethyl, 3-(1-cyclopenten-1-yl)propyl,
- alkylcycloalkyl and "alkenylcycloalkyl” mean a
- alkylcycloalkyl and alkenylcycloalkyl radicals include, but are not limited to,
- alkylcycloalkenyl and “alkenylcycloalkenyl” means a cycloalkenyl radical as defined above which is substituted by an alkyl or alkenyl radical as defined above.
- alkylcycloalkenyl and alkenylcycloalkenyl radicals include, but are not limited to, 1-methyl-2-cyclopentyl, 1-hexyl-2-cyclopentenyl, 1-ethyl-2-cyclohexenyl,
- aryl alone or in combination, means a phenyl or naphthyl radical which optionally carries one or more
- aralkyl alone or in combination, means an alkyl or cycloalkyl radical as defined above in which one hydrogen atom is replaced by an aryl radical as defined above, such as benzyl, 2-phenylethyl, and the like.
- heterocyclic means ring structures containing at least one other kind of atom, in addition to carbon, in the ring. The most common of the other kinds of atoms include nitrogen, oxygen and sulfur.
- heterocyclics include, but are not limited to, pyrrolidinyl, piperidyl, imidazolidinyl,
- saturated, partially saturated or unsaturated cyclic means fused ring structures in which 2 carbons of the ring are also part of the fifteen-membered macrocyclic ligand.
- the ring structure can contain 3 to 20 carbon atoms, preferably 5 to 8 carbon atoms, and can also contain one or more other kinds of atoms in addition to carbon. The most common of the other kinds of atoms include nitrogen, oxygen and sulfur.
- the ring structure can also contain more than one ring.
- nitrogen containing heterocycle means ring structures in which 2 carbons and a nitrogen of the ring are also part of the fifteen- membered macrocyclic ligand.
- the ring structure can contain 2 to 20, preferable 4 to 10 carbon atoms, can be partially or fully unsaturated or saturated and can also contain nitrogen, oxygen and/or sulfur in the portion of the ring which is not also part of the fifteen-membered macrocyclic ligand.
- organic acid anion refers to carboxylic acid anions having from about 1 to about 18 carbon atoms.
- halide means chloride or bromide.
- the overall charge-type of the complex can be varied from negative to positive by carbon substitution of the appropriate charged groups on the macrocyclic framework.
- the overall charge on the complex can be adjusted as needed to enhance desired pharmaceutical properties such as osmolality, tissue distribution and non-target clearance. For example, if the complex carries only charge neutral functionality, such as
- the overall charge on the complex will be determined by the iron center and will be positive.
- Multi-positive complexes are available via the incorporation of pendant cations such as protonated aminoalkyl groups. These types of complexes can bind to endogenous anions, anionic proteins, cell membranes, and the like. If pendant anionic groups are attached, such as carboxylates, phenolate, phosphonates, sulfonates and the like, the overall charge on the complex can be envisioned as zero or positive, i.e. an anionic complex will result.
- the pendant groups may be designed to axially chelate and formally displace the axial anions or they may be designed specifically to not chelate but retain a charge type.
- preferred compounds are those wherein at least one, preferably at least two, of the "R" groups represent alkyl, or alkyl substituted with
- R 10 and R 11 are independently hydrogen or alkyl, and the remaining R groups represent hydrogen, a saturated, partially saturated or
- heterocycle more preferably hydrogen or a saturated, partially saturated or unsaturated cyclic; those wherein at least one, preferably at least two, of R, or R', and R 2 or R' 2 , R 3 or R' 3 and R 4 or R' 4 , R 5 or R , 5 and R 6 or R' 6 , R 7 or R' 7 and R 8 or R' 8 , and R, or R' 9 and R or R' together with the carbon atoms to which they are attached
- heterocycle .alkyl or alkyl substituted with -OR 10 or -NR 10 R 11 groups, more preferably hydrogen, alkyl or alkyl substituted with -OR 10 or -NR 10 R 11 groups; and those wherein at least one, preferably at least two, of R or R' and R 1 or R' 1 , R 2 or R' 2 and R 3 or R' 3 , R 4 or R' 4 and R 5 or R' 5 , R 6 or R' 6 and R 7 or R , 7 , and R 8 or R' 8 and R, or R' 9 together with the carbon atoms to which they are attached are bound to form a nitrogen containing
- R heterocycle having 2 to 20 carbon atoms and all the remaining “R” groups are independently selected from hydrogen, saturated, partially saturated or unsaturated cyclic, alkyl or alkyl substituted with -OR 10 or -NR 10 R 11 groups.
- R means all of the R groups attached to the carbon atoms of the macrocycle, i.e., R, R', R 1 , R' 1 , R 2 , R' 2 , R 3 , R' 3 , R 4 , R' 4 , R 5 , R' 5 , R 6 , R' 6 , R 7 , R' 7 , R 8 , R' 8 , R 9 and R' 9 .
- Examples of complexes of the invention include, but are not limited to, compounds having the formulas:
- the macrocyclic ligand wherein all R's are H can be prepared according to the general synthetic scheme A set forth below utilizing methods known in the art for preparation of certain intermediates and certain
- tosylated in a suitable solvent system to produce the corresponding tris(N-tosyl) derivative.
- Such derivative is then treated with a suitable base to produce the corresponding disulfonamide anion.
- the disulfonamide anion is then reacted with a di-O-tosylated di-N- tosylated diazaalkane diol to produce the corresponding pentatosylpentaazacycloalkane.
- the tosyl groups are then removed and the resulting compound is reacted with an iron compound under essentially anhydrous and
- the macrocyclic ligands useful in the complexes of the present invention wherein R 1 , R' 1 , R 3 , R' 3 , R 5 , R' 5 , R 7 , R' 7 , R 9 and R' 9 can be H or any functionality as previously described, can be prepared according to the general peptide method shown in Scheme B set forth below.
- the procedure for preparing the cyclic peptide precursors from the corresponding linear peptides are the same or significant modifications of methods known in the art. See, for example, Veber, D.F. et al., J. Org. Chem., 44, 3101 (1979).
- the general method See, for example, Veber, D.F. et al., J. Org. Chem., 44, 3101 (1979). The general method
- the reaction sequence to prepare the linear pentapeptide can be carried out by solid-phase preparation utilizing methods known in the art.
- the reaction sequence could be conducted from C-terminus to N-terminus and by convergent approaches such as the coupling of di- and tri-peptides as needed.
- a Boc-protected amino acid is coupled with an amino acid ester using standard peptide coupling reagents.
- the new Boc-dipeptide ester is then saponified to the free acid which is coupled again to another amino acid ester.
- the resulting Boc-tri-peptide ester is again saponified and this method is continued until the Boc- protected pentapeptide free acid has been prepared.
- the Boc protecting group is removed under standard
- pentaazacyclopentadecane with lithium aluminum hydride or borane.
- the final ligand is then reacted with an iron compound under essentially anaerobic conditions to form the corresponding iron pentaazacyclopentadecane complex.
- the R groups in the macrocycles produced by the cyclic peptide route could be derived from the D or L forms of the amino acids Alanine, Aspartic acid, Arginine, Asparagine, Cysteine, Glycine, Glutamic acid, Glutamine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Proline, Phenylalanine, Serine, Tryptophan, Threonine, Tyrosine, Valine and/or the R groups of unnatural ⁇ -amino acids such as alkyl, ethyl, butyl, tert-butyl, cycloalkyl, phenyl, alkenyl, allyl, alkynyl, aryl, heteroaryl, polycycloalkyl, poly
- polycycloheteroaryl imines, aminoalkyl, hydroxyalkyl, hydroxyl, phenol, amine oxides, thioalkyl,
- the macrocyclic ligands useful in the complexes of the present invention can also be prepared by the diacid dichloride route shown in Scheme C set forth below.
- a triazaalkane is tosylated in a suitable solvent system to produce the corresponding tris(N- tosyl) derivative.
- Such a derivative is treated with a suitable base to produce the corresponding disulfonamide anion.
- the disulfonamide anion is dialkylated with a suitable electrophile to produce a derivative of a dicarboxylic acid.
- This derivative of a dicarboxylic acid is treated to produce the dicarboxylic acid, which is then treated with a suitable reagent to form the diacid dichloride.
- the desired vicinal diamine is obtained in any of several ways.
- One way which is useful is the preparation from an aldehyde by reaction with cyanide in the presence of ammonium chloride followed by treatment with acid to produce the alpha ammonium nitrile. The latter compound is reduced in the presence of acid and then treated with a suitable base to produce the vicinal diamine. Condensation of the diacid
- the vicinal diamines have been prepared by the route shown (known as the Strecker synthesis) and vicinal diamines were purchased when commercially available. Any method of vicinal diamine preparation could be used.
- the macrocyclic ligands useful in the complexes of the present invention can also be prepared by the bis (haloacetamide) route shown in Scheme D set forth below.
- a triazaalkane is tosylated in a suitable solvent system to produce the corresponding tris(N- tosyl) derivative.
- Such a derivative is treated with a suitable base to produce the corresponding disulfonamide anion.
- bis(chloroacetamide), of a vicinal diamine is prepared by reaction of the diamine with an excess of haloacetyl halide, e.g., chloroacetyl chloride, in the presence of a base.
- haloacetyl halide e.g., chloroacetyl chloride
- the macrocyclic ligands useful in the complexes of the present invention wherein R 1 , R , 1 , R 2 , R' 2 are part of a cis- or trans- cycloalkyl ring system and R 5 , R 5 , R 7 , R 7 and R 9 , R 9 can be H or any functionality previously described, can be prepared according to the pseudo-peptide method shown in Scheme E set forth below.
- a ⁇ is-1,2-Diaminocycloalkane or a trans-(R,R)-1,2- diaminocycloalkane or trans-(S,S)-1,2-diaminocycloalkane can be used in this method in combination with any amino acids.
- R 1 , R' 1 , R 2 , R 2 and R 5 , R' 5 , R 6 , R' 6 are part of a cis- or trans- cycloalkyl ring system and R 9 , R 9 can be H or any functionality previously described, can be prepared according to the iterative pseudo-peptide method shown in Scheme F set forth below.
- a cis-1,2-Diaminocycloalkane or a trans- (R,R)-1,2-diaminocycloalkane or trans-(S,S)-1,2- diaminocycloalkane can be used in any combination with each other using this method and in combination with any amino acids. This allows the relative stereochemistry of both cycloalkane fused rings and substituent, R 9 , R 9 , functionality and stereochemistry to be defined in any manner.
- the (S,S)-1,2-diaminocyclohexyl-N- tosylglycine dipeptide surrogate prepared from (S,S)- 1,2-diaminocyclohexane exactly as in Scheme E in the case of (R,R)-1,2-diaminocyclohexane, can be coupled with a functionalized amino acid ester to afford the corresponding pseudo-tripeptide.
- TFA cleavage affords the pseudo-tripeptide TFA salt which is coupled with
- the macrocyclic ligands useful in the complexes of the present invention can also be prepared according to the general procedure shown in Scheme G set forth below.
- an amino acid amide which is the
- amino acid amide can be the amide derivative of any one of many well known amino acids.
- Preferred amino acid amides are those represented by the formula:
- R is as previously defined. Most preferred are those wherein R represents hydrogen, alkyl,
- the diamine is then tosylated to produce the di-N-tosyl derivative which is reacted with a di-O-tosylated tris-N-tosylated triazaalkane diol to produce the corresponding
- R 9 , and R 2 are alkyl
- R 3 , R' 3 , R 4 , R' 4 , R s , R , 5 , R 6 , R' 6 , R 7 , R , 7 , R 8 and R' 8 can be alkyl, arylalkyl or cycloalkylalkyl and R or R' and R 1 or R' 1 together with the carbon atoms they are attached to are bound to form a nitrogen containing heterocycle, can also be prepared according to the general procedure shown in Scheme H set forth below utilizing methods known in the art for preparing the iron
- the macrocyclic ligands useful in the complexes of the present invention can also be prepared by the pyridine diamide route shown in Scheme I as set forth below.
- a polyamine such as a tetraaza compound, containing two primary amines is condensed with dimethyl 2,6-pyridine dicarboxylate by heating in an appropriate solvent, e.g., methanol, to produce a macrocycle incorporating the pyridine ring as the 2,6- dicarboxamide.
- the pyridine ring in the macrocycle is reduced to the corresponding piperidine ring in the macrocycle, and then the diamides are reduced and the resulting compound is reacted with an compound under essentially anhydrous and anaerobic conditions to form the corresponding substituted pentaazacycloalkane iron complex.
- the complex with those anions or ligands can be formed by conducting an exchange reaction with a complex that has been prepared by reacting the macrocycle with an iron compound.
- the pentaazamacrocycles of the present invention can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or nonracemic mixtures thereof.
- the optical isomers can be obtained by
- Still another available method involves synthesis of covalent diastereoisomeric molecules by reacting one or more secondary amine group (s) of the compounds of the
- the synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to deliver the
- optically active compounds of the invention can likewise be obtained by utilizing optically active starting materials, such as natural amino acids.
- the compounds or complexes of the present invention can be utilized to treat numerous inflammatory disease states and disorders that are mediated, at least in part, by superoxide.
- reperfusion injury to an ischemic organ e.g., reperfusion injury to the ischemic myocardium, surgically-induced ischemia, inflammatory bowel disease, rheumatoid arthritis, osteoarthritis, psoriasis, organ transplant rejections, radiation-induced injury, oxidant-induced tissue
- pancreatitis insulin-dependent diabetes mellitus, disseminated intravascular coagulation, fatty embolism, adult and infantile respiratory distress, and
- the stopped-flow kinetic analysis is suitable for screening compounds for SOD activity and activity of the compounds or complexes of the present invention, as shown by stopped-flow analysis, correlate to treating the above disease states and disorders.
- Total daily dose administered to a host in single or divided doses may be in amounts, for example, from about 1 to about 100 mg/kg body weight daily and more usually about 3 to 30 mg/kg. Dosage unit compositions may contain such amounts of submultiples thereof to make up the daily dose.
- the amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
- the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention is selected in accordance with a variety of factors, including the type, age, weight, sex, diet and medical condition of the patient, the severity of the disease, the route of administration, pharmacological considerations such as the activity, efficacy,
- the dosage regimen actually employed may vary widely and therefore may deviate from the preferred dosage regimen set forth above.
- the compounds of the present invention may be administered orally, parenterally, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired. Topical administration may also involve the use of transdermal administration such as transdermal patches or iontophoresis devices.
- parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.
- sterile injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic
- parenterally acceptable diluent or solvent for example, as a solution in 1,3-butanediol.
- acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride
- any bland fixed oil may be employed including synthetic mono- or diglycerides.
- fatty acids such as oleic acid find use in the preparation of injectables.
- Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable nonirritating excipient such as cocoa butter and
- Solid dosage forms for oral administration may include capsules, tablets, pills, powders, granules and gels.
- the active compound may be admixed with at least one inert diluent such as sucrose lactose or starch.
- Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
- the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
- Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions,
- compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.
- While the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more compounds which are known to be effective against the specific disease state that one is targeting for treatment.
- R is a higher alkyl group than that indicated, or where the tosyl groups are other nitrogen or oxygen protecting groups or wherein the O-tosyl is a halide.
- Anions having a charge other than 1, e.g., carbonate, phosphate, and hydrogen phosphate, can be used instead of anions having a charge of l, so long as they do not adversely affect the overall
- iron (III) complexes will be equivalent to the subject iron (III) complexes.
- Cyc represents 1,2- cyclohexanediamine (stereochemistry, i.e. R 1 R or S,S, is indicated as such). This allows three letter code peptide nomenclature to be used in pseudopeptides containing the 1,2-cyclohexanediamine "residue”.
- the pH was adjusted as before and the solution was allowed to stand at -20 C for 24 h.
- the pH was readjusted as before and the solution was allowed to warm to 2°C over 24 h. The pH had dropped only slightly.
- the pH was readjusted as before and the solution was allowed to stand at 2 C for another 24 h after which time the pH had not changed.
- the solution was divided equally among 6 - 4 1 beakers and H 2 O (1.1 1) was added to each. Then added a total of 5.00 kg mixed-bed ion exchange resin to the solution (divided equally among the 6 beakers) and stirred the mixtures for 6 h. The resin was then filtered and washed with DMF.
- N-p-Toluenesulfonylglycyl-1R,2R- diaminocyclohexane (1.11 g, 3.42 mmol) and N,
- N -bis(chloroacetyl)-1R,2R-diaminocyclohexane (0.913 g, 3.42 mmol) were combined in a one liter flask and dry N,N-dimethylacetamide (650 ml) was added. The flask was inerted. After 10 minutes, the sodium hydride was added directly to the homogeneous mixture. The reaction flask was placed in a 70°C oil bath. After the internal temperature reached 45-50°C, gas evolution became constant. The oil bath temperature was stabilized at about 65°C with some excursions from about 60 to 75°C. Overnight, the reaction mixture became homogeneous.
- the DMF was evaporated and the residue was partitioned between water (500 ml) and ethyl acetate (500 ml).
- the ethyl acetate solution was washed with IN NaHSO 4 (250 ml), water (250 ml), saturated NaHCO 3 (250 ml), brine (250 ml) and dried over Na 2 SO 4 .
- the protected dipeptide (31.4 g, 109 mmol) was dissolved in methylene chloride (200 ml) and TFA (66 ml) was added. The resulting solution was allowed to stir for 30 min at RT and concentrated. The residue was coevaporated with methylene chloride (2 x 200 ml), dissolved in ether and oiled out with the addition of excess hexanes.
- Boc-Ala-Ala-DAla-Ala-DAla-OEt (10.4 g, 18.7 mmol) was dissolved in acetic acid (225 ml) and treated with concentrated hydrochloric acid (75 ml). The resulting solution was allowed to stir at RT for 14 h thereafter.
- DMSO/superoxide solutions are extremely sensitive to water, heat, air, and extraneous metals.
- a fresh, pure solution has a very slight yellowish tint.
- a dilute EDTA solution For example, a
- distillation will oxidize any trace of organic compounds in the water.
- the final distillation was carried out under nitrogen in a 2.5-liter flask containing 1500 ml of water from the first still and 1.0 x 10 6 M EDTA. This step will remove remaining trace metals from the
- the 40-cm vertical arm was packed with glass beads and wrapped with
- This system produces deoxygenated water that can be measured to have a conductivity of less than 2.0 nanomhos/cm 2 .
- the stopped-flow spectrometer system was designed and manufactured by Kinetic Instruments Inc. (Ann Arbor, MI) and was interfaced to a MAC IICX personal computer.
- the software for the stopped-flow analysis was provided by Kinetics Instrument Inc. and was written in QuickBasic with MacAdios drivers.
- Typical injector volumes (0.10 ml of buffer and 0.006 ml of DMSO) were calibrated so that a large excess of water over the DMSO solution were mixed together. The actual ratio was approximately 19/1 so that the initial concentration of superoxide in the aqueous solution was in the range 60-120 ⁇ M.
- Aqueous solutions to be mixed with the DMSO solution of superoxide were prepared using 80 mM concentrations of the Hepes buffer, pH 8.1 (free acid + Na form).
- One of the reservoir syringes was filled with 5 ml of the DMSO solution while the other was filled with 5 ml of the aqueous buffer solution.
- the entire injection block, mixer, and spectrometer cell were immersed in a
- thermostatted circulating water bath with a temperature of 21.0 ⁇ 0.5°C. Prior to initiating data collection for a
- a baseline average was obtained by injecting several shots of the buffer and DMSO solutions into the mixing chamber. These shots were averaged and stored as the baseline. The first shots to be collected during a series of runs were with aqueous solutions that did not contain catalyst. This assures that each series of trials were free of contamination capable of
- the catalytic rate constant for dismutation of superoxide by the iron (III) complexes of Examples 1-4 were determined from the linear plot of observed rate constants (k obs ) versus the concentration of the iron (III) complexes. k obs values were obtained from the liner plots of In absorbance at 245 nm versus time for the dismutation of superoxide by the iron (III) complex.
- the k cat (M -1 sec -1 ) of the iron (III) complexes of Examples 1-4 are shown in Table I.
- the iron (III) complexes of the nitrogen- containing macrocyclic ligands in Examples 1-4 are effective catalysts for the dismutation of superoxide, as can be seen from the k cat data in Table I.
Abstract
Pharmaceutical compositions of low molecular weight mimics of superoxide dismutase (SOD) represented by formula (I), wherein R, R', R1, R'1, R2, R'2, R3, R'3, R4, R'4, R5, R'5, R6, R'6, R7, R'7, R8, R'8, R9, and R'9, and X, Y, Z and n are as defined herein, useful as therapeutic agents for inflammatory disease states and disorders, ischemic/reperfusion injury, stroke, atherosclerosis, inflammatory bowel disease and all other conditions of oxidant-induced tissue damage or injury.
Description
IRON COMPLEXES OF NITROGEN-CONTAINING
MACROCYCLIC LIGANDS EFFECTIVE AS CATALYSTS FOR
DISMUTATING SUPEROXIDE
CROSS REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of pending application Serial No. 08/397,469, filed March 1, 1995, which is a continuation of pending application Serial No. 08/231,599, filed April 22, 1994.
BACKGROUND OF THE INVENTION The present invention relates to compounds effective as catalysts for dismutating superoxide and, more particularly, relates to iron(II) or iron(III) complexes of nitrogen-containing fifteen-membered
macrocyclic ligands which catalytically dismutate
superoxide. Application Serial No. 08/397,469 is hereby incorporated by reference herein in its entirety.
The enzyme superoxide dismutase catalyzes the conversion of superoxide into oxygen and hydrogen peroxide according to equation (1) (hereinafter referred to as dismutation). Reactive oxygen metabolites derived from superoxide are postulated to contribute to the tissue pathology in a number of
O2 - + O2 - + 2H+ → O2 + H2O2 (1) inflammatory diseases and disorders, such as reperfusion injury to the ischemic myocardium, inflammatory bowel disease, rheumatoid arthritis, osteoarthritis,
atherosclerosis, hypertension, metastasis, psoriasis, organ transplant rejections, radiation-induced injury, asthma, influenza, stroke, burns and trauma. See, for example, Bulkley, G.B., Reactive oxygen metabolites and reperfusion injury: aberrant triggering of
reticuloendothelial function, The Lancet , Vol. 344, pp. 934-36, October 1, 1994; Grisham, M.B., Oxidants and free radicals in inflammatory bowel disease, The Lancet , Vol. 344, pp. 859-861, September 24, 1994; Cross, C. E. et al., Reactive oxygen species and the lung, The
Lancet , Vol. 344, pp. 930-33, October 1, 1994; Jenner, P., Oxidative damage in neurodegenerative disease, The Lancet , Vol. 344, pp. 796-798, September 17, 1994;
Cerutti, P.A., Oxy-radicals and cancer, The Lancet , Vol. 344, pp. 862-863, September 24, 1994 Simic, M. G., et al, Oxygen Radicals in Biology and Medicine, Basic Life Sciences, Vol. 49, Plenum Press, New York and London, 1988; Weiss J. Cell. Biochem., 1991 Suppl. 15C, 216 Abstract C110 (1991); Petkau, A., Cancer Treat. Rev. 13, 17 (1986); McCord, J. Free Radicals Biol. Med., 2 , 307 (1986); and Bannister, J.V. et al, Crit. Rev. Biochem., 22, 111 (1987). The above-identified references from The Lancet teach the nexus between free radicals derived from superoxide and a variety of diseases. In
particular, the Bulkley and Grisham references
specifically teach that there is a nexus between the dismutation of superoxide and the final disease
treatment.
It is also known that superoxide is involved in the breakdown of endothelium-derived vascular relaxing factor (EDRF), which has been identified as nitric oxide (NO), and that EDRF is protected from breakdown by superoxide dismutase. This suggests a central role for activated oxygen species derived from superoxide in the pathogenesis of vasospasm, thrombosis and
atherosclerosis. See, for example, Gryglewski, R.J. et al., "Superoxide Anion is Involved in the Breakdown of Endothelium-derived Vascular Relaxing Factor", Mature, Vol. 320, pp. 454-56 (1986) and Palmer, R.M.J. et al., "Nitric Oxide Release Accounts for the Biological
Activity of Endothelium Derived Relaxing Factor",
Nature, Vol. 327, pp. 523-26 (1987).
Clinical trials and animal studies with natural, recombinant and modified superoxide dismutase enzymes have been completed or are ongoing to demonstrate the therapeutic efficacy of reducing superoxide levels in the disease states noted above. However, numerous problems have arisen with the use of the enzymes as potential therapeutic agents, including lack of oral activity, short half-lives in vivo , immunogenicity with nonhuman derived enzymes, and poor tissue distribution.
The iron complexes of nitrogen-containing fifteen-membered macrocyclic ligands that are low molecular weight mimics of superoxide dismutase (SOD) are useful as therapeutic agents and avoid many of the problems associated with SOD enzymes.
SUMMARY OF THE INVENTION
It is an object of the invention to provide iron complexes of nitrogen-containing fifteen-membered macrocyclic ligands that are low molecular weight mimics of superoxide dismutase (SOD) which are useful as therapeutic agents for inflammatory disease states or disorders which are medicated, at least in part, by superoxide. It is a further object of the invention to provide iron complexes of nitrogen-containing fifteen- membered macro-cyclic ligands which are useful as magnetic resonance imaging (MRI) contrast agents, it is yet a further object of the invention to provide iron complexes of nitrogen-containing fifteen-membered macrocyclic ligands that have unexpectedly improved stability compared to corresponding manganese complexes.
According to the invention, pharmaceutical compositions in unit dosage form useful for dismutating superoxide are provided comprising (a) a therapeutically or prophylactically effective amount of an iron complex
of the invention and (b) a nontoxic, pharmaceutically acceptable carrier, adjuvant or vehicle.
Further according to the invention, a method of preventing or treating a disease or disorder which is medicated, at least in part, by superoxide is provided comprising administering to a subject in need of such prevention or treatment, a therapeutically or
prophylactically effective amount of an iron complex of the invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to iron complexes of nitrogen-containing fifteen-membered macrocyclic ligands which catalyze the conversion of superoxide into oxygen and hydrogen peroxide. These complexes are represented by the formula:
R5, R'5, R6, R'6, R7, R, 7, R8, R'8, R9, and R'
independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl,
cycloalkenyl, cycloalkylalkyl, cycloalkylcycloalkyl, cycloalkenylalkyl, alkylcycloalkyl, alkenylcycloalkyl, alkylcycloalkenyl, alkenylcycloalkenyl, heterocyclic,
aryl and aralkyl radicals and radicals attached to the α-carbon of α-amino acids; or R, or R'1 and R2 or R'2, R3 or R'3 and R4 or R'4, R5 or R'5 and R6 or R'6, R7 or R'7 and R8 or R'8, and R9 or R'9 and R or R' together with the carbon atoms to which they are attached independently form a saturated, partially saturated or unsaturated cyclic having 3 to 20 carbon atoms; or R or R' and R1 or R'1, R2 or R'2 and R3 or R'3, R4 or R, 4 and R5 or R, 5, R6 or R'6 and R7 or R, 7, and R8 or R, 8 and R9 or R'9 together with the carbon atoms to which they are attached
independently form a nitrogen containing heterocycle having 2 to 20 carbon atoms provided that when the nitrogen containing heterocycle is an aromatic
heterocycle which does not contain a hydrogen attached to the nitrogen, the hydrogen attached to the nitrogen as shown in the above formula, which nitrogen is also in the macrocyclic ligand or complex, and the R groups attached to the same carbon atoms of the macrocycle are absent.
X, Y and Z represent suitable ligands or charge- neutralizing anions which are derived from any
monodentate or polydentate coordinating ligand or ligand system or the corresponding anion thereof (for example benzoic acid or benzoate anion, phenol or phenoxide anion, alcohol or alkoxide anion). X, Y and Z are independently selected from the group consisting of halide, oxo, aquo, hydroxo, alcohol, phenol, dioxygen, peroxo, hydroperoxo, alkylperoxo, arylperoxo, ammonia, alkylamino, arylamino, heterocycloalkyl amino,
heterocycloaryl amino, amine oxides, hydrazine, alkyl hydrazine, aryl hydrazine, nitric oxide, cyanide, cyanate, thiocyanate, isocyanate, isothiocyanate, alkyl nitrile, aryl nitrile, alkyl isonitrile, aryl
isonitrile, nitrate, nitrite, azido, alkyl sulfonic acid, aryl sulfonic acid, alkyl sulfoxide, aryl
sulfoxide, alkyl aryl sulfoxide, alkyl sulfenic acid, aryl sulfenic acid, alkyl sulfinic acid, aryl sulfinic acid, alkyl thiol carboxylic acid, aryl thiol carboxylic acid, alkyl thiol thiocarboxylic acid, aryl thiol thiocarboxylic acid, alkyl carboxylic acid (such as acetic acid, trifluoroacetic acid, oxalic acid), aryl carboxylic acid (such as benzoic acid, phthalic acid), urea, alkyl urea, aryl urea, alkyl aryl urea, thiourea, alkyl thiourea, aryl thiourea, alkyl aryl thiourea, sulfate, sulfite, bisulfate, bisulfite, thiosulfate, thiosulfite, hydrosulfite, alkyl phosphine, aryl
phosphine, alkyl phosphine oxide, aryl phosphine oxide, alkyl aryl phosphine oxide, alkyl phosphine sulfide, aryl phosphine sulfide, alkyl aryl phosphine sulfide, alkyl phosphonic acid, aryl phosphonic acid, alkyl phosphinic acid, aryl phosphinic acid, alkyl phosphinous acid, aryl phosphinous acid, phosphate, thiophosphate, phosphite, pyrophosphite, triphosphate, hydrogen
phosphate, dihydrogen phosphate, alkyl guanidino, aryl guanidino, alkyl aryl guanidino, alkyl carbamate, aryl carbamate, alkyl aryl carbamate, alkyl thiocarbamate aryl thiocarbamate, alkyl aryl thiocarbamate, alkyl dithiocarbamate, aryl dithiocarbamate, alkyl aryl dithiocarbamate, bicarbonate, carbonate, perchlorate, chlorate, chlorite, hypochlorite, perbromate, bromate, bromite, hypobromite, tetrahalomanganate,
tetrafluoroborate, hexafluorophosphate,
hexafluoroantimonate, hypophosphite, iodate, periodate, metaborate, tetraaryl borate, tetra alkyl borate, tartrate, salicylate, succinate, citrate, ascorbate, saccharinate, amino acid, hydroxamic acid,
thiotosylate, and anions of ion exchange resins, or systems where one or more of X, Y and Z are independently attached to one or more of the "R" groups, wherein n is an integer from 0 or 1. The preferred ligands from which X, Y and Z are selected include halide, organic
acid, nitrate and bicarbonate anions.
As utilized herein, the term "alkyl", alone or in combination, means a straight-chain or branched-chain alkyl radical containing from 1 to about 22 carbon atoms, preferably from about 1 to about 18 carbon atoms, and most preferably from about 1 to about 12 carbon atoms. Examples of such radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl and eicosyl. The term "alkenyl", alone or in combination, means an alkyl radical having one or more double bonds. Examples of such alkenyl radicals include, but are not limited to, ethenyl, propenyl, 1-butenyl, cis-2-butenyl, trans-2-butenyl, iso-butylenyl, cis-2-pentenyl, trans-2-ρentenyl,
3-methyl-1-butenyl, 2,3-dimethyl-2-butenyl, 1-pentenyl, 1-hexenyl, 1-octenyl, decenyl, dodecenyl, tetradecenyl, hexadecenyl, cis- and trans- 9-octadecenyl,
1,3-pentadienyl, 2,4-pentadienyl, 2,3-pentadienyl, 1,3-hexadienyl, 2,4-hexadienyl, 5,8,11,14- eicosatetraenyl, and 9,12,15-octadecatrienyl. The term "alkynyl", alone or in combination, means an alkyl radical having one or more triple bonds. Examples of such alkynyl groups include, but are not limited to, ethynyl, propynyl (propargyl), 1-butynyl, 1-octynyl, 9-octadecynyl, 1,3-pentadiynyl, 2,4-pentadiynyl,
1,3-hexadiynyl, and 2,4-hexadiynyl. The term
"cycloalkyl", alone or in combination means a cycloalkyl radical containing from 3 to about 10, preferably from 3 to about 8, and most preferably from 3 to about 6, carbon atoms. Examples of such cycloalkyl radicals include, but are not limited to, cyclopropyl,
cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and perhydronaphthyl. The term
"cycloalkylalkyl" means an alkyl radical as defined
above which is substituted by a cycloalkyl radical as defined above. Examples of cycloalkylalkyl radicals include, but are not limited to, cyclohexylmethyl, cyclopentylmethyl, (4-isopropylcyclohexyl)methyl,
(4-t-butyl-cyclohexyl)methyl, 3-cyclohexylpropyl,
2-cyclo-hexylmethylpentyl, 3-cyclopentylmethylhexyl, 1-(4-neopentylcyclohexyl)methylhexyl, and 1-(4- isopropylcyclohexyl)methylheptyl. The term
"cycloalkylcycloalkyl" means a cycloalkyl radical as defined above which is substituted by another cycloalkyl radical as defined above. Examples of
cycloalkylcycloalkyl radicals include, but are not limited to, cyclohexylcyclopentyl and
cyclohexylcyclohexyl. The term "cycloalkenyl", alone or in combination, means a cycloalkyl radical having one or more double bonds. Examples of cycloalkenyl radicals include, but are not limited to, cyclopentenyl,
cyclohexenyl, cyclooctenyl, cyclopentadienyl,
cyclohexadienyl and cyclooctadienyl. The term
"cycloalkenylalkyl" means an alkyl radical as defined above which is substituted by a cycloalkenyl radical as defined above. Examples of cycloalkenylalkyl radicals include, but are not limited to, 2-cyclohexen-1- ylmethyl, 1-cyclopenten-1-ylmethyl, 2-(1-cyclohexen-1- yl) ethyl, 3-(1-cyclopenten-1-yl)propyl,
1-(1-cyclohexen-1-ylmethyl) pentyl, 1-(1-cyclopenten-1- yl)hexyl, 6-(1-cyclohexen-1-yl)hexyl, 1-(1-cyclopenten- 1-yl)nonyl and 1-(1-cyclohexen-1-yl)nonyl. The terms "alkylcycloalkyl" and "alkenylcycloalkyl" mean a
cycloalkyl radical as defined above which is substituted by an alkyl or alkenyl radical as defined above.
Examples of alkylcycloalkyl and alkenylcycloalkyl radicals include, but are not limited to,
2-ethylcyclobutyl, 1-methylcyclopentyl,
1-hexylcyclopentyl, 1-methylcyclohexyl,
1-(9-octadecenyl)cyclopentyl and 1-(9-
octadecenyl) cyclohexyl. The terms "alkylcycloalkenyl" and "alkenylcycloalkenyl" means a cycloalkenyl radical as defined above which is substituted by an alkyl or alkenyl radical as defined above. Examples of
alkylcycloalkenyl and alkenylcycloalkenyl radicals include, but are not limited to, 1-methyl-2-cyclopentyl, 1-hexyl-2-cyclopentenyl, 1-ethyl-2-cyclohexenyl,
1-butyl-2-cyclohexenyl, 1-(9-octadecenyl)-2-cyclohexenyl and 1-(2-pentenyl)-2-cyclohexenyl. The term "aryl", alone or in combination, means a phenyl or naphthyl radical which optionally carries one or more
substituents selected from alkyl, cycloalkyl,
cycloalkenyl, phenyl, naphthyl, heterocycle, alkoxyaryl, alkaryl, alkoxy, halogen, hydroxy, amine, cyano, nitro, alkylthio, phenoxy, ether, trifluoromethyl and the like, such as phenyl, p-tolyl, 4-methoxyphenyl, 4-(tert- butoxy)phenyl, 4-fluorophenyl, 4-chlorophenyl,
4-hydroxyphenyl, 1-naphthyl, 2-naphthyl, and the like. The term "aralkyl", alone or in combination, means an alkyl or cycloalkyl radical as defined above in which one hydrogen atom is replaced by an aryl radical as defined above, such as benzyl, 2-phenylethyl, and the like. The term "heterocyclic" means ring structures containing at least one other kind of atom, in addition to carbon, in the ring. The most common of the other kinds of atoms include nitrogen, oxygen and sulfur.
Examples of heterocyclics include, but are not limited to, pyrrolidinyl, piperidyl, imidazolidinyl,
tetrahydrofuryl, tetrahydrothienyl, furyl, thienyl, pyridyl, quinolyl, isoquinolyl, pyridazinyl, pyrazinyl, indolyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, pyridinyl, benzoxadiazolyl, benzothiadiazolyl, triazolyl and tetrazolyl groups. The term "saturated, partially saturated or unsaturated cyclic" means fused ring structures in which 2 carbons of the ring are also part of the fifteen-membered macrocyclic ligand. The ring
structure can contain 3 to 20 carbon atoms, preferably 5 to 8 carbon atoms, and can also contain one or more other kinds of atoms in addition to carbon. The most common of the other kinds of atoms include nitrogen, oxygen and sulfur. The ring structure can also contain more than one ring. The term "nitrogen containing heterocycle" means ring structures in which 2 carbons and a nitrogen of the ring are also part of the fifteen- membered macrocyclic ligand. The ring structure can contain 2 to 20, preferable 4 to 10 carbon atoms, can be partially or fully unsaturated or saturated and can also contain nitrogen, oxygen and/or sulfur in the portion of the ring which is not also part of the fifteen-membered macrocyclic ligand. The term "organic acid anion" refers to carboxylic acid anions having from about 1 to about 18 carbon atoms. The term "halide" means chloride or bromide.
The overall charge-type of the complex can be varied from negative to positive by carbon substitution of the appropriate charged groups on the macrocyclic framework. By considering the dispositive nature of the iron metal center, the overall charge on the complex can be adjusted as needed to enhance desired pharmaceutical properties such as osmolality, tissue distribution and non-target clearance. For example, if the complex carries only charge neutral functionality, such as
C-alkyl substitution, then the overall charge on the complex will be determined by the iron center and will be positive. Multi-positive complexes are available via the incorporation of pendant cations such as protonated aminoalkyl groups. These types of complexes can bind to endogenous anions, anionic proteins, cell membranes, and the like. If pendant anionic groups are attached, such as carboxylates, phenolate, phosphonates, sulfonates and the like, the overall charge on the complex can be envisioned as zero or positive, i.e. an anionic complex
will result. The pendant groups may be designed to axially chelate and formally displace the axial anions or they may be designed specifically to not chelate but retain a charge type.
Currently, preferred compounds are those wherein at least one, preferably at least two, of the "R" groups represent alkyl, or alkyl substituted with
-OR10 or -NR10R11 wherein R10 and R11 are independently hydrogen or alkyl, and the remaining R groups represent hydrogen, a saturated, partially saturated or
unsaturated cyclic, or a nitrogen containing
heterocycle, more preferably hydrogen or a saturated, partially saturated or unsaturated cyclic; those wherein at least one, preferably at least two, of R, or R', and R2 or R'2, R3 or R'3 and R4 or R'4, R5 or R, 5 and R6 or R'6, R7 or R'7 and R8 or R'8, and R, or R'9 and R or R' together with the carbon atoms to which they are attached
represent a saturated, partially saturated or
unsaturated cyclic having 3 to 20 carbon atoms and all the remaining "R" groups are hydrogen, nitrogen
containing heterocycle, .alkyl or alkyl substituted with -OR10 or -NR10R11 groups, more preferably hydrogen, alkyl or alkyl substituted with -OR10 or -NR10R11 groups; and those wherein at least one, preferably at least two, of R or R' and R1 or R'1, R2 or R'2 and R3 or R'3, R4 or R'4 and R5 or R'5, R6 or R'6 and R7 or R, 7, and R8 or R'8 and R, or R'9 together with the carbon atoms to which they are attached are bound to form a nitrogen containing
heterocycle having 2 to 20 carbon atoms and all the remaining "R" groups are independently selected from hydrogen, saturated, partially saturated or unsaturated cyclic, alkyl or alkyl substituted with -OR10 or -NR10R11 groups. As used herein, "R" groups means all of the R groups attached to the carbon atoms of the macrocycle, i.e., R, R', R1, R'1, R2, R'2, R3, R'3, R4, R'4, R5, R'5, R6,
R'6, R7, R'7, R8 , R' 8 , R9 and R'9. Examples of complexes of the invention include, but are not limited to, compounds having the formulas:
The macrocyclic ligand wherein all R's are H can be prepared according to the general synthetic scheme A set forth below utilizing methods known in the art for preparation of certain intermediates and certain
ligands. See, for example, Richman et al., J. Am . Chem . Soc. , 96, 2268 (1974); Atkins et al. Org. Synth . , 58, 86 (1978); and EP 287 465. Thus a triazaalkane is
tosylated in a suitable solvent system to produce the corresponding tris(N-tosyl) derivative. Such derivative is then treated with a suitable base to produce the corresponding disulfonamide anion. The disulfonamide anion is then reacted with a di-O-tosylated di-N- tosylated diazaalkane diol to produce the corresponding pentatosylpentaazacycloalkane. The tosyl groups are then removed and the resulting compound is reacted with
an iron compound under essentially anhydrous and
anaerobic conditions to form the corresponding iron pentaazacycloalkane complex.
The macrocyclic ligands useful in the complexes of the present invention, wherein R1, R'1, R3, R'3, R5, R' 5 , R7, R'7, R9 and R'9 can be H or any functionality as previously described, can be prepared according to the general peptide method shown in Scheme B set forth below. The procedure for preparing the cyclic peptide precursors from the corresponding linear peptides are the same or significant modifications of methods known in the art. See, for example, Veber, D.F. et al., J. Org. Chem., 44, 3101 (1979). The general method
outlined in Scheme B below is an example utilizing the sequential solution-phase preparation of the
functionalized linear pentapeptide from N-terminus to C-terminus. Alternatively, the reaction sequence to prepare the linear pentapeptide can be carried out by solid-phase preparation utilizing methods known in the art. The reaction sequence could be conducted from C-terminus to N-terminus and by convergent approaches such as the coupling of di- and tri-peptides as needed. Thus a Boc-protected amino acid is coupled with an amino acid ester using standard peptide coupling reagents. The new Boc-dipeptide ester is then saponified to the free acid which is coupled again to another amino acid ester. The resulting Boc-tri-peptide ester is again saponified and this method is continued until the Boc- protected pentapeptide free acid has been prepared. The Boc protecting group is removed under standard
conditions and the resulting pentapeptide or salt thereof is converted to the cyclic pentapeptide. The cyclic pentapeptide is then reduced to the
pentaazacyclopentadecane with lithium aluminum hydride or borane. The final ligand is then reacted with an iron compound under essentially anaerobic conditions to
form the corresponding iron pentaazacyclopentadecane complex.
The R groups in the macrocycles produced by the cyclic peptide route, i.e., R1, R, 1, R3, R'3, R5, R'5, R7, R'7, R9 and R, 9, could be derived from the D or L forms of the amino acids Alanine, Aspartic acid, Arginine, Asparagine, Cysteine, Glycine, Glutamic acid, Glutamine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Proline, Phenylalanine, Serine, Tryptophan, Threonine, Tyrosine, Valine and/or the R groups of unnatural α-amino acids such as alkyl, ethyl, butyl, tert-butyl, cycloalkyl, phenyl, alkenyl, allyl, alkynyl, aryl, heteroaryl, polycycloalkyl, polycycloaryl,
polycycloheteroaryl, imines, aminoalkyl, hydroxyalkyl, hydroxyl, phenol, amine oxides, thioalkyl,
carboalkoxyalkyl, carboxylic acids and their
derivatives, keto, ether, aldehyde, amine, nitrile, halo, thiol, sulfoxide, sulfone, sulfonic acid, sulfide, disulfide, phosphonic acid, phosphinic acid, phosphine oxides, sulfonamides, amides, amino acids, peptides, proteins, carbohydrates, nucleic acids, fatty acids, lipids, nitro, hydroxylamines, hydroxamic acids, thiocarbonyls, borates, boranes, boraza, silyl, siloxy, silaza, and combinations thereof.
The macrocyclic ligands useful in the complexes of the present invention can also be prepared by the diacid dichloride route shown in Scheme C set forth below. Thus, a triazaalkane is tosylated in a suitable solvent system to produce the corresponding tris(N- tosyl) derivative. Such a derivative is treated with a suitable base to produce the corresponding disulfonamide anion. The disulfonamide anion is dialkylated with a suitable electrophile to produce a derivative of a dicarboxylic acid. This derivative of a dicarboxylic acid is treated to produce the dicarboxylic acid, which is then treated with a suitable reagent to form the
diacid dichloride. The desired vicinal diamine is obtained in any of several ways. One way which is useful is the preparation from an aldehyde by reaction with cyanide in the presence of ammonium chloride followed by treatment with acid to produce the alpha ammonium nitrile. The latter compound is reduced in the presence of acid and then treated with a suitable base to produce the vicinal diamine. Condensation of the diacid
dichloride with the vicinal diamine in the presence of a suitable base forms the tris (tosyl)diamide macrocycle. The tosyl groups are removed and the amides are reduced and the resulting compound is reacted with an iron compound under essentially anhydrous and anaerobic conditions to form the corresponding substituted
pentaazacycloalkane iron complex.
The vicinal diamines have been prepared by the route shown (known as the Strecker synthesis) and vicinal diamines were purchased when commercially available. Any method of vicinal diamine preparation could be used.
The macrocyclic ligands useful in the complexes of the present invention can also be prepared by the bis (haloacetamide) route shown in Scheme D set forth below. Thus a triazaalkane is tosylated in a suitable solvent system to produce the corresponding tris(N- tosyl) derivative. Such a derivative is treated with a suitable base to produce the corresponding disulfonamide anion. A bis (haloacetamide), e.g., a
bis(chloroacetamide), of a vicinal diamine is prepared by reaction of the diamine with an excess of haloacetyl halide, e.g., chloroacetyl chloride, in the presence of a base. The disulfonamide anion of the tris(N-tosyl) triazaalkane is then reacted with the
bis(chloroacetamide) of the diamine to produce the substituted tris (N-tosyl) diamide macrocycle. The tosyl groups are removed and the amides are reduced and the
resulting compound is reacted with an iron compound under essentially anhydrous and anaerobic conditions to form the corresponding substituted pentaazacycloalkane iron complex.
The macrocyclic ligands useful in the complexes of the present invention, wherein R1, R, 1, R2 , R'2 are part of a cis- or trans- cycloalkyl ring system and R5, R 5, R7, R 7 and R9, R 9 can be H or any functionality previously described, can be prepared according to the pseudo-peptide method shown in Scheme E set forth below. A σis-1,2-Diaminocycloalkane or a trans-(R,R)-1,2- diaminocycloalkane or trans-(S,S)-1,2-diaminocycloalkane can be used in this method in combination with any amino acids. This allows the relative stereochemistry of the cycloalkane fused ring and substituent, R5, R'5, R7, R'7, R9, R 9, functionality and stereochemistry to be defined in any manner. As an example trans- (R,R)-1,2- diaminocyclhexane was monotosylated and reacted with Boc anhydride to afford the differentiated N-Boc, N-tosyl derivative. The sulfonamide was alkylated with methyl bromoacetate using sodium hydride as the base and saponified to the free acid. The cyclohexanediamine containing N-tosylglycine serves as a dipeptide
surrogate in standard solution-phase peptide synthesis. Thus, coupling with a functionalized amino acid ester affords the corresponding pseudo-tripeptide. Two sequential TFA cleavage-couplings affords the pseudo- pentapeptide which can be N- and C-terminus deprotected in one step using HCl/AcOH. DPPA mediated cyclization followed by LiAlH4 or Borane reduction affords the corresponding macrocylic ligand. This ligand system is reacted with an iron compound, such as iron (III) chloride under essentially anaerobic conditions to form the corresponding functionalized iron (III)
pentaazacycloalkane complex.
The macrocyclic ligands useful in the complexes of the present invention, wherein R1, R'1, R2, R 2 and R5, R'5, R6, R' 6 , are part of a cis- or trans- cycloalkyl ring system and R9, R 9 can be H or any functionality previously described, can be prepared according to the iterative pseudo-peptide method shown in Scheme F set forth below. A cis-1,2-Diaminocycloalkane or a trans- (R,R)-1,2-diaminocycloalkane or trans-(S,S)-1,2- diaminocycloalkane can be used in any combination with each other using this method and in combination with any amino acids. This allows the relative stereochemistry of both cycloalkane fused rings and substituent, R9, R 9, functionality and stereochemistry to be defined in any manner. Thus, the (S,S)-1,2-diaminocyclohexyl-N- tosylglycine dipeptide surrogate, prepared from (S,S)- 1,2-diaminocyclohexane exactly as in Scheme E in the case of (R,R)-1,2-diaminocyclohexane, can be coupled with a functionalized amino acid ester to afford the corresponding pseudo-tripeptide. TFA cleavage affords the pseudo-tripeptide TFA salt which is coupled with
(R,R)-diaminocyclohexyl-N-tosylglycine. Saponification and TFA cleavage affords the bis-cyclohexano containing pseudo-pentapeptide. DPPA mediated cyclization followed by LiA1H4 or Borane reduction affords the corresponding bis-cyclohexano-fused macrocylic ligand. This ligand system is reacted with an iron compound, such as iron (III) chloride under essentially anaerobic conditions to form the corresponding functionalized iron (III)
pentaazacycloalkane complex.
The macrocyclic ligands useful in the complexes of the present invention can also be prepared according to the general procedure shown in Scheme G set forth below. Thus, an amino acid amide, which is the
corresponding amide derivative of a naturally or non- naturally occurring α-amino acid, is reduced to form the corresponding substituted ethylenediamine. Such amino
acid amide can be the amide derivative of any one of many well known amino acids. Preferred amino acid amides are those represented by the formula:
wherein R is as previously defined. Most preferred are those wherein R represents hydrogen, alkyl,
cycloalkylalkyl, and aralkyl radicals. The diamine is then tosylated to produce the di-N-tosyl derivative which is reacted with a di-O-tosylated tris-N-tosylated triazaalkane diol to produce the corresponding
substituted
N-pentatosylpentaazacycloalkane. The tosyl groups are then removed and the resulting compound is reacted with an iron compound under essentially anhydrous and
anaerobic conditions to form the corresponding
substituted iron pentaazacycloalkane complex.
The complexes of the present invention, wherein R9, and R2 are alkyl, and R3, R'3, R4, R'4, Rs, R, 5, R6, R'6, R7, R, 7, R8 and R'8 can be alkyl, arylalkyl or cycloalkylalkyl and R or R' and R1 or R'1 together with the carbon atoms they are attached to are bound to form a nitrogen containing heterocycle, can also be prepared according to the general procedure shown in Scheme H set forth below utilizing methods known in the art for preparing the iron
pentaazabicyclo[12.3.1]octadecapentaene complex
precursor. See, for example, Alexander et al., Inorg.
Nucl. Chem. Lett., 6 , 445 (1970). Thus a 2,6- diketopyridine is condensed with triethylene tetraamine in the presence of an iron compound to produce the iron pentaazabicyclo[12.3.1]octadecapentaene complex. The iron pentaazabicyclo[12.3.1]octadecapentaene complex is hydrogenated with 5% rhodium on carbon at a pressure of 1000 psi to give the corresponding iron
pentaazabicyclo[12.3.1] octadecatriene coimlex.
The macrocyclic ligands useful in the complexes of the present invention can also be prepared by the pyridine diamide route shown in Scheme I as set forth below. Thus, a polyamine, such as a tetraaza compound, containing two primary amines is condensed with dimethyl 2,6-pyridine dicarboxylate by heating in an appropriate solvent, e.g., methanol, to produce a macrocycle incorporating the pyridine ring as the 2,6- dicarboxamide. The pyridine ring in the macrocycle is reduced to the corresponding piperidine ring in the macrocycle, and then the diamides are reduced and the resulting compound is reacted with an compound under essentially anhydrous and anaerobic conditions to form the corresponding substituted pentaazacycloalkane iron complex.
When the ligands or charge-neutralizing anions, i.e. X, Y and Z, are anions or ligands that cannot be introduced directly from the iron compound, the complex with those anions or ligands can be formed by conducting an exchange reaction with a complex that has been prepared by reacting the macrocycle with an iron compound.
The pentaazamacrocycles of the present invention can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or nonracemic mixtures thereof. The optical isomers can be obtained by
resolution of the racemic mixtures according to
conventional processes, for example by formation of diastereoisomeric salts by treatment with an optically active acid. Examples of appropriate acids are
tartaric, diacetyltartaric, dibenzoyltartaric,
ditoluoyltartaric and camphorsulfonic acid and then separation of the mixture of diastereoisomers by
crystallization followed by liberation of the optically active bases from these salts. A different process for separation of optical isomers involves the use of a chiral chromatography column optimally chosen to
maximize the separation of the enantiomers. Still another available method involves synthesis of covalent diastereoisomeric molecules by reacting one or more secondary amine group (s) of the compounds of the
invention with an optically pure acid in an activated form or an optically pure isocyanate. The synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to deliver the
enantiomerically pure ligand. The optically active compounds of the invention can likewise be obtained by utilizing optically active starting materials, such as natural amino acids.
The compounds or complexes of the present invention can be utilized to treat numerous inflammatory disease states and disorders that are mediated, at least in part, by superoxide. For example, reperfusion injury to an ischemic organ, e.g., reperfusion injury to the ischemic myocardium, surgically-induced ischemia, inflammatory bowel disease, rheumatoid arthritis,
osteoarthritis, psoriasis, organ transplant rejections, radiation-induced injury, oxidant-induced tissue
injuries and damage, atherosclerosis, thrombosis, platelet aggregation, metastasis, stroke, acute
pancreatitis, insulin-dependent diabetes mellitus, disseminated intravascular coagulation, fatty embolism, adult and infantile respiratory distress, and
carcinogenesis.
Activity of the compounds or complexes of the present invention for catalyzing the dismutation of superoxide can be demonstrated using the stopped-flow kinetic analysis technique as described in Riley, D.P., Rivers, W.J. and Weiss, R.H., "Stopped-Flow Kinetic Analysis for Monitoring Superoxide Decay in Aqueous Systems," Anal. Biochem., 196, 344-349 (1991), which is incorporated by reference herein. Stopped-flow kinetic analysis is an accurate and direct method for
quantitatively monitoring the decay rates of superoxide in water. The stopped-flow kinetic analysis is suitable for screening compounds for SOD activity and activity of the compounds or complexes of the present invention, as shown by stopped-flow analysis, correlate to treating the above disease states and disorders.
Total daily dose administered to a host in single or divided doses may be in amounts, for example, from about 1 to about 100 mg/kg body weight daily and more usually about 3 to 30 mg/kg. Dosage unit compositions may contain such amounts of submultiples thereof to make up the daily dose.
The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
The dosage regimen for treating a disease condition with the compounds and/or compositions of this invention is selected in accordance with a variety of
factors, including the type, age, weight, sex, diet and medical condition of the patient, the severity of the disease, the route of administration, pharmacological considerations such as the activity, efficacy,
pharmacokinetic and toxicology profiles of the
particular compound employed, whether a drug delivery system is utilized and whether the compound is
administered as part of a drug combination. Thus, the dosage regimen actually employed may vary widely and therefore may deviate from the preferred dosage regimen set forth above.
The compounds of the present invention may be administered orally, parenterally, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired. Topical administration may also involve the use of transdermal administration such as transdermal patches or iontophoresis devices. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.
Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic
parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride
solution. In addition, sterile, fixed oils are
conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In
addition, fatty acids such as oleic acid find use in the preparation of injectables.
Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable nonirritating excipient such as cocoa butter and
polyethylene glycols which are solid at ordinary
temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
Solid dosage forms for oral administration may include capsules, tablets, pills, powders, granules and gels. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose lactose or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions,
solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.
While the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more compounds which are known to be effective against the specific disease state that one is targeting for treatment.
Contemplated equivalents of the general formulas set forth above for the compounds and derivatives as well as the intermediates are compounds otherwise corresponding thereto and having the same general
properties such as tautomers of the compounds and such as wherein one or more of the various R groups are simple variations of the substituents as defined
therein, e.g., wherein R is a higher alkyl group than that indicated, or where the tosyl groups are other nitrogen or oxygen protecting groups or wherein the O-tosyl is a halide. Anions having a charge other than 1, e.g., carbonate, phosphate, and hydrogen phosphate, can be used instead of anions having a charge of l, so long as they do not adversely affect the overall
activity of the complex. However, using anions having a charge other than 1 will result in a slight modification of the general formula for the complex set forth above. In addition, where a substituent is designated as, or can be, a hydrogen, the exact chemical nature of a substituent which is other than hydrogen at that
position, e.g., a hydrocarbyl radical or a halogen, hydroxy, amino and the like functional group, is not critical so long as it does not adversely affect the overall activity and/or synthesis procedure. Further, it is contemplated that iron (III) complexes will be equivalent to the subject iron (III) complexes.
The chemical reactions described above are generally disclosed in terms of their broadest
application to the preparation of the compounds of this invention. Occasionally, the reactions may not be applicable as described to each compound included within the disclosed scope. The compounds for which this occurs will be readily recognized by those skilled in the art. In all such cases, either the reactions can be successfully performed by conventional modifications known to those skilled in the art, e.g., by appropriate protection of interfering groups, by changing to alternative conventional reagents, by routine
modification of reaction conditions, and the like, or other reactions disclosed herein or otherwise
conventional, will be applicable to the preparation of the corresponding compounds of this invention. In all preparative methods, all starting materials are known or readily preparable from known starting materials.
Without further elaboration, it is believed that one skilled in the art can, using the preceding
description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
EXAMPLES
All reagents were used as received without purification unless otherwise indicated. All NMR spectra were obtained on a Varian VXR-300 or VXR-400 nuclear magnetic resonance spectrometer. Qualitative and quantitative mass spectroscopy was run on a Finnigan MAT90, a Finnigan 4500 and a VG40-250T using m- nitrobenzyl alcohol(NBA) or m-nitrobenzyl alcohol/LiCl (NBA+Li). Melting points (mp) are uncorrected.
The following abbreviations relating to amino acids and their protective groups are in accordance with the recommendation by IUPAC-IUB Commission on
Biochemical Nomenclature (Biochemistry, 11, 1726 (1972)) and common usage.
The abbreviation Cyc represents 1,2- cyclohexanediamine (stereochemistry, i.e. R1R or S,S, is indicated as such). This allows three letter code peptide nomenclature to be used in pseudopeptides containing the 1,2-cyclohexanediamine "residue".
Example l
A. Synthesis of 1,4,7-Tris(p-toluenesulfonyl)-1,4,7- triazaheotane
This compound was synthesized following the procedure of Atkins, T. J.; Richman, J. E.; and
Oettle, W. F.; Org . Synth . , 58, 86-98 (1978). To a
stirred solution of p-toluenesulfonyl chloride (618 g, 3.24 mole) in pyridine (1500 ml) at 0°C was added a solution of 1,4,7-triazaheptane (95.5 g, 0.926 mole) in pyridine (150 ml) under a dry argon atmosphere,
maintaining the temperature ≤ 50°C. The addition required 30 minutes. After the mixture was allowed to cool to room temperature slowly while stirring for 3 h, H2O(2 1) was slowly added to the cooled (ice bath) mixture. The heavy white precipitate which formed was filtered and washed thoroughly with H2O. The pale yellow solid was dissolved in DMF (3 1) and 0.1 N HCl (4 1) was slowly added at 5°C. The slurry was filtered and the pale yellow solid was washed thoroughly with H2O and dried in vacuo to give 486 g (93% yield) of the product: mp 180-1°C; 1H NMR(DMSO-d6) δ 2.39 (s,3 H), 2.40 (s, 6 H), 2.84 (m, 4 H), 3.04 (t, J=6.9 Hz, 4 H) 7.40 (d, J=8.1 HZ, 4 H), 7.59 (d, J=8.3 Hz, 2 H), 7.67 (m, 6 H).
B. Synthesis of 1 ,4,7-Tris(p-toluenesulfonyl)-1,4,7- triazaheptane-1,7-disodium Salt
This compound was synthesized following the procedure of Atkins, T.J.; Richman, J.E., and Oettle, W.F.; Org. Synth . , 58 86-98 (1978). To a mechanically stirred slurry of 1,4,7-tris (p-toluenesulfonyl)-1,4,7- triazaheptane prepared as in Example 1A (486 g, 0.859 mole) in ethanol (1150 ml) heated to reflux under a dry argon atmosphere was added a solution of sodium ethoxide (prepared by dissolving sodium metal (39.5 g, 1.72 mole) in absolute ethanol (1.0 1)) as rapidly as possible.
The clear brown solution which formed rapidly was allowed to cool to room temperature and ethyl ether (1.0 1) was added. The crystals were filtered under a dry argon blanket, washed with 3:1 ethanol: ethyl ether and ethyl ether. The crystals were then dried in vacuo to give 509 g (97% yield) of the product as a white powder: !H NMR (DMSO-d6) δ 2.30 (s 6 H), 2.36 (s, 3 H), 2.63 (t,
J=8 . 7 HZ , 4 H), 2 . 89 ( t , J=7 . 2 Hz , 4 H) 7 . 11 ( d , J=8 . 1 HZ , 4 H), 7 . 28 ( d , J=8 . 0 Hz , 2 H), 7 . 46 (m , 6 H) .
C. Synthesis of 3,6-Bis(p-toluenesulfonyl)-3,6- diazaoctane-1,8-di-p-toluenesulfonate
To a stirred solution of p-toluenesulfonyl chloride (566 g, 2.97 mole) and triethylamine (300 g, 2.97 mole) in CH2Cl2 (2.0 1) at 0°C under a dry argon atmosphere was added 3 ,6-diazaoctane-1,8-diol (100 g, 0.675 mole) in portions, maintaining the temperature <10°C. The addition required 30 minutes. The mixture was allowed to warm to room temperature while stirring an additional 18 h and was then poured onto ice (1000 g). The CH2Cl2 layer was separated, washed with 10% HCl, H2O and saturated NaCl solution, and dried (MgSO4) . The solution was concentrated in vacuo to a volume of 1.5 1. Crystallization by the addition of hexane (4 1) gave 477 g (92% yield) of the product as colorless needles: mp 151-3°C; 1H NMR (CDCl3) δ 2.43 (s, 12 H), 3.29 (s, 4 H), 3.36 (t, J=5.2 HZ, 4 H) 4.14 (t, J=5.2 Hz , 4 H), 7.33 (d, J=7.8 Hz, 8 H), 7.71. (d, J=8.2 Hz, 4 H), 7.79 (d, J=8.3 Hz, 4 H).
D. Synthesis of 1,4,7,10,13-Penta(p-toIuenesulfonyl)- 1,4,7,10,13-pentaazacγclopentadecane
This compound was synthesized following the procedure of Richman, J.E., and Atkins, T.J., J . Am . Chem . Soc , 96, 2268-70 (1974). To a stirred solution of 1,4,7-tris(p-toluenesulfonyl)-1,4,7-triazaheptane- 1,7-disodium salt prepared as in Example IB (146 g, 0.240 mole) in anhydrous DMF (2250 ml) was added
dropwise over 3 h to a solution of 3,6-bis(p-toluene- sulfonyl)-3,6-diazaoctane-1,8-di-p-toluenesulfonate prepared as in Example 1C (184 g, 0.240 mole) in
anhydrous DMF (1020 ml) under a dry argon atmosphere, maintaining the temperature at 100°C. After stirring an
additional 1 h at 100°C, the solution was concentrated in vacuo to a volume of 1.5 1. H2O (500 ml) was slowly added at 80°C to crystallize the product. The resulting slurry was slowly cooled to 0°C and additional H2O (1250 ml) added. The solid was filtered, washed thoroughly with H2O and then 90% ethanol and dried in vacuo. The off-white solid was dissolved in CH2Cl2; insoluble impurities were removed by filtration and the filtrate was washed with H2O and then dried (MgSO4). The solvent was removed in vacuo to give a yellow solid which was purified by recrystallization from CH2Cl2-hexane to give 164 g (69% yield) of the product as a white crystalline solid: mp 290-3°C; 1H NMR (CDCl3) δ 2.44 (s, 15 H) 3.27 (S, 20 H), 7.32 (d, J=8.3 Hz, 10 H), 7.66 (d, J=8.3 Hz , 10 H).
E. Synthesis of 1,4,7,10.13-Pentaazacyclopentadecane
A mixture of 1,4,7,10,13-penta(p- toluenesulfonyl)-1,4,7,10,13-pentaazacyclopentadecane prepared as in Example ID (168 g, 0.170 mole) and concentrated H2SO4 (500 ml) was heated at 100°C with stirring under a dry argon atmosphere for 70 h. To the resulting dark brown solution ethanol (500 ml) was added dropwise with stirring at 0°C followed by ethyl ether (3 1). The white solid was filtered and washed with ethyl ether. The solid was then dissolved in H2O (500 ml) and the resulting solution washed with ethyl ether. Upon reducing the volume of the solution in vacuo to 200 ml, the pH was adjusted to 10-11 with 10 N NaOH and the solvent was removed in vacuo . Ethanol (500 ml) was then added and removed in vacuo to dryness. The resulting tan oily solid was extracted with hot THF (2x500 ml) and filtered at room temperature. The filtrates were combined and the solvent removed in vacuo to give the crude product as a yellow crystalline solid which was
then redissolved in CH3CN and filtered to remove
insoluble impurities. Recrystallization from cold (- 20°C) CH3CN gave 11.3 g (31% yield) of the product as colorless needles: mp 108-9°C; 1H NMR (CDCl3) δ 1.74 (br s, 5 H), 2.73 (s, 20 H); Exact mass (M+Li)+: calcd,
222.2270; Found, 222.2269 (C10H2SN5Li).
F. Synthesis of [Iron(III)dichloro(1,4,7,10.13- Pentaazacyclopentadecane)]hexafluoroohosphate
Upon an inert atmosphere in a drybox, 108 mg (0.50 mmol) of the ligand, 1,4,7,10,13- tetraazacyclopentadecane, was dissolved in 15 ml of anhydrous methanol. To this solution was added with vigorous stirring 2 ml of a pyridine solution containing 0.50 mmol (80 mg) of anhydrous FeCl3. The resultant dark solution was heated to reflux for two hours with
stirring and then allowed to cool to room temperature and then filtered. To the filtrate was added 20 ml of a clear methanolic solution of NH4PF6 (163) mg). A yellow precipitate formed instantly and was collected by
filtration, washed with diethyl ether and dried in vacuo overnight. The yield after drying was 170 mg (0.338 mmol) corresponding to a 68% theoretical yield. Anal. Calc. for C10H20N5Cl2FeF6P CH3OH: C, 25.07; H, 5.41: N, 13.92. Found: C, 25.18; H, 5.60; N, 13.89. Mass spectrum (FAB, NBA matrix): m/z 306 ( [Fe(L) Cl+e]+ and m/z 341 ([Fe(L)Cl2]+ were observed.
Example 2
A. Synthesis of N-(p-toluenesulfonyl)-(R,R)-1,2- diaminocyclohexane
To a stirred solution of (R,R)-1,2- diaminocyclohexane (300 g, 2.63 mole) in CH2Cl2 (5.00 1) at -10 C was added a solution of
p-toluenesulfonylchloride (209 g, 1.10 mole) in CH2Cl2 (5.00 1) dropwise over a 7 h period, maintaining the
temp at -5 to -10°C. The mixture was allowed to warm to room temp while stirring overnight. The mixture was concentrated in vacuo to a volume of 3 1 and the white solid was removed by filtration. The solution was then washed with H2O (10 x 1 1) and was dried over MgSO4.
Removal of the solvent in vacuo gave 286 g (97.5% yield) of the product as a yellow crystalline solid: 1H NMR (CDCl3) δ 0.98 - 1.27 (m, 4 H), 1.54 - 1.66 (m, 2 H), 1.81 - 1.93 (m, 2 H), 2.34 (dt, J = 4.0, 10.7 Hz, 1 H), 2.42 ( S, 3 H), 2.62 (dt, J = 4.2, 9.9 Hz, 1 H), 7.29 (d, J = 8.1 Hz, 2 H), 7.77 (d, J = 8.3 Hz, 2 H); MS (LRFAB - DTT - DTE) m/z 269 [M + H]+.
B. Synthesis of N-(p-toluenesulfonyl)-N -(Boc)-(R,R)- 1,2-diaminocyclohexane
To a stirred solution of N-(p-toluenesulfonyl)- (R,R)-1,2-diaminocyclohexane prepared as in Example 2A (256 g, 0.955 mole) in THF (1.15 1) was added a 1 N solution of aqueous NaOH (1.15 1, 1.15 mole). Di-t- butyldicarbonate (229 g, 1.05 mole) was then added and the resulting mixture was stirred overnight. The layers were separated and the aqueous layer was adjusted to pH 2 with 1 N HCl and saturated with NaCl. The aqueous solution was then extracted with CH2Cl2 (2 x 500 ml) and the extracts and THF layer were combined and dried over MgSO4. The solvent was removed in vacuo to give a yellow solid. The crude product was purified by
crystallization from a THF-ether-hexanes mixture to give 310 g (88.1% yield) of the product as a white
crystalline solid: mp:
137 - 139°C; 1H NMR (CDCl3) δ 1.04 - 1.28 (m, 4 H), 1.44 (s, 9 H), 1.61 - 1.69 (m, 2 H), 1.94 - 2.01 (m, 2 H), 2.43 (s, 3 H), 2.86 (brs, 1 H), 3.30 (br d, J = 9.6 Hz , 1 H), 4.37 (br d, J = 6.7 Hz, 1 H), 5.48 (br d, J = 4.6 Hz, 1 H), 7.27 (d, J - 9.7 HZ , 2 H), 7.73 (d, J = 8.1
Hz, 2 H) ; MS (LRFAB, NBA - Li) m/z 375 [M + Li]+.
C. Synthesis of Boc-(R,R)-Cyc(Ts)-gly-OMe
To a stirred solution of N-(p-toluenesulfonyl)- N -(Boc)-(R,R)-1,2-diaminocyclohexane prepared as in Example 2B (310 g, 0.841 mole) in anhydrous DMF (3.11 1) at 0 C was added NaH (37.4 g - 60 % in oil, 0.934 mole) in portions and the resulting mixture was stirred for 30 min. Methyl bromoacetate (142 g, 0.925 mole) was then added dropwise over 45 min and the mixture was allowed to warm to room temp while stirring overnight. After stirring for 17 h, the solvent was removed in vacuo and the residue was dissolved in ethyl acetate(3 1) and H2O (1 1). The ethyl acetate solution was washed with saturated NaHCO3 (1 1), saturated NaCl (500 ml) and was dried over MgSO4. The solvent was removed in vacuo and the resulting oil was dissolved in ether.
Crystallization by the addition of hexanes gave 364 g (98 % yield) of the product (TLC (98:2 CHCl3-MeOH/silica gel/UV detn) showed that the product contained about 5% starting material) as colorless needles: mp of pure sample 151 - 2 C ; 1H NMR (CDCl3) δ 1.11 - 1.22 (m, 4 H), 1.45 (s, 9 H), 1.64 - 1.70 (m, 3 H), 2.16 - 2.19 (m, 1 H), 2.43 (s, 3 H), 3.34 - 3.40 (m, 2 H), 3.68 (s, 3 H), 4.06 (ABq, J = 18.5 Hz , Δ υ = 155 Hz, 2H), 4.77 (br s 1 H), 7.30 (d, J = 8.3 HZ, 2 H), 7.82 (d, J = 8.3 HZ , 2 H); MS (LRFAB, DTT - DTE) m/z 441 [M + H]+.
D. Synthesis of Boc-(R,R)-Cyc(Ts)-Gly-QH
To a stirred solution of impure Boc-(R,R)-
Cyc(Ts)-Gly-OMe prepared as in Example 2C (217 g, 0.492 mole) in MeOH (1.05 1) was slowly added a 2.5N solution of aqueous NaOH (295 ml, 0.737 mole) and the resulting solution was stirred for 2 h. The solvent was removed in vacuo and the residue was dissolved in H2O (1.5 1).
The solution was filtered to remove a small amount of solid and was washed with ether (7 x 1 1) to remove the impurity (compound IB) which upon drying of the combined washes over MgSO4 and removal of the solvent in vacuo resulted in recovery of 8.37 g. The pH of the aqueous solution was then adjusted to 2 with 1 N HCl and the product was extracted with ethyl acetate (3 x 1 1).
The extracts were combined, washed with saturated NaCl (500 ml) and dried over MgSO4. The solvent was removed in vacuo and the residual ethyl acetate removed by coevaporation with ether (500 ml) and then CH2Cl2 (500 ml) to give 205 g (97.6% yield) of the product as a white foam: 1H NMR (CDCl3) δ 1.15 - 1.22 (m, 4 H), 1.48 (s, 9 H), 1.55 - 1.68 (m, 3 H), 2.12 - 2.15 (m, 1 H), 2.43 (S, 3 H), 3.41 - 3.49 (m, 2 H), 3.97 (ABq, J = 17.9 Hz, Δ U = 69.6 Hz, 2 H), 4.79 (br s, 1 H), 7.31 (d, J = 8.1 Hz, 2 H), 7.77 (d, J - 8.3 Hz , 2 H), 8.81 (br s, 1 H); MS (LRFAB, NBA - Li) m/z 433 [M + Li]+. E. Synthesis of N-(p-toluenesulfonyl)-(S,S)-1,2- diaminocyclohexane
To a stirred solution of (S,S)-1,2- diaminocyclohexane (300 g, 2.63 mole) in CH2Cl2 (5.00 1) at -10 C was added a solution of
p-toluenesulfonylchloride (209 g, 1.10 mole) in CH2Cl2 (5.00 1) dropwise over a 8 h period, maintaining the temp at -5 to -10 C. The mixture was allowed to warm to RT while stirring overnight. The mixture was
concentrated in vacuo to a volume of 3 1 and the white solid was removed by filtration. The solution was then washed with H2O (10 x 1 1) and was dried over MgSO4.
Removal of the solvent in vacuo gave 289 g (98.3% yield) of the product as a yellow crystalline solid: 1H NMR (CDCl3) δ 0.98 - 1.27 (m, 4 H), 1.55 - 1.66 (m, 2 H), 1.81 - 1.94 (m, 2 H), 2.32 (dt, J = 4.0, 10.9 Hz, 1 H),
2 . 42 ( s , 3 H), 2 . 61 (dt , J = 4 . 0 , 9 . 9 Hz , 1 H), 7 . 30 (d , J = 7 . 9 Hz , 2 H), 7 . 77 ( d , J = 8 . 3 Hz , 2 H) ; MS
(LRFAB , GT - HCl) m/ z 269 [M + H] + . F. Synthesis of N-(p-toluenesulfonyl)-N -(Boc)-(S,S)- 1 , 2-diaminocvclohexane
To a stirred solution of N-(p-toluenesulfonyl)- (S,S)-1,2-diaminocyclohexane prepared as in Example 2E (289 g, 1.08 mole) in THF (1.29 1) was added a 1 N solution of aqueous NaOH (1.29 1, 1.29 mole). Di-t- butyldicarbonate (258 g, 1.18 mole) was then added and the resulting mixture was stirred overnight. The solid was removed by filtration and washed with THF. The THF layer was separated and the aqueous layer was adjusted to pH 2 with 1 N HCl and saturated with NaCl. The aqueous solution was then extracted with CH2Cl2 (2 x 500 ml) and the extracts and THF layer were combined, washed with saturated NaCl (500 ml) and dried over MgSO4. The solvent was removed in vacuo to give a yellow slurry. Crystallization with the addition of ether gave 364 g (91.9% yield) of the product as colorless needles: mp 137 - 139°C; 1H NMR (CDCl3) δ 1.06 - 1.31 (m, 4 H), 1.44 (s, 9 H), 1.60 - 1.69 (m, 2 H), 1.95 - 1.99 (m, 2 H), 2.42 (s, 3 H), 2.86 (br s, 1 H), 3.30 (br d, J = 2.6 Hz, 1 H), 4.41 (br d, J = 7.3 Hz, 1 H), 5.54 (br d, J = 5.4 HZ, 1 H), 7.28 (d, J = 8.1 Hz, 2 H), 7.73 (d, J = 8.3 HZ, 2 H); MS (LRFAB, NBA - HCl) m/z 369 [M + H]+.
G. Synthesis of Boc-(S,S)-Cyc(Ts)-gly-OMe
To a stirred solution of N-(p-toluenesulfonyl)- N -(Boc)-(S,S)-1,2-diaminocyclohexane prepared as in Example 2F (364 g, 0.989 mole) in anhydrous DMF (3.66 1) at O C was added NaH (47.4 g - 60% in oil, 1.19 mole) in portions and the resulting mixture was stirred for 1.5 h. The mixture was warmed to room temp and stirred an additional 30 min and then cooled back to 0 C. Methyl
bromoacetate (189 g, 1.24 mole) was added dropwise over 30 min and the mixture was allowed to warm to RT while stirring overnight. After stirring for 17 h, the solvent was removed in vacuo and the residue was
dissolved in a mixture of ethyl acetate (3 1) and H2O
(1 1). The layers were separated and the ethyl acetate solution was washed with saturated NaHCO3 (1 1), H2O (1 1), saturated NaCl (2 x 500 ml) and was dried over MgSO4. The solvent was removed in vacuo and the resulting oil was dissolved in ether. Crystallization by the addition of hexanes gave 290 g of the crude product as yellow needles. Another 180 g was recovered from the filtrate as an oil. TLC (98:2 CHCl3-MeOH/silica gel/UV detn) showed that both the solid and the oil contained
starting material. 1H NMR (CDCl3) δ 1.06 - 1.29 (m, 4
H), 1.44 (s, 9 H), 1.58 - 1.66 (m, 3 H), 2.17 - 2.19 (m, 1 H), 2.43 (s, 3 H), 3.28 - 3.43 (m, 2 H), 3.68 (s, 3 H), 4.25 (ABq, J = 18.5 Hz, Δ U = 115 Hz , 2H), 4.76 (br S 1 H), 7.31 (d, J = 8.3 HZ, 2 H), 7.83 (d, J = 8.3 Hz , 2 H) ; MS (LRFAB, NBA - Li) m/z 447 [M + H]+.
H. Synthesis of Boc-(S,S)-Cyc(Ts)-Gly-OH
To a stirred solution of impure Boc-(S,S)- Cyc(Ts)-Gly-OMe prepared as in Example 2G (197 g, 0.447 mole) in MeOH (925 ml) was slowly added a 2.5N solution of aqueous NaOH (268 ml, 0.670 mole) and the resulting solution was stirred for 2 h. The solvent was removed in vacuo and the residue was dissolved in H2O (1 1). The solution was washed with ether (4 x l 1) to remove the impurity (compound 2F) which upon drying of the combined washes over MgSO4 and removal of the solvent in vacuo resulted in recovery of 14.8 g. The pH of the aqueous solution was then adjusted to 2 with 1 N HCl and the product was extracted with ethyl acetate (3 x 1 1).
The extracts were combined, washed with saturated NaCl
and dried over MgSO4. The solvent was removed in vacuo to give 171 g (89.7% yield) of the product as an oil which crystallized on standing: 1H NMR (CDCl3) δ l.io - 1.22 (m, 4 H), 1.45 (s, 9 H), 1.55 - 1.68 (m, 3 H), 2.13 - 2.16 (m, 1 H), 2.43 (s, 3 H), 3.39 - 3.41 (m, 2 H), 4.00 (ABq, J = 18.1 Hz, Δ υ = 80.4 Hz , 2 H), 4.82 (br S, 1 H), 7.31 (d, J = 8.3 HZ, 2 H), 7.75 (d, J = 8.3 Hz, 2 H), 9.28 (br s, 1 H) ; MS (LRFAB, NBA - Li) m/z 433 [M + Li]+.
I. Synthesis of Boc-(S,S)-Cyc(Ts)-Gly-Gly-OEt
To a stirred solution of Boc-(S,S)-Cyc(Ts)-Gly- OH prepared as in Example 2H (26.7 g, 62.5 mmole) in degassed anhydrous DMF (690 ml) was added HOBT (10.1 g, 75.0 mmole) and EDC-HCl (14.4 g, 75.0 mmole). After the resulting solution was stirred for 30 min, glycine ethyl ester hydrochloride (9.60 g, 68.8 mmole) was added and the pH adjusted to 8 with TEA. After stirring for 2.75 days the solvent was removed in vacuo. The residue was dissolved in a mixture of ethyl acetate (1 1) and H2O (1 1) and the layers were separated. The aqueous layer was extracted with ethyl acetate (1 1) and the extracts were combine. The ethyl acetate solution was washed with 0.1 N HCl (1 1), saturated NaHCO3 (1 1), saturated NaCl (500 ml) and was dried over MgSO4. The solvent was removed in vacuo to give 30.2 g (94.4% yield) of the product as a white foam: 1H NMR (CDCl3) δ 1.19 - 1.23 (m, 3 H), 1.28 (t, J =7.05 Hz, 3 H), 1.42 (s, 11 H), 1.63 - 1.71 (m, 2 H), 2.16 - 2.18 (m, 1 H), 2.43 (s, 3 H) . 3.50 - 3.57 (m, 2 H), 3.83 (ABq, J = 17.7 Hz, delta v = 35.7 Hz, 2 H), 4.01 (dABq, J = 6.05, 17.92 Hz , Δ " = 28.9 Hz , 2 H), 4.20 (q, J - 7.3 Hz , 2 H), 4.88 (br s, 1 H), 7.31 (d, J = 8.3 Hz, 2 H), 7.36 (br s, 1 H), 7.73 (d, J = 8.3 Hz, 2 H); MS (LRFAB, NBA - HCl) m/z 512 [M + H]+.
J. Synthesis of (S. S ) -Cyc(Ts) -Gly-Gly-OEt TFA salt
To a stirred solution of Boc-(S,S)-Cyc(Ts)-Gly- Gly-OEt prepared as in Example 21 (30.1 g, 58.8 mmole) in CH2Cl2 (265 ml) was added TFA (63 ml) and the
resulting solution was stirred for 30 minutes. The solvent was removed in vacuo and residual TFA was coevaporated with CH2Cl2 (2 x 1 1) and ether (1 1). The oil was then triturated with ether (2 x 1 1) and the ether decanted. The resulting foam was dried in vacuo to give 33.7 g (assumed quantitative yield) of the product as a tan powder: 1H NMR (CDCl3) δ 0.96 - 1.23 (m, 4 H), 1.25 (t, J = 7.3 Hz, 3 H), 1.51 - 1.66 (m, 3 H), 2.12 - 2.26 (m, 1 H), 2.41 (s, 3 H), 2.98 - 3.10 (brs, 1 H), 3.67 - 3.71 (m, 1 H), 4.04 (ABq, J = 17.7 Hz , Δ υ = 154 Hz, 2 H), 4.04 (d, J = 4.4 HZ, 2 H), 4.17 (q, J = 7.3 HZ, 2 H), 7.29 (d, J = 8.3 Hz, 2 H), 7.70 (d, J = 8.3 Hz, 2 H), 8.04 (br s, 1 H), 8.14 (br s, 3 H) MS (LRFAB, NBA - HCl) m/z 412 [M + H]+. K. Synthesis of Boc-(R,R)-Cyc(Ts)-Gly-(S,S)-Cyc(Ts)- Gly-Gly-OEt
To a stirred solution of Boc-(R,R)-Cyc(Ts)-Gly-OH prepared as in Example 2D (25.1 g, 58.8 mmole) in degassed anhydrous DMF (650 ml) was added HOBT (9.54 g, 70.6 mmole) and EDC-HCl (13.5 g, 70.6 mmole). After the resulting solution was stirred for 30 min (S,S)-Cyc(Ts)- Gly-Gly-OEt TFA salt prepared as in Example 1J (33.6 g, 58.8 mmole) was added and the pH was adjusted to 8 with TEA. After stirring for 2.75 days, the solvent was removed in vacuo . The residue was dissolved in a mixture of ethyl acetate (1 1) and H2O (l 1) and the layers were separated. The ethyl acetate solution was washed with 0.1 N HCl (2 x l 1), saturated NaHCO3 (2 x 1 1), saturated NaCl (500 ml) and was dried over MgSO4. The solvent was removed in vacuo to give 47.5 g (98.4%
yield) of the product as a tan foam: 1H NMR (CDCl3) δ 1.12 - 1.83 (m, 26 H), 2.21 - 2.24 (m, 2 H), 2.42 (s, 3 H), 2.43 (s, 3 H), 3.36 - 3.51 (br s, 2 H), 3.68 -3.96 (m, 6 H), 4.00 (d, J = 5.4 Hz, 2 H), 4.19 (q, J = 7.1 HZ, 2 H), 4.72 (br s, 1 H), 6.78 (br s, 1 H), 7.31 (d, J - 8.1 Hz, 4 H), 7.46 (br s, 1 H), 7.79 (m, 4 H); MS (LRFAB, NBA - HCl) m/z 820 [M + H]+.
L. Synthesis of Boc-(R,R)-Cyc(Ts)-Gly-(S,S)-Cyc(Ts)- Gly-Gly-OH
To a stirred solution of Boc-(R,R)-Cyc(Ts)-Gly- (S,S)-Cyc(Ts)-Gly-Gly-OEt prepared as in Example 2K (47.4 g, 57.8 mmole) in MeOH (240 ml) was added a 2.5 N solution of aqueous NaOH (34.7 ml, 86.7 mmole) and the resulting solution was stirred for 2 h. The solvent was removed in vacuo and the residue was dissolved in H2O (1 1). The aqueous solution was washed with ether
(2 x 1 1) and the pH was adjusted to 2 with 1 N HCl.
The solution was then saturated with NaCl and extracted with ethyl acetate (3.x 1 1). The combined extracts were dried over MgSO4 and the solvent was removed in vacuo . The residual ethyl acetate was removed by coevaporation with CH2Cl2 and the resulting foam was dried in vacuo to give 45.7 g (99.7% yield) of the product as a tan powder: 1H NMR (CDCl3) δ 1.16 - 1.75 (m, 23 H), 2.13 - 2.17 (m, 2 H), 2.41 (s, 3 H), 2.42 (s, 3 H), 3.49 - 4.16 (m, 10 H), 4.53 (br s, 1 H), 7.01 (br s, 1 H), 7.30 (d, J = 8.1 HZ, 4 H), 7.40 (br s, 1 H), 7.79 (d, J = 8.1 Hz, 2 H), 7.86 (d, J = 7.7 Hz, 2 H), 10.40 (br s, 1 H); MS (LRFAB, NBA - HCl) m/z 792 [M + H]+.
M. Synthesis of (R,R)-Cyc(Ts)-Gly-(S,S)-Cyc(Ts)-Gly- Gly-OH TFA salt
To a stirred solution of Boc-(R,R)-Cyc(Ts)-Gly- (S,S)-Cyc(Ts)-Gly-Gly-OH prepared as in Example 2L (45.5
g, 57.5 mmole) in CH2Cl2 (260 ml) was added TFA (60 ml). The resulting solution was stirred for 30 min and the solvent was removed in vacuo . Residual TFA was removed by coevaporation with CH2Cl2 (3 x 1 1) and trituration of the resulting foam with ether (1 1, 2 x 750 ml),
decanting the ether each time. After desiccation in vacuo , 47.4 g (100% yield) of the product was obtained as an off white powder: 1H NMR (CDCl3) δ 1.05 - 1.31 (i, 9 H), 1.48 - 1.63 (m, 5H), 2.11 - 2.21 (m, 2 H), 2.40 (S, 3 H), 2.42 (S, 3 H), 3.25 (br s, 1 H), 3.60 - 3.80 (m, 3 H), 3.83 - 4.19 (m, 6 H), 6.94 (br s, 1 H), 7.31 (m, 4 H), 7.69 (m, 4 H), 7.83 (br s, 3 H), 13.17 (br s, 2 H); MS (LRFAB, DTT - DTE) m/z 692 [M + H]+. N. Synthesis of Cyclo-[(R,R)-Cyc(Ts)-Gly-(S,S)-Cyc(Ts)- Gly-Gly-]
To a stirred solution of (R,R)-Cyc(Ts)-Gly-(S,S)- Cyc(Ts)-Gly-Gly-OH TFA salt prepared as in Example 2M (32.2 g, 40.0 mmole) in degassed anhydrous DMF (10.0 1) at -78 C was added DPPA (13 4 g, 48.8 mmole). The pH of the solution was then adjusted to 8 with TEA and the solution was allowed to stand for 6 h at -78 C. The pH was readjusted to 8 with TEA and the solution was warmed to -45 C for 24 h. After readjusting the pH as before, the solution was allowed to warm to -40 C for 24 h. The pH was adjusted as before and the solution was allowed to stand at -20 C for 24 h. The pH was readjusted as before and the solution was allowed to warm to 2°C over 24 h. The pH had dropped only slightly. The pH was readjusted as before and the solution was allowed to stand at 2 C for another 24 h after which time the pH had not changed. The solution was divided equally among 6 - 4 1 beakers and H2O (1.1 1) was added to each. Then added a total of 5.00 kg mixed-bed ion exchange resin to the solution (divided equally among the 6 beakers) and stirred the mixtures for 6 h. The resin was then
filtered and washed with DMF. The solvent was then removed in vacuo and the solid residue was dissolved in MeOH (100 ml) and filtered to remove finely divided solids. The solution was then concentrated in vacuo to a volume of 25 ml and ether was added periodically as the crystallization proceeded to give 22.2 g (82.5 % yield) of the product as colorless needles; mp 190 - 200 C; 1H NMR (CDCl3) δ 0.87 - 2.13 (m, 16 H), 2.41 (s, 3 H), 2.45 (S, 3 H), 3.56 - 3.97 (m, 10 H), 6.66 (br s, 1 H), 7.18 (br s, 1 H), 7.34 (d, J = 8.1 Hz , 4 H), 7.65 (br s, 1 H), 7.71 (d, J = 7.3 HZ, 2 H), 7.89 (d, J = 7.3 Hz, 2 H); MS (LRFAB, NBA - Li) m/z 680 [M + Li]+.
O. Synthesis of 2,3-(R,R)-8,9-(S,S)-Bis-cyclohexano- 1,4,7,10.,3-pentaazacycloρentadecane
To a stirred solution of Cyclo-[(R,R)-Cyc(Ts)- Gly-(S,S)-Cyc(Ts)-Gly-Gly] prepared as in Example 2N (19.4 g, 28.8 mmole) in anhydrous THF (475 ml) was added a solution of 1.0 M LiAlH4 in THF (345 ml, 345 mmole) dropwise over 30 min. The yellow homogeneous solution was refluxed for 20 h (by which time it had become heterogeneous) and was then cooled to 0 C. The mixture was then quenched by the dropwise addition of a 10% NaSO4 solution (50 ml) while cooling in an ice bath. The solids were removed by filtration under an Ar blanket and the THF was removed in vacuo to give an oil which rapidly crystallized. The solids were then refluxed with anhydrous THF (1 1) for 1 h and the mixture was filtered and the solvent removed in vacuo as before.
The solids were then refluxed with a mixture of THF
(1 1) and MeOH (500 ml) for 1 h and worked up as before. The residues from the extractions were then dissolved in anhydrous THF, combined and solids were removed by filtration. The solvent was removed in vacuo and the yellow foam dried by azeotroping H2O with toluene
(1.75 1) in vacuo at 90 C. Then refluxed the solids with hexanes (1 1) for 30 min and transferred the hot solution to a tared flask and removed the solvent in vacuo to give 6.1 g of an oil which crystallized on standing. The remaining solids were refluxed with hexanes as before and obtained 1.4 g of an oil which crystallized on standing. The solids were then
dissolved in MeOH and toluene (1 1) was added. The solvent was removed in vacuo and any remaining H2O was removed by azeotroping with toluene (1 1) and then hexanes (3 x 1 1). The resulting fine powder was refluxed with hexanes (1 1) for 2 h under argon and filtered into a tared flask. The solvent was removed in vacuo to give 1.7 g oil which crystallized on standing. The crystalline residues from the 3 extracts were dissolved in hexanes and combined. A small amount of haziness was removed by filtration and the solution was concentrated to give 5.3 g (57% yield) of product as a pale yellow crystalline solid. Recrystallization from acetonitrile gave 4.47 g (48.0% yield) of a colorless crystalline solid: mp 107 - 8°C; 1H NMR (CDCl3) δ 0.95 - 1.01 (m, 4 H), 1.19 - 1.24 (m, 4 H), 1.70 - 1.73 (m, 4 H), 1.97 (br s, 5 H), 2.08 - 2.14 (m, 8 H), 2.49 - 2.68 (m, 6 H), 2.74 - 2.80 (m, 2 H), 2.85 - 2.90 (m, 2 H), 2.94 - 2.99 (m, 2 H); MS (LRFAB, NBA) m/z 324 [M + H]+; Anal, calcd. for C18H37N5: C, 66.83; H, 11.53; N, 21.65. Found: C, 66.80; H, 11.44; N, 21.71.
P. Synthesis of [Iron (III) dichloro (2,3-(R,R) -8.9- (S,S)-Bis-cyclohexano-1,4,7,10.13- pentaazacyclopentadecane] chloride
Under an inert atmosphere in a drybox, 199 mg
(0.615 mmol) of the ligand, 2,3-(R,R)-8,9-(S,S)-bis- cyclohexano-1,4,7,10,13-tetraazacyclopentadecane, was dissolved in 10 ml of an anhydrous methanol solution containing 0.615 mmol (100 mg) of anhydrous FeCl3. The
resultant dark yellow-orange solution was heated to reflux for one-half hour with stirring and then allowed to cool to room temperature and then filtered. The filtrate was reduced to dryness and redissolved in 25 cc of hot abs. Ethanol and then filtered through Celite®. The ethanol solution was reduced to ~ 10 ml volume. To this warm ethanol solution was added diethyl ether to the cloud point. The solution was allowed to sit undisturbed for 16 hours upon which a yellow
microcrystalline precipitate had formed. The yellow solid was isolated by filtration, washed with diethyl ether, and dried in vacuo overnight. The yield after drying was 235 mg (0.486 mmol) corresponding to a 79% theoretical yield. Anal. Calc. for C10H20N5FeCl3 CH3CH2OH: C, 45.25; H, 8.16: N, 13.19; Cl, 20.03. Found: C, 44.97; H, 8.07; N, 13.01; Cl, 19.88. Mass spectrum (FAB, NBA matrix): m/z 449 ( [Fe(L)Cl+e]+ and m/z 431 ([Fe(L)Cl2]+ were observed. A. Synthesis of N,N'-Bis(chloroacetyl) 1R,2R- diaminocyclohexane
1R, 2R-(-)-Diaminocyclohexane (6.98 g, 61.13 mmol) was dissolved in 75 ml of alcohol free CC1 3 in a 4 neck 2000 ml round bottom flask along with 37 ml H2O under argon. Two Normag dropping funnels were connected to the reaction flask, and charged separately with, chloroacetyl chloride (15 ml, 188.3 mmol) in alcohol free CHCl3 (88 ml), and K2CO3 (24.1 g, 174.4 mmol) in 918 ml H2O. An internal thermometer was inserted into the reaction flask. After cooling the two phase mixture in the reaction flask to 0 °C in an ice bath, the additions from the dropping funnels were started in such a way as to keep the proportion of each solution added
approximately equal over a 1 h 20 min period. During the addition, an ice salt bath was used to moderate the
temperature, keeping it between 3 and -3 °C. A shell of ice formed on the inside of the reaction flask which didn't seem to impede the stirring. The reaction flask was removed from the ice bath at the end of the addition and was stirred for 2 h 20 min. The lower chloroform layer appeared to have a considerable quantity of a light solid in it at ice bath temperature, but it dissolved as the reaction warmed. The reaction mixture was placed in a separatory funnel, some additional chloroform added, and the layers were separated. The aqueous layer was extracted with another portion of CHCl3, and the combined chloroform layers were washed with water, then saturated NaCl, dried (Na2SO4) and stripped down to a brownish white solid. This solid was stirred overnight with about 450 ml of ether, then filtered, much of the color staying in the ether, giving a beige solid, 13.68 g, 51.60 mmol, 84.4% yield. 1H NMR (CDCl3, 400 MHz) d 1.34 (m, 4H), 1.80 (m, 2H), 2.08 (m, 2H), 3.74 (m, 2H), 3.99 (ABq, J = 15.1 Hz , dn = 8.2 Hz, 4H), 7.26 (br s, 2H); 13C NMR (CDCl3, 100 MHz) d 24.59, 32.07, 42.45, 53.94, 166.65; MS (FAB, NBA-LiCl matrix): m/z (relative intensity) 273 (100) [M+ Li]+, 275 (71) [M+ Li]+.
B. synthesis of N-Tosylglycyl-1R,2R-diaminocyclohexane
1R, 2R-Diaminocyclohexane (10.0 g, 87.57 mmol) was dissolved in dry DMF (150 ml) under argon and cooled to -10°C. Separately, N-tosylglycine (10.04 g, 43.62 mmol), 1-hydroxybenzotriazole (6.75 g, 44.08 mmol), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride (8.45 g, 44.05 mmol) were dissolved in dry DMF (150 ml), and cooled to -10°C under argon. The latter solution was added to the diaminocyclohexane solution at -10°C via cannula. After 2 hours at this temperature, water (8 ml) was added and the reaction was allowed to warm to 0°C over one hour, then to room
temperature over the next half hour. The solvent was removed on the rotary evaporator under reduced pressure. The residue was heated to 40 to 42 °C with water (150 ml) added in small portions with stirring. After 25 minutes this solution was filtered. The white precipitate was largely the bis adduct (5.55 g) . Exactly 68 ml of the filtrate was worked up by repeated extraction with dichloromethane (9 x 50 ml). The combined organic phase was dried (sodium sulfate), filtered and the solvent was removed. The resulting white solid which contained some residual DMF was redissolved in dichloromethane (30 ml) and added dropwise to a stirred solution of 9: 1 ether: hexane (250 - 300 ml) giving an immediate precipitate which was stirred overnight and then filtered. This procedure was repeated, stirring for three hours instead of overnight. After drying the white product on the vacuum line, 2.36 g, 7.25 mmol were obtained, equivalent to a 36.7% yield for the entire reaction. 1H NMR (CDCl3, 400 MHz) d 1.10 - 1.34 (m, 4H), 1.70 (d, J = 9.7 Hz, 2H), 1.81 - 1.97 (2 m, 2H), 2.41 (S, 3H), 2.51 (td, J = 10.2, 3.8 Hz, 1H), 3.53 (m + ABq, J = 16.9 Hz , dn = 51.6 Hz, 3H), 3.69 (br s, 3H), 6.84 (d, J = 9.1 Hz, 1H), 7.30 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.3 Hz , 2H) ; 13C NMR (CDCl3, 100 MHz) d 21.48, 24.87, 24.97, 32.08, 35.16, 46.09, 54.85, 55.78, 127.15, 129.85, 136.02, 143.84, 168.69; MS (GTC1 ) : m/z 326 (100) [M+ H]+.
C. Synthesis of 2R,3R,8R,9R-Bis(cyclohexano)-13-p- toluenesulfonyl-1,4,7,10.13-pentaazacyclopentadecan- 6,11,15-trione
N-p-Toluenesulfonylglycyl-1R,2R- diaminocyclohexane (1.11 g, 3.42 mmol) and N,
N -bis(chloroacetyl)-1R,2R-diaminocyclohexane (0.913 g, 3.42 mmol) were combined in a one liter flask and dry N,N-dimethylacetamide (650 ml) was added. The flask was inerted. After 10 minutes, the sodium hydride was added
directly to the homogeneous mixture. The reaction flask was placed in a 70°C oil bath. After the internal temperature reached 45-50°C, gas evolution became constant. The oil bath temperature was stabilized at about 65°C with some excursions from about 60 to 75°C. Overnight, the reaction mixture became homogeneous.
After heating for 17 hours the reaction flask was removed from the bath and allowed to cool. The solvent was removed under reduced pressure, and the yellowish oil was placed on the vacuum line. The residue was treated with dichloromethane (300 ml) and washed with water (40 ml) and twice with saturated sodium chloride (40 ml each). After combining, the aqueous layers were backwashed with dichloromethane (100 ml). The combined organic layers were dried over sodium sulfate, filtered, and stripped down to a viscous yellow oil which was placed on the vacuum line, 2.14 g. This residue was chromatographed using 0.5% NH4OH/ 9% CH3OH/ 90.5% CH2Cl2. On tic on silica using the same system, Rf = 0.25.
Fractions containing the correct spot were combined and evaporated down to a slightly off white solid, 0.89 g, 1.71 mmol, 50.1% yield. 1H NMR (CDCl3, 300 MHz) d 0.92 - 2.1 (several m, 15H), 2.27 (m, 1H), 2.41 (s, 3H), 3.10 (ABq, J = 16 Hz, dn = 34.2 Hz, 2H), 3.39 (m, 1H), 3.58 (m, 3H), 3.83 (m, 1H), 4.08 (d, J = 17.6 Hz, 1H), 4.39
(d, J = 17.4 Hz, 1H), 7.30 (m, 3H), 7.44 (d, J = 5.9 Hz, 1H), 7.76 (d, J = 7.8 Hz, 2H), 8.05 (d, J = 8.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) d 21.39, 24.20, 24.69, 24.87 (double intensity), 31.49, 31.54, 31.58, 32.43, 47.01, 52.19, 52.25, 52.49, 52.97, 55.63, 58.36, 127.65,
129.67, 135.28, 143.97, 167.52, 170.04, 172.84; MS (FAB, NBA-LiCl matrix): m/z (relative intensity) 526 (100) [M+ Li]+, 370 (29) [M+ Li -Ts]+.
D. Synthesis of 2R,3R,8R,9R-Bis(cyclohexano)- 1,4,7,10,13-pentaazacvclopentadecane
2R,3R,8R,9R-Bis(cyclohexano)-13-p- toluenesulfonyl-1,4,7,10,13-pentaazacyclopentadecan- 6,11, 15-trione (4.072 g, 7.84 mmol) was placed in a 1 liter flask under an argon atmosphere, and dry 1,2- dimethoxyethane (dme, 220 ml) was added. The powder fused, and did not appreciably dissolve. It was
partially broken up with a spatula, and stirred in a cold water bath while lithium aluminum hydride (0.5 M in dme, 140 ml, 70 mmol) was added in portions over a 10 minute period. Initially, the solution became cloudy, and undissolved chunks of compound were present. After about 70 ml had been added, the solution was fairly homogeneous, with only a few undissolved pieces
remaining, which appeared to dissolve with gas
evolution. Heating was started after a few minutes, and the solution rapidly became heterogeneous and yellow. The reaction mixture was refluxed overnight. Reflux was ended after 16.5 hours. The reaction mixture was cooled in a cold water bath, then in a -18"C bath. Water (2.2 ml) was added cautiously in small quantities over a 5 to 10 minute period, followed more rapidly by 15% NaOH (2.2 ml), then by water (6.6 ml). Stirring was continued for 2 hours in the ice bath. Tetrahydrofuran (thf, 210 ml) was added and stirring was continued for about an hour. The thick white suspension was allowed to settle, and was filtered with a filter transfer device (#1 Whatman paper). The filtrate was stripped. The white residue was stirred with thf (150 ml) and filtered onto the stripped first filtrate. The solvent was removed under reduced pressure, and the residue was placed on the vacuum line. The resulting yellow-white solid was extracted with hot dry hexane (initially 70 ml,
65°C; then an additional 15 ml) and filtered through a filter transfer device (#50 Whatman paper), and the
solvent was removed under reduced pressure. This crude product, weight about 1.5 g, was dissolved in hot
(>70°C) dry acetonitrile (about 60 ml), filtered (filter transfer device, #50 Whatman paper), concentrated by more than half, reheated to dissolve all of the white solid, then allowed to cool slowly to room temperature. White crystals were obtained, 0.923 g, 2.85 mmol, 36.4% yield. 1H NMR (C6D6, 300 MHz) d 0.75 - 1.21 (several m, 8H), 1.23 - 2.19 (several m, 17H), 2.36 - 2.61 (several H, 6H), 2.61 - 2.73 (m, 2H), 2.74 - 2.85 (m, 2H), 2.90 (d, J = 7.5 Hz, 2H); 13C NMR (C6D6, 75 MHz) d 25.48, 25.56, 32.41, 32.48, 46.50, 47.82, 49.56, 61.86, 62.88; Anal. calcd. for C18H37N5: C, 66.83; H, 11.54; N, 21.65. Found: C, 66.66; H, 11.46; N, 21.78.
Example 3
E. Synthesis of [Iron(III)dichloro(2.3-(R,R)-8,9-(R,R)- bis-cyclohexano-1,4,7,10,13-pentaazacyclopentadecane)] hexafluorophosphate
Upon an inert atmosphere in a drybox, 97 mg (0.30 mmol) of the ligand, 2R, 3R, 8R, 9R-Bis(cyclohexano)- 1,4,7,10,13-tetraazacyclopentadecane, was dissolved in 15 ml of anhydrous methanol. To this solution was added with vigorous stirring 2 ml of a pyridine solution containing 0.30 mmol (48 mg) of anhydrous FeCl3. The resultant dark brown solution was heated to reflux for three hours with stirring and then allowed to cool to room temperature and then filtered. To the filtrate was added 20 ml of a clear methanolic solution of NH4PF6
(120) mg). This solution was evaporated to dryness and 2 ml of anhydrous acetonitrile was added to the
resultant solid. This mixture was stirred vigorously for two hours and then filtered and the resultant yellow filtrate was evaporated to dryness. The resultant yellow solid was dissolved in hot ethanol and filtered.
The solution was evaporated to dryness and the resultant yellow solid collected by filtration from a diethyl ether wash. The yellow precipitate was dried in vacuo overnight. The yield after drying was 75 mg
corresponding to a 42% theoretical yield. Anal. Calc. for C18H37N5Cl2F6FeP: C, 36.35; H, 6.28: N, 11.78. Found: C, 36.37; H, 6.34; N, 11.58.
Example 4
A. Synthesis of Boc-DAla-Ala-OEt
To a solution of Boc-DAla (25.0 g, 132.1 mmol) in DMF (1450 ml) was added HOBT●H2O (19.8 g, 129.3 mmol) and EDCβHCl (28.0 g, 146.3 mmol) and the resulting solution was allowed to stir at RT for 30 min. To this solution was added Alanine ethyl ester hydrochloride (20.3 g, 132.1 mmol) and TEA (20.4 ml, 146.3 mmol) and the reaction was allowed to stir for 3 days (for
convenience). The DMF was evaporated and the residue was partitioned between water (500 ml) and ethyl acetate (500 ml). The ethyl acetate solution was washed with IN NaHSO4 (250 ml), water (250 ml), saturated NaHCO3 (250 ml), brine (250 ml) and dried over Na2SO4. Filtration and concentration afforded 31.7 g (83% yield) of the desired dipeptide as a white foam: 1H NMR (DMSO-d6) δ 1.14 (d, J = 7.4 HZ, 3 H), 1.16 (t, J = 7.4 Hz, 3 H), 1.24 (d, J = 7.0 Hz, 3 H), 1.36 (s, 9 H), 3.96 - 4.09 (m, 3 H), 4.17 - 4.22 (apparent quintet, J = 7.4 Hz, 1 H), 6.77 ( d, J = 7.7 Hz , 1 H), 8.09 (d, J = 7.0 Hz, 1 H); MS (LRCI, CH4) m/z (relative intensity) = 317 (5) [M + C2HS]+, 289 (60) [M + H]+.
B. Synthesis of Boc-Ala-Ala-OH
To a suspension of the dipeptide (15.0 g, 93.6 mmol) in THF (192 ml) was added 0.5 N NaOH solution (192
ml) . To the resulting solution was added
di-t-butyldicarbonate (26.6 g, 121.7 mmol) at once. The pH of the reaction was maintained at -10 for 5 h and the mixture was then allowed to stir overnight. The pH of the reaction was again adjusted to -10 and the solution was extracted with ethyl acetate (2 x 100 ml). The pH of the aqueous layer was adjusted to -3.5 with aqueous potassium bisulfate and this mixture was extracted with ethyl acetate (3 x 100 ml). The combined extracts were dried (MgSO4), filtered and concentrated to afford 20.7 g (85% yield) of the desired product as a white powder: 1H NMR (DMSO-dJ δ 1.16 (d, J = 6.8 Hz , 3 H), 1.28 (d, J = 7.3 HZ, 3 H), 1.38 (s, 9 H), 3.95 - 4.09 (m, 1 H), 4.20 (quintet, J = 7.3 Hz, 1 H), 6.87 (d, J = 8.0 Hz, 1 H), 8.00 (d, 7.3 Hz, 1 H) ; MS (HRFAB, NBA - Li) m/z =
267.1557 [M + Li]+; 267.1532 calcd for CjjH^N^Li.
C. Synthesis of DAla-Ala-OEt●TFA
The protected dipeptide (31.4 g, 109 mmol) was dissolved in methylene chloride (200 ml) and TFA (66 ml) was added. The resulting solution was allowed to stir for 30 min at RT and concentrated. The residue was coevaporated with methylene chloride (2 x 200 ml), dissolved in ether and oiled out with the addition of excess hexanes. The solvents were decanted and the residue was pumped at high vacuum for 12 h to afford 39.6 g (100% yield, contains residual TFA) of the desired TFA salt as an orange oil: 1H NMR (DMSO-d6) δ 1.16 (t, J = 7.0 Hz, 3 H), 1.28 (d, J = 7.0 Hz, 3 H), 1.34 (d, J = 7.0 Hz, 3 H), 3.86 (bs, 1H), 4.07 (q, J = 7.0 Hz, 2 H), 4.26 (quintet, J = 7.0 Hz, 1 H), 8.21 (bs, 3 H), 8.86 (d, J = 7.4 HZ, 1 H); MS (LRCI, CH4) m/z (relative intensity) 217 (5) [M + C2H5]+, 189 (40) [M+H]+.
D. Synthesis of Boc-Ala-Ala-DAla-Ala-OEt
To a solution of Boc-Ala-Ala-OH (20.1 g, 77.2 mmol) in DMF (850 ml) was added HOBT●H2O (13.1 g, 85.4 mmol) and EDC•HCl (16.4 g, 85.4 mmol). To this solution was added DAla-Ala-OEt•TFA (23.3 g, 77.2 mmol) followed by TEA (11.9 ml, 85.4 mmol) and the resulting mixture was stirred for 12 h thereafter. The DMF was evaporated and the residue was dissolved in ethyl acetate (300 ml) and washed with 1 N potassium bisulfate (150 ml), water (150 ml), saturated sodium bicarbonate (150 ml) and brine (150 ml). The ethyl acetate layer was dried
(MgSO4), filtered and concentrated to half volume and crystallization was allowed to proceed. Isolation by filtration afforded 20.5 g (62% yield) of the desired tetrapeptide as a white solid: 1H NMR (DMSO-d6) δ 1.13 (d, J = 7.0 Hz, 3 H), 1.17 (two coincidental d, J = 7.0 Hz, 6 H), 1.25 (d, J = 7.4 Hz, 3 H), 3.91 - 4.30 (m, 6 H), 6.87 (d , 7.0 Hz, 1 H), 7.92 (d, J = 6.3 Hz, 1 H), 8.07 (d, J = 7.3 Hz, 1 H), 8.09 (d, J = 6.6 Hz, 1 H); MS (HRFAB, NBA - Li) m/z = 437.2600 [M + Li]+; 437.2588 calcd for C19H34N4O7Li.
E. Synthesis of Boc-Ala-Ala-DAla-Ala-OH
A solution of Boc-Ala-Ala-DAla-Ala-OEt (10.9 g, 25.3 mmol) in methanol (100 ml) was treated with 2.5 M sodium hydroxide (20.0 ml, 50.0 mmol) and the resulting solution was allowed to stir for 2 h at RT. At this time the pH of the solution was lowered to ~3 with the addition of aqueous potassium bisulfate and the
resulting mixture was extracted with ethyl acetate (3 x 100 ml). The combined extracts were dried (MgSO4), filtered and concentrated to afford 6.8 g (67% yield of the desired acid as a white solid: 1H NMR (DMSO-d6) δ 1.17 (d, J = 7.2 Hz, 3 H), 1.20 (two coincidental d, J = 7.1 HZ, 6 H), 1.28 (d, J = 1.3 Hz, 3 H), 1.38 (s, 9 H),
3.90 - 4.00 (m, 1 H), 4.17 - 4.30 (m, 3 H), 6.93 (d, J = 6.7 Hz, 1 H), 7.96 (d, J = 6.7 Hz, 1 H), 8.04 (d, J = 7.4 Hz, 1 H), 8.07 (d, J = 7,8 Hz, 1 H) ; MS (HRFAB, NBA - Li) m/z = 409.2331 [M + Li]+; 409.2353 calcd for
C17H30N4O7Li.
F. Synthesis of Boc-Ala-Ala-DAla-Ala-DAla-OBzl
To a solution of Boc-Ala-Ala-DAla-Ala-OH (6.5 g, 16.3 mmol) in DMF (180 ml) was added HOBT●H2O (2.86 g, 18.7 mmol) and EDC•HCl (3.58 g, 18.7 mmol). The
resulting solution was allowed to stir for 15 min at RT and treated with DAla-OBzl p-toluenesulfonate salt (6.57 g, 18.7 mmol) and TEA (2.6 ml, 18.7 mmol). This mixture was allowed to stir for 12 h thereafter. The DMF was evaporated and the residue was partitioned between ethyl acetate (300 ml) and water (300 ml). The ethyl acetate layer was washed with 1 N potassium bisulfate (150 ml), water (150 ml), saturated sodium bicarbonate (150 ml) and brine (150 ml). The ethyl acetate layer was then dried (MgSO4), filtered and concentrated to afford 9.0 g (100% yield) of the desired compound as a white powder: 1H NMR (DMSO-d6) δ 1.17 (d, J = 7.3 Hz , 3 H), 1.21 (two coincidental d, J = 7.0 Hz , 6 H), 1.22 (d, J = 7.0 Hz, 3 H), 1.32 (d, J = 7.3 Hz, 3 H), 1.37 (s, 9 H), 3.90 - 4.09 (m, 1 H), 4.18 - 4.34 (m, 4 H), 5.13 (ABq, J = 12.7, ΔV = 10.5 Hz, 2 H), 6.94 (d, J - 7.3 Hz, 1 H), 7.30 - 7.41 (m, 5 H), 7.97 (d, J = 7.0 Hz, 1 H), 8.10 - 8.18 (m, 2 H), 8.25 (d, J = 6.9 Hz , 1 H) ; MS (HRFAB, NBA - Li) m/z = 570.3140 [M + Li]+; 570.3115 calcd for C27H41N5O8Li.
G. Synthesis of Ala-Ala-DAla-Ala-DAla●HCl
Boc-Ala-Ala-DAla-Ala-DAla-OEt (10.4 g, 18.7 mmol) was dissolved in acetic acid (225 ml) and treated with concentrated hydrochloric acid (75 ml). The resulting
solution was allowed to stir at RT for 14 h thereafter. At this time the reaction was concentrated, coevaporated with water (50 ml) and azeotropically dried by toluene coevaportation (2 x 100 ml) to afford 7.8 g (96% yield) of the deprotected pentapeptide hydrochloride as a white powder: 1H NMR (D2O) δ 1.29 - 1.39 (m, 12H), 1.47 (d, J = 7.0 Hz, 3 H), 4.06 (q, J = 7.0 Hz, 1 H), 4.18 - 1.38 (m, 4 H); MS (LRFAB, NBA - HCl) 374 [M + H]+. H. Synthesis of Cγclo-(Ala-Ala-DAla-Ala-DAla-)
To a solution of Ala-Ala-DAla-Ala-DAla●HCl (7.8 g, 19.0 mmol) in DMF (2400 ml) at -40ºC was added DPPA (6.29 g, 22.8 mmol) and enough TEA to adjust the "pH" to ~8 (measured by spotting the reaction mixture on
moistened hydrion paper). This solution was allowed to stand at -23ºC for 48 hours and at 8ºC for 48 hours. During this time the "pH" was again maintained at ~8 with the periodic addition of TEA. At the end of this period the reaction mixture was poured into water (2400 ml) and stirred with mixed-bed ion exchange resin (1200 g) for 6 h. The resin was removed by filtration and the filtrate was concentrated to a volume of ~ 100 ml.
Ether (500 ml) was added and the precipitated white solid was isolated by filtration and washed with more ether (250 ml). The solid was then triturated by stirring with THF (100 ml) for 12 h (to remove traces of DMF), filtered and thoroughly dried to afford 3.15 g (47% yield) of the desired cyclic peptide as a fine white powder: 1H NMR (DMSO-d6) δ 1.08 - 1.25 (m, 12 H), 1.24 (d, J = 7.3 Hz, 3 H), 4.00 - 4.10 (m, 1 H), 4.26 - 4.30 (m, 2 H), 4.34 (q, J = 7.2 Hz, 1 H), 4.41 (q, J = 7.6 HZ, 1 H), 7.58 (d, J = 7.0 Hz, 1 H), 7.83 (d, J = 8.4 HZ, 1 H), 8.22 (d, J = 6.2 Hz , 1 H), 8.33 (d, J = 7.81, 1 H), 8.49 (d, J = 6.8 Hz , 1 H); MS (HRFAB, NBA - HCl) m/z 356.1989 (M + H) +; 356.1934 calcd for C15H2JN5O5 (M + H)++
I. Synthesis of (2S, 5R, 8S, 11R, 14S)-Pentamethyl- 1,4,7,10.13-pentaazacvclopentadecane
To a stirred suspension of cycio- (Ala-Ala-DAla- Ala-DAla-) (3.10 g, 8.70 mmol) in THF (70 ml) at RT was added lithium aluminum hydride (108 ml of a 1.0 M
solution in THF, 108 mmol). The resulting mixture was stirred at RT for 2 h and heated to reflux for 16 h thereafter. The mixture was then cooled to ~-20°C and quenched with the dropwise addition of saturated sodium sulfate (~30 ml). The resulting mixture was concentrated to a dry white powder and this powder was triturated with ether (2 x 150 ml). The combined triturates were
concentrated and recrystallized form acetonitrile to afford 1.10 g (44 % yield) of the desired ligand as a white solid: 1H NMR (CDCl3) δ 0.96 (d, J = 5.2 Hz , 3 H), 1.00 (two coincidental d, J = 5.0 Hz, 6 H), 1.02 (two coincidental d, J = 5.0 Hz, 6 H), 1.30 - 1.55 (bm, 2 H), 1.85 - 2.15 (bs, 3 H), 2.05 - 2.19 (m, 5 H), 2.42 - 3.00 (complex m, 12 H); MS (HRFAB, NBA - HCl) ra/z = 286.3013 (M + H)+; 286.2971 calcd for C15H36N5.
J. Synthesis of [Iron (III)dichloro-(2S, 5R, 8S, 11R,
14S)-Pentamethyl-1,4,7,10,13- pentaazacyclopentadecane]hexafluoroohosphate
This complex was prepared in a fashion entirely analogous to that described previously in Example 3.
After recrystallization of the crude yellow solid from ethanol, yellow crystals were obtained in a 40% yield.
Analysis calc . for C15H35N5Cl2FeF6P : C , 32 . 37 ; H , 6. 34 : N , 12 . 59 . Found: C , 32 . 44 ; H , 6. 30 ; N , 12 . 40.
Example 5
Stopped-Flow Kinetic Analysis
Stopped-flow kinetic analysis has been utilized to determine whether a compound can catalyze the dismutation
of superoxide (Riley, D.P., Rivers, W.J. and Weiss, R.H., "Stopped-Flow Kinetic Analysis for Monitoring Superoxide Decay in Aqueous Systems," Anal. Biochem. 196, 344-349 [1991]). For the attainment of consistent and accurate measurements all reagents were biologically clean and metal-free. To achieve this, all buffers (Calbiochem) were biological grade, metal-free buffers and were handled with utensils which had been washed first with 0.1 N HCl, followed by purified water, followed by a rinse in a 104 M EDTA bath at pH 8, followed by a rinse with purified water and dried at 65°C for several hours. Dry DMSO solutions of potassium superoxide (Aldrich) were prepared under a dry, inert atmosphere of argon in a Vacuum Atmospheres dry glovebox using dried glassware. The DMSO solutions were prepared immediately before every stopped-flow experiment. A mortar and pestle were used to grind the yellow solid potassium superoxide (-100 mg). The powder was then ground with a few drops of DMSO and the slurry transferred to a flask containing an
additional 25 ml of DMSO. The resultant slurry was stirred for 1/2 h and then filtered. This procedure gave reproducibly ~2 mM concentrations of superoxide in DMSO. These solutions were transferred to a glovebag under nitrogen in sealed vials prior to loading the syringe under nitrogen. It should be noted that the
DMSO/superoxide solutions are extremely sensitive to water, heat, air, and extraneous metals. A fresh, pure solution has a very slight yellowish tint.
Water for buffer solutions was delivered from an in-house deiorvzed water system to a Barnstead Nanopure Ultrapure Sereos 550 water system and then double
distilled, first from alkaline potassium permanganate and then from a dilute EDTA solution. For example, a
solution containing 1.0 g of potassium permanganate, 2 liters of water and additional sodium hydroxide necessary to bring the pH to 9.0 were added to a 2-liter flask
fitted with a solvent distillation head. This
distillation will oxidize any trace of organic compounds in the water. The final distillation was carried out under nitrogen in a 2.5-liter flask containing 1500 ml of water from the first still and 1.0 x 106 M EDTA. This step will remove remaining trace metals from the
ultrapure water. To prevent EDTA mist from volatilizing over the reflux arm to the still head, the 40-cm vertical arm was packed with glass beads and wrapped with
insulation. This system produces deoxygenated water that can be measured to have a conductivity of less than 2.0 nanomhos/cm2.
The stopped-flow spectrometer system was designed and manufactured by Kinetic Instruments Inc. (Ann Arbor, MI) and was interfaced to a MAC IICX personal computer. The software for the stopped-flow analysis was provided by Kinetics Instrument Inc. and was written in QuickBasic with MacAdios drivers. Typical injector volumes (0.10 ml of buffer and 0.006 ml of DMSO) were calibrated so that a large excess of water over the DMSO solution were mixed together. The actual ratio was approximately 19/1 so that the initial concentration of superoxide in the aqueous solution was in the range 60-120 μM. Since the published extinction coefficient of superoxide in H2O at 245 nm is -2250 M-1 cm-1 (1), an initial absorbance value of approximately 0.3-0.5 would be expected for a 2-cm path length cell, and this was observed experimentally. Aqueous solutions to be mixed with the DMSO solution of superoxide were prepared using 80 mM concentrations of the Hepes buffer, pH 8.1 (free acid + Na form). One of the reservoir syringes was filled with 5 ml of the DMSO solution while the other was filled with 5 ml of the aqueous buffer solution. The entire injection block, mixer, and spectrometer cell were immersed in a
thermostatted circulating water bath with a temperature of 21.0 ± 0.5°C.
Prior to initiating data collection for a
superoxide decay, a baseline average was obtained by injecting several shots of the buffer and DMSO solutions into the mixing chamber. These shots were averaged and stored as the baseline. The first shots to be collected during a series of runs were with aqueous solutions that did not contain catalyst. This assures that each series of trials were free of contamination capable of
generating first-order superoxide decay profiles. If the decays observed for several shots of the buffer solution were second-order, solutions of iron (III) complexes could be utilized. In general, the potential SOD
catalyst was screened over a wide range of
concentrations. Since the initial concentration of superoxide upon mixing the DMSO with the aqueous buffer was ~1.2 x 10-4 H, we wanted to use a iron (III) complex concentration that was at least 20 times less than the substrate superoxide. Consequently, we generally
screened compounds for SOD activity using concentrations ranging from 5 x 10-7 to 8 x 10-6 M. Data acquired from the experiment was imported into a suitable math program (e.g.. Cricket Graph) so that standard kinetic data analyses could be performed. The catalytic rate constant for dismutation of superoxide by the iron (III) complexes of Examples 1-4 were determined from the linear plot of observed rate constants (kobs) versus the concentration of the iron (III) complexes. kobs values were obtained from the liner plots of In absorbance at 245 nm versus time for the dismutation of superoxide by the iron (III) complex. The kcat (M-1sec-1) of the iron (III) complexes of Examples 1-4 are shown in Table I.
Claims
1. Pharmaceutical composition in unit dosage form useful for dismutating superoxide comprising (a) a
therapeutically or prophylactically effective amount of a complex represented by the formula:
wherein R, R', R1, R'1, R2, R'2, R3, R'3, R4, R'4, R5, R'5, R6 , R' 6 , R7, R, 7, R8, R'8, R9, and R'9 independently are selected from the group consisting of hydrogen and alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl,
cycloalkylalkyl, cycloalkylcycloalkyl, cycloalkenylalkyl, alkylcycloalkyl, alkenylcycloalkyl, alkylcycloalkenyl, alkenylcycloalkenyl, heterocyclic, aryl and aralkyl radicals and radicals attached to the α-carbon of α-amino acids; or R1 or R1' and R2 or R'2, R3 or R'3 and R4 or R'4, R5 or R, 5 and R6 or R' 6 , R7 or R, 7 and R8 or R'8 and R9 or R'9 and R or R' together with the carbon atoms to which they are attached independently form a saturated,
partially saturated or unsaturated cyclic having 3 to 20 carbon atoms; or R or R' and R1 or R'1, R2 or R'2 and R3 or R'3, R4 or R'4 and R5 or R, 5, R4 or R'6 and R7 or R'7, and R8 or R'8 and R9 or R', together with the carbon atoms to which they are attached independently form a nitrogen containing heterocycle having 2 to 20 carbon atoms provided that when the nitrogen containing heterocycle is an aromatic heterocycle which does not contain a hydrogen
attached to the nitrogen, the hydrogen attached to the nitrogen in said formula, which nitrogen is also in the macrocycle and the R groups attached to the same carbon atoms of the macrocycle are absent;
wherein X, Y and Z are ligands independently selected from the group consisting of halide, oxo, aquo, hydroxo, alcohol, phenol, dioxygen, peroxo, hydroperoxo,
alkylperoxo, arylperoxo, ammonia, alkylamino, arylamino, heterocycloalkyl amino, heterocycloaryl amino, amine oxides, hydrazine, alkyl hydrazine, aryl hydrazine, nitric oxide, cyanide, cyanate, thiocyanate, isocyanate, isothiocyanate, alkyl nitrile, aryl nitrile, alkyl isonitrile, aryl isonitrile, nitrate, nitrite, azido, alkyl sulfonic acid, aryl sulfonic acid, alkyl sulfoxide, aryl sulfoxide, alkyl aryl sulfoxide, alkyl sulfenic acid, aryl sulfenic acid, alkyl sulfinic acid, aryl sulfinic acid, alkyl thiol carboxylic acid, aryl thiol carboxylic acid, alkyl thiol thiocarboxylic acid, aryl thiol thiocarboxylic acid, alkyl carboxylic acid, aryl carboxylic acid, urea, alkyl urea, aryl urea, alkyl aryl urea, thiourea, alkyl thiourea, aryl thiourea, alkyl aryl thiourea, sulfate, sulfite, bisulfate, bisulfite, thiosulfate, thiosulfite, hydrosulfite, alkyl phosphine, aryl phosphine, alkyl phosphine oxide, aryl phosphine oxide, alkyl aryl phosphine oxide, alkyl phosphine sulfide, aryl phosphine sulfide, alkyl aryl phosphine sulfide, alkyl phosphonic acid, aryl phosphonic acid, alkyl phosphinic acid, aryl phosphinic acid, alkyl phosphinous acid, aryl phosphinous acid, phosphate, thiophosphate, phosphite, pyrophosphite, triphosphate, hydrogen phosphate, dihydrogen phosphate, alkyl
guanidino, aryl guanidino, alkyl aryl guanidino, alkyl carbamate, aryl carbamate, alkyl aryl carbamate, alkyl thiocarbamate, aryl thiocarbamate, alkylaryl
thiocarbamate, alkyl dithiocarbamate, aryl
dithiocarbamate, alkylaryl dithiocarbamate, bicarbonate,
carbonate, perchlorate, chlorate, chlorite, hypochlorite, perbromate, bromate, bromite, hypobromite,
tetrahalomanganate, tetrafluoroborate,
hexafluoroantimonate, hypophosphite, iodate, periodate, metaborate, tetraaryl borate, tetra alkyl borate,
tartrate, salicylate, succinate, citrate, ascorbate, saccharinate, amino acid, hydroxamic acid, thiotosylate, and anions of ion exchange resins, or the corresponding anions thereof, or X, Y and Z are independently attached to one or more of the "R" groups and n is an integer from 0 to 1, and (b) a nontoxic, pharmaceutically acceptable carrier, adjuvant or vehicle.
2. Composition of Claim 1 wherein at least one of
R, R', R,, R'1, R2, R, 2, R3 , R, 3, R4, R, 4, R5, R, 5, R6, R ' 6 , R7, R'7, R8, R'8, R9 and R'9 are alkyl or alkyl substituted with -OR10 or -NR10R11 wherein R10 and R11 are independently hydrogen or alkyl; and the remaining "R" groups are hydrogen or form part of a saturated, partially saturated or unsaturated cyclic, or form part of a nitrogen
containing heterocycle.
3. Composition of Claim 2 wherein at least two of
R, R', R1 , R ' 1 , R2, R, 2, R3, R, 3, R4 , R '4, R5, R ' 5 , R6, R ' 6 ,
R7, R'7, R8, R'8, R9 and R'9 are alkyl or alkyl substituted with -OR1O or -NR10R11 groups and said remaining "R" groups are hydrogen.
4. Composition of Claim 1 wherein at least one of Rj or R1' and R2 or R2', R3 or R3' and R4 or R4' , R, or R5' and R6 or R6', R7 or R7' and R8 or R8', and R9 or R9' and R or R' together with the carbon atoms to which they are attached form a saturated, partially saturated or unsaturated cyclic having 3 to 20 carbon atoms; and the remaining "R" groups are hydrogen, alkyl or alkyl substituted with -OR10 or -NR10R11 groups or form part of a nitrogen containing heterocycle; wherein R10 and R11 are independently
hydrogen or alkyl.
5. Composition of Claim 4 wherein said remaining "R" groups are hydrogen, alkyl or alkyl substituted with -OR10 or -NR10R11 groups.
6. Composition of Claim 5 wherein at least one of R, or R1' and R2 or R2', R3 or R3' and R4 or R4', R5 or R5' and
R6 or R6', R7 or R7' and R8 or R8', and R9 or R9' and R or R' together with the carbon atoms to which they are attached is a cyclohexano group.
7. Composition of Claim 6 wherein at least two of R, or R1' and R2 or R2', R3 or R3' and R4 or R4', Rs or R5' and
R6 or R6', R7 or R7' and R8 or R8', and R9 or R9' and R or R' together with the carbon atoms to which they are attached are cyclohexano groups.
8. Composition of Claim 1 wherein at least one of R or R' and R1 or R1', R2 or R2' and R3 or R3', R4 or R4' and
R5 or R5' , R6 or R6' and R7 or R7', and R8 or R8' and R9 or R9' together with the carbon atoms to which they are attached are bound to form a nitrogen containing
heterocycle; and the remaining "R" groups are hydrogen, alkyl or alkyl substituted with -OR10 or -NR10R11 groups or form part of a saturated, partially saturated or
unsaturated cyclic; wherein R10 and R11 are independently hydrogen or alkyl.
9. Composition of Claim 1 wherein X,Y and Z are independently selected from the group consisting of halide, organic acid, nitrate and bicarbonate anions.
10. Method of preventing or treating a disease or disorder which is mediated, at least in part, by
superoxide comprising administering to a subject in need of such prevention or treatment, a therapeutically or prophylactically effective amount of a complex of
Claim 1.
11. Method of Claim 10 wherein said disease or disorder is selected from the group consisting of
reperfusion injury to an ischemic organ, surgically-
induced ischemia, inflammatory bowel disease, rheumatoid arthritis, osteoarthritis, psoriasis, organ transplant rejections, radiation-induced injury, oxidant-induced tissue injuries and damage, atherosclerosis, thrombosis, platelet aggregation, metastasis, stroke, acute
pancreatitis, insulin-dependent diabetes mellitus, disseminated intravascular coagulation, fatty embolism, adult and infantile respiratory distress and
carcinogenesis.
12. Method of Claim 11 wherein said disease or disorder is selected from the group consisting of reperfusion injury to an ischemic organ, surgically- induced ischemia, stroke, atherosclerosis and
inflammatory bowel disease.
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IL12599397A IL125993A0 (en) | 1996-03-13 | 1997-03-11 | Iron complexes of nitrogen-containing macrocyclic ligands |
| EP97908848A EP0888115A1 (en) | 1996-03-13 | 1997-03-11 | Iron complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxide |
| BR9707978A BR9707978A (en) | 1996-03-13 | 1997-03-11 | Iron complexes of nitrogen-containing macrocyclic binders effective as catalysts for superoxide dismutation |
| JP9532095A JP2000507929A (en) | 1996-03-13 | 1997-03-11 | Iron Complexes with Nitrogen-Containing Macrocycle Ligands Effective as Catalysts for Dismutatin Superoxide |
| AU20656/97A AU2065697A (en) | 1996-03-13 | 1997-03-11 | Iron complexes of nitrogen-containing macrocyclic ligands effective as cataly sts for dismutating superoxide |
| NO984165A NO984165L (en) | 1996-03-13 | 1998-09-10 | Iron complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxides |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US61471096A | 1996-03-13 | 1996-03-13 | |
| US08/614,710 | 1996-03-13 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO1997033588A1 WO1997033588A1 (en) | 1997-09-18 |
| WO1997033588A9 true WO1997033588A9 (en) | 1997-11-06 |
Family
ID=24462404
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1997/003348 WO1997033588A1 (en) | 1996-03-13 | 1997-03-11 | Iron complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxide |
Country Status (10)
| Country | Link |
|---|---|
| EP (1) | EP0888115A1 (en) |
| JP (1) | JP2000507929A (en) |
| KR (1) | KR19990087783A (en) |
| AU (1) | AU2065697A (en) |
| BR (1) | BR9707978A (en) |
| CA (1) | CA2248964A1 (en) |
| CZ (1) | CZ277698A3 (en) |
| IL (1) | IL125993A0 (en) |
| NO (1) | NO984165L (en) |
| WO (1) | WO1997033588A1 (en) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6127356A (en) | 1993-10-15 | 2000-10-03 | Duke University | Oxidant scavengers |
| CA2309154C (en) | 1997-11-03 | 2010-02-16 | Duke University | Substituted porphyrins |
| IL144503A0 (en) | 1999-01-25 | 2002-05-23 | Nat Jewish Med & Res Center | Substituted porphyrins |
| EP1185312B1 (en) * | 1999-05-27 | 2005-03-23 | Monsanto Company | Biomaterials modified with superoxide dismutase mimics |
| ATE464061T1 (en) * | 2001-01-05 | 2010-04-15 | Metaphore Pharmaceuticals Inc | COMPOSITIONS AND METHODS FOR INCREASE CYTOKINE ACTIVITY AND FOR TREATING HYPOTENSION ASSOCIATED WITH THE ADMINISTRATION OF CYTOKINES |
| AU2002236861A1 (en) * | 2001-01-26 | 2002-08-06 | Metaphore Pharmaceuticals, Inc. | Method of treatment of neurodegenerative disorders using pentaaza-macrocyclic ligand complexes |
| WO2002098431A1 (en) | 2001-06-01 | 2002-12-12 | National Jewish Medical And Research Center | Oxidant scavengers for treatment of diabetes or use in transplantation or induction of immune tolerance |
| US7485721B2 (en) | 2002-06-07 | 2009-02-03 | Duke University | Substituted porphyrins |
| WO2008055953A2 (en) | 2006-11-08 | 2008-05-15 | Sidec Technologies Ab | Iterated variational regularization combined with componentwise regularization |
| KR20160036108A (en) | 2008-05-23 | 2016-04-01 | 내셔날 쥬이쉬 헬스 | Methods for treating injury associated with exposure to an alkylating species |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE69224839T2 (en) * | 1991-07-19 | 1998-10-08 | Monsanto Co | Manganese complexes with nitrogen-containing macrocyclic ligands, effective as superoxide dismutase catalysts. |
| PL316968A1 (en) * | 1994-04-22 | 1997-03-03 | Monsanto Co | Method of analysing diagnostic images employing the metal complexes with nitrogen containing macrocyclic ligands |
| US6525041B1 (en) * | 1995-06-06 | 2003-02-25 | Pharmacia Corporation | Manganese or iron complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxide |
-
1997
- 1997-03-11 IL IL12599397A patent/IL125993A0/en unknown
- 1997-03-11 EP EP97908848A patent/EP0888115A1/en not_active Withdrawn
- 1997-03-11 AU AU20656/97A patent/AU2065697A/en not_active Abandoned
- 1997-03-11 WO PCT/US1997/003348 patent/WO1997033588A1/en not_active Application Discontinuation
- 1997-03-11 CZ CZ982776A patent/CZ277698A3/en unknown
- 1997-03-11 CA CA002248964A patent/CA2248964A1/en not_active Abandoned
- 1997-03-11 BR BR9707978A patent/BR9707978A/en not_active Application Discontinuation
- 1997-03-11 JP JP9532095A patent/JP2000507929A/en active Pending
- 1997-03-11 KR KR1019980707264A patent/KR19990087783A/en not_active Withdrawn
-
1998
- 1998-09-10 NO NO984165A patent/NO984165L/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6525041B1 (en) | Manganese or iron complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxide | |
| EP0679155B1 (en) | Manganese complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxide | |
| US20090098047A1 (en) | Bioconjugates of metal complexes of nitrogen-containing macrocyclic ligands | |
| AU706642B2 (en) | Diagnostic image analysis with metal complexes | |
| AU700958B2 (en) | Bioconjugates of manganese complexes and their application as catalysts | |
| US5721361A (en) | Process for preparing substituted polyazamacrocycles | |
| AU1962497A (en) | Bioconjugates of manganese or iron complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxide | |
| WO1997033588A9 (en) | Iron complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxide | |
| EP0888115A1 (en) | Iron complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxide | |
| MXPA98007449A (en) | Complexes with iron of macrocyclic ligands containing nitrogen, effective as catalysts to dismute superox | |
| MXPA98001322A (en) | Bioconjugados de complejos de manganeso de ligandos macrociclicos containing nitrogen, effective as catalysts to dismute superox | |
| KR0154346B1 (en) | Manganese complexes of nitrogen-containing macrocyclic ligands effective as catalysts for dismutating superoxide |