WO1997033898A1 - Variante d'epissage de recepteur de 4-1bb chez l'homme - Google Patents
Variante d'epissage de recepteur de 4-1bb chez l'homme Download PDFInfo
- Publication number
- WO1997033898A1 WO1997033898A1 PCT/US1996/003587 US9603587W WO9733898A1 WO 1997033898 A1 WO1997033898 A1 WO 1997033898A1 US 9603587 W US9603587 W US 9603587W WO 9733898 A1 WO9733898 A1 WO 9733898A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypeptide
- receptor
- polynucleotide
- lbbsv
- amino acid
- Prior art date
Links
- 101000851370 Homo sapiens Tumor necrosis factor receptor superfamily member 9 Proteins 0.000 title description 3
- 102000050327 human TNFRSF9 Human genes 0.000 title 1
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 247
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 242
- 229920001184 polypeptide Polymers 0.000 claims abstract description 239
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 160
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 160
- 239000002157 polynucleotide Substances 0.000 claims abstract description 159
- 238000000034 method Methods 0.000 claims abstract description 105
- 239000000556 agonist Substances 0.000 claims abstract description 16
- 239000013598 vector Substances 0.000 claims description 88
- 239000012634 fragment Substances 0.000 claims description 81
- 150000001413 amino acids Chemical class 0.000 claims description 53
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 36
- 239000003446 ligand Substances 0.000 claims description 36
- 239000002299 complementary DNA Substances 0.000 claims description 35
- 230000027455 binding Effects 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 24
- 125000003729 nucleotide group Chemical group 0.000 claims description 23
- 239000002773 nucleotide Substances 0.000 claims description 22
- 150000007523 nucleic acids Chemical class 0.000 claims description 15
- 230000004913 activation Effects 0.000 claims description 14
- 102000039446 nucleic acids Human genes 0.000 claims description 14
- 108020004707 nucleic acids Proteins 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 12
- 238000001727 in vivo Methods 0.000 claims description 11
- 230000035772 mutation Effects 0.000 claims description 11
- 230000000295 complement effect Effects 0.000 claims description 10
- 238000011282 treatment Methods 0.000 claims description 8
- 230000009452 underexpressoin Effects 0.000 claims description 3
- 238000002405 diagnostic procedure Methods 0.000 claims 1
- 239000005557 antagonist Substances 0.000 abstract description 21
- 238000011160 research Methods 0.000 abstract description 5
- 108020003175 receptors Proteins 0.000 description 224
- 102000005962 receptors Human genes 0.000 description 215
- 210000004027 cell Anatomy 0.000 description 126
- 108020004414 DNA Proteins 0.000 description 85
- 108090000623 proteins and genes Proteins 0.000 description 76
- 230000014509 gene expression Effects 0.000 description 64
- 235000001014 amino acid Nutrition 0.000 description 46
- 102000004169 proteins and genes Human genes 0.000 description 45
- 235000018102 proteins Nutrition 0.000 description 43
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 26
- 239000013612 plasmid Substances 0.000 description 24
- 239000000203 mixture Substances 0.000 description 23
- 230000000694 effects Effects 0.000 description 19
- 238000003556 assay Methods 0.000 description 17
- 239000013615 primer Substances 0.000 description 17
- 239000000523 sample Substances 0.000 description 17
- 108091034117 Oligonucleotide Proteins 0.000 description 16
- 239000013604 expression vector Substances 0.000 description 16
- 230000001177 retroviral effect Effects 0.000 description 16
- 108091026890 Coding region Proteins 0.000 description 15
- 241000588724 Escherichia coli Species 0.000 description 15
- 241000700605 Viruses Species 0.000 description 15
- 238000006467 substitution reaction Methods 0.000 description 15
- 108091028043 Nucleic acid sequence Proteins 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 238000012216 screening Methods 0.000 description 14
- 210000000349 chromosome Anatomy 0.000 description 13
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 13
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 12
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 12
- 238000010367 cloning Methods 0.000 description 12
- 238000012217 deletion Methods 0.000 description 12
- 230000037430 deletion Effects 0.000 description 12
- 230000001580 bacterial effect Effects 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 108020004999 messenger RNA Proteins 0.000 description 11
- 238000000746 purification Methods 0.000 description 11
- 238000010561 standard procedure Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 238000013518 transcription Methods 0.000 description 11
- 230000035897 transcription Effects 0.000 description 11
- 230000014616 translation Effects 0.000 description 11
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 10
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 10
- 238000007792 addition Methods 0.000 description 10
- 210000003527 eukaryotic cell Anatomy 0.000 description 10
- 230000002068 genetic effect Effects 0.000 description 10
- 208000015181 infectious disease Diseases 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 238000013519 translation Methods 0.000 description 10
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000001939 inductive effect Effects 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 238000004806 packaging method and process Methods 0.000 description 9
- 230000010076 replication Effects 0.000 description 9
- 241000701447 unidentified baculovirus Species 0.000 description 9
- 241000701022 Cytomegalovirus Species 0.000 description 8
- 102000053602 DNA Human genes 0.000 description 8
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 8
- 210000001744 T-lymphocyte Anatomy 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 230000002759 chromosomal effect Effects 0.000 description 8
- 239000003623 enhancer Substances 0.000 description 8
- 210000002950 fibroblast Anatomy 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 239000013600 plasmid vector Substances 0.000 description 8
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 102000012410 DNA Ligases Human genes 0.000 description 7
- 108010061982 DNA Ligases Proteins 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 7
- 229960000723 ampicillin Drugs 0.000 description 7
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 210000004962 mammalian cell Anatomy 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 230000008488 polyadenylation Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 230000000692 anti-sense effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 102000006601 Thymidine Kinase Human genes 0.000 description 5
- 108020004440 Thymidine kinase Proteins 0.000 description 5
- 239000011543 agarose gel Substances 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 230000031018 biological processes and functions Effects 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 239000003184 complementary RNA Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 108020001507 fusion proteins Proteins 0.000 description 5
- 102000037865 fusion proteins Human genes 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 238000010369 molecular cloning Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 208000030507 AIDS Diseases 0.000 description 4
- 108020005544 Antisense RNA Proteins 0.000 description 4
- 208000023275 Autoimmune disease Diseases 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- 108020004635 Complementary DNA Proteins 0.000 description 4
- 238000001712 DNA sequencing Methods 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- UBZGNBKMIJHOHL-BZSNNMDCSA-N Leu-Leu-Phe Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C([O-])=O)CC1=CC=CC=C1 UBZGNBKMIJHOHL-BZSNNMDCSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 101710182846 Polyhedrin Proteins 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 206010040070 Septic Shock Diseases 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 230000004064 dysfunction Effects 0.000 description 4
- 239000012737 fresh medium Substances 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 238000001415 gene therapy Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000002458 infectious effect Effects 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 229940053128 nerve growth factor Drugs 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 238000010361 transduction Methods 0.000 description 4
- 230000026683 transduction Effects 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- 108010082808 4-1BB Ligand Proteins 0.000 description 3
- -1 4-lBB Proteins 0.000 description 3
- MEFILNJXAVSUTO-JXUBOQSCSA-N Ala-Leu-Thr Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O MEFILNJXAVSUTO-JXUBOQSCSA-N 0.000 description 3
- 108020004491 Antisense DNA Proteins 0.000 description 3
- ACEDJCOOPZFUBU-CIUDSAMLSA-N Asp-Cys-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(=O)O)N ACEDJCOOPZFUBU-CIUDSAMLSA-N 0.000 description 3
- PZXPWHFYZXTFBI-YUMQZZPRSA-N Asp-Gly-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC(O)=O PZXPWHFYZXTFBI-YUMQZZPRSA-N 0.000 description 3
- DWOSGXZMLQNDBN-FXQIFTODSA-N Asp-Pro-Cys Chemical compound C1C[C@H](N(C1)C(=O)[C@H](CC(=O)O)N)C(=O)N[C@@H](CS)C(=O)O DWOSGXZMLQNDBN-FXQIFTODSA-N 0.000 description 3
- 206010063094 Cerebral malaria Diseases 0.000 description 3
- QLCPDGRAEJSYQM-LPEHRKFASA-N Cys-Arg-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CS)N)C(=O)O QLCPDGRAEJSYQM-LPEHRKFASA-N 0.000 description 3
- GGRDJANMZPGMNS-CIUDSAMLSA-N Cys-Ser-Leu Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O GGRDJANMZPGMNS-CIUDSAMLSA-N 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 239000003155 DNA primer Substances 0.000 description 3
- 238000012286 ELISA Assay Methods 0.000 description 3
- 206010014824 Endotoxic shock Diseases 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- NKLRYVLERDYDBI-FXQIFTODSA-N Glu-Glu-Asp Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O NKLRYVLERDYDBI-FXQIFTODSA-N 0.000 description 3
- BUZMZDDKFCSKOT-CIUDSAMLSA-N Glu-Glu-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O BUZMZDDKFCSKOT-CIUDSAMLSA-N 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- SBANPBVRHYIMRR-UHFFFAOYSA-N Leu-Ser-Pro Natural products CC(C)CC(N)C(=O)NC(CO)C(=O)N1CCCC1C(O)=O SBANPBVRHYIMRR-UHFFFAOYSA-N 0.000 description 3
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 3
- GAOJCVKPIGHTGO-UWVGGRQHSA-N Lys-Arg-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O GAOJCVKPIGHTGO-UWVGGRQHSA-N 0.000 description 3
- 108010037274 Member 9 Tumor Necrosis Factor Receptor Superfamily Proteins 0.000 description 3
- 102000011769 Member 9 Tumor Necrosis Factor Receptor Superfamily Human genes 0.000 description 3
- WWWGMQHQSAUXBU-BQBZGAKWSA-N Met-Gly-Asn Chemical compound CSCC[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC(N)=O WWWGMQHQSAUXBU-BQBZGAKWSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 241000713869 Moloney murine leukemia virus Species 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 108010025020 Nerve Growth Factor Proteins 0.000 description 3
- 102000015336 Nerve Growth Factor Human genes 0.000 description 3
- 102000007339 Nerve Growth Factor Receptors Human genes 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 108010079005 RDV peptide Proteins 0.000 description 3
- 241000725643 Respiratory syncytial virus Species 0.000 description 3
- UCXDHBORXLVBNC-ZLUOBGJFSA-N Ser-Asn-Cys Chemical compound OC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(O)=O UCXDHBORXLVBNC-ZLUOBGJFSA-N 0.000 description 3
- WKLJLEXEENIYQE-SRVKXCTJSA-N Ser-Cys-Tyr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O WKLJLEXEENIYQE-SRVKXCTJSA-N 0.000 description 3
- RRVFEDGUXSYWOW-BZSNNMDCSA-N Ser-Phe-Phe Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O RRVFEDGUXSYWOW-BZSNNMDCSA-N 0.000 description 3
- YEDSOSIKVUMIJE-DCAQKATOSA-N Ser-Val-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O YEDSOSIKVUMIJE-DCAQKATOSA-N 0.000 description 3
- 108020004682 Single-Stranded DNA Proteins 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- DSGIVWSDDRDJIO-ZXXMMSQZSA-N Thr-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O DSGIVWSDDRDJIO-ZXXMMSQZSA-N 0.000 description 3
- HHPSUFUXXBOFQY-AQZXSJQPSA-N Trp-Thr-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N)O HHPSUFUXXBOFQY-AQZXSJQPSA-N 0.000 description 3
- 102100032101 Tumor necrosis factor ligand superfamily member 9 Human genes 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 239000003816 antisense DNA Substances 0.000 description 3
- 108010018691 arginyl-threonyl-arginine Proteins 0.000 description 3
- 108010047857 aspartylglycine Proteins 0.000 description 3
- 230000008827 biological function Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 244000309466 calf Species 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 230000002939 deleterious effect Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 108010006664 gamma-glutamyl-glycyl-glycine Proteins 0.000 description 3
- 210000003917 human chromosome Anatomy 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 238000007901 in situ hybridization Methods 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000005865 ionizing radiation Effects 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 108010093296 prolyl-prolyl-alanine Proteins 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 108010005652 splenotritin Proteins 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 2
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 2
- 230000005730 ADP ribosylation Effects 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- IXTPACPAXIOCRG-ACZMJKKPSA-N Ala-Glu-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N IXTPACPAXIOCRG-ACZMJKKPSA-N 0.000 description 2
- LJFNNUBZSZCZFN-WHFBIAKZSA-N Ala-Gly-Cys Chemical compound N[C@@H](C)C(=O)NCC(=O)N[C@@H](CS)C(=O)O LJFNNUBZSZCZFN-WHFBIAKZSA-N 0.000 description 2
- VXXHDZKEQNGXNU-QXEWZRGKSA-N Arg-Asp-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCCN=C(N)N VXXHDZKEQNGXNU-QXEWZRGKSA-N 0.000 description 2
- HQIZDMIGUJOSNI-IUCAKERBSA-N Arg-Gly-Arg Chemical compound N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O HQIZDMIGUJOSNI-IUCAKERBSA-N 0.000 description 2
- LXMKTIZAGIBQRX-HRCADAONSA-N Arg-Phe-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=CC=C2)NC(=O)[C@H](CCCN=C(N)N)N)C(=O)O LXMKTIZAGIBQRX-HRCADAONSA-N 0.000 description 2
- AOHKLEBWKMKITA-IHRRRGAJSA-N Arg-Phe-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N AOHKLEBWKMKITA-IHRRRGAJSA-N 0.000 description 2
- AIFHRTPABBBHKU-RCWTZXSCSA-N Arg-Thr-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O AIFHRTPABBBHKU-RCWTZXSCSA-N 0.000 description 2
- RAUPFUCUDBQYHE-AVGNSLFASA-N Asn-Phe-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O RAUPFUCUDBQYHE-AVGNSLFASA-N 0.000 description 2
- AAIUGNSRQDGCDC-ZLUOBGJFSA-N Asp-Cys-Cys Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)O)N)C(=O)O AAIUGNSRQDGCDC-ZLUOBGJFSA-N 0.000 description 2
- DZQKLNLLWFQONU-LKXGYXEUSA-N Asp-Cys-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(=O)O)N)O DZQKLNLLWFQONU-LKXGYXEUSA-N 0.000 description 2
- UMHUHHJMEXNSIV-CIUDSAMLSA-N Asp-Leu-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O UMHUHHJMEXNSIV-CIUDSAMLSA-N 0.000 description 2
- 208000006386 Bone Resorption Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 102100027207 CD27 antigen Human genes 0.000 description 2
- 101150013553 CD40 gene Proteins 0.000 description 2
- 206010006895 Cachexia Diseases 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- KABHAOSDMIYXTR-GUBZILKMSA-N Cys-Glu-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CS)N KABHAOSDMIYXTR-GUBZILKMSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- KVBPDJIFRQUQFY-ACZMJKKPSA-N Glu-Cys-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O KVBPDJIFRQUQFY-ACZMJKKPSA-N 0.000 description 2
- OAGVHWYIBZMWLA-YFKPBYRVSA-N Glu-Gly-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)NCC(O)=O OAGVHWYIBZMWLA-YFKPBYRVSA-N 0.000 description 2
- NJCALAAIGREHDR-WDCWCFNPSA-N Glu-Leu-Thr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O NJCALAAIGREHDR-WDCWCFNPSA-N 0.000 description 2
- CQAHWYDHKUWYIX-YUMQZZPRSA-N Glu-Pro-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O CQAHWYDHKUWYIX-YUMQZZPRSA-N 0.000 description 2
- LGQZOQRDEUIZJY-YUMQZZPRSA-N Gly-Cys-Lys Chemical compound NCCCC[C@H](NC(=O)[C@H](CS)NC(=O)CN)C(O)=O LGQZOQRDEUIZJY-YUMQZZPRSA-N 0.000 description 2
- QCTLGOYODITHPQ-WHFBIAKZSA-N Gly-Cys-Ser Chemical compound [H]NCC(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O QCTLGOYODITHPQ-WHFBIAKZSA-N 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- VLPMGIJPAWENQB-SRVKXCTJSA-N His-Cys-Leu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O VLPMGIJPAWENQB-SRVKXCTJSA-N 0.000 description 2
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 2
- GIRSNERMXCMDBO-GARJFASQSA-N His-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CC2=CN=CN2)N)C(=O)O GIRSNERMXCMDBO-GARJFASQSA-N 0.000 description 2
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 2
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 102100026238 Lymphotoxin-alpha Human genes 0.000 description 2
- HVAUKHLDSDDROB-KKUMJFAQSA-N Lys-Lys-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O HVAUKHLDSDDROB-KKUMJFAQSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 102000003792 Metallothionein Human genes 0.000 description 2
- 108090000157 Metallothionein Proteins 0.000 description 2
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 2
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 2
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 2
- 108091008604 NGF receptors Proteins 0.000 description 2
- 108010032605 Nerve Growth Factor Receptors Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- HCTXJGRYAACKOB-SRVKXCTJSA-N Phe-Asn-Asp Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N HCTXJGRYAACKOB-SRVKXCTJSA-N 0.000 description 2
- QPVFUAUFEBPIPT-CDMKHQONSA-N Phe-Gly-Thr Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(O)=O QPVFUAUFEBPIPT-CDMKHQONSA-N 0.000 description 2
- CMHTUJQZQXFNTQ-OEAJRASXSA-N Phe-Leu-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC1=CC=CC=C1)N)O CMHTUJQZQXFNTQ-OEAJRASXSA-N 0.000 description 2
- FADYJNXDPBKVCA-STQMWFEESA-N Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 FADYJNXDPBKVCA-STQMWFEESA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- VXCHGLYSIOOZIS-GUBZILKMSA-N Pro-Ala-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1 VXCHGLYSIOOZIS-GUBZILKMSA-N 0.000 description 2
- CLNJSLSHKJECME-BQBZGAKWSA-N Pro-Gly-Ala Chemical compound OC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H]1CCCN1 CLNJSLSHKJECME-BQBZGAKWSA-N 0.000 description 2
- XQSREVQDGCPFRJ-STQMWFEESA-N Pro-Gly-Phe Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O XQSREVQDGCPFRJ-STQMWFEESA-N 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 241000714474 Rous sarcoma virus Species 0.000 description 2
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 2
- AXVNLRQLPLSIPQ-FXQIFTODSA-N Ser-Met-Cys Chemical compound CSCC[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CO)N AXVNLRQLPLSIPQ-FXQIFTODSA-N 0.000 description 2
- VGQVAVQWKJLIRM-FXQIFTODSA-N Ser-Ser-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O VGQVAVQWKJLIRM-FXQIFTODSA-N 0.000 description 2
- XJDMUQCLVSCRSJ-VZFHVOOUSA-N Ser-Thr-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O XJDMUQCLVSCRSJ-VZFHVOOUSA-N 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 241000187747 Streptomyces Species 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- 230000005867 T cell response Effects 0.000 description 2
- NAXBBCLCEOTAIG-RHYQMDGZSA-N Thr-Arg-Lys Chemical compound NC(N)=NCCC[C@H](NC(=O)[C@@H](N)[C@H](O)C)C(=O)N[C@@H](CCCCN)C(O)=O NAXBBCLCEOTAIG-RHYQMDGZSA-N 0.000 description 2
- SCSVNSNWUTYSFO-WDCWCFNPSA-N Thr-Lys-Glu Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O SCSVNSNWUTYSFO-WDCWCFNPSA-N 0.000 description 2
- MROIJTGJGIDEEJ-RCWTZXSCSA-N Thr-Pro-Pro Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 MROIJTGJGIDEEJ-RCWTZXSCSA-N 0.000 description 2
- STUAPCLEDMKXKL-LKXGYXEUSA-N Thr-Ser-Asn Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O STUAPCLEDMKXKL-LKXGYXEUSA-N 0.000 description 2
- 206010052779 Transplant rejections Diseases 0.000 description 2
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 2
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 2
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 2
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 2
- SLLKXDSRVAOREO-KZVJFYERSA-N Val-Ala-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](C)NC(=O)[C@H](C(C)C)N)O SLLKXDSRVAOREO-KZVJFYERSA-N 0.000 description 2
- UDNYEPLJTRDMEJ-RCOVLWMOSA-N Val-Asn-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)NCC(=O)O)N UDNYEPLJTRDMEJ-RCOVLWMOSA-N 0.000 description 2
- FPCIBLUVDNXPJO-XPUUQOCRSA-N Val-Cys-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CS)C(=O)NCC(O)=O FPCIBLUVDNXPJO-XPUUQOCRSA-N 0.000 description 2
- VNGKMNPAENRGDC-JYJNAYRXSA-N Val-Phe-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)CC1=CC=CC=C1 VNGKMNPAENRGDC-JYJNAYRXSA-N 0.000 description 2
- AOILQMZPNLUXCM-AVGNSLFASA-N Val-Val-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCCN AOILQMZPNLUXCM-AVGNSLFASA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 108010013835 arginine glutamate Proteins 0.000 description 2
- 108010062796 arginyllysine Proteins 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 230000024279 bone resorption Effects 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000003200 chromosome mapping Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 108010060199 cysteinylproline Proteins 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 108010052621 fas Receptor Proteins 0.000 description 2
- 102000018823 fas Receptor Human genes 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000006251 gamma-carboxylation Effects 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 108010089804 glycyl-threonine Proteins 0.000 description 2
- 108010050848 glycylleucine Proteins 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 108010092114 histidylphenylalanine Proteins 0.000 description 2
- 210000004754 hybrid cell Anatomy 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000033444 hydroxylation Effects 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 210000003000 inclusion body Anatomy 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 108010003700 lysyl aspartic acid Proteins 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 210000003574 melanophore Anatomy 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 210000000287 oocyte Anatomy 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 108010070643 prolylglutamic acid Proteins 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 230000019635 sulfation Effects 0.000 description 2
- 238000005670 sulfation reaction Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 238000011277 treatment modality Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- JEOQACOXAOEPLX-WCCKRBBISA-N (2s)-2-amino-5-(diaminomethylideneamino)pentanoic acid;1,3-thiazolidine-4-carboxylic acid Chemical compound OC(=O)C1CSCN1.OC(=O)[C@@H](N)CCCN=C(N)N JEOQACOXAOEPLX-WCCKRBBISA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- DVGKRPYUFRZAQW-UHFFFAOYSA-N 3 prime Natural products CC(=O)NC1OC(CC(O)C1C(O)C(O)CO)(OC2C(O)C(CO)OC(OC3C(O)C(O)C(O)OC3CO)C2O)C(=O)O DVGKRPYUFRZAQW-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- ZLOIGESWDJYCTF-XVFCMESISA-N 4-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-XVFCMESISA-N 0.000 description 1
- 101150096316 5 gene Proteins 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- OBVSBEYOMDWLRJ-BFHQHQDPSA-N Ala-Gly-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@H](C)N OBVSBEYOMDWLRJ-BFHQHQDPSA-N 0.000 description 1
- SMCGQGDVTPFXKB-XPUUQOCRSA-N Ala-Gly-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@H](C)N SMCGQGDVTPFXKB-XPUUQOCRSA-N 0.000 description 1
- IPZQNYYAYVRKKK-FXQIFTODSA-N Ala-Pro-Ala Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O IPZQNYYAYVRKKK-FXQIFTODSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 101100238293 Arabidopsis thaliana MOR1 gene Proteins 0.000 description 1
- CVXXSWQORBZAAA-SRVKXCTJSA-N Arg-Lys-Glu Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCN=C(N)N CVXXSWQORBZAAA-SRVKXCTJSA-N 0.000 description 1
- VUGWHBXPMAHEGZ-SRVKXCTJSA-N Arg-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CCCN=C(N)N VUGWHBXPMAHEGZ-SRVKXCTJSA-N 0.000 description 1
- KMFPQTITXUKJOV-DCAQKATOSA-N Arg-Ser-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O KMFPQTITXUKJOV-DCAQKATOSA-N 0.000 description 1
- HRCIIMCTUIAKQB-XGEHTFHBSA-N Arg-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N)O HRCIIMCTUIAKQB-XGEHTFHBSA-N 0.000 description 1
- HAJWYALLJIATCX-FXQIFTODSA-N Asn-Asn-Arg Chemical compound C(C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)N)N)CN=C(N)N HAJWYALLJIATCX-FXQIFTODSA-N 0.000 description 1
- RAQMSGVCGSJKCL-FOHZUACHSA-N Asn-Gly-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC(N)=O RAQMSGVCGSJKCL-FOHZUACHSA-N 0.000 description 1
- ZUNMTUPRQMWMHX-LSJOCFKGSA-N Asp-Val-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(O)=O ZUNMTUPRQMWMHX-LSJOCFKGSA-N 0.000 description 1
- 241001203868 Autographa californica Species 0.000 description 1
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 description 1
- 241000713826 Avian leukosis virus Species 0.000 description 1
- 230000003844 B-cell-activation Effects 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 101100268548 Caenorhabditis elegans apl-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- RGTVXXNMOGHRAY-WDSKDSINSA-N Cys-Arg Chemical compound SC[C@H](N)C(=O)N[C@H](C(O)=O)CCCN=C(N)N RGTVXXNMOGHRAY-WDSKDSINSA-N 0.000 description 1
- QJUDRFBUWAGUSG-SRVKXCTJSA-N Cys-Cys-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CS)N QJUDRFBUWAGUSG-SRVKXCTJSA-N 0.000 description 1
- SKSJPIBFNFPTJB-NKWVEPMBSA-N Cys-Gly-Pro Chemical compound C1C[C@@H](N(C1)C(=O)CNC(=O)[C@H](CS)N)C(=O)O SKSJPIBFNFPTJB-NKWVEPMBSA-N 0.000 description 1
- IZUNQDRIAOLWCN-YUMQZZPRSA-N Cys-Leu-Gly Chemical compound CC(C)C[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CS)N IZUNQDRIAOLWCN-YUMQZZPRSA-N 0.000 description 1
- VXLXATVURDNDCG-CIUDSAMLSA-N Cys-Lys-Asp Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CS)N VXLXATVURDNDCG-CIUDSAMLSA-N 0.000 description 1
- CIVXDCMSSFGWAL-YUMQZZPRSA-N Cys-Lys-Gly Chemical compound C(CCN)C[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CS)N CIVXDCMSSFGWAL-YUMQZZPRSA-N 0.000 description 1
- BCWIFCLVCRAIQK-ZLUOBGJFSA-N Cys-Ser-Cys Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CS)N)O BCWIFCLVCRAIQK-ZLUOBGJFSA-N 0.000 description 1
- ABLQPNMKLMFDQU-BIIVOSGPSA-N Cys-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CS)N)C(=O)O ABLQPNMKLMFDQU-BIIVOSGPSA-N 0.000 description 1
- YNJBLTDKTMKEET-ZLUOBGJFSA-N Cys-Ser-Ser Chemical compound SC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O YNJBLTDKTMKEET-ZLUOBGJFSA-N 0.000 description 1
- IQXSTXKVEMRMMB-XAVMHZPKSA-N Cys-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CS)N)O IQXSTXKVEMRMMB-XAVMHZPKSA-N 0.000 description 1
- LEVWYRKDKASIDU-QWWZWVQMSA-N D-cystine Chemical compound OC(=O)[C@H](N)CSSC[C@@H](N)C(O)=O LEVWYRKDKASIDU-QWWZWVQMSA-N 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 101100044298 Drosophila melanogaster fand gene Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241001596967 Escherichia coli M15 Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 101150064015 FAS gene Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 1
- SRZLHYPAOXBBSB-HJGDQZAQSA-N Glu-Arg-Thr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O SRZLHYPAOXBBSB-HJGDQZAQSA-N 0.000 description 1
- OBIHEDRRSMRKLU-ACZMJKKPSA-N Glu-Cys-Asp Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(=O)O)C(=O)O)N OBIHEDRRSMRKLU-ACZMJKKPSA-N 0.000 description 1
- YBAFDPFAUTYYRW-YUMQZZPRSA-N Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](N)CCC(O)=O YBAFDPFAUTYYRW-YUMQZZPRSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- UGVQELHRNUDMAA-BYPYZUCNSA-N Gly-Ala-Gly Chemical compound [NH3+]CC(=O)N[C@@H](C)C(=O)NCC([O-])=O UGVQELHRNUDMAA-BYPYZUCNSA-N 0.000 description 1
- LJPIRKICOISLKN-WHFBIAKZSA-N Gly-Ala-Ser Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O LJPIRKICOISLKN-WHFBIAKZSA-N 0.000 description 1
- KFMBRBPXHVMDFN-UWVGGRQHSA-N Gly-Arg-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCNC(N)=N KFMBRBPXHVMDFN-UWVGGRQHSA-N 0.000 description 1
- IDOGEHIWMJMAHT-BYPYZUCNSA-N Gly-Gly-Cys Chemical compound NCC(=O)NCC(=O)N[C@@H](CS)C(O)=O IDOGEHIWMJMAHT-BYPYZUCNSA-N 0.000 description 1
- DHNXGWVNLFPOMQ-KBPBESRZSA-N Gly-Phe-His Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)NC(=O)CN DHNXGWVNLFPOMQ-KBPBESRZSA-N 0.000 description 1
- LLWQVJNHMYBLLK-CDMKHQONSA-N Gly-Thr-Phe Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O LLWQVJNHMYBLLK-CDMKHQONSA-N 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 108010054278 Lac Repressors Proteins 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- MDVZJYGNAGLPGJ-KKUMJFAQSA-N Leu-Asn-Phe Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MDVZJYGNAGLPGJ-KKUMJFAQSA-N 0.000 description 1
- SBANPBVRHYIMRR-GARJFASQSA-N Leu-Ser-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@@H]1C(=O)O)N SBANPBVRHYIMRR-GARJFASQSA-N 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 1
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 1
- DRCILAJNUJKAHC-SRVKXCTJSA-N Lys-Glu-Arg Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O DRCILAJNUJKAHC-SRVKXCTJSA-N 0.000 description 1
- AIRZWUMAHCDDHR-KKUMJFAQSA-N Lys-Leu-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O AIRZWUMAHCDDHR-KKUMJFAQSA-N 0.000 description 1
- YUAXTFMFMOIMAM-QWRGUYRKSA-N Lys-Lys-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O YUAXTFMFMOIMAM-QWRGUYRKSA-N 0.000 description 1
- ZAJNRWKGHWGPDQ-SDDRHHMPSA-N Met-Arg-Pro Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@@H]1C(=O)O)N ZAJNRWKGHWGPDQ-SDDRHHMPSA-N 0.000 description 1
- CNUPMMXDISGXMU-CIUDSAMLSA-N Met-Cys-Glu Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(O)=O CNUPMMXDISGXMU-CIUDSAMLSA-N 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101000969137 Mus musculus Metallothionein-1 Proteins 0.000 description 1
- 241000713883 Myeloproliferative sarcoma virus Species 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 101100342977 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) leu-1 gene Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- ZWJKVFAYPLPCQB-UNQGMJICSA-N Phe-Arg-Thr Chemical compound C[C@@H](O)[C@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)Cc1ccccc1)C(O)=O ZWJKVFAYPLPCQB-UNQGMJICSA-N 0.000 description 1
- ZBYHVSHBZYHQBW-SRVKXCTJSA-N Phe-Cys-Asp Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(=O)O)C(=O)O)N ZBYHVSHBZYHQBW-SRVKXCTJSA-N 0.000 description 1
- IEOHQGFKHXUALJ-JYJNAYRXSA-N Phe-Met-Arg Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O IEOHQGFKHXUALJ-JYJNAYRXSA-N 0.000 description 1
- QARPMYDMYVLFMW-KKUMJFAQSA-N Phe-Pro-Glu Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=CC=C1 QARPMYDMYVLFMW-KKUMJFAQSA-N 0.000 description 1
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 1
- 102000011420 Phospholipase D Human genes 0.000 description 1
- 108090000553 Phospholipase D Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 101100335198 Pneumocystis carinii fol1 gene Proteins 0.000 description 1
- KIZQGKLMXKGDIV-BQBZGAKWSA-N Pro-Ala-Gly Chemical compound OC(=O)CNC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1 KIZQGKLMXKGDIV-BQBZGAKWSA-N 0.000 description 1
- WSRWHZRUOCACLJ-UWVGGRQHSA-N Pro-Gly-His Chemical compound C([C@@H](C(=O)O)NC(=O)CNC(=O)[C@H]1NCCC1)C1=CN=CN1 WSRWHZRUOCACLJ-UWVGGRQHSA-N 0.000 description 1
- IWIANZLCJVYEFX-RYUDHWBXSA-N Pro-Phe Chemical compound C([C@@H](C(=O)O)NC(=O)[C@H]1NCCC1)C1=CC=CC=C1 IWIANZLCJVYEFX-RYUDHWBXSA-N 0.000 description 1
- DSGSTPRKNYHGCL-JYJNAYRXSA-N Pro-Phe-Met Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCSC)C(O)=O DSGSTPRKNYHGCL-JYJNAYRXSA-N 0.000 description 1
- KDBHVPXBQADZKY-GUBZILKMSA-N Pro-Pro-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 KDBHVPXBQADZKY-GUBZILKMSA-N 0.000 description 1
- GFHOSBYCLACKEK-GUBZILKMSA-N Pro-Pro-Asn Chemical compound [H]N1CCC[C@H]1C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(O)=O GFHOSBYCLACKEK-GUBZILKMSA-N 0.000 description 1
- MKGIILKDUGDRRO-FXQIFTODSA-N Pro-Ser-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H]1CCCN1 MKGIILKDUGDRRO-FXQIFTODSA-N 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 101100379247 Salmo trutta apoa1 gene Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- BTKUIVBNGBFTTP-WHFBIAKZSA-N Ser-Ala-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)NCC(O)=O BTKUIVBNGBFTTP-WHFBIAKZSA-N 0.000 description 1
- MQUZANJDFOQOBX-SRVKXCTJSA-N Ser-Phe-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(O)=O MQUZANJDFOQOBX-SRVKXCTJSA-N 0.000 description 1
- ADJDNJCSPNFFPI-FXQIFTODSA-N Ser-Pro-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CO ADJDNJCSPNFFPI-FXQIFTODSA-N 0.000 description 1
- HHJFMHQYEAAOBM-ZLUOBGJFSA-N Ser-Ser-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O HHJFMHQYEAAOBM-ZLUOBGJFSA-N 0.000 description 1
- SNXUIBACCONSOH-BWBBJGPYSA-N Ser-Thr-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CO)C(O)=O SNXUIBACCONSOH-BWBBJGPYSA-N 0.000 description 1
- SIEBDTCABMZCLF-XGEHTFHBSA-N Ser-Val-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O SIEBDTCABMZCLF-XGEHTFHBSA-N 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000713896 Spleen necrosis virus Species 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 1
- MGJLBZFUXUGMML-VOAKCMCISA-N Thr-Lys-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)O)N)O MGJLBZFUXUGMML-VOAKCMCISA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- GVJUTBOZZBTBIG-AVGNSLFASA-N Val-Lys-Arg Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N GVJUTBOZZBTBIG-AVGNSLFASA-N 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 108010076324 alanyl-glycyl-glycine Proteins 0.000 description 1
- 108010041407 alanylaspartic acid Proteins 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000010516 arginylation Effects 0.000 description 1
- 108010060035 arginylproline Proteins 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 101150055766 cat gene Proteins 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005860 defense response to virus Effects 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 101150056310 gem1 gene Proteins 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- 239000006451 grace's insect medium Substances 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 150000003278 haem Chemical group 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 108010018006 histidylserine Proteins 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000007365 immunoregulation Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000010249 in-situ analysis Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 108010054155 lysyllysine Proteins 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000010807 negative regulation of binding Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000005868 ontogenesis Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 108010012581 phenylalanylglutamate Proteins 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 108010031719 prolyl-serine Proteins 0.000 description 1
- 108010029020 prolylglycine Proteins 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000007390 skin biopsy Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 101150108727 trpl gene Proteins 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70578—NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- This invention relates, in part, to newly identified polynucleotides and polypeptides,- variants and derivatives of the polynucleotides and polypeptides,• processes for making the polynucleotides and the polypeptides, and their variants and derivatives; agonists and antagonists of the polypeptides; and uses of the polynucleotides, polypeptides, variants, derivatives, agonists and antagonists.
- the invention relates to polynucleotides and polypeptides of human 4-IBB receptor splicing variant, sometimes hereinafter referred to as "h4-lBBSV receptor".
- cytokines Many biological actions, for instance, response to certain stimuli and natural biological processes, are controlled by factors, such as cytokines. Many cytokines act through receptors by engaging the receptor and producing an intra-cellular response.
- tumor necrosis factor both alpha and beta
- TNF tumor necrosis factor
- the TNF molecules belong to the "TNF-ligand” superfamily, and act together with their receptors or counter-ligands, the "TNF-receptor” superfamily. So far, nine members of the TNF ligand superfamily have been identified and ten members of the TNF-receptor superfamily have been characterized.
- TNF- ⁇ lymphotoxin- ⁇
- LT- lymphotoxin- ⁇
- LT-/3 found in complex heterotrimer LT- ⁇ 2- ⁇
- Fas CD40, CD27, CD30, 4-lBB, OX40 and nerve growth factor (NGF)
- the superfamily of TNF receptors includes the p55TNF receptor, p75TNF receptor, TNF receptor-related protein, FAS antigen or APL-1, CD40, CD27, CD30, 4-1BB, OX40, low affinity p75 and NGF-receptor (Meager, A., Biological ⁇ , 22:291-295 (1994).
- TNF-ligand superfamily All members of the TNF-ligand superfamily are expressed by activated T-cells, implying that they are necessary for T-cell interactions with other cell types which underlie cell ontogeny and functions. (Meager, A., supra).
- CD40 ligand cause an X-linked immunodeficiency state characterized by high levels of immunoglobulin M and low levels of immunoglobulin
- TNF and LT- ⁇ r are capable of binding to two TNF receptors (the 55- and 75-kd TNF receptors) .
- TNF and LT- ⁇ are involved in the pathogenesi ⁇ of a wide range of diseases, including endotoxic shock, cerebral malaria, tumors, autoimmune disease, AIDS and graft-host rejection (Beutler, B. and Von Huffel, C. , Science, 264:667, 668 (1994) . Mutations in the p55 Receptor cause increased susceptibility to microbial infection.
- 4-1BB ligand a member of the TNF family of ligands, is induced by T-cell activation. Signalling through a 4-IBB receptor enhances proliferative T-cell responses.
- 4-1BB receptors is the inducible murine T-cell 4-1BB receptor which is a member of the TNF receptor family. It is expressed on activated T-cells as both a 30-kDa monomer and a 55-kDa homodimer (Pollok, K.E., et al., J. Immunol., 150:771 (1993).
- the 4-1BB receptor is a high affinity ligand, and has been identified and cloned (Goodwin, R.G., et al. , Eur. J.
- a gene has also been recently identified which is induced by lymphocyte activation.
- the sequence of the full length 1.4 kb cDNA has been characterized as a new member of the nerve growth factor/tumor necrosis factor receptor family and is considered to be the human homolog of the murine T-cell-specific receptor 4-1BB.
- This receptor gene can be induced in lymphoid and differentiated non-lymphoid cell types. Expression of the protein encoded by this gene has been found on a subset of activated T or B lymphocytes. Activation-dependent expression of the protein is found not only in T lymphocytes, but also in B lymphocytes, monocytes and diverse non-lymphoid cell types (Schwarz, Blood, 85 (4) :1043-1052 (1995) .
- TNF family ligands and TNF family receptors are varied and influence numerous functions, both normal and abnormal, in the biological processes of the mammalian system. There is a clear need, therefor, for identification and characterization of such receptors and ligands that influence biological activity, both normally and in disease states. In particular, there is a need to isolate and characterize additional NGF/TNF family receptors akin to 4-IBB which enhances proliferative T-cell responses and may be employed, therefore, for preventing, ameliorating or correcting dysfunctions or disease or augmenting positive natural actions of such receptors.
- receptor polypeptides inter alia, that have been identified as novel h4-lBBSV receptors by homology between the amino acid sequence set out in Figure 1 (SEQ ID NO:2) and known amino acid sequences of other proteins such as human the 4-lBB receptor protein which may have a different tissue distribution and a different specificity for 4-1BB ligand.
- the polynucleotide comprises the region encoding h4-lBBSV receptor in the sequence set out in Figure 1 (SEQ ID NO:2) .
- an isolated nucleic acid molecule encoding a mature polypeptide expressed by the human cDNA contained in the deposited clone which is hereinafter described.
- isolated nucleic acid molecules encoding h4-lBBSV receptors including mRNAs, cDNAs, genomic DNAs and, in further embodiments of this aspect of the invention, biologically, diagnostically, clinically or therapeutically useful variants, analogs or derivatives thereof, or fragments thereof, including fragments of the variants, analogs and derivatives.
- novel receptor polypeptides of human origin referred to herein as h4-lBBSV as well as biologically, diagnostically or therapeutically useful fragments, variants and derivatives thereof, variants and derivatives of the fragments, and analogs of the foregoing.
- h4-lBBSV receptor encoded by naturally occurring alleles of the h4-lBBSV receptor gene.
- methods for producing the aforementioned h4-lBBSV receptor polypeptides comprising culturing host cells having expressibly incorporated therein an exogenously-derived h4-lBBSV-encoding polynucleotide under conditions for expression of h4-lBBSV receptor in the host and then recovering the expressed polypeptide.
- products, compositions and methods for, among other things: assessing h4- 1BBSV expression in cells by determining h4-lBBSV polypeptides or h4-lBBSV-encoding mRNA; assaying genetic variation and aberrations, such as defects, in h4-lBBSV genes; and administering a h4-lBBSV polypeptide or polynucleotide to an organism to augment h4-lBBSV function or remediate h4-lBBSV dysfunction.
- probes that hybridize to human h4-lBBSV sequences.
- antibodies against h4-lBBSV polypeptides there are provided antibodies against h4-lBBSV polypeptides.
- the antibodies are highly selective for h4-lBBSV.
- h4-lBBSV agonists are provided.
- preferred agonists are molecules that bind to h4-lBBSV receptor molecules, and that elicit or augment h4-lBBSV receptor responses.
- agonists are molecules that interact with h4-lBBSV receptor polypeptides, or with other modulators of h4-lBBSV receptor activities, and thereby potentiate or augment an effect of h4-lBBSV receptor or more than one effect of h4-iBBSV receptor, for example, the agonists may be employed to treat and or prevent tumors, cytotoxicity, viral infection, deleterious effects of ionizing radiation, autoimmune disease, AIDS and graft-host rejection, to regulate immune responses, and cellular proliferation.
- h4-lBBSV antagonists are those which bind to h4-lBBSV receptor or binding molecules and do not elicit a h4-lBBSV receptor response or more than one h4-lBBSV receptor response.
- preferred antagonists are soluble forms of the h4-lBBSV receptor which bind to or interact with ligands thereof so as to inhibit an effect of h4-lBBSV receptor or more than one effect of h4-lBBSV receptor or which prevent expression h4-lBBSV.
- the antagonists may be used to inhibit the action of h4-lBBSV receptor polypeptides. They may be used, for instance, to treat and/or prevent endotoxic shock, inflammation, cerebral malaria, activation of the HIV virus, graft rejection, bone resorption and cachexia.
- compositions comprising a h4-lBBSV receptor polynucleotide or a h4- 1BBSV receptor polypeptide for administration to cells in vitro, to cells ex vivo and to cells in vivo, or to a multicellular organism.
- the compositions comprise a h4-lBBSV receptor polynucleotide for expression of a h4-lBBSV receptor polypeptide in a host organism for treatment of disease.
- Particularly preferred in this regard is expression in a human patient for treatment of a dysfunction associated with aberrant endogenous activity of h4-lBBSV receptor.
- Figure 1 shows the nucleotide and deduced amino acid sequence of h4-lBBSV receptor.
- Figure 2 shows the regions of similarity between amino acid sequences of h4-lBBSV receptor and human 4-IBB receptor polypeptide as shown in Schwarz, H.J., et al., Gene, 134:295 (1993) (SEQ ID NO:9) .
- Figure 3 shows structural and functional features of h4-lBBSV receptor deduced by the indicated techniques, as a function of amino acid sequence.
- DIGESTION of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA.
- the various restriction enzymes referred to herein are commercially available and their reaction conditions, cofactors and other requirements for use are known and routine to the skilled artisan.
- plasmid or DNA fragment is digested with about 2 units of enzyme in about 20 ⁇ l of reaction buffer.
- isolating DNA fragments for plasmid construction typically 5 to 50 ⁇ g of DNA are digested with 20 to 250 units of enzyme in proportionately larger volumes.
- Incubation times of about 1 hour at 37'C are ordinarily used, but conditions may vary in accordance with standard procedures, the supplier's instructions and the particulars of the reaction.
- reactions may be analyzed, and fragments may be purified by electrophoresis through an agarose or polyacrylamide gel, using well known methods that are routine for those skilled in the art.
- GENETIC ELEMENT generally means a polynucleotide comprising a region that encodes a polypeptide or a region that regulates transcription or translation or other processes important to expression of the polypeptide in a host cell, or a polynucleotide comprising both a region that encodes a polypeptide and a region operably linked thereto that regulates expression.
- Genetic elements may be comprised within a vector that replicates as an episomal element; that is, as a molecule physically independent of the host cell genome. They may be comprised within mini-chromosomes, such as those that arise during amplification of transfected DNA by methotrexate selection in eukaryotic cells. Genetic elements also may be comprised within a host cell genome; not in their natural state but, rather, following manipulation such as isolation, cloning and introduction into a host cell in the form of purified DNA or in a vector, among others.
- ISOLATED means altered "by the hand of man” from its natural state; i.e., that, if it occurs in nature, it has been changed or removed from its original environment, or both.
- a naturally occurring polynucleotide or a polypeptide naturally present in a living animal in its natural state is not “isolated,” but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is “isolated”, as the term is employed herein.
- isolated means that it is separated from the chromosome and cell in which it naturally occurs.
- polynucleotides can be joined to other polynucleotides, such as DNAs, for mutagenesis, to form fusion proteins, and for propagation or expression in a host, for instance.
- the isolated polynucleotides, alone or joined to other polynucleotides such as vectors, can be introduced into host cells, in culture or in whole organisms. Introduced into host cells in culture or in whole organisms, such DNAs still would be isolated, as the term is used herein, because they would not be in their naturally occurring form or environment.
- polynucleotides and polypeptides may occur in a composition, such as a media formulations, solutions for introduction of polynucleotides or polypeptides, for example, into cells, compositions or solutions for chemical or enzymatic reactions, for instance, which are not naturally occurring compositions, and, therein remain isolated polynucleotides or polypeptides within the meaning of that term as it is employed herein.
- a composition such as a media formulations, solutions for introduction of polynucleotides or polypeptides, for example, into cells, compositions or solutions for chemical or enzymatic reactions, for instance, which are not naturally occurring compositions, and, therein remain isolated polynucleotides or polypeptides within the meaning of that term as it is employed herein.
- LIGATION refers to the process of forming phosphodiester bonds between two or more polynucleotides, which most often are double stranded DNAs.
- Techniques for ligation are well known to the art and protocols for ligation are described in standard laboratory manuals and references, such as, for instance, Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed. ; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989) and Maniatis et al., pg. 146, as cited below.
- OLIGONUCLEOTIDE(S) refers to relatively short polynucleotides. Often the term refers to single-stranded deoxyribonucleotide, but it can refer as well to single-or double-stranded ribonucleotide, RNA:DNA hybrids and double-stranded DNAs, among others.
- Oligonucleotides such as single-stranded DNA probe oligonucleotides, often are synthesized by chemical methods, such as those implemented on automated oligonucleotide synthesizers. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.
- oligonucleotides typically are obtained without a 5' phosphate.
- the 5' ends of such oligonucleotides are not substrates for phosphodiester bond formation by ligation reactions that employ DNA ligase typically used to form recombinant DNA molecules.
- a phosphate can be added by standard techniques, such as those that employ a kinase and ATP.
- the 3' end of a chemically synthesized oligonucleotide generally has a free hydroxyl group and, in the presence of a ligase, such as T4 DNA ligase, readily will form a phosphodiester bond with a 5' phosphate of another polynucleotide, such as another oligonucleotide. As is well known, this reaction can be prevented selectively, where desired, by removing the 5' phosphates of the other polynucleotide(s) prior to ligation.
- a ligase such as T4 DNA ligase
- PLASMIDS generally are designated herein by a lower case p preceded and/or followed by capital letters and/or numbers, in accordance with standard naming conventions that are familiar to those of skill in the art.
- Starting plasmids disclosed herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids by routine application of well known, published procedures.
- Many plasmids and other cloning and expression vectors that can be used in accordance with the present invention are well known and readily available to those of skill in the art.
- those of skill readily may construct any number of other plasmids suitable for use in the invention. The properties, construction and use of such plasmids, as well as other vectors, in the present invention will be readily apparent to those of skill from the present disclosure.
- POLYNUCLEOTIDE(S) generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
- polynucleotides as used herein refers to, among others, single-and double-stranded DNA, DNA that is a mixture of single-and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions.
- polynucleotide as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
- the strands in such regions may be from the same molecule or from different molecules.
- the regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules.
- One of the molecules of a triple-helical region often is an oligonucleotide.
- polynucleotide includes DNAs or RNAs as described above that contain one or more modified bases.
- DNAs or RNAs with backbones modified for stability or for other reasons are “polynucleotides” as that term is intended herein.
- DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples are polynucleotides as the term is used herein.
- polynucleotide as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells, inter alia.
- POLYPEPTIDES as used herein, includes all polypeptides as described below. The basic structure of polypeptides is well known and has been described in innumerable textbooks and other publications in the art. In this context, the term is used herein to refer to any peptide or protein comprising two or more amino acids joined to each other in a linear chain by peptide bonds.
- the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types.
- polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids, and that many amino acids, including the terminal amino acids, may be modified in a given polypeptide, either by natural processes, such as processing and other post-tran ⁇ lational modifications, but also by chemical modification techniques which are well known to the art. Even the common modifications that occur naturally in polypeptides are too numerous to list exhaustively here, but they are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art.
- polypeptides of the present are, to name an illustrative few, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolyticprocessing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as
- polypeptide encompasses all such modifications, particularly those that are present in polypeptides synthesized by expressing a polynucleotide in a host cell.
- VARIANT(S) of polynucleotides or polypeptides are polynucleotides or polypeptides that differ from a reference polynucleotide or polypeptide, respectively. Variants in this sense are described below and elsewhere in the present disclosure in greater detail.
- (l) A polynucleotide that differs in nucleotide sequence from another, reference polynucleotide. Generally, differences are limited so that the nucleotide sequences of the reference and the variant are closely similar overall and, in many regions, identical.
- changes in the nucleotide sequence of the variant may be silent. That is, they may not alter the amino acids encoded by the polynucleotide. Where alterations are limited to silent changes of this type a variant will encode a polypeptide with the same amino acid sequence as the reference. Also as noted below, changes in the nucleotide sequence of the variant may alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Such nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. (2) A polypeptide that differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference and the variant are closely similar overall and, in many region, identical.
- a variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions, fusions and truncations, which may be present in any combination.
- the present invention relates to novel h4-lBBSV receptor polypeptides and polynucleotides, among other things, as described in greater detail below.
- the invention relates to polypeptides and polynucleotides of a novel h4-lBBSV receptor, which is related by amino acid sequence homology to human h4-lBB receptor polypeptide (SEQ ID NO:9) .
- the invention relates especially to h4-lBBSV receptor having the nucleotide and amino acid sequences set out in Figure 1 (SEQ ID NO:1-2) , and to the h4- 1BBSV receptor nucleotide and amino acid sequences of the human cDNA in Figure 1 (SEQ ID N0:1) obtained by sequencing the cDNA of the deposited clone, hereinafter described.
- the sequence of the deposited clone is controlling as to any discrepancies between the two and any reference to the sequences of Figure 1 (SEQ ID N0:1) include reference to the sequence of the human cDNA of the deposited clone.
- isolated polynucleotides which encode the h4-iBBSV receptor polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO:2) .
- a polynucleotide of the present invention encoding h4-lBBSV receptor polypeptide may be obtained using standard cloning and screening procedures, such as those for cloning cDNAs using mRNA as starting material.
- the polynucleotide set out in Figure 1 (SEQ ID N0:1) was discovered in a cDNA library derived from cells of a human activated T-cell (12 hours)/thiouridine labelled Eco.
- h4-lBBSV receptor of the invention is structurally related to other proteins of the NGF Receptor family, as shown by the results of sequencing the human cDNA encoding h4-lBBSV receptor in the deposited clone, hereinafter described.
- the human cDNA sequence thus obtained is set out in Figure 1 (SEQ ID N0:1) . It contains an open reading frame encoding a protein of about 219 amino acid residues with a deduced molecular weight of about 24.1 kDa.
- the initial 18 amino acids represent a putative leader sequence with the next 132 amino acids being a soluble extracellular domain and the next 27 amino acids being a transmembrane domain.
- the protein exhibits greatest degree of homology to human 4-IBB receptor protein among known proteins.
- the h4-lBBSV receptor of Figure 1 (SEQ ID NO:2) does not contain the second exon which encodes thirty-six amino acids, otherwise it is identical to the amino acid sequence of human 4-lBB receptor protein (SEQ ID
- Polynucleotides of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof.
- the DNA may be double-stranded or single-stranded.
- Single-stranded DNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.
- the coding sequence which encodes the polypeptide may be identical to the coding sequence of the polynucleotide shown in Figure 1 (SEQ ID N0:1) . It also may be a polynucleotide with a different sequence, which, as a result of the redundancy (degeneracy) of the genetic code, encodes the polypeptide of the DNA of Figure 1 (SEQ ID NO:2) .
- Polynucleotides of the present invention which encode the polypeptide of Figure 1 may include, but are not limited to the coding sequence for the mature polypeptide, by itself; the coding sequence for the mature polypeptide and additional coding sequences, such as those encoding a leader or secretory sequence, such as a pre-, or pro- or prepro- protein sequence; the coding sequence of the mature polypeptide, with or without the aforementioned additional coding sequences, together with additional, non-coding sequences, including for example, but not limited to introns and non-coding 5' and 3' sequences, such as the transcribed, non- ranslated sequences that play a role in transcription, mRNA processing - including splicing and polyadenylation signals, for example - ribosome binding and stability of mRNA; additional coding sequence which codes for additional amino acids, such as those which provide additional functionalities.
- the polypeptide may be fused to a marker sequence, such as a peptide, which facilitates purification of the fused polypeptide.
- the marker sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (Qiagen, Inc.) , among others, many of which are commercially available.
- hexa-histidine provides for convenient purification of the fusion protein.
- the HA tag corresponds to an epitope derived of influenza hemagglutinin protein, which has been described by Wilson et al., Cell 37: 767 (1984), for instance.
- polynucleotide encoding a polypeptide encompasses polynucleotides which include a sequence encoding a polypeptide of the present invention, particularly h4-lBBSV receptor having the amino acid sequence set out in Figure 1 (SEQ ID NO:2) .
- the term encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by introns) together with additional regions, that also may contain coding and/or non-coding sequences.
- the present invention further relates to variants of the herein above described polynucleotides which encode for fragments, analogs and derivatives of the polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO:2) .
- a variant of the polynucleotide may be a naturally occurring variant such as a naturally occurring allelic variant, or it may be a variant that is not known to occur naturally.
- Such non-naturally occurring variants of the polynucleotide may be made by mutagenesis techniques, including those applied to polynucleotides, cells or organisms.
- variants in this regard are variants that differ from the aforementioned polynucleotides by nucleotide substitutions, deletions or additions.
- substitutions, deletions or additions may involve one or more nucleotides.
- the variants may be altered in coding or non-coding regions or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions.
- polypeptides having the amino acid sequence of h4-lBBSV receptor set out in Figure 1 SEQ ID NO:2
- variants, analogs, derivatives and fragments thereof and fragments of the variants, analogs and derivatives.
- polynucleotides encoding h4-lBBSV receptor variants, analogs, derivatives and fragments, and variants, analogs and derivatives of the fragments which have the amino acid sequence of the h4- 1BBSV receptor polypeptide of Figure 1 (SEQ ID NO:2) in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, l or no amino acid residues are substituted, deleted or added, in any combination.
- silent substitutions, additions and deletions which do not alter the properties and activities of the h4-lBBSV receptor.
- conservative substitutions are also especially preferred in this regard.
- polynucleotides that are at least 70% identical to a polynucleotide encoding the h4-lBBSV receptor polypeptide having the amino acid sequence set out in Figure 1 (SEQ ID NO:2) , and polynucleotides which are complementary to such polynucleotides.
- polynucleotides that comprise a region that is at least 80% identical to a polynucleotide encoding the h4- 1BBSV receptor polypeptide of the human cDNA of the deposited clone, hereinafter described, and polynucleotides complementary thereto.
- polynucleotides at least 90% identical to the same are particularly preferred, and among these particularly preferred polynucleotides, those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.
- Particularly preferred embodiments in this respect are polynucleotides which encode polypeptides which retain substantially the same biological function or activity as the mature polypeptide encoded by the human cDNA of Figure 1 (SEQ ID N0:1) .
- the present invention further relates to polynucleotides that hybridize to the herein above-described sequences.
- the present invention especially relates to polynucleotides which hybridize under stringent conditions to the herein above-described polynucleotides.
- stringent conditions means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences.
- polynucleotide assays of the invention may be used as a hybridization probe for cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding h4-lBBSV receptor and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to the h4-lBBSV receptor gene.
- Such probes generally will comprise at least 15 bases.
- such probes will have at least 30 bases and may have at least 50 bases.
- the coding region of the h4-lBBSV receptor gene may be isolated by screening using the known DNA sequence to synthesize an oligonucleotide probe.
- a labeled oligonucleotide having a sequence complementary to that of a gene of the present invention is then used to screen a library of human cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
- polynucleotides and polypeptides of the present invention may be employed as research reagents and materials for discovery of treatments and diagnostics to human disease, as further discussed herein relating to polynucleotide assays, inter alia.
- the polynucleotides may encode a polypeptide which is the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature polypeptide (when the mature form has more than one polypeptide chain, for instance) .
- Such sequences may play a role in processing of a protein from precursor to a mature form, may facilitate protein trafficking, may prolong or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things.
- the additional amino acids may be processed away from the mature protein by cellular enzymes.
- a polynucleotide of the present invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein) , a precursor of a mature protein having one or more prosequences which are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
- a leader sequence which may be referred to as a preprotein
- a preproprotein which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
- a deposit containing a h4-lBBSV receptor cDNA has been deposited with the American Type Culture Collection, as noted above.
- the deposited clone was deposited with the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852, USA, on March 6, 1996 and assigned ATCC Deposit No.
- the deposited clone is a pBluescript SK (-) plasmid (Stratagene, La Jolla, CA) that contains the full length h4-lBBSV receptor cDNA, referred to as "PF254" upon deposit.
- sequence of the polynucleotides contained in the deposited material, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
- a license may be required to make, use or sell the deposited materials, and no such license is hereby granted.
- the present invention further relates to a h4-lBBSV receptor polypeptide which has the deduced amino acid sequence of Figure 1 (SEQ ID N0:2) .
- the invention also relates to fragments, analogs and derivatives of these polypeptides.
- fragment when referring to the polypeptide of Figure l (SEQ ID NO:2) , means a polypeptide which retains essentially the same biological function or activity as such polypeptide.
- an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.
- the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide. In certain preferred embodiments it is a recombinant polypeptide.
- particularly preferred embodiments of the invention in this regard are polypeptides having the amino acid sequence of h4-lBBSV receptor set out in Figure 1 (SEQ ID NO:2) , variants, analogs, derivatives and fragments thereof, and variants, analogs and derivatives of the fragments.
- particularly preferred embodiments of the invention in this regard are polypeptides having the amino acid sequence of the h4-lBBSV receptor of the cDNA in the deposited clone, variants, analogs, derivatives and fragments thereof, and variants, analogs and derivatives of the fragments.
- substitutions are those that vary from a reference by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and lie; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gin, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.
- variants, analogs, derivatives and fragments, and variants, analogs and derivatives of the fragments having the amino acid sequence of the h4-lBBSV receptor polypeptide of Figure 1 (SEQ ID NO:2) , in which several, a few, 5 to 10, l to 5, 1 to 3, 2, l or no amino acid residues are substituted, deleted or added, in any combination.
- silent substitutions, additions and deletions which do not alter the properties and activities of the h4-lBBSV receptor.
- conservative substitutions are also especially preferred in this regard.
- polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.
- polypeptides of the present invention include the polypeptide of SEQ ID NO:2 (in particular the mature polypeptide) as well as polypeptides which have at least 70% similarity (preferably at least 70% identity) to the polypeptide of SEQ ID NO:2 and more preferably at least 90% similarity (more preferably at least 90% identity) to the polypeptide of SEQ ID NO:2 and still more preferably at least 95% similarity (still more preferably at least 95% identity) to the polypeptide of SEQ ID NO:2 and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.
- similarity between two polypeptides is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one polypeptide to the sequence of a second polypeptide.
- Fragments or portions of the polypeptides of the present invention may be employed for producing the corresponding full- length polypeptide by peptide synthesis; therefore, the fragments may be employed as intermediates for producing the full-length polypeptides. Fragments or portions of the polynucleotides of the present invention may be used to synthesize full-length polynucleotides of the present invention.
- polypeptides comprising fragments of h4-lBBSV receptor, most particularly fragments of the h4-lBBSV receptor having the amino acid set out in Figure 1 (SEQ ID NO:2) , and fragments of variants and derivatives of the h4-lBBSV receptor of Figure 1 (SEQ ID NO:2) .
- a fragment is a polypeptide having an amino acid sequence that entirely is the same as part but not all of the amino acid sequence of the aforementioned h4-lBBSV receptor polypeptides and variants or derivatives thereof.
- fragments may be "free-standing,” i.e., not part of or fused to other amino acids or polypeptides, or they may be comprised within a larger polypeptide of which they form a part or region.
- the presently discussed fragments most preferably form a single continuous region. However, several fragments may be comprised within a single larger polypeptide.
- fragments in one aspect of the meaning intended herein refers to the portion or portions of a fusion polypeptide or fusion protein derived from h4-lBBSV receptor.
- polypeptide fragments of the invention there may be mentioned those which have from about 150 to about 219 amino acids.
- about 150 to about 219 amino acids in this context means a polypeptide fragment of 150 plus or minus several, a few, 5, 4, 3, 2 or 1 amino acids to 219 plus or minus several a few, 5, 4, 3, 2 or l amino acid residues, i.e., ranges as broad as 150 minus several amino acids to 219 plus several amino acids to as narrow as 150 plus several amino acids to 219 minus several amino acids.
- Truncation mutants include h4-lBBSV receptor polypeptides having the amino acid sequence of Figure l (SEQ ID NO:2), or of variants or derivatives thereof, except for deletion of a continuous series of residues (that is, a continuous region, part or portion) that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus or, as in double truncation mutants, deletion of two continuous series of residues, one including the amino terminus and one including the carboxyl terminus.
- Fragments having the size ranges set out about are preferred embodiments of truncation fragments, which are especially preferred among fragments generally.
- fragments characterized by structural or functional attributes of h4-lBBSV receptor are also preferred in this aspect of the invention.
- Preferred embodiments of the invention in this regard include fragments that comprise alpha-helix and alpha-helix forming regions ("alpha-regions") , beta-sheet and beta-sheet-forming regions (“beta-regions”) , turn and turn-forming regions ("turn- regions”), coil and coil-forming regions (“coil-regions”) , hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface- forming regions and high antigenic index regions of h4-lBBSV receptor.
- Certain preferred regions in these regards are set out in Figure 3, and include, but are not limited to, regions of the aforementioned types identified by analysis of the amino acid sequence set out in Figure 1 (SEQ ID NO:2) .
- such preferred regions include Gamier-Robson alpha-regions, beta-regions, turn-regions and coil-regions, Chou-Fasman alpha- regions, beta-regions and turn-regions, Kyte-Doolittle hydrophilic regions and hydrophilic regions, Eisenberg alpha and beta amphipathic regions, Karplus-Schulz flexible regions, Emini surface-forming regions and Jameson-Wolf high antigenic index regions.
- Further preferred regions are those that mediate activities of h4-lBBSV receptor.
- fragments that have a chemical, biological or other activity of h4- 1BBSV receptor including those with a similar activity or an improved activity, or with a decreased undesirable activity.
- fragments in these regards are truncation mutants, as discussed above.
- the invention also relates to, among others, polynucleotides encoding the aforementioned fragments, polynucleotides that hybridize to polynucleotides encoding the fragments, particularly those that hybridize under stringent conditions, and polynucleotides, such as PCR primers, for amplifying polynucleotides that encode the fragments.
- preferred polynucleotides are those that correspondent to the preferred fragments, as discussed above.
- the present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
- Host cells can be genetically engineered to incorporate polynucleotides and express polypeptides of the present invention.
- polynucleotides may be introduced into host cells using well known techniques of infection, transduction, transfection, transvection and transformation.
- the polynucleotides may be introduced alone or with other polynucleotides.
- Such other polynucleotides may be introduced independently, co-introduced or introduced joined to the polynucleotides of the invention.
- polynucleotides of the invention may be transfected into host cells with another, separate, polynucleotide encoding a selectable marker, using standard techniques for co- transfection and selection in, for instance, mammalian cells.
- the polynucleotides generally will be stably incorporated into the host cell genome.
- the polynucleotides may be joined to a vector containing a selectable marker for propagation in a host.
- the vector construct may be introduced into host cells by the aforementioned techniques.
- a plasmid vector is introduced as DNA in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid.
- Electroporation also may be used to introduce polynucleotides into a host. If the vector is a virus, it may be packaged in vitro or introduced into a packaging cell and the packaged virus may be transduced into cells.
- the vector may be, for example, a plasmid vector, a single or double-stranded phage vector, a single or double-stranded RNA or DNA viral vector.
- Such vectors may be introduced into cells as polynucleotides, preferably DNA, by well known techniques for introducing DNA and RNA into cells.
- the vectors in the case of phage and viral vectors also may be and preferably are introduced into cells as packaged or encapsidated virus by well known techniques for infection and transduction.
- Viral vectors may be replication competent or replication defective. In the latter case viral propagation generally will occur only in complementing host cells.
- vectors are those for expression of polynucleotides and polypeptides of the present invention.
- such vectors comprise cis-acting control regions effective for expression in a host operatively linked to the polynucleotide to be expressed.
- Appropriate trans-acting factors either are supplied by the host, supplied by a complementing vector or supplied by the vector itself upon introduction into the host.
- the vectors provide for specific expression.
- Such specific expression may be inducible expression or expression only in certain types of cells or both inducible and cell-specific.
- Particularly preferred among inducible vectors are vectors that can be induced for expression by environmental factors that are easy to manipulate, such as temperature and nutrient additives.
- a variety of vectors suitable to this aspect of the invention, including constitutive and inducible expression vectors for use in prokaryotic and eukaryotic hosts, are well known and employed routinely by those of skill in the art.
- the engineered host cells can be cultured in conventional nutrient media, which may be modified as appropriate for, inter alia, activating promoters, selecting transformants or amplifying genes.
- Culture conditions such as temperature, pH and the like, previously used with the host cell selected for expression generally will be suitable for expression of polypeptides of the present invention as will be apparent to those of skill in the art.
- vectors can be used to express a polypeptide of the invention.
- Such vectors include chromosomal, episomal and virus-derived vectors e.g., vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids, all may be used for expression in accordance with this aspect of the present invention.
- any vector suitable to maintain, propagate or express polynucleotides to express a polypeptide in a host may be used for expression in this regard.
- the appropriate DNA sequence may be inserted into the vector by any of a variety of well-known and routine techniques.
- a DNA sequence for expression is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction endonucleases and then joining the restriction fragments together using T4 DNA ligase.
- Procedures for restriction and ligation that can be used to this end are well known and routine to those of skill. Suitable procedures in this regard, and for constructing expression vectors using alternative techniques, which also are well known and routine to those skill, are set forth in great detail in Sambrook et al. cited elsewhere herein.
- the DNA sequence in the expression vector is operatively linked to appropriate expression control sequence(s), including, for instance, a promoter to direct mRNA transcription.
- appropriate expression control sequence(s) including, for instance, a promoter to direct mRNA transcription.
- promoters include the phage lambda PL promoter, the E. coli lac, trp and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name just a few of the well-known promoters. It will be understood that numerous promoters not mentioned are suitable for use in this aspect of the invention are well known and readily may be employed by those of skill in the manner illustrated by the discussion and the examples herein.
- expression constructs will contain sites for transcription initiation and termination, and, in the transcribed region, a ribosome binding site for translation.
- the coding portion of the mature transcripts expressed by the constructs will include a translation initiating AUG at the beginning and a termination codon appropriately positioned at the end of the polypeptide to be translated.
- constructs may contain control regions that regulate as well as engender expression.
- control regions that regulate as well as engender expression.
- such regions will operate by controlling transcription, such as repressor binding sites and enhancers, among others.
- Vectors for propagation and expression generally will include selectable markers. Such markers also may be suitable for amplification or the vectors may contain additional markers for this purpose.
- the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells.
- Preferred markers include dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, and tetracycline or ampicillin resistance genes for culturing E. coli and other bacteria.
- the vector containing the appropriate DNA sequence as described elsewhere herein, as well as an appropriate promoter, and other appropriate control sequences, may be introduced into an appropriate host using a variety of well known techniques suitable to expression therein of a desired polypeptide.
- appropriate hosts include bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells,- animal cells such as CHO, COS and Bowes melanoma cells; and plant cells.
- Hosts for of a great variety of expression constructs are well known, and those of skill will be enabled by the present disclosure readily to select a host for expressing a polypeptides in accordance with this aspect of the present invention.
- the present invention also includes recombinant constructs, such as expression constructs, comprising one or more of the sequences described above.
- the constructs comprise a vector, such as a plasmid or viral vector, into which such a sequence of the invention has been inserted.
- the sequence may be inserted in a forward or reverse orientation.
- the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence.
- suitable vectors and promoters are known to those of skill in the art, and there are many commercially available vectors suitable for use in the present invention.
- vectors which are commercially available, are provided by way of example.
- vectors preferred for use in bacteria are pQE70, pQE60 and pQE-9, available from Qiagen; pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene,- and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia.
- eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. These vectors are listed solely by way of illustration of the many commercially available and well known vectors that are available to those of skill in the art for use in accordance with this aspect of the present invention. It will be appreciated that any other plasmid or vector suitable for, for example, introduction, maintenance, propagation or expression of a polynucleotide or polypeptide of the invention in a host may be used in this aspect of the invention.
- Promoter regions can be selected from any desired gene using vectors that contain a reporter transcription unit lacking a promoter region, such as a chloramphenicol acetyl transferase ("cat") transcription unit, downstream of restriction site or sites for introducing a candidate promoter fragment; i.e., a fragment that may contain a promoter.
- a reporter transcription unit lacking a promoter region such as a chloramphenicol acetyl transferase ("cat") transcription unit, downstream of restriction site or sites for introducing a candidate promoter fragment; i.e., a fragment that may contain a promoter.
- introduction into the vector of a promoter-containing fragment at the restriction site upstream of the cat gene engenders production of CAT activity, which can be detected by standard CAT assays.
- Vectors suitable to this end are well known and readily available. Two such vectors are pKK232-8 and pCM7.
- promoters for expression of polynucleotides of the present invention include not only well
- bacterial promoters suitable for expression of polynucleotides and polypeptides in accordance with the present invention are the E. coli lad and lacZ and promoters, the T3 and T7 promoters, the gpt promoter, the lambda PR, PL promoters and the trp promoter.
- eukaryotic promoters suitable in this regard are the CMV immediate early promoter, the HSV thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous sarcoma virus ("RSV”) , and metallothionein promoters, such as the mouse metallothionein-I promoter.
- CMV immediate early promoter the HSV thymidine kinase promoter
- the early and late SV40 promoters the promoters of retroviral LTRs, such as those of the Rous sarcoma virus (“RSV”)
- metallothionein promoters such as the mouse metallothionein-I promoter.
- the present invention also relates to host cells containing the above-described constructs discussed above.
- the host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell.
- Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al. BASIC METHODS IN MOLECULAR BIOLOGY, (1986).
- Constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence.
- the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.
- Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) .
- recombinant expression vectors will include origins of replication, a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence, and a selectable marker to permit isolation of vector containing cells after exposure to the vector.
- suitable promoters are those derived from the genes that encode glycolytic enzymes such as 3- phosphoglycerate kinase ("PGK”) , a-factor, acid phosphatase, and heat shock proteins, among others.
- PGK 3- phosphoglycerate kinase
- Selectable markers include the ampicillin resistance gene of E. coli and the trpl gene of S. cerevisiae.
- Enhancers are cis- acting elements of DNA, usually about from 10 to 300 bp that act to increase transcriptional activity of a promoter in a given host cell-type.
- enhancers include the SV40 enhancer, which is located on the late side of the replication origin at bp 100 to 270, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
- Polynucleotides of the invention encoding the heterologous structural sequence of a polypeptide of the invention generally will be inserted into the vector using standard techniques so that it is operably linked to the promoter for expression.
- the polynucleotide will be positioned so that the transcription start site is located appropriately 5' to a ribosome binding site.
- the ribosome binding site will be 5' to the AUG that initiates translation of the polypeptide to be expressed.
- secretion signals may be incorporated into the expressed polypeptide.
- the signals may be endogenous to the polypeptide or they may be heterologous signals.
- the polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals but also additional heterologous functional regions.
- a region of additional amino acids, particularly charged amino acids may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell, during purification or during subsequent handling and storage.
- region also may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide.
- the addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art.
- Suitable prokaryotic hosts for propagation, maintenance or expression of polynucleotides and polypeptides in accordance with the invention include Escherichia coli, Bacillus subtilis and Salmonella typhimurium. Various species of Pseudomonas, Streptomyces, and Staphylococcus are suitable hosts in this regard. Moreover, many other hosts also known to those of skill may be employed in this regard.
- useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017) .
- cloning vector pBR322 ATCC 37017
- Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, WI, USA) .
- pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.
- Cells typically then are harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
- Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.
- mammalian cell culture systems can be employed for expression, as well.
- mammalian expression systems include the COS-7 lines of monkey kidney fibroblast, described in Gluzman et al., Cell 23: 175 (1981).
- Other cell lines capable of expressing a compatible vector include for example, the C127, 3T3, CHO, HeLa, human kidney 293 and BHK cell lines.
- Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation sites, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking non-transcribed sequences that are necessary for expression.
- DNA sequences derived from the SV40 splice sites, and the SV40 polyadenylation sites are used for required non-transcribed genetic elements of these types.
- the h4-lBBSV receptor polypeptide can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulo ⁇ e chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC”) is employed for purification.
- HPLC high performance liquid chromatography
- Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.
- Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yea ⁇ t, higher plant, in ⁇ ect and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non- glyco ⁇ ylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes.
- h4-lBBSV receptor polynucleotides and polypeptides may be used in accordance with the present invention for a variety of applications, particularly those that make use of the chemical and biological properties h4-lBBSV receptor.
- applications in treatment of tumors, resistance to parasite ⁇ , bacteria and viruses, to induce proliferation of endothelial cells and certain hematopoietic cells, to treat restenosi ⁇ and to prevent certain autoimmune di ⁇ eases after stimulation of an h4-lBBSV receptor by an agonist.
- Additional applications relate to diagnosis and to treatment of disorders of cells, tissues and organisms.
- This invention is also related to the use of the h4-lBBSV receptor polynucleotides to detect complementary polynucleotide ⁇ such as, for example, as a diagnostic reagent. Detection of a mutated form of h4-lBBSV receptor as ⁇ ociated with a dysfunction will provide a diagno ⁇ tic tool that can add or define a diagnosis of a disease or susceptibility to a disease which results from under-expression over-expression or altered expression of h4-lBBSV receptor or a soluble form thereof, such as, for example, tumors, cytotoxicity, viral infection, autoimmune disease, AIDS and graft- ho ⁇ t rejection.
- Nucleic acids for diagnosis may be obtained from a patient's cells, such as from blood, urine, saliva, tissue biopsy and autopsy material.
- the genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR prior to analysi ⁇ . (Saiki et al. , Nature, 324: 163-166 (1986)) .
- RNA or cDNA may also be used in the same ways.
- PCR primers complementary to the nucleic acid encoding h4-lBBSV receptor can be used to identify and analyze h4-lBBSV receptor expression and mutations.
- deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype.
- Point mutations can be identified by hybridizing amplified DNA to radiolabeled h4-lBBSV receptor RNA or alternatively, radiolabeled h4-lBBSV receptor antisense DNA ⁇ equences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures.
- Sequence differences between a reference gene and genes having mutation ⁇ also may be revealed by direct DNA sequencing.
- cloned DNA segments may be employed as probes to detect specific DNA segments.
- the sensitivity of such methods can be greatly enhanced by appropriate use of PCR or another amplification method.
- a ⁇ equencing primer is used with double- stranded PCR product or a single-stranded template molecule generated by a modified PCR.
- the sequence determination is performed by conventional procedures with radiolabeled nucleotide or by automatic sequencing procedures with luorescent-tags.
- DNA sequence differences may be achieved by detection of alteration in electrophoretic mobility of DNA fragments in gels, with or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gel electrophoresis. DNA fragments of different sequences may be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al., Science, 230: 1242 (1985)). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase and SI protection or the chemical cleavage method (e.g., Cotton et al., Proc. Natl. Acad. Sci., USA, 85: 4397-4401 (1985)).
- the detection of a specific DNA sequence may be achieved by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of re ⁇ triction enzymes, (e.g., restriction fragment length polymorphisms ("RFLP”) and Southern blotting of genomic DNA.
- RFLP restriction fragment length polymorphisms
- mutations also can be detected by in situ analysis.
- sequences of the present invention are also valuable for chromosome identification.
- the sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome.
- Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location.
- the mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.
- the cDNA herein disclosed is used to clone genomic DNA of a h4-lBBSV receptor gene. This can be accomplished using a variety of well known techniques and libraries, which generally are available commercially.
- the genomic DNA the is used for in situ chromosome mapping using well known techniques for this purpo ⁇ e. Typically, in accordance with routine procedures for chromosome mapping, some trial and error may be necessary to identify a genomic probe that gives a good in situ hybridization signal.
- sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the 3' untranslated region of the gene is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment.
- PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome.
- sublocalization can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner.
- Other mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries.
- Fluorescence in situ hybridization of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step.
- This technique can be used with cDNA as short as 50 or 60.
- Verma et al. HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES, Pergamon Press, New York (1988) .
- a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This assumes l megabase mapping resolution and one gene per 20 kb) .
- the present invention also relates to diagnostic assays such as quantitative and diagnostic assays for detecting levels of h4- 1BBSV receptor protein, or the soluble form thereof, in cells and tissue ⁇ , including determination of normal and abnormal level ⁇ .
- diagnostic assays such as quantitative and diagnostic assays for detecting levels of h4- 1BBSV receptor protein, or the soluble form thereof, in cells and tissue ⁇ , including determination of normal and abnormal level ⁇ .
- a diagnostic assay in accordance with the invention for detecting over-expression of h4-lBBSV receptor, or soluble form thereof, compared to normal control tissue samples may be used to detect the presence of tumors, for example.
- Assay techniques that can be used to determine levels of a protein, such as an h4-lBBSV receptor protein of the present invention, or a soluble form thereof, in a sample derived from a host are well- known to those of skill in the art.
- An ELISA assay initially comprises preparing an antibody specific to h4-lBBSV receptor, or soluble form, preferably a monoclonal antibody.
- a reporter antibody generally is prepared which binds to the monoclonal antibody.
- the reporter antibody is attached a detectable reagent such as radioactive, fluorescent or enzymatic reagent, in this example horseradish peroxidase enzyme.
- a sample is removed from a host and incubated on a solid support, e.g. a polystyrene dish, that binds the protein ⁇ in the sample. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein such as bovine serum albumin.
- a non-specific protein such as bovine serum albumin.
- the monoclonal antibody is incubated in the dish during which time the monoclonal antibodies attach to any h4-lBBSV receptor proteins attached to the polystyrene dish. Unbound monoclonal antibody is washed out with buffer.
- the reporter antibody linked to horseradish peroxidase is placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to h4-lBBSV receptor, or soluble receptor. Unattached reporter antibody is then washed out. Reagents for peroxidase activity, including a colorimetric substrate are then added to the dish. Immobilized peroxidase, linked to h4-lBBSV receptor through the primary and secondary antibodies, produces a colored reaction product. The amount of color developed in a given time period indicates the amount of h4- 1BBSV receptor protein, or soluble form, present in the sample. Quantitative results typically are obtained by reference to a standard curve.
- a competition assay may be employed wherein antibodies specific to h4-lBBSV receptor, or soluble form, attached to a solid support and labeled h4-lBBSV receptor and a sample derived from the host are passed over the solid support and the amount of label detected attached to the solid support can be correlated to a quantity of h4-lBBSV receptor in the sample.
- polypeptides, their fragments or other derivatives, or analogs thereof, or cells expressing them can be used as an immunogen to produce antibodies thereto.
- These antibodies can be, for example, polyclonal or monoclonal antibodies.
- the present invention also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.
- Antibodies generated against the polypeptides corresponding to a sequence of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tissue expressing that polypeptide.
- any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C. , Nature 256: 495-497 (1975), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4: 72 (1983) and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., pg. 77-96 in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc. (1985).
- the present invention provides a method for determining whether a ligand not known to be capable of binding to and h4-lBBSV receptor can bind to such receptor which comprises contacting a mammalian cell which expresses such a receptor with a ligand under conditions permitting binding of ligands to the receptor, detecting the presence of a ligand which binds to the receptor and thereby determining whether the ligand binds to the receptor.
- An example of such a method comprises contacting a mammalian cell comprising an isolated DNA molecule encoding the h4-iBBSV receptor with a plurality of candidate ligands, determining those ligands which bind to the receptor, and thereby identifying ligands which specifically interact with and bind to a receptor of the present invention.
- the invention also provides a method of screening compounds to identify those which enhance or block the action of h4-lBBSV receptor on cells.
- An agonist is a compound which increases the natural biological functions of h4-lBBSV receptor or which functions in a manner similar to h4-lBBSV, while antagonists decrease or eliminate such functions.
- such screening procedures involve providing appropriate cells which expres ⁇ the receptor polypeptide of the present invention on the surface thereof.
- Such cells include cells from mammals, yeast, drosophila or E. Coli .
- a polynucleotide encoding the receptor of the present invention is employed to transfect cells to thereby express the receptor.
- the expressed receptor is then contacted with a test compound to observe binding, stimulation or inhibition of a functional response.
- such assay may be employed for screening for a compound which inhibits activation of the receptor polypeptide of the present invention by contacting the melanophore cells which encode the receptor with both the receptor ligand and a compound to be screened. Inhibition of the signal generated by the ligand indicates that a compound is a potential antagonist for the receptor, i.e., inhibits activation of the receptor.
- the screen may be employed for determining a compound which activates the receptor by contacting such cells with compounds to be screened and determining whether such compound generates a signal, i.e., activates the receptor.
- Other screening techniques include the use of cells which express the receptor (for example, transfected CHO cells) in a sy ⁇ tem which measures extracellular pH changes caused by receptor activation, for example, as described in Science, volume 246, pages 181-296 (October 1989) .
- compounds may be contacted with a cell which expresses the receptor polypeptide of the present invention and a second messenger response, e.g. signal transduction or pH changes, may be measured to determine whether the potential compound activates or inhibits the receptor.
- Another such screening technique involve ⁇ introducing RNA encoding the receptor into Xenopus oocytes to transiently express the receptor.
- the receptor oocytes may then be contacted with the receptor ligand and a compound to be screened, followed by detection of inhibition or activation of a calcium signal in the case of screening for compounds which are thought to inhibit activation of the receptor.
- Another screening technique involves expres ⁇ ing the receptor in which the receptor is linked to a phospholipase C or D.
- a phospholipase C or D As representative examples of such cells, there may be mentioned endothelial cells, smooth muscle cells, embryonic kidney cells, etc.
- the screening may be accomplished as hereinabove described by detecting activation of the receptor or inhibition of activation of the receptor from the phospholipase second signal.
- Another method involve ⁇ screening for compounds which inhibit activation of the receptor polypeptide of the present invention antagonists by determining inhibition of binding of labeled ligand to cells which have the receptor on the surface thereof.
- Such a method involves transfecting a eukaryotic cell with DNA encoding the receptor such that the cell expresses the receptor on its surface and contacting the cell with a compound in the presence of a labeled form of a known ligand.
- the ligand can be labeled, e.g. , by radioactivity.
- the amount of labeled ligand bound to the receptors is measured, e.g., by measuring radioactivity of the receptors. If the compound binds to the receptor as determined by a reduction of labeled ligand which binds to the receptors, the binding of labeled ligand to the receptor is inhibited.
- Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds the same sites on a binding molecule, such as a receptor molecule, without inducing h4-lBBSV receptor-induced activities, thereby preventing the action of h4-lBBSV receptor by excluding h4-lBBSV receptor from binding. Examples of small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules.
- Antisense molecules can be used to control gene expression through antisense DNA or RNA or through triple-helix formation. Antisense techniques are discussed, for example, in - Okano, J. Neurochem. 56: 560 (1991); OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988) . Triple helix formation is discussed in, for instance Lee et al., Nucleic Acids Research 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991) .
- the methods are based on binding of a polynucleotide to a complementary DNA or RNA.
- the 5' coding portion of a polynucleotide that encodes the mature polypeptide of the present invention may be used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length.
- a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of h4-lBBSV receptor.
- the antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into h4-lBBSV receptor polypeptide.
- the oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of h4-lBBSV receptor.
- a soluble form of the receptor e.g. a fragment of the receptor, may be employed to inhibit activation of the receptor by binding to h4-lBBSV receptor ligand and preventing the ligand from interacting with membrane bound receptors.
- the human 4-lBB receptor may also be employed as an antagonist.
- Antibodies specific to h4-lBBSV receptor polypeptide of the present invention are unique in that they may be used as both agonists and antagonists depending upon which portion, or epitope, of the receptor they are specific to as shown in published PCT Application WO 94/09137, which is hereby incorporated by reference. Fusing the soluble h4-lBBSV receptor to Fc or hinge regions of immunoglobulins will increase the half-life of h4-lBBSV in vivo and increase binding to ligand due to multimerization.
- the antagonists may be employed in a composition with a pharmaceutically acceptable carrier, e.g., as hereinafter described.
- the antagonists may be employed for instance to treat to prevent septic shock, inflammation, cerebral malaria, activation of the HIV virus, graft rejection, bone resorption and cachexia.
- the agonists may be employed to treat and/or prevent tumors, resteno ⁇ is, cytotoxicity, bacterial and viral infection, deleterious effects of ionizing radiation, autoimmune disease, AIDS and graft-host rejection, to regulate immune responses, wound healing and cellular proliferation.
- compositions comprising the polynucleotide or the polypeptides discussed above or the agonists or antagonists.
- the polypeptides of the present invention may be employed in combination with a non-sterile or sterile carrier or carriers for use with cells, tis ⁇ ues or organism ⁇ , such as a pharmaceutical carrier suitable for administration to a subject.
- a pharmaceutical carrier suitable for administration to a subject such as a pharmaceutical carrier suitable for administration to a subject.
- Such compositions comprise, for instance, a media additive or a therapeutically effective amount of a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient.
- Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof. The formulation should suit the mode of administration.
- the invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.
- Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, reflecting approval by the agency of the manufacture, use or sale of the product for human administration.
- Polypeptides and other compounds of the present invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.
- compositions may be administered in any effective, convenient manner including, for instance, administration by topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.
- compositions generally are administered in an amount effective for treatment or prophylaxis of a specific indication or indications.
- the compositions are administered in an amount of at least about 10 ⁇ g/kg body weight. In most cases they will be administered in an amount not in excess of about 8 mg/kg body weight per day. Preferably, in most cases, dose is from about 10 ⁇ g/kg to about 1 mg/kg body weight, daily. It will be appreciated that optimum dosage will be determined by standard methods for each treatment modality and indication, taking into account the indication, its severity, route of administration, complicating conditions and the like.
- h4-lBBSV receptor polynucleotides, soluble form of the receptor polypeptides, agonists and antagonists that are polypeptides may be employed in accordance with the present invention by expression of such polypeptides in vivo, in treatment modalities often referred to as "gene therapy.”
- cells from a patient may be engineered with a polynucleotide, such as a DNA or RNA, encoding a polypeptide ex vivo, and the engineered cells then can be provided to a patient to be treated with the polypeptide.
- a polynucleotide such as a DNA or RNA
- cells may be engineered ex vivo by the use of a retroviral pla ⁇ mid vector containing RNA encoding a polypeptide of the present invention.
- cells may be engineered in vivo for expression of a polypeptide in vivo by procedures known in the art.
- a polynucleotide of the invention may be engineered for expression in a replication defective retroviral vector, as discussed above.
- the retroviral expression construct then may be isolated and introduced into a packaging cell is transduced with a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention such that the packaging cell now produces infectious viral particles containing the gene of interest.
- These producer cells may be administered to a patient for engineering cells in vivo and expression of the polypeptide in vivo.
- Retroviruses from which the retroviral plasmid vectors herein above mentioned may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, adenoviru ⁇ , Myeloproliferative Sarcoma Virus, and mammary tumor virus.
- the retroviral plasmid vector is derived from Moloney Murine Leukemia Virus.
- Such vectors well include one or more promoters for expressing the polypeptide.
- Suitable promoters which may be employed include, but are not limited to, the retroviral LTR; the SV40 promoter; and the human cytomegalovirus (CMV) promoter described in Miller et al., Biotechniques 7: 980-990 (1989), or any other promoter (e.g., cellular promoters such as eukaryotic cellular promoters including, but not limited to, the histone, RNA polymerase III, and ⁇ -actin promoters) .
- CMV cytomegalovirus
- viral promoters which may be employed include, but are not limited to, adenovirus promoters, thymidine kinase (TK) promoters, and B19 parvovirus promoters. The selection of a suitable promoter will be apparent to those skilled in the art from the teachings contained herein.
- Suitable promoters which may be employed include, but are not limited to, adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as the cytomegalovirus (CMV) promoter,- the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters,- the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter,- retroviral LTRs (including the modified retroviral LTRs herein above described) ,- the ⁇ -actin promoter,- and human growth hormone promoters.
- the promoter also may be the native promoter which controls the gene
- the retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines.
- packaging cell ⁇ which may be transfected include, but are not limited to, the PE501, PA317, Y-2, Y-AM, PA12, T19-14X, VT-19-17- H2, YCRE, YCRIP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller, A., Human Gene Therapy 1: 5-14 (1990).
- the vector may be transduced into the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaP04 precipitation.
- the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
- the producer cell line will generate infectious retroviral vector particles, which include the nucleic acid sequence(s) encoding the polypeptides. Such retroviral vector particles then may be employed to transduce eukaryotic cells, either in vitro or in vivo.
- the transduced eukaryotic cells will express the nucleic acid sequence(s) encoding the polypeptide.
- Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cell ⁇ , embryonic carcinoma cell ⁇ , as well as hematopoietic ⁇ tem cells, hepatocyte ⁇ , fibroblasts, myobla ⁇ t ⁇ , keratinocytes, endothelial cell ⁇ , and bronchial epithelial cell ⁇ .
- the pre ⁇ ent invention is further de ⁇ cribed by the following examples.
- the examples are provided ⁇ olely to illustrate the invention by reference to specific embodiments. These exemplification's, while illustrating certain specific aspects of the invention, do not portray the limitations or circumscribe the scope of the disclosed invention.
- ligations were accomplished using standard buffers, incubation temperatures and times, approximately equimolar amounts of the DNA fragments to be ligated and approximately 10 units of T4 DNA ligase ("ligase") per 0.5 ⁇ g of DNA.
- ligase T4 DNA ligase
- Example 1 Expres ⁇ ion and purification of human h4-lBBSV soluble extracellular domain using bacteria
- the DNA sequence encoding h4-lBBSV receptor in the deposited polynucleotide was amplified using PCR oligonucleotide primers specific to the amino acid carboxyl terminal sequence of the h4- 1BBSV receptor protein and to vector sequences 3' to the gene. Additional nucleotides containing restriction site ⁇ to facilitate cloning were added to the 5' and 3' sequences respectively.
- the 5' oligonucleotide primer had the sequence 5' CGCCCATGGGAGAGGACAAGATCA 3' (SEQ ID NO:3) containing the underlined Ncol restriction site, which encodes a start AUG, followed by 16 nucleotides of the h4-lBBSV receptor coding sequence set out in Figure 1 (SEQ ID N0:1) after the signal peptide.
- the 3 ' primer had the sequence 5' CGCGGTACCTCACTG CGGAGAGTG 3' (SEQ ID NO:4) containing the underlined Asp718 re ⁇ triction ⁇ ite followed by 15 nucleotides complementary to the last 12 nucleotides of the h4-lBBSV receptor coding sequence for extracellular domain, including the stop codon.
- the restrictions sites were convenient to restriction enzyme sites in the bacterial expression vectors pQE-70 which were used for bacterial expression in these examples. (Qiagen, Inc. 9259 Eton Avenue, Chatsworth, CA, 91311) .
- pQE-70 encodes arapicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori") , an IPTG inducible promoter, a ribosome binding site (“RBS”), a 6-His tag and restriction enzyme site ⁇ .
- E. coli strain M15/rep4 containing multiple copies of the plasmid pREP4, which expresses lac repressor and confers kanaraycin resistance (“Kanr") , was used in carrying out the illustrative example described here.
- This strain which is only one of many that are suitable for expre ⁇ sing h4-lBBSV receptor, is available commercially from Qiagen. Transformants were identified by their ability to grow on LB plates in the presence of ampicillin. Plasmid DNA wa ⁇ i ⁇ olated from re ⁇ i ⁇ tant colonies and the identity of the cloned DNA wa ⁇ confirmed by restriction analysis.
- Clones containing the desired constructs were grown overnight ("0/N") in liquid culture in LB media supplemented with both ampicillin (100 ug/ml) and kanamycin (25 ug/ml) .
- the O/N culture was used to inoculate a large culture, at a dilution of approximately 1:100 to 1:250.
- the cells were grown to an optical density at 600nm ("OD600”) of between 0.4 and 0.6.
- I ⁇ opropyl-B-D-thiogalactopyrano ⁇ ide (“IPTG”) wa ⁇ then added to a final concentration of l mM to induce tran ⁇ cription from lac repre ⁇ or sensitive promoters, by inactivating the lad repressor.
- IPTG I ⁇ opropyl-B-D-thiogalactopyrano ⁇ ide
- Inclusion bodies were purified from the disrupted cell ⁇ u ⁇ ing routine collection techniques, and protein was ⁇ olubilized from the inclusion bodies into 8M urea.
- the 8M urea solution containing the solubilized protein was passed over a PD-10 column in 2X phosphate buffered saline ("PBS") , thereby removing the urea, exchanging the buffer and refolding the protein.
- PBS 2X phosphate buffered saline
- the protein was purified by a further step of chromatography to remove endotoxin. Then, it was sterile filtered.
- the sterile filtered protein preparation was stored in 2X PBS at a concentration of 95 micrograms per mL.
- the cDNA ⁇ equence encoding the soluble extracellular domain of h4-lBBSV receptor protein in the depo ⁇ ited clone is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene:
- the 5' primer has the sequence 5' CGCCCCGGGGCCATCATGGGA AACAGCTGT 3' (SEQ ID NO:5) containing the underlined Sma I restriction enzyme site followed by Kozak sequence and 15 bases of the sequence of h4-lBBSV receptor of Figure 1 (SEQ ID N0:1) . Inserted into an expression vector, as described below, the 5' end of the amplified fragment encoding h4-lBBSV receptor provides an efficient signal peptide. An efficient signal for initiation of translation in eukaryotic cells, as described by Kozak, M. , J. Mol. Biol. 196: 947-950 (1987) is appropriately located in the primer portion of the construct.
- the 3' primer has the sequence 5' CGCGGTACCTCACTGCGGAGAGTG 3' (SEQ ID NO:6) containing the underlined Asp7l8 restriction followed by nucleotides complementary to bp 562 to 573 of the h4-lBBSV receptor coding sequence set out in Figure 1 (SEQ ID N0:1) , including the stop codon.
- the amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean, " BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with BamHl and A ⁇ p718 and again is purified on a 1% agarose gel. This fragment is designated herein F2.
- the vector pA2 is used to express the h4-iBBSV receptor protein in the baculovirus expression system, using ⁇ tandard method ⁇ , ⁇ uch as those described in Summers et al, A MANUAL OF METHODS FOR BACULOVIRUS VECTORS AND INSECT CELL CULTURE PROCEDURES, Texas Agricultural Experimental Station Bulletin No. 1555 (1987) .
- This expression vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhedrosis viru ⁇ (AcMNPV) followed by convenient re ⁇ triction sites.
- the beta-galactosidase gene from E.coli i ⁇ inserted in the same orientation as the polyhedrin promoter and is followed by the polyadenylation signal of the polyhedrin gene.
- the polyhedrin sequences are flanked at both side ⁇ by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate viable virus that express the cloned polynucleotide.
- baculovirus vectors could be used in place of pA2, such as pAc373, pVL941 and pAcIMl provided, as those of skill readily will appreciate, that construction provides appropriately located signals for transcription, translation, trafficking and the like, such as an in-frame AUG and a signal peptide, as required.
- Such vectors are described in Luckow et al., Virology 170: 31-39, among others.
- the plasmid is digested with the restriction enzymes Sma I and Asp7l8 and then is dephosphorylated using calf intestinal phosphatase, u ⁇ ing routine procedure ⁇ known in the art.
- the DNA i ⁇ then i ⁇ olated from a 1% agaro ⁇ e gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.) . This vector DNA is de ⁇ ignated herein "V2".
- Fragment F2 and the dephosphorylated plasmid V2 are ligated together with T4 DNA ligase.
- E.coli HB101 cells are transformed with ligation mix and spread on culture plates.
- Bacteria are identified that contain the plasmid with the human h4-lBBSV receptor gene by digesting DNA from individual colonies u ⁇ ing Sma I and A ⁇ p7l8 and then analyzing the dige ⁇ tion product by gel electrophoresi ⁇ . The sequence of the cloned fragment is confirmed by DNA sequencing. This plasmid is designated herein pBach4-lBBSV receptor.
- plasmid pBach4-iBBSV receptor 5 ⁇ g of the plasmid pBach4-iBBSV receptor is co-transfected with 1.0 ⁇ g of a commercially available linearized baculovirus DNA ("BaculoGoldTM baculovirus DNA", Pharmingen, San Diego, CA.), using the lipofection method de ⁇ cribed by Feigner et al., Proc. Natl. Acad. Sci. USA 84: 7413-7417 (1987) .
- BaculoGoldTM baculovirus DNA linearized baculovirus DNA
- the plate is then incubated for 5 hours at 27"C. After 5 hours the transfection solution is removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. The plate is put back into an incubator and cultivation is continued at 27"C for four days.
- plaque assay After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, cited above.
- An agarose gel with "Blue Gal” (Life Technologies Inc., Gaithersburg) i ⁇ used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque as ⁇ ay” of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc. , Gaithersburg, page 9-10) .
- V-h4-lBBSV receptor A clone containing properly in ⁇ erted h4-lBBSV receptor is identified by DNA analy ⁇ i ⁇ including restriction mapping and sequencing. This is designated herein as V-h4-lBBSV receptor.
- Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS.
- the cells are infected with the recombinant baculovirus V-h4-lBBSV receptor at a multiplicity of infection ("MOI") of about 2 (about l to about 3).
- MOI multiplicity of infection
- the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Gaithersburg) .
- 5 ⁇ Ci of 35S-methionine and 5 ⁇ Ci 35S cysteine available from Amersham
- the cells are further incubated for 16 hour ⁇ and then they are harvested by centrifugation, ly ⁇ ed and the labeled proteins are vi ⁇ ualized by SDS-PAGE and autoradiography.
- the expression plasmid, h4-lBBSV receptor HA is made by cloning a cDNA encoding h4-lBBSV receptor into the expre ⁇ ion vector pcDNAI/Amp (which can be obtained from Invitrogen, Inc.).
- the expres ⁇ ion vector pcDNAI/amp contain ⁇ : (1) an E.coli origin of replication effective for propagation in E. coli and other prokaryotic cell,- (2) an ampicillin resistance gene for selection of plasmid-containing prokaryotic cells,- (3) an SV40 origin of replication for propagation in eukaryotic cells,- (4) a CMV promoter, a polylinker, an SV40 intron, and a polyadenylation signal arranged so that a cDNA conveniently can be placed under expression control of the CMV promoter and operably linked to the SV40 intron and the polyadenylation signal by means of restriction site ⁇ in the polylinker.
- a DNA fragment encoding the entire h4-lBBSV receptor precur ⁇ or and a HA tag fu ⁇ ed in frame to it ⁇ 3' end is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter.
- the HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson et al. , Cell 37: 767 (1984) .
- the fusion of the HA tag to the target protein allows easy detection of the recombinant protein with an antibody that recognizes the HA epitope.
- the plasmid construction strategy is as follows.
- the h4-lBBSV receptor cDNA of the deposit clone is amplified using primers that contained convenient restriction sites, much as described above regarding the construction of expres ⁇ ion vector ⁇ for expre ⁇ sion of h4-lBBSV receptor in E. coli and S. fugiperda.
- one of the primers contains a hemagglutinin tag ("HA tag") as described above.
- Suitable primer ⁇ include that following, which are used in hi ⁇ example.
- the 5' primer, 5' CGCGGATCCACCATGGGAAACAGCTGT 3' contains the underlined Bam HI site, an ATG start codon and 12 codons thereafter.
- the 3' primer containing the underlined Xba I site and bp 562 to 573 of 3' coding sequence (at the 3' end) ha ⁇ the following sequence; 5 ' CGCTCTAGATCAAGCGTAGTCTGGGACGTCGTATGGGTACTGCGGAGAGTG 3' (SEQ ID NO:8), the hemagglutinin tag is shown in bold.
- the PCR amplified DNA fragment and the vector, pcDNAI/Amp, are digested with Bam HI and Xba I and then ligated.
- the ligation mixture is transformed into E. coli strain SURE (available from Stratagene Cloning Systems, 11099 North Torrey Pines Road, La Jolla, CA 92037) the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis and gel sizing for the presence of the h4-lBBSV receptor-encoding fragment.
- COS cell ⁇ are tran ⁇ fected with an expre ⁇ sion vector, as described above, using DEAE-DEXTRAN, as described, for instance, in Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, Cold Spring Laboratory Press, Cold Spring Harbor, New York (1989). Cells are incubated under conditions for expression of h4-lBBSV receptor by the vector.
- h4-lBBSV receptor HA fusion protein is detected by radiolabelling and itnmunoprecipitation, using methods described in, for example Harlow et al., ANTIBODIES: A LABORATORY MANUAL, 2nd Ed.,- Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1988) . To this end, two days after transfection, the cells are labeled by incubation in media containing 35S- cysteine for 8 hours.
- the cells and the media are collected, and the cells are washed and the ly ⁇ ed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, a ⁇ de ⁇ cribed by Wilson et al. cited above.
- Proteins are precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE gels and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.
- RNAzolTM B ⁇ y ⁇ tem Biotecx Laboratories, Inc. 6023 South Loop East, Hou ⁇ ton, TX 77033
- RNA i ⁇ isolated from ti ⁇ ue ⁇ ample ⁇ .
- the RNA i ⁇ size resolved by electrophoresis through a 1% agarose gel under strongly denaturing conditions.
- RNA i ⁇ blotted from the gel onto a nylon filter, and the filter then i ⁇ prepared for hybridization to a detectably labeled polynucleotide probe.
- a ⁇ a probe to detect mRNA that encode ⁇ h4-lBBSV receptor, the antisense strand of the coding region of the cDNA insert in the deposited clone is labeled to a high specific activity.
- the cDNA is labeled by primer extension, using the Prime-It kit, available from Stratagene. The reaction is carried out using 50 ng of the cDNA, following the standard reaction protocol as recommended by the ⁇ upplier.
- the labeled polynucleotide is purified away from other labeled reaction components by column chromatography using a Select-G-50 column, obtained from 5-Prime - 3-Prime, Inc. of 5603 Arapahoe Road, Boulder, CO 80303.
- the labeled probe is hybridized to the filter, at a concentration of 1,000,000 cpm/ml, in a small volume of 7% SDS, 0.5 M NaP04, pH 7.4 at 65'C, overnight.
- the probe solution is drained and the filter is washed twice at room temperature and twice at 60°C with 0.5 x SSC, 0.1% SDS.
- the filter then is dried and exposed to film at -70'C overnight with an intensifying ⁇ creen.
- Fibroblasts are obtained from a subject by skin biopsy.
- the resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tis ⁇ ue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask.
- the flask i ⁇ turned up ⁇ ide down, clo ⁇ ed tight and left at room temperature overnight. After 24 hours at room temperature, the flask is inverted - the chunks of tis ⁇ ue remain fixed to the bottom of the flask - and fresh media is added (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) .
- the tissue is then incubated at 37'C for approximately one week. At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerges. The monolayer is trypsinized and scaled into larger flasks.
- a vector for gene therapy is digested with re ⁇ triction enzyme ⁇ for cloning a fragment to be expre ⁇ sed.
- the digested vector is treated with calf intestinal phosphata ⁇ e to prevent ⁇ elf-ligation.
- the dephosphorylated, linear vector is fractionated on an agarose gel and purified.
- h4-lBBSV cDNA capable of expressing active h4-lBBSV receptor is isolated.
- the ends of the fragment are modified, if necessary, for cloning into the vector. For instance, 5" overhanging may be treated with DNA polymerase to create blunt ends. 3' overhanging ends may be removed u ⁇ ing SI nuclea ⁇ e.
- Linker ⁇ may be ligated to blunt ends with T4 DNA ligase.
- Equal quantities of the Moloney murine leukemia virus linear backbone and the h4-lBBSV receptor fragment are mixed together and joined using T4 DNA ligase.
- the ligation mixture is used to transform E. Coli and the bacteria are then plated onto agar- containing kanamycin. Kanamycin phenotype and restriction analysi ⁇ confirm that the vector has the properly inserted gene.
- Packaging cells are grown in tis ⁇ ue culture to confluent den ⁇ ity in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS) , penicillin and streptomycin.
- DMEM Dulbecco's Modified Eagles Medium
- CS calf serum
- penicillin and streptomycin The vector containing the h4-lBBSV receptor gene is introduced into the packaging cells by standard techniques. Infectious viral particles containing the h4- 1BBSV receptor gene are collected from the packaging cells, which now are called producer cells.
- Fresh media is added to the producer cells, and after an appropriate incubation period media is harvested from the plates of confluent producer cells.
- the media containing the infectious viral particles, is filtered through a Millipore filter to remove detached producer cells.
- the filtered media then is used to infect fibrobla ⁇ t cells.
- Media i ⁇ removed from a ⁇ ub-confluent plate of fibroblasts and quickly replaced with the filtered media.
- Polybrene (Aldrich) may be included in the media to facilitate transduction. After appropriate incubation, the media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his, to select out transduced cells for expansion.
- Engineered fibroblasts then may be injected into rats, either alone or after having been grown to confluence on microcarrier beads, such as cytodex 3 beads.
- the injected fibroblasts produce h4-lBBSV receptor product, and the biological actions of the protein are conveyed to the host.
- ADDRESSEE CARELLA, BYRNE, BAIN, GILFILLAN, CECCHI,
- MOLECULE TYPE DNA (genomic)
- GGT TGT AAA GAC TGT TGC TTT GGG ACA TTT AAC GAT CAG AAA CGT GGC 408 Gly Cys Lys Asp Cys Cys Phe Gly Thr Phe Asn Asp Gin Lys Arg Gly 65 70 75
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- Lys Arg Gly lie Cys Arg Pro Trp Thr Asn Cys Ser Leu Asp Gly Lys 130 135 140
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Cette invention concerne des polypeptides récepteurs de h4-1BBSV, des polynucléotides codant ces polypeptides, des procédés de production de ces polypeptides notamment par l'expression des polynucléotides, ainsi que des agonistes et des antagonistes de ces polypeptides. Cette invention concerne également des procédés d'utilisation de ces polynucléotides, polypeptides, agonistes et antagonistes dans des applications qui ont partiellement trait aux domaines diagnostique, clinique et de la recherche.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU57109/96A AU5710996A (en) | 1996-03-15 | 1996-03-15 | Human 4-1bb receptor splicing variant |
| PCT/US1996/003587 WO1997033898A1 (fr) | 1996-03-15 | 1996-03-15 | Variante d'epissage de recepteur de 4-1bb chez l'homme |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US1996/003587 WO1997033898A1 (fr) | 1996-03-15 | 1996-03-15 | Variante d'epissage de recepteur de 4-1bb chez l'homme |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1997033898A1 true WO1997033898A1 (fr) | 1997-09-18 |
Family
ID=22254858
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1996/003587 WO1997033898A1 (fr) | 1996-03-15 | 1996-03-15 | Variante d'epissage de recepteur de 4-1bb chez l'homme |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU5710996A (fr) |
| WO (1) | WO1997033898A1 (fr) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5874240A (en) * | 1996-03-15 | 1999-02-23 | Human Genome Sciences, Inc. | Human 4-1BB receptor splicing variant |
| WO1999036093A1 (fr) * | 1998-01-14 | 1999-07-22 | Advanced Research And Technology Institute, Inc. | Procedes relatifs a l'utilisation de la proteine receptrice humaine h4-1bb |
| US6974863B2 (en) | 1988-11-07 | 2005-12-13 | Indiana University Research And Technology Corporation | Antibody for 4-1BB |
| US7288638B2 (en) | 2003-10-10 | 2007-10-30 | Bristol-Myers Squibb Company | Fully human antibodies against human 4-1BB |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995007984A1 (fr) * | 1993-09-16 | 1995-03-23 | Indiana University Foundation | Recepteur humain h4-1bb |
-
1996
- 1996-03-15 AU AU57109/96A patent/AU5710996A/en not_active Abandoned
- 1996-03-15 WO PCT/US1996/003587 patent/WO1997033898A1/fr active Application Filing
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995007984A1 (fr) * | 1993-09-16 | 1995-03-23 | Indiana University Foundation | Recepteur humain h4-1bb |
Non-Patent Citations (4)
| Title |
|---|
| EUR. J. IMMUNOL., 1993, Vol. 23, GOODWIN et al., "Molecular Cloning of a Ligand for the Inducible T Cell Gene 4-1BB: a Member of an Emerging family of Cytokines with Homology to Tumor Necrosis Factor", pages 2631-2641. * |
| EUR. J. IMMUNOL., 1994, Vol. 24, ALDERSON et al., "Molecular and Biological Characterization of Human 4-1BB and its Ligand", pages 2219-2227. * |
| GENE, 1993, Vol. 134, SCHWARZ et al., "A Receptor Induced by Lymhocyte Activation (ILA): a New Member of the Human Nerve-Growth-Factor/Tumor-Necrosis-Factor Receptor Family", pages 295-298. * |
| JOURNAL OF IMMUNOLOGY, 01 February 1993, Vol. 150, No. 3, POLLOK et al., "Inducible T Cell Antigen 4-1BB", pages 771-781. * |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6905685B2 (en) | 1988-11-07 | 2005-06-14 | Byoung S. Kwon | Methods of using antibodies to human receptor protein 4-1BB |
| US6974863B2 (en) | 1988-11-07 | 2005-12-13 | Indiana University Research And Technology Corporation | Antibody for 4-1BB |
| US6303121B1 (en) | 1992-07-30 | 2001-10-16 | Advanced Research And Technology | Method of using human receptor protein 4-1BB |
| US6569997B1 (en) | 1995-03-23 | 2003-05-27 | Advanced Research And Technology Institute, Inc. | Antibody specific for H4-1BB |
| US5874240A (en) * | 1996-03-15 | 1999-02-23 | Human Genome Sciences, Inc. | Human 4-1BB receptor splicing variant |
| WO1999036093A1 (fr) * | 1998-01-14 | 1999-07-22 | Advanced Research And Technology Institute, Inc. | Procedes relatifs a l'utilisation de la proteine receptrice humaine h4-1bb |
| US7288638B2 (en) | 2003-10-10 | 2007-10-30 | Bristol-Myers Squibb Company | Fully human antibodies against human 4-1BB |
| US7659384B2 (en) | 2003-10-10 | 2010-02-09 | Bristol-Myers Squibb Company | Polynucleotides encoding fully human antibodies against human 4-1BB |
| US8137667B2 (en) | 2003-10-10 | 2012-03-20 | Bristol-Myers Squibb Company | Fully human antibodies against human 4-1BB |
| US8716452B2 (en) | 2003-10-10 | 2014-05-06 | Bristol-Myers Squibb Company | Fully human antibodies against human 4-1BB |
| US9382328B2 (en) | 2003-10-10 | 2016-07-05 | Bristol-Myers Squibb Company | Fully human antibodies against human 4-1BB |
Also Published As
| Publication number | Publication date |
|---|---|
| AU5710996A (en) | 1997-10-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5874240A (en) | Human 4-1BB receptor splicing variant | |
| AU726486C (en) | Human tumor necrosis factor delta and epsilon | |
| WO1997033899A1 (fr) | Molecule i induisant l'apoptose | |
| AU733603B2 (en) | Chemokine alpha 2 | |
| CA2249251A1 (fr) | Polypeptides cytokines humains | |
| US5945303A (en) | Human hematopoietic-specific protein | |
| US6509170B1 (en) | Polynucleotides encoding human tumor necrosis factor delta | |
| WO1997035976A2 (fr) | Facteur de differenciation epidermique | |
| WO1997034013A1 (fr) | Cytokine ii chimiotactique | |
| WO1997033898A1 (fr) | Variante d'epissage de recepteur de 4-1bb chez l'homme | |
| US20060171918A1 (en) | Apoptosis inducing molecule I | |
| US6908986B2 (en) | Chemokine alpha 3 | |
| WO1997036915A1 (fr) | Cystatine f humain | |
| US5952197A (en) | DNA encoding the chemotactic cytokine III | |
| AU2003236393B2 (en) | Methods of Treating or Preventing Inflammation or Rheumatoid Arthritis | |
| WO1997035027A1 (fr) | Chemokine alpha 3 | |
| AU767338B2 (en) | Chemokine alpha 2 | |
| WO1997037022A1 (fr) | Facteur ii d'activation de cellules tueuses naturelles chez l'homme | |
| AU761216B2 (en) | Human tumor necrosis factor delta and epsilon | |
| WO1997032993A1 (fr) | Cytokine iii chimiotactique | |
| US20040197874A1 (en) | Human cytokine polypeptide |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AU BG BR BY CA CN CZ EE FI GE HU JP KG KP KR KZ LT LV MD MN MX NO NZ PL RO RU SG SI SK TJ TM UA US UZ VN |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 97528803 Format of ref document f/p: F |
|
| NENP | Non-entry into the national phase |
Ref country code: CA |
|
| 122 | Ep: pct application non-entry in european phase |