[go: up one dir, main page]

WO1997035002A1 - Purification d'adn plasmidique de qualite pharmaceutique - Google Patents

Purification d'adn plasmidique de qualite pharmaceutique Download PDF

Info

Publication number
WO1997035002A1
WO1997035002A1 PCT/FR1997/000472 FR9700472W WO9735002A1 WO 1997035002 A1 WO1997035002 A1 WO 1997035002A1 FR 9700472 W FR9700472 W FR 9700472W WO 9735002 A1 WO9735002 A1 WO 9735002A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
plasmid
chromatography
column
sequence
Prior art date
Application number
PCT/FR1997/000472
Other languages
English (en)
Inventor
Pierre Wils
Monique Ollivier
Original Assignee
Rhone-Poulenc Rorer S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone-Poulenc Rorer S.A. filed Critical Rhone-Poulenc Rorer S.A.
Priority to EP97914411A priority Critical patent/EP0902835A1/fr
Priority to HU9902152A priority patent/HU225426B1/hu
Priority to KR10-1998-0707410A priority patent/KR100502116B1/ko
Priority to AU21661/97A priority patent/AU730755B2/en
Priority to IL12626897A priority patent/IL126268A0/xx
Priority to BR9708227A priority patent/BR9708227A/pt
Priority to JP9533199A priority patent/JP2000506736A/ja
Priority to SK1291-98A priority patent/SK129198A3/sk
Publication of WO1997035002A1 publication Critical patent/WO1997035002A1/fr
Priority to US09/153,838 priority patent/US6730781B1/en
Priority to NO984342A priority patent/NO984342L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/101Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Definitions

  • the present invention relates to a novel method for the purification of DNA.
  • the method according to the invention makes it possible to rapidly purify double-stranded DNA which can be used pharmacologically. More particularly, the purification process according to the invention only involves diafiltration and chromatographies.
  • the proteins are then precipitated by a phenol / chloroform / isoamyl-alcohol mixture.
  • the supernatant obtained after centrifugation is free of proteins and RNA but still contains large quantities of chromosomal DNA which must be eliminated in an additional step.
  • This step consists of ultracentrifugation in the presence of Ethidium Bromide and Cesium Chloride.
  • the three types of nucleic acids that are chromosomal DNA, DNA Plasmid and RNA have a greater or lesser capacity to fix ethidium bromide. Therefore they separate into three distinct phases during an ultracentrifugation on cesium chloride gradient.
  • a variant of this protocol consists in following the action of pancreatic RNase by a reduction in the presence of an alkaline detergent. Followinged by an extraction with phenol / chloroform. The DNA is then precipitated with ethanol, resuspended and reprecipitated with polyethylene glycol.
  • Ethidium bromide is so toxic, mutagenic and teratogenic that its presence even in the form of traces cannot be tolerated in a product for pharmaceutical use.
  • the use of solvents, toxic reagents, as well as enzymes of animal origin is incompatible with an industrial process that meets Good Manufacturing Practices.
  • the present invention describes a new simple and particularly effective method for the purification of DNA.
  • the process described in the present application allows the production in large quantity of DNA of very high purity.
  • the process described in the present application makes it possible to avoid the use of toxic organic solvents and enzymes of animal origin. It also makes it possible to dispense with numerous and tedious centrifugations which are difficult to extrapolate and of low yield due in particular to stages of precipitation with PEG, ammonium acetate or CaCl 2.
  • the process according to the invention also makes it possible to obtain large quantities of DNA (100 mg, 1 g, 10 g or more) in a single batch, without any particular technical difficulty.
  • the method according to the invention uses methods compatible with Good Manufacturing Practices and makes it possible to obtain DNA of pharmaceutical quality.
  • a first object of the invention relates to a process for the purification of double-stranded DNA making it possible to very quickly obtain large quantities of plasmid DNA of pharmaceutical purity, involving a chromatography step on a hydroxyapatite column in ceramic form.
  • Hydroxyapatite in crystalline form was already known but, because of its brittleness, difficult and limited use.
  • the ceramic form is much more resistant both physically and chemically.
  • the method of the invention comprises two chromatography steps, at least one of which is chromatography on hydroxyapatite.
  • the second chromatography is an affinity or ion exchange chromatography.
  • the two chromatographies can be done in any order.
  • the method according to the invention comprises a step of chromatography on a hydroxyapatite column and a step of triple helix affinity chromatography.
  • Triple Helix affinity chromatography is based on the use of a support on which is covalently coupled an oligonucleotide capable of forming a triple helix by hybridization with a specific sequence present on said DNA.
  • the two chromatographies can be done in any order.
  • the method of the invention comprises a step of chromatography on a hydroxyapatite column and a step of anion exchange chromatography.
  • the method of the invention further comprises a diafiltration step. This is generally carried out before chromatography.
  • An important step in the process of the invention involves chromatography on a hydroxyapatite column.
  • Hydroxyapatite is a complex calcium phosphate with ten calcium atoms.
  • the more stable ceramic form than the crystalline form has been developed by Bio-Rad Laboratories and Asahi Optical Co., Ltd.
  • the ceramic compound has the same properties as the crystalline compound without having the physical limitations; this material is mainly used in chromatography for the purification of proteins, but has advantages and allows very good results to be obtained during the purification of nucleic acids. It is macroporous, spherical, chemically and physically very stable and can be reused several dozen times without loss of efficiency. This ceramic form can withstand high pressures, very high pH, very fast fluxes and organic solvents.
  • Chromatography on a ceramic hydoxyapatite column is a special type of chromatography which is neither affinity chromatography nor ion exchange in the strict sense. It imprints its properties on these two types of chromatography and one could define it as having a pseudo-affinity and a pseudo-ion exchange.
  • the nucleic acids bind to hydroxyapatite by virtue of interactions between the phosphate groups of the backbone of the polynucleotide and the calcium residues of the support. Nucleic acids can be differentiated by varying the ionic strength of the phosphate buffers. Nucleic acids can thus be separated from proteins and between them, DNAs of RNAs and single-stranded DNAs of double-stranded DNAs. RNAs are those which bind in the least solid way and can be eluted with a buffer of relatively weak ionic strength. Single-stranded DNA is also less strongly bound than double-stranded DNA which is more strongly bound to the support and requires a stronger buffer.
  • the biological material in a phosphate buffer of low ionic strength is deposited on the column.
  • the DNA and RNA nucleic acids are fixed.
  • a second buffer, of higher ionic strength is then used to elute the RNA which is almost completely eliminated at this point.
  • a third buffer of higher ionic strength is used to elute the double stranded DNA that is collected.
  • a preferred embodiment of the invention further comprises a step of triple helix affinity chromatography.
  • Triple helix affinity chromatography consists in passing the solution obtained over a support on which is covalently coupled an oligonucleotide capable of forming by hybridization a triple helix with a specific sequence present on the DNA to be purified (WO96 / 18744) .
  • the specific sequence may be a sequence naturally occurring on double-stranded DNA, or a synthetic sequence artificially introduced therein.
  • the oligonucleotides used in the present invention are oligonucleotides which hybridize directly with double-stranded DNA. These oligonucleotides can contain the following bases:
  • T - thymidine
  • A - adenine
  • G - guanine
  • C + - protonated cytosine
  • the oligonucleotide used comprises a homopyrimide sequence rich in cytosines and the specific sequence present on the DNA is a homopuric-homopyrimide sequence.
  • cytosines makes it possible to have a stable triple helix at acidic pH, where the cytosines are protonated, and destabilized at alkaline pH, where the cytosines are neutralized.
  • an oligonucleotide and a specific sequence which are perfectly complementary are used in the process of the invention. It may in particular be a poly-CTT oligonucleotide and a specific poly-GAA sequence. By way of example, mention may be made of the oligonucleotide of sequence 5'-
  • CTT complementary motifs
  • SEQ ID No. 2 These oligonucleotides are capable of forming a triple helix with a specific sequence comprising complementary motifs (GAA). It may in particular be a region comprising 7, 14 or 17 GAA patterns, as described in the examples.
  • the oligonucleotide binds in an antiparallel orientation to the polypuric strand.
  • These triple helices are only stable in the presence of Mg2 + (Vasquez and al., Biochemistry, 1995, 34, 7243-7251; Beal and Dervan, Science, 1991, 251, 1360-1363).
  • the specific sequence can be a sequence naturally occurring on double-stranded DNA, or a synthetic sequence artificially introduced therein. It is particularly advantageous to use an oligonucleotide capable of forming a triple helix with a sequence naturally present on double-stranded DNA, for example in the origin of replication of a plasmid or in a marker gene.
  • the Applicant has carried out plasmid sequence analyzes and has been able to show that certain regions of these DNAs, in particular in the origin of replication, have homopuric-homopyrimidine regions.
  • oligonucleotides capable of forming triple helices with these natural homopuric-homopyrimide regions advantageously makes it possible to apply the method of the invention to unmodified plasmids, in particular commercial plasmids of the pUC, pBR322, pSV, etc. type.
  • homopuric-homopyrimidine sequences naturally present on a double-stranded DNA there may be mentioned a sequence comprising all or part of the sequence 5 ′ - CTTCCCGAAGGGAGAAAGG-3 ′ (SEQ ID No. 6) present in the origin of replication ColEl of E coli.
  • the oligonucleotide forming the triple helix has the sequence: 5'-GAAGGGTTCTTCCCTCTTTCC-3 '(SEQ ID No. 7) and is fixed alternately on the two strands of the double helix, as described by Beal and Dervan (J Am. Chem. Soc. 1992, 114, 4976-4982) and Jayasena and Johnston (Nucleic Acids Res. 1992, 20, 5279-5288).
  • an oligonucleotide capable of forming a triple helix with a sequence present in an origin of replication or a marker gene is particularly advantageous because it makes it possible, with the same oligonucleotide, to purify any DNA containing said origin of replication or said marker gene. It is therefore not necessary to modify the plasmid or the double-stranded DNA to incorporate an artificial specific sequence into it. Although perfectly complementary sequences are preferred, it is understood however that certain mismatches can be tolerated between the sequence of the oligonucleotide and the sequence present on the DNA, provided that they do not lead to too great a loss of affinity. .
  • the oligonucleotides of the invention comprise the sequence (CCT) n, the sequence (CT) n or the sequence (CTT) n, in which n is an integer between 1 and 15 inclusive. It is particularly advantageous to use sequences of type (CT) n or (CTT) n.
  • CT type
  • CTT CCTT
  • the Applicant has indeed shown that the purification yield was influenced by the amount of C in the oligonucleotide. In particular, as indicated in Example 7, the purification yield increases when the oligonucleotide contains fewer cytosines. It is understood that the oligonucleotides of the invention can also combine (CCT), (CT) or (CTT) motifs.
  • the oligonucleotide used can be natural (composed of natural bases, unmodified) or chemically modified.
  • the oligonucleotide can advantageously exhibit certain chemical modifications making it possible to increase its resistance or its protection with respect to nucleases, or its affinity with respect to the specific sequence.
  • oligonucleotide is also understood to mean any chain of nucleosides having undergone a modification of the skeleton in order to make it more resistant to nucleases.
  • oligonucleotides which are capable of forming triple helices with DNA (Xodo et al., Nucleic Acids Res., 1994, 22, 3322-3330), as well as oligonucleotides having formacetal or methylphosphonate skeletons (Matteucci et al., J. Am. Chem. Soc, 1991, J ⁇ , 7767-7768).
  • oligonucleotides synthesized with ⁇ -anomers of nucleotides which also form triple helices with DNA (Le Doan et al., Nucleic Acids Res., 1987, 15., 7749-7760).
  • Another modification of the skeleton is the phosphoramidate bond.
  • ribonucleotides 2'-O-methylribose, phosphodiester, ...
  • the phosphorus backbone can finally be replaced by a polyamide backbone as in the PNA (Peptide Nucleic Acid), which can also form triple helices (Nielsen et al., Science, 1991, 254, 1497-1500; Kim et al., J . Am. Chem. Soc, 1993, 115.
  • the third strand thymine can also be replaced by a 5-bromouracil, which increases the affinity of the oligonucleotide for DNA (Povsic and Dervan, J. Am. Chem. Soc, 1989, Hl, 3059-3061) .
  • the third strand may also contain non-natural bases, among which mention may be made of 7-daza-2'-deoxyxanthosine (Milligan et al., Nucleic Acids Res., 1993, 21, 327-333), la l- (2 -deoxy- ⁇ -D-ribofuranosyl) -3-methyl-5-amino-1H-pyrazolo [4,3-t / lpyrimidine-7-one (Koh and Dervan, J. Am.
  • a completely advantageous modification according to the invention consists in methylating the cytosines of the oligonucleotide.
  • the oligonucleotide thus methyl has the remarkable property of forming a stable triple helix with the specific sequence in pH zones closer to neutrality (> 5). It therefore makes it possible to work at higher pHs than the oligonucleotides of the prior art, that is to say at pHs where the risks of degradation of the plasmid DNA are much lower.
  • the length of the oligonucleotide used in the process of the invention is at least 3 bases, and preferably between 5 and 30.
  • An oligonucleotide of length greater than 10 bases is advantageously used.
  • the length can be adapted on a case-by-case basis by a person skilled in the art according to the selectivity and the stability of the interaction sought.
  • oligonucleotides according to the invention can be synthesized by any known technique. In particular, they can be prepared using nucleic acid synthesizers. Any other method known to those skilled in the art can obviously be used.
  • the oligonucleotide is generally functionalized.
  • it can be modified by a terminal thiol, amino or carboxyl group, in the 5 ′ or 3 ′ position.
  • a thiol, amino or carboxyl group makes it possible, for example, to couple the oligonucleotide on a support carrying disulfide, maleimide, amino, carboxyl, ester, epoxide, cyanogen bromide or aldehyde functions.
  • These couplings are formed by establishment of disulfide, thioether, ester, amide or amine bonds between the oligonucleotide and the support. Any other method known to those skilled in the art can be used, such as bifunctional coupling reagents, for example.
  • the oligonucleotide may contain an "arm" and a "spacer" base sequence.
  • the use of an arm in fact makes it possible to fix the oligonucleotide at a chosen distance from the support making it possible to improve its conditions of interaction with DNA.
  • the arm advantageously consists of a linear carbon chain, comprising 1 to 18, and preferably 6 or 12 groups (CH2), and an amine which allows connection to the column.
  • the arm is connected to a phosphate of the oligonucleotide or of a "spacer” composed of bases which do not interfere with the hybridization.
  • the "spacer” can include purine bases.
  • the "spacer” can include the G AGG sequence.
  • the arm is advantageously composed of a linear carbon chain comprising 6 or 12 carbon atoms.
  • chromatography supports can be functionalized chromatography supports, in bulk or preconditioned in a column, functionalized plastic surfaces or functionalized latex beads, magnetic or not. They are preferably chromatography supports.
  • the chromatography supports which can be used are agarose, acrylamide or Dextran as well as their derivatives (such as Sephadex, Sepharose, Superose, etc.), polymers such as poly (styrenedivinylbenzene ), or grafted or non-grafted silica, for example.
  • the chromatography columns can operate in diffusion or perfusion mode.
  • a sequence comprising several hybridization positions with the oligonucleotide is particularly advantageous to use, on the plasmid.
  • the presence of several hybridization positions indeed promotes interactions between said sequence and the oligonucleotide, which leads to improving the purification yields.
  • CCT n repeats of motifs
  • CT CT
  • CTT n + 1 complementary motifs
  • a sequence carrying n + 1 complementary motifs thus offers two positions for hybridization to the oligonucleotide.
  • the DNA sequence has up to 11 hybridization positions, that is to say n + 10 complementary motifs.
  • the chromatography on a ceramic hydroxyapatite column is followed or preceded by a chromatography step on an anion exchange column.
  • an exchange column is used weak anions, strong anions indeed have the property of fixing the DNA very strongly, so strongly that it is very difficult to recover the product (the yield is then less than 60%). This is why the applicant uses weak anion exchangers which do not retain the plasmid DNA but which fix the residual RNAs.
  • the method according to the invention advantageously comprises a diafiltration step.
  • Diafiltration is a stage of concentration of the sample during which water and small molecules (such as salts, proteins and small nucleic acids) present in the clear lysate are eliminated.
  • the salts are replaced by a phosphate buffer for chromatography.
  • the solution is 5 to 50 times more concentrated than the starting solution (the concentration factor depends on the volume of the starting solution).
  • diafiltration has several advantages. Among other things, it makes it possible to avoid the use of organic solvents such as isopropanol, the use of which would require an explosion-proof installation. In addition, this technique can be used for very variable volumes. It suffices to increase the surface area of the membranes as a function of the volume to be treated.
  • an apparatus which supports a membrane of modified polyether sulfone or modified cellulose acetate making it possible to have a flow of liquid with a controllable flow rate.
  • These membranes are defined by their cut-off point which is in nominal value the maximum size of the molecules that can cross said membrane.
  • a membrane whose cut-off point is equal to 100 kD allows molecules larger than 30 kD to be retained.
  • a preferred method according to the invention comprises the following stages: diafiltration, chromatography on a ceramic hydroxyapatite column, and affinity chromatography by specific hybridization between a DNA sequence and an oligonucleotide with formation of a triple helix.
  • the method according to the present invention can be used to purify any type of double stranded DNA. It is for example circular DNA, such as a plasmid generally carrying one or more genes of therapeutic interest. This plasmid can also carry an origin of replication, a marker gene, etc. This method also makes it possible to purify DNA, linear or circular, carrying a sequence of interest, from a mixture comprising DNAs of different sequences.
  • the starting DNA is produced by a host microorganism modified by recombinant DNA techniques.
  • the host containing the double-stranded DNA that one seeks to recover is first of all multiplied and amplified.
  • conventional fermentation techniques are used to obtain a high cell density.
  • the most commonly used technique is that known as "fed-batch" which is abundantly described in the literature (Jung et al. Ann. Inst. Pasteur I Microbiol. 1988, 139, pl29-146; Bauer et al. Biotechnol. Bioeng 1976, 18, p81-94).
  • the fermentation is followed by a lysis of the cells.
  • a mechanical system or a chemical system depending on the type of cells concerned or according to whether one wishes to work on crude lysate or on clear lysate.
  • systems that do not denature DNA are preferably used (agitation, thermal shock, osmotic shock). These methods are not suitable for extracting DNA from prokaryotic cells.
  • the mechanical treatments used to break prokaryotic cells are denaturing for DNA.
  • Mechanical lysis is preferably reserved for eukaryotic cells, for prokaryotic cells, chemical lysis is preferred.
  • Prokaryotic cells are chemically lysed by any technique known to those skilled in the art (detergents, lysozymes, possibly combined with thermal shock, ete). Preferably, a mixture of soda and SDS is used. During this treatment, the pH drops to 12. The pH of the lysate thus obtained is then reduced to approximately 6, which causes the precipitation of proteins from part of the chromosomal DNA and of the RNA. This precipitate is removed by centrifugation.
  • a preferred embodiment of the invention consists first of all in subjecting the cells containing the double stranded DNA to be purified a chemical lysis which makes it possible to obtain a clear lysate. The clear lysate thus obtained undergoes a diafiltration and it is the concentrate thus obtained which is chromatographed on a ceramic hydroxyapatite column.
  • the cell lysate can be a lysate of prokaryotic or eukaryotic cells.
  • prokaryotic cells include bacteria such as E. coli. B J. subtilis. S ⁇ . tvphimurium or Streptomyces.
  • prokaryotic cells mention may be made of animal cells, yeasts, fungi, etc., and more particularly, Kluyveromyces or Saccharomyces yeasts or COS cells,
  • the process of the invention is particularly advantageous since it makes it possible to obtain, very quickly and simply, plasmid DNA of very high purity.
  • this method makes it possible to efficiently separate the plasmid DNA considered from contaminating components, such as fragmented chromosomal DNA, RNA, endotoxins, proteins, nucleases, etc.
  • the process of the invention makes it possible to obtain preparations of double-stranded DNA, in particular plasmid DNA, practically free of chromosomal DNA ( ⁇ 0.5%).
  • the DNA preparations obtained also have a very low endotoxin content ( ⁇ 50 EU / mg), compatible with pharmaceutical use.
  • the Applicant has shown that, quite surprisingly, the combination of the two stages described above, namely chromatography on a Hydroxyapatite column followed or preceded by Triple Helix chromatography, makes it possible to obtain plasmid DNA preparations having a content of 0.01% chromosomal DNA.
  • the invention also relates to preparations of plasmid DNA having a chromosomal DNA content less than or equal to 0.01%.
  • the invention also relates to plasmid DNA preparations having an endotoxin content of less than 50 EU / mg, preferably less than 10 EU / mg. The endotoxin content is therefore far below the authorized content which is
  • the present invention therefore describes compositions comprising plasmid DNA which can be used pharmaceutically, in particular in gene or cell therapy in vivo or ex vivo.
  • the invention also relates to a pharmaceutical composition comprising double-stranded DNA, linear or plasmid, prepared according to the process described above.
  • compositions can contain plasmid DNA "naked” or associated with transport vectors such as liposomes, nanoparticles, cationic lipids, polymers, recombinant proteins or viruses, etc.
  • transport vectors such as liposomes, nanoparticles, cationic lipids, polymers, recombinant proteins or viruses, etc.
  • This plasmid comprises a cassette containing the promoter of Cytomegalovirus, the gene coding for luciferase and a homopuric-homopyrimide sequence
  • the plasmid pXL2784 is constructed from the plasmid vector pXL2675 (2.513 kb), minimal replicon of the plasmid ColEl derived from the plasmid pBluescript (ORI) and having for selection marker the gene of the transposon Tn5 coding for resistance. with kanamycin.
  • GAA homopuric-homopyrimide sequence
  • the plasmid pXL2784 has the locus ⁇ er (382 bp) from the plasmid ColEl and clones in the plasmid pXL565; the cer locus contains a specific site sequence of XerC / XerD recombinases and leads to the resolution of plasmid multimers.
  • the transgene cloned on this plasmid pXL2784 is an expression cassette (3.3 kb) of the lyc gene . coding for Photinus pyralis luciferase under the control of the promoter P CMV human cytomegalovirus, this cassette comes from the plasmid pXL2622.
  • the plasmid has a size of 6390 bp.
  • the map of plasmid pXL2784 is presented in Figure 1, and its construction is detailed below.
  • the BsjI-Pvu fragment . II of 1.15 kb of the plasmid pBKS + (Stratagen) was cloned with the $ mal fragment of 1.2 kb of the plasmid pUC4KIXX (Pharmacia) to generate the plasmid pXL2647.
  • the CMV promoter contained in the 660 bp MluI-HindIII fragment of the plasmid ⁇ cDNA3 was cloned between the MIyl-H ⁇ idlII sites of the plasmid pGL2 basic (Promega contains the luciferase gene) to generate the plasmid pXL2622.
  • the BglII-BarnHI fragment of the plasmid ⁇ MTL22-TH of 62 bp containing the sequence (GAA) 17 is cloned at the BamHI site of the plasmid pXL2782 to form the plasmid ⁇ XL2783.
  • the DH1 strain (Maniatis et al., 1989) containing this plasmid is cultivated in a fermenter of 2.7 and up to 800 liters. Other strains can also be used.
  • the host containing the plasmid DNA to be cultivated can be obtained by conventional fermentation techniques (Jung et al. Ann. Inst. Pasteur / Microbiol. 1988, 139, pl29-146; Bauer et al. Biotechnol. Bioeng. 1976, 18, p81-94) the fed batch technique being preferred.
  • the cells are recovered, on a laboratory scale, that is to say for volumes less than 51, by conventional centrifugation (20 min at 10,000 rpm) or by continuous centrifugation for larger volumes (industrial volumes which can go up to several hundred liters).
  • the cells thus recovered can be used immediately or frozen at -80 ° C.
  • the cells are, if necessary, thawed and then lysed. Chemical lysis is broken down into three stages. The first consists in resuspending the cells in a 25 mM Tris buffer pH 6.8, 50 mM glucose, 10 mM ETDA or equivalent. The lysis of the cells is then carried out in a mixture containing 0.2 M NaOH and SDS 1%. The pH of the solution is approximately 12. The choice of an ionic detergent is essential, in fact a nonionic detergent gives extraction yields 10 times lower. The lysis is followed by a pseudo-neutralization of the medium in the presence of potassium acetate (the final pH of the solution is between 5.5 and 6).
  • the precipitate must be removed. To do this, we proceed by centrifugation in pots (15 min, 8000 rpm) if the volumes are less than 5 liters or by continuous centrifugation if the volumes are higher (> 5 liters).
  • Another method of removing the supernatant consists in filtering through a depth filter with a porosity greater than or equal to 20 ⁇ m (PALL, profile II used according to the manufacturer's specifications).
  • the supernatant recovered after chemical lysis is subjected to a diafiltration in order to concentrate the plasmid DNA and to eliminate the molecules of small molecular mass, in particular the salts which are present at high concentrations.
  • This diafiltration is carried out on a membrane with a cut point between 50 and 300 kD depending on the size of the plasmids. Preferably a 100kD cut-off point membrane is used.
  • the value of 100kD is a nominal value given for proteins which are globular molecules. It is considered that for nucleic acid molecules, which have a different spatial structure, all molecules with a molecular weight less than 30kd are eliminated.
  • the quantity of DNA present in the solution after diafiltration and the quantity present in the clear lysate are measured by HPLC.
  • the ratio thus determined gives the yield of this step which is greater than or equal to 80%.
  • the salts are removed. They are replaced by a 10 mM phosphate buffer. It is thus possible to apply the product directly to a chromatography column, in particular Ceramic Hydroxyapatite TM
  • Plasmid DNA from triple helix affinity chromatography is again diafiltered to concentrate the sample and remove unwanted salts. This allows the product to be balanced in the appropriate formulation buffer. For this, a diafiltration on a membrane with a cut point between 10 and 50kD is carried out.
  • the yield is greater than 80%.
  • the product is then sterile filtered and subjected to analyzes before formulation.
  • the Ceramic Hydroxyapatite TM gel is poured into a column of appropriate size according to the volume of the sample to be purified and according to the purity of the starting sample.
  • the quantity in mg / ml of DNA present in the starting solution is measured by HPLC. It is in fact estimated that at least 0.1 mg of DNA are fixed per ml of hydroxyapatite, this value being able to vary up to 1 mg or even more depending on the amount of RNA present in the starting solution.
  • the RNA binds to the gel and the greater the quantity of RNA the less the DNA will be able to bind.
  • the RNA is eliminated by differential elution.
  • the column is balanced in phosphate buffer of low ionic strength (10 mM).
  • the sample is deposited on the gel at a linear flow rate of 50 cm / h.
  • the gel is then subjected to washing with a phosphate buffer of higher conductivity (150 mM). Most of the RNA in the sample is eliminated at this point.
  • Plasmid DNA is eluted by again increasing the conductivity of the phosphate buffer (250mM).
  • the last contaminants are removed by application of 0.5N NaOH which is neutralized with high molarity phosphate buffer (500mM) before possible reuse of the column.
  • this support has the advantage of being able to undergo chemical decontamination in place since it resists 0.5M sodium hydroxide, a conventional cleaning agent in chromatography, but also at high concentrations of ethanol.
  • the resolution of ceramic hydroxyapatite is excellent. This stage of the process makes it possible to eliminate more than 80% of the RNA, 99.9% of chromosomal DNA and to decrease by a factor of 1000 the content of endotoxins.
  • this technology avoids the use of all enzymes of bovine or other origin (no Rnase, nor proteinase K), in addition its resistance to chemical agents has allowed us to use it to date more than 40 times without reproducibility problem.
  • the chromatography yield is greater than or equal to 80%.
  • the column used is a HiTrap column activated with NHS (N-hydroxysuccinimide, Pharmacia) of 5 ml, connected to a peristaltic pump (flow rate ⁇ lml / min).
  • the specific oligonucleotide used has an NH 2 group at 5 '.
  • the buffers used in this example are the following: - Coupling buffer: 0.2 M NaHC ⁇ 3, 0.5 M NaCl, pH 8.3.
  • Buffer A 0.5 M ethanolamine, 0.5 M NaCl, pH 8.3.
  • the column is washed with 30 ml of 1 mM HCl, then the oligonucleotide diluted in the coupling buffer (250 nmol in 5 ml) is applied to the column and left for 30 minutes at room temperature.
  • the column is washed 3 successive times with 30 ml of buffer A then 30 ml of buffer B.
  • the oligonucleotide is thus covalently linked to the column by a CONH bond.
  • the column is stored at 4 ° C and can be used at least four times.
  • the plasmid pXL2784 (described in 1) was purified on the HiTrap column coupled to the oligonucleotide described in 7.1.
  • the buffers used during this purification are as follows:
  • Buffer F 2M NaCl, 0.2 M acetate, pH 4.5.
  • Buffer E 1 M Tris, HC1 pH 9, 0.5 mM EDTA.
  • the column is washed with buffer F, then the solution containing the plasmid is applied to the column and incubated for at least two hours at room temperature.
  • the column is washed with buffer F then the elution is carried out with buffer E.
  • the pre-purified sample is then subjected to chromatography on a weak anion exchange column.
  • strong anions have the property of fixing DNA very strongly, so strongly that it is very difficult to recover the product (the yield is then less than 60%).
  • a weak anion exchanger of the DEAE Sepharose or DEAE hyper D type or equivalent is therefore preferably used.
  • the gel is equilibrated in 10 mM phosphate buffer, the sample coming from the chromatography step on Ceramic Hydroxyapatite is directly applied to the gel.
  • the attached RNA is then removed by applying a concentrated NaCl solution. Chemical decontamination can be done with a 0.5 M sodium hydroxide solution which allows working in good hygienic conditions (elimination of endotoxins and risks of microbial contamination.)
  • the chromatographic support is a Poros R2 gel from Perseptive
  • Biosystems It is a polystyrenedivinylbenzene support, the particle size is 10 ⁇ m.
  • the size of the perfusion pores is from 6000 to 8000 Angstroms, the size of the diffusion pores being from 500 to 1000.
  • the volume of the gel is 1.7 ml.
  • the solvent system is water, triethylamine acetate pH 7.1 / triethylamine acetate acetonitrile 90%.
  • the flow rate is 3 ml / min.
  • the area of the peaks corresponding to the retention time of the reference DNA are compared to the range. Quantification can therefore be carried out.
  • Residual genomic DNA is quantified by PCR using primers in the E. coli gene. ooJi.
  • the primer sequence of the E. galK gene. ooj] is (Debouck et al., Nucleic Acids Res., 1985, 11, 1841-1853):
  • the reaction medium comprises, in PCR buffer (Promega France, Charbonippos): 1.5 mM MgCl2; 0.2 mM dXTP (Pharmacia, Orsay); 0.5 ⁇ M in primer; 20 U / ml Taq polymerase (Promega).
  • PCR buffer Promega France, Charbonippos
  • 1.5 mM MgCl2 1.5 mM MgCl2
  • 0.2 mM dXTP Pulharmacia, Orsay
  • 0.5 ⁇ M in primer 20 U / ml Taq polymerase (Promega).
  • the reaction is carried out according to the sequence: - 5 min. at 95 ° C
  • the amplified DNA fragment 124 base pairs in length, is separated by electrophoresis on a 3% agarose gel in the presence of SybrGreen I (Molecular Probes, Eu confusing, USA), then quantified by reference to a range. of Ultrapur genomic DNA from E. here, strain B (Sigma, ref. D4889).
  • This method is used to assay the biological activity of the plasmid purified by the method according to the invention.
  • the cells used are NIH 3T3, seeded the day before the experiment in 24-well culture plates, at a rate of 50,000 cells / well.
  • the plasmid is diluted in 150 mM NaCl and mixed with a lipofectant. A positive charge ratio of the lipofectant / negative charge DNA is used equal to 3.
  • the mixture is vortexed, left for 10 minutes at room temperature, diluted in culture medium devoid of fetal calf serum, then added to the cells, 1 ⁇ g of DNA per culture well.
  • the plasmid obtained is in the form of a single band of circular DNA "super wound". No trace of high molecular (chromosomal) DNA or RNA is detectable in the purified plasmid.
  • the protein concentration in the samples is measured by Micro-BCA (Pierce) according to the manufacturer's instructions.
  • the endotoxin concentration is estimated by the LAL (Biosepra) assay according to the manufacturer's instructions.
  • the DNA fragments are incubated in a 50 mM Tris-HCl pH 7.4 buffer, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, in the presence of phage T4 DNA ligase (Biolabs,).
  • the oligonucleotides are synthesized using the chemistry of phosphoramidites protected in ⁇ by a cyanoethyl group (Sinha. ND, J. Biemat, J. McManus and H. Kôster. 1984. Polymer support oligonucleotide synthesis, XVIII: Use of ⁇ -cyanoethyl-N, N-dialkylamino- / N-mo ⁇ holino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucl. Acids Res., 12, 4539-4557; Giles, JW 1985. Advances in automated DNA synthesis. Am. Biotechnol., Nov./Dec) with the Biosearch 8600 automatic DNA synthesizer using the manufacturer's recommendations.
  • the mini-preparations of plasmid DNA are made according to the protocol of Klein et al., 1980.
  • LB culture medium is used for the growth of E. strains. where (Maniatis et al., 1982). The strains are incubated at 37 ° C. The bacteria are spread on dishes of LB medium supplemented with appropriate antibiotics.
  • the membrane undergoes chemical decontamination with 0.5M sodium hydroxide during 1 H.
  • the soda is then removed with ppi water.
  • the supernatant obtained during stage 1.1 is concentrated approximately 10 times then diafiltered against 4 volumes of water then against 4 volumes of 100 mM phosphate buffer and pH 6.8. The final volume is 810 ml. The sample then contains 224 mg of plasmid DNA determined by HPLC.
  • Buffer A 10 mM phosphate buffer pH 6.8
  • Buffer B 150 mM phosphate buffer pH 6.8,
  • Buffer C 250 mM phosphate buffer pH 6; 8
  • Buffer D 500 mM phosphate buffer pH 6.8 NaOH 0.5M
  • the column (diameter 113 mm and height 17 cm) contains 1700 ml of gel. Before use, the gel undergoes chemical decontamination with soda
  • the gel is then regenerated by washing with sodium hydroxide (0.5 M NaOH) followed by buffer D.
  • the gel is then ready for a new cycle.
  • the column (diameter 50 mm and height 6 cm) contains 110 ml of gel. Before use, the gel undergoes chemical decontamination with 0.5M sodium hydroxide for 1 hour. The sodium hydroxide is then removed with a 1 M NaCl solution. Then, the column is balanced in buffer A.
  • the membrane Before use, the membrane undergoes chemical decontamination with sodium hydroxide
  • RNA not detectable in agarose gel or by HPLC
  • the column used is a HiTrap column activated with NHS (N-hydroxysuccinimide, Pharmacia) of 5 ml, connected to a peristaltic pump.
  • the specific oligonucleotide used has an NH 2 group at 5 '. Its sequence is as follows:
  • the buffers used in this example are:
  • Coupling buffer 0.2 M NaHC ⁇ 3, 0.5 M NaCl, pH 8.3.
  • Buffer A 0.5 M ethanolamine, 0.5 M NaCl, pH 8.3.
  • Buffer B 0.1 M acetate, 0.5 M NaCl, pH 4.
  • the column is washed with 30 ml of 1 mM HCl, then the oligonucleotide diluted in the coupling buffer (250 nmol in 5 ml) is applied to the column and left for 30 minutes at room temperature.
  • the column is washed 3 successive times with 30 ml of buffer A then 30 ml of buffer B.
  • the oligonucleotide is thus covalently linked to the column by a CONH bond.
  • the column is stored at 4 ° C.
  • Buffer F 2M NaCl, 0.2 M acetate, pH 4.5.
  • Buffer E Tris 1 M, HC1 pH 9, EDTA 0.5 mM.
  • NaCl and pH 4.5 are applied in a loop to the column overnight at room temperature (flow rate 0.5 ml / min). The column is washed with buffer F and then the elution is carried out with buffer E. DNA is detected by U.V. spectrometry at 254 nm.
  • the purified DNA analyzed by HPLC is in the form of a single peak at a retention time of 24.8 min. No trace of RNA is detectable. Likewise, after electrophoresis on 1% agarose gel and staining with ethidium bromide, the purified DNA shows no detectable trace of RNA.
  • the DNA was also analyzed by anion exchange chromatography on a Gen-Pak Fax Waters column, which separates the released DNA from the overwound DNA.
  • the purified sample contains 97% of DNA supercoiled against 80% of DNA supercoiled in the deposited sample.
  • the genomic DNA of E. co ⁇ was quantified by PCR according to the technique described in paragraph 3: the DNA purified on an affinity column contains approximately 0.01% of genomic DNA.
  • Buffer F 2M NaCl, 0.2 M sodium acetate, pH 4.5.
  • Buffer E 1 M Tris, HC1 pH 9, 0.5 mM EDTA.
  • E. DNA is detected by U.V. spectrometry at 254 nm.
  • the DNA obtained was analyzed by anion exchange chromatography on a Gen-Pak Fax Waters column, which separates the released DNA from the supercoiled DNA.
  • the purified sample contains 100% of supercoiled DNA, against 72% in the sample deposited on the affinity column.
  • the genomic DNA of E. daleH was quantified by PCR according to the technique described above: the DNA purified on affinity column contains approximately 0.01% of genomic DNA, against approximately 0.3% in the sample deposited on the affinity column.
  • Example 4 Change in scale of the triple helix affinity chromatography after purification of the hydroxyapatite eluate (pXL 2784)
  • the column used is a column containing Sepharose 4 Fast Flow activated with NHS (N-hydroxysuccinimide, Pharmacia) and coupled to an oligonucleotide of sequence:
  • the column (diameter 26 mm, height: 16cm) contains 80 ml of gel and is connected to a peristaltic pump.
  • the buffers used are:
  • Buffer F 2M NaCl, 0.2 M sodium acetate, pH 4.5.
  • Buffer E 1 M Tris, HC1 pH 9, 0.5 mM EDTA.
  • the column is balanced in buffer F, then 135 ml, ie 8 mg of hydroxyapatite eluate obtained under the conditions described in Example 1.3., Previously adjusted to 2M NaCl and pH 4.5, are applied to the column ( flow 1.25 ml / min) by recirculating four times.
  • the column is washed with buffer F and then the elution is carried out with buffer E.
  • the DNA is detected by UV spectrometry at 254 nm: 2.2 mg are recovered.
  • the purified DNA analyzed by HPLC is in the form of a single peak at a retention time of 24.4 min. No trace of RNA is detectable. Likewise, after electrophoresis on 1% agarose gel and staining with ethidium bromide, the purified DNA shows no detectable trace of RNA.
  • the DNA was also analyzed by anion exchange chromatography on a Gen-Pak Fax Waters column, which separates the released DNA from the supercoiled DNA.
  • the purified sample contains 100% of supercoiled DNA against 94% of supercoiled DNA in the deposited sample.
  • the genomic DNA of E. daleH was quantified by PCR according to the technique described in paragraph 3: the DNA purified on an affinity column contains approximately 0.02% of genomic DNA against 2% in the deposited sample.
  • the clear lysate is prepared as described in Example 1.1 from a culture of E. coli bacteria transformed by the plasmid pXL2774.
  • the plasmid pXL2774 has a reduced size (approximately 4.5 kb) and comprises in particular: - a cassette for expression of the Luc gene (CMV-luc-poly (A) + promoter)
  • the sample is diafiltered according to the method described in Example 1.2 The final volume is 945 ml. The sample then contains 253 mg of plasmid DNA determined by HPLC.
  • Buffer A 100 mM phosphate buffer pH 6.8
  • Buffer B 150 mM phosphate buffer pH 6.8,
  • Buffer C 250 mM phosphate buffer pH 6;
  • Buffer D 500 mM phosphate buffer pH 6.8 NaOH 0.5M
  • the column (diameter 100 mm and height 23 cm) contains 1700 ml of gel.
  • the gel undergoes chemical decontamination with 0.5M sodium hydroxide for 1 hour.
  • the sodium hydroxide is then removed by applying buffer D.
  • the column is balanced in buffer A.
  • the gel is then regenerated by washing with sodium hydroxide (NaOH 0.5M) followed by buffer D. The gel is then ready for a new cycle.
  • the diafiltration was carried out according to the protocol described in Example 1.5.
  • LAD LAD ⁇ 50 EU / mg - proteins
  • microBCA microBCA
  • NAME RHONE POULENC RORER S.A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Saccharide Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention concerne un procédé pour la purification d'ADN plasmidique de qualité pharmaceutique comprenant au moins une étape de chromatographie colonne hydroxyapatite.

Description

PURIFICATION D'ADN PLASMIDIOUE DE QUALITE PHARMACEUTIQUE
La présente invention conceme un nouveau procédé pour la purification d'ADN. Le procédé selon l'invention permet de purifier rapidement de l'ADN double brin utilisable pharmacologiquement. Plus particulièrement, le procédé de purification selon l'invention ne fait intervenir que de la diafiltration et des chromatographies.
Les techniques de thérapie génique et cellulaire connaissent actuellement un développement extraordinaire. Néanmoins, ces techniques impliquent la possibilité de produire des quantités importantes d'ADN de pureté pharmacologique, en particulier d'ADN plasmidique. En effet dans ces nouvelles thérapies, le médicament est souvent constitué par l'ADN lui-même, et il est essentiel de pouvoir le fabriquer dans des quantités adaptées, l'isoler et le purifier de manière appropriée à un usage thérapeutique chez l'homme, notamment par voie intraveineuse.
Ces problèmes de quantités et de pureté n'ont pas été pris en compte dans les méthodes classiques d'isolement de l'ADN. De ce fait les méthodes utilisées en laboratoire ne sont pas transposables dans le domaine de l'industrie pharmaceutique pour purifier de l'ADN plasmidique. Deux de ces méthodes sont les plus utilisées et sont celles qui donnent les meilleurs résultats. Elles consistent à partir d'un lysat bactérien brut et à l'enrichir en ADN plasmidique en éliminant un maximum de contaminants. En particulier le lysozyme du blanc d'oeuf est utilisé pour casser la paroi bactérienne puis le lysat est centrifugé pour éliminer les débris cellulaires. Le surnageant est ensuite soumis à l'action d'une Rnase pancréatique d'origine animale qui permet d'éliminer l'ARN, qui représente à ce moment environ 75% des acides nucléiques présents.
Les protéines sont alors précipitées par un mélange phénol/ chloroforme/isoamyl-alcool. Le surnageant obtenu après centrifugation est débarassé des protéines et de l'ARN mais contient encore de grandes quantités d'ADN chromosomique qui doit être éliminé lors d'une étape supplémentaire. Cette étape consiste en une ultracentrifugation en présence de Bromure d'Ethidium et de Chlorure de Césium. Les trois types d'acides nucléiques que sont l'ADN chromosomique, l'ADN plasmidique et l'ARN ont une plus ou moins grande capacité à fixer le bromure d'éthidium. De ce fait ils se séparent en trois phases distinctes lors d'une ultracentrif ugation sur gradient de chlorure de césium.
Une variante de ce protocole consiste à faire suivre l'action de la Rnase pancréatique par une réduction en présence d'un détergent alcalin.suivie par une extraction au phénol/ chloroforme. L'ADN est alors précipité par de l'éthanol, remis en suspension et reprécipité au polyethylene glycol.
Ces deux méthodes qui permettent d'obtenir une solution d'ADN plasmidique sont cependant inutilisables pour la production industrielle d'un produit de pureté pharmaceutique. En effet l'utilisation d'enzymes d'origine animale pose problème. Ainsi le lysozyme et la Rnase pancréatique, du fait de leur origine, risquent d'introduire une contamination virale dans le produit final. De plus, les solvants organiques sont extrêmement toxiques et doivent être éliminés si l'on veut pouvoir utiliser le produit comme médicament. Ces solvant induisent également une augmentation considérable des coûts.liée notamment à leur stockage, leur utilisation dans des conditions de sécurité maximales et l'élimination des déchets toxiques qu'ils imposent , et aussi en raison de la difficulté rencontrée pour réussir à valider l'élimination complète de tels produits de la solution finale. Le bromure d'éthidium est quand à lui tellement toxique, mutagène et tératogène que sa présence même sous forme de traces ne peut être tolérée dans un produit à destination pharmaceutique. L'utilisation de solvants, de réactifs toxiques, de même que d'enzymes d'origine animale est incompatible avec un procédé industriel répondant aux Bonnes Pratiques de Fabrication.
La présente invention décrit un nouveau procédé simple et particulièrement efficace pour la purification d'ADN. Le procédé décrit dans la présente demande permet la production en grande quantité d'un ADN de très grande pureté. D'une manière particulièrement avantageuse le procédé décrit dans la présente demande permet d'éviter l'emploi de solvants organiques toxiques et d'enzymes d'origine animale. Il permet également de s'affranchir de centrifugations nombreuses et fastidieuses difficiles à extrapoler et de faible rendement en raison notamment d'étapes de précipitation au PEG, à l'acétate d'ammonium ou au CaC12. Le procédé selon l'invention permet également d'obtenir de grandes quantités d'ADN (100 mg, lg, 10 g ou plus) en un seul lot, sans difficulté technique particulière. En outre le procédé selon l'invention fait appel à des méthodes compatibles avec les Bonnes Pratiques de Fabrication et permet d'obtenir un ADN de qualité pharmaceutique.
Un premier objet de l'invention concerne un procédé pour la purification d'ADN double-brin permettant d'obtenir très rapidement de grandes quantités d'ADN plasmidique de pureté pharmaceutique, faisant intervenir une étape de chromatographie sur colonne hydroxyapatite sous forme céramique. L'hydroxyapatite sous forme cristalline était déjà connue mais, du fait de sa fragilité, d'un emploi difficile et limité. La forme céramique est beaucoup plus résistante autant sur un plan physique que sur un plan chimique.
D'une manière préférée, le procédé de l'invention comprend deux étapes de chromatographie, l'une au moins étant une chromatographie sur hydroxyapatite.
Avantageusement, la deuxième chromatographie est une chromatographie d'affinité ou d'échange d'ions. Les deux chromatographies peuvent être faites dans un ordre indifférent.
Selon un mode de réalisation particulièrement préféré, le procédé selon l'invention comprend une étape de chromatographie sur colonne hydroxyapatite et une étape de chromatographie d'affinité Triple-Hélice. La chromatographie d'affinité Triple-Hélice est basée sur l'utilisation d'un support sur lequel est couplé de manière covalente un oligonucléotide capable de former par hybridation une triple hélice avec une séquence spécifique présente sur ledit ADN. Les deux chromatographies peuvent être faites dans un ordre indifférent.
Selon un autre mode de réalisation, le procédé de l'invention comprend une étape de chromatographie sur colonne d'hydroxyapatite et une étape de chromatographie d'échange d'anions.
Avantageusement, le procédé de l'invention comprend en outre une étape de diafiltration. Celle-ci est généralement réalisée avant les chromatographies. Une étape importante du procédé de l'invention fait intervenir une chromatographie sur colonne hydroxyapatite.
L'hydroxyapatite est un phosphate de calcium complexe comportant dix atomes de calcium. La forme céramic plus stable que la forme cristalline à été mise au point par Bio-Rad Laboratories et Asahi Optical Co., Ltd. Le composé céramique a les mêmes propriétés que le composé cristallin sans en avoir les limitations physiques; ce matériau est surtout utilisé en chromatographie pour la purification des protéines, mais présente des avantages et permet d'obtenir de très bons résultats lors de la purification d'acides nucléiques. Il est macroporeux, sphérique, chimiquement et physiquement très stable et peut être réutilisé plusieurs dizaines de fois sans pertes d'efficacité. Cette forme ceramic peux supporter des pressions élevées, des pH très élevés, des flux très rapides et les solvants organiques.
La chromatographie sur colonne de ceramic hydoxyapatite est un type de chromatogaphie particulier qui n'est ni une chromatographie d'affinité ni un échange d'ion aux sens stricts. Elle empreinte ses propriétés à ces deux types de chromatographies et l'on pourrait la définir comme a une pseudo-affinité et un pseudo échange d'ions.
Les acides nucléiques se lient à l'hydroxyapatite par la vertu d'interactions entre les groupes phosphate du squelette du polynucléotide et les résidus calcium du support. Les acides nucléiques peuvent être élues de façon différentielle en faisant varier la force ionique des tampons phosphates. Les acides nucléiques peuvent être ainsi séparés des protéines et entre eux, les ADN des ARN et les ADN simple brins des ADN double-brins. Les ARN sont ceux qui se lient de la manière la moins solide et peuvent être élues avec un tampon de force ionique relativement faible. Les ADN simple brins sont également moins fortement fixé que les ADN double-brins qui sont plus solidement liés au support et nécessitent un tampon plus fort.
Le matériel biologique dans un tampon phosphate de faible force ionique est déposé sur la colonne. Les acides nucléiques ADN et ARN sont fixés. Un second tampon, de force ionique plus élevée, est ensuite utilisé pour éluer l'ARN qui est quasiment complètement éliminé à ce stade. Un troisième tampon de force ionique supérieure est utilisé pour éluer l'ADN double brin qui est recueilli. L'utilisation d'hydroxyapatite dans le procédé de l'invention permet de récupérer de l'ADN double brin ayant un très grand degré de pureté.
Comme indiqué ci-avant, un mode de réalisation préféré de l'invention comprend en outre une étape de chromatographie d'affinité triple hélice.
La chromatographie d'affinité triple hélice consiste à faire passer la solution obtenue sur un support sur lequel est couplé de manière covalente un oligonucléotide capable de former par hybridation une triple hélice avec une séquence spécifique présente sur l'ADN à purifier (WO96/18744).
La séquence spécifique peut être une séquence présente naturellement sur l'ADN double-brin, ou une séquence synthétique introduite artificiellement dans celui-ci. Les oligonucléotides utilisés dans la présente invention sont des oligonucléotides hybridant directement avec l'ADN en double-brin. Ces oligonucléotides peuvent contenir les bases suivantes :
- thymidine (T), qui est capable de former des triplets avec les doublets A.T de l'ADN double-brin (Rajagopal et al, Biochem 28 (1989) 7859);
- adénine (A), qui est capable de former des triplets avec les doublets A.T de l'ADN double-brin;
- guanine (G), qui est capable de former des triplets avec les doublets G.C de l'ADN double-brin;
- cytosine protonée (C+), qui est capable de former des triplets avec les doublets G.C de l'ADN double-brin (Rajagopal et al précitée);
- uracile (U) qui est capable de former des triplets avec les paires de bases A.U ou A.T. Préférentiellement, l'oligonucléotide utilisé comprend une séquence homopyrimidique riche en cytosines et la séquence spécifique présente sur l'ADN est une séquence homopurique-homopyrimidique. La présence de cytosines permet d'avoir une triple hélice stable à pH acide, où les cytosines sont protonées, et déstabilisée à pH alcalin, où les cytosines sont neutralisées.
Pour permettre la formation d'une triple-hélice par hybridation, il est important que l'oligonucléotide et la séquence spécifique présente sur l'ADN soient complémentaires. A cet égard, pour obtenir les meilleurs rendements et la meilleure sélectivité, on utilise dans le procédé de l'invention un oligonucléotide et une séquence spécifique parfaitement complémentaires. Il peut s'agir en particulier d'un oligonucléotide poly-CTT et d'une séquence spécifique poly-GAA. A titre d'exemple, on peut citer l'oligonucléotide de séquence 5'-
GAGGCTTCTTCTTCTTCTTCTTCTT-3' (GAGG(CTT)7; (SEQ ID n°l), dans lequel les bases GAGG ne forment pas de triple hélice mais permettent d'espacer l'oligonucléotide du bras de couplage. On peut également citer la séquence (CTT)7 (SEQ ID n°2). Ces oligonucléotides sont capables de former une triple-hélice avec une séquence spécifique comportant des motifs complémentaires (GAA). Il peut s'agir en particulier d'une région comportant 7, 14 ou 17 motifs GAA, comme décrit dans les exemples.
Une autre séquence d'intérêt spécifique est la séquence :
5'-AAGGGAGGGAGGAGAGGAA-3'(SEQ ID n°3).
Cette séquence forme une triple hélice avec les oligonucléotides
5'-AAGGAGAGGAGGGAGGGAA-3*(SEQ ID n°4) ou
5'-TTGGTGTGGTGGGTGGGTT-3'(SEQ ID n°5).
Dans ce cas, l'oligonucléotide se fixe dans une orientation antiparallèle au brin polypurique. Ces triples hélices ne sont stables qu'en présence de Mg2+ (Vasquez et al., Biochemistry, 1995, 34, 7243-7251 ; Beal et Dervan, Science, 1991, 251, 1360- 1363).
Comme indiqué ci-avant, la séquence spécifique peut être une séquence présente naturellement sur l'ADN double-brin, ou une séquence synthétique introduite artificiellement dans celui-ci. Il est particulièrement intéressant d'utiliser un oligonucléotide capable de former une triple-hélice avec une séquence présente naturellement sur l'ADN double-brin, par exemple dans l'origine de réplication d'un plasmide ou dans un gène marqueur. A cet égard, la demanderesse a effectué des analyses de séquence de plasmides et a pu montrer que certaines régions de ces ADN, notamment dans l'origine de réplication, possèdent des régions homopurique- homopyrimidiques. La synthèse d'oligonucléotides capables de former des triple- hélices avec ces régions homopurique-homopyrimidiques naturelles permet avantageusement d'appliquer le procédé de l'invention a des plasmides non modifiés, notamment des plasmides commerciaux de type pUC, pBR322, pSV, etc. Parmi les séquences homopuriques-homopyrimidiques naturellement présentes sur un ADN double brin, on peut citer une séquence comprenant tout ou partie de la séquence 5'- CTTCCCGAAGGGAGAAAGG-3'(SEQ ID n°6) présente dans l'origine de réplication ColEl de E. coli. Dans ce cas, l'oligonucléotide formant la triple hélice possède la séquence : 5'-GAAGGGTTCTTCCCTCTTTCC-3'(SEQ ID n°7) et se fixe alternativement sur les deux brins de la double hélice, comme décrit par Beal et Dervan (J. Am. Chem. Soc. 1992, 114, 4976-4982) et Jayasena et Johnston (Nucleic Acids Res. 1992, 20, 5279-5288). On peut aussi citer la séquence 5'- GAAAAAGGAAGAG-3'(SEQ ID n°8) du gène de la β-lactamase du plasmide pBR322 (Duval-Valentin et al., Proc. Natl. Acad. Sci. USA, 1992, 89, 504-508). L'utilisation d'un oligonucléotide capable de former une triple-hélice avec une séquence présente dans une origine de réplication ou un gène marqueur est particulièrement avantageuse car elle permet, avec le même oligonucléotide, de purifier tout ADN contenant ladite origine de réplication ou ledit gène marqueur. Il n'est donc pas nécessaire de modifier le plasmide ou l'ADN double-brin pour lui incorporer une séquence spécifique artificielle. Bien que des séquences parfaitement complémentaires soient préférées il est entendu toutefois que certains mésappariements peuvent être tolérés entre la séquence de l'oligonucléotide et la séquence présente sur l'ADN, dès lors qu'ils ne conduisent pas à une perte trop grande d'affinité. On peut citer la séquence 5'- AAAAAAGGGAATAAGGG-3'(SEQ ID n°9) présente dans le gène de la β-lactamase de £. £βli. Dans ce cas, la thymine interrompant la séquence polypurique peut être reconnue par une guanine du troisième brin, formant ainsi un triplet ATG qui est stable quand il est encadré par deux triplets TAT (Kiessling et al., Biochemistry, 1992, 3J, 2829-2834).
Selon un mode de réalisation particulier, les oligonucléotides de l'invention comprennent la séquence (CCT)n, la séquence (CT)n ou la séquence (CTT)n, dans laquelle n est un nombre entier compris entre 1 et 15 inclus. Il est particulièrement avantageux d'utiliser des séquences de type (CT)n ou (CTT)n. La demanderesse a en effet montré que le rendement de purification était influencé par la quantité de C dans l'oligonucléotide. En particulier, comme indiqué dans l'exemple 7, le rendement de purification augmente lorsque l'oligonucléotide comporte moins de cytosines. Il est entendu que les oligonucléotides de l'invention peuvent également combiner des motifs (CCT), (CT) ou (CTT).
L'oligonucléotide utilisé peut être naturel (composé de bases naturelles, non modifiées) ou modifié chimiquement. En particulier, l'oligonucléotide peut présenter avantageusement certaines modifications chimiques permettant d'augmenter sa résistance ou sa protection vis à vis des nucléases, ou son affinité vis à vis de la séquence spécifique.
Selon la présente invention on entend aussi par oligonucléotide tout enchaînement de nucléosides ayant subi une modification du squelette dans le but de le rendre plus résistant aux nucléases. Parmi les modifications possibles on peut citer, les oligonucléotides phosphorothioates qui sont capable de former des triples hélices avec l'ADN (Xodo et al., Nucleic Acids Res., 1994, 22, 3322-3330), de même que les oligonucléotides possédant des squelettes formacétal ou méthylphosphonate (Matteucci et al., J. Am. Chem. Soc, 1991, Jϋ, 7767-7768). On peut également utiliser les oligonucléotides synthétisés avec des α-anomères de nucleotides, qui forment également des triples hélices avec l'ADN (Le Doan et al., Nucleic Acids Res., 1987, 15., 7749-7760). Une autre modification du squelette est la liaison phosphoramidate. On peut citer par exemple la liaison internucléotidique N3'-P5' phosphoramidate décrite par Gryaznov et Chen, qui donne des oligonucléotides formant avec l'ADN des triples hélices particulièrement stables (J. Am. Chem. Soc., 1994, 116. 3143-3144). Parmi les autres modifications du squelette, on peut citer également l'utilisation de ribonucléotides, de 2'-O-méthylribose, de phosphodiester,...(Sun et Hélène, Curr. Opinion Struct. BioL, 116. 3143-3144). Le squelette phosphore peut enfin être remplacé par un squelette polyamide comme dans les PNA (Peptide Nucleic Acid), qui peuvent également former des triples hélices (Nielsen et al., Science, 1991, 254, 1497-1500 ; Kim et al., J. Am. Chem. Soc, 1993, 115. 6477-6481)) ou par un squelette à base de guanidine, comme dans les DNG (déoxyribonucleic guanidine, Proc. Natl. Acad. Sci. USA, 1995, 92, 6097-6101), analogues polycationiques de l'ADN, qui forment également des triples hélices.
La thymine du troisième brin peut aussi être remplacée par une 5- bromouracile, ce qui augmente l'affinité de l'oligonucléotide pour l'ADN (Povsic et Dervan, J. Am. Chem. Soc, 1989, Hl, 3059-3061). Le troisième brin peut également contenir des bases non naturelles, parmi lesquelles on peut citer la 7- déaza-2'-déoxyxanthosine (Milligan et al., Nucleic Acids Res., 1993, 21, 327-333), la l-(2-déoxy-β-D-ribofuranosyl)-3-méthyl-5-amino-lH-pyrazolo[4,3-t/lpyrimidine-7- one (Koh et Dervan, J. Am. Chem. Soc, 1992, Uά, 1470-1478), la 8-oxoadénine, la 2-aminopurine, la 2'-O-méthyl-pseudoisocytidine, ou toute autre modification connue de l'homme du métier (voir pour revue Sun et Hélène, Curr. Opinion Struct. Biol., 1993, 1, 345-356).
Un autre type de modification de l'oligonucléotide a plus particulièrement pour objet d'améliorer l'interaction et/ou l'affinité entre l'oligonucléotide et la séquence spécifique. En particulier, une modification tout à fait avantageuse selon l'invention consiste à méthyler les cytosines de l'oligonucléotide. L'oligonucléotide ainsi méthyle présente la propriété remarquable de former une triple hélice stable avec la séquence spécifique dans des zones de pH plus proches de la neutralité (> 5). Il permet donc de travailler à des pH plus élevés que les oligonucléotides de l'art antérieur, c'est à dire à des pH où les risques de dégradation de l'ADN plasmidique sont bien inférieurs.
La longueur de l'oligonucléotide utilisé dans le procédé de l'invention est d'au moins 3 bases, et de préférence, comprise entre 5 et 30. On utilise de manière avantageuse un oligonucléotide de longueur supérieure à 10 bases. La longueur peut être adaptée au cas par cas par l'homme du métier en fonction de la sélectivité et de la stabilité de l'interaction recherchées.
Les oligonucléotides selon l'invention peuvent être synthétisés par toute technique connue. En particulier, ils peuvent être préparés au moyen de synthétiseurs d'acides nucléiques. Toute autre méthode connue de l'homme du métier peut bien évidemment être utilisée.
Pour permettre son couplage covalent sur le support, l'oligonucléotide est généralement fonctionnalisé. Ainsi, il peut être modifié par un groupement terminal thiol, aminé ou carboxyle, en position 5' ou 3'. En particulier, l'ajout d'un groupe thiol, aminé ou carboxyle permet, par exemple, de coupler l'oligonucléotide sur un support portant des fonctions disulfure, maléimide, aminé, carboxyle, ester, époxyde, bromure de cyanogène ou aldéhyde. Ces couplages se forment par établissement de liaisons disulfure, thioether, ester, amide ou aminé entre l'oligonucléotide et le support. Toute autre méthode connue de l'homme du métier peut être utilisée, telle que des réactifs de couplage bifonctionnels, par exemple.
Par ailleurs, pour améliorer l'hybridation avec l'oligonucléotide couplé, il peut être avantageux que l'oligonucléotide contienne un "bras" et une séquence de bases "espaceur". L'utilisation d'un bras permet en effet de fixer l'oligonucléotide à une distance choisie du support permettant d'améliorer ses conditions d'interaction avec l'ADN. Le bras est avantageusement constitué d'une chaîne carbonée linéaire, comprenant 1 à 18, et de préférence 6 ou 12 groupes (CH2), et d'une aminé qui permet la liaison à la colonne. Le bras est relié a un phosphate de l'oligonucléotide ou d'un "espaceur" composé de bases n'interférant pas avec l'hybridation. Ainsi, "l'espaceur" peut comprendre des bases puriques. A titre d'exemple, "l'espaceur" peut comprendre la séquence G AGG. Le bras est avantageusement composé d'une chaîne carbonée linéaire comprenant 6 ou 12 atomes de carbones.
Pour la mise en oeuvre de la présente invention, différents types de supports peuvent être utilisés. Il peut s'agir de supports de chromatographie fonctionnalisés, en vrac ou préconditionnés en colonne, de surfaces plastiques fonctionnalisées ou de billes de latex fonctionnalisées, magnétiques ou non. Il s'agit préférentiellement de supports de chromatographie. A titre d'exemple, les supports de chromatographie pouvant être utilisés sont l'agarose, l'acrylamide ou le Dextran ainsi que leurs dérivés (tels que Séphadex, Sépharose, Superose,...), les polymères tels que le poly(styrènedivinylbenzène), ou la silice greffée ou non greffée, par exemple. Les colonnes de chromatographie peuvent fonctionner en mode de diffusion ou de perfusion.
Pour obtenir de meilleurs rendement de purification, il est particulièrement avantageux d'utiliser, sur le plasmide, une séquence comportant plusieurs positions d'hybridation avec l'oligonucléotide. La présence de plusieurs positions d'hybridation favorise en effet les interactions entre ladite séquence et l'oligonucléotide, ce qui conduit à améliorer les rendements de purification. Ainsi pour un oligonucléotide comportant n répétitions de motifs (CCT), (CT) ou (CTT), il est préférable d'utiliser une séquence d'ADN comportant au moins n motifs complémentaires et , de préférence, n+1 motifs complémentaires. Une séquence portant n+1 motifs complémentaires offre ainsi deux positions d'hybridation à l'oligonucléotide. Avantageusement, la séquence d'ADN comporte jusqu'à 11 positions d'hybridation, c'est à dire n+10 motifs complémentaires.
Selon un autre mode de réalisation la chromatographie sur colonne d'hydroxyapatite céramique est suivie ou précédée d'une étape de chromatographie sur colonne d'échange d'anions. On utilise de préférence une colonne échangeuse d'anions faibles,, les anions forts ont en effet la propriété de fixer très fortement l'ADN, si fortement qu'il est très difficile de récupérer le produit (le rendement est alors inférieur à 60%). C'est pourquoi la demanderesse utilise des échangeurs d'anions faibles qui ne retiennent pas l'ADN plasmidique mais qui fixent les ARN résiduels.
Comme indiqué ci-avant, le procédé selon l'invention comprend avantageusement une étape de diafiltration. La diafiltration est une étape de concentration de l'échantillon au cours de laquelle on élimine l'eau et les petites molécules (telles que les sels, les protéines et les acides nucléiques de petite taille) présentes dans le lysat clair. Les sels sont remplacés par un tampon phosphate pour la chromatographie. Après diafiltration, la solution est de 5 a 50 fois plus concentrée que la solution de départ (le facteur de concentration dépend du volume de la solution de départ).
L'utilisation de la diafiltration présente plusieurs avantages. Elle permet entre autres d'éviter l'utilisation de solvants organiques tel que l'isopropanol dont l'emploi nécessiterait une installation anti-déflagrante. De plus, cette technique est utilisable pour des volumes très variables. Il suffit en effet d'augmenter la surface des membranes en fonction du volume à traiter.
On utilise avantageusement pour la diafiltration un appareil servant de support à une membrane de polyether sulfone modifié ou d'acétate de cellulose modifié permettant d'avoir un flux de liquide à débit régulable. Ces membranes sont définies par leur point de coupure qui est en valeur nominale la taille maximale des molécules pouvant traverser ladite membrane. Rapporté à une valeur réelle une membrane dont le point de coupure est égal à 100 kD permet de retenir des molécules de taille supérieure à 30 kD.
Un procédé préféré selon l'invention comprend les étapes suivantes : diafiltration, chromatographie sur colonne de Ceramic hydroxyapatite, et chromatographie d'affinité par hybridation spécifique entre une séquence de l'ADN et un oligonucléotide avec formation d'une triple hélice. Le procédé selon la présente invention peut être utilisé pour purifier tout type d'ADN double brin. Il s'agit par exemple d'ADN circulaire, tel qu'un plasmide portant généralement un ou plusieurs gènes d'intérêt thérapeutique. Ce plasmide peut porter également une origine de réplication, un gène marqueur, etc.... Ce procédé permet aussi de purifier de l'ADN, linéaire ou circulaire, portant une séquence d'intérêt, à partir d'un mélange comprenant des ADN de différentes séquences.
Généralement, l'ADN de départ est produit par un microorganisme hôte modifié par les techniques de l'ADN recombinant. A cet égard l'hôte contenant l'ADN double brin que l'on cherche à récupérer est tout d'abord multiplié et amplifié. Pour ce faire on utilise les techniques classiques de fermentation permettant d'obtenir une forte densité cellulaire. La technique la plus courament employée est celle dite de "fed- batch" qui est abondament décrite dans la littérature (Jung et al. Ann. Inst. Pasteur I Microbiol. 1988, 139, pl29-146 ; Bauer et al. Biotechnol. Bioeng. 1976, 18, p81-94).
La fermentation est suivie par une lyse des cellules. Pour lyser les cellules on peut utiliser soit un système mécanique soit un sysème chimique suivant le type de cellules concerné ou suivant que l'on souhaite travailler sur lysat brut ou sur lysat clair. Pour la lyse mécanique, on utilise de préférence des systèmes qui ne dénaturent pas l'ADN (agitation, choc thermique, choc osmotique). Ces méthodes ne sont pas adaptées à l'extraction d'ADN à partir des cellules procaryotes. En effet les traitements mécaniques utilisés pour casser des cellules procaryotes sont dénaturant pour l'ADN. La lyse mécanique est préférentiellement réservée aux cellules eucaryotes, pour les cellules procaryotes on préférera une lyse chimique.
Les cellules procaryotes sont lysées chimiquement par toute technique connue de l'homme du métier (détergents, lysozymes, éventuellement combinés à un choc thermique, ete). Préférentiellement, on utilise un mélange de soude et de SDS. Durant ce traitement le pH passe à 12. Le pH du lysat ainsi obtenu est ensuite ramené à environ 6 ce qui entraine la précipitation des protéines d'une partie de l'ADN chromosomique et de l'ARN. On élimine ce précipité par centrifugation. Un mode de réalisation préféré de l'invention consiste tout d'abord à faire subir aux cellules contenant l'ADN double brin à purifier une lyse chimique qui permet d'obtenir un lysat clair. Le lysat clair ainsi obtenu subit une diafiltration et c'est le concentrât ainsi obtenu qui est chromatographie sur colonne hydroxyapatite céramique.
Le lysat cellulaire peut être un lysat de cellules procaryotes ou eucaryotes.
S'agissant de cellules procaryotes, on peut citer par exemple les bactéries E^ coli. BJ. subtilis. S^. tvphimurium ou Streptomyces. S'agissant de cellules eucaryotes, on peut citer les cellules animales, les levures, les champignons, etc., et plus particulièrement, les levures Kluyveromyces ou Saccharomyces ou les cellules COS,
CHO, C127, NIH3T3, etc....
Le procédé de l'invention est particulièrement avantageux puisqu'il permet d'obtenir, de manière rapide et simple, de l'ADN plasmidique de très haute pureté. En particulier, comme illustré dans les exemples, ce procédé permet de séparer efficacement l'ADN plasmidique considéré de composants contaminants, tels que l'ADN chromosomique fragmenté, l'ARN, les endotoxines, les protéines, les nucléases, etc.... Plus particulièrement, le procédé de l'invention permet d'obtenir des préparation d'ADN double brin, notamment plasmidique, pratiquement exemptes d'ADN chromosomique (< 0,5%). En outre les préparations d'ADN obtenues ont également une teneur en endotoxines très faible (< 50 EU/mg), compatible avec une utilisation pharmaceutique.
La demanderesse a montré que, de manière tout à fait étonnante, la combinaison des deux étapes décrites plus haut à savoir chromatographie sur colonne Hydroxyapatite suivie ou précédée par une chromatographie Triple Hélice, permet d'obtenir des préparations d'ADN plasmidique ayant une teneur en ADN chromosomique de 0.01%. De manière tout à fait préférentielle l'invention concerne également des préparation d'ADN plasmidique ayant une teneur en ADN chromosomique inférieure ou égale à 0.01%. L'invention concerne également des préparations d'ADN plasmidique ayant une teneur en endotoxines inférieure à 50 EU/mg, préférentiellement inférieure à 10 EU/ mg. La teneur en endotoxines est donc très en dessous de la teneur autorisée qui est de
350 EU/ injection pour une personne pesant 70 kg (une EU est une Endotoxin Unit et est égale à 100 pg).
La présente invention décrit donc des compositions comprenant de l'ADN plasmidique utilisable pharmaceutiquement notamment en thérapie génique ou cellulaire in vivo ou ex vivo. A cet égard, l'invention a également pour objet une composition pharmaceutique comprenant de l'ADN double brin, linéaire ou plasmidique, préparé selon le procédé décrit ci-avant.
Les compositions peuvent comporter l'ADN plasmidique "nu" ou associé à des vecteurs de transport tels que les liposomes, les nanoparticules, les lipides cationiques, les polymères, des protéines ou virus recombinants, etc.
La présente demande sera décrite plus en détail à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.
MATERIEL ET METHODES
1. Construction du plasmide pXL2784.
Dans les expériences qui suivent on a utilisé un plasmide spécifique pXL2784.
Ce plasmide comporte une cassette contenant le promoteur du Cytomégalovirus, le gène codant pour la luciférase et une séquence homopurique- homopyrimidique
(GAA) 17. La construction de ce plasmide est décrite ci-après. Il est bien évident que le procédé selon l'invention n'est pas limité au plasmide décrit.
1.1. Description du plasmide pXL2784
Le plasmide pXL2784 est construit à partir du vecteur plasmidique pXL2675 (2,513 kb), réplicon minimal du plasmide ColEl issu du plasmide pBluescript (ORI) et ayant pour marqueur de sélection le gène du transposon Tn5 codant pour la résistance à la kanamycine. Le plasmide pXL2784 contient aussi une séquence homopurique- homopyrimidique (GAA) 17 issue du plasmide pXL2563 et pouvant se lier à un oligomère (CTT)n où n=l à 17, pour générer localement une structure triple hélice et permettre une purification par affinité. Le plasmide pXL2784 possède le locus ςer (382 bp) issu du plasmide ColEl et clone dans le plasmide pXL565 ; le locus cer contient une séquence site spécifique des recombinases XerC/XerD et conduit à la résolution de multimères de plasmides. Le transgène clone sur ce plasmide pXL2784 est une cassette d'expression (3,3 kb) du gène lyc. codant pour la luciférase de Photinus pyralis sous contrôle du promoteur P CMV cytomégalovirus humain, cette cassette provient du plasmide pXL2622.
Le plasmide a une taille de 6390 bp. La carte du plasmide pXL2784 est présentée sur la figure 1, et sa construction est détaillée ci-après.
1.2. Vecteur minimal pXL2675
Après avoir rendu l'extrémité Bsal franche par action du fragment de Klenow, le fragment BsjI-Pvu.II de 1,15 kb du plasmide pBKS+ (Stratagen) a été clone avec le fragment $mal de 1,2 kb du plasmide pUC4KIXX (Pharmacia) pour générer le plasmide pXL2647.
L'oligonucléotide 5542 :
5*-AGCTTCTCGA GCTGCAGGAT ATCGAATTCG GATCCTCTAG AGC GGCCGCG AGCTCC-3' (SEQ ID N°10)
et l'oligonucléotide 5543 :
5'-AGCTGGAGCT CGCGGCCGCT CTAGAGGATC CGAATTCGAT ATC CTGCAGC TCGAGA-3' (SEQ ID N°ll)
ont été hybrides entre eux puis clones au site HindIII du pXL2647 générant le plasmide pXL2675. Ce plasmide comprend le multisite HindIII. Xhol. Pstl, EeoRV, EçρRI, BamHI. Xbal. Notl. SstI entre l'origine de réplication et le gène codant pour la résistance à la kanamycine. 1.3. Cassette luciférase dans le plasmide pXL2622
Le promoteur CMV contenu dans le fragment MluI-HindIII de 660 bp du plasmide ρcDNA3 (provenant d'Invitrogen) a été clone entre les sites MIyl-HύidlII du plasmide pGL2 basic (Promega contient le gène de la luciférase) pour générer le plasmide pXL2622.
1.4. Plasmides pXL2563 et pMTL22-TH contenant une séquence susceptible de former une triple hélice avec un oligonucléotide.
L'oligonucléotide 4817 :
5'-GATCCGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA GAAGAAGAAGAAGAAGG-3'(SEQIDN°12)
et l'oligonucléotide 4818 :
5'-AATTCCTTCT TCTTCTTCTT CTTCTTCTTC TTCTTCTTCT TCTTCT TCTT CTTCTTCG-3'(SEQ ID N°13)
ont été hybrides entre eux et clones aux sites EcoRI et BamHI du plasmide pBluescriptlI KS pour former le plasmide pXL2563. Le fragment EcoRI-BamHI de 62 bp est clone aux sites EcoRI-BamHI du plasmide pMTL22 (P. Minton 1988 Gène 68:139) pour générer le plasmide ρMTL22-TH.
1.5. Plasmides pXL565 et ρXL2781 contenant le locus cer
Le fragment Hpall de 382 bp du plasmide ColEl (P-L Biochemicals) a été clone au site AccI du plasmide Ml 3 mp7 (Messing et coll. 1981 Nucleic Acids Res
9:309) pour former le plasmide pXL565. Le fragment BamHI de 382 bp du pXL565 a alors été clone au site Bg]II du plasmide pSL301 (Invitrogen) pour créer le pasmide pXL2781.
1.6. Construction du plasmide pXL2784 Le fragment BamHI-XhoI du plasmide pXL2781 de 382 bp et contenant le locus cer est clone aux sites BamHI et Xhol du plasmide pXL2675 pour créer le plasmide pXL2782.
Le fragment BglII-BarnHI du plasmide ρMTL22-TH de 62 bp contenant la séquence (GAA) 17 est clone au site BamHI du plasmide pXL2782 pour former le plasmide ρXL2783.
Enfin le fragment SaJI-Spel de 3,3 kb du plasmide pXL2622 et contenant la cassette de la luciférase est clone aux sites Xhol et Nhel du plasmide pXL2783 pour créer le plasmide pXL2784. Il est bien entendu que toute autre cassette d'expression d'un gène peut être insérée à la place de la cassette luciférase
La souche DH1 (Maniatis et al., 1989) contenant ce plasmide est cultivée en fermenteur de 2, 7 et jusqu'à 800 litres. D'autres souches peuvent également êtres utlisées.
2. Fermentation
L'hôte contenant l'ADN plasmidique à cultiver peut être obtenu par des techniques classiques de fermentation (Jung et al. Ann. Inst. Pasteur/ Microbiol. 1988, 139, pl29-146 ; Bauer et al. Biotechnol. Bioeng. 1976, 18, p81-94) la technique du fed batch étant préférée. Après fermentation, les cellules sont récupérées, à l'échelle laboratoire, c'est à dire pour des volumes inférieurs à 51, par centrifugation classique (20 mn à 10000 rpm) ou par centrifugation en continu pour des volume plus importants (volumes industriels pouvant aller jusqu'à plusieurs centaines de litres). Les cellules ainsi récupérées peuvent être utilisées tout de suite ou congelées à - 80°C.
3. Lyse chimique (lysat clair)
Les cellules sont, le cas échéant, décongelées puis lysées. La lyse chimique se décompose en trois étapes. La première consiste à remettre en suspension les cellules dans un tampon Tris 25mM pH 6,8, glucose 50mM, ETDA lOmM ou équivalent. La lyse des cellules est alors effectuée dans un mélange contenant NaOH 0,2M et SDS 1%. Le pH de la solution est d'environ 12. Le choix d'un détergent ionique s'impose, en effet un détergent non ionique donne des rendements d'extraction 10 fois plus faibles. La lyse est suivie d'une pseudo-neutralisation du milieu en présence d'acétate de potassium (le pH final de la solution est compris entre 5.5 et 6). Cette acidification du milieu conduit à l'apparition d'un précipité contenant les protéines, une partie de l'ADN chromosomique et de l'ARN. Cette précipitation est due à la réaction du sodium dodecyl sulfate (SDS) avec l'acétate de potassium qui forment un précipité blanc de potassium dodecyl sulfate
Le précipité doit être éliminé. Pour ce faire on procède par centrifugation en pots (15 min, 8000 rpm) si les volumes sont inférieurs à 5 litres ou par centrifugation en continu si les volumes sont plus élevés (> 5 litres). Une autre méthode pour éliminer le surnageant consiste à effectuer une filtration sur filtre en profondeur de porosité supérieure ou égale à 20 μm (PALL, profile II utilisé selon les spécifications du fabricant).
4. Diafiltration
Le surnageant récupéré après la lyse chimique est soumis à une diafiltration afin de concentrer l'ADN plasmidique et d'éliminer les molécules de petites masse moléculaire, en particulier les sels qui sont présents à fortes concentrations. Cette diafiltration se fait sur membrane de point de coupure compris entre 50 et 300 kD suivant la taille des plasmides. De préférence on utilise une membrane de point de coupure lOOkD. La valeur de lOOkD est une valeur nominale donnée pour des protéines qui sont des molécules globulaires. On considère que pour les molécules d'acides nucléiques.qui ont une structure spatiale différente, toutes les molécules ayant un poids moléculaire inférieur à 30kd sont éliminées. On mesure par HPLC la quantité d'ADN présent dans la solution après diafiltration et la quantité présente dans le lysat clair. Le rapport ainsi déterminé donne le rendement de cette étape qui est supérieur ou égal à 80%. Au cours de cette diafiltration, les sels sont éliminés. Ils sont remplacés par un tampon phosphate lOmM. Il est ainsi possible d'appliquer le produit directement sur une colonne de chromatographie, en particulier de Ceramic Hydroxyapatite™
L'ADN plasmidique issu de la chromatographie d'affinité triple hélice est de nouveau diafiltré afin de concentrer l'échantillon et d'éliminer les sels indésirables. Ceci permet d'équilibrer le produit dans le tampon de formulation approprié. Pour cela, une diafiltration sur membrane de point de coupure compris entre 10 et 50kD est effectué.
Le rendement est supérieur à 80%.
Le produit est ensuite filtré stérilement et soumis à analyses avant formulation.
5. Chromatographie sur colonne de Ceramic hydroxyapatite™
Le gel de Ceramic Hydroxyapatite™ est coulé dans une colonne de taille appropriée suivant le volume de l'échantillon à purifier et selon la pureté de l'échantillon de départ. Pour déterminer la taille de la colonne et le volume du gel on mesure par HPLC la quantité en mg/ml d'ADN présent dans la solution de départ. On estime en effet que au moins O.lmg d'ADN sont fixés par ml d'Hydroxyapatite cette valeur pouvant varier jusqu'à 1 mg voir plus en fonction de la quantité d'ARN présent dans la solution de départ. L'ARN se fixe sur le gel et plus la quantité d'ARN est importante moins l'ADN pourra se fixer. L'ARN est éliminé par élution différentielle. La colonne est équilibrée en tampon phosphate de faible force ionique (10 mM). L'échantillon est déposé sur le gel à un débit linéaire de 50 cm/h. Le gel est ensuite soumis à un lavage par un tampon phosphate de conductivité plus élevée (150 mM). La majeure partie de l'ARN contenu dans l'échantillon est éliminée à ce stade. L'ADN plasmidique est élue en augmentant à nouveau la conductivité du tampon phosphate (250mM). Les derniers contaminants sont éliminés par application de NaOH 0.5N qui est neutralisée par du tampon phosphate à forte molarité (500mM) avant réutilisation éventuelle de la colonne. Dans le cas d'une production pharmaceutique, ce support a l'avantage de pouvoir subir une décontamination chimique en place puisqu'il résiste à la soude 0.5M, agent de nettoyage classique en chromatographie, mais aussi à des fortes concentrations d'éthanol. La résolution de l'hydroxyapatite céramique est excellente. Cette étape du procédé permet d'éliminer plus de 80% des ARN, 99.9% d'ADN chromosomique et de diminuer d'un facteur 1000 la teneur en endotoxines. De plus cette technologie évite l'emploi de toutes enzymes d'origine bovine ou autre (pas de Rnase, ni de protéinase K), en outre sa résistance aux agents chimiques nous a permis de l'utiliser à ce jour plus de 40 fois sans problème de reproductibilité. Le rendement de chromatographie est supérieur ou égal à 80%.
6. Chromatographie d'affinité avec formation d'une triple hélice.
6.1. Préparation de la colonne
Matériel : La colonne utilisée est une colonne HiTrap activée au NHS (N- hydroxysuccinimide, Pharmacia) de 5 ml, connectée sur une pompe péristaltique (débit < lml/min). L'oligonucléotide spécifique utilisé possède un groupement NH2 en 5'.
Les tampons utilisés dans cet exemple sont les suivants : - Tampon de couplage : NaHCθ3 0,2 M, NaCl 0,5 M, pH 8,3.
- Tampon A : éthanolamine 0,5 M, NaCl 0,5 M, pH 8,3.
- Tampon B : acétate 0,1 M, NaCl 0,5 M, pH 4.
Méthode : La colonne est lavée par 30 ml de HC1 1 mM, puis l'oligonucléotide dilué dans le tampon de couplage (250 nmoles dans 5 ml) est appliqué sur la colonne et laissé 30 minutes à température ambiante. La colonne est lavée 3 fois successives par 30 ml de tampon A puis 30 ml de tampon B. L'oligonucléotide est ainsi lié covalemment à la colonne par une liaison CONH. La colonne est stockée à 4°C et peut être utilisée au moins quatre fois.
6.2. Purification de plasmide
Matériel : Le plasmide pXL2784 (décrit en 1) a été purifié sur la colonne HiTrap couplée à l'oligonucléotide décrite en 7.1. Les tampons utilisés lors de cette purification sont les suivants :
Tampon F : NaCl 2M, acétate 0,2 M, pH 4,5.
Tampon E :Tris 1 M, HC1 pH 9, EDTA 0,5 mM.
Méthode :
La colonne est lavée avec du tampon F, puis la solution contenant le plasmide est appliqué sur la colonne et incubé a moins deux heures à température ambiante. La colonne est lavée avec du tampon F puis l'élution se fait par du tampon E.
7. Chromatographie échangeuse d'ions.
L'échantillon pré-purifié est ensuite soumis à une chromatographie sur colonne échangeuse d'anions faibles. En effet les anions forts ont la propriété de fixer très fortement l'ADN, si fortement qu'il est très difficile de récupérer le produit (le rendement est alors inférieur à 60%). C'est pourquoi la demanderesse utilise des échangeurs d'anions faibles qui ne retiennent pas l'ADN plasmidique mais qui fixent les ARN résiduels. On utilisera donc de préférence un échangeur d'anions faibles de type DEAE Sepharose ou DEAE hyper D ou équivalents. Le gel est équilibré en tampon phosphate lOmM, l'échantillon provenant de l'étape de chromatographie sur Ceramic Hydroxyapatite est directement appliqués sur le gel. L'ARN fixé est ensuite éliminé en appliquant une solution concentrée de NaCl. La décontamination chimique peut être faite avec une solution de soude 0.5 M ce qui permet de travailler dans de bonnes conditions d'hygiène (élimination des endotoxines et des risques de contamination microbienne.)
8. Dosage de l'ADN plasmidique dans des échantillons complexes par HPLC L'objectif de cette méthode est de pouvoir quantifier l'ADN plasmidique au cours des différentes étapes de purification afin de déterminer des rendements. On peut ainsi juger quantitativement et qualitativement de l'efficacité des différentes opérations
La technique utilisée est la suivante:
Le support chromatographique est un gel Poros R2 de chez Perseptive
Biosystems. Il s'agit d'un support de polystyrènedivinylbenzène, la taille des particules est de 10 μm. La taille des pores de perfusion est de 6000 à 8000 Angstrôms, la taille des pores de diffusion étant de 500 à 1000. Le volume du gel est de 1,7ml.
Il s'agit d'une chromatographie paire d'ions. Le système de solvants est eau, triéthylamine acétate pH 7,1 / triéthylamine acétate acétonitrile 90%.
Le débit est de 3 ml/min. Nous avons défini le gradient de façon à distinguer l'ADN plasmidique des ARN.
L'échantillon de référence est un ADN plasmidique purifié sur Qiagen selon les instructions du fabricant. Sur un gel d'agarose, cet échantillon ne contient que de l' ocDNA et du cccDNA. En HPLC, il ne donne qu'un seul pic. Sa concentration a été déterminée en mesurant sa DO à 260 nm et en prenant pour base 1 unité DO = 50 μg/ml d'ADN.
Nous avons donc injecté des quantités croissantes de ce produit afin d'effectuer une gamme d'étalonnage.
La surface des pics correspondant au temps de rétention de l'ADN de référence sont comparés à la gamme. Une quantification peut donc être effectuée.
9. Dosage de l'ADN chromosomique résiduel
L' ADN génomique résiduel est quantifié par PCR en utilisant des amorces dans le gène galK d'E. ooJi. La séquence des amorces du gène galK d'E. ooj] est (Debouck et al., Nucleic Acids Res., 1985, 11, 1841-1853) :
5'-CCG AAT TCT GGG GAC CAA AGC AGT TTC-3' (SEQ ID N°14) et 5'-CCA AGC TTC ACT GTT CAC GAC GGG TGT-3' (SEQ ID N°15).
Le milieu réactionnel comprend, dans du tampon PCR (Promega France, Charbonnières) : 1,5 mM MgCl2 ; 0,2 mM dXTP (Pharmacia, Orsay) ; 0,5 μM en amorce ; 20 U/ml Taq polymerase (Promega). La réaction est effectuée suivant la séquence : - 5 min. à 95°C
- 30 cycles delO sec. à 95°C
30 sec. à 60°C
1 min. à 78°C
- 10 min. à 78°C.
Le fragment d'ADN amplifié, d'une longueur de 124 paires de bases, est séparé par électrophorèse sur gel d'agarose à 3% en présence de SybrGreen I (Molecular Probes, Eugène , USA), puis quantifié par référence à une gamme d'ADN génomique Ultrapur d'E. çoii, souche B (Sigma, réf. D4889).
10. Transfection in vitro de cellules de mammifères
Cette méthode est employée pour doser l'activité biologique du plasmide purifié par le procédé selon l'invention. Les cellules utilisées sont des NIH 3T3, ensemencées la veille de l'expérience dans des plaques de culture à 24 puits, à raison de 50.000 cellules/puits. Le plasmide est dilué dans du NaCl 150 mM et mélangé avec un lipofectant. On utilise un rapport charges positives du lipofectant/charges négatives de l'ADN égal à 3. Le mélange est vortexé, laissé 10 minutes à température ambiante, dilué dans du milieu de culture dépourvu de sérum de veau foetal, puis ajouté aux cellules, à raison de 1 μg d'ADN par puits de culture. Après deux heures à 37°C, on ajoute 10% v/v de sérum de veau foetal et les cellules sont incubées 48 heures à 37°C en présence de 5% de CO2- Les cellules sont lavées deux fois au PBS et l'activité luciférase est mesurée selon le protocole décrit (kit Promega, Promega Corp. Madison, WD, sur un luminomètre Lumat LB9501 (EG et G Berthold, Evry). Les protéines sont dosées avec la technique BCA (Pierce, Interchim, Asnières). 11. Techniques diverses :
Le plasmide obtenu, analysé par électrophorèse sur gel d'agarose et coloration au bromure d'éthidium, se présente sous la forme d'une seule bande d'ADN circulaire "super enroulé". Aucune trace d'ADN de haut poids moléculaire (chromosomique), ni d'ARN n'est détectable dans le plasmide purifié.
La concentration en protéines dans les échantillons est mesuré par Micro-BCA (Pierce) selon les instructions du fabricant.
La concentration en endotoxines est estimée par le dosage LAL (Biosepra) selon les instructions du fabricant.
Les méthodes classiques de biologie moléculaire telles que les digestions par des enzymes de restriction, l 'électrophorèse sur gel, la transformation dans E. coli. la précipitation des acides nucléiques etc. sont décrites dans la littérature (Maniatis et al., T., E. F. Fritsch, and J. Sambrook. 1989. Molecular cloning: a laboratory manual, second édition. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, New York ; Ausubel F. M., R. Brent, R. E. Kinston, D. D. Moore, J. A. Smith, J. G. Seidman and K. Struhl. 1987. Current protocols in molecular biology 1987- 1988. John Willey and Sons, New York. ). Les séquences nucléotidiques ont été déterminées par la méthode de terminaison de chaînes en suivant le protocole déjà présenté (Ausubel et al., 1987).
Les enzymes de restriction ont été fournies par New-England Biolabs, Beverly,
MA (Biolabs).
Pour les ligatures, les fragments d'ADN sont incubés dans un tampon Tris-HCl pH 7.4 50 mM, MgCl2 10 mM, DTT 10 mM, ATP 2 mM, en présence d'ADN ligase du phage T4 (Biolabs, ).
Les oligonucléotides sont synthétisés en utilisant la chimie des phosphoramidites protégés en β par un groupement cyanoéthyl (Sinha. N. D., J. Biemat, J. McManus and H. Kôster. 1984. Polymer support oligonucléotide synthesis, XVIII: Use of β-cyanoethyl-N,N-dialkylamino-/N-moφholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucl. Acids Res., 12, 4539-4557 ; Giles, J. W. 1985. Advances in automated DNA synthesis. Am. Biotechnol., Nov./Dec) avec le synthétiseur automatique d'ADN Biosearch 8600 en utilisant les recommandations du fabricant.
Les ADN ligaturés ou à tester pour leur efficacité de transformation sont utilisés pour transformer la souche rendue compétente: E. ooji DH5α [F / endAl. hsdR17. supE44. thi-1, recAl . gyrA96. relAl. D(lacZYA-argF)U169. deoR. F80dlac(]acZDM15)]
Les minipréparations d'ADN plasmidique sont faites suivant le protocole de Klein et al., 1980.
Le milieu de culture LB est utilisé pour la croissance des souches d'E. ooϋ (Maniatis et ai., 1982). Les souches sont incubées à 37°C. Les bactéries sont étalées sur des boites de milieu LB supplémenté avec des antibiotiques appropriés.
EXEMPLES
Exemple 1. Purification d'un ADN plasmidique sur colonne hydroxyapatite céramique
1.1. Préparation du lysat clair Matériel :
Les solutions utilisées dans cet exemple sont les suivantes :
Tris 25mM pH 6,8, glucose 50mM, ETDA lOmM : solution 1
NaOH 0.2M et SDS 1% : solution 2
Acétate de potassium 3M, pH 5: solution 3 Méthode:
200 g de cellules sont mises en suspension dans 2200 ml de solution 1. La solution 2 (2200 ml également) est ensuite additionnée. Enfin, 1100 ml de solution 3 sont rajoutés. Le précipité alors formé est éliminé par centrifugation à 9000 rpm pendant 30 min. On obtient 5200 ml de surnageant.
1.2. Diafiltration
Matériel : Membrane Maximate (Filtron) de point de coupure 100 kD de surface 1860 cm2
Tampon : Phosphate de sodium 100 mM pH 6,8
Méthode :
Avant utilisation, la membrane subit une décontamination chimique à la soude 0,5M pendant IH. La soude est ensuite éliminée par de l'eau ppi.
Le surnageant obtenu lors de l'étape 1.1 est concentré environ 10 fois puis diafiltré contre 4 volumes d'eau puis contre 4 volumes de tampon phosphate lOOmM et pH 6,8. Le volume final est de 810 ml. L'échantillon contient alors 224 mg d'ADN plasmidique déterminé par HPLC.
1.3. Purification sur Ceramic Hydroxyapatite™
Matériel :
Les tampons utilisés lors de cette purification sont les suivants : Tampon A = tampon 10 mM phosphate pH 6.8 Tampon B = tampon 150 mM phosphate pH 6.8 , Tampon C = tampon 250 mM phosphate pH 6;8
Tampon D = tampon 500 mM phosphate pH 6,8 NaOH 0.5M
Méthode :
La colonne (de diamètre 113 mm et de hauteur 17 cm) contient 1700 ml de gel. Avant utilisation, le gel subit une décontamination chimique par de la soude
0,5M pendant 1 heure. La soude est ensuite éliminée par application de tampon D. Puis, la colonne est équilibrée en tampon A. On applique sur le gel 610 ml provenant des 810 ml (soit 171 mg) obtenus précédemment. Le débit est de 60 ml/min. Le gel est ensuite lavé par 6 L de tampon B. Le produit est ensuite élue en appliquant du tampon C. Le volume d'éluat est de 1520 ml et contient 147 mg d'ADN plasmidique (déterminé par HPLC).
Le gel est ensuite régénéré par lavage avec de la soude (NaOH 0,5M) suivi par du tampon D. Le gel est alors prêt pour un nouveau cycle.
L'ensemble des opérations est suivi par spectrométrie UV à 254 nm.
1.4. Purification sur DEAE Sepharose
Matériel : Les tampons utilisés lors de cette purification sont les suivants :
Tampon A , NaCl IM et NaOH 0.5M.
Méthode :
La colonne (de diamètre 50 mm et de hauteur 6 cm) contient 110 ml de gel. Avant utilisation, le gel subit une décontamination chimique par de la soude 0,5M pendant 1 heure. La soude est ensuite éliminée par une solution de NaCl IM . Puis, la colonne est équilibrée en tampon A.
1130 ml issues des 1520 ml (soit 110 mg) obtenus précédemment sont appliqués sur le gel à un débit de 50 ml/min. L'ADN n'étant pas retenu, l'effluent est recueilli (1036 ml) et contient 104 mg d'ADN. Les produits retenus sur le gel sont ensuite éliminés par une solution de NaCl IM. Le gel est alors lavé par de la soude
0,5M suivi de NaCl IM. Le gel est alors prêt pour une nouvelle opération.
L'ensemble des opérations est suivi spectrométrie UV à 254 nm.
1-5 Diafiltration
Matériel : Membrane Ultrasette (Filtron) de point de coupure 30 kD de surface 860 cm2
Tampon : eau ppi Méthode :
Avant utilisation, la membrane subit une décontamination chimique à la soude
0,5 M pendant IH. La soude est ensuite éliminée par de l'eau ppi. 720 ml du produit obtenu lors de l'étape précédente sont concentrés environ 3 fois puis diafiltrer deux fois contre 4 volumes d'eau ppi. Le volume final est de 210 ml. L'échantillon contient alors 62 mg d'ADN plasmidique déterminé par HPLC.
1.6 Caractéristiques de l'ADN .
Le procédé décrit ci-dessus permet d'obtenir le plasmide quasiment pur. Les différentes composants de l'échantillon final ont été déterminés et sont récapitulés ci-après.
- ARN : non détectable en gel d'agarose ou en HPLC
- ADN chromosomique déterminé par PCR: <0.5 %
- ADN super-enroulé déterminé par HPLC >80 %
- endotoxines (LAD < 50 EU/mg
- protéines (microBCA) < lμg/ml
- activité biologique in vitro :
pXL2784 lot 42DNA95 : 20*106 RLU/ μg protéines (à comparer avec le même plasmide purifié sur gradient de Chlorure de Césium = 13*106 RLU/ μg protéines).
1.7 Variante.
Le procédé décrit ci-dessus a été reproduit en effectuant dans l'étape 1.1, une filtration sur membrane de profondeur à la place de la centrifugation. Cette variante du procédé permet d'obtenir un plasmide de pureté pharmaceutique, dont les caractéristiques sont récapitulés ci-après. - ARN : non détectable en gel d'agarose ou par HPLC
- ADN chromosomique déterminé par PCR : < 0.5 %
- ADN superenroulé déterminé par HPLC >70 %
- endotoxines (LAL) < 50 EU/mg
- protéines (micro BCA) < 1 μg/ml
Exemple 2 Purification de l'éluat d'hydroxyapatite par chromatographie d'affinité triple hélice
2.1. Préparation de la colonne d'affinité
La colonne utilisée est une colonne HiTrap activée au NHS (N- hydroxysuccinimide, Pharmacia) de 5 ml, connectée sur une pompe péristaltique. L'oligonucléotide spécifique utilisé possède un groupement NH2 en 5'. Sa séquence est la suivante :
5'-GAGGCTTCTTCTTCTTCTTCTTCTT-3' (SEQ ID N°l).
Les tampons utilisés dans cet exemple sont les suivants :
Tampon de couplage : NaHCθ3 0,2 M, NaCl 0,5 M, pH 8,3.
Tampon A : éthanolamine 0,5 M, NaCl 0,5 M, pH 8,3.
Tampon B : acétate 0,1 M, NaCl 0,5 M, pH 4.
La colonne est lavée par 30 ml de HC1 1 mM, puis l'oligonucléotide dilué dans le tampon de couplage (250 nmoles dans 5 ml) est appliqué sur la colonne et laissé 30 minutes à température ambiante. La colonne est lavée 3 fois successives par 30 ml de tampon A puis 30 ml de tampon B. L'oligonucléotide est ainsi lié covalemment à la colonne par une liaison CONH. La colonne est stockée à 4°C.
2.2. Purification du plasmide Les tampons utilisés sont les suivants :
Tampon F : NaCl 2M, acétate 0,2 M, pH 4,5.
Tampon E .Tris 1 M, HC1 pH 9, EDTA 0,5 mM.
La colonne est équilibrée dans le tampon F, puis 9ml d'éluat d'hydroxyapatite obtenu dans les conditions décrites dans l'exemple 1.3., préalablement ajustés à 2M
NaCl et pH 4,5, sont appliqués en boucle sur la colonne pendant une nuit à température ambiante (débit 0,5 ml/min). La colonne est lavée avec du tampon F puis l'élution se fait par du tampon E. L'ADN est détecté par spectrométrie U.V. à 254 nm.
2.3. Caractéristiques de l'ADN purifié
L'ADN purifié analysé par HPLC (méthode décrite ci-dessus) se présente sous forme d'un seul pic à un temps de rétention de 24,8 min. Aucune trace d'ARN n'est détectable. De même, après électrophorèse sur gel d'agarose 1% et coloration au bromure d'éthidium, l'ADN purifié ne présente aucune trace détectable d'ARN.
L'ADN a également été analysé par chromatographie échangeuse d'anions sur colonne Gen-Pak Fax Waters, qui sépare l'ADN relâché de l'ADN surenroulé. L'échantillon purifié contient 97% d'ADN surenroulé contre 80% d'ADN surenroulé dans l'échantillon déposé.
L'ADN génomique d'E. coϋ a été quantifié par PCR selon la technique décrite au paragraphe 3 : l'ADN purifié sur colonne d'affinité contient environ 0,01% d'ADN génomique.
Exemple n°3
3.1. Purification du plasmide.
On utilise une colonne d'affinité préparée comme décrit à l'exemple 2 avec l'oligonucléotide de séquence :
5'-CTTCTTCTTCTTCTTCTTCTT-3' (SEQIDN°2). Les tampons utilisés sont :
Tampon F : NaCl 2M, acétate de sodium 0,2 M, pH 4,5.
Tampon E :Tris 1 M, HC1 pH 9, EDTA 0,5 mM.
La colonne est équilibrée dans le tampon F, puis on dépose 0.8mg de plasmide purifié selon le protocole de l'exemple 1.7, dilué dans 10 ml de tampon F. L'échantillon est recirculé en boucle sur la colonne pendant une nuit à température ambiante (débit
0,5 ml/min). La colonne est lavée avec du tampon F puis l'élution se fait par du tampon
E. L'ADN est détecté par spectrométrie U.V. à 254 nm.
3.2. Caractéristiques de l'ADN purifié
L'ADN obtenu a été analysé par chromatographie échangeuse d'anions sur colonne Gen-Pak Fax Waters, qui sépare l'ADN relâché de l'ADN surenroulé. L'échantillon purifié contient 100% d'ADN surenroulé, contre 72% dans l'échantillon déposé sur la colonne d'affinité.
L'ADN génomique d'E. çoH a été quantifié par PCR selon la technique décrite plus haut : l'ADN purifié sur colonne d'affinité contient environ 0,01% d'ADN génomique, contre environ 0.3% dans l'échantillon déposé sur la colonne d'affinité.
Exemple 4 : Changement d'échelle de la chromatographie d'affinité triple hélice après purification de l'éluat d'hydroxyapatite (pXL 2784)
4-1. Préparation de la colonne d'affinité
La colonne utilisée est une colonne contenant du Sépharose 4 Fast Flow activé au NHS (N-hydroxysuccinimide, Pharmacia) et couplé à un oligonucléotide de séquence :
5'-CTT CTTCTTCTT CTT CTTCTT-3' [(CTT)7 : SEQID n° 2]
selon la méthode décrite dans l'exemple 2.1. La colonne (diamètre 26 mm, hauteur : 16cm ) contient 80 ml de gel et est connectée sur une pompe péristaltique.
4.2. Purification du plasmide
Les tampons utilisés sont les suivants :
Tampon F : NaCl 2M, acétate de sodium 0,2 M, pH 4,5.
Tampon E :Tris 1 M, HC1 pH 9, EDTA 0,5 mM.
La colonne est équilibrée dans le tampon F, puis 135 ml soit 8 mg d'éluat d'hydroxyapatite obtenu dans les conditions décrites dans l'exemple 1.3., préalablement ajustés à 2M NaCl et pH 4,5, sont appliqués sur la colonne (débit 1,25 ml/min) en recirculant quatre fois. La colonne est lavée avec du tampon F puis l'élution se fait par du tampon E. L'ADN est détecté par spectrométrie U.V. à 254 nm : 2,2 mg sont récupérés.
4.3. Caractéristiques de l'ADN purifié
L'ADN purifié analysé par HPLC (méthode décrite ci-dessus) se présente sous forme d'un seul pic à un temps de rétention de 24,4 min. Aucune trace d'ARN n'est détectable. De même, après électrophorèse sur gel d'agarose 1% et coloration au bromure d'éthidium, l'ADN purifié ne présente aucune trace détectable d'ARN.
L'ADN a également été analysé par chromatographie échangeuse d'anions sur colonne Gen-Pak Fax Waters, qui sépare l'ADN relâché de l'ADN surenroulé. L'échantillon purifié contient 100% d'ADN surenroulé contre 94% d'ADN surenroulé dans l'échantillon déposé.
L'ADN génomique d'E. çoH a été quantifié par PCR selon la technique décrite au paragraphe 3 : l'ADN purifié sur colonne d'affinité contient environ 0,02% d'ADN génomique contre 2% dans l'échantillon déposé.
Exemple 5 : Purification à grande échelle d'un ADN plasmidique sur colonne hydroxyapatite céramique 5.1. Préparation du lysat clair
Le lysat clair est préparé comme décrit dans l'exemple 1.1 à partir d'une culture de bactéries E.coli transformées par le plasmide pXL2774. Le plasmide pXL2774 a une taille réduite (environ 4,5 kb) et comprend notamment : - une cassette d'expression du gène Luc (promoteur CMV-luc-poly(A)+)
- le marqueur de sélection sup Phe
- l'origine de réplication ori γ de R6K
- le fragment cer de ColEl
Méthode:
456 g de cellules sont mises en suspension dans 5000 ml de solution 1. La solution 2 (5500 ml) est ensuite additionnée. Enfin, 2500 ml de solution 3 sont rajoutés. Le précipité alors formé est éliminé par centrifugation à 9000 φm pendant 30 min ou par filtration. On obtient 12,3 L de surnageant.
5.2. Diafiltration
Matériel :
Membrane Maximate (Filtron) de point de coupure 100 kD de surface 1860 cm2
Tampon : Phosphate de sodium 100 mM pH 6,8
Méthode :
L'échantillon est diafiltré selon la méthode décrite dans l'exemple 1.2 Le volume final est de 945 ml. L'échantillon contient alors 253 mg d'ADN plasmidique déterminé par HPLC.
5.3. Purification sur Ceramic Hydroxyapatite™
Matériel :
Les tampons utilisés lors de cette purification sont les suivants : Tampon A = tampon 100 mM phosphate pH 6.8 Tampon B = tampon 150 mM phosphate pH 6.8 , Tampon C = tampon 250 mM phosphate pH 6;8 Tampon D = tampon 500 mM phosphate pH 6,8 NaOH 0.5M
Méthode :
La colonne (de diamètre 100 mm et de hauteur 23 cm) contient 1700 ml de gel.
Avant utilisation, le gel subit une décontamination chimique par de la soude 0.5M pendant 1 heure. La soude est ensuite éliminée par application de tampon D. Puis, la colonne est équilibrée en tampon A.
On applique sur le gel 475 ml provenant des 945 ml (soit 128 mg) obtenus précédemment. Le débit est de 65 ml/min. Le gel est ensuite lavé par 6 L de tampon B. Le produit est ensuite élue en appliquant du tampon C. Le volume d'éluat est de 1760 ml et contient 100 mg d'ADN plasmidique (déterminé par HPLC).
Le gel est ensuite régénéré par lavage avec de la soude (NaOH 0.5M) suivi par du tampon D. Le gel est alors prêt pour un nouveau cycle.
L'ensemble des opérations est suivi par spectrométrie UV à 254 nm..
5.4 Diafiltration
La diafiltration a été réalisée selon le protocole décrit dans l'exemple 1.5.
5.5 Caractéristiques de l'ADN .
Le procédé décrit ci-dessus permet d'obtenir le plasmide quasiment pur. Les différentes composants de l'échantillon final ont été déterminés et sont récapitulés ci-après.
- ARN : non détectable en gel d'agarose
- ADN chromosomique déterminé par PCR: 0.6 % - ADN super-enroulé déterminé par HPLC : 87 %
- endotoxines (LAD < 50 EU/mg - protéines (microBCA) < lμg/ml
LISTE DE SEQUENCES
(1 ) INFORMATIONS GENERALES:
(i) DEPOSANT:
(A) NOM: RHONE POULENC RORER S.A.
(B) RUE: 20, AVENUE RAYMOND ARON
(C) VILLE: ANTONY (E) PAYS: FRANCE
(F) CODE POSTAL: 92165
(G) TELEPHONE: (1) 40.91.70.36 (H) TELECOPIE: (1) 40.91.72.91 (il) TITRE DE L' INVENTION: PURIFICATION D'ADN PLASMIDIQUE DE QUALITE PHARMACEUTIQUE
(m) NOMBRE DE SEQUENCES: 15 (iv) FORME DECHIFFRABLE PAR ORDINATEUR:
(A) TYPE DE SUPPORT: Tape
(B) ORDINATEUR: IBM PC compatible
(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
(D) LOGICIEL: PatentIn Release #1.0, Version #1.30 (OEB)
(2) INFORMATIONS POUR LA SEQ ID NO: 1 :
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 25 paires de bases
(B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire (il) TYPE DE MOLECULE: ADNc
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1 :
GAGGCTTCTT CTTCTTCTTC TTCTT 25
(2) INFORMATIONS POUR LA SEQ ID NO: 2:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 21 paires de bases
(B) TYPE: nucleotide (C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:
CTTCTTCTTC TTCTTCTTCT T 21
(2) INFORMATIONS POUR LA SEQ ID NO: 3: (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 19 paires de bases
(B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:
AAGGGAGGGA GGAGAGGAA
19
(2) INFORMATIONS POUR LA SEQ ID NO: 4:
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases (B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADNc
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4: AAGGAGAGGA GGGAGGGAA 19
(2) INFORMATIONS POUR LA SEQ ID NO: 5:
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases (B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADNc
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:
TTGGTGTGGT GGGTGGGTT 19
(2) INFORMATIONS POUR LA SEQ ID NO: 6:
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 19 paires de bases
(B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire (n) TYPE DE MOLECULE: ADNc
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:
CTTCCCGAAG GGAGAAAGG 19 97/35002 PO7FR97/00472
39
(2) INFORMATIONS POUR LA SEQ ID NO: 7:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 21 paires de bases
(B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7
GAAGGGTTCT TCCCTCTTTC C 21
(2) INFORMATIONS POUR LA SEQ ID NO: 8:
(l) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 13 paires de bases
(B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8
GAAAAAGGAA GAG 13
(2) INFORMATIONS POUR LA SEQ ID NO: 9:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 17 paires de bases
(B) TYPE: nucleotide (C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9
AAAAAAGGGA ATAAGGG 17
(2) INFORMATIONS POUR LA SEQ ID NO: 10:
(l) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 56 paires de bases (B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(n) TYPE DE MOLECULE: ADNc (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10
AGCTTCTCGA GCTGCAGGAT ATCGAATTCG GATCCTCTAG AGCGGCCGCG AGCTCC 56
(2) INFORMATIONS POUR LA SEQ ID NO: 11:
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 56 paires de bases
(B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire (n) TYPE DE MOLECULE: ADNc
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11
AGCTGGAGCT CGCGGCCGCT CTAGAGGATC CGAATTCGAT ATCCTGCAGC TCGAGA 56
(2) INFORMATIONS POUR LA SEQ ID NO: 12: (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 58 paires de bases
(B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(n) TYPE DE MOLECULE: ADNc
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12
GΛTCCGAAGA AGAAGAAGAA GAAGAAGAAG AAGAAGAAGA AGAAGAAGAA GAAGAAGG 58
(2) INFORMATIONS POUR LA SEQ ID NO: 13:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 58 paires de bases
(B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13
AATTCCTTCT TCTTCTTCTT CTTCTTCTTC TTCTTCTTCT TCTTCTTCTT CTTCTTCG 58
(2) INFORMATIONS POUR LA SEQ ID NO: 14:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 27 paires de bases
(B) TYPE: nucleotide <C ) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADNc (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14
CCGAATTCTG GGGACCAAAG CAGTTTC 27
(2) INFORMATIONS POUR LA SEQ ID NO: 15:
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 27 paires de bases (B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADNc
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15
CCAAGCTTCA CTGTTCACGA CGGGTGT 27

Claims

REVENDICATIONS
1. Procédé de purification d'ADN double brin de pureté pharmaceutique caractérisé en ce qu'il comprend au moins une étape de chromatographie sur colonne d'hydroxyapatite céramique.
2. Procédé de purification d'ADN double brin caractérisé en ce qu'il comprend deux étapes de chromatographie dont une sur colonne d'hydroxyapatite.
3. Procédé selon la revendication 2 caractérisé en ce qu'il comprend une étape de chromatographie sur colonne d'hydroxyapatite et une étape de chromatographie d'affinité ou d'échange d'ions.
4. Procédé selon la revendication 3 caractérisé en ce qu'il comprend une étape de chromatographie sur colonne d'hydroxyapatite et une étape de chromatographie d'affinité par hybridation spécifique entre une séquence de l'ADN et un oligonucléotide immobilise, avec formation d'une triple hélice.
5. Procédé selon la revendication 3 caractérisé en ce qu'il comprend une étape de chromatographie sur colonne d'hydroxyapatite et une étape de chromatographie d'échange d'anions.
6. Procédé selon l'une des revendications 1 a 5 caractérisé en ce qu'il comprend en outre une étape de diafiltration.
7. Procédé de purification d'ADN double brin caractérisé en ce qu'il comprend les étapes suivantes :
- lyse chimique des cellules,
- diafiltration,
- chromatographie sur colonne d'hydroxyapatite céramique,
- chromatographie d'affinité par hybridation spécifique entre une séquence de l'ADN et un oligonucléotide immobilise, avec formation d'une triple hélice.
8. Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce que l'ADN double brin comprend en outre une ou plusieurs séquences d'intérêt.
9. Procédé selon l'une quelconque des revendications 1 à 8 caractérisé en ce que l'ADN double brin est un ADN plasmidique.
10. Préparation d'ADN plasmidique recombinant caractérisée par une teneur en
ADN chromosomique inférieure ou égale à 0,01 %.
11. Préparation d'ADN plasmidique recombinant purifié selon la revendication 10 caractérisée par une teneur en endotoxine inférieure ou égale à 50 EU/ mg.
12. Préparation d'ADN plasmidique recombinant purifié selon la revendication 11 caractérisée par une teneur en endotoxine inférieure ou égale a 10 EU/ mg;
13. Composition pharmaceutique comprenant un ADN obtenu par le procédé selon l'une des revendications 1 à 9.
PCT/FR1997/000472 1996-03-21 1997-03-17 Purification d'adn plasmidique de qualite pharmaceutique WO1997035002A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP97914411A EP0902835A1 (fr) 1996-03-21 1997-03-17 Purification d'adn plasmidique de qualite pharmaceutique
HU9902152A HU225426B1 (en) 1996-03-21 1997-03-17 Method for purification of double stranded plasmid dna
KR10-1998-0707410A KR100502116B1 (ko) 1996-03-21 1997-03-17 약제성 플라스미드 디엔에이의 정제
AU21661/97A AU730755B2 (en) 1996-03-21 1997-03-17 Purification of plasmid DNA of pharmaceutical quality
IL12626897A IL126268A0 (en) 1996-03-21 1997-03-17 Purification of plasmid dna of pharmaceutical quality
BR9708227A BR9708227A (pt) 1996-03-21 1997-03-17 Processo de purificação de dna duplo filamento de pureza farmacêutica preparação de dna plasmídico recombinante e composição farmacêutica
JP9533199A JP2000506736A (ja) 1996-03-21 1997-03-17 医薬品質のプラスミドdnaの精製
SK1291-98A SK129198A3 (en) 1996-03-21 1997-03-17 Purification of pharmaceutical-grade plasmid dna
US09/153,838 US6730781B1 (en) 1996-03-21 1998-09-15 Purification of plasmid DNA of pharmaceutical quality
NO984342A NO984342L (no) 1996-03-21 1998-09-18 Rensing av plasmid-DNA av farmas°ytisk kvalitet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9603519A FR2746412B1 (fr) 1996-03-21 1996-03-21 Purification d'adn plasmidique de qualite pharmaceutique
FR96/03519 1996-03-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/153,838 Continuation US6730781B1 (en) 1996-03-21 1998-09-15 Purification of plasmid DNA of pharmaceutical quality

Publications (1)

Publication Number Publication Date
WO1997035002A1 true WO1997035002A1 (fr) 1997-09-25

Family

ID=9490391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000472 WO1997035002A1 (fr) 1996-03-21 1997-03-17 Purification d'adn plasmidique de qualite pharmaceutique

Country Status (15)

Country Link
US (1) US6730781B1 (fr)
EP (1) EP0902835A1 (fr)
JP (1) JP2000506736A (fr)
KR (1) KR100502116B1 (fr)
AU (1) AU730755B2 (fr)
BR (1) BR9708227A (fr)
CA (1) CA2249465A1 (fr)
CZ (1) CZ295587B6 (fr)
FR (1) FR2746412B1 (fr)
HU (1) HU225426B1 (fr)
IL (1) IL126268A0 (fr)
NO (1) NO984342L (fr)
SK (1) SK129198A3 (fr)
WO (1) WO1997035002A1 (fr)
ZA (1) ZA972462B (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092511A3 (fr) * 2000-05-26 2002-04-11 Aventis Pharma Sa Purification d'une formation de triple helice par une oligonucleotide immobilisee
FR2822476A1 (fr) * 2001-03-23 2002-09-27 Aventis Pharma Sa Procedes de purification et de detection de sequences cibles d'adn double brin par interaction triple helice
EP1036159A4 (fr) * 1997-12-08 2002-12-18 Genzyme Corp Procede de purification d'adn plasmidique et adn plasmidique pratiquement exempt d'adn genomique
WO2002077274A3 (fr) * 2001-03-23 2003-10-02 Gencell Sa Procedes de purification et de detection de sequences cibles d'adn double brin par interaction triple helice.
WO2006060282A2 (fr) 2004-11-30 2006-06-08 Merial Limited Melangeurs pour chimiolyse de cellules
US7238522B2 (en) 2003-05-30 2007-07-03 Advisys, Inc. Devices and methods for biomaterial production
EP2246413A3 (fr) * 2004-04-19 2011-10-26 Centelion Procédé de préparation d'ADN plasmide de qualité pharmaceutique
US8236495B2 (en) 1996-07-19 2012-08-07 Samuel Nochumson Process and equipment for plasmid purification

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807822B2 (en) 1996-08-01 2010-10-05 Robert Bridenbaugh Methods for purifying nucleic acids
EP1554398A4 (fr) 2002-09-13 2005-12-14 Valentis Inc Appareil et procede de purification a l'echelle de la chimie preparatoire d'acides nucleiques
WO2005026331A2 (fr) * 2003-09-17 2005-03-24 Centelion Procede de preparation d'adn plasmide de qualite pharmaceutique
ATE496990T1 (de) * 2004-04-19 2011-02-15 Aventis Pharma Sa Verfahren zur herstellung von plasmid dns in pharmazeutischer qualität
EP1781801A4 (fr) 2004-08-16 2008-11-12 Nature Technology Corp Souches d'e. coli ameliorees pour la production d'adn plasmidique
US20120258502A1 (en) * 2011-04-08 2012-10-11 Vinod Pandiripally Method of producing recombinant plasmid dna using substantially solid growth medium
US20120283503A1 (en) * 2011-04-29 2012-11-08 The Johns Hopkins University Nanoparticle loaded stem cells and their use in mri guided hyperthermia
CN116790578B (zh) * 2023-08-22 2023-12-12 赛奥斯博生物科技(北京)有限公司 一种基于碱裂解法快速纯化质粒的生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313090A2 (fr) * 1987-10-22 1989-04-26 Asahi Kogaku Kogyo Kabushiki Kaisha Matériau céramique poreux
EP0325032A1 (fr) * 1987-11-20 1989-07-26 MITSUI TOATSU CHEMICALS, Inc. Méthode pour la séparation d'acides nucléiques
EP0375408A1 (fr) * 1988-12-20 1990-06-27 Baylor College Of Medicine Méthode de préparation d'oligonucléotides synthétiques se liant spécifiquement à des cibles sur des molécules d'ADN bicaténaire en formant un complexe tricaténaire colinéaire, les oligonucléotides synthétiques et méthodes d'utilisation
WO1994016075A2 (fr) * 1993-01-13 1994-07-21 Genetics Institute, Inc. Procede de production de m-csf 223
WO1995021177A1 (fr) * 1994-02-07 1995-08-10 Qiagen Gmbh Procede de preparation d'acides nucleiques et/ou d'oligonucleotides sans endotoxines ou pauvres en endotoxines utiles en therapie genique

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503816A (en) * 1993-09-27 1996-04-02 Becton Dickinson And Company Silicate compounds for DNA purification
US5576196A (en) * 1995-01-13 1996-11-19 Vical Incorporated Process for reducing RNA concentration in a mixture of biological material using diatomaceous earth
ES2195112T5 (es) 1996-02-06 2015-10-15 Roche Diagnostics Gmbh Procedimiento para la preparación de ácido nucleico purificado y el uso del mismo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313090A2 (fr) * 1987-10-22 1989-04-26 Asahi Kogaku Kogyo Kabushiki Kaisha Matériau céramique poreux
EP0325032A1 (fr) * 1987-11-20 1989-07-26 MITSUI TOATSU CHEMICALS, Inc. Méthode pour la séparation d'acides nucléiques
EP0375408A1 (fr) * 1988-12-20 1990-06-27 Baylor College Of Medicine Méthode de préparation d'oligonucléotides synthétiques se liant spécifiquement à des cibles sur des molécules d'ADN bicaténaire en formant un complexe tricaténaire colinéaire, les oligonucléotides synthétiques et méthodes d'utilisation
WO1994016075A2 (fr) * 1993-01-13 1994-07-21 Genetics Institute, Inc. Procede de production de m-csf 223
WO1995021177A1 (fr) * 1994-02-07 1995-08-10 Qiagen Gmbh Procede de preparation d'acides nucleiques et/ou d'oligonucleotides sans endotoxines ou pauvres en endotoxines utiles en therapie genique

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
D.L. PYLE ED.: "Separations for Biotechnology Vol. 3", 15 September 1994, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE GB, XP000196608 *
DATABASE JAPAN SCIENCE & TECH CORP XP002019237 *
H.W. JARRET: "Affinity chromatography with nucleic acid polymers", JOURNAL OF CHROMATOGRAPHY, vol. 618, 1993, AMSTERDAM,NL, pages 315 - 339, XP002000129 *
N. KOJI: "SEPARATION OF PROTEINS, NUCLEIC ACIDS AND GLYCOSIDES ON HYDROXYAPATITE", CERAMICS JAPAN, vol. 23, no. 11, 1988, JAPAN, pages 1065 - 1068 *
P. RAJAGOPAL AND J. FEIGON: "NMR studies of triple-strand formation from the homopurine-homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4", BIOCHEMISTRY, vol. 28, 1989, COLUMBUS OH, US, pages 7859 - 7870, XP000609103 *
T. ITO ET AL.,: "Sequence-specific DNA purification by triplex affinity capture", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 89, 1992, WASHINGTON DC,US, pages 495 - 498, XP002000128 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236495B2 (en) 1996-07-19 2012-08-07 Samuel Nochumson Process and equipment for plasmid purification
EP1036159A4 (fr) * 1997-12-08 2002-12-18 Genzyme Corp Procede de purification d'adn plasmidique et adn plasmidique pratiquement exempt d'adn genomique
WO2001092511A3 (fr) * 2000-05-26 2002-04-11 Aventis Pharma Sa Purification d'une formation de triple helice par une oligonucleotide immobilisee
FR2822476A1 (fr) * 2001-03-23 2002-09-27 Aventis Pharma Sa Procedes de purification et de detection de sequences cibles d'adn double brin par interaction triple helice
WO2002077274A3 (fr) * 2001-03-23 2003-10-02 Gencell Sa Procedes de purification et de detection de sequences cibles d'adn double brin par interaction triple helice.
EP2371970A3 (fr) * 2001-03-23 2011-12-21 Aventis Pharma S.A. Procédés de purification et de détection de séquences cibles d'ADN double brin par intéraction triple hélice
US7238522B2 (en) 2003-05-30 2007-07-03 Advisys, Inc. Devices and methods for biomaterial production
EP2364769A1 (fr) 2003-05-30 2011-09-14 VGX Pharmaceuticals, LLC Dispositifs et procédés de production de biomatériau
EP2246413A3 (fr) * 2004-04-19 2011-10-26 Centelion Procédé de préparation d'ADN plasmide de qualité pharmaceutique
WO2006060282A2 (fr) 2004-11-30 2006-06-08 Merial Limited Melangeurs pour chimiolyse de cellules

Also Published As

Publication number Publication date
SK129198A3 (en) 1999-03-12
AU2166197A (en) 1997-10-10
KR20000064693A (ko) 2000-11-06
CZ298498A3 (cs) 1999-01-13
NO984342D0 (no) 1998-09-18
CZ295587B6 (cs) 2005-08-17
BR9708227A (pt) 1999-07-27
FR2746412A1 (fr) 1997-09-26
CA2249465A1 (fr) 1997-09-25
FR2746412B1 (fr) 1998-06-12
HU225426B1 (en) 2006-11-28
HUP9902152A3 (en) 2001-04-28
KR100502116B1 (ko) 2005-12-20
EP0902835A1 (fr) 1999-03-24
AU730755B2 (en) 2001-03-15
HUP9902152A2 (hu) 1999-11-29
JP2000506736A (ja) 2000-06-06
US6730781B1 (en) 2004-05-04
NO984342L (no) 1998-09-18
IL126268A0 (en) 1999-05-09
ZA972462B (en) 1997-09-29

Similar Documents

Publication Publication Date Title
EP0902835A1 (fr) Purification d&#39;adn plasmidique de qualite pharmaceutique
EP0815214B1 (fr) Molecules d&#39;adn, preparation et utilisation en therapie genique
CA2208245C (fr) Purification d&#39;une formation de triple helice avec un oligonucleotide immobilise
AU2022210762A1 (en) Novel engineered and chimeric nucleases
AU2007202804B2 (en) Purification of a triple helix formation with an immobilized oligonucleotide
EP1370692A2 (fr) Procedes de purification et de detection de sequences cibles d&#39;adn double brin par interaction triple helice.
WO2024094793A1 (fr) Purification de produits d&#39;adn linéaire
EP4365303A1 (fr) Purification de produits d&#39;adn linéaire
MXPA98007323A (en) Purification of plasmid dna of pharmaceutical quality
FR2822476A1 (fr) Procedes de purification et de detection de sequences cibles d&#39;adn double brin par interaction triple helice
IL152860A (en) Purification of dna by a triple helix formation with an immobilized oligonucleotide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE GH HU IL IS JP KP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ GH

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/007323

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09153838

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2249465

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2249465

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1997914411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV1998-2984

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 129198

Country of ref document: SK

Ref document number: 1019980707410

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV1998-2984

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1997914411

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980707410

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980707410

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: PV1998-2984

Country of ref document: CZ

WWR Wipo information: refused in national office

Ref document number: 1997914411

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997914411

Country of ref document: EP