WO1997034720A1 - Composite material and process for the preparation thereof - Google Patents
Composite material and process for the preparation thereof Download PDFInfo
- Publication number
- WO1997034720A1 WO1997034720A1 PCT/DE1997/000482 DE9700482W WO9734720A1 WO 1997034720 A1 WO1997034720 A1 WO 1997034720A1 DE 9700482 W DE9700482 W DE 9700482W WO 9734720 A1 WO9734720 A1 WO 9734720A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite material
- phase
- material according
- mpa
- binding metal
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title abstract 2
- 239000011230 binding agent Substances 0.000 claims abstract description 41
- 238000005266 casting Methods 0.000 claims abstract description 33
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 24
- 239000000725 suspension Substances 0.000 claims abstract description 18
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 14
- 238000005245 sintering Methods 0.000 claims abstract description 14
- 239000010959 steel Substances 0.000 claims abstract description 14
- 239000000919 ceramic Substances 0.000 claims abstract description 10
- 239000011195 cermet Substances 0.000 claims abstract description 9
- 239000007858 starting material Substances 0.000 claims abstract description 7
- 239000000696 magnetic material Substances 0.000 claims abstract description 5
- 238000004663 powder metallurgy Methods 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 24
- 239000004033 plastic Substances 0.000 claims description 12
- 229920003023 plastic Polymers 0.000 claims description 12
- 239000001993 wax Substances 0.000 claims description 10
- 238000001746 injection moulding Methods 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 239000013543 active substance Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- -1 Ni2TiAl Inorganic materials 0.000 claims description 4
- 239000005642 Oleic acid Substances 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- 230000002745 absorbent Effects 0.000 claims description 3
- 239000002250 absorbent Substances 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- 239000010410 layer Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 3
- 239000002347 wear-protection layer Substances 0.000 claims description 3
- 229910001369 Brass Inorganic materials 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 238000005299 abrasion Methods 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 150000004996 alkyl benzenes Chemical group 0.000 claims description 2
- 239000010951 brass Substances 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 229910010293 ceramic material Inorganic materials 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 239000003599 detergent Substances 0.000 claims description 2
- 238000005553 drilling Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 239000012779 reinforcing material Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims 5
- 229910052804 chromium Inorganic materials 0.000 claims 4
- 229910052715 tantalum Inorganic materials 0.000 claims 4
- 229910052735 hafnium Inorganic materials 0.000 claims 3
- 150000001247 metal acetylides Chemical class 0.000 claims 3
- 229910052720 vanadium Inorganic materials 0.000 claims 3
- 229910052726 zirconium Inorganic materials 0.000 claims 3
- 229910003310 Ni-Al Inorganic materials 0.000 claims 2
- 238000007792 addition Methods 0.000 claims 2
- 229910052748 manganese Inorganic materials 0.000 claims 2
- 229910052721 tungsten Inorganic materials 0.000 claims 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- 229910000997 High-speed steel Inorganic materials 0.000 claims 1
- 229910016006 MoSi Inorganic materials 0.000 claims 1
- 229910005883 NiSi Inorganic materials 0.000 claims 1
- 229910009962 Ti2Si Inorganic materials 0.000 claims 1
- 229910010038 TiAl Inorganic materials 0.000 claims 1
- 229910008484 TiSi Inorganic materials 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 239000000956 alloy Substances 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims 1
- 238000009694 cold isostatic pressing Methods 0.000 claims 1
- 238000005056 compaction Methods 0.000 claims 1
- 238000007723 die pressing method Methods 0.000 claims 1
- 238000001513 hot isostatic pressing Methods 0.000 claims 1
- 239000002905 metal composite material Substances 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- 150000002888 oleic acid derivatives Chemical class 0.000 claims 1
- 229910052761 rare earth metal Inorganic materials 0.000 claims 1
- 150000002910 rare earth metals Chemical class 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 229910000601 superalloy Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 230000003746 surface roughness Effects 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000011162 core material Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017061 Fe Co Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/004—Article comprising helical form elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
- B22F2005/103—Cavity made by removal of insert
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the invention relates to composite materials, consisting essentially of a cermet material with a binder metal phase of
- the rest of the binder metal phase a powder metallurgy steel or a metallic or ceramic magnetic material.
- the invention further relates to a method for producing this composite material.
- the starting powders are mixed, homogenized and ground in accordance with the desired quantitative composition before they are subjected to a shaping for producing a green body, which is then sintered.
- the following variants of the shaping method are known from the prior art:
- the compacted blank is shaped to the desired geometry in the green state or after its pre-sintering by means of mechanical turning, cutting, drilling and grinding operations.
- the mixed and ground starting powder is granulated and compressed with the aid of plastic binders by means of die presses to the desired final shape.
- the starting powder mixture is made flowable by adding a thermoplastic plastic binder and injection molded under high pressure in accordance with the injection molding process known for plastics.
- the necessary injection molding tools increase the manufacturing costs considerably.
- to remove the introduced Binder's process steps are necessary in which gaseous nitric acid or organic solvents are used, the handling and disposal of which, from an environmental point of view, is further cost-increasing.
- Strand-shaped blanks can be formed using plasticizers such as wax using screw or piston extrusion presses.
- the qualitative and quantitative composition of the composite materials consisting of a cermet material, a hard metal or a powder-metallurgy steel is basically known in the prior art, for example from DE 43 40 652 A1.
- the respective base materials, namely cermets, hard metals or steels can be in pure form or have additives of various types, namely metals, further hard materials, ceramic materials and single-crystal reinforcing materials in whisker or plate form.
- the fundamental difference between the composite materials claimed is that the starting materials are shaped into a non-porous green body by hot casting prior to sintering. Hot casting is basically for the production of ceramic moldings from cfi / Ber. DKG 72 (1995) No. 10, pages 640 to 642.
- the hot casting process which is also referred to as low-pressure hot spraying or low-pressure injection molding, is based on the fact that the powdery starting mixtures are brought into a flowable state by adding a thermoplastic binder, essentially paraffins and / or liquid-melting waxes and surface-active substances - including surfactants or called detergents - are added.
- the surfactants serve as a connection between the solid particles, which they coat "in one layer" and the waxes and / or paraffins.
- cermet, hard metal or steel powder contain components that have much higher densities up to 16 g / cm 3 .
- hot casting can also be used to shape the composite materials characterized in claim 1.
- the hot casting of the suspension consisting of the powdery starting materials and the thermoplastic binder enables the production of molded parts with a high degree of complexity, so undercuts, transverse bores and blind holes, large wall thickness differences, threads, grooves, surface structures, lettering and combinations of the aforementioned shapes can be cost-effectively , in particular by approximately 80% to 90% lower tool costs compared to high-pressure injection molding.
- Application products are, in particular, indexable inserts with complex chip form geometries, milling cutter blanks with a twisted chip chamber, rotor milling cutters, screws, micro-drills, drills and cutting inserts with flushing holes, guide fingers for cigarette manufacture, rotors, pump parts, such as bearing rings, shaft seals and shafts, gear wheels, complex nozzles, bearing shells, Watch case, scissors blanks, Cylinders for metering pumps, control pistons for paint spray guns, balls, work and transport rollers for the packaging industry, paddle wheels and the like.
- the hot casting process according to the invention of cermet, hard metal, steel and / or metallic or ceramic magnet materials is characterized in accordance with claim 17, that the components of the composite materials in the desired quantitative mixing ratio as powdery starting materials after grinding with a thermoplastic binder, the proportion of which in the total amount is 20 to 50% by volume, preferably 30 to 40% by volume, and which has a viscosity between 3 to 6 mPa s, in a stable dispersive suspension with a viscosity between 100 mPa s and 5 Pa s is transferred, this suspension is cast into a shape corresponding to the desired contours of the composite component to be produced without pressure or under a pressure of at most 5 MPa, preferably 0.1 to 1 MPa, at 70 ° C.
- thermoplastic binder to 120 ° C. and at temperatures, which are above the evaporation temperatures of the thermoplastic binder, is heated and the thermoplastic B in which the stripped body is sintered.
- the powder starting mixture and the thermoplastic binder by hot casting, i.e., above the melting temperature of the thermoplastic binder, has the true-to-shape negative contour of the finished component to be manufactured, taking into account the sintering shrinkage.
- the low pressures used do not place as high demands on the mold as in high-pressure injection molding. In particular, less expensive materials can be used as mold material.
- the average grain size of the powdered raw materials is less than 15 ⁇ m (for steel and magnetic Substances below 100 ⁇ m), it can be in particular ⁇ 3 p and / or the viscosity of the suspension is between 100 mPa s and 2000 mPa s. Variations in the average grain size are included insofar as, for example, some of the powdered starting materials can have a coarser grain and the rest can have a finer grain.
- the thermoplastic binder consists of waxes and / or paraffins, to which 2 to 30% by volume of surface-active substances, preferably with an aliphatic hydrocarbon residue or alkylbenzene residue with 10 to 22 C atoms, are added.
- surface-active substances preferably with an aliphatic hydrocarbon residue or alkylbenzene residue with 10 to 22 C atoms.
- the suspension is preferably cast in casting molds made of brass, copper, steel or plastic.
- the thermoplastic binder can be driven out in stages, namely in a first stage at temperatures up to 300 ° C. at which 50 to 80% by volume of the thermoplastic binder is expelled. be driven.
- the residual content of the thermoplastic binder remaining in the hot-cast molded body can then be used in the course of further treatment with a view to greater strength of the blank.
- the rest of the thermoplastic binder is then expelled at higher temperatures.
- the thermoplastic binder is preferably expelled in a protective gas atmosphere, as a result of which undesired reactions of the green body with the furnace atmosphere can be avoided.
- the shaped body in the first stage, can be coated with an absorbent material (a powder bed), such as Al 2 O 3 powder, or lie on a ceramic base, in particular A1 2 0 3 , and the second stage can be carried out in a sintering furnace.
- a powder bed such as Al 2 O 3 powder
- the powder bed and the ceramic underlay serve as an aid for sucking up the liquefied binder.
- the residual content of thermoplastic binder in the molded body is preferably 20 to 30% by volume before being transferred to the sintering furnace, this residual content ensuring adequate stabilization of the molded body.
- the two-stage binder removal can optionally also be exploited to that targeted in the first stage at temperatures up to 300 * C acids present as surface-active substances, such as oleic acid, stearic acid, etc., are cracked, and the resulting cracking carbon for carburizing of Shaped body are used.
- C acids present as surface-active substances such as oleic acid, stearic acid, etc.
- the hot casting according to the invention is not only limited to the production of moldings of homogeneous composition. Inhomogeneities in the form of changing substance compositions can be achieved by casting molds with two different pouring channels, into which suspensions of different compositions are poured. In particular, different compositions can be cast on top of one another or next to one another, which merge into one another at the respective interfaces and also make it possible to set radial composition gradients if the cast core material is encapsulated by a material of a different composition.
- a core can first be produced in a first mold by hot or injection molding, which is then transferred to a second mold and encased in a shell made of hot-moldable material.
- abrasion-resistant wear protection layers can preferably be cast around a tough core, wherein the wear protection layers can consist of one or more layers of the same or different material composition.
- a strand of plastic preferably polyethylene or wax or another material that can be melted out at the sintering temperature, is firmly adhered as a placeholder for a later channel and that the molded body consisting of the strand and the core is then extrusion-coated in a casting mold by hot casting and the one thus produced Composite body is sintered, the strand thermally decomposing.
- the strand can be formed in a linear form, for example in the case of piercing tools, or in a spiral form in the case of drill blanks.
- a hard material powder mixture of 94% by mass of WC and 6% by mass of Co is mixed, ground and then with a thermoplastic binder, which is 45% by volume based on the total mixture, to give a 75 ° C. warm suspension been melted.
- 70% by volume of the thermoplastic binder consisted of a low-chain paraffin, 20% by volume of wax and 10% by volume of oleic acid.
- the hot slip suspension has a viscosity that is greater than 100 mPas. If smaller viscosity values were reached, powdery WC / Co was refilled in an amount until the desired minimum viscosity was reached and the dispersion was stable.
- the slip is put into a casting mold without pressure or at a maximum of 1 MPa via sprue channels, the inner contours of which correspond to the molded component to be produced, taking into account the sintering shrinkage.
- the casting mold is then cooled to room temperature, the molding is removed and under protective gas in a powder bed up to 300 ° C. heated, except for a residual content of thermoplastic binder between 20 and 30% of the binder is driven off.
- the molded body is placed on a graphite base in a sintering furnace and sintered at approx. 1450'C. In the warm-up phase up to 500 ° C, the residual binder is driven out into the gas phase.
- thermoplastic binder consisted of 70% by volume of a low-chain paraffin, 24% by volume of wax and 6% by volume of stearic acid.
- the thermoplastic binder was heated to 80 ° C. in a heatable mixing device and 2/3 of the powder mixture was added and mixed until the viscosity of the suspension decreased. The rest of the powder is then added and again mixed intensively.
- the suspension has a viscosity above 100 mPas.
- the slip thus produced is poured into a mold for a coil core under a pressure of 1 MPa and cooled. After cooling, the green compact is removed removed from the divisible casting mold and thermally debindered in an alumina powder bed in a push-through furnace under a hydrogen stream and sintered at 1350 ° C. for 4 hours.
- cermets and powder-metallurgical steel starting grades of the type mentioned have been processed.
- the starting grain sizes of the powder metallurgical materials were either on average below 1 ⁇ m (so-called fine grain). or below 2 ⁇ m.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
The invention relates to composite materials substantially comprising: a cermet material with a binding metal phase of 3 to 30 mass %, with a rest formed from at least one carbonitride phase; or a hard metal with at least one hard material phase of 65 to 99 %, with a rest formed from the binding metal phase; or a steel produced by powder metallurgy; or a metal or ceramic magnetic material. The invention also relates to a process for preparing said composite material. To obtain composite materials and a process for the preparation thereof, which are economical to produce in the shape of geometrically complex moulded articles, and which have the lowest possible level of surface roughness, it is proposed that the composite material is prepared by hot casting and, subsequently sintering. The powdery starting materials are transformed, using a thermoplastic binder, into a stable, dispersive suspension with a viscosity between 100 mPa and 5 Pa. Said suspension is poured without pressure or at a maximum pressure of 5 MPa at a temperature between 70 °C to 120 °C, and subsequently heated, the thermoplastic binder being expelled before the binder-free structure is sintered.
Description
Beschreibung description
Verbundwerkstoff und Verfahren zu seiner HerstellungComposite and process for its manufacture
Die Erfindung betrifft Verbundwerkstoffe, im wesentlichen bestehend aus einem Cermetwerkstoff mit einer Bindemetallphase vonThe invention relates to composite materials, consisting essentially of a cermet material with a binder metal phase of
3 bis 30 Massen-%, Rest mindestens eine Carbonitridphase oder einem Hartmetall mit mindestens einer Hartstoffphase von3 to 30 mass%, remainder at least one carbonitride phase or a hard metal with at least one hard material phase of
65 bis 99 %, Rest Bindemetallphase, einem pulvermetallurgisch hergestellten Stahl oder einem metallischen oder keramischen Magnetwerkstoff.65 to 99%, the rest of the binder metal phase, a powder metallurgy steel or a metallic or ceramic magnetic material.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung dieses Verbundwerkstoffes.The invention further relates to a method for producing this composite material.
Zur Herstellung der genannten Verbundwerkstoffe werden die Aus¬ gangspulver entsprechend der gewünschten quantitativen Zusam¬ mensetzung gemischt, homogenisiert und gemahlen, bevor sie einer Formgebung zur Fertigung eines Grünlings unterzogen wer¬ den, der abschließend gesintert wird. Bei den Formgebungsver¬ fahren sind nach dem Stand der Technik folgende Varianten bekannt:To produce the composite materials mentioned, the starting powders are mixed, homogenized and ground in accordance with the desired quantitative composition before they are subjected to a shaping for producing a green body, which is then sintered. The following variants of the shaping method are known from the prior art:
Der kompaktierte Rohling wird im Grünzustand oder nach seinem Vorsintern mechanisch mittelε Dreh-, Schneid-, Bohr- und SchleifOperationen zur gewünschten Geometrie geformt. Alterna¬ tiv wird das gemischte und gemahlene Ausgangspulver granuliert und unter Zuhilfenahme von plastischen Bindern mittels Matri¬ zenpressen zur gewünschten Endform verdichtet. Beim Metallpul¬ ver-Spritzgießverfahren wird das Ausgangs-Pulvergemisch durch Zugabe eines thermoplastischen Kunststoffbinders fließfähig gemacht und entsprechend dem bei Kunststoffen bekannten Spritz¬ gießverfahren unter hohem Druck spritzvergossen. Die notwendi¬ gen Spritzgußwerkzeuge verteuern hierbei die Herstellungskosten erheblich. Zudem sind zur Entfernung des eingebrachten
Binders Prozeßschritte notwendig, bei denen gasförmige Salpe¬ tersäure oder organische Lösungsmittel verwendet werden, deren unter Umweltaspekten notwendige Handhabung und Entsorgung weiter kostensteigernd ist.The compacted blank is shaped to the desired geometry in the green state or after its pre-sintering by means of mechanical turning, cutting, drilling and grinding operations. Alternatively, the mixed and ground starting powder is granulated and compressed with the aid of plastic binders by means of die presses to the desired final shape. In the metal powder injection molding process, the starting powder mixture is made flowable by adding a thermoplastic plastic binder and injection molded under high pressure in accordance with the injection molding process known for plastics. The necessary injection molding tools increase the manufacturing costs considerably. In addition, to remove the introduced Binder's process steps are necessary in which gaseous nitric acid or organic solvents are used, the handling and disposal of which, from an environmental point of view, is further cost-increasing.
Strangförmige Rohlinge lassen sich unter Verwendung von Plasti- fizierern wie Wachs mittels Schnecken- oder Kolbenstrangpressen formen.Strand-shaped blanks can be formed using plasticizers such as wax using screw or piston extrusion presses.
Es ist Aufgabe der vorliegenden Erfindung, Verbundwerkstoffe und ein Verfahren zu ihrer Herstellung anzugeben, die kosten¬ günstig in komplexer geometrischer Formteilgestaltung her¬ stellbar sind und die eine möglichst geringe Oberflächenrauhig¬ keit aufweisen.It is an object of the present invention to provide composite materials and a method for their production which can be produced inexpensively in a complex geometric shape and which have the lowest possible surface roughness.
Diese Aufgabe wird durch die Verbundwerkstoffe nach Anspruch 1 gelöst, die erfindungsgemäß dadurch gekennzeichnet sind, daß der Verbundwerkstoff durch Heißgießen und anschließendes Sin¬ tern hergestellt worden ist.This object is achieved by the composite materials according to claim 1, which are characterized according to the invention in that the composite material has been produced by hot casting and subsequent sintering.
Weiterbildungen der Verbundwerkstoffe sind in den Ansprüchen 2 bis 16 beschrieben.Developments of the composite materials are described in claims 2 to 16.
Die qualitative wie quantitative Zusammensetzung der aus einem Cermetwerkstoff, einem Hartmetall oder einem pulvermetallur¬ gisch hergestellten Stahl bestehenden Verbundwerkstoffe ist nach dem Stand der Technik grundsätzlich bekannt, beispiels¬ weise durch die DE 43 40 652 AI. Die jeweiligen Basiswerk¬ stoffe, nämlich Cermets, Hartmetalle oder Stähle, können in reiner Form vorliegen oder Zusätze verschiedener Art, nämlich Metalle, weitere Hartstoffe, keramische Stoffe sowie einkri¬ stalline Verstärkungsmaterialien in Whisker- oder Plättchenform aufweisen. Der grundlegende Unterschied der beanspruchten Ver¬ bundwerkstoffe besteht darin, daß die Ausgangsstoffe vor dem Sintern durch Heißgießen zu einem porenfreien Grünling geformt werden.
Das Heißgießen ist grundsätzlich zur Herstellung keramischer Formkörper aus cfi/Ber. DKG 72 (1995) Nr. 10, Seiten 640 bis 642, bekannt. Das Heißgießverfahren, das auch als Niederdruck¬ warmspritzen oder Niederdruckspritzgießen bezeichnet wird, beruht darauf, daß die pulverförmigen Ausgangsmischungen durch Zugabe eines thermoplastischen Bindemittels in einen fließfähi¬ gen Zustand gebracht werden, wobei im wesentlichen Paraffine und/oder flüssigschmelzende Wachse sowie grenzflächenaktive Substanzen - auch Tenside oder Detergenzien genannt - zugegeben werden. Die Tenside dienen als Verbindung zwischen den Fest- stoffpartikeln, die durch sie "einlagig" umhüllt werden und den Wachsen und/oder Paraffinen. Im Unterschied zur Herstellung von keramischen Grünlingen, bei denen die Dichte der Ausgangspulver maximal 6 g/cm3 beträgt, beinhalten Cermet-, Hartmetall- oder Stahlpulver Komponenten, die weitaus höhere Dichten bis zu 16 g/cm3 haben. Durch diese hohen Dichten besteht die Gefahr einer Entmischung mit der Folge, daß die fertiggesinterten Körper bruchanfällig und spröde sind, überraschenderweise kann jedoch durch gezielte Auswahl des thermoplastischen Binders das Heißgießen auch zur Formgebung der im Anspruch 1 gekennzeichneten Verbundwerkstoffe verwendet werden. Das Hei߬ gießen der aus den pulverförmigen Ausgangsstoffen und dem thermoplastischen Binder bestehenden Suspension ermöglicht die Herstellung von Formteilen mit hoher Komplexibilität, so können Hinterschneidungen, Querbohrungen und Sacklöcher, große Wanddickenunterschiede, Gewinde, Rillen, Oberflächenstrukturen, Beschriftungen sowie Kombinationen der vorgenannten Aus¬ formungen kostengünstig, insbesondere durch ca. 80 % bis 90 % niedrigere Werkzeugkosten gegenüber dem Hochdruck-Spritzgießen, hergestellt werden. Anwendungsprodukte sind insbesondere Wende¬ schneidplatten mit komplexen Spanformgeometrien, Fräserrohlinge mit gedrallter Spankammer, Rotorfräser, Schnecken, Mikrobohrer, Bohrer und Schneideinsätze mit Spülbohrungen, Führungsfinger für die Zigarettenherstellung, Rotoren, Pumpenteile, wie Lagerringe, Wellendichtungen und Wellen, Zahnräder, komplexe Düsen, Lagerschalen, Uhrengehäuse, Scherenrohlinge,
Zylinder für Dosierpumpen, Steuerkolben für Farbspritzpistolen, Kugeln, Arbeits- und Transportrollen für die Verpackungs¬ industrie, Paddelräder und dergleichen.The qualitative and quantitative composition of the composite materials consisting of a cermet material, a hard metal or a powder-metallurgy steel is basically known in the prior art, for example from DE 43 40 652 A1. The respective base materials, namely cermets, hard metals or steels, can be in pure form or have additives of various types, namely metals, further hard materials, ceramic materials and single-crystal reinforcing materials in whisker or plate form. The fundamental difference between the composite materials claimed is that the starting materials are shaped into a non-porous green body by hot casting prior to sintering. Hot casting is basically for the production of ceramic moldings from cfi / Ber. DKG 72 (1995) No. 10, pages 640 to 642. The hot casting process, which is also referred to as low-pressure hot spraying or low-pressure injection molding, is based on the fact that the powdery starting mixtures are brought into a flowable state by adding a thermoplastic binder, essentially paraffins and / or liquid-melting waxes and surface-active substances - including surfactants or called detergents - are added. The surfactants serve as a connection between the solid particles, which they coat "in one layer" and the waxes and / or paraffins. In contrast to the production of ceramic green compacts, in which the density of the starting powder is a maximum of 6 g / cm 3 , cermet, hard metal or steel powder contain components that have much higher densities up to 16 g / cm 3 . Due to these high densities, there is a risk of segregation, with the result that the finished sintered bodies are prone to breakage and brittle, but surprisingly, through targeted selection of the thermoplastic binder, hot casting can also be used to shape the composite materials characterized in claim 1. The hot casting of the suspension consisting of the powdery starting materials and the thermoplastic binder enables the production of molded parts with a high degree of complexity, so undercuts, transverse bores and blind holes, large wall thickness differences, threads, grooves, surface structures, lettering and combinations of the aforementioned shapes can be cost-effectively , in particular by approximately 80% to 90% lower tool costs compared to high-pressure injection molding. Application products are, in particular, indexable inserts with complex chip form geometries, milling cutter blanks with a twisted chip chamber, rotor milling cutters, screws, micro-drills, drills and cutting inserts with flushing holes, guide fingers for cigarette manufacture, rotors, pump parts, such as bearing rings, shaft seals and shafts, gear wheels, complex nozzles, bearing shells, Watch case, scissors blanks, Cylinders for metering pumps, control pistons for paint spray guns, balls, work and transport rollers for the packaging industry, paddle wheels and the like.
Das erfindungsgemäße Heißgießverfahren von Cermet-, Hartme¬ tall-, Stahl- und/oder metallischen oder keramischen Magnet¬ werkstoffen ist nach Anspruch 17 dadurch gekennzeichnet, daß die Bestandteile der Verbundwerkstoffe in dem gewünschten quantitativen Mischungsverhältnis als pulverförmige Ausgangs¬ stoffe nach dem Mahlen mit einem thermoplastischen Binder, dessen Anteil an der Gesamtmenge 20 bis 50 Vol.-%, vorzugsweise 30 bis 40 Vol.-%, beträgt und der eine Viskosität zwischen 3 bis 6 mPa s aufweist, in eine stabile dispersive Suspension mit einer Viskosität zwischen 100 mPa s und 5 Pa s überführt wird, diese Suspension in eine die gewünschten Konturen des herzustellenden Verbundwerkstoffbauteiles entsprechende Form drucklos oder unter einem Druck von maximal 5 MPa, vorzugsweise 0,1 bis 1 MPa, bei 70"C bis 120°C heißgegossen und auf Temperaturen, die oberhalb der Verdampfungstemperaturen des thermoplastischen Binders liegen, erwärmt wird und der thermoplastische Binder ausgetrieben und der entbinderte Körper gesintert wird. Die Form, in der die dispersive Suspension aus. dem Pulver-Ausgangsgemisch und dem thermoplastischen Binder durch Heißgießen, d.h., oberhalb der Schmelztemperatur des thermoplastischen Binders, eingegeben wird, besitzt die unter Berücksichtigung des Sinterschwundes formgetreue Negativkontur des herzustellenden Fertig-Bauteiles. Durch die angewendeten geringen Drücke werden an die Gießform keine so hohen Ansprüche wie beim Hochdruck-Spritzgießen gestellt, insbesondere kann als Formenmaterial auf preisgünstigere Werkstoffe zurückgegriffen werden.The hot casting process according to the invention of cermet, hard metal, steel and / or metallic or ceramic magnet materials is characterized in accordance with claim 17, that the components of the composite materials in the desired quantitative mixing ratio as powdery starting materials after grinding with a thermoplastic binder, the proportion of which in the total amount is 20 to 50% by volume, preferably 30 to 40% by volume, and which has a viscosity between 3 to 6 mPa s, in a stable dispersive suspension with a viscosity between 100 mPa s and 5 Pa s is transferred, this suspension is cast into a shape corresponding to the desired contours of the composite component to be produced without pressure or under a pressure of at most 5 MPa, preferably 0.1 to 1 MPa, at 70 ° C. to 120 ° C. and at temperatures, which are above the evaporation temperatures of the thermoplastic binder, is heated and the thermoplastic B in which the stripped body is sintered. The form in which the dispersive suspension is made. The powder starting mixture and the thermoplastic binder by hot casting, i.e., above the melting temperature of the thermoplastic binder, has the true-to-shape negative contour of the finished component to be manufactured, taking into account the sintering shrinkage. The low pressures used do not place as high demands on the mold as in high-pressure injection molding. In particular, less expensive materials can be used as mold material.
Weitere vorzugsweise Verfahrensschritte sind in den Ansprü¬ chen 18 bis 29 beschrieben.Further preferred method steps are described in claims 18 to 29.
So liegt die durchschnittliche Korngröße der gemahlenen pulver- förmigen Ausgangsstoffe unter 15 μm (bei Stahl- und Magnetwerk-
Stoffen unter 100 μm), sie kann insbesondere ≤ 3 p betragen und/oder die Viskosität der Suspension liegt zwischen 100 mPa s und 2000 mPa s. Variationen der durchschnittlichen Korngröße sind insofern eingeschlossen, wie beispielsweise ein Teil der pulverförmigen Ausgangsstoffe eine gröbere Körnung und der übrige Teil eine feinere Körnung aufweisen kann.The average grain size of the powdered raw materials is less than 15 μm (for steel and magnetic Substances below 100 μm), it can be in particular ≤ 3 p and / or the viscosity of the suspension is between 100 mPa s and 2000 mPa s. Variations in the average grain size are included insofar as, for example, some of the powdered starting materials can have a coarser grain and the rest can have a finer grain.
Nach einer Weiterbildung der Erfindung besteht der thermopla¬ stische Binder aus Wachsen und/oder Paraffinen, denen 2 bis 30 Vol.-% grenzflächenaktive Stoffe, vorzugsweise mit einem aliphatischen Kohlenwasserstoff-Rest oder Alkylbenzol-Rest mit 10 bis 22 C-Atomen beigemengt sind. Im Einzelfall ist die Aus¬ wahl der grenzflächenaktiven Stoffe den Binder- und Pulverei- genschaften und der Körnung anzupassen, so daß eine Umhüllung aller Ausgangspulver-Körner erzielt wird. Vorzugsweise wird die Suspension in Gießformen aus Messing, Kupfer, Stahl oder Kunst¬ stoff vergossen.According to a development of the invention, the thermoplastic binder consists of waxes and / or paraffins, to which 2 to 30% by volume of surface-active substances, preferably with an aliphatic hydrocarbon residue or alkylbenzene residue with 10 to 22 C atoms, are added. In individual cases, the selection of the surface-active substances must be adapted to the binder and powder properties and the grain size, so that all the starting powder grains are coated. The suspension is preferably cast in casting molds made of brass, copper, steel or plastic.
Das Austreiben des thermoplastischen Binders kann nach einer weiteren Ausführungsform der Erfindung stufenweise erfolgen, nämlich in einer ersten Stufe bei Temperaturen bis zu 300°C, bei der 50 bis 80 Vol.-% des thermoplastischen Binders ausge- . trieben werden. Der in dem heißgegossenen Formkörper verblie¬ bene Restgehalt des thermoplastischen Binders kann dann im Hin¬ blick auf eine größere Festigkeit des Rohlings bei der Weiter¬ behandlung ausgenutzt werden. Der Rest des thermoplastischen Binders wird anschließend bei höheren Temperaturen ausgetrie¬ ben. Der Austrieb des thermoplastischen Binders erfolgt jeweils vorzugsweise unter Schutzgasatmosphäre, wodurch unerwünschte Reaktionen des Grünlings mit der Ofenatmosphäre vermeidbar sind.According to a further embodiment of the invention, the thermoplastic binder can be driven out in stages, namely in a first stage at temperatures up to 300 ° C. at which 50 to 80% by volume of the thermoplastic binder is expelled. be driven. The residual content of the thermoplastic binder remaining in the hot-cast molded body can then be used in the course of further treatment with a view to greater strength of the blank. The rest of the thermoplastic binder is then expelled at higher temperatures. The thermoplastic binder is preferably expelled in a protective gas atmosphere, as a result of which undesired reactions of the green body with the furnace atmosphere can be avoided.
Insbesondere kann in der ersten Stufe der Formkörper mit einem saugfähigen Material (einem Pulverbett), wie Al2θ3-Pulver, umhüllt werden oder auf einer Keramikunterlage, insbesondere A1203, aufliegen und die zweite Stufe in einem Sinterofen durchgeführt werden. Das Pulverbett sowie die Keramikunterlage
dienen als Hilfsmittel zum Aufsaugen des verflüssigten Binders. Vorzugsweise beträgt der Restgehalt an thermoplastischem Binder in dem Formkörper vor dem überführen in den Sinterofen 20 bis 30 Vol.-%, wobei dieser Restgehalt eine hinreichende Stabilisierung des Formkörpers gewährleistet. Die zweistufige Entbinderung kann ggf. auch dazu ausgenutzt werden, daß gezielt in der ersten Stufe bei Temperaturen bis zu 300*C vorhandene Säuren als grenzflächenaktive Substanzen, wie ölsäure, Stearin¬ säure etc. , gecrackt werden und die beim Cracken entstehenden Kohlenstoffe zur Aufkohlung des Formkörpers ausgenutzt werden.In particular, in the first stage, the shaped body can be coated with an absorbent material (a powder bed), such as Al 2 O 3 powder, or lie on a ceramic base, in particular A1 2 0 3 , and the second stage can be carried out in a sintering furnace. The powder bed and the ceramic underlay serve as an aid for sucking up the liquefied binder. The residual content of thermoplastic binder in the molded body is preferably 20 to 30% by volume before being transferred to the sintering furnace, this residual content ensuring adequate stabilization of the molded body. The two-stage binder removal can optionally also be exploited to that targeted in the first stage at temperatures up to 300 * C acids present as surface-active substances, such as oleic acid, stearic acid, etc., are cracked, and the resulting cracking carbon for carburizing of Shaped body are used.
Das erfindungsgemäße Heißgießen ist nicht nur auf die Herstel¬ lung von Formkörpern homogener Zusammensetzung beschränkt. Inhomogenitäten in Form wechselnder Stoffzusammensetzungen kön¬ nen durch Gießformen mit zwei unterschiedlichen Gießkanälen realisiert werden, in die Suspensionen unterschiedlicher Zusam¬ mensetzung eingegossen werden. Es lassen sich insbesondere unterschiedliche Zusammensetzungen übereinander bzw. nebenein¬ ander vergießen, die an den jeweiligen Grenzflächen ineinander übergehen als auch radiale Zusammensetzungsgradienten einzu¬ stellen möglich werden, wenn das gegossene Kernmaterial von einem Material anderer Zusammensetzung umgössen wird. Alterna-, tiv zu dem gleichzeitigen Vergießen zweier Heißgießschlicker in einer einzigen Form kann auch ein Kern zunächst in einer ersten Form durch Heiß- oder Spritzgießen hergestellt werden, der dann in eine zweite Form überführt und mit einer Hülle aus heißgieß- fähigem Material umgössen wird. Vorzugsweise lassen sich auf diese Art abrasionsbeständige Verschleißschutzschichten um einen zähen Kern gießen, wobei die Verschleißschutzschichten ein- oder mehrlagig aus gleicher oder unterschiedlicher Materi¬ alzusammensetzung bestehen können. Mit dem erfindungsgemäßen Heißgießverfahren können auch Bohrerrohlinge mit wendeiförmigen Kühlkanälen hergestellt werden, wobei während des Heißvergie¬ ßens ein später ausschmelzbarer Platzhalter an die Stelle der späteren wendeiförmigen Kühlkanäle gesetzt werden muß. Dies kann dadurch bewerkstelligt werden, daß an einem Kern ein
Strang aus Kunststoff, vorzugsweise Polyethylen oder Wachs oder einem anderen bei der Sintertemperatur ausschmelzbaren Material fest haftend als Platzhalter für einen späteren Kanal befestigt wird und daß der aus dem Strang und dem Kern bestehende Form¬ körper anschließend in einer Gießform durch Heißgießen umspritzt und der so hergestellte Verbundkörper gesintert wird, wobei sich der Strang thermisch zersetzt. Der Strang kann in linearer Form, z.B. bei Stechwerkzeugen, oder in Wendelform bei Bohrerrohlingen angeformt werden. Bei schraubenförmigen Gie߬ teilen, wie z.B. Bohrer, empfiehlt sich die Verwendung einer elastischen Kunststofform als Gießform, die durch Umgießen eines Musterkörpers und anschließendes Auftrennen der Kunst¬ stofform entlang einer wendeiförmigen Fläche hergestellt worden ist. Die aufgetrennte Kunststofform ermöglicht die leichte Entnahme von darin gegossenen Bohrerrohlingen mit angeformten Spankammern bzw. Wendelstegen.The hot casting according to the invention is not only limited to the production of moldings of homogeneous composition. Inhomogeneities in the form of changing substance compositions can be achieved by casting molds with two different pouring channels, into which suspensions of different compositions are poured. In particular, different compositions can be cast on top of one another or next to one another, which merge into one another at the respective interfaces and also make it possible to set radial composition gradients if the cast core material is encapsulated by a material of a different composition. As an alternative to the simultaneous casting of two hot casting slurries in a single mold, a core can first be produced in a first mold by hot or injection molding, which is then transferred to a second mold and encased in a shell made of hot-moldable material. In this way, abrasion-resistant wear protection layers can preferably be cast around a tough core, wherein the wear protection layers can consist of one or more layers of the same or different material composition. With the hot-casting method according to the invention, drill blanks with helical cooling channels can also be produced, a placeholder which can later be melted out having to be placed in the place of the later helical cooling channels during hot-casting. This can be accomplished by having a core A strand of plastic, preferably polyethylene or wax or another material that can be melted out at the sintering temperature, is firmly adhered as a placeholder for a later channel and that the molded body consisting of the strand and the core is then extrusion-coated in a casting mold by hot casting and the one thus produced Composite body is sintered, the strand thermally decomposing. The strand can be formed in a linear form, for example in the case of piercing tools, or in a spiral form in the case of drill blanks. In the case of screw-shaped cast parts, such as drills, it is advisable to use an elastic plastic mold as the casting mold, which has been produced by casting around a sample body and then separating the plastic mold along a helical surface. The separated plastic mold enables easy removal of drill blanks cast with molded chip chambers or spiral bars.
Ausführungsbeispiele der Erfindung sind im folgenden beschrie¬ ben.Exemplary embodiments of the invention are described below.
In einem ersten Ausführungsbeispiel ist eine Hartstoffpulver¬ mischung aus 94 Massen-% WC und 6 Massen-% Co vermischt, gemah¬ len und anschließend mit einem bezogen auf die Gesamtmischung zu 45 Vol.-% ausmachenden thermoplastischen Binder zu einer 75°C warmen Suspension aufgeschmolzen worden. Der thermoplasti¬ sche Binder bestand zu 70 Vol.-% aus einem niederkettigen Paraffin, 20 Vol.-% Wachs und 10 Vol.-% ölsäure. Die Heiß- schlicker-Suspension besitzt eine Viskosität, die größer als 100 mPa s beträgt. Soweit kleinere Viskositätswerte erreicht wurden, ist pulverförmiges WC/Co in einer Menge nachgefüllt worden, bis die gewünschte Mindestviskosität erreicht und die Dispersion stabil war. Der Schlicker wird drucklos oder unter maximal 1 MPa über Angießkanäle in eine Gießform gegeben, deren Innenkonturen unter Berücksichtigung des Sinterschwundes dem herzustellenden Formbauteil entsprechen. Die Gießform wird anschließend auf Raumtemperatur abgekühlt, der Formkörper ent¬ nommen und unter Schutzgas in einem Pulverbett bis 300°C
erwärmt, wobei bis auf einen Restgehalt an thermoplastischem Binder zwischen 20 und 30 % der Binder ausgetrieben wird. Anschließend wird der Formkörper auf eine Graphitunterlage in einen Sinterofen gesetzt und bei ca. 1450'C fertiggesintert. In der Aufwärmphase bis 500°C wird der Restbinder in die Gasphase ausgetrieben.In a first exemplary embodiment, a hard material powder mixture of 94% by mass of WC and 6% by mass of Co is mixed, ground and then with a thermoplastic binder, which is 45% by volume based on the total mixture, to give a 75 ° C. warm suspension been melted. 70% by volume of the thermoplastic binder consisted of a low-chain paraffin, 20% by volume of wax and 10% by volume of oleic acid. The hot slip suspension has a viscosity that is greater than 100 mPas. If smaller viscosity values were reached, powdery WC / Co was refilled in an amount until the desired minimum viscosity was reached and the dispersion was stable. The slip is put into a casting mold without pressure or at a maximum of 1 MPa via sprue channels, the inner contours of which correspond to the molded component to be produced, taking into account the sintering shrinkage. The casting mold is then cooled to room temperature, the molding is removed and under protective gas in a powder bed up to 300 ° C. heated, except for a residual content of thermoplastic binder between 20 and 30% of the binder is driven off. Then the molded body is placed on a graphite base in a sintering furnace and sintered at approx. 1450'C. In the warm-up phase up to 500 ° C, the residual binder is driven out into the gas phase.
In einem zweiten Ausführungsbeispiel sind 5175 g Hartmetallpul¬ ver der Zusammensetzung 87,77 Massen% WC (Korngröße 0,9 μm) , 10,6 Massen% Co, 1,5 Massen% TaC/NbC und 0,13 Massen% VC ver¬ mischt worden. 270,4 g eines thermoplastischen Binders auε einem Paraffin-Wachs-ölsäuregemisch der im Ausführungsbei¬ spiel 1 angegebenen Zusammensetzung sind bei 70"C aufgeschmol¬ zen worden, wonach das genannte Hartmetallpulver in Portionen unter Rühren des Schlickers zugegeben worden ist. Die Schlickerviskosität ist hierbei überwacht worden und auf einen Wert von ca. 200 mPas eingestellt worden. Unter einem Druck von 3 x IO5 Pa (3 bar) wird der hergestellte Schlicker in eine Form gespritzt, unter einer kontrollierten Atmosphäre bis 300βC ent¬ bindert und anschließend bei 1450°C fertiggesintert.In a second exemplary embodiment, 5175 g of hard metal powder with the composition 87.77 mass% WC (grain size 0.9 μm), 10.6 mass% Co, 1.5 mass% TaC / NbC and 0.13 mass% VC are ver¬ been mixed. 270.4 g of a thermoplastic binder composed of a paraffin-wax-oleic acid mixture of the composition given in exemplary embodiment 1 were melted at 70 ° C., after which the carbide powder mentioned was added in portions while stirring the slip. The slip viscosity is here has been monitored and adjusted to a value of about 200 mPas. under a pressure of 3 x IO 5 Pa (3 bar), the slurry prepared is injected into a mold, β under a controlled atmosphere to 300 C and then ent at Bindert Sintered at 1450 ° C.
In einem dritten Ausführungsbeispiel ist aus einem weichmagne-. tischen Fe-Co-Pulver mit 80 Massen% Fe und 20 Massen% Co und einer mittleren Teilchengröße von 25 μm und einem bezogen auf die Gesamtmischung 5,5 Massen% ausmachenden thermoplastischen Binder eine Suspension hergestellt worden. Der thermoplastische Binder bestand zu 70 Vol% aus einem niederkettigen Paraffin, 24 Vol% Wachs und 6 Vol% Stearinsäure. Der thermoplastische Binder wurde in einer beheizbaren Mischvorrichtung auf 80°C erwärmt und 2/3 des Pulvergemisches dazugegeben und so lange gemischt, bis die Viskosität der Suspension absinkt. Anschlie¬ ßend wird der Rest des Pulvers dazugegeben und wiederum inten¬ siv gemischt. Die Suspenεion beεitzt eine Viskosität oberhalb von 100 mPas. Der derart hergestellte Schlicker wird unter einem Druck von 1 MPa in eine Gießform für einen Spulenkern gegossen und abgekühlt. Nach Abkühlung wird der Grünling auε
der teilbaren Gießform entnommen und in einer Aluminiumoxidpul¬ vereinbettung in einem Durchschubofen unter einem Wasserstoff¬ strom thermisch entbindert und bei 1350°C für 4 Stunden gesin¬ tert.In a third embodiment is made of a soft magma. table Fe-Co powder with 80 mass% Fe and 20 mass% Co and an average particle size of 25 microns and a based on the total mixture of 5.5 mass% thermoplastic binder a suspension was prepared. The thermoplastic binder consisted of 70% by volume of a low-chain paraffin, 24% by volume of wax and 6% by volume of stearic acid. The thermoplastic binder was heated to 80 ° C. in a heatable mixing device and 2/3 of the powder mixture was added and mixed until the viscosity of the suspension decreased. The rest of the powder is then added and again mixed intensively. The suspension has a viscosity above 100 mPas. The slip thus produced is poured into a mold for a coil core under a pressure of 1 MPa and cooled. After cooling, the green compact is removed removed from the divisible casting mold and thermally debindered in an alumina powder bed in a push-through furnace under a hydrogen stream and sintered at 1350 ° C. for 4 hours.
Entsprechende Ausführungsbeispiele sind mit Ausgangspulverstof- fen durchgeführt worden, bei denen anstelle des Eisen-Cobalt- Pulvers folgende Werstoffe jeweilε verwendet worden sind:Corresponding exemplary embodiments have been carried out using starting powder powders in which the following materials have been used instead of the iron-cobalt powder:
reines Eisen,pure iron,
2,5 bis 5 Masεen% Si, Reεt Fe,2.5 to 5% by mass Si, Reεt Fe,
10 biε 50 Massen% Co, Reεt Fe,10 to 50 mass% Co, Reεt Fe,
45 biε 55 Maεεen% Ni, Reεt Fe und45 to 55% by mass of Ni, Fe and Fe
6 biε 13 Maεεen% AI, 10 biε 18 Massen% Ni,6 to 13 mass% AI, 10 to 18 mass% Ni,
0 biε 42 Maεεen% Co, 2 bis 6 Massen % Cu,0 to 42 mass% Co, 2 to 6 mass% Cu,
0 bis 3 Massen% Nb, 0 bis 9 Massen% Ti, Rest Fe (AlNiCo-0 to 3 mass% Nb, 0 to 9 mass% Ti, balance Fe (AlNiCo-
Werkεtoff) .Material).
In entεprechender Weiεe εind Cermetε εowie pulvermetallurgiεche Stahl-Auεgangεεorten der genannten Art verarbeitet worden. Die Ausgangskorngrößen der pulvermetallurgischen Stoffe lagen ent¬ weder im Durchschnitt unterhalb 1 μm (sogenanntes Feinstkorn) . oder unterhalb 2 μm.
In a corresponding manner, cermets and powder-metallurgical steel starting grades of the type mentioned have been processed. The starting grain sizes of the powder metallurgical materials were either on average below 1 μm (so-called fine grain). or below 2 μm.
Claims
1. Verbundwerkεtoffe, im wesentlichen bestehend aus einem Cermetwerkstoff mit einer Bindemetallphaεe von 3 biε 30 Massen-%, Rest mindestenε eine Carbonitrid- phase oder einem Hartmetall mit mindestenε einer Hartεtoffphaεe von 65 bis 99 %, Rest Bindemetallphase oder einem pulvermetallurgisch hergeεtelltem Stahl oder einem metalliεchen oder keramiεchen Magnetwerkεtoff, d a d u r c h g e k e n n z e i c h n e t, daß der Verbundwerkεtoff durch Heißgießen und anεchließen- des Sintern hergestellt worden ist.1. Composite materials, essentially consisting of a cermet material with a binding metal phase of 3 to 30% by mass, the remainder at least one carbonitride phase or a hard metal with at least one hard material phase of 65 to 99%, the remainder binding metal phase or a powder metallurgically produced steel or a metallic or ceramic magnetic material, which indicates that the composite material was produced by hot casting and subsequent sintering.
2. Verbundwerkstoff nach Anεpruch 1, dadurch gekennzeichnet, daß der Verbundwerkstoff zusätzlich einem abschließenden heißisostatiεchen Pressen (HIP) zur Nachverdichtung unter¬ zogen worden ist, vorzugsweiεe unter einem Druck zwischen 0,5 MPa und 300 MPa (5 bar und 3000 bar), wobei Cermet- oder Hartmetallverbundkörper bei Temperaturen von 1200°C bis 1750°C und Stahlverbundkörper bei Temperaturen von 1000°C biε 1600°C nachverdichtet worden εind.2. Composite material according to claim 1, characterized in that the composite material has also been subjected to a final hot isostatic pressing (HIP) for post-compaction, preferably under a pressure between 0.5 MPa and 300 MPa (5 bar and 3000 bar), where Cermet or hard metal composite bodies have been post-compacted at temperatures from 1200°C to 1750°C and steel composite bodies at temperatures from 1000°C to 1600°C.
3. Verbundwerkεtoff nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Cermet eine auf Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und/oder W basierende Carbonitrid- phaεe und eine Bindemetallphaεe auε Co und/oder Ni auf¬ weist.3. Composite material according to one of claims 1 or 2, characterized in that the cermet has a carbonitride phase based on Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and / or W and a binding metal phase made of Co and / or Ni has.
4. Verbundwerkstoff nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß die Hartstoffphaεe Oxicarbide, Oxinitride, Oxicarbonitride oder Boride aufweist.4. Composite material according to claim 1 or 2, characterized in that the hard material phase has oxicarbides, oxynitrides, oxycarbonitrides or borides.
5. Verbundwerkstoff nach Anspruch 1, 2 oder 4, dadurch gekennzeichnet, daß das Hartmetall hexagonaleε WC als5. Composite material according to claim 1, 2 or 4, characterized in that the hard metal is hexagonal WC as
1. Phaεe und kubiεches Carbid des Mischkriεtalleε auε W,
Ti, Ta und/oder Nb als 2. Phase und eine Bindemetallphase aus Co, Ni, Fe oder Mischungen hiervon aufweist.1st phase and cubic carbide of the mixed crystal made of W, Ti, Ta and / or Nb as the 2nd phase and a binding metal phase made of Co, Ni, Fe or mixtures thereof.
6. Verbundwerkstoff nach einem der Ansprüche 1, 2, 4 oder 5, dadurch gekennzeichnet, daß das Hartmetall aus hexagona- len Mischcarbiden WC mit MoC und/oder kubiεchen Mischcar- biden der Elemente Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und/oder W mit einer Bindemetallphaεe auε Co, Fe und/oder Ni beεteht.6. Composite material according to one of claims 1, 2, 4 or 5, characterized in that the hard metal consists of hexagonal mixed carbides WC with MoC and / or cubic mixed carbides of the elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and/or W with a binding metal phase made of Co, Fe and/or Ni.
7. Verbundwerkεtoff nach einem der Anεprüche 1 bis 6, dadurch gekennzeichnet, daß die Bindemetallphase bis zu7. Composite material according to one of claims 1 to 6, characterized in that the binding metal phase has up to
15 Massen-% Mo, W, Ti, Mn und/oder AI - bezogen auf die Gesamtmaεεe der Bindemetallphase - aufweist.15% by mass of Mo, W, Ti, Mn and/or Al - based on the total mass of the binding metal phase.
8. Verbundwerkstoff nach Anspruch 7, dadurch gekennzeichnet, daß die Bindemetallphase auε einer Ni-AI-Legierung mit einem Ni-Al-Verhältnis von 90 : 10 biε 70 : 30 beεteht.8. Composite material according to claim 7, characterized in that the binding metal phase consists of a Ni-Al alloy with a Ni-Al ratio of 90: 10 to 70: 30.
9. Verbundwerkεtoff nach Anεpruch 8, dadurch gekennzeichnet, daß die Bindemetallphase bis zu 1 Masεen-% Bor (bezogen auf die Gesamtmasse der Bindemetallphase) enthält.9. Composite material according to claim 8, characterized in that the binding metal phase contains up to 1 mass% boron (based on the total mass of the binding metal phase).
10. Verbundwerkεtoff nach einem der Anεprüche 1 biε 6, dadurch gekennzeichnet, daß die Bindemetallphase aus Ni3Äl, Tisi3, Ti2Si3, Ti3Al, TisSi3, TiAl, Ni2TiAl, TiSi2, NiSi, MoSi2, MoSiθ2 oder Mischungen hieraus besteht.10. Composite material according to one of claims 1 to 6, characterized in that the binding metal phase consists of Ni 3 Al, Tisi 3 , Ti2Si 3 , Ti 3 Al, TisSi 3 , TiAl, Ni2TiAl, TiSi 2 , NiSi, MoSi 2 , MoSiθ2 or mixtures consists of this.
11. Verbundwerkstoff nach Anspruch 10, gekennzeichnet durch Zusätze von 0 bis 16 Masεen-% auε Co, Ni, Fe und/oder Sel- tenerd-Metallen.11. Composite material according to claim 10, characterized by additions of 0 to 16 mass% of Co, Ni, Fe and / or rare earth metals.
12. Verbundwerkstoff nach einem der Ansprüche 1, 2 oder 4, gekennzeichnet durch eine warmfeste Bindemetallphase, bestehend aus pulvermetallurgisch hergestelltem Schnell- arbeitsstahl und/oder einer Superlegierung.
12. Composite material according to one of claims 1, 2 or 4, characterized by a heat-resistant binding metal phase, consisting of high-speed steel produced by powder metallurgy and / or a superalloy.
13. Verbundwerkstoff nach einem der Ansprüche l, 2 oder 4, gekennzeichnet durch eine Bindemetallphase aus Ni und Cr.13. Composite material according to one of claims l, 2 or 4, characterized by a binding metal phase made of Ni and Cr.
14. Verbundwerkstoff nach Anspruch 13, gekennzeichnet durch Zusätze von Mo, Mn, AI, Si und Cu in Mengen von 0,01 bis zu 5 Maεεen-%.14. Composite material according to claim 13, characterized by additions of Mo, Mn, Al, Si and Cu in amounts of 0.01 up to 5% by mass.
15. Verbundwerkεtoff nach einem der Anεprüche 1 biε 14, gekennzeichnet durch eine oder mehrere mittelε PVD, CVD und/oder PCVD aufgetragene Schichten.15. Composite material according to one of claims 1 to 14, characterized by one or more layers applied using PVD, CVD and / or PCVD.
16. Verbundwerkεtoff nach einem der Anεprüche 1 biε 15, gekennzeichnet durch Zusätze biε 25 Maεsen-% bestehend aus einkristallinen Verstärkungεεtoffen in Plättchen- und/oder Whiεkerform und/oder der Ausgangsmischung beigegebenen pulverförmigen keramischen Stoffen, vorzugsweise aus der Gruppe der Boride und/oder Carbide und/oder Nitride und/oder Carbonitride der Elemente der Gruppen IVa (Ti, Zr, Hf), Va (V, Nb, Ta) oder Via (Cr, Mo, W) oder Mischungen davon und/oder aus Sie, Si3N4, Si2N2θ, A1203, Zr02, A1N und/oder BN.16. Composite material according to one of claims 1 to 15, characterized by additives up to 25% by mass consisting of single-crystalline reinforcing materials in platelet and/or whisker form and/or powdered ceramic materials added to the starting mixture, preferably from the group of borides and/or carbides and/or nitrides and/or carbonitrides of the elements of groups IVa (Ti, Zr, Hf), Va (V, Nb, Ta) or Via (Cr, Mo, W) or mixtures thereof and/or from Sie, Si 3 N4 , Si2N2θ, A1 2 0 3 , Zr0 2 , A1N and/or BN.
17. Verfahren zum Heißgießen von Cermet-, Hartmetall-, Stahl- und/oder metallischen oder keramischen Magnetwerkstoffen, dadurch gekennzeichnet, daß die Beεtandteile der Verbund- werkεtoffe in dem gewünεchten quantitativen Miεchungεver- hältniε alε pulverförmige AusgangsStoffe nach dem Mahlen mit einem thermoplastiεchem Binder, deεsen Anteil an der Gesamtmenge 20 bis 50 Vol.-%, vorzugsweise 30 bis17. Process for hot casting of cermet, hard metal, steel and / or metallic or ceramic magnetic materials, characterized in that the components of the composite materials in the desired quantitative mixing ratio as powdery starting materials after grinding with a thermoplastic binder, the proportion of the total amount is 20 to 50% by volume, preferably 30 to
40 Vol.-% beträgt, und der eine Viεkoεität zwiεchen 3 bis 6 mPa s aufweiεt, in eine εtabile diεpersive Suspenεion mit einer viεkoεität zwischen 100 mPa ε und 5 Pa ε über¬ führt wird, diese Suspension in eine die gewünschten Kon¬ turen des herzustellenden Verbundwerkstoffbauteileε ent¬ sprechende Form drucklos oder unter einem Druck von maxi¬ mal 5 MPa, vorzugsweise 0,1 bis 1 MPa, bei mindestenε 70°C bis 120°C gegoεεen und auf Temperaturen, die oberhalb der
Verdampfungstemperaturen des thermoplastiεchen Binders liegen, erwärmt wird und der thermoplastische Binder aus¬ getrieben und der entbinderte Körper gesintert wird.40% by volume, and which has a viscosity between 3 to 6 mPa s, is transferred into a stable dispersive suspension with a viscosity between 100 mPa ε and 5 Pa ε, this suspension is converted into one of the desired contours Composite material components to be produced in the corresponding form are cast without pressure or under a pressure of a maximum of 5 MPa, preferably 0.1 to 1 MPa, at at least 70 ° C to 120 ° C and at temperatures above the Evaporation temperatures of the thermoplastic binder are heated and the thermoplastic binder is expelled and the debinded body is sintered.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß die durchεchnittliche Korngröße der gemahlenen pulverför- migen Auεgangsstoffe unter 15 μm, bei Stahl- und Magnet- werkεtoffen unter 100 μm, vorzugsweise < 3 μm, liegt und/oder die Viskoεität der Suεpenεion zwischen 100 mPa s und 2000 mPa s liegt.18. The method according to claim 17, characterized in that the average grain size of the ground powdery starting materials is below 15 μm, for steel and magnetic materials below 100 μm, preferably <3 μm, and / or the viscosity of the suspension is between 100 mPa s and 2000 mPa s.
19. Verfahren nach Anεpruch 17 oder 18, dadurch gekennzeich¬ net, daß der thermoplastische Binder 2 bis 30 Vol.-% grenzflächenaktive Stoffe (Detergenzien, Tenside), vor¬ zugsweise mit einem aliphatischen Kohlenwasεerεtoff-Reεt oder Alkylbenzol-Reεt mit 10 bis 22 C-Atomen und einer hydrophilen Gruppe wie -COOH wie insbesondere öl- oder Stearinsäure, Reεt Wachse und/oder Paraffine aufweist.19. Process according to claim 17 or 18, characterized in that the thermoplastic binder contains 2 to 30% by volume of surface-active substances (detergents, surfactants), preferably with an aliphatic hydrocarbon residue or alkylbenzene residue with 10 to 22 C atoms and a hydrophilic group such as -COOH, in particular oleic or stearic acid, residual waxes and / or paraffins.
20. Verfahren nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, daß die Gießform aus Messing, Kupfer, Stahl oder Kunstεtoff besteht.20. The method according to any one of claims 17 to 19, characterized in that the casting mold consists of brass, copper, steel or plastic.
21. Verfahren nach einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, daß das Auεtreiben deε thermoplastischen Binders stufenweiεe erfolgt, nämlich in einer ersten stufe bei Temperaturen bis zu 300"C 50 bis 80 Vol.-% des ther¬ moplastischen Binders und in einer zweiten Stufe der Rest des Binders bei höherer Temperatur ausgetrieben wird, vor¬ zugsweise jeweils unter Schutzgaεatmoεphäre.21. The method according to one of claims 17 to 20, characterized in that the expulsion of the thermoplastic binder takes place in stages, namely in a first stage at temperatures up to 300 "C 50 to 80% by volume of the thermoplastic binder and in a In the second stage, the remainder of the binder is expelled at a higher temperature, preferably under a protective gas atmosphere.
22. Verfahren nach Anεpruch 21, dadurch gekennzeichnet, daß in der ersten Stufe der Formkörper mit einem saugfähigen Material (Pulverbett), wie Al203-Pulver, umhüllt wird oder auf einer saugfähigen Keramikunterlage, vorzugsweiεe aus Al203, und/oder die zweite Stufe in einem Sinterofen durchgeführt wird.
22. The method according to claim 21, characterized in that in the first stage the shaped body is covered with an absorbent material (powder bed), such as Al 2 0 3 powder, or on an absorbent ceramic base, preferably made of Al 2 0 3 , and / or the second stage is carried out in a sintering furnace.
23. Verfahren nach einem der Ansprüche 21 oder 22, dadurch gekennzeichnet, daß der Formkörper vor dem überführen in den Sinterofen einen Restgehalt an thermoplastischem Bin¬ der von 20 bis 30 Vol.-% aufweist.23. The method according to any one of claims 21 or 22, characterized in that the shaped body has a residual content of thermoplastic binder of 20 to 30% by volume before being transferred to the sintering furnace.
24. Verfahren nach einem der Anεprüche 17 biε 23, dadurch gekennzeichnet, daß in eine Gießform über zwei unter¬ schiedliche Gießkanäle unterschiedliche Suspenεionen ein- gegossen werden, wodurch der hergestellte Formkörper eine radial oder linear inhomogene Zusammensetzung erhält.24. Method according to one of claims 17 to 23, characterized in that different suspensions are poured into a casting mold via two different casting channels, as a result of which the shaped body produced has a radially or linearly inhomogeneous composition.
25. Verfahren nach einem der Ansprüche 17 bis 24, dadurch gekennzeichnet, daß zunächst in einer ersten Form oder durch Spritzgießen ein Kern hergeεtellt wird, der dann in eine zweite Form überführt wird, bevor der Kern mit einer Hülle umgössen wird.25. The method according to any one of claims 17 to 24, characterized in that a core is first produced in a first mold or by injection molding, which is then transferred to a second mold before the core is encased in a shell.
26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß um einen Kern abrasionsbeεtändige Verschleißschutzschichten gegossen werden.26. The method according to claim 25, characterized in that abrasion-resistant wear protection layers are cast around a core.
27. Verfahren nach einem der Ansprüche 24 biε 26, dadurch gekennzeichnet, daß an einem Kern ein Strang auε Kunεt- εtoff, vorzugsweise Polyethylen oder Wachse, oder einem anderen bei Sintertemperatur ausεchmelzbaren Material feεt haftend alε Platzhalter für einen εpäteren Kanal befestigt wird und daß der aus Strang und Kern bestehende Formkörper anschließend in einer weiteren Form durch Heißgießen umspritzt und der so hergestellte Verbundkörper gesintert wird, wobei sich der Strang thermisch zersetzt.27. The method according to one of claims 24 to 26, characterized in that a strand made of plastic, preferably polyethylene or waxes, or another material that can be melted out at the sintering temperature is firmly attached to a core as a placeholder for a later channel and that the The shaped body consisting of strand and core is then encapsulated in a further mold by hot casting and the composite body produced in this way is sintered, with the strand thermally decomposing.
28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß zunächst durch Strangpresεen, Matrizenpreεεen oder kaltisostatiεcheε Pressen ein zylindrischer Kern herge¬ stellt wird, der dann mit einem Strang aus Kunststoff, vorzugsweise Polyethylen oder Wachs, alε Platzhalter für eine spätere Bohrung wendeiförmig umwickelt wird, daß der
umwickelte Kern in einer Gießform umεpritzt und nach der Entnahme aus der Gießform gesintert wird, wobei sich der Strang thermisch zersetzt.28. The method according to claim 27, characterized in that a cylindrical core is first produced by extrusion, die pressing or cold isostatic pressing, which is then helically wrapped with a strand of plastic, preferably polyethylene or wax, as a placeholder for a later drilling, that the wrapped core is overmolded in a casting mold and sintered after removal from the casting mold, whereby the strand decomposes thermally.
29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß als Gießform eine elastische Kunstεtofform verwendet wird, die durch Umgießen eineε Muεterkörpers und anεchließendeε Auftrennen der Kunεtεtofform entlang einer wendeiförmigen Fläche hergeεtellt worden iεt.
29. The method according to claim 28, characterized in that an elastic plastic mold is used as the casting mold, which was produced by casting around a sample body and then separating the plastic mold along a helical surface.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19610410 | 1996-03-16 | ||
DE19610410.6 | 1996-03-16 | ||
DE19613309 | 1996-04-03 | ||
DE19613309.2 | 1996-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997034720A1 true WO1997034720A1 (en) | 1997-09-25 |
Family
ID=26023863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1997/000482 WO1997034720A1 (en) | 1996-03-16 | 1997-03-10 | Composite material and process for the preparation thereof |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19709651A1 (en) |
WO (1) | WO1997034720A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12357061B2 (en) * | 2021-12-23 | 2025-07-15 | Eta Sa Manufacture Horlogère Suisse | Portable object comprising a middle devoid of fastening horns and a removable bracelet |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1306148T3 (en) * | 2001-10-29 | 2007-01-29 | Ceratizit Luxembourg Sarl | Method for gel casting of articles from ceramic, glass or metal powder |
US7247186B1 (en) * | 2003-05-20 | 2007-07-24 | Exxonmobil Research And Engineering Company | Advanced erosion resistant carbonitride cermets |
CN100415919C (en) * | 2003-05-20 | 2008-09-03 | 埃克森美孚研究工程公司 | Advanced erosion resistant carbonitride cermets |
GB2429980A (en) * | 2005-09-08 | 2007-03-14 | John James Saveker | Material comprising a carbide, boride or oxide and tungsten carbide |
BRPI0809028B1 (en) | 2007-03-21 | 2016-01-12 | Hoeganaes Ab Publ | polymeric composites of metal powders |
EP2143957B2 (en) * | 2008-07-10 | 2016-08-10 | Grundfos Management A/S | Flow guiding component of a pump |
DE102012213263A1 (en) | 2011-09-20 | 2013-03-21 | Robert Bosch Gmbh | Hand tool device with at least one charging coil |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1533035B1 (en) * | 1965-06-17 | 1971-04-01 | Tavkoezlesi Ki | PROCESS FOR POWDER METALLURGICAL PRODUCTION OF SINTER PARTS MADE OF METAL AND OR METAL OXIDE POWDER USING CAST PASTE |
DE2422425A1 (en) * | 1973-05-09 | 1974-11-28 | Mallory & Co Inc P R | Stable refractory metal compact prodn - by directional solidification of the metal-binder mixture in slurry form |
US4948426A (en) * | 1989-10-17 | 1990-08-14 | Sumitomo Metal Mining Company Limited | Sintering metal powder and a process for making a sintered metal product |
EP0443048A1 (en) * | 1989-09-14 | 1991-08-28 | Sumitomo Electric Industries Ltd | Method of producing cemented carbide or cermet alloy |
EP0516165A2 (en) * | 1991-05-31 | 1992-12-02 | Sumitomo Electric Industries, Limited | Method of manufacturing a hard sintered component |
EP0576282A2 (en) * | 1992-06-24 | 1993-12-29 | Sumitomo Special Metals Co., Ltd. | A process for preparing R-Fe-B type sintered magnets employing the injection molding method |
US5401292A (en) * | 1992-08-03 | 1995-03-28 | Isp Investments Inc. | Carbonyl iron power premix composition |
DE4332971A1 (en) * | 1993-09-28 | 1995-03-30 | Fischer Artur Werke Gmbh | Process for the production of interlocking parts |
-
1997
- 1997-03-10 WO PCT/DE1997/000482 patent/WO1997034720A1/en active Application Filing
- 1997-03-10 DE DE19709651A patent/DE19709651A1/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1533035B1 (en) * | 1965-06-17 | 1971-04-01 | Tavkoezlesi Ki | PROCESS FOR POWDER METALLURGICAL PRODUCTION OF SINTER PARTS MADE OF METAL AND OR METAL OXIDE POWDER USING CAST PASTE |
DE2422425A1 (en) * | 1973-05-09 | 1974-11-28 | Mallory & Co Inc P R | Stable refractory metal compact prodn - by directional solidification of the metal-binder mixture in slurry form |
EP0443048A1 (en) * | 1989-09-14 | 1991-08-28 | Sumitomo Electric Industries Ltd | Method of producing cemented carbide or cermet alloy |
US4948426A (en) * | 1989-10-17 | 1990-08-14 | Sumitomo Metal Mining Company Limited | Sintering metal powder and a process for making a sintered metal product |
EP0516165A2 (en) * | 1991-05-31 | 1992-12-02 | Sumitomo Electric Industries, Limited | Method of manufacturing a hard sintered component |
EP0576282A2 (en) * | 1992-06-24 | 1993-12-29 | Sumitomo Special Metals Co., Ltd. | A process for preparing R-Fe-B type sintered magnets employing the injection molding method |
US5401292A (en) * | 1992-08-03 | 1995-03-28 | Isp Investments Inc. | Carbonyl iron power premix composition |
DE4332971A1 (en) * | 1993-09-28 | 1995-03-30 | Fischer Artur Werke Gmbh | Process for the production of interlocking parts |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12357061B2 (en) * | 2021-12-23 | 2025-07-15 | Eta Sa Manufacture Horlogère Suisse | Portable object comprising a middle devoid of fastening horns and a removable bracelet |
Also Published As
Publication number | Publication date |
---|---|
DE19709651A1 (en) | 1997-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102208400B1 (en) | Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same | |
US7147819B2 (en) | Method for producing highly porous metallic moulded bodies close to the desired final contours | |
US5482670A (en) | Cemented carbide | |
DE60014706T2 (en) | COMPOSITE ROTATIONAL TOOL AND MANUFACTURING METHOD THEREFOR | |
EP0995525B1 (en) | Process for producing sintered product | |
KR20050060024A (en) | Cemented carbide tool and method of making the same | |
KR20080046597A (en) | Method for producing sintered body, powder mixture and sintered body | |
DE102018122536B4 (en) | THIN-WALLED EARTH DRILLING TOOLS AND METHOD FOR THEIR PRODUCTION | |
WO2021126324A1 (en) | Additive manufacturing techniques and applications thereof | |
EP0516165B1 (en) | Method of manufacturing a hard sintered component | |
EP0046209B1 (en) | Steel-hard carbide macrostructured tools, compositions and methods of forming | |
WO1997034720A1 (en) | Composite material and process for the preparation thereof | |
DE10120172C1 (en) | Manufacture of components by metal injection molding (MIM) | |
CN110052605B (en) | Preparation method of hard alloy functionally graded material | |
EP0217807B1 (en) | Sintering method | |
CA2421429A1 (en) | Hard metal body with hardness gradient, such as punching tools | |
DE102014209085B4 (en) | Production of a molded body from a dental alloy | |
DE19703175C2 (en) | Process for the production of ceramic or powder metallurgical components with a helical outer contour | |
US5972286A (en) | Process for manufacturing hard metal parts | |
DE2029501A1 (en) | Process for the production of carbon / tungsten carbide bodies | |
AT411739B (en) | Tool or machine component, in particular an extruder barrel, comprises a steel supporting part and a wear resistant layer produced by hot isotactic compression of powders in binder metal | |
CA1178424A (en) | Silicon carbide composite and process for production | |
JPH06279903A (en) | Cobalt alloy sintered body and its manufacturing method | |
DE10052021A1 (en) | Water jet high pressure nozzle consists of sintered tungsten carbide with additions of carbides and binder | |
JPS6230844A (en) | Production of high hardness sintered material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CA CZ HU JP KR MX US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WA | Withdrawal of international application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |