[go: up one dir, main page]

WO1997033790A1 - Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques - Google Patents

Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques Download PDF

Info

Publication number
WO1997033790A1
WO1997033790A1 PCT/US1996/003568 US9603568W WO9733790A1 WO 1997033790 A1 WO1997033790 A1 WO 1997033790A1 US 9603568 W US9603568 W US 9603568W WO 9733790 A1 WO9733790 A1 WO 9733790A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
electrode
power
propulsion system
source
Prior art date
Application number
PCT/US1996/003568
Other languages
English (en)
Inventor
Alfred Y. Wong
Original Assignee
Wong Alfred Y
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wong Alfred Y filed Critical Wong Alfred Y
Priority to PCT/US1996/003568 priority Critical patent/WO1997033790A1/fr
Priority to AU54230/96A priority patent/AU5423096A/en
Publication of WO1997033790A1 publication Critical patent/WO1997033790A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/24Arrangement of propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1007Communications satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/411Electric propulsion
    • B64G1/413Ion or plasma engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • B64G1/443Photovoltaic cell arrays

Definitions

  • troposphere or stratosphere for providing regional and global communications that is
  • the present invention a system of high altitude lighter-than -air telecommunication
  • rockets means they will plunge into the atmosphere, generating space debris as layers of
  • the multi-billion dollar Iridium Project is a state-of-the-art example of this
  • Geosynchronous satellites must orbit far above the earth's equator (6.6 earth radii
  • Sky StationTM does not require launching by expensive rockets or Space Shuttle. It
  • Sky StationTM can lift tons of payload, whereas most satellites can only manage
  • Sky StationsTM can carry enough equipment for broadcasting over
  • Sky StationsTM can carry equipment for astronomical observations in the wavelength
  • GPS Global Positioning Satellites
  • Sky StationsTM are more sustainable than satellites. Their modular design, fabricated
  • Satellites can only be serviced by expensive and difficult-to-schedule Space Shuttle missions.
  • Sky StationsTM are recyclable. If necessary, Sky StationsTM can be completely
  • Satellites are not
  • Sky StationsTM are more flexible than orbiting satellites because these satellites remain over a city only for a few minutes during each pass and therefore have to keep
  • Sky StationTM always has the flexibility to retransmit
  • cubic meters will be capable of lifting a two-ton pay load. That would provide ample
  • One Sky StationTM can cover the entire country of Italy. Using a footprint of 1000
  • a Corona Ion Engine utilizes ambient
  • Sky StationTM as shown in Figure 1, is a large-scale (approximately 200 meters long),
  • Sky StationTM is capable of
  • This ion propulsion system has significant advantages over
  • Figure 1 is a schematic view of a Sky Station telecommunication system of the present
  • Figure 2 is a schematic view of a stratosphere-based global communication system, using
  • Figure 3 is a schematic view of how laser and microwave beams establish communication
  • Figure 4 is a side view of an ion engine for use with an embodiment of the system of the
  • Figure 5 is a block diagram showing the structural and functional operation of an embodiment of the electrical system of the present invention.
  • Fig. 6 is a schematic view of an embodiment of a telecommunication platform for use at
  • FIG. 6 depicts a portion of a preferred embodiment of a global high altitude
  • embodiment of the invention consists of a network of 250 Sky Stations 10, several thousand
  • ground stations 85 which operate as control and switching centers, and many millions of
  • PSTN Public Switched Telephone Network
  • Terrestrial wireless communications systems provide low angle of elevation
  • the invention provides high elevation angle service to
  • a Sky station 10 is located approximately 30
  • the Sky Station 10 In other preferred embodiments, the Sky Station 10
  • the Sky Station 10 communications payload defines coverage areas on the
  • cells 84 surface of the earth, referred to as cells 84, as is well known in the art.
  • the coverage area will consist of cells 84 with a one mile radius (3.14 square
  • the Sky Station 10 will be at a position in the sky approximately 30
  • the cell radius will now be approximately 4.05 miles with a corresponding
  • this preferred embodiment offers both small cell sizes
  • this preferred embodiment offers large cell
  • one ore more Sky Stations may be any suitable Sky Stations.
  • FIG.2 depicts a preferred embodiment of a network of Sky Stations lOproviding global
  • domelike arrangement encircles the earth 20 Corona Ion Engines not depicted in FIG.2,
  • FIG.3 depicts a preferred embodiment in which Sky Stations 10 communicate with each other
  • Lasers 31 are not efficient or even possible at lower atmospheric heights
  • UV lasers cannot be used at lower heights because the ozone layer absorbs the
  • At altitude up to and including the stratosphere includes the steps of launching one or more
  • a Sky Station 10 is a large-scale (650 feet long) environmentally
  • Sky Station 10 uses Corona
  • FIG. 1 There are a large number of alternate preferred embodiments for large-scale Sky Station.
  • FIG. 1 There are a large number of alternate preferred embodiments for large-scale Sky Station.
  • FIG. 1 shows a preferred embodiment of a Sky Station 10 of the present invention, which is
  • Sky Station 10 includes a set of ganged helium airships 12. Each helium
  • airship may be generally conventional, made of lightweight, metal framing and fabric and
  • FIG. 1 is approximately 200 meters long and 30 meters in diameter at the maximum inflation
  • embodiments may employ a variety of airship types and configurations. For example, while
  • oblong helium airships 12 are shown, spherical helium balloons or other lighter-than-air
  • the airships 12 are joined together by a
  • this structure 13 also supports downward-
  • Horizontal antennas 17 provide
  • GPS Global System for navigation and precision positioning.
  • a laser port 19 allows laser light
  • FIG.5 depicts a functional block diagram of a preferred embodiment of the electrical system
  • the bank of solar panels 14 provide Dc electric power for the system.
  • power may be temporarily stored by storage batteries 62 or fuel cells (not depicted in FIG. 5).
  • the DC power from solar panels 14 is converted to AC power by inverter 64.
  • Transformer 64 converts DC power from solar panels 14 to AC power by inverter 64.
  • AC power is rectified by rectifier 72 to quasi DC
  • Computer controller 76 operates the system. In a preferred embodiment, the computer controller 76
  • Computer controller 76 receives GPS navigation signals and
  • the Sky Station may be unmanned and all their
  • FIG. 1 is as following:
  • structure 13 includes a broad flat platform that is substantially covered with high efficiency
  • solar panels 14 These solar panels 14, in this preferred embodiment, generate one megawatt
  • nearly 30% of the weight of each Sky Station 10 consists of fuel cells, and these
  • Sky Station 10 uses ion power for propulsion, relying on the plentiful flux of ions available in the stratosphere. In the
  • troposphere conventional propellers can drive Sky Station 10.
  • the ion engine is solar-powered and uses the surrounding atmosphere as its source of gas.
  • the Corona Ion Engine 20 includes
  • emitter electrode assemblies 47 each of which comprises a plurality of pointed electrodes.
  • the electrodes are biased, in this preferred embodiment, at a negative voltage in the range of -
  • the population of charges in a gas stream can be increased by radiating a gas with focused
  • UV radiation as shown in FIG. 3.
  • Such radiation of short wavelength has the energy
  • a positive electrode is positioned in the vicinity (1 -5 cm distance) of
  • the electrode also emits
  • Negative ions heavier than electrons by a factor of approximately 30,000, are repelled by the
  • the Corona Ion Engine can be operated at a wide range of pressures, from atmospheric
  • Engines can produce at atmospheric pressures thrusts comparable to that of propellers driven
  • the Sky Station will be launched from the ground via floatation using a lighter-than-air gas
  • the Sky Station can ascend at a low upward speed using the solar Corona Ion Engine for navigation function.
  • the atmospheric drag is in preferred embodiments where the Sky Station is in the stratosphere.
  • the propulsion produced by the ion drive is sufficient to counter the dray force so as to move
  • the ion momentum is sufficient to keep the platform stationary and still against the
  • A area of the ion engine.
  • the accelerated ion has a much higher velocity than the neutral atom which explains why the
  • the atmosphere in the stratosphere is rarefied and is optimal for the ionization of the
  • the Sky Station operating in the stratosphere and propelled by ion engines, can be maintained in a stationary position in the thin atmosphere.
  • the Sky Station operating in the stratosphere and propelled by ion engines, can be maintained in a stationary position in the thin atmosphere.
  • the light-weight ion engine 20 has no significant moving parts, and is ideal for high-altitude
  • the Corona Ion Engine utilizes the principles of corona ionization to produce thrust
  • repulsion provides the forward momentum or propulsion, as illustrated in Fig. 1.
  • V The voltage (V) is a secondary influence on the performance and it too is dependent on the density.
  • the limitation on how much voltage can be applied is when sufficient
  • Ion engines can be used with conventional propellers and without conventional
  • the ion engine is solar powered and uses the
  • the Corona Ion Engine a preferred Corona Ion Engine
  • the electrodes are biased, in this case
  • the emission of electrons can be
  • Such focusing can be achieved with a lens.
  • a positive electrode is positioned in the vicinity (1-5 cm
  • the electrode also emits secondary electrons as a result of its bombardment by positive ions.
  • a electrode which is comprised of
  • a plurality of elongated members with sharpened ends which face a second electrode is a
  • the second electrode is a toroid, with the axis of the first electrode aligned with the axis of the second electrode such that an atmospheric gas which is partially or highly
  • ionized can flow past the first electrode and then past the second electrode.
  • creating a voltage difference between the first and second electrode is present such that the
  • first electrode propels the atmospheric gas toward the second electrode.
  • ionization means includes a radio frequency coil (RF).
  • RF radio frequency coil
  • ballast resistor is utilized to prevent this "arcing" process, as shown in the schematic of a preferred embodiment of the Corona Ion Engine
  • the first electrode so as to increase the number of ions in the stream passing between the
  • emission of electrons from the first electrode may be increased by the direct irradiation of
  • the propellant or atmospheric density is
  • arrival rate is accomplished by utilizing a fan or an air compressor to accelerate the ambient
  • the arrival rate of the ambient atmosphere is increased by the use of a hom-shaped cylinder or housing for the
  • This cylinder shape has the effect of focusing the stream of charged particles
  • embodiment drives its primary power from solar energy, using solar energy, using solar
  • the energy from solar cells can be any type of energy from solar cells.
  • solar power can be focused onto a surface
  • gas will generate propulsive force and can be used to produce electrical power as is known in
  • solar power can also be focused onto a
  • thermoelectric effect an electric potential with respect to a cold junction through the phenomenon called "thermoelectric effect,” thus providing electrical power.
  • the Sky Station Global network can be self-sustaining
  • Sky Stations which are in the sunlit zone can transmit energy through a microwave link.
  • the momentum of the exhaust gas can be increased if its temperature is increased by
  • the heated surface will then become heated, resulting in a higher thrust from the exhaust.
  • This control system autonomously enables Sky Station TM 10 to remain fixed in position to within 100 feet in all three dimensions, and
  • each Sky Station TM 10 antenna assembly further enables each Sky Station TM 10 antenna assembly to remain accurately oriented with
  • Corona Ion Engine TM activation data in the preferred embodiment depicted in FIG. 6, are
  • slave station that collect telemetry data and send control information, but do not originate
  • control signals will be rearranged to be rearranged.
  • the primary and back-up control facility in this embodiment, will use standard
  • transportable slave ground station will be available for shipment
  • stratospheric "winds" do not exceed 1.5 miles per hour.
  • communication systems of the present invention comprises the stratospheric communications payload, ground station 88 and user communicators 87. All three of these systems exchange
  • ISDN-B demand-assigned 64 kbps
  • these systems exchange information according to other signals types, other
  • the Stratospheric Payload In this preferred embodiment, the stratospheric payload,
  • FIG. 6 not depicted in FIG. 6, consists of a 47 GHz band beam-forming phased array antenna and a
  • the stratospheric communications payload in this preferred embodiment, is a stratospheric communications payload
  • Filters segment the incoming
  • a millimeter waveguide feed array projects a large number of
  • the Stratospheric Payload requires 160 kilowatts of end-of-life
  • This power may be allocated equally to each of 2,100 cells, or may be differentially allocated among cells based on channel demand, or based on the need to provide more transmit power to outlying cells. As an example, if each Stratus TM communicator 87
  • communicators 87 can be accommodated in the same geographical area due to frequency
  • the invention may use substantially
  • the Stratospheric Payload may incorporate a state-of-the-art
  • the switches located at
  • ground station 85 or other locations will be designed to handle the maximum number of
  • Calls will be routed to the most appropriate switch based on information
  • each switch also serves as an Internet
  • ground stations 85 serve as base stations
  • each ground station 85 is assigned a block of bandwidth appropriate to its needed call handling capability. This bandwidth is reused in
  • each polarization and can be reused again at another ground station 85 a short distance away
  • each ground station 85 is approximately equal to the number of active cells divided by the
  • StratusTM Communicators 87 are small personal communications device using solid state
  • these StratusTM Communicators digitize and format incoming information in
  • Communicators 87 has a unique ID code that enables it to extract communications intended
  • the StratusTM Communicators 87 in this preferred embodiment, have a modular ability to be
  • StratusTM Communicators are also be capable of direct interface to the PSTN.
  • the recently announced Oracle Internet device is a typical format for a StratusTM Communicator.
  • ground station 85 without the use of a ground station 85, i.e., via a simple header reformatting process and
  • Each Sky StationTM 10 and each switching center maintains a database
  • the incoming message indicates a recipient who is not a Sky StationTM subscriber, the call is
  • a StratusTM Communicator 87 also includes a cellular
  • This switch in altemate preferred embodiments, may be located onboard each Sky
  • Altemate preferred embodiments of the Stratus Communicators 87 may use different radio
  • preferred embodiments of the communicators may also provide picturephone capabilities.
  • Communicators are equipped with different optional antennas depending on their intended zone of usage. StratusTM Communicators intended for automobile or truck use may come
  • angles of elevation are high, will have an inconspicuous embedded antenna.
  • a powered infrared remote antenna that can attach to a
  • StratusTM Communicators in a preferred embodiment intended for use in outlying areas is
  • StratusTM Communicator may automatically point the build-in one inch antenna based on
  • a preferred embodiment includes a five inch mini-dish
  • This 36 dBi antenna may be
  • Communicator may also be capable of rotating in azimuth, and modestly in elevation, in
  • the invention can Use site
  • Communicator may use other types of antennas.
  • the preferred embodiment of the invention depicted in FIG. 6 includes four different
  • HAC High Area Coverage
  • Wide Area Wide Area
  • WAC Footprint Area Coverage
  • FAC Footprint Area Coverage
  • Altemate preferred embodiments may use additional Sky StationsTM, at the same or
  • Sky StationsTM 10 a geostationary at an
  • the atmospheric loss propagation margin is substantially less than the
  • most FAC 82 users in this preferred embodiment are in the FAC 82 of more than one Sky StationTM and can use site diversity to select the path with fewest rain cells.
  • high gain antennas for FAC 82 zone reception may also be capable of rotating to access a Sky
  • the FAC ground station could shift to another Sky
  • a milliwatt is allocated to each user since a high gain antenna may be implemented at the ground
  • the resultant margin can be set as high as necessary to handle the anticipated downlink
  • Uplink Budget (User to Sky StationTM).
  • the budget is set by the need to keep user terminal power in the HAC region as low as possible to minimize battery power requirements and to respect radiation hazard limits. Accordingly, the
  • user terminal uplink power is set, in this embodiment, at 100 milliwatts (0.1 watts). Higher
  • the uplink budget from the ground station to the Sky StationTM for this embodiment is the uplink budget from the ground station to the Sky StationTM for this embodiment.
  • Geographic Coverage The geographic coverage objective for a preferred embodiment
  • embodiment of the invention is all of the world's major metropolitan areas and at least 80% of
  • Each Sky StationTM would be positioned over one of the 250 largest metropolitan areas. In this
  • each Sky StationTM 10 provides WAC to approximately 77,000 square kilometers
  • Sky StationsTM could be postponed so that the
  • each Sky StationTM coverage area will consist of approximately 2,100 cells, with cells becoming increasingly larger as one emanates radially outward from
  • the average cell size will be fifty square miles in the WAC region and 500 square miles in the
  • each cell receives a bandwidth assignment of one-seventh of the
  • the cells share the bandwidth in a hexagonal frequency
  • bandwidth are dynamically assigned to cells based on channel demand, subject to overall power
  • Ground station bandwidth is also be geographically reused
  • Ground station bandwidth may also be reused among different instances of this invention assuming adequate spatial separation of

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Cette invention se rapporte à un concept permettant d'obtenir des télécommunications à l'échelle mondiale, lequel concept fait appel à des plates-formes stationnaires (10) évoluant dans la stratosphère. Ces plates-formes (10) sont compatibles avec l'environnement, peuvent être fabriquées à un dixième du coût d'un satellite, et peuvent en outre être réutilisées. La présente invention concerne également un moteur ionique à effet de couronne (20), lequel permet de déplacer des objets dans la stratosphère où la pression atmosphérique réduite n'engendre que peu de frottements et peu de turbulences. Ce moteur (20) comprend une électrode ainsi qu'un système de polarisation, lequel va polariser ladite électrode de manière à la maintenir à un potentiel électrique prédéterminé par rapport à une autre électrode, ceci afin de produire un plasma comprenant des ions négatifs et positifs. Il est également possible d'avoir recours à un chauffage direct par énergie solaire (14) en s'aidant de lentilles optiques. Cette invention concerne également un système permettant d'accroître l'émission des électrons au niveau de l'électrode, et d'effectuer ensuite une ionisation grâce aux rayonnements solaires ultraviolets.
PCT/US1996/003568 1996-03-15 1996-03-15 Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques WO1997033790A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US1996/003568 WO1997033790A1 (fr) 1996-03-15 1996-03-15 Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques
AU54230/96A AU5423096A (en) 1996-03-15 1996-03-15 High-altitude lighter-than-air stationary platforms including ion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1996/003568 WO1997033790A1 (fr) 1996-03-15 1996-03-15 Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques

Publications (1)

Publication Number Publication Date
WO1997033790A1 true WO1997033790A1 (fr) 1997-09-18

Family

ID=22254856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/003568 WO1997033790A1 (fr) 1996-03-15 1996-03-15 Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques

Country Status (2)

Country Link
AU (1) AU5423096A (fr)
WO (1) WO1997033790A1 (fr)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046165A1 (fr) * 1998-03-11 1999-09-16 Centre National D'etudes Spatiales (C.N.E.S.) Aerostat libre a rotation permanente mobile en translation radiale par rapport a l'air atmospherique
EP0913908A3 (fr) * 1997-10-31 2000-04-19 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Corps volant maintenu dans une position essentiellement fixe à des altitudes jusqu'à la stratosphère
EP1003266A1 (fr) * 1998-11-17 2000-05-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Objet volant équipé de panneaux solaires
EP1058409A1 (fr) * 1999-06-03 2000-12-06 Contraves Space AG Réseau et méthode de communication de données sans fil au moyen de relais volants
FR2795043A1 (fr) * 1999-06-21 2000-12-22 Cit Alcatel Vehicule volant a haute altitude servant de relais hertzien et procede pour la mise a poste de ce vehicule
GB2358043A (en) * 1999-11-17 2001-07-11 Peter Smith Deriving thrust by accelerating charged particles
WO2001059961A1 (fr) * 2000-02-08 2001-08-16 Sky Station International, Inc. Systeme et procede de telecommunications optiques en altitude
WO2001078256A1 (fr) * 2000-04-06 2001-10-18 Skycom Corporation Relais suborbitaux
WO2001068447A3 (fr) * 2000-03-10 2002-03-28 Sky Calypso Inc Procede et systeme de collecte de donnees sur l'environnement en liaison avec internet
WO2001058758A3 (fr) * 2000-02-14 2002-05-02 Aerovironment Inc Aeroplane
WO2001078257A3 (fr) * 2000-04-10 2003-08-07 Aerovironment Inc Syteme de communication
WO2004004157A3 (fr) * 2002-04-17 2004-03-25 Aerovironment Inc Systeme de deploiement de plateforme en haute altitude
EP1473851A1 (fr) * 2003-04-30 2004-11-03 Lucent Technologies Inc. Système de télécommunication utilisant une plate-forme aéroportée refléchissante.
WO2005021898A1 (fr) 2003-08-27 2005-03-10 Prospective Concepts Ag Structure porteuse en suspension a sustentation aerostatique
EP1635485A1 (fr) * 2004-09-13 2006-03-15 Eads Astrium Sas Procédé de transmission optique entre un terminal embarqué sur un engin spatial et un terminal distant, et engin spatial adapté pour un tel procédé
US7567779B2 (en) 1993-07-30 2009-07-28 International Multi-Media Corporation Sub-orbital, high altitude communications system
US7802756B2 (en) 2000-02-14 2010-09-28 Aerovironment Inc. Aircraft control system
US7844218B2 (en) 1993-07-30 2010-11-30 International Multi-Media Corporation Sub-orbital, high altitude communications system
US20150215039A1 (en) * 2014-01-24 2015-07-30 Raytheon Company Low-latency, high-bandwidth long range communication system
EP2883312A4 (fr) * 2012-08-09 2016-04-27 Saab Ab Groupe d'extensions de réseau aéroporté
WO2016074019A1 (fr) * 2014-11-14 2016-05-19 Christopher Betts Dirigeable perfectionné
WO2016115243A1 (fr) * 2015-01-15 2016-07-21 Hughes Network Systems, Llc Plateforme à haute altitude avec couverture à multiples faisceaux pour des terminaux à base d'aéronefs
WO2017017100A1 (fr) * 2015-07-27 2017-02-02 Avanti Communications Group Plc Communication par satellite
WO2017059545A1 (fr) * 2015-10-09 2017-04-13 Van Wynsberghe Erinn Plate-forme à haute altitude géostationnaire
US9826407B2 (en) 2012-05-14 2017-11-21 X Development Llc Balloon clumping to provide bandwidth requested in advance
US9853716B2 (en) 2014-10-09 2017-12-26 Hughes Network Systems, Llc Multibeam coverage for a high altitude platform
US9942082B2 (en) 2015-09-23 2018-04-10 Hughes Network Systems, Llc Modulation and coding for a high altitude platform
CN111225854A (zh) * 2017-10-17 2020-06-02 巴斯夫欧洲公司 无人机
JP2022105726A (ja) * 2022-02-02 2022-07-14 克弥 西沢 空中構造物、宇宙構造物
US11515931B2 (en) 2017-10-25 2022-11-29 Skyware Networks LLC Telecommunications system utilizing drones
CN119429186A (zh) * 2024-11-29 2025-02-14 中国人民解放军军事航天部队航天工程大学 一种微波爆震双模式空间推力器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109515675B (zh) * 2018-11-28 2021-11-05 北京航空航天大学 平流层浮空器太阳能电池阵的整体集成拼装设备与方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2626348A (en) * 1945-08-08 1953-01-20 Westinghouse Electric Corp Airborne radio relay and broadcast system
US3611367A (en) * 1968-02-01 1971-10-05 Houston Hotchkiss Brandt Comp Airborne station for aerial observation system
US3781647A (en) * 1971-07-26 1973-12-25 Little Inc A Method and apparatus for converting solar radiation to electrical power
US4364532A (en) * 1979-11-29 1982-12-21 North American Construction Utility Corp. Apparatus for collecting solar energy at high altitudes and on floating structures
US4783595A (en) * 1985-03-28 1988-11-08 The Trustees Of The Stevens Institute Of Technology Solid-state source of ions and atoms
US4825646A (en) * 1987-04-23 1989-05-02 Hughes Aircraft Company Spacecraft with modulated thrust electrostatic ion thruster and associated method
US4891600A (en) * 1982-07-26 1990-01-02 Cox James E Dipole accelerating means and method
US5465023A (en) * 1993-07-01 1995-11-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon-carbon grid for ion engines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2626348A (en) * 1945-08-08 1953-01-20 Westinghouse Electric Corp Airborne radio relay and broadcast system
US3611367A (en) * 1968-02-01 1971-10-05 Houston Hotchkiss Brandt Comp Airborne station for aerial observation system
US3781647A (en) * 1971-07-26 1973-12-25 Little Inc A Method and apparatus for converting solar radiation to electrical power
US4364532A (en) * 1979-11-29 1982-12-21 North American Construction Utility Corp. Apparatus for collecting solar energy at high altitudes and on floating structures
US4891600A (en) * 1982-07-26 1990-01-02 Cox James E Dipole accelerating means and method
US4783595A (en) * 1985-03-28 1988-11-08 The Trustees Of The Stevens Institute Of Technology Solid-state source of ions and atoms
US4825646A (en) * 1987-04-23 1989-05-02 Hughes Aircraft Company Spacecraft with modulated thrust electrostatic ion thruster and associated method
US5465023A (en) * 1993-07-01 1995-11-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon-carbon grid for ion engines

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844218B2 (en) 1993-07-30 2010-11-30 International Multi-Media Corporation Sub-orbital, high altitude communications system
US7567779B2 (en) 1993-07-30 2009-07-28 International Multi-Media Corporation Sub-orbital, high altitude communications system
EP0913908A3 (fr) * 1997-10-31 2000-04-19 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Corps volant maintenu dans une position essentiellement fixe à des altitudes jusqu'à la stratosphère
FR2775949A1 (fr) * 1998-03-11 1999-09-17 Centre Nat Etd Spatiales Aerostat libre a rotation permanente mobile en translation radiale par rapport a l'air atmospherique
WO1999046165A1 (fr) * 1998-03-11 1999-09-16 Centre National D'etudes Spatiales (C.N.E.S.) Aerostat libre a rotation permanente mobile en translation radiale par rapport a l'air atmospherique
US6382557B1 (en) 1998-03-11 2002-05-07 Centre National D'etudes Spatiales (C.N.E.S.) Permanently rotating free aerostat mobile in radial translation relative to ambient air
EP1003266A1 (fr) * 1998-11-17 2000-05-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Objet volant équipé de panneaux solaires
DE19923449B4 (de) * 1998-11-17 2011-02-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Flugkörper mit photoelektrischer Umwandlungsvorrichtung
EP1058409A1 (fr) * 1999-06-03 2000-12-06 Contraves Space AG Réseau et méthode de communication de données sans fil au moyen de relais volants
FR2795043A1 (fr) * 1999-06-21 2000-12-22 Cit Alcatel Vehicule volant a haute altitude servant de relais hertzien et procede pour la mise a poste de ce vehicule
US7313362B1 (en) 1999-06-21 2007-12-25 Alcatel High altitude airborne craft used as radio relay and method for placing said airborne craft on station
WO2000078607A1 (fr) * 1999-06-21 2000-12-28 Alcatel Vehicule volant a haute altitude servant de relais hertzien et procede pour la mise a poste de ce vehicule
EP1063165A1 (fr) * 1999-06-21 2000-12-27 Alcatel Véhicule volant à haute altitude servant de relais hertzien et procédé pour la mise à poste de ce véhicule
GB2358043A (en) * 1999-11-17 2001-07-11 Peter Smith Deriving thrust by accelerating charged particles
WO2001059961A1 (fr) * 2000-02-08 2001-08-16 Sky Station International, Inc. Systeme et procede de telecommunications optiques en altitude
US7802756B2 (en) 2000-02-14 2010-09-28 Aerovironment Inc. Aircraft control system
WO2001058758A3 (fr) * 2000-02-14 2002-05-02 Aerovironment Inc Aeroplane
US7198225B2 (en) 2000-02-14 2007-04-03 Aerovironment, Inc. Aircraft control system
US9764819B2 (en) 2000-02-14 2017-09-19 Aerovironment, Inc. Active dihedral control system for a torsionally flexible wing
US9120555B2 (en) 2000-02-14 2015-09-01 Aerovironment Inc. Active dihedral control system for a torisionally flexible wing
US6931247B2 (en) 2000-02-14 2005-08-16 Aerovironment, Inc. Aircraft control method
US8011615B2 (en) 2000-03-10 2011-09-06 Sky Innovations, Inc. Internet linked environmental data collection system and method
US6811113B1 (en) 2000-03-10 2004-11-02 Sky Calypso, Inc. Internet linked environmental data collection system and method
WO2001068447A3 (fr) * 2000-03-10 2002-03-28 Sky Calypso Inc Procede et systeme de collecte de donnees sur l'environnement en liaison avec internet
WO2001078256A1 (fr) * 2000-04-06 2001-10-18 Skycom Corporation Relais suborbitaux
US6944450B2 (en) 2000-04-10 2005-09-13 Aerovironment, Inc. Communications system
WO2001078257A3 (fr) * 2000-04-10 2003-08-07 Aerovironment Inc Syteme de communication
KR100878644B1 (ko) * 2000-04-10 2009-01-15 에어로바이론먼트 인크 통신 시스템 및 통신 링크 유지 방법
WO2004004157A3 (fr) * 2002-04-17 2004-03-25 Aerovironment Inc Systeme de deploiement de plateforme en haute altitude
US7555297B2 (en) 2002-04-17 2009-06-30 Aerovironment Inc. High altitude platform deployment system
US8180341B2 (en) 2002-04-17 2012-05-15 Aerovironment Inc. High altitude platform deployment system
CN100423590C (zh) * 2003-04-30 2008-10-01 朗迅科技公司 带有反射机载平台的电信系统
US7403772B2 (en) 2003-04-30 2008-07-22 Lucent Technologies Inc. Telecommunications system with reflective airborne platform
EP1473851A1 (fr) * 2003-04-30 2004-11-03 Lucent Technologies Inc. Système de télécommunication utilisant une plate-forme aéroportée refléchissante.
WO2005021898A1 (fr) 2003-08-27 2005-03-10 Prospective Concepts Ag Structure porteuse en suspension a sustentation aerostatique
US8191819B2 (en) 2003-08-27 2012-06-05 Prospective Concepts Ag Floating bearing structure with static buoyancy
FR2875354A1 (fr) * 2004-09-13 2006-03-17 Eads Astrium Sas Soc Par Actio Procede de transmission optique entre un terminal embarque sur un engin spatial et un terminal distant, et engin spatial adapte pour un tel procede
EP1635485A1 (fr) * 2004-09-13 2006-03-15 Eads Astrium Sas Procédé de transmission optique entre un terminal embarqué sur un engin spatial et un terminal distant, et engin spatial adapté pour un tel procédé
US10779167B2 (en) 2012-05-14 2020-09-15 Loon Llc Balloon clumping to provide bandwidth requested in advance
US10382970B2 (en) 2012-05-14 2019-08-13 Waymo Llc Balloon clumping to provide bandwidth requested in advance
US9826407B2 (en) 2012-05-14 2017-11-21 X Development Llc Balloon clumping to provide bandwidth requested in advance
EP2883312A4 (fr) * 2012-08-09 2016-04-27 Saab Ab Groupe d'extensions de réseau aéroporté
US20150215039A1 (en) * 2014-01-24 2015-07-30 Raytheon Company Low-latency, high-bandwidth long range communication system
US9215008B2 (en) * 2014-01-24 2015-12-15 Raytheon Company Low-latency, high-bandwidth long range communication system
US9853716B2 (en) 2014-10-09 2017-12-26 Hughes Network Systems, Llc Multibeam coverage for a high altitude platform
AU2015345982B2 (en) * 2014-11-14 2019-09-05 Christopher Betts An improved airship
GB2547177A (en) * 2014-11-14 2017-08-09 Betts Christopher An improved airship
WO2016074019A1 (fr) * 2014-11-14 2016-05-19 Christopher Betts Dirigeable perfectionné
US9991944B2 (en) 2015-01-15 2018-06-05 Hughes Network Systems, Llc High altitude platform with multibeam coverage for aero-based terminals
WO2016115243A1 (fr) * 2015-01-15 2016-07-21 Hughes Network Systems, Llc Plateforme à haute altitude avec couverture à multiples faisceaux pour des terminaux à base d'aéronefs
WO2017017100A1 (fr) * 2015-07-27 2017-02-02 Avanti Communications Group Plc Communication par satellite
US9942082B2 (en) 2015-09-23 2018-04-10 Hughes Network Systems, Llc Modulation and coding for a high altitude platform
US10924178B2 (en) 2015-10-09 2021-02-16 Erinn Van Wynsberghe Geostationary high altitude platform
US10404353B2 (en) 2015-10-09 2019-09-03 Erinn Van Wynsberghe Geostationary high altitude platform
WO2017059545A1 (fr) * 2015-10-09 2017-04-13 Van Wynsberghe Erinn Plate-forme à haute altitude géostationnaire
CN111225854A (zh) * 2017-10-17 2020-06-02 巴斯夫欧洲公司 无人机
US11515931B2 (en) 2017-10-25 2022-11-29 Skyware Networks LLC Telecommunications system utilizing drones
US11949491B2 (en) 2017-10-25 2024-04-02 Skywave Networks Llc Telecommunications system utilizing drones
JP2022105726A (ja) * 2022-02-02 2022-07-14 克弥 西沢 空中構造物、宇宙構造物
JP2022110077A (ja) * 2022-02-02 2022-07-28 克弥 西沢 ソーラープレーン、航空機、宇宙機
JP2023001372A (ja) * 2022-02-02 2023-01-04 克弥 西沢 打上装置、発射装置、加速装置、マスドライバ、カタパルト、輸送システム、空中構造物、宇宙構造物
WO2023148992A1 (fr) * 2022-02-02 2023-08-10 克弥 西沢 Structure aérienne
WO2023149132A1 (fr) * 2022-02-02 2023-08-10 克弥 西沢 Procédé de lancement, dispositif de lancement, procédé d'accélération, accélérateur électromagnétique de masse et système de transport
CN119429186A (zh) * 2024-11-29 2025-02-14 中国人民解放军军事航天部队航天工程大学 一种微波爆震双模式空间推力器
CN119429186B (zh) * 2024-11-29 2025-07-15 中国人民解放军军事航天部队航天工程大学 一种微波爆震双模式空间推力器

Also Published As

Publication number Publication date
AU5423096A (en) 1997-10-01

Similar Documents

Publication Publication Date Title
WO1997033790A1 (fr) Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques
US6944450B2 (en) Communications system
RU2185026C2 (ru) Суб-орбитальная, высотная коммуникационная система
Tozer et al. High-altitude platforms for wireless communications
Karapantazis et al. Broadband communications via high-altitude platforms: A survey
US8116763B1 (en) Airborne basestation
Pelton Satellite communications
US9100086B1 (en) Aircraft basestation
WO2002061971A1 (fr) Systeme de communication a l'aide d'un aerostat captif au-dessus de la surface de la terre et lie a une station de base par une fibre optique
Blonstein Communications satellites: the technology of space communications
Pelton Trends and future of satellite communications
Gavan Stratospheric quasi-stationary platforms:(SQ-SP) complementary to radio satellite systems
Mitra Satellite communication
Struzak Mobile telecommunications via stratosphere
WO2001078256A1 (fr) Relais suborbitaux
Iida et al. Satellite antenna systems design and implementation around the world
Markovic Satellites in Non-Geostationary Orbits
RU2733181C1 (ru) Аэростатно-космическая энергетическая система (акэс)
Ilcev Introduction to stratospheric communication platforms (SCP)
Back et al. Commercial satellite communication
Wakana et al. Satellite Technologies
Ilcev et al. Development of stratospheric communication platforms (SCP) for rural applications
DiFonzo Satellites and aerospace
Pollack et al. Communications satellites: countdown for INTELSAT VI
Ezzat et al. Design, Implementation, and Validation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KE KG KP KR KZ LK LT LU LV MD MG MN MW NO NZ PL PT RO RU SD SE SI SK TJ TT UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97532549

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA