WO1997033790A1 - Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques - Google Patents
Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques Download PDFInfo
- Publication number
- WO1997033790A1 WO1997033790A1 PCT/US1996/003568 US9603568W WO9733790A1 WO 1997033790 A1 WO1997033790 A1 WO 1997033790A1 US 9603568 W US9603568 W US 9603568W WO 9733790 A1 WO9733790 A1 WO 9733790A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- platform
- electrode
- power
- propulsion system
- source
- Prior art date
Links
- 150000002500 ions Chemical class 0.000 claims abstract description 87
- 239000005437 stratosphere Substances 0.000 claims abstract description 26
- 238000004891 communication Methods 0.000 claims description 62
- 239000007789 gas Substances 0.000 claims description 25
- 238000005516 engineering process Methods 0.000 claims description 13
- 239000000446 fuel Substances 0.000 claims description 12
- 239000001307 helium Substances 0.000 claims description 9
- 229910052734 helium Inorganic materials 0.000 claims description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 8
- 238000001228 spectrum Methods 0.000 claims description 8
- 239000005436 troposphere Substances 0.000 claims description 7
- 230000005684 electric field Effects 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000001141 propulsive effect Effects 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 2
- 238000003860 storage Methods 0.000 claims description 2
- 230000001174 ascending effect Effects 0.000 claims 2
- 230000005611 electricity Effects 0.000 claims 2
- 239000005433 ionosphere Substances 0.000 claims 1
- 230000000712 assembly Effects 0.000 abstract description 8
- 238000000429 assembly Methods 0.000 abstract description 8
- 230000005855 radiation Effects 0.000 abstract description 7
- 230000003287 optical effect Effects 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract 1
- 230000001413 cellular effect Effects 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 11
- 239000003570 air Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000007935 neutral effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 235000015842 Hesperis Nutrition 0.000 description 4
- 235000012633 Iberis amara Nutrition 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000003380 propellant Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 206010011906 Death Diseases 0.000 description 1
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 1
- 101000988802 Homo sapiens Hematopoietic prostaglandin D synthase Proteins 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- ILVGMCVCQBJPSH-WDSKDSINSA-N Ser-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CO ILVGMCVCQBJPSH-WDSKDSINSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000005676 thermoelectric effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18502—Airborne stations
- H04B7/18504—Aircraft used as relay or high altitude atmospheric platform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64B—LIGHTER-THAN AIR AIRCRAFT
- B64B1/00—Lighter-than-air aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64B—LIGHTER-THAN AIR AIRCRAFT
- B64B1/00—Lighter-than-air aircraft
- B64B1/06—Rigid airships; Semi-rigid airships
- B64B1/24—Arrangement of propulsion plant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H—PRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H1/00—Using plasma to produce a reactive propulsive thrust
- F03H1/0006—Details applicable to different types of plasma thrusters
- F03H1/0012—Means for supplying the propellant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/26—Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1007—Communications satellites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/40—Arrangements or adaptations of propulsion systems
- B64G1/411—Electric propulsion
- B64G1/413—Ion or plasma engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/42—Arrangements or adaptations of power supply systems
- B64G1/44—Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
- B64G1/443—Photovoltaic cell arrays
Definitions
- troposphere or stratosphere for providing regional and global communications that is
- the present invention a system of high altitude lighter-than -air telecommunication
- rockets means they will plunge into the atmosphere, generating space debris as layers of
- the multi-billion dollar Iridium Project is a state-of-the-art example of this
- Geosynchronous satellites must orbit far above the earth's equator (6.6 earth radii
- Sky StationTM does not require launching by expensive rockets or Space Shuttle. It
- Sky StationTM can lift tons of payload, whereas most satellites can only manage
- Sky StationsTM can carry enough equipment for broadcasting over
- Sky StationsTM can carry equipment for astronomical observations in the wavelength
- GPS Global Positioning Satellites
- Sky StationsTM are more sustainable than satellites. Their modular design, fabricated
- Satellites can only be serviced by expensive and difficult-to-schedule Space Shuttle missions.
- Sky StationsTM are recyclable. If necessary, Sky StationsTM can be completely
- Satellites are not
- Sky StationsTM are more flexible than orbiting satellites because these satellites remain over a city only for a few minutes during each pass and therefore have to keep
- Sky StationTM always has the flexibility to retransmit
- cubic meters will be capable of lifting a two-ton pay load. That would provide ample
- One Sky StationTM can cover the entire country of Italy. Using a footprint of 1000
- a Corona Ion Engine utilizes ambient
- Sky StationTM as shown in Figure 1, is a large-scale (approximately 200 meters long),
- Sky StationTM is capable of
- This ion propulsion system has significant advantages over
- Figure 1 is a schematic view of a Sky Station telecommunication system of the present
- Figure 2 is a schematic view of a stratosphere-based global communication system, using
- Figure 3 is a schematic view of how laser and microwave beams establish communication
- Figure 4 is a side view of an ion engine for use with an embodiment of the system of the
- Figure 5 is a block diagram showing the structural and functional operation of an embodiment of the electrical system of the present invention.
- Fig. 6 is a schematic view of an embodiment of a telecommunication platform for use at
- FIG. 6 depicts a portion of a preferred embodiment of a global high altitude
- embodiment of the invention consists of a network of 250 Sky Stations 10, several thousand
- ground stations 85 which operate as control and switching centers, and many millions of
- PSTN Public Switched Telephone Network
- Terrestrial wireless communications systems provide low angle of elevation
- the invention provides high elevation angle service to
- a Sky station 10 is located approximately 30
- the Sky Station 10 In other preferred embodiments, the Sky Station 10
- the Sky Station 10 communications payload defines coverage areas on the
- cells 84 surface of the earth, referred to as cells 84, as is well known in the art.
- the coverage area will consist of cells 84 with a one mile radius (3.14 square
- the Sky Station 10 will be at a position in the sky approximately 30
- the cell radius will now be approximately 4.05 miles with a corresponding
- this preferred embodiment offers both small cell sizes
- this preferred embodiment offers large cell
- one ore more Sky Stations may be any suitable Sky Stations.
- FIG.2 depicts a preferred embodiment of a network of Sky Stations lOproviding global
- domelike arrangement encircles the earth 20 Corona Ion Engines not depicted in FIG.2,
- FIG.3 depicts a preferred embodiment in which Sky Stations 10 communicate with each other
- Lasers 31 are not efficient or even possible at lower atmospheric heights
- UV lasers cannot be used at lower heights because the ozone layer absorbs the
- At altitude up to and including the stratosphere includes the steps of launching one or more
- a Sky Station 10 is a large-scale (650 feet long) environmentally
- Sky Station 10 uses Corona
- FIG. 1 There are a large number of alternate preferred embodiments for large-scale Sky Station.
- FIG. 1 There are a large number of alternate preferred embodiments for large-scale Sky Station.
- FIG. 1 shows a preferred embodiment of a Sky Station 10 of the present invention, which is
- Sky Station 10 includes a set of ganged helium airships 12. Each helium
- airship may be generally conventional, made of lightweight, metal framing and fabric and
- FIG. 1 is approximately 200 meters long and 30 meters in diameter at the maximum inflation
- embodiments may employ a variety of airship types and configurations. For example, while
- oblong helium airships 12 are shown, spherical helium balloons or other lighter-than-air
- the airships 12 are joined together by a
- this structure 13 also supports downward-
- Horizontal antennas 17 provide
- GPS Global System for navigation and precision positioning.
- a laser port 19 allows laser light
- FIG.5 depicts a functional block diagram of a preferred embodiment of the electrical system
- the bank of solar panels 14 provide Dc electric power for the system.
- power may be temporarily stored by storage batteries 62 or fuel cells (not depicted in FIG. 5).
- the DC power from solar panels 14 is converted to AC power by inverter 64.
- Transformer 64 converts DC power from solar panels 14 to AC power by inverter 64.
- AC power is rectified by rectifier 72 to quasi DC
- Computer controller 76 operates the system. In a preferred embodiment, the computer controller 76
- Computer controller 76 receives GPS navigation signals and
- the Sky Station may be unmanned and all their
- FIG. 1 is as following:
- structure 13 includes a broad flat platform that is substantially covered with high efficiency
- solar panels 14 These solar panels 14, in this preferred embodiment, generate one megawatt
- nearly 30% of the weight of each Sky Station 10 consists of fuel cells, and these
- Sky Station 10 uses ion power for propulsion, relying on the plentiful flux of ions available in the stratosphere. In the
- troposphere conventional propellers can drive Sky Station 10.
- the ion engine is solar-powered and uses the surrounding atmosphere as its source of gas.
- the Corona Ion Engine 20 includes
- emitter electrode assemblies 47 each of which comprises a plurality of pointed electrodes.
- the electrodes are biased, in this preferred embodiment, at a negative voltage in the range of -
- the population of charges in a gas stream can be increased by radiating a gas with focused
- UV radiation as shown in FIG. 3.
- Such radiation of short wavelength has the energy
- a positive electrode is positioned in the vicinity (1 -5 cm distance) of
- the electrode also emits
- Negative ions heavier than electrons by a factor of approximately 30,000, are repelled by the
- the Corona Ion Engine can be operated at a wide range of pressures, from atmospheric
- Engines can produce at atmospheric pressures thrusts comparable to that of propellers driven
- the Sky Station will be launched from the ground via floatation using a lighter-than-air gas
- the Sky Station can ascend at a low upward speed using the solar Corona Ion Engine for navigation function.
- the atmospheric drag is in preferred embodiments where the Sky Station is in the stratosphere.
- the propulsion produced by the ion drive is sufficient to counter the dray force so as to move
- the ion momentum is sufficient to keep the platform stationary and still against the
- A area of the ion engine.
- the accelerated ion has a much higher velocity than the neutral atom which explains why the
- the atmosphere in the stratosphere is rarefied and is optimal for the ionization of the
- the Sky Station operating in the stratosphere and propelled by ion engines, can be maintained in a stationary position in the thin atmosphere.
- the Sky Station operating in the stratosphere and propelled by ion engines, can be maintained in a stationary position in the thin atmosphere.
- the light-weight ion engine 20 has no significant moving parts, and is ideal for high-altitude
- the Corona Ion Engine utilizes the principles of corona ionization to produce thrust
- repulsion provides the forward momentum or propulsion, as illustrated in Fig. 1.
- V The voltage (V) is a secondary influence on the performance and it too is dependent on the density.
- the limitation on how much voltage can be applied is when sufficient
- Ion engines can be used with conventional propellers and without conventional
- the ion engine is solar powered and uses the
- the Corona Ion Engine a preferred Corona Ion Engine
- the electrodes are biased, in this case
- the emission of electrons can be
- Such focusing can be achieved with a lens.
- a positive electrode is positioned in the vicinity (1-5 cm
- the electrode also emits secondary electrons as a result of its bombardment by positive ions.
- a electrode which is comprised of
- a plurality of elongated members with sharpened ends which face a second electrode is a
- the second electrode is a toroid, with the axis of the first electrode aligned with the axis of the second electrode such that an atmospheric gas which is partially or highly
- ionized can flow past the first electrode and then past the second electrode.
- creating a voltage difference between the first and second electrode is present such that the
- first electrode propels the atmospheric gas toward the second electrode.
- ionization means includes a radio frequency coil (RF).
- RF radio frequency coil
- ballast resistor is utilized to prevent this "arcing" process, as shown in the schematic of a preferred embodiment of the Corona Ion Engine
- the first electrode so as to increase the number of ions in the stream passing between the
- emission of electrons from the first electrode may be increased by the direct irradiation of
- the propellant or atmospheric density is
- arrival rate is accomplished by utilizing a fan or an air compressor to accelerate the ambient
- the arrival rate of the ambient atmosphere is increased by the use of a hom-shaped cylinder or housing for the
- This cylinder shape has the effect of focusing the stream of charged particles
- embodiment drives its primary power from solar energy, using solar energy, using solar
- the energy from solar cells can be any type of energy from solar cells.
- solar power can be focused onto a surface
- gas will generate propulsive force and can be used to produce electrical power as is known in
- solar power can also be focused onto a
- thermoelectric effect an electric potential with respect to a cold junction through the phenomenon called "thermoelectric effect,” thus providing electrical power.
- the Sky Station Global network can be self-sustaining
- Sky Stations which are in the sunlit zone can transmit energy through a microwave link.
- the momentum of the exhaust gas can be increased if its temperature is increased by
- the heated surface will then become heated, resulting in a higher thrust from the exhaust.
- This control system autonomously enables Sky Station TM 10 to remain fixed in position to within 100 feet in all three dimensions, and
- each Sky Station TM 10 antenna assembly further enables each Sky Station TM 10 antenna assembly to remain accurately oriented with
- Corona Ion Engine TM activation data in the preferred embodiment depicted in FIG. 6, are
- slave station that collect telemetry data and send control information, but do not originate
- control signals will be rearranged to be rearranged.
- the primary and back-up control facility in this embodiment, will use standard
- transportable slave ground station will be available for shipment
- stratospheric "winds" do not exceed 1.5 miles per hour.
- communication systems of the present invention comprises the stratospheric communications payload, ground station 88 and user communicators 87. All three of these systems exchange
- ISDN-B demand-assigned 64 kbps
- these systems exchange information according to other signals types, other
- the Stratospheric Payload In this preferred embodiment, the stratospheric payload,
- FIG. 6 not depicted in FIG. 6, consists of a 47 GHz band beam-forming phased array antenna and a
- the stratospheric communications payload in this preferred embodiment, is a stratospheric communications payload
- Filters segment the incoming
- a millimeter waveguide feed array projects a large number of
- the Stratospheric Payload requires 160 kilowatts of end-of-life
- This power may be allocated equally to each of 2,100 cells, or may be differentially allocated among cells based on channel demand, or based on the need to provide more transmit power to outlying cells. As an example, if each Stratus TM communicator 87
- communicators 87 can be accommodated in the same geographical area due to frequency
- the invention may use substantially
- the Stratospheric Payload may incorporate a state-of-the-art
- the switches located at
- ground station 85 or other locations will be designed to handle the maximum number of
- Calls will be routed to the most appropriate switch based on information
- each switch also serves as an Internet
- ground stations 85 serve as base stations
- each ground station 85 is assigned a block of bandwidth appropriate to its needed call handling capability. This bandwidth is reused in
- each polarization and can be reused again at another ground station 85 a short distance away
- each ground station 85 is approximately equal to the number of active cells divided by the
- StratusTM Communicators 87 are small personal communications device using solid state
- these StratusTM Communicators digitize and format incoming information in
- Communicators 87 has a unique ID code that enables it to extract communications intended
- the StratusTM Communicators 87 in this preferred embodiment, have a modular ability to be
- StratusTM Communicators are also be capable of direct interface to the PSTN.
- the recently announced Oracle Internet device is a typical format for a StratusTM Communicator.
- ground station 85 without the use of a ground station 85, i.e., via a simple header reformatting process and
- Each Sky StationTM 10 and each switching center maintains a database
- the incoming message indicates a recipient who is not a Sky StationTM subscriber, the call is
- a StratusTM Communicator 87 also includes a cellular
- This switch in altemate preferred embodiments, may be located onboard each Sky
- Altemate preferred embodiments of the Stratus Communicators 87 may use different radio
- preferred embodiments of the communicators may also provide picturephone capabilities.
- Communicators are equipped with different optional antennas depending on their intended zone of usage. StratusTM Communicators intended for automobile or truck use may come
- angles of elevation are high, will have an inconspicuous embedded antenna.
- a powered infrared remote antenna that can attach to a
- StratusTM Communicators in a preferred embodiment intended for use in outlying areas is
- StratusTM Communicator may automatically point the build-in one inch antenna based on
- a preferred embodiment includes a five inch mini-dish
- This 36 dBi antenna may be
- Communicator may also be capable of rotating in azimuth, and modestly in elevation, in
- the invention can Use site
- Communicator may use other types of antennas.
- the preferred embodiment of the invention depicted in FIG. 6 includes four different
- HAC High Area Coverage
- Wide Area Wide Area
- WAC Footprint Area Coverage
- FAC Footprint Area Coverage
- Altemate preferred embodiments may use additional Sky StationsTM, at the same or
- Sky StationsTM 10 a geostationary at an
- the atmospheric loss propagation margin is substantially less than the
- most FAC 82 users in this preferred embodiment are in the FAC 82 of more than one Sky StationTM and can use site diversity to select the path with fewest rain cells.
- high gain antennas for FAC 82 zone reception may also be capable of rotating to access a Sky
- the FAC ground station could shift to another Sky
- a milliwatt is allocated to each user since a high gain antenna may be implemented at the ground
- the resultant margin can be set as high as necessary to handle the anticipated downlink
- Uplink Budget (User to Sky StationTM).
- the budget is set by the need to keep user terminal power in the HAC region as low as possible to minimize battery power requirements and to respect radiation hazard limits. Accordingly, the
- user terminal uplink power is set, in this embodiment, at 100 milliwatts (0.1 watts). Higher
- the uplink budget from the ground station to the Sky StationTM for this embodiment is the uplink budget from the ground station to the Sky StationTM for this embodiment.
- Geographic Coverage The geographic coverage objective for a preferred embodiment
- embodiment of the invention is all of the world's major metropolitan areas and at least 80% of
- Each Sky StationTM would be positioned over one of the 250 largest metropolitan areas. In this
- each Sky StationTM 10 provides WAC to approximately 77,000 square kilometers
- Sky StationsTM could be postponed so that the
- each Sky StationTM coverage area will consist of approximately 2,100 cells, with cells becoming increasingly larger as one emanates radially outward from
- the average cell size will be fifty square miles in the WAC region and 500 square miles in the
- each cell receives a bandwidth assignment of one-seventh of the
- the cells share the bandwidth in a hexagonal frequency
- bandwidth are dynamically assigned to cells based on channel demand, subject to overall power
- Ground station bandwidth is also be geographically reused
- Ground station bandwidth may also be reused among different instances of this invention assuming adequate spatial separation of
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Photovoltaic Devices (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1996/003568 WO1997033790A1 (fr) | 1996-03-15 | 1996-03-15 | Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques |
AU54230/96A AU5423096A (en) | 1996-03-15 | 1996-03-15 | High-altitude lighter-than-air stationary platforms including ion engines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1996/003568 WO1997033790A1 (fr) | 1996-03-15 | 1996-03-15 | Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997033790A1 true WO1997033790A1 (fr) | 1997-09-18 |
Family
ID=22254856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/003568 WO1997033790A1 (fr) | 1996-03-15 | 1996-03-15 | Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU5423096A (fr) |
WO (1) | WO1997033790A1 (fr) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999046165A1 (fr) * | 1998-03-11 | 1999-09-16 | Centre National D'etudes Spatiales (C.N.E.S.) | Aerostat libre a rotation permanente mobile en translation radiale par rapport a l'air atmospherique |
EP0913908A3 (fr) * | 1997-10-31 | 2000-04-19 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Corps volant maintenu dans une position essentiellement fixe à des altitudes jusqu'à la stratosphère |
EP1003266A1 (fr) * | 1998-11-17 | 2000-05-24 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Objet volant équipé de panneaux solaires |
EP1058409A1 (fr) * | 1999-06-03 | 2000-12-06 | Contraves Space AG | Réseau et méthode de communication de données sans fil au moyen de relais volants |
FR2795043A1 (fr) * | 1999-06-21 | 2000-12-22 | Cit Alcatel | Vehicule volant a haute altitude servant de relais hertzien et procede pour la mise a poste de ce vehicule |
GB2358043A (en) * | 1999-11-17 | 2001-07-11 | Peter Smith | Deriving thrust by accelerating charged particles |
WO2001059961A1 (fr) * | 2000-02-08 | 2001-08-16 | Sky Station International, Inc. | Systeme et procede de telecommunications optiques en altitude |
WO2001078256A1 (fr) * | 2000-04-06 | 2001-10-18 | Skycom Corporation | Relais suborbitaux |
WO2001068447A3 (fr) * | 2000-03-10 | 2002-03-28 | Sky Calypso Inc | Procede et systeme de collecte de donnees sur l'environnement en liaison avec internet |
WO2001058758A3 (fr) * | 2000-02-14 | 2002-05-02 | Aerovironment Inc | Aeroplane |
WO2001078257A3 (fr) * | 2000-04-10 | 2003-08-07 | Aerovironment Inc | Syteme de communication |
WO2004004157A3 (fr) * | 2002-04-17 | 2004-03-25 | Aerovironment Inc | Systeme de deploiement de plateforme en haute altitude |
EP1473851A1 (fr) * | 2003-04-30 | 2004-11-03 | Lucent Technologies Inc. | Système de télécommunication utilisant une plate-forme aéroportée refléchissante. |
WO2005021898A1 (fr) | 2003-08-27 | 2005-03-10 | Prospective Concepts Ag | Structure porteuse en suspension a sustentation aerostatique |
EP1635485A1 (fr) * | 2004-09-13 | 2006-03-15 | Eads Astrium Sas | Procédé de transmission optique entre un terminal embarqué sur un engin spatial et un terminal distant, et engin spatial adapté pour un tel procédé |
US7567779B2 (en) | 1993-07-30 | 2009-07-28 | International Multi-Media Corporation | Sub-orbital, high altitude communications system |
US7802756B2 (en) | 2000-02-14 | 2010-09-28 | Aerovironment Inc. | Aircraft control system |
US7844218B2 (en) | 1993-07-30 | 2010-11-30 | International Multi-Media Corporation | Sub-orbital, high altitude communications system |
US20150215039A1 (en) * | 2014-01-24 | 2015-07-30 | Raytheon Company | Low-latency, high-bandwidth long range communication system |
EP2883312A4 (fr) * | 2012-08-09 | 2016-04-27 | Saab Ab | Groupe d'extensions de réseau aéroporté |
WO2016074019A1 (fr) * | 2014-11-14 | 2016-05-19 | Christopher Betts | Dirigeable perfectionné |
WO2016115243A1 (fr) * | 2015-01-15 | 2016-07-21 | Hughes Network Systems, Llc | Plateforme à haute altitude avec couverture à multiples faisceaux pour des terminaux à base d'aéronefs |
WO2017017100A1 (fr) * | 2015-07-27 | 2017-02-02 | Avanti Communications Group Plc | Communication par satellite |
WO2017059545A1 (fr) * | 2015-10-09 | 2017-04-13 | Van Wynsberghe Erinn | Plate-forme à haute altitude géostationnaire |
US9826407B2 (en) | 2012-05-14 | 2017-11-21 | X Development Llc | Balloon clumping to provide bandwidth requested in advance |
US9853716B2 (en) | 2014-10-09 | 2017-12-26 | Hughes Network Systems, Llc | Multibeam coverage for a high altitude platform |
US9942082B2 (en) | 2015-09-23 | 2018-04-10 | Hughes Network Systems, Llc | Modulation and coding for a high altitude platform |
CN111225854A (zh) * | 2017-10-17 | 2020-06-02 | 巴斯夫欧洲公司 | 无人机 |
JP2022105726A (ja) * | 2022-02-02 | 2022-07-14 | 克弥 西沢 | 空中構造物、宇宙構造物 |
US11515931B2 (en) | 2017-10-25 | 2022-11-29 | Skyware Networks LLC | Telecommunications system utilizing drones |
CN119429186A (zh) * | 2024-11-29 | 2025-02-14 | 中国人民解放军军事航天部队航天工程大学 | 一种微波爆震双模式空间推力器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109515675B (zh) * | 2018-11-28 | 2021-11-05 | 北京航空航天大学 | 平流层浮空器太阳能电池阵的整体集成拼装设备与方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2626348A (en) * | 1945-08-08 | 1953-01-20 | Westinghouse Electric Corp | Airborne radio relay and broadcast system |
US3611367A (en) * | 1968-02-01 | 1971-10-05 | Houston Hotchkiss Brandt Comp | Airborne station for aerial observation system |
US3781647A (en) * | 1971-07-26 | 1973-12-25 | Little Inc A | Method and apparatus for converting solar radiation to electrical power |
US4364532A (en) * | 1979-11-29 | 1982-12-21 | North American Construction Utility Corp. | Apparatus for collecting solar energy at high altitudes and on floating structures |
US4783595A (en) * | 1985-03-28 | 1988-11-08 | The Trustees Of The Stevens Institute Of Technology | Solid-state source of ions and atoms |
US4825646A (en) * | 1987-04-23 | 1989-05-02 | Hughes Aircraft Company | Spacecraft with modulated thrust electrostatic ion thruster and associated method |
US4891600A (en) * | 1982-07-26 | 1990-01-02 | Cox James E | Dipole accelerating means and method |
US5465023A (en) * | 1993-07-01 | 1995-11-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Carbon-carbon grid for ion engines |
-
1996
- 1996-03-15 WO PCT/US1996/003568 patent/WO1997033790A1/fr active Application Filing
- 1996-03-15 AU AU54230/96A patent/AU5423096A/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2626348A (en) * | 1945-08-08 | 1953-01-20 | Westinghouse Electric Corp | Airborne radio relay and broadcast system |
US3611367A (en) * | 1968-02-01 | 1971-10-05 | Houston Hotchkiss Brandt Comp | Airborne station for aerial observation system |
US3781647A (en) * | 1971-07-26 | 1973-12-25 | Little Inc A | Method and apparatus for converting solar radiation to electrical power |
US4364532A (en) * | 1979-11-29 | 1982-12-21 | North American Construction Utility Corp. | Apparatus for collecting solar energy at high altitudes and on floating structures |
US4891600A (en) * | 1982-07-26 | 1990-01-02 | Cox James E | Dipole accelerating means and method |
US4783595A (en) * | 1985-03-28 | 1988-11-08 | The Trustees Of The Stevens Institute Of Technology | Solid-state source of ions and atoms |
US4825646A (en) * | 1987-04-23 | 1989-05-02 | Hughes Aircraft Company | Spacecraft with modulated thrust electrostatic ion thruster and associated method |
US5465023A (en) * | 1993-07-01 | 1995-11-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Carbon-carbon grid for ion engines |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7844218B2 (en) | 1993-07-30 | 2010-11-30 | International Multi-Media Corporation | Sub-orbital, high altitude communications system |
US7567779B2 (en) | 1993-07-30 | 2009-07-28 | International Multi-Media Corporation | Sub-orbital, high altitude communications system |
EP0913908A3 (fr) * | 1997-10-31 | 2000-04-19 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Corps volant maintenu dans une position essentiellement fixe à des altitudes jusqu'à la stratosphère |
FR2775949A1 (fr) * | 1998-03-11 | 1999-09-17 | Centre Nat Etd Spatiales | Aerostat libre a rotation permanente mobile en translation radiale par rapport a l'air atmospherique |
WO1999046165A1 (fr) * | 1998-03-11 | 1999-09-16 | Centre National D'etudes Spatiales (C.N.E.S.) | Aerostat libre a rotation permanente mobile en translation radiale par rapport a l'air atmospherique |
US6382557B1 (en) | 1998-03-11 | 2002-05-07 | Centre National D'etudes Spatiales (C.N.E.S.) | Permanently rotating free aerostat mobile in radial translation relative to ambient air |
EP1003266A1 (fr) * | 1998-11-17 | 2000-05-24 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Objet volant équipé de panneaux solaires |
DE19923449B4 (de) * | 1998-11-17 | 2011-02-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Flugkörper mit photoelektrischer Umwandlungsvorrichtung |
EP1058409A1 (fr) * | 1999-06-03 | 2000-12-06 | Contraves Space AG | Réseau et méthode de communication de données sans fil au moyen de relais volants |
FR2795043A1 (fr) * | 1999-06-21 | 2000-12-22 | Cit Alcatel | Vehicule volant a haute altitude servant de relais hertzien et procede pour la mise a poste de ce vehicule |
US7313362B1 (en) | 1999-06-21 | 2007-12-25 | Alcatel | High altitude airborne craft used as radio relay and method for placing said airborne craft on station |
WO2000078607A1 (fr) * | 1999-06-21 | 2000-12-28 | Alcatel | Vehicule volant a haute altitude servant de relais hertzien et procede pour la mise a poste de ce vehicule |
EP1063165A1 (fr) * | 1999-06-21 | 2000-12-27 | Alcatel | Véhicule volant à haute altitude servant de relais hertzien et procédé pour la mise à poste de ce véhicule |
GB2358043A (en) * | 1999-11-17 | 2001-07-11 | Peter Smith | Deriving thrust by accelerating charged particles |
WO2001059961A1 (fr) * | 2000-02-08 | 2001-08-16 | Sky Station International, Inc. | Systeme et procede de telecommunications optiques en altitude |
US7802756B2 (en) | 2000-02-14 | 2010-09-28 | Aerovironment Inc. | Aircraft control system |
WO2001058758A3 (fr) * | 2000-02-14 | 2002-05-02 | Aerovironment Inc | Aeroplane |
US7198225B2 (en) | 2000-02-14 | 2007-04-03 | Aerovironment, Inc. | Aircraft control system |
US9764819B2 (en) | 2000-02-14 | 2017-09-19 | Aerovironment, Inc. | Active dihedral control system for a torsionally flexible wing |
US9120555B2 (en) | 2000-02-14 | 2015-09-01 | Aerovironment Inc. | Active dihedral control system for a torisionally flexible wing |
US6931247B2 (en) | 2000-02-14 | 2005-08-16 | Aerovironment, Inc. | Aircraft control method |
US8011615B2 (en) | 2000-03-10 | 2011-09-06 | Sky Innovations, Inc. | Internet linked environmental data collection system and method |
US6811113B1 (en) | 2000-03-10 | 2004-11-02 | Sky Calypso, Inc. | Internet linked environmental data collection system and method |
WO2001068447A3 (fr) * | 2000-03-10 | 2002-03-28 | Sky Calypso Inc | Procede et systeme de collecte de donnees sur l'environnement en liaison avec internet |
WO2001078256A1 (fr) * | 2000-04-06 | 2001-10-18 | Skycom Corporation | Relais suborbitaux |
US6944450B2 (en) | 2000-04-10 | 2005-09-13 | Aerovironment, Inc. | Communications system |
WO2001078257A3 (fr) * | 2000-04-10 | 2003-08-07 | Aerovironment Inc | Syteme de communication |
KR100878644B1 (ko) * | 2000-04-10 | 2009-01-15 | 에어로바이론먼트 인크 | 통신 시스템 및 통신 링크 유지 방법 |
WO2004004157A3 (fr) * | 2002-04-17 | 2004-03-25 | Aerovironment Inc | Systeme de deploiement de plateforme en haute altitude |
US7555297B2 (en) | 2002-04-17 | 2009-06-30 | Aerovironment Inc. | High altitude platform deployment system |
US8180341B2 (en) | 2002-04-17 | 2012-05-15 | Aerovironment Inc. | High altitude platform deployment system |
CN100423590C (zh) * | 2003-04-30 | 2008-10-01 | 朗迅科技公司 | 带有反射机载平台的电信系统 |
US7403772B2 (en) | 2003-04-30 | 2008-07-22 | Lucent Technologies Inc. | Telecommunications system with reflective airborne platform |
EP1473851A1 (fr) * | 2003-04-30 | 2004-11-03 | Lucent Technologies Inc. | Système de télécommunication utilisant une plate-forme aéroportée refléchissante. |
WO2005021898A1 (fr) | 2003-08-27 | 2005-03-10 | Prospective Concepts Ag | Structure porteuse en suspension a sustentation aerostatique |
US8191819B2 (en) | 2003-08-27 | 2012-06-05 | Prospective Concepts Ag | Floating bearing structure with static buoyancy |
FR2875354A1 (fr) * | 2004-09-13 | 2006-03-17 | Eads Astrium Sas Soc Par Actio | Procede de transmission optique entre un terminal embarque sur un engin spatial et un terminal distant, et engin spatial adapte pour un tel procede |
EP1635485A1 (fr) * | 2004-09-13 | 2006-03-15 | Eads Astrium Sas | Procédé de transmission optique entre un terminal embarqué sur un engin spatial et un terminal distant, et engin spatial adapté pour un tel procédé |
US10779167B2 (en) | 2012-05-14 | 2020-09-15 | Loon Llc | Balloon clumping to provide bandwidth requested in advance |
US10382970B2 (en) | 2012-05-14 | 2019-08-13 | Waymo Llc | Balloon clumping to provide bandwidth requested in advance |
US9826407B2 (en) | 2012-05-14 | 2017-11-21 | X Development Llc | Balloon clumping to provide bandwidth requested in advance |
EP2883312A4 (fr) * | 2012-08-09 | 2016-04-27 | Saab Ab | Groupe d'extensions de réseau aéroporté |
US20150215039A1 (en) * | 2014-01-24 | 2015-07-30 | Raytheon Company | Low-latency, high-bandwidth long range communication system |
US9215008B2 (en) * | 2014-01-24 | 2015-12-15 | Raytheon Company | Low-latency, high-bandwidth long range communication system |
US9853716B2 (en) | 2014-10-09 | 2017-12-26 | Hughes Network Systems, Llc | Multibeam coverage for a high altitude platform |
AU2015345982B2 (en) * | 2014-11-14 | 2019-09-05 | Christopher Betts | An improved airship |
GB2547177A (en) * | 2014-11-14 | 2017-08-09 | Betts Christopher | An improved airship |
WO2016074019A1 (fr) * | 2014-11-14 | 2016-05-19 | Christopher Betts | Dirigeable perfectionné |
US9991944B2 (en) | 2015-01-15 | 2018-06-05 | Hughes Network Systems, Llc | High altitude platform with multibeam coverage for aero-based terminals |
WO2016115243A1 (fr) * | 2015-01-15 | 2016-07-21 | Hughes Network Systems, Llc | Plateforme à haute altitude avec couverture à multiples faisceaux pour des terminaux à base d'aéronefs |
WO2017017100A1 (fr) * | 2015-07-27 | 2017-02-02 | Avanti Communications Group Plc | Communication par satellite |
US9942082B2 (en) | 2015-09-23 | 2018-04-10 | Hughes Network Systems, Llc | Modulation and coding for a high altitude platform |
US10924178B2 (en) | 2015-10-09 | 2021-02-16 | Erinn Van Wynsberghe | Geostationary high altitude platform |
US10404353B2 (en) | 2015-10-09 | 2019-09-03 | Erinn Van Wynsberghe | Geostationary high altitude platform |
WO2017059545A1 (fr) * | 2015-10-09 | 2017-04-13 | Van Wynsberghe Erinn | Plate-forme à haute altitude géostationnaire |
CN111225854A (zh) * | 2017-10-17 | 2020-06-02 | 巴斯夫欧洲公司 | 无人机 |
US11515931B2 (en) | 2017-10-25 | 2022-11-29 | Skyware Networks LLC | Telecommunications system utilizing drones |
US11949491B2 (en) | 2017-10-25 | 2024-04-02 | Skywave Networks Llc | Telecommunications system utilizing drones |
JP2022105726A (ja) * | 2022-02-02 | 2022-07-14 | 克弥 西沢 | 空中構造物、宇宙構造物 |
JP2022110077A (ja) * | 2022-02-02 | 2022-07-28 | 克弥 西沢 | ソーラープレーン、航空機、宇宙機 |
JP2023001372A (ja) * | 2022-02-02 | 2023-01-04 | 克弥 西沢 | 打上装置、発射装置、加速装置、マスドライバ、カタパルト、輸送システム、空中構造物、宇宙構造物 |
WO2023148992A1 (fr) * | 2022-02-02 | 2023-08-10 | 克弥 西沢 | Structure aérienne |
WO2023149132A1 (fr) * | 2022-02-02 | 2023-08-10 | 克弥 西沢 | Procédé de lancement, dispositif de lancement, procédé d'accélération, accélérateur électromagnétique de masse et système de transport |
CN119429186A (zh) * | 2024-11-29 | 2025-02-14 | 中国人民解放军军事航天部队航天工程大学 | 一种微波爆震双模式空间推力器 |
CN119429186B (zh) * | 2024-11-29 | 2025-07-15 | 中国人民解放军军事航天部队航天工程大学 | 一种微波爆震双模式空间推力器 |
Also Published As
Publication number | Publication date |
---|---|
AU5423096A (en) | 1997-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997033790A1 (fr) | Plates-formes stationnaires plus legeres que l'air, evoluant a haute altitude et comprenant des moteurs ioniques | |
US6944450B2 (en) | Communications system | |
RU2185026C2 (ru) | Суб-орбитальная, высотная коммуникационная система | |
Tozer et al. | High-altitude platforms for wireless communications | |
Karapantazis et al. | Broadband communications via high-altitude platforms: A survey | |
US8116763B1 (en) | Airborne basestation | |
Pelton | Satellite communications | |
US9100086B1 (en) | Aircraft basestation | |
WO2002061971A1 (fr) | Systeme de communication a l'aide d'un aerostat captif au-dessus de la surface de la terre et lie a une station de base par une fibre optique | |
Blonstein | Communications satellites: the technology of space communications | |
Pelton | Trends and future of satellite communications | |
Gavan | Stratospheric quasi-stationary platforms:(SQ-SP) complementary to radio satellite systems | |
Mitra | Satellite communication | |
Struzak | Mobile telecommunications via stratosphere | |
WO2001078256A1 (fr) | Relais suborbitaux | |
Iida et al. | Satellite antenna systems design and implementation around the world | |
Markovic | Satellites in Non-Geostationary Orbits | |
RU2733181C1 (ru) | Аэростатно-космическая энергетическая система (акэс) | |
Ilcev | Introduction to stratospheric communication platforms (SCP) | |
Back et al. | Commercial satellite communication | |
Wakana et al. | Satellite Technologies | |
Ilcev et al. | Development of stratospheric communication platforms (SCP) for rural applications | |
DiFonzo | Satellites and aerospace | |
Pollack et al. | Communications satellites: countdown for INTELSAT VI | |
Ezzat et al. | Design, Implementation, and Validation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KE KG KP KR KZ LK LT LU LV MD MG MN MW NO NZ PL PT RO RU SD SE SI SK TJ TT UA UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 97532549 Format of ref document f/p: F |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |