WO1997036205A1 - Color liquid crystal display device and its manufacture - Google Patents
Color liquid crystal display device and its manufacture Download PDFInfo
- Publication number
- WO1997036205A1 WO1997036205A1 PCT/JP1996/000755 JP9600755W WO9736205A1 WO 1997036205 A1 WO1997036205 A1 WO 1997036205A1 JP 9600755 W JP9600755 W JP 9600755W WO 9736205 A1 WO9736205 A1 WO 9736205A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- black matrix
- liquid crystal
- spacer
- display device
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims abstract description 284
- 125000006850 spacer group Chemical group 0.000 claims abstract description 267
- 239000011159 matrix material Substances 0.000 claims abstract description 168
- 239000011521 glass Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 72
- 239000000463 material Substances 0.000 claims description 71
- 239000006185 dispersion Substances 0.000 claims description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 2
- 239000011324 bead Substances 0.000 abstract description 230
- 230000006866 deterioration Effects 0.000 abstract description 2
- 235000019646 color tone Nutrition 0.000 abstract 2
- 239000000243 solution Substances 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 238000007639 printing Methods 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000010947 wet-dispersion method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13392—Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133512—Light shielding layers, e.g. black matrix
Definitions
- the present invention relates to a color liquid crystal display device in which a cell gap is formed using a spacer material and a method for manufacturing the same.
- a color liquid crystal panel used in a conventional color liquid crystal display device is arranged at a fixed interval through a spherical or cylindrical spacer made of silica, alumina, plastic, etc. between a pair of transparent electrodes facing each other.
- a cell gap was maintained and liquid crystal was sealed in the gap.
- This spacer material is sprayed on the electrode substrate. If the spray density is not uniform within the panel surface, cell gap unevenness is caused, and accordingly, color unevenness and contrast of the liquid crystal panel are caused. A phenomenon such as a drop in image quality and a decrease in image quality was observed.
- a spraying method using a dry method and a wet method is used as a method of uniformly dispersing the spacer material on the substrate.
- These spraying methods disperse the spacer material over the entire surface of the substrate by, for example, spraying nitrogen gas onto a nozzle attached to the container containing the spacer material or utilizing a pressure difference in the container.
- the display pixel portion 2 red R, blue B, green G
- the monitor material 7 adhered to the display pixel section 2
- the display pixel portion 2 of the substrate also has a spacer.
- Material 7 adhered, and the monitor material 7 adhered to the display pixel section 2 As a result, light is always transmitted regardless of the driving of the liquid crystal panel, and a height variation of several meters between the display pixel portion 2 of the substrate and the black matrix 4 is caused by Since the cell gap becomes non-uniform depending on where the spacer material 7 adheres, there is a problem that the color tone contrast of the color liquid crystal panel is reduced and the image quality is degraded.
- the present invention solves such a problem, and prevents a deterioration in image quality such as light leakage and color tone unevenness caused by the spreader material 7 scattered in the display pixel portion 2, thereby achieving a high quality color image. It is an object to provide a liquid crystal display device and a method for manufacturing the same. Disclosure of the invention
- the present invention provides a color liquid crystal display device in which a pair of glass substrates on which transparent electrodes having a predetermined pattern are formed are opposed to each other via a spacer material.
- the cell gap is formed by distributing and placing spacer materials in the area corresponding to the black matrix formed in FIG.
- FIG. 1 is a plan view of a panel used in a color liquid crystal display device of the present invention in which spacer materials are dispersed on a black matrix of a color filter substrate.
- Fig. 2 is a schematic diagram of a spacer disperser.
- Fig. 3 is a plan view (a) and a cross-sectional view (b) of a conventional color LCD panel.
- FIG. 4 shows a sectional view (a) and a plan view (b) of a color filter substrate A used in the present invention.
- FIG. 5 shows a cross-sectional view (a) and a plan view (b) of a color filter substrate B used in the present invention.
- FIG. 6 shows a sectional view (a) and a plan view (b) of a color filter substrate C used in the present invention.
- FIG. 7 shows a sectional view (a) and a plan view (b) of a color filter substrate D used in the present invention.
- Fig. 8 shows a method of dispersing and distributing spacer materials by applying electric charges to the black matrix of a color filter substrate or a transparent electrode having the same pitch and pattern width as the black matrix.
- FIG. 9 shows the dispersion of spacer material by applying charges to the black matrix of a color filter substrate or transparent electrodes having the same pitch and pattern width as the black matrix and the display pixel area.
- Sectional drawing which shows the arrangement method.
- FIG. 10 shows a sectional view (a) and a plan view (b) of a drive electrode substrate A used in the present invention.
- FIG. 11 shows a sectional view (a) and a plan view (b) of a drive electrode substrate B used in the present invention.
- FIG. 12 is a cross-sectional view showing a method of dispersing and disposing a spacer material by applying a charge to a transparent electrode having the same pitch and pattern width as the black matrix of the drive electrode substrate.
- FIG. 13 shows a spacer formed by applying a charge to a transparent electrode having the same pitch and pattern width as the black matrix of the drive electrode substrate, and to other transparent electrode parts other than the above-mentioned electrode.
- Sectional drawing which shows the dispersion
- FIG. 14 is a sectional view (a) of dummy pattern substrates A, B, and C used in the present invention. (b), (c) and plan view (d) are shown.
- FIG. 15 shows a method of disposing a spacer material using a dummy pattern substrate.
- FIG. 16 is a schematic diagram showing the principle of a dispersing device for a spacer material by the jet method.
- FIG. 17 is a cross-sectional view of a color filter substrate used for dispersing a spacer material by the jet method.
- FIG. 18 is a main configuration diagram showing the principle of dispersion of the spacer material by the jet method.
- FIG. 19 shows sectional views (a) and (b) and a plan view (c) of dummy pattern substrates D and E used for the wet dispersion method.
- FIG. 20 is a principal configuration diagram showing the principle of a device for dispersing a spacer material on a dummy pattern substrate for a color filter by a dot method.
- FIG. 21 is a cross-sectional view showing a dispersion arrangement method in which a spacer material is arranged on a black matrix of a color filter substrate using a dummy pattern substrate in the jet method dispersion method.
- FIG. 22 shows a sectional view (a) and a plan view (b) of the dispersion film.
- FIG. 23 is a process chart showing a method for dispersing and disposing a spacer material using a dispersion filter.
- FIG. 24 shows a sectional view (a) and a plan view (b) of a main part of the dispersion filter with electrodes.
- FIG. 25 is a process chart showing a method of dispersing and disposing a spacer material using a dispersion filter with electrodes.
- FIG. 26 is a main part configuration diagram showing a method of dispersing a spacer material using a fine nozzle.
- FIG. 27 is a main part configuration diagram showing a method of dispersing a spacer material using a plurality of fine nozzles.
- FIG. 1 shows the configuration of a liquid crystal panel according to one embodiment of the present invention.
- FIG. 1 (a) is a plan view of a color liquid crystal panel
- FIG. 1 (b) is a cross-sectional view taken along line AA ′ of FIG. 1 (a).
- the color liquid crystal panel joins two opposing substrates 1 and 101 (a color filter substrate and a drive electrode substrate) via a spacer material, in this example, a spacer bead 7 as an example. It is produced by pouring the liquid crystal 6 into the gap.
- the lower one, the color filter substrate 1 has a display pixel area (red R, blue B, ⁇ G) and a black matrix 4, which is a light shielding layer between them.
- a drive electrode 8 made of a thin film transistor is formed on a glass substrate on a drive electrode substrate 101 as an upper substrate, and an alignment film 5 is formed on the surface thereof.
- the spacer bead 7 is provided at a predetermined interval on at least one of the color filter substrate 1 and the drive electrode substrate 101. In this case, the beads 7 for the spacers are dispersed and arranged on the black matrix 4 formed on the color filter substrate to form a cell gap. .
- the upper and lower substrates 1 and 101 are joined via a spacer bead 7 disposed only on the black matrix 4 to achieve a cell gap height accuracy of ⁇
- a high-precision cell gap of 0.05 m or less is formed, and as shown in the conventional example of FIG. 3, light leakage and uneven color tone caused by spacer material 7 scattered in the display pixel unit 2 Image quality is prevented from deteriorating.
- a high-quality color liquid crystal display device can be realized.
- the spacer beads 7 are applied to the black filter formed on the color filter substrate 1.
- An embodiment in which the matrix is dispersedly arranged on the matrix 4 or on a predetermined position of the drive electrode substrate 101 will be described in detail below.
- the black matrix formed on the color filter substrate is charged with a charge having a different polarity from that of the spacer beads.
- a method for dispersing spacer beads only on a liquid will be described.
- FIG. 2 is a schematic diagram of a bead dispersing device for a spacer used in this embodiment.
- the bead dispersing device for spacers consists of 15 beads stirring vessel for spacer, 16 nozzles for ejecting beads for spacer, 17 nozzles for ejecting compressed gas, 19 beads dispersing chamber for spacer, and cover. 2 0.
- Reference numeral 18 denotes a compressed gas supply device.
- spacer beads 7 having a particle size of 6 to 9 m are monodispersed in a dry state.
- the container 15 is provided with a bead spray nozzle 16 for a sensor.
- a compressed gas ejection nozzle 17 for supplying / injecting the compressed gas from the compressed gas supply device 18 is arranged, for example, concentrically.
- a negative pressure is generated in the spacer bead injection nozzle 16, and using this force, the bead dispersing chamber 1 separated by the cover 20 using the force.
- the bead 7 for a spacer is sprayed on the board 21 inserted in the board 9. At this time, the spacer beads 7 are electrically charged, and the dispersed spacer beads 7 fall naturally by their own weight and are dispersed and arranged on the substrate 21. 22 is a chuck for the substrate 21.
- the beads 7 for the spacer were dispersed.
- spherical beads having a particle size of 6 to 9 m made of a plastic material are used as spacer materials.
- spherical beads having a particle diameter of 6 to 9 ⁇ m, such as a cylindrical force or alumina can be used.
- the beads for splicer 7 fall naturally, the beads for sprinkler whose abrasive grain size has increased due to agglomeration, etc., will naturally drop in the initial stage after ejection due to the increase in their own weight. For this reason, it is desirable that the substrate 21 should be carried into the apparatus after a while after the spacer beads are ejected.
- the above-described embodiment uses a Coulomb force to disperse and disperse the beads for the Hess base on the black matrix formed on the color filter substrate.
- the structure of the color filter substrate A will be described with reference to FIG.
- the black matrix 4 of the color filter substrate 1 is made of a conductive material such as carbon or molybdenum as a component thereof, and is wired so that a uniform arbitrary voltage can be directly applied only to the black matrix 4. Substrate.
- FIG. 8 shows the principle of dispersal arrangement of beads for a spacer using Coulomb force using the color filter substrate A described above.
- the wiring is connected to the black matrix 4 so that A charge having a polarity different from that of the beads 7 is applied (tens to hundreds of V).
- an attractive force is generated between the spacer beads 7 and the black matrix 4 by the Coulomb force, and the spacer beads are guided only on the black matrix 4 by this attractive force and distributed. Can be placed.
- the above dispersion method can also be realized by using a color filter substrate B or C or D.
- Fig. 5 shows the structure of the color filter substrate B.
- the color filter substrate B is a substrate having electrodes 10 buried along the black matrix 4 and having a wiring structure so that a voltage can be arbitrarily applied.
- This is, for example, A pitch and pattern width mask similar to the pattern of black matrix 4 is formed on glass substrate 1 by trilithography technology, and is transparent on black matrix 4 by sputtering technology and printing technology. It can be manufactured by forming the electrode 10 and then forming the alignment film 5.
- the transparent electrodes 10 formed on the black matrix 4 are arranged so that a uniform voltage can be arbitrarily applied.
- Fig. 6 shows the structure of the empty filter substrate C.
- the color filter substrate C has a wiring structure that allows a uniform arbitrary voltage to be directly applied to the black matrix 4, and the uniform voltage is applied to the display pixel section 2 independently of the black matrix 4.
- reference numeral 9 denotes a power supply
- 80 denotes a wiring
- Fig. 7 shows the structure of the color filter substrate D.
- the color filter substrate D has a wiring structure in which the electrodes 11 are embedded along the black matrix 4 so that a voltage can be arbitrarily applied, and is independent of the black matrix 4.
- the wiring structure is such that a uniform voltage can be arbitrarily applied to the display pixel portion 2.
- the electrodes 10 and 11 embedded on the black matrix 4 or the black matrix 4 are provided with spacer beads 7.
- spacer beads 7 As shown in FIG. 9, by applying a voltage so as to have a different polarity charge and applying a voltage to the display pixel portion 2 so as to have the same polarity charge as the spacer beads 7.
- the attractive force acts on the spacer beads 7 on the black matrix 4 and the repulsive force acts on the spacer beads 7 on the display pixel section 2, the spacers are more efficiently placed on the black matrix 4 of the color filter substrate 1. It is possible to disperse the beads 7 for use.
- Example 2 the electric charge of the spacer beads was used to drive By applying a spacer bead and a different polarity charge to the black matrix formed on the electrode substrate 101, the spacer bead is distributed only on a predetermined position of the substrate 101. A method of dispersing spacer beads to be arranged will be described.
- FIG. 10 shows the structure of the drive electrode substrate A used in this embodiment.
- the drive electrode substrate A has a drive electrode 8 on which a transparent electrode 12 having the same pitch and pattern width as the black matrix 4 described above is formed. Are wired so that a uniform voltage can be arbitrarily applied. Further, when the drive electrode substrate 101 and the color filter substrate are joined via the spacer bead 7, the relative positional relationship such that the transparent electrode 12 and the black matrix 4 overlap. This is because, for example, the same pitch and pattern width mask as the pattern of the black matrix 4 is formed on the glass substrate 1 by the photolithography technology, and the sputtering technology and the printing technology are used. It can be manufactured by forming a transparent electrode on the driving electrode and then forming an alignment film.
- FIG. 12 shows the principle of the dispersed arrangement of the beads for the spacer using the Coulomb force using the drive electrode substrate A.
- the transparent electrode 1 having the same pitch and pattern width as the black matrix 4 is used.
- a charge having a polarity different from that of the spacer bead 7 is applied to the wiring connected to 2 (several tens to several hundreds of V).
- an attractive force is generated between the spacer beads 7 and the transparent electrode 12 by the Coulomb force, and the spacer beads can be guided and dispersed only on the transparent electrode 12 by the attractive force. .
- FIG. 11 shows the structure of the drive electrode substrate B.
- the drive electrode substrate B has the same pitch and pattern width as the black matrix 4 on the drive electrode.
- the transparent electrodes 13 are formed on the drive electrodes corresponding to the display pixels excluding the transparent electrodes 12, and these transparent electrodes 12, 13 are formed. Are wired so that a uniform voltage can be applied independently. Further, when the drive electrode substrate and the color filter substrate are joined via the spacer beads ⁇ ⁇ , the transparent electrode 12 and the black matrix 4 have a relative positional relationship such that they overlap each other.
- a mask having the same pitch and pattern width as the pattern of the black matrix 4 is formed on a glass substrate by photolithography technology, and the transparent electrode 12 having the same pattern is formed by sputtering technology or the like. It is formed on the drive electrode by printing technology.
- a transparent electrode 13 corresponding to a display pixel is formed on a portion other than the formed transparent electrode 12, and thereafter, an alignment film is formed.
- a dummy pattern substrate having electrodes having the same pitch and butter width as the black matrix of the color filter substrate was used by utilizing the charge of the spacer beads, By applying an electric charge of a different polarity to that of the spacer beads, the spacer beads are separated on the pattern.
- a method of dispersing beads for spacers in which spacer beads are transferred onto black matrix formed on a color filter substrate by using electrostatic force after being scattered is described. .
- FIG. 14 shows the structure of the dummy pattern substrate A used in the present invention.
- the substrate A has a groove with a depth of 3 to 1 Om having the same pitch and pattern width as the above-mentioned black matrix 4 on the surface of the substrate A, and a uniform groove on the base of the groove.
- the transparent electrode 24 is formed so that a voltage can be arbitrarily applied. Also, it is not particularly specified as a substrate material.
- a pattern mask having the same pitch and pattern width as the black matrix 4 of the color filter substrate is formed on the substrate by photolithography, for example, and dry or wet etching is performed.
- the groove can be formed in the required pattern shape by using this method, and the electrode can be buried by spattering.
- FIG. 15 shows a process of a method for dispersing beads for a spacer using the dummy pattern substrate A described above.
- the beads for spacers are dispersed in the dummy pattern substrate.
- a dispersion method a method similar to the principle shown in FIG. 8 of the first embodiment is used. That is, as shown in FIG. 15 (b), the electrodes 24 formed on the dummy pattern substrate A23 are made to have the same pattern as the pattern of the black matrix 4 of the color filter substrate 1 in a single pattern.
- the attractive force due to the Coulomb force generated between the bead 7 for spacer and the electrode 24 By applying a voltage of several tens to several hundreds V so as to have a different polarity from the electric charge of the bead 7, the attractive force due to the Coulomb force generated between the bead 7 for spacer and the electrode 24.
- the beads 7 for spacers are dispersed and arranged only on the pattern of the black matrix 4 by using.
- the dummy pattern board B or C shown in FIGS. 14 (b) and (c) is used as the dummy pattern board shown in FIGS. 15 (a) and (c). Is also possible.
- the electrode pattern substrate B shown in FIG. 14 (b) has electrodes 24 formed in a convex state at the same pitch and pattern width as the black matrix 4 of the color filter substrate. This is a substrate that has a wiring structure that can apply arbitrarily.This is a photomask that forms a pattern mask similar to the black matrix 4 pattern of the color filter substrate, and Alternatively, it can be produced by forming electrodes by a printing technique.
- the structure of the dummy pattern substrate C is shown in Fig. 14 (c).
- the electrodes 24 having the same pitch and pattern width as the black matrix 4 of the color fill substrate are embedded in the substrate 23 so that a voltage can be arbitrarily applied.
- This is a substrate having a wiring structure.
- a groove similar to the pattern of the black matrix 4 is formed on a glass substrate by a photolithography technique, and an electrode is formed in a concave portion by a sputtering technique or a printing technique.
- the electrode 24 is wired so that a uniform voltage can be arbitrarily applied.
- the same material as that of the substrate is sputtered or printed on the electrode 24 to form the electrode 24 embedded in the substrate 23. Can be formed.
- FIG. 15 after the spacer beads 7 are dispersed and arranged on the dummy pattern substrate A, while maintaining the voltage applied to the electrodes 24 formed on the dummy pattern substrate 23, FIG. Invert as shown in (c), and align with the black matrix 4 of the substrates A to D shown in FIGS. 4 to 7 of the first embodiment.
- the voltage applied to the electrodes 24 of the dummy pattern substrate 23 is made the same polarity as that of the spacer beads 7 to cause repulsion, and the black matrix of the color filter substrate 1 is actuated.
- the spacer beads 7 By making the voltage applied to the box 4 different from that of the spacer beads 7, the spacer beads 7 generate a repulsive force from the dummy pattern board 23 by Coulomb force, and a Move to black matrix 4 and distribute to receive attraction.
- the transparent electrodes 10 and 11 having a pattern having the same pitch and pattern width as or on the black matrix 4 are used.
- more efficient blackening is achieved. It is also possible to disperse the beads 7 for the spacer only on the matrix 4.
- a dummy pattern substrate having electrodes having the same pitch and pattern width as the black matrix of the color-fill substrate using the charge of the spacer beads was used.
- the spacer beads are dispersed and arranged on the pattern by applying a spacer bead and a different polarity charge to this electrode, and then the electrostatic bead is used to place a bead on the drive electrode substrate at a predetermined position.
- a method for dispersing a bead for use in transferring a bead for the use of a sensor will be described.
- the spacer beads shown in FIG. 2 of the first embodiment are used.
- the dispersing device disperses the beads 7 for the dummy pattern substrate.
- a dispersing method a method similar to the principle shown in FIGS. 4 to 7 of the first embodiment is used.
- the electrodes 24 formed on the dummy pattern substrate A have the same polarity as the black matrix pattern of the color filter substrate so that the electrodes 24 have a polarity different from that of the electric charge of the spacer beads 7.
- a voltage of 100 V the spacer beads 7 are dispersed only on the black matrix pattern 4 using the attractive force of the Coulomb force generated between the spacer beads 7 and the spacer beads 7. Let it.
- the spacer beads 7 are dispersed in the dummy pattern substrate by using the dummy pattern substrate B or C shown in FIG. 14 of the third embodiment. Is also possible.
- the spacer beads 7 were dispersed and arranged on the dummy pattern substrate A, the spacer beads were inverted while maintaining the voltage applied to the electrodes formed on the dummy pattern substrate.
- Pattern matching is performed with a transparent electrode 12 having a pattern of the same pitch and pattern width as the black matrix 4 formed on the drive electrode substrate A or B shown in FIGS. After the pattern positions of both are set, the voltage applied to the electrodes 24 of the dummy pattern substrate 23 is set to the same polarity as the beads 7 for the spacers, and the black matrix 7 of the drive electrode substrate 101 is set to the same polarity.
- the spacer beads 7 are separated from the dummy pattern substrate by Coulomb force. Receives a repulsive force and an attractive force from the drive electrode substrate 101, moves and disperses them on the transparent electrodes 12 having a pattern having the same pitch and pattern width as the black matrix 4.
- the driving electrode substrate B in addition to applying the charge of the opposite polarity to the spacer beads 7 to the transparent electrode 12 having the same pitch and pattern width as the black matrix 4, in addition to applying a charge of the same polarity as that of the spacer beads 7 to the transparent electrode 13 other than the transparent electrode 12 having a pattern of the same pitch and pattern width as the black matrix 4, It is possible to efficiently disperse the spacer beads 7 only on the pattern having the same pitch and pattern width as the black matrix.
- Fig. 16 shows the principle of the bead dispersing device for spacers using the jet method.
- the apparatus is composed of a substrate transfer section including a chuck 27 and an arm 28, and a solution tank 26 for a bead dispersion solution 25 for a spacer.
- the substrate 21 is fixed to a chuck 27 whose entrance angle and discharge angle with respect to the liquid surface of the solution tank can be adjusted arbitrarily.
- This chuck 27 is an arm 2 whose vertical speed can be adjusted. Attached to 8.
- the substrate 21 can be taken out of the spacer bead dispersion solution 25 at an arbitrary angle and at an arbitrary speed.
- the bead dispersion solution 25 is prepared by converting a bead made of silica, alumina, polyethylene, etc. with a particle size of several meters into pure water or 30% isopropanol mixed pure water. Dispersion and stirring are used, and the mixing amount of beads for spacer is 10 to 30 w%. The spacer beads 7 are completely monodispersed in the solution.
- FIG. 17 shows a cross section of the color filter substrate 1 used in this dispersion method.
- the color matrix substrate 1 has a black matrix pattern portion having a depth of about 2 m and a width of about 10 m due to manufacturing processes such as film formation.
- Fig. 18 shows the principle of the method of dispersing beads for spacers by the jet method.
- the color filter substrate 1 is fixed to the chuck 27, and is completely immersed in the spacer bead dispersion solution 2 ⁇ by the movement of the arm 28. Thereafter, the chuck 27 is tilted in the solution 25 so as to be at an angle of 10 to 45 degrees with respect to the solution surface, and a constant angle of 5 to 100 mm Zs is maintained by the arm 28 while maintaining a constant angle. Increase diagonally at speed.
- the cross-section of substrate 1 is the pattern of black matrix 4 due to the manufacturing process such as film formation.
- the concave portion has a depth of about 2 m and a width of about 1 Q ⁇ m, and as the chuck 27 rises, the spacer beads 7 are dispersed and arranged along the concave shape. .
- the dispersion arrangement ratio of the spacer beads 7 depends on the viscosity of the solution 25, the angle of the chuck 27, the rising speed, and the like. By controlling this value arbitrarily, the spacer beads can be adjusted. 7 can be controlled.
- the adhesion of the spacer beads 7 to the back surface of the substrate 1 can be completely removed by, for example, an air knife that blows high-pressure air to the back surface, although not shown.
- the method of dispersing the spacer beads by the slit method is a method in which the spacer beads 7 are dispersed and adhered to the concave portions by using the groove shape formed on the surface of the substrate 1. Therefore, by using the color filter substrate A or B or C or D shown in FIG. 4 to FIG. It is also possible to disperse the beads 7 only on the black matrix 4.
- a dummy pattern substrate having a groove shape similar to that of the black matrix of the color filter substrate is immersed in a solution 25 in which spacer beads 7 are dispersed, and is slid upward.
- the spacer beads 7 are dispersed and arranged on the dummy pattern, and then the black matrix 4 formed on the color filter or the drive
- a method of dispersing the spacer beads 7 for transferring the spacer beads 7 onto a predetermined position on the substrate will be described.
- the dummy pattern substrate D used in this embodiment is shown in FIG.
- the groove has a concave shape with a depth of l to 6 m and a width of about 8 to 10 ⁇ m.
- An electrode 24 to which pressure can be applied is formed. This is a black matrix by photolithography.
- a pattern mask reverse to that of the evening is formed, a groove is formed in a required pattern shape by dry or wet etching, and then an electrode 24 is formed at the bottom of the groove by sputtering. At this time, the electrode may be embedded in the groove bottom.
- Various materials such as glass and ceramics can be used as the substrate material.
- the beads dispersed solution for spacer 25 contains beads for sensors made of silica, alumina, polypropylene, etc. with a particle size of several meters, pure water or 30% isopropanol. The mixture is mixed and stirred in pure water, and the mixing amount of the beads 7 for the spacer is 10 to 30 w%. The spacer beads 7 are completely monodispersed in the solution 25.
- Fig. 20 shows the principle of the method of dispersing beads for spacers by the nip unit method.
- the dummy pattern substrate 23 is fixed to the chuck 27, and is completely immersed in the bead dispersion solution 25 for spacer by the movement of the arm 28.
- chuck 27 is tilted in the solution so that it is at 10 to 45 degrees with respect to the surface of solution 25, and rises obliquely at a constant speed of 5 to 10 Omm / s while maintaining the angle.
- the pattern portion similar to the black matrix 4 is in a recessed state with a depth of about 2 m and a width of about 10 m. Accordingly, spacer beads 7 are dispersedly arranged along the concave shape.
- a voltage different from that of the spacer beads 7 is applied to the electrode 24 of the dummy substrate D 23 so that the dispersed beads 7 for the spacer do not move.
- the spacer beads 7 are adsorbed to the dummy pattern substrate 23 using the Coulomb force. Invert while maintaining this applied voltage, and match the pattern with the black matrix 4 of the color filter substrate A or B or C or D1. After the pattern positions of both are set, the voltage applied to the electrodes 24 of the dummy pattern substrate 23 is set to the same polarity as that of the spacer beads 7, and the black matrix 4 of the color filter substrate 1 is set.
- the bead 7 has a different polarity from the voltage applied to the spacer beads 7 so that the spacer beads 7 generate a repulsive force from the dummy pattern substrate 23 due to the Coulomb force, and Since the substrate 1 receives an attractive force, it can be moved on the black matrix 4 and distributed.
- the electrodes 10 and 11 embedded under the black matrix 4 or the black matrix 4 are different from the spacer beads 7.
- the display pixel portion 2 so as to have the same polar charge as the spacer beads 7 as shown in FIG. Since the attractive force acts on the black matrix 4 and the repulsive force acts on the spacer beads 7 in the display pixel section 2, the black matrix 4 on the color filter substrate 1 is more efficiently placed on the black matrix 4. It is only possible to disperse the spacer beads 7.
- the dummy pattern substrate D23 has a wiring structure in which a pattern electrode 24 similar to the black matrix is embedded inside the substrate 23, and a groove is formed on the dummy pattern substrate D23 so that a uniform voltage can be arbitrarily applied.
- a turn mask is formed, electrodes are formed by a snow, a laser, or a printing technique, and a substrate layer is formed on the entire surface by sputtering and a printing technique. Then, a pattern mask opposite to the black matrix pattern is formed by photolithography, and grooves are formed in the required pattern shape by dry or wet etching. It is manufactured by forming a pattern mask similar to the liquid pattern, and forming a convex shape on the surface by sputtering and printing technology.
- the black matrix 4 or the electrodes 10 buried under the black matrix 4 are used.
- a voltage is applied to 11 so that it has a charge of a different polarity from the spacer beads 7, and a voltage is applied to the display pixel section 2 so that it has a charge of the same polarity as the spacer beads 7.
- an attractive force acts on the black matrix 4 and a repulsive force acts on the beads 7 for the display in the display pixel portion 2, thereby improving the efficiency. It is possible to disperse the spacer beads 7 only on the black matrix 4.
- the spacer beads 7 can be dispersed by using a drive electrode substrate. After dispersing the spacer beads 7 on the dummy pattern substrate D or E, the beads are inverted while maintaining the voltage applied to the electrodes 24 formed on the dummy pattern substrate 23, and the first of the first embodiment. Pattern alignment with the transparent electrode 12 having the same pitch and pattern width as the black matrix 4 formed on the drive electrode substrate 101 shown in FIG. 2 is performed. After the pattern positions of both are set, the voltage applied to the electrode 24 of the dummy pattern substrate 23 is set to the same polarity as that of the beads 7 for the spacer, and the same pitch and pitch as those of the black matrix 4 of the drive electrode substrate 101 are used.
- the drive electrode substrate B in addition to applying a charge of a different polarity to the spacer beads 7 to the transparent electrode 12 having the same pitch and pattern width as the black matrix 4, in addition to applying a charge of the same polarity as the spacer beads 7 to the transparent electrode 13 other than the transparent electrode 13 having a pattern with the same pitch and pattern width as the black matrix, more efficient It is possible to disperse spacer beads on the electrode 12 having the same pitch and pattern width as the black matrix 4.
- a dispersion filter having holes in a pattern similar to the black matrix of the color filter substrate is placed on the color filter substrate or the drive electrode substrate, and spacer beads are placed in the filter holes.
- Fig. 22 shows the dispersion filter.
- the dispersion filter 30 is a flat substrate that is larger than the color filter substrate and the drive electrode substrate to be used, and has the same pitch and pattern width as the black matrix 4 and the spacer beads 7 to be used.
- a hole 31 having a diameter about 0.5 to 4 m larger than the diameter is provided.
- the shape of the hole 31 may be a shape other than a circle, such as a polygon such as a square or a hexagon, or an ellipse, into which one spacer bead can be inserted.
- the substrate material of the filter 30 is made of various materials such as glass and ceramics, and the thickness of the substrate depends on the spacer used.
- the diameter should be equal to or more than 1.5 times the diameter of beads 7 for use.
- FIG. 23 shows a conceptual diagram of a method of dispersing and disposing the spacer beads 7 using the dispersing filter 30.
- the dispersing filter 30 is set on the empty filter substrate or the driving electrode substrate and then inserted into the device.
- the spacer beads 7 sprayed from the spacer bead ejection nozzles 16 are sprayed on the filter 30 or in the holes 31.
- a flat plate having a linear shape on one side, such as a scrubber 32, is used on the filter 30.
- the filter 30 is removed, so that the black matrix 4 formed on the empty filter substrate or the drive electrode substrate 1 is removed. 01 Disperse and arrange spacer beads 7 on 1.
- a color filter substrate A or B or C or D shown in FIGS. 4 to 7 of the first embodiment may be used as the color filter substrate 1.
- the electrodes 10 and 11 having the same pitch and pattern width as the black matrix 4 or the black matrix of the color finoleta substrate 1 are made to have a different polarity from the electric charge of the beads 7 for the spacer.
- the spacer beads 7 are adsorbed on the color filter substrate 1, and the spacer beads 7 can be more efficiently dispersed only on the black matrix 4.
- spacer beads are provided on the transparent electrodes 10 and 11 having a pattern of the same pitch and pattern width on the black matrix 4 or the black matrix.
- a charge having the same polarity as that of the spacer beads 7 is applied to the display pixel portion 2 to the black matrix 4. It is possible to disperse the spacer beads 7 only in the case.
- the same pitch and pattern width as the black matrix 4 of the drive electrode substrate 101 are used.
- a transparent electrode 1 having a pattern with the same pitch and pattern width as that of the matrix 4 is adsorbed to the transparent electrode i 2 having a pattern with the same pitch and pattern width as the matrix 4, and more efficiently having a pattern with the same pitch and pattern width as the black matrix 4. It is possible to disperse the beads 7 for the spacer only on 2.
- the driving electrode substrate B in addition to applying a charge having a different polarity from the spacer beads 7 to a transparent electrode having a pattern having the same pitch and pattern width as the black matrix 4, By applying a charge of the same polarity as that of the spacer beads 7 to a transparent electrode other than a transparent electrode having a pattern of the same pitch and pattern width as the black matrix 4, it is possible to further improve the efficiency. It is possible to disperse the spacer beads 7 only on the same pitch and pattern width as the black matrix 4.
- a filter with a dispersion electrode having holes in a pattern similar to the black matrix of the color filter substrate is placed on the color filter substrate or the drive electrode substrate, and the filter holes are formed using electrostatic force.
- the spacer beads are guided one by one into the section, and the spacer beads are dispersed and arranged at a predetermined position on the black matrix formed on the color filter substrate or on the drive electrode substrate. The method of dispersing the spacer beads will be described.
- Fig. 24 shows a filter with dispersion electrodes.
- the dispersion film with electrodes 3 3 is a flat substrate larger than the color filter substrate 1 to be used, and the spacer beads 7 to be used along the same pitch and pattern width as the black matrix 4. 0.5 to 4 m from the diameter of A hole 35 having a larger diameter is provided.
- the shape of the holes 35 is not limited to a circle, but may be any shape such as a polygon such as a square or a hexagon, or an oval such that one spacer bead can be inserted.
- the filter 33 has electrodes 36 and 37 formed on the filter surface and the pore wall, and particularly has an electrode 3 having the same size as the bead diameter for the spacer used on the pore wall. 7 are formed along the hole wall.
- the substrate is made of various materials such as glass and ceramics, and the thickness of the substrate is at least twice the diameter of the spacer beads 7 used.
- Fig. 25 shows a conceptual diagram of the bead dispersing method for spacers using a dispersing film with electrodes.
- the dispersing filter 33 is placed on the empty filter substrate 1 or the driving electrode substrate 101 and then inserted into the device.
- the substrate with electrodes 33 has the surface electrode 34 in the same polarity as the electric charge of the spacer beads 7, and the pore wall electrodes 36, 37 in the order from the closest to the surface electrode 34. It is applied so that the charge of the service bead 7 and the different polarity, the same polarity, the different polarity...
- the spacer beads 7 sprayed from the spacer bead ejection nozzles 16 move to the holes because a repulsive force is generated on the filter surface and a bow (force) is generated in the holes 35.
- the hole 35 has one spacer bead 7.
- the electric charges are inverted and one space existing in the hole portion 35 is formed.
- the beads 7 for the spacer are moved to the color filter side by the size of the pore electrodes 36 and 37.
- the charge reversal of the pore electrodes 36 and 37 is repeated so that the beads 7 for the spacer are obtained.
- a color filter substrate A or B or C or D shown in FIGS. 4 to 7 of the first embodiment may be used as the color filter substrate.
- the black matrix 4 of the empty filter substrate or an electrode having the same pitch and pattern width as the black matrix 4 is made to have a different polarity from the electric charge of the spacer beads 7 so that The spacer beads are adsorbed on the color filter substrate 1, and the spacer beads 7 can be more efficiently dispersed on the black matrix 4.
- spacer beads 7 are provided on the transparent electrodes 10 and 11 having the same pitch and pattern width as the black matrix 4 or the same as the black matrix 4.
- the driving electrode substrate As the driving electrode substrate, the driving electrode substrate A or B shown in FIG. 10 or FIG. 11 of Embodiment 2 may be used.
- the transparent electrode 12 having the same pitch and pattern width as the black matrix 4 of the drive electrode substrate 101 is made to have a different polarity from the electric charge of the spacer beads 7 so as to form a spacer for the spacer.
- the beads ⁇ adhere to the transparent electrode 12 having the same pitch and pattern width as the black matrix 4 on the drive electrode substrate 101, and the same pitch as the black matrix 4 more efficiently. Further, it is possible to disperse the spacer beads 7 only on the transparent electrode 12 having the pattern width.
- liquefied glass is spouted from a fine nozzle having a fine opening with a diameter of several meters, so that the liquid glass is spread over a black matrix formed on the color filter substrate and a predetermined position on the drive electrode substrate.
- the method of dispersing the beads for the spacer in which the beads for the distributor are dispersed will be described.
- Figure 26 shows the method of dispersing and distributing beads for a spacer using the fine nozzle method.
- the device consists of a solution tank (not shown), a fine nozzle 42 for ejecting the solution, and a pump (not shown) for replenishing the solution to the fine nozzle 42. Then, a color filter substrate or a drive electrode substrate is provided.
- the liquid tank is filled with liquefied glass, and liquefied glass is ejected from a fine nozzle 42 having a fine piston mechanism by an ink jet method.
- the diameter of the fine nozzle 42 used in this embodiment is very small, that is, a few meters, and the liquefied glass that has been ejected is separated from the fine nozzle 42 by a spherical shape in the atmosphere.
- the glass beads adhere to the color filter substrate and are used as spacer beads 43 having a required height.
- the black matrix is obtained. It is possible to disperse the spacer beads 43 on the box 41.
- spacer beads 43 can be dispersedly arranged on the drive electrode substrate 40 along the same pitch and pattern width as the black matrix 41.
- the number of the fine nozzles 40 is not limited to one, and a plurality of fine nozzles 40 may be provided at intervals of the black matrix 41 of the empty filter substrate 40 as shown in FIG. 27. By installing a plurality of nozzles 42, the work efficiency can be improved.
- the entrance ratio of the black material to the projection area of the black matrix of the liquid crystal panel is 70 to 100%.
- the adhesion of beads to the display pixel area can be suppressed to 30% or less, which significantly improves image quality such as light leakage and uneven color tone.
- the color filter substrate A or B or C or D shown in FIGS. 4 to 7 of Example 1 or the drive electrode substrate A or B shown in FIGS. 10 and 11 of Example 2 is used.
- the black matrix is used to place spacer beads on the black matrix using the attractive force of Coulomb force. By maintaining the electric charge, the movement of the spacer beads during the movement of the substrate can be prevented.
- the color liquid crystal display device includes a personal computer, a television, a clock, a car navigation system, a computer game, a videophone, a measuring device, an inspection device, a processing device, an image processing device, a medical device, a monitor system, and a communication device.
- a high-quality display device without light leakage or uneven color tone can be provided as a display unit for various electronic devices such as conference systems.
- since there is no sputter material in the display pixel unit In addition to eliminating light leakage caused by the spacer material, it is possible to obtain high-precision and high-quality color liquid crystal panels and color liquid crystal display devices with a cell gap height accuracy of 0.05 m or less at the same time. It is extremely effective.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Abstract
A color liquid crystal display device which can display high-quality pictures by preventing the deterioration of the picture quality resulting from light leakage and uneven color tones caused by spacers scattered on a displaying picture element section by resolving such a trouble that the color tone and contrast of a color liquid crystal panel and the picture quality are deteriorated by spacers on the entire surface of a substrate. Since two glass substrates having patterned transparent electrodes are faced to each other with spacer beads in between and spacer beads are distributed on a black matrix formed on a color filter constituting the color liquid crystal panel, no spacer exists in the displaying picture element section. Therefore, the light leakage, etc., caused by the spacers does not occur and a color liquid crystal display which has high cell gap height accuracy and can display high-quality pictures can be obtained.
Description
明 細 書 Specification
力ラー液晶表示装置及びその製造方法 技術分野 Technical Field
この発明は、 スぺ一サ材を用いてセルギャ ップを形成するカラ一液晶 表示装置及びその製造方法に関わるものである。 背景技術 The present invention relates to a color liquid crystal display device in which a cell gap is formed using a spacer material and a method for manufacturing the same. Background art
従来のカラー液晶表示装置において使用されるカラ一液晶パネルは、 相対する一対の透明電極間にシ リカ、 アルミ ナ、 プラスチックなどから 成る球状または円柱形状のスぺーサ材を介して一定の間隔にセルギヤ ッ プを保ち、 この隙間に液晶を封入させる構造が一般的であった。 このス ベーサ材は電極基板上に散布されるものであるが、 その散布密度がパネ ル面内で不均一であるとセルギャ ップムラを引き起こ し、 これに伴い液 晶パネルの色ムラやコン トラス 卜低下など画像品質が低下する現象が見 られた。 A color liquid crystal panel used in a conventional color liquid crystal display device is arranged at a fixed interval through a spherical or cylindrical spacer made of silica, alumina, plastic, etc. between a pair of transparent electrodes facing each other. In general, a cell gap was maintained and liquid crystal was sealed in the gap. This spacer material is sprayed on the electrode substrate. If the spray density is not uniform within the panel surface, cell gap unevenness is caused, and accordingly, color unevenness and contrast of the liquid crystal panel are caused. A phenomenon such as a drop in image quality and a decrease in image quality was observed.
そこで、 スぺ一サ材を基板上に均一に分散させる方法として、 従来技 術では乾式及び湿式方法による散布手段がとられている。 これらの散布 方法はスぺ一サ材の入った容器に付属するノズルに窒素ガスを吹き付け たり、 容器内圧力差を利用するなどして、 基板全面にスぺーサ材を分散 させるものである。 Therefore, as a method of uniformly dispersing the spacer material on the substrate, in the related art, a spraying method using a dry method and a wet method is used. These spraying methods disperse the spacer material over the entire surface of the substrate by, for example, spraying nitrogen gas onto a nozzle attached to the container containing the spacer material or utilizing a pressure difference in the container.
しかしながら、 スぺーサ材を基板全面に散布する従来法では、 第 3図 に示すよう に、 基板上に構成された表示画素部 2 (赤 R、 青 B、 緑 G ) にもスぺ一サ材 7が付着し、 この表示画素部 2に付着したスぺ一サ材 7
により、 液晶パネルの駆動に関係な く 常時光が透過する状態となるこ と や、 基板の表示画素部 2 とブラ ッ クマ 卜 リ クス 4 との間の数 mの高さ ばらつきが起因となり、 スぺ一サ材 7の付着場所によりセルギヤ ップが 不均一となるために、 力ラー液晶パネルの色調ゃコ ン トラス 卜が低下し 画像品質が劣化するという問題があつた。 However, according to the conventional method in which a spacer material is sprayed on the entire surface of the substrate, as shown in FIG. 3, the display pixel portion 2 (red R, blue B, green G) formed on the substrate also has a spacer. Material 7 adhered, and the monitor material 7 adhered to the display pixel section 2 As a result, light is always transmitted regardless of the driving of the liquid crystal panel, and a height variation of several meters between the display pixel portion 2 of the substrate and the black matrix 4 is caused by Since the cell gap becomes non-uniform depending on where the spacer material 7 adheres, there is a problem that the color tone contrast of the color liquid crystal panel is reduced and the image quality is degraded.
本発明は、 このような課題を解決するもので、 表示画素部 2に散布さ れるスぺ一サ材 7に起因する光漏れや色調ムラなどの画像品質の低下を 防ぎ、 高画質のカラ一液晶表示装置及びその製造方法を提供するこ とを 目的とする。 発明の開示 The present invention solves such a problem, and prevents a deterioration in image quality such as light leakage and color tone unevenness caused by the spreader material 7 scattered in the display pixel portion 2, thereby achieving a high quality color image. It is an object to provide a liquid crystal display device and a method for manufacturing the same. Disclosure of the invention
上記課題を解決するために本発明では、 所定のパターンの透明電極を 形成した一対のガラス基板をスぺ一サ材を介して対向させるカラー液晶 表示装置において、 前記カラーパネルを構成する力ラーフィルタに形成 されたブラ ッ クマ ト リ クスに対応する領域にスぺーサ材を分布配置させ てセルギヤ ップを形成を行ったものである。 In order to solve the above-mentioned problems, the present invention provides a color liquid crystal display device in which a pair of glass substrates on which transparent electrodes having a predetermined pattern are formed are opposed to each other via a spacer material. The cell gap is formed by distributing and placing spacer materials in the area corresponding to the black matrix formed in FIG.
ブラ ッ クマ ト リ クスに対応する領域にスぺーサ材を分布配置させるこ とにより、 スぺ一サ材は表示画素部には殆ど存在しないため、 スぺーサ 材に起因する光漏れなどがなく なると同時に、 セルギャ ップ高さ精度の 良い高画質のカラー液晶表示装置を得るこ とが出来る。 図面の簡単な説明 By distributing the spacer material in the area corresponding to the black matrix, since the spacer material is hardly present in the display pixel portion, light leakage or the like due to the spacer material is prevented. At the same time, it is possible to obtain a high-quality color liquid crystal display device with high cell gap height accuracy. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 カラーフィルタ基板のブラ ックマ ト リ クス上にスぺーサ材を 分散配置した本発明のカラー液晶表示装置に使用されるパネルの平面図FIG. 1 is a plan view of a panel used in a color liquid crystal display device of the present invention in which spacer materials are dispersed on a black matrix of a color filter substrate.
( a ) 構造と断面図 ( b ) を示す。 (a) Structure and cross-sectional view (b) are shown.
第 2図は、 スぺーサ材の分散装置の概略図。
第 3図は、 従来のカラ一液晶パネルの平面図 ( a ) 及び断面図 ( b ) 。 第 4図は、 本発明に用いるカラ一フィルタ基板 Aの断面図 ( a ) 及び平 面図 ( b ) を示す。 Fig. 2 is a schematic diagram of a spacer disperser. Fig. 3 is a plan view (a) and a cross-sectional view (b) of a conventional color LCD panel. FIG. 4 shows a sectional view (a) and a plan view (b) of a color filter substrate A used in the present invention.
第 5図は、 本発明に用いるカラーフィルタ基板 Bの断面図 ( a ) 及び平 面図 ( b ) を示す。 FIG. 5 shows a cross-sectional view (a) and a plan view (b) of a color filter substrate B used in the present invention.
第 6図は、 本発明に用いるカラ一フィルタ基板 Cの断面図 ( a ) 及び平 面図 ( b ) を示す。 FIG. 6 shows a sectional view (a) and a plan view (b) of a color filter substrate C used in the present invention.
第 7図は、 本発明に用いるカラーフィルタ基板 Dの断面図 ( a ) 及び平 面図 ( b ) を示す。 FIG. 7 shows a sectional view (a) and a plan view (b) of a color filter substrate D used in the present invention.
第 8図は、 カラーフィ ルタ基板のブラ ッ クマ ト リ クスまたはブラ ッ クマ ト リ クスと同様のピッチ及びパターン幅を有する透明電極に電荷をかけ るこ とによるスぺ一サ材の分散配置方法を示す断面図。 Fig. 8 shows a method of dispersing and distributing spacer materials by applying electric charges to the black matrix of a color filter substrate or a transparent electrode having the same pitch and pattern width as the black matrix. FIG.
第 9図は、 カラ一フィルタ基板のブラ ッ クマ ト リ クスまたはブラ ックマ ト リ クスと同様のピッチ及びパターン幅を有する透明電極及び表示画素 部に電荷をかけるこ とによるスぺーサ材の分散配置方法を示す断面図。 第 1 0図は、 本発明に用いる駆動電極基板 Aの断面図 ( a ) 及び平面図 ( b ) を示す。 Fig. 9 shows the dispersion of spacer material by applying charges to the black matrix of a color filter substrate or transparent electrodes having the same pitch and pattern width as the black matrix and the display pixel area. Sectional drawing which shows the arrangement method. FIG. 10 shows a sectional view (a) and a plan view (b) of a drive electrode substrate A used in the present invention.
第 1 1図は、 本発明に用いる駆動電極基板 Bの断面図 ( a ) 及び平面図 ( b ) を示す。 FIG. 11 shows a sectional view (a) and a plan view (b) of a drive electrode substrate B used in the present invention.
第 1 2図は、 駆動電極基板のブラ ックマ ト リ クスと同様のピツチ及びパ 夕一ン幅を有する透明電極に電荷をかけるこ とによるスぺ一サ材の分散 配置方法を示す断面図。 FIG. 12 is a cross-sectional view showing a method of dispersing and disposing a spacer material by applying a charge to a transparent electrode having the same pitch and pattern width as the black matrix of the drive electrode substrate.
第 1 3図は、 駆動電極基板のブラ ックマ 卜 リ クスと同様のピッチ及びパ 夕一ン幅を有する透明電極及び前記電極を除く その他の透明電極部に電 荷をかけるこ とによるスぺーサ材の分散配置方法を示す断面図。 FIG. 13 shows a spacer formed by applying a charge to a transparent electrode having the same pitch and pattern width as the black matrix of the drive electrode substrate, and to other transparent electrode parts other than the above-mentioned electrode. Sectional drawing which shows the dispersion | distribution arrangement method of a material.
第 1 4図は、本発明に用いるダミ ーパターン基板 A, B, Cの断面図( a ),
( b ) , ( c ) 及び平面図 ( d ) を示す。 FIG. 14 is a sectional view (a) of dummy pattern substrates A, B, and C used in the present invention. (b), (c) and plan view (d) are shown.
第 1 5図は、 ダミ ーパター ン基板を用いてスぺーサ材を配置する方法を 示す。 FIG. 15 shows a method of disposing a spacer material using a dummy pattern substrate.
第 1 6図は、 ゥエ ツ 卜方式によるスぺーサ材の分散装置の原理を示す我 意略図。 FIG. 16 is a schematic diagram showing the principle of a dispersing device for a spacer material by the jet method.
第 1 7図は、 ゥエツ 卜方式によるスぺ一サ材の分散に用いられるカラー フィルタ基板の断面図を示す。 FIG. 17 is a cross-sectional view of a color filter substrate used for dispersing a spacer material by the jet method.
第 1 8図は、 ゥエツ ト方式によるスぺーサ材の分散原理を示す要部構成 図。 FIG. 18 is a main configuration diagram showing the principle of dispersion of the spacer material by the jet method.
第 1 9図は、 ウエッ ト方式分散法に用いるダミーパター ン基板 D , Eの 断面図 ( a ) , ( b ) 及び平面図 ( c ) を示す。 FIG. 19 shows sectional views (a) and (b) and a plan view (c) of dummy pattern substrates D and E used for the wet dispersion method.
第 2 0図は、 ゥヱッ 卜方式によるカラーフィルタ用ダミーパター ン基板 へのスぺ一サ材の分散装置の原理を示す要部構成図。 FIG. 20 is a principal configuration diagram showing the principle of a device for dispersing a spacer material on a dummy pattern substrate for a color filter by a dot method.
第 2 1 図は、 ゥエツ 卜方式分散法においてダミーパター ン基板を用いて カラーフィルタ基板のブラックマ ト リ クス上にスぺーサ材を配置する分 散配置方法を示す断面図。 FIG. 21 is a cross-sectional view showing a dispersion arrangement method in which a spacer material is arranged on a black matrix of a color filter substrate using a dummy pattern substrate in the jet method dispersion method.
第 2 2図は、 分散用フイルクの断面図 ( a ) 及び平面図 ( b ) を示す。 第 2 3図は、 分散用フィルタによるスぺーサ材の分散配置方法を示すェ 程図。 FIG. 22 shows a sectional view (a) and a plan view (b) of the dispersion film. FIG. 23 is a process chart showing a method for dispersing and disposing a spacer material using a dispersion filter.
第 2 4図は、電極付き分散用フィルタの要部断面図( a )及び平面図( b ) を示す。 FIG. 24 shows a sectional view (a) and a plan view (b) of a main part of the dispersion filter with electrodes.
第 2 5図は、 電極付き分散用フィルタによるスぺーサ材の分散配置方法 を示す工程図。 FIG. 25 is a process chart showing a method of dispersing and disposing a spacer material using a dispersion filter with electrodes.
第 2 6図は、 微細ノズルによるスぺーサ材の分散方法を示す要部構成図。 第 2 7図は、 複数の微細ノズルによるスぺーサ材の分散方法を示す要部 構成図である。
発明を実施するための最良の形態 FIG. 26 is a main part configuration diagram showing a method of dispersing a spacer material using a fine nozzle. FIG. 27 is a main part configuration diagram showing a method of dispersing a spacer material using a plurality of fine nozzles. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の一実施例について、 図面を用いて詳細に説明する。 第 1 図に本発明の一実施例の液晶パネルの構成を示す。 第 1 図 ( a ) はカラー液晶パネルの平面図を、 第 1 図 ( b ) は第 1 図 ( a ) の A— A ' 断面図を示している。 カラ一液晶パネルは相対する 2つの基板 1 、 1 0 1 (カラーフィルタ基板と駆動電極基板) をスぺーサ材、 ここでは一実 施例としてスぺ一サ用ビーズ 7を介して接合し、 その隙間に液晶 6を注 入するこ とによって作製される。 相対する 2つの基板のう ち、 下の基板 であるカラ一フィルタ基板 1 には表示画素部 (赤 R、 青 B、 綠 G ) とそ の間に遮光層であるブラ ックマ 卜 リ クス 4力く、 また上の基板である駆動 電極基板 1 0 1 には、 薄膜 卜ランジス夕からなる駆動電極 8がガラス基 板上に作製されており、 その表面には配向膜 5が形成されている。 本発 明のカラー液晶表示装置における力ラー液晶パネルは、 スぺ一サ用ビー ズ 7をこのカラ一フィルタ基板 1 上または駆動電極基板 1 0 1上の少な く ともどちらか一方に所定の間隔で分布配置するこ とにより、 カラーフ ィルタ基板に形成されたブラ ックマ 卜 リ クス 4上にスぺ一サ用ビーズ 7 を分散配置させ、 セルギャ ップを形成するこ とを特徴とするものである。 またこれは、 ブラ ックマ ト リ クス 4上にのみ配置されたスぺ一サ用ビー ズ 7を介して上下両基板 1 、 1 0 1 が接合されるこ とにより、 セルギヤ ップ高さ精度 ± 0 . 0 5 m以内の高精度なセルギヤ ップが形成され、 第 3図の従来例に示したよう に表示画素部 2に散布されるスぺーサ材 7 に起因する光漏れや色調ムラなどの画像品質の低下を防止している。 こ れらの基板を用いることにより高画質のカラー液晶表示装置が実現でき る。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of a liquid crystal panel according to one embodiment of the present invention. FIG. 1 (a) is a plan view of a color liquid crystal panel, and FIG. 1 (b) is a cross-sectional view taken along line AA ′ of FIG. 1 (a). The color liquid crystal panel joins two opposing substrates 1 and 101 (a color filter substrate and a drive electrode substrate) via a spacer material, in this example, a spacer bead 7 as an example. It is produced by pouring the liquid crystal 6 into the gap. Of the two opposing substrates, the lower one, the color filter substrate 1, has a display pixel area (red R, blue B, 綠 G) and a black matrix 4, which is a light shielding layer between them. In addition, a drive electrode 8 made of a thin film transistor is formed on a glass substrate on a drive electrode substrate 101 as an upper substrate, and an alignment film 5 is formed on the surface thereof. In the color liquid crystal panel of the color liquid crystal display device of the present invention, the spacer bead 7 is provided at a predetermined interval on at least one of the color filter substrate 1 and the drive electrode substrate 101. In this case, the beads 7 for the spacers are dispersed and arranged on the black matrix 4 formed on the color filter substrate to form a cell gap. . In addition, the upper and lower substrates 1 and 101 are joined via a spacer bead 7 disposed only on the black matrix 4 to achieve a cell gap height accuracy of ± A high-precision cell gap of 0.05 m or less is formed, and as shown in the conventional example of FIG. 3, light leakage and uneven color tone caused by spacer material 7 scattered in the display pixel unit 2 Image quality is prevented from deteriorating. By using these substrates, a high-quality color liquid crystal display device can be realized.
次にスぺーサ用ビーズ 7をカラーフィルタ基板 1 に形成されたブラ ッ
クマ ト リ クス 4上または駆動電極基板 1 0 1 の所定位置上に分散配置さ せる実施例を以下に詳細に説明する。 Next, the spacer beads 7 are applied to the black filter formed on the color filter substrate 1. An embodiment in which the matrix is dispersedly arranged on the matrix 4 or on a predetermined position of the drive electrode substrate 101 will be described in detail below.
(実施例 1 ) (Example 1)
スぺーサ用ビーズの有する電荷を利用し、 カラ一フィ ルタ基板上に形 成されたブラ ックマ ト リ クスにスぺーサ用ビーズとは異極の電荷をかけ るこ とにより、 ブラ ックマ ト リ クス上にのみスぺーサ用ビ一ズを分布配 置させるスぺ一サ用ビーズ分散方法について説明する。 Utilizing the charge of the spacer beads, the black matrix formed on the color filter substrate is charged with a charge having a different polarity from that of the spacer beads. A method for dispersing spacer beads only on a liquid will be described.
第 2図にこの実施例に使用されるスぺ一サ用ビーズ分散装置の概略図 を示す。 スぺーサ用ビーズ分散装置は、 スぺーサ用ビーズ撹拌容器 1 5 、 スぺーサ用ビーズ噴出ノ ズル 1 6、 圧縮ガス噴出ノ ズル 1 7、 スぺ一サ 用ビーズ散布室 1 9そしてカバー 2 0 とから構成されている。 なお 1 8 は、 圧縮ガス供給装置である。 大気圧より も高圧に圧力がかけられてい るスぺ一サ用ビーズ撹拌容器 1 5の中には粒径 6 ~ 9 mのスぺーサ用 ビーズ 7が乾式状態で単分散しており、 この容器 1 5にはスぺ一サ用ビ —ズ噴射ノズル 1 6が設けられている。 このスぺーサ用ビーズ噴出ノ ズ ノレ 1 6の周りには、 圧縮ガス供給装置 1 8からの圧縮ガスを供給 · 噴射 する圧縮ガス噴出ノズル 1 7が例えば同心円上に配置されており、 この ノズル 1 7から圧縮ガスを噴出するこ とによりスぺーサ用ビーズ噴射ノ ズル 1 6 に負圧が発生し、 この力を利用し、 カバー 2 0 に仕切られたス ぺ一サ用ビーズ分散室 1 9内に挿入された基板 2 1 上にスぺ一サ用ビー ズ 7を散布するものである。 このときスぺーサ用ビーズ 7は電気的に帯 電しており、 分散されたスぺ一サ用ビーズ 7は自重によつて自然落下し、 基板 2 1 上に分散配置されるものである。 なお、 2 2は基板 2 1用のチ ャ ックである。 FIG. 2 is a schematic diagram of a bead dispersing device for a spacer used in this embodiment. The bead dispersing device for spacers consists of 15 beads stirring vessel for spacer, 16 nozzles for ejecting beads for spacer, 17 nozzles for ejecting compressed gas, 19 beads dispersing chamber for spacer, and cover. 2 0. Reference numeral 18 denotes a compressed gas supply device. In the bead stirring vessel 15 for pressure, which is applied with a pressure higher than the atmospheric pressure, spacer beads 7 having a particle size of 6 to 9 m are monodispersed in a dry state. The container 15 is provided with a bead spray nozzle 16 for a sensor. Around the spacer bead ejection nozzle 16, a compressed gas ejection nozzle 17 for supplying / injecting the compressed gas from the compressed gas supply device 18 is arranged, for example, concentrically. By ejecting the compressed gas from 17, a negative pressure is generated in the spacer bead injection nozzle 16, and using this force, the bead dispersing chamber 1 separated by the cover 20 using the force. The bead 7 for a spacer is sprayed on the board 21 inserted in the board 9. At this time, the spacer beads 7 are electrically charged, and the dispersed spacer beads 7 fall naturally by their own weight and are dispersed and arranged on the substrate 21. 22 is a chuck for the substrate 21.
上記装置を用いてスぺ一サ用ビーズ 7の分散を行った。 本発明ではス ぺーサ材と してプラスチッ ク材料からなる粒径 6 〜 9 mの球状ビーズ
を用いている力 、 このほかシ リ 力やアルミ ナなどの粒径 6 〜 9 ^ mの球 状ビーズでも用いるこ とができる。 また、 スぺ一サ用ビーズ 7が自然落 下する際、 凝集などにより砥粒径の増大してしまったスぺ一サ用ビーズ は、 自重が増大するために噴出後初期段階で自然落下するため、 基板 2 1 の装置内への搬入はスぺーサ用ビーズ噴出後しばら く たつてから行な う こ とが望ま しい。 Using the above apparatus, the beads 7 for the spacer were dispersed. In the present invention, spherical beads having a particle size of 6 to 9 m made of a plastic material are used as spacer materials. In addition, spherical beads having a particle diameter of 6 to 9 ^ m, such as a cylindrical force or alumina, can be used. In addition, when the beads for splicer 7 fall naturally, the beads for sprinkler whose abrasive grain size has increased due to agglomeration, etc., will naturally drop in the initial stage after ejection due to the increase in their own weight. For this reason, it is desirable that the substrate 21 should be carried into the apparatus after a while after the spacer beads are ejected.
上記実施例は、 クーロン力を利用して、 カラーフィルタ基板上に形成 されたブラ ッ クマ 卜 リ クス上ヘスべ一サ用ビーズを分散配置するもので ある力、'、 次に本発明に用いるカラ一フィルタ基板 Aの搆造について第 4 図を用いて説明する。 カラ一フィルタ基板 1 のブラックマ 卜 リ クス 4は、 その成分としてカーボンやモリブデンなどの導電性材料からなつており、 均一な任意電圧を直接ブラ ッ クマ ト リ クス 4にのみ印加できるよう に配 線された基板である。 The above-described embodiment uses a Coulomb force to disperse and disperse the beads for the Hess base on the black matrix formed on the color filter substrate. The structure of the color filter substrate A will be described with reference to FIG. The black matrix 4 of the color filter substrate 1 is made of a conductive material such as carbon or molybdenum as a component thereof, and is wired so that a uniform arbitrary voltage can be directly applied only to the black matrix 4. Substrate.
上記カラ一フィルタ基板 Aを用い、 クーロン力を利用したスぺ一サ用 ビーズ分散配置の原理を第 8図に示す。 カラーフィルタ基板 Aをスぺ一 サ用ビーズ 7が噴霧されている装置 (第 2図) 内へ揷入する際、 ブラ ッ クマ ト リ クス 4に接続されている配線によ りスぺ一サ用ビーズ 7 とは異 極の電荷を印加 (数十〜数百 V ) する。 このときスぺーサ用ビーズ 7 と ブラ ックマ ト リ クス 4間にクーロ ン力による引力が発生し、 この引力に よりブラ ックマ ト リ クス 4上にのみスぺーサ用ビーズ 7を誘導し分散配 置させるこ とができる。 FIG. 8 shows the principle of dispersal arrangement of beads for a spacer using Coulomb force using the color filter substrate A described above. When the color filter substrate A is introduced into the apparatus (FIG. 2) in which the beads 7 for spraying are sprayed, the wiring is connected to the black matrix 4 so that A charge having a polarity different from that of the beads 7 is applied (tens to hundreds of V). At this time, an attractive force is generated between the spacer beads 7 and the black matrix 4 by the Coulomb force, and the spacer beads are guided only on the black matrix 4 by this attractive force and distributed. Can be placed.
上記分散方法はカラ一フィル夕基板 Bまたは Cまたは Dを用いるこ と によっても実現できる。 The above dispersion method can also be realized by using a color filter substrate B or C or D.
カラ一フィルタ基板 Bの構造を第 5図に示す。 カラーフィルタ基板 B は、 ブラ ックマ ト リ クス 4 に沿って電極 1 0が埋め込まれ、 電圧が任意 に印加できるような配線構造を持つ基板である。 これは、 例えば、 フォ
卜 リ ソグラフィ ー技術よりガラス基板 1 にブラ ッ クマ 卜 リ クス 4のパタ ―ンと同様のピッチ及びパターン幅マスクを形成し、 スパッ夕技術や印 刷技術によりブラ ックマ ト リ クス 4上に透明電極 1 0を形成し、 その後、 配向膜 5を形成することにより作製できる。 なお、 ブラ ックマ ト リ クス 4上に形成された透明電極 1 0は均一な電圧が任意に印加できるよう配 線されている。 Fig. 5 shows the structure of the color filter substrate B. The color filter substrate B is a substrate having electrodes 10 buried along the black matrix 4 and having a wiring structure so that a voltage can be arbitrarily applied. This is, for example, A pitch and pattern width mask similar to the pattern of black matrix 4 is formed on glass substrate 1 by trilithography technology, and is transparent on black matrix 4 by sputtering technology and printing technology. It can be manufactured by forming the electrode 10 and then forming the alignment film 5. The transparent electrodes 10 formed on the black matrix 4 are arranged so that a uniform voltage can be arbitrarily applied.
カラ一フィルタ基板 Cの構造を第 6図に示す。 カラーフィルタ基板 C は均一な任意電圧を直接ブラ ックマ ト リ クス 4に印加できるような配線 構造を持ち、 かつ、 ブラ ッ クマ ト リ クス 4 とは独立して、 表示画素部 2 に均一な電圧が任意に印加できる配線構造となっている。 Fig. 6 shows the structure of the empty filter substrate C. The color filter substrate C has a wiring structure that allows a uniform arbitrary voltage to be directly applied to the black matrix 4, and the uniform voltage is applied to the display pixel section 2 independently of the black matrix 4. Has a wiring structure that can be applied arbitrarily.
なお、 第 6図において 9は電源であり、 8 0は配線である。 In FIG. 6, reference numeral 9 denotes a power supply, and 80 denotes a wiring.
カラーフィル夕基板 Dの構造を第 7図に示す。 カラーフィルタ基板 D は、 ブラ ッ クマ ト リ クス 4 に沿って電極 1 1が埋め込まれ、 電圧が任意 に印加できるような配線構造を持ち、 かつ、 ブラ ッ クマ ト リ クス 4 とは 独立して、 表示画素部 2に均一な電圧が任意に印加できる配線構造とな つている。 Fig. 7 shows the structure of the color filter substrate D. The color filter substrate D has a wiring structure in which the electrodes 11 are embedded along the black matrix 4 so that a voltage can be arbitrarily applied, and is independent of the black matrix 4. In addition, the wiring structure is such that a uniform voltage can be arbitrarily applied to the display pixel portion 2.
特にカラ一フィル夕基板 Cまたはカラ一フィルタ基板 Dを用いるとき、 ブラ ックマ 卜 リ クス 4 またはブラ ックマ ト リ クス 4の上に埋め込まれた 電極 1 0、 1 1 にスぺーサ用ビーズ 7 とは異極の電荷を有するように電 圧をかけ、 かつ、 表示画素部 2 にスぺーサ用ビーズ 7 と同極の電荷を有 するよう に電圧をかけるこ とにより、 第 9図に示すよう にブラ ックマ ト リ クス 4上では引力が、 表示画素部 2では斥力がスぺーサ用ビーズ 7に 作用するため、 より効率よく カラーフィルタ基板 1 のブラ ックマ ト リ ク ス 4上にスぺーサ用ビーズ 7を分散させるとことが可能である。 In particular, when the color filter substrate C or the color filter substrate D is used, the electrodes 10 and 11 embedded on the black matrix 4 or the black matrix 4 are provided with spacer beads 7. As shown in FIG. 9, by applying a voltage so as to have a different polarity charge and applying a voltage to the display pixel portion 2 so as to have the same polarity charge as the spacer beads 7. In addition, since the attractive force acts on the spacer beads 7 on the black matrix 4 and the repulsive force acts on the spacer beads 7 on the display pixel section 2, the spacers are more efficiently placed on the black matrix 4 of the color filter substrate 1. It is possible to disperse the beads 7 for use.
(実施例 2 ) (Example 2)
次に実施例 2 と して、 スぺ一サ用ビーズの有する電荷を利用し、 駆動
電極基板 1 0 1 に形成されたブラ ッ クマ 卜 リ クスにスぺーサ用ビーズと 異極の電荷をかけるこ とにより、 1 0 1 基板の所定位置上にのみスぺ一 サ用ビーズを分布配置させるスぺーサ用ビーズの分散方法について説明 する。 Next, in Example 2, the electric charge of the spacer beads was used to drive By applying a spacer bead and a different polarity charge to the black matrix formed on the electrode substrate 101, the spacer bead is distributed only on a predetermined position of the substrate 101. A method of dispersing spacer beads to be arranged will be described.
第 1 0図にこの実施例に用いる駆動電極基板 Aの構造を示す。 駆動電 極基板 Aは、 駆動電極 8上に前述したブラ ックマ ト リ クス 4 と同様のピ ツチ及びパター ン幅を有する透明電極 1 2が形成されているものであり, この透明電極 1 2には均一な電圧が任意に印加できるよう配線されてい る。 また、 駆動電極基板 1 0 1 とカラーフ ィ ルタ基板をスぺ一サ用ビー ズ 7を介して接合する際、 透明電極 1 2 とブラ ックマ ト リ クス 4 とが重 ね合う ような相対位置関係になっており、 これは、 例えばフ ォ 卜 リ ソグ ラフィ一技術よりガラス基板 1 にブラ ックマ ト リ クス 4のパターンと同 様のピッチ及びバターン幅マスクを形成し、 スパッ夕技術や印刷技術に より駆動電極上に透明電極を形成し、 その後、 配向膜を形成するこ とに より作製できる。 FIG. 10 shows the structure of the drive electrode substrate A used in this embodiment. The drive electrode substrate A has a drive electrode 8 on which a transparent electrode 12 having the same pitch and pattern width as the black matrix 4 described above is formed. Are wired so that a uniform voltage can be arbitrarily applied. Further, when the drive electrode substrate 101 and the color filter substrate are joined via the spacer bead 7, the relative positional relationship such that the transparent electrode 12 and the black matrix 4 overlap. This is because, for example, the same pitch and pattern width mask as the pattern of the black matrix 4 is formed on the glass substrate 1 by the photolithography technology, and the sputtering technology and the printing technology are used. It can be manufactured by forming a transparent electrode on the driving electrode and then forming an alignment film.
上記駆動電極基板 Aを用い、 クーロ ン力を利用したスぺ一サ用ビーズ の分散配置の原理を第 1 2図に示す。 駆動電極基板 Aを前述した第 2図 に示す装置のスぺーサ用噴霧されている散布室 1 9内へ挿入する際、 ブ ラックマ ト リ クス 4 と同様のピッチ及びパターン幅を有する透明電極 1 2に接続されている配線に、 スぺーサ用ビーズ 7 とは異極の電荷を印加 (数十〜数百 V ) する。 このときスぺーサ用ビーズ 7 と透明電極 1 2 と の間にクーロン力による引力が発生し、 この引力により透明電極 1 2上 にのみスぺーサ用ビーズ 7を誘導し分散配置させることができる。 FIG. 12 shows the principle of the dispersed arrangement of the beads for the spacer using the Coulomb force using the drive electrode substrate A. When the drive electrode substrate A is inserted into the spraying chamber 19 sprayed for the spacer of the apparatus shown in FIG. 2 described above, the transparent electrode 1 having the same pitch and pattern width as the black matrix 4 is used. A charge having a polarity different from that of the spacer bead 7 is applied to the wiring connected to 2 (several tens to several hundreds of V). At this time, an attractive force is generated between the spacer beads 7 and the transparent electrode 12 by the Coulomb force, and the spacer beads can be guided and dispersed only on the transparent electrode 12 by the attractive force. .
上記分散方法は駆動電極基板 Bを用いるこ とによっても実現できる。 駆動電極基板 Bの構造を第 1 1 図に示す。 駆動電極基板 Bは、 駆動電 極上にブラックマ 卜 リ クス 4 と同様のピッチ及びパター ン幅を有する透
明電極 1 2が形成されているこ とに加え、 前記透明電極 1 2を除く表示 画素対応の駆動電極上に透明電極 1 3を形成したものであり、 これらの 透明電極 1 2、 1 3には独立して均一な電圧が任意に印加できるよう配 線されている。 また、 駆動電極基板とカラ一フ ィルタ基板をスベーサ用 ビーズ Ίを介して接合する際、 透明電極 1 2 とブラ ックマ ト リ クス 4 と が重ね合う よう な相対位置関係になっている。 これは、 例えばフォ ト リ ソグラフィ一技術よりガラス基板にブラ ッ クマ ト リ クス 4のパターンと 同様のピッチ及びパターン幅マスクを形成し、 これと同様のパターンを 有する透明電極 1 2をスパッタ技術や印刷技術により駆動電極上に形成 する。 次に同様に、 作成された透明電極 1 2以外の部分に表示画素対応 の透明電極 1 3を形成し、 その後、 配向膜を形成するこ とにより作製で きる。 The dispersion method described above can also be realized by using the drive electrode substrate B. FIG. 11 shows the structure of the drive electrode substrate B. The drive electrode substrate B has the same pitch and pattern width as the black matrix 4 on the drive electrode. In addition to the formation of the bright electrodes 12, the transparent electrodes 13 are formed on the drive electrodes corresponding to the display pixels excluding the transparent electrodes 12, and these transparent electrodes 12, 13 are formed. Are wired so that a uniform voltage can be applied independently. Further, when the drive electrode substrate and the color filter substrate are joined via the spacer beads ベ ー, the transparent electrode 12 and the black matrix 4 have a relative positional relationship such that they overlap each other. This is because, for example, a mask having the same pitch and pattern width as the pattern of the black matrix 4 is formed on a glass substrate by photolithography technology, and the transparent electrode 12 having the same pattern is formed by sputtering technology or the like. It is formed on the drive electrode by printing technology. Next, similarly, a transparent electrode 13 corresponding to a display pixel is formed on a portion other than the formed transparent electrode 12, and thereafter, an alignment film is formed.
特に基板 Bを用いるとき、 駆動電極基板 1 0 1 のブラ ッ クマ ト リ クス 4 と同様のピッチ及びパターン幅を有する透明電極 1 2にスぺ一サ用ビ —ズ 7 と異極の電荷を有するよう に電圧をかけ、 かつ、 前記透明電極 1 2を除く駆動電極上に形成した透明電極 1 3 にスぺーサ用ビーズ 7 と同 極の電荷を有するよう に電圧をかけるこ とにより、 第 1 3図に示すよう に前者では引力が、 後者では斥力がスぺーサ用ビーズ 7に作用するため、 より効率よ く 、 駆動電極基板 1 0 1 のブラ ックマ ト リ クス 4 と同様のピ ツチ及びパターン幅を有する透明電極 1 2上にのみスぺーサ用ビーズ 7 を分散配置させるとこ とが可能である。 In particular, when the substrate B is used, charges having a different polarity from the beads 7 for the spacer are applied to the transparent electrode 12 having the same pitch and pattern width as the black matrix 4 of the driving electrode substrate 101. By applying a voltage to the transparent electrode 13 formed on the drive electrode excluding the transparent electrode 12 so as to have the same polarity as that of the spacer beads 7. 13 As shown in Fig. 13, the attractive force acts on the spacer beads 7 in the former and the repulsive force acts on the spacer beads 7 in the latter, so that a pitch similar to the black matrix 4 of the drive electrode substrate 101 is more efficiently used. Further, it is possible to disperse the spacer beads 7 only on the transparent electrode 12 having the pattern width.
(実施例 3 ) (Example 3)
次に実施例として、 スぺーサ用ビーズの有する電荷を利用し、 カラー フィ ルタ基板のブラ ッ クマ ト リ クスと同様のピッチ及びバタ一ン幅を有 する電極を持つダミーパターン基板を用い、 この電極にスぺ一サ用ビー ズと異極の電荷をかけるこ とによりパターン上にスぺーサ用ビーズを分
散配置させたのち、 静電気力を利用してカラ一フィルタ基板に形成され たブラ ッ クマ 卜 リ クス上にスぺーサ用ビーズを転写させるスぺ一サ用 ビ —ズの分散方法について説明する。 Next, as an example, a dummy pattern substrate having electrodes having the same pitch and butter width as the black matrix of the color filter substrate was used by utilizing the charge of the spacer beads, By applying an electric charge of a different polarity to that of the spacer beads, the spacer beads are separated on the pattern. A method of dispersing beads for spacers in which spacer beads are transferred onto black matrix formed on a color filter substrate by using electrostatic force after being scattered is described. .
第 1 4図に本発明に用いるダミ ーパターン基板 Aの構造を示す。 ダミ 一基板は Aはその表面に前述したブラ ッ クマ ト リ クス 4 と同様のピッチ 及びパターン幅を有する深さ 3〜 1 O mの溝形状を有しており、 溝の 基底には均一な電圧が任意に印加できるよう配線された透明電極 2 4が 形成されているものである。 また、 基板材料としては特に特定しない。 このダミ ーパターン基板 Aは例えばフ ォ 卜 リ ソグラフィ 一によ りカラ一 フィルタ基板のブラ ックマ 卜 リ クス 4 と同様のピッチ及びパターン幅の パターンマスクを基板上に形成し、 ドライまたはウエ ッ トエッチングに より所要パターン形状に溝を形成し、 スパッ夕により電極を埋め込むこ とにより作成できる。 FIG. 14 shows the structure of the dummy pattern substrate A used in the present invention. The substrate A has a groove with a depth of 3 to 1 Om having the same pitch and pattern width as the above-mentioned black matrix 4 on the surface of the substrate A, and a uniform groove on the base of the groove. The transparent electrode 24 is formed so that a voltage can be arbitrarily applied. Also, it is not particularly specified as a substrate material. For the dummy pattern substrate A, a pattern mask having the same pitch and pattern width as the black matrix 4 of the color filter substrate is formed on the substrate by photolithography, for example, and dry or wet etching is performed. The groove can be formed in the required pattern shape by using this method, and the electrode can be buried by spattering.
上記ダミ一パターン基板 Aを用いたスぺ一サ用ビーズ分散方法のプロ セスを第 1 5図に示す。 実施例 1 の第 2図に示すスぺ一サ用ビーズ分散 装置を用い、 ダミ ーパター ン基板ヘスぺーサ用ビーズを分散させる。 分 散方法としては実施例 1 の第 8図に示す原理と同様の方式を用いる。 即 ち第 1 5図 ( b ) に示すよう にカラーフィルタ基板 1のブラ ックマ ト リ クス 4のパターンと同様になるようにダミ 一パターン基板 A 2 3に作成 された電極 2 4がスぺ一サ用ビーズ 7の持つ電荷とは異極になるよう に 数十〜数百 Vの電圧を印加するこ とにより、 スぺーサ用ビーズ 7 と電極 2 4 との間に発生するクーロン力による引力を利用し、 ブラ ックマ ト リ クス 4のパターン上にのみスぺーサ用ビーズ 7を分散配置させる。 FIG. 15 shows a process of a method for dispersing beads for a spacer using the dummy pattern substrate A described above. Using the bead dispersion device for spacers shown in FIG. 2 of Example 1, the beads for spacers are dispersed in the dummy pattern substrate. As a dispersion method, a method similar to the principle shown in FIG. 8 of the first embodiment is used. That is, as shown in FIG. 15 (b), the electrodes 24 formed on the dummy pattern substrate A23 are made to have the same pattern as the pattern of the black matrix 4 of the color filter substrate 1 in a single pattern. By applying a voltage of several tens to several hundreds V so as to have a different polarity from the electric charge of the bead 7, the attractive force due to the Coulomb force generated between the bead 7 for spacer and the electrode 24. The beads 7 for spacers are dispersed and arranged only on the pattern of the black matrix 4 by using.
なお、 第 1 5図 ( a ) , ( ) に示す上記ダミ 一パ夕一ン基板として は、 第 1 4図 ( b ) , ( c ) に示すダミ ーパター ン基板 Bまたは Cを用 いるこ とによつても可能である。
第 1 4図 ( b ) に示す夕"ミ 一パターン基板 Bは、 カラ一フィルタ基板 のブラ ッ クマ ト リ クス 4 と同様のピッチ及びパター ン幅に凸状態の電極 2 4が形成され、 電圧が任意に印加できるような配線構造を持つ基板で ある。 これはフォ 卜 リ ソグラフィ一によりカラ一フィルタ基板のブラ ッ クマ ト リ クス 4のパターンと同様のパターンマスクを形成し、 スノぐッタ または印刷技術により電極を形成するこ とにより作製できる。 The dummy pattern board B or C shown in FIGS. 14 (b) and (c) is used as the dummy pattern board shown in FIGS. 15 (a) and (c). Is also possible. The electrode pattern substrate B shown in FIG. 14 (b) has electrodes 24 formed in a convex state at the same pitch and pattern width as the black matrix 4 of the color filter substrate. This is a substrate that has a wiring structure that can apply arbitrarily.This is a photomask that forms a pattern mask similar to the black matrix 4 pattern of the color filter substrate, and Alternatively, it can be produced by forming electrodes by a printing technique.
ダミ ーパター ン基板 Cの構造を第 1 4図 ( c ) に示す。 ダミ ーパ夕一 ン基板 Cはカラーフィル夕基板のブラ ックマ 卜 リ クス 4 と同様のピッチ 及びパターン幅を有する電極 2 4が基板 2 3 の内部に埋め込まれ、 電圧 が任意に印加できるよう な配線構造を持つ基板である。 これは、 フ ォ ト リ ソグラフィ一技術よりガラス基板にブラ ックマ 卜 リ クス 4のパターン と同様の溝を形成し、 その凹部にスパッタ技術や印刷技術により電極を 形成する。 電極 2 4は均一な電圧が任意に印加できるよう配線されてお り、 この電極 2 4上に基板と同様の材料をスパッタまたは印刷するこ と により、 基板 2 3内に埋め込まれた電極 2 4を形成するこ とができる。 The structure of the dummy pattern substrate C is shown in Fig. 14 (c). In the dummy substrate C, the electrodes 24 having the same pitch and pattern width as the black matrix 4 of the color fill substrate are embedded in the substrate 23 so that a voltage can be arbitrarily applied. This is a substrate having a wiring structure. In this method, a groove similar to the pattern of the black matrix 4 is formed on a glass substrate by a photolithography technique, and an electrode is formed in a concave portion by a sputtering technique or a printing technique. The electrode 24 is wired so that a uniform voltage can be arbitrarily applied. The same material as that of the substrate is sputtered or printed on the electrode 24 to form the electrode 24 embedded in the substrate 23. Can be formed.
さて第 1 5図に戻り、 スぺーサ用ビーズ 7をダミ ーパター ン基板 A上 に分散配置させた後、 ダミ ーパターン基板 2 3に形成された電極 2 4の 印加電圧を保ちながら第 1 5図 ( c ) に示すように反転させ、 実施例 1 の第 4図から第 7図に示す基板 A〜Dのブラ ックマ ト リ クス 4 とのパ夕 —ンあわせを行う。 両者のパターン位 S設定終了後、 ダミ ーパターン基 板 2 3の電極 2 4にかかる電圧をスぺ一サ用ビーズ 7 と同極にして斥力 を働かせ、 かつカラ一フィルタ基板 1 のブラ ックマ 卜 リ クス 4にかかる 電圧をスぺーサ用ビーズ 7 と異極にするこ とにより、 スぺ一サ用ビーズ 7はクーロン力によりダミ ーパター ン基板 2 3からは反発力を、 また、 基板 1 からは引力を受けるため、 ブラ ックマ ト リ クス 4上に移動し分散 配置する。
特に前述したカラーフィルタ基板 Cまたは Dを用いるとき、 ブラ ッ ク マ ト リ クス 4上またはブラ ッ クマ ト リ クス 4 と同様のピッチ及びパター ン幅のパター ンを有する透明電極 1 0、 1 1 にスぺ一サ用ビーズ 7 と異 極の電荷を印加するこ とに加え、 表示画素部 2 にスぺーサ用ビーズ 7 と 同極の電荷を印加するこ とにより、 より効率よ く ブラ ッ クマ ト リ クス 4 上にのみスぺ一サ用ビーズ 7を分散させるとこ とも可能である。 Returning to FIG. 15, after the spacer beads 7 are dispersed and arranged on the dummy pattern substrate A, while maintaining the voltage applied to the electrodes 24 formed on the dummy pattern substrate 23, FIG. Invert as shown in (c), and align with the black matrix 4 of the substrates A to D shown in FIGS. 4 to 7 of the first embodiment. After the pattern positions S of both have been set, the voltage applied to the electrodes 24 of the dummy pattern substrate 23 is made the same polarity as that of the spacer beads 7 to cause repulsion, and the black matrix of the color filter substrate 1 is actuated. By making the voltage applied to the box 4 different from that of the spacer beads 7, the spacer beads 7 generate a repulsive force from the dummy pattern board 23 by Coulomb force, and a Move to black matrix 4 and distribute to receive attraction. In particular, when the above-described color filter substrate C or D is used, the transparent electrodes 10 and 11 having a pattern having the same pitch and pattern width as or on the black matrix 4 are used. In addition to applying a charge of the same polarity as that of the spacer beads 7 to the display pixel section 2 and applying a charge of the same polarity as the spacer beads 7 to the display pixel portion 2, more efficient blackening is achieved. It is also possible to disperse the beads 7 for the spacer only on the matrix 4.
(実施例 4 ) (Example 4)
次に実施例 4 として、 スぺ一サ用ビーズの有する電荷を利用し、 カラ —フィル夕基板のブラ ッ クマ ト リ クスと同様のピッチ及びパターン幅を 有する電極を持つダミーパターン基板を用い、 この電極にスぺーサ用ビ 一ズと異極の電荷をかけるこ とによりパターン上にスぺーサ用ビーズを 分散配置させたのち、 静電気力を利用して駆動電極基板の所定位置上に スぺ一サ用ビーズを転写させるスぺ一サ用ビーズ分散方法について説明 する。 Next, as a fourth embodiment, a dummy pattern substrate having electrodes having the same pitch and pattern width as the black matrix of the color-fill substrate using the charge of the spacer beads was used. The spacer beads are dispersed and arranged on the pattern by applying a spacer bead and a different polarity charge to this electrode, and then the electrostatic bead is used to place a bead on the drive electrode substrate at a predetermined position. A method for dispersing a bead for use in transferring a bead for the use of a sensor will be described.
実施例 3 の第 1 4図 ( a ) , ( b ) , ( c ) に示したダミ ーパター ン 基板 Aまたは Bまたは Cを用い、 実施例 1 の第 2図に示すスぺーサ用ビ -ズ分散装置により、 ダミ ーパターン基板ヘスべ一サ用ビーズ 7を分散 させる。 分散方法としては実施例 1 の第 4図から第 7図に示す原理と同 様の方式を用いる。 カラーフィルタ基板のブラ ッ クマ 卜 リ クスパターン と同様になるようにダミーパターン基板 A上に作成された電極 2 4がス ぺーサ用ビーズ 7の持つ電荷と異極になるよう に数十〜数百 Vの電圧を 印加することにより、 スぺーサ用ビーズ 7 との間に発生するクーロ ン力 による引力を利用しブラ ックマ 卜 リ クスパターン 4上にのみスぺ一サ用 ビーズ 7を分散配置させる。 Using the dummy pattern substrate A, B or C shown in FIGS. 14 (a), (b), and (c) of FIG. 14 of the third embodiment, the spacer beads shown in FIG. 2 of the first embodiment are used. The dispersing device disperses the beads 7 for the dummy pattern substrate. As a dispersing method, a method similar to the principle shown in FIGS. 4 to 7 of the first embodiment is used. The electrodes 24 formed on the dummy pattern substrate A have the same polarity as the black matrix pattern of the color filter substrate so that the electrodes 24 have a polarity different from that of the electric charge of the spacer beads 7. By applying a voltage of 100 V, the spacer beads 7 are dispersed only on the black matrix pattern 4 using the attractive force of the Coulomb force generated between the spacer beads 7 and the spacer beads 7. Let it.
上記ダミ ーパターン基板へのスぺーサ用ビーズ 7の分散は、 実施例 3 の第 1 4図に示すダミ ーパターン基板 Bまたは Cを用いるこ とによって
も可能である。 The spacer beads 7 are dispersed in the dummy pattern substrate by using the dummy pattern substrate B or C shown in FIG. 14 of the third embodiment. Is also possible.
次に、 スぺーサ用ビーズ 7をダミ ーパターン基板 A上に分散配置させ た後、 ダミ 一パ夕一ン基板に形成された電極の印加電圧を保ちながら反 転させ、 実施例 2の第 1 1 図 ( a ) , ( b ) に示す駆動電極基板 Aまた は Bに形成したブラ ッ クマ 卜 リ クス 4 と同様のピッチ及びパターン幅の パターンを有する透明電極 1 2 とのパターンあわせを行う。 両者のパタ 一ン位置設定終了後、 ダミ ーパターン基板 2 3の電極 2 4にかかる電圧 をスぺ一サ用ビーズ 7 と同極に、 駆動電極基板 1 0 1 のブラ ッ クマ ト リ クス 7 と同様のピッチ及びパターン幅のバタ―ンを有する透明電極 1 2 にかかる電圧をスぺーサ用ビーズ 7 と異極にすることにより、 スぺ一サ 用ビーズ 7はクーロ ン力によりダミ ーパターン基板からは反発力を、 ま た、 駆動電極基板 1 0 1からは引力を受けるため、 ブラ ックマ ト リ クス 4 と同様のピッチ及びパターン幅のパターンを有する透明電極 1 2上に 移動し分散配置する。 Next, after the spacer beads 7 were dispersed and arranged on the dummy pattern substrate A, the spacer beads were inverted while maintaining the voltage applied to the electrodes formed on the dummy pattern substrate. 1 Pattern matching is performed with a transparent electrode 12 having a pattern of the same pitch and pattern width as the black matrix 4 formed on the drive electrode substrate A or B shown in FIGS. After the pattern positions of both are set, the voltage applied to the electrodes 24 of the dummy pattern substrate 23 is set to the same polarity as the beads 7 for the spacers, and the black matrix 7 of the drive electrode substrate 101 is set to the same polarity. By making the voltage applied to the transparent electrode 12 having a pattern of the same pitch and pattern width different from that of the spacer beads 7, the spacer beads 7 are separated from the dummy pattern substrate by Coulomb force. Receives a repulsive force and an attractive force from the drive electrode substrate 101, moves and disperses them on the transparent electrodes 12 having a pattern having the same pitch and pattern width as the black matrix 4.
特に駆動電極基板 Bを用いるとき、 ブラ ッ クマ ト リ クス 4 と同様のピ ツチ及びパター ン幅を有する透明電極 1 2 にスぺーサ用ビーズ 7 と異極 の電荷を印加するこ とに加え、 ブラ ッ クマ ト リ クス 4 と同様のピッチ及 びパターン幅のパターンを有する透明電極 1 2以外の透明電極 1 3 にス ぺーサ用ビーズ 7 と同極の電荷を印加するこ とにより、 より効率よ く ブ ラ ッ クマ 卜 リ クスと同様のピッチ及びパターン幅のパターン上にのみス ぺ一サ用ビーズ 7を分散させるこ とが可能である。 In particular, when the driving electrode substrate B is used, in addition to applying the charge of the opposite polarity to the spacer beads 7 to the transparent electrode 12 having the same pitch and pattern width as the black matrix 4, By applying a charge of the same polarity as that of the spacer beads 7 to the transparent electrode 13 other than the transparent electrode 12 having a pattern of the same pitch and pattern width as the black matrix 4, It is possible to efficiently disperse the spacer beads 7 only on the pattern having the same pitch and pattern width as the black matrix.
(実施例 5 ) (Example 5)
次にスぺ一サ用ビーズの他の分散方法について実施例を説明する。 スぺ一サ用ビーズを分散させた溶液中にガラス基板を浸せきさせ斜め 上方に引き上げるこ とによ り、 カラ一フィルタ基板に形成されたブラ ッ クマ 卜 リ クスの段差を利用 してスぺーサ用ビーズを分散配置させるゥェ
ッ 卜方式のスぺーサ用ビーズ分散方法である。 Next, examples of another method of dispersing beads for a spacer will be described. The glass substrate is immersed in a solution in which the beads for spacers are dispersed, and is lifted obliquely upward to take advantage of the steps of the black matrix formed on the color filter substrate. Disperse the beads for This is a bead dispersing method for a spacer.
ゥエ ツ 卜方式によるスぺーサ用ビーズ分散装置の原理を第 1 6図に示 す。 Fig. 16 shows the principle of the bead dispersing device for spacers using the jet method.
装置はチャ ック 2 7及びアーム 2 8を含む基板搬送部と、 スぺ一サ用 ビーズ分散溶液 2 5の溶液漕 2 6 とから構成されている。 The apparatus is composed of a substrate transfer section including a chuck 27 and an arm 28, and a solution tank 26 for a bead dispersion solution 25 for a spacer.
基板 2 1 は、 溶液漕液面に対する揷入角、 搬出角が任意調整可能なチ ャ ッ ク 2 7 に固定されており、 このチャ ック 2 7は、 上下速度が調整可 能なアーム 2 8に取り付けられている。 このよう な装置を用いるこ とに より、 基板 2 1 は任意の角度、 任意の速度でスぺーサ用ビーズ分散溶液 2 5から取り出すことが可能となっている。 The substrate 21 is fixed to a chuck 27 whose entrance angle and discharge angle with respect to the liquid surface of the solution tank can be adjusted arbitrarily. This chuck 27 is an arm 2 whose vertical speed can be adjusted. Attached to 8. By using such an apparatus, the substrate 21 can be taken out of the spacer bead dispersion solution 25 at an arbitrary angle and at an arbitrary speed.
スぺ一サ用ビーズ分散溶液 2 5は、 粒径数 mのシリ 力、 アルミナ、 ポリェチレンなどを材料とするスぺ一サ用ビーズを、 純水または 3 0 % イ ソプロパノ一ル混合純水に分散撹拌したものを用いており、 スぺーサ 用ビーズの混合量は 1 0 〜 3 0 w %である。 なお、 スぺ一サ用ビーズ 7 は溶液中では完全に単分散されている。 The bead dispersion solution 25 is prepared by converting a bead made of silica, alumina, polyethylene, etc. with a particle size of several meters into pure water or 30% isopropanol mixed pure water. Dispersion and stirring are used, and the mixing amount of beads for spacer is 10 to 30 w%. The spacer beads 7 are completely monodispersed in the solution.
この分散方法に使用されるカラーフィルタ基板 1 の断面を第 1 7図に 示す。 カラーフィルタ基板 1 は成膜など製造工程の関係上ブラ ッ クマ ト リ クスパターン部分が深さ 2 m、 幅 1 0 m程度の凹状態となつてい る。 FIG. 17 shows a cross section of the color filter substrate 1 used in this dispersion method. The color matrix substrate 1 has a black matrix pattern portion having a depth of about 2 m and a width of about 10 m due to manufacturing processes such as film formation.
次に、 ゥエ ツ ト方式によるスぺーサ用ビーズ分散方法の原理を第 1 8 図に示す。 カラーフィルタ基板 1 はチャ ック 2 7に固定され、 ァ一厶 2 8の移動により上記スぺーサ用ビーズ分散溶液 2 δの中に完全に浸漬さ れる。 その後、 チャ ック 2 7を溶液面に対し 1 0 〜 4 5度となるよう に 溶液 2 5 中で傾け、 一定角度を保ちながらァ一厶 2 8により 5 〜 1 0 0 m m Z sの一定速度で斜め方向に上昇させる。 基板 1 の断面は第 1 7図 に示すよう に成膜など製造工程の関係上ブラ ッ クマ ト リ クス 4のパター
ン部分が深さ 2 m、 幅 1 Q μ m程度の凹状態となつているため、 チャ ッ ク 2 7の上昇に伴い、 この凹形状に沿つてスぺ一サ用ビーズ 7が分散 配列する。 このスぺ一サ用ビーズ 7の分散配列率は溶液 2 5の粘度、 チ ャ ック 2 7の角度、 上昇速度などに依存し、 この値を任意に制御するこ とによりスぺーサ用ビーズ 7の分散率を制御するこ とが出来る。 なお、 基板 1 の裏面へのスぺーサ用ビーズ 7の付着は、 図示しないが例えば裏 面に高圧エアを吹き付けるエアナイフにより完全に除去するこ とができ る。 Next, Fig. 18 shows the principle of the method of dispersing beads for spacers by the jet method. The color filter substrate 1 is fixed to the chuck 27, and is completely immersed in the spacer bead dispersion solution 2δ by the movement of the arm 28. Thereafter, the chuck 27 is tilted in the solution 25 so as to be at an angle of 10 to 45 degrees with respect to the solution surface, and a constant angle of 5 to 100 mm Zs is maintained by the arm 28 while maintaining a constant angle. Increase diagonally at speed. As shown in Fig. 17, the cross-section of substrate 1 is the pattern of black matrix 4 due to the manufacturing process such as film formation. The concave portion has a depth of about 2 m and a width of about 1 Q μm, and as the chuck 27 rises, the spacer beads 7 are dispersed and arranged along the concave shape. . The dispersion arrangement ratio of the spacer beads 7 depends on the viscosity of the solution 25, the angle of the chuck 27, the rising speed, and the like. By controlling this value arbitrarily, the spacer beads can be adjusted. 7 can be controlled. The adhesion of the spacer beads 7 to the back surface of the substrate 1 can be completely removed by, for example, an air knife that blows high-pressure air to the back surface, although not shown.
ゥヱ ッ 卜方式によるスぺ一サ用ビーズの分散方法は、 基板 1 の表面に 形成された溝形状を利用し、 凹部分にスぺーサ用ビーズ 7を分散付着さ せる方法である。 よって、 実施例 1 の第 4図から第 7図に示したカラー フィルタ基板 Aまたは Bまたは Cまたは Dを用いることによつても、 ブ ラ ックマ ト リ クス部の溝形状を利用し、 スぺ一サ用ビーズ 7をブラ ッ ク マ 卜 リ クス 4上にのみ分散配置させるこ とも可能である。 The method of dispersing the spacer beads by the slit method is a method in which the spacer beads 7 are dispersed and adhered to the concave portions by using the groove shape formed on the surface of the substrate 1. Therefore, by using the color filter substrate A or B or C or D shown in FIG. 4 to FIG. It is also possible to disperse the beads 7 only on the black matrix 4.
(実施例 6 ) (Example 6)
次にスぺーサ用ビーズ 7を分散させた溶液 2 5中にカラ一フィルタ基 板のブラ ックマ ト リ クスと同様のパターンの溝形状を有するダミ ーパタ ―ン基板を浸潰させ、 斜め上方に引き上げるこ とにより、 ダミ 一パター ン上にスぺ一サ用ビーズ 7を分散配置させたのち、 静亀気力を利用して カラ一フィルタに形成されたブラ ッ クマ ト リ クス 4上または駆動電極基 板の所定位置上にスぺーサ用ビーズ 7を転写させるスぺ一サ用ビーズ 7 の分散方法について説明する。 Next, a dummy pattern substrate having a groove shape similar to that of the black matrix of the color filter substrate is immersed in a solution 25 in which spacer beads 7 are dispersed, and is slid upward. By pulling up, the spacer beads 7 are dispersed and arranged on the dummy pattern, and then the black matrix 4 formed on the color filter or the drive A method of dispersing the spacer beads 7 for transferring the spacer beads 7 onto a predetermined position on the substrate will be described.
この実施例に用いるダミ ーパターン基板 Dを第 1 9図に示す。 ダミ ー パターン基板 D 2 3の表面には、 カラーフィルタ基板のブラ ックマ ト リ クスと同様のピッチ及びパターン幅の溝が形成されている。 溝形状は深 さ l 〜 6 m、 幅 8 ~ 1 0 μ m程度の凹形状であり、 溝底には均一に電
圧を印加できる電極 2 4が形成されている。 これは、 フォ ト リ ソグラフ ィ一によりブラ ックマ ト リ クスハ。夕一ンと逆のパターンマスクを形成し ドライまたはウエ ッ トエッチングにより所要パターン形状に溝を作り、 その後スパッ夕により電極 2 4を溝底に形成する。 また、 この時電極は 溝底部分に埋め込まれていても良い。 基板材料としてはガラス、 セラ ミ ックスなど各種のものが使用され得る。 The dummy pattern substrate D used in this embodiment is shown in FIG. On the surface of the dummy pattern substrate D23, grooves having the same pitch and pattern width as the black matrix of the color filter substrate are formed. The groove has a concave shape with a depth of l to 6 m and a width of about 8 to 10 μm. An electrode 24 to which pressure can be applied is formed. This is a black matrix by photolithography. A pattern mask reverse to that of the evening is formed, a groove is formed in a required pattern shape by dry or wet etching, and then an electrode 24 is formed at the bottom of the groove by sputtering. At this time, the electrode may be embedded in the groove bottom. Various materials such as glass and ceramics can be used as the substrate material.
スぺーサ用ビーズ 7の分散には実施例 5の第 1 6図に示すゥエ ツ ト方 式によるスぺ一サ用ビーズ分散装置を用いた。 スぺーサ用ビーズ分散溶 液 2 5 には粒径数 mのシ リ カ、 アルミ ナ、 ポリ プロ ピレンなどを材料 とするスぺ一サ用ビーズ Ίを、 純水または 3 0 %イ ソプロパノール混合 純水に分散撹拌したものを用いており、 スぺ一サ用ビーズ 7の混合量は 1 0〜 3 0 w %である。 なお、 スぺーサ用ビーズ 7は溶液 2 5中では完 全に単分散されている。 For dispersing the spacer beads 7, a spacer bead dispersing apparatus according to the jet method shown in FIG. 16 of Example 5 was used. The beads dispersed solution for spacer 25 contains beads for sensors made of silica, alumina, polypropylene, etc. with a particle size of several meters, pure water or 30% isopropanol. The mixture is mixed and stirred in pure water, and the mixing amount of the beads 7 for the spacer is 10 to 30 w%. The spacer beads 7 are completely monodispersed in the solution 25.
次に、 ゥニ ッ 卜方式によるスぺーサ用ビーズ分散方法の原理を第 2 0 図に示す。 ダミーパターン基板 2 3はチャ ック 2 7に固定され、 アーム 2 8の移動により上記スぺ一サ用ビーズ分散溶液 2 5中に完全に浸潰さ れる。 その後、 チャ ック 2 7を溶液 2 5の面に対し 1 0〜4 5度となる よう に溶液中で傾け、 角度を保ちながら 5〜 1 0 O m m / sの一定速度 で斜め方向に上昇させる。 ダミ ーパターン基板 2 3の断面は、 ブラ ッ ク マ ト リ クス 4 と同様のパターン部分が深さ 2 m、 幅 1 0 m程度の凹 状態となっているため、 チャ ッ ク 2 7の上昇に伴い、 この凹形状に沿つ てスぺーサ用ビーズ 7が分散配列するものである。 Next, Fig. 20 shows the principle of the method of dispersing beads for spacers by the nip unit method. The dummy pattern substrate 23 is fixed to the chuck 27, and is completely immersed in the bead dispersion solution 25 for spacer by the movement of the arm 28. Then, chuck 27 is tilted in the solution so that it is at 10 to 45 degrees with respect to the surface of solution 25, and rises obliquely at a constant speed of 5 to 10 Omm / s while maintaining the angle. Let it. In the cross section of the dummy pattern substrate 23, the pattern portion similar to the black matrix 4 is in a recessed state with a depth of about 2 m and a width of about 10 m. Accordingly, spacer beads 7 are dispersedly arranged along the concave shape.
次に、 ダミーパターン基板 2 3上に配置されたスぺーサ用ビーズ 7の カラーフィルタ基板 1 上への転写方法を第 2 1 図に示す。 Next, a method of transferring the spacer beads 7 arranged on the dummy pattern substrate 23 onto the color filter substrate 1 is shown in FIG.
分散配置させたスぺーサ用ビーズ 7が移動しないよう に、 ダミ ーパ夕 —ン基板 D 2 3の電極 2 4 にスぺ一サ用ビーズ 7 と異極の電圧を印加し、
スぺ一サ用ビーズ 7をクーロ ン力を利用してダミーパター ン基板 2 3 に 吸着させる。 この印加電圧を保ちながら反転させ、 カラーフィルタ基板 Aまたは Bまたは Cまたは D 1 のブラ ッ クマ ト リ クス 4 とのパターン合 わせを行う。 両者のパター ン位置設定終了後、 ダミーパター ン基板 2 3 の電極 2 4 にかける電圧をスぺーサ用ビーズ 7 と同極に、 カラ一フ ィ ル 夕基板 1 のブラ ッ クマ ト リ クス 4にかかる電圧をスぺーサ用ビーズ 7 と 異極にするこ とにより、 スぺ一サ用ビーズ 7はクーロン力によりダミ ー パター ン基板 2 3からは反発力を、 また、 カラ一フ ィ ル夕基板 1からは 引力を受けるため、 ブラ ッ クマ ト リ クス 4上に移動し分散配置するこ と が可能である。 A voltage different from that of the spacer beads 7 is applied to the electrode 24 of the dummy substrate D 23 so that the dispersed beads 7 for the spacer do not move. The spacer beads 7 are adsorbed to the dummy pattern substrate 23 using the Coulomb force. Invert while maintaining this applied voltage, and match the pattern with the black matrix 4 of the color filter substrate A or B or C or D1. After the pattern positions of both are set, the voltage applied to the electrodes 24 of the dummy pattern substrate 23 is set to the same polarity as that of the spacer beads 7, and the black matrix 4 of the color filter substrate 1 is set. The bead 7 has a different polarity from the voltage applied to the spacer beads 7 so that the spacer beads 7 generate a repulsive force from the dummy pattern substrate 23 due to the Coulomb force, and Since the substrate 1 receives an attractive force, it can be moved on the black matrix 4 and distributed.
特にカラーフィルタ基板 Cまたはカラ一フィルタ基板 Dを用いるとき、 ブラ ックマ ト リ クス 4またはブラ ッ クマ ト リ クス 4の下に埋め込まれた 電極 1 0 、 1 1 にスぺーサ用ビーズ 7 と異極の電荷を有するよう に電圧 をかけ、 かつ、 表示画素部 2 にスぺ一サ用ビーズ 7 と同極の電荷を有す るよう に電圧をかけるこ とにより、 第 9図に示すようにブラ ックマ ト リ クス 4上では引力が、 表示画素部 2では斥力がスぺ一サ用ビーズ 7に作 用するため、 より効率よ く カラ一フィルタ基板 1 のブラ ッ クマ ト リ クス 4上にのみスぺーサ用ビーズ 7を分散させるとことが可能である。 Especially when the color filter substrate C or the color filter substrate D is used, the electrodes 10 and 11 embedded under the black matrix 4 or the black matrix 4 are different from the spacer beads 7. By applying a voltage so as to have a polar charge and applying a voltage to the display pixel portion 2 so as to have the same polar charge as the spacer beads 7 as shown in FIG. Since the attractive force acts on the black matrix 4 and the repulsive force acts on the spacer beads 7 in the display pixel section 2, the black matrix 4 on the color filter substrate 1 is more efficiently placed on the black matrix 4. It is only possible to disperse the spacer beads 7.
上記ダミーパターン基板 2 3へのスぺ一サ用ビーズ 7の分散は、 基板 表面の凹凸を利用して行うため、 第 1 9図に示すダミ ーパターン基板 E を用いるこ とによつても可能である。 ダミーパターン基板 D 2 3には、 ブラ ックマ ト リ クスと同様のパターン電極 2 4を基板 2 3の内部に埋め 込んだ上に溝が形成され、 均一な電圧が任意に印加できる配線構造を持 ち、 かつ、 前記ブラ ッ クマ ト リ クス 4 と同様のパ夕一ン電極 2 4を除く ダミ ーパタ一ン基板表面には独立して均一な電圧が任意に印加できるよ う配線されてた電極 2 9を形成したものである。 これは、 フ ォ ト リ ソグ
ラフィ 一によりブラ ックマ ト リ クスのハ。ターンマスクを形成し、 スノ、°ッ 夕または印刷技術により電極を形成し、 その上にスパッタ及び印刷技術 によつて基板層を全面に形成する。 その後フ ォ ト リ ソグラフィ 一によ り ブラ ックマ ト リ クスパターンと逆のパターンマスクを形成し、 ドライま たはゥエ ツ トエッチングにより所要パターン形状に溝を形成させる方法 や、 ブラ ッ クマ ト リ クスパターンと同様のパターンマスクを形成し、 ス パッ夕及び印刷技術によって表面に凸形状を形成させる方法等により作 製されるものである。 Since the dispersion of the spacer beads 7 on the dummy pattern substrate 23 is performed by using the unevenness of the substrate surface, the dispersion can be performed by using the dummy pattern substrate E shown in FIG. is there. The dummy pattern substrate D23 has a wiring structure in which a pattern electrode 24 similar to the black matrix is embedded inside the substrate 23, and a groove is formed on the dummy pattern substrate D23 so that a uniform voltage can be arbitrarily applied. In addition, an electrode wired so that a uniform voltage can be arbitrarily applied independently to the surface of the dummy pattern substrate except for the pattern electrode 24 similar to the black matrix 4 described above. 29. This is the photo sog Raffi's Black Matrix C. A turn mask is formed, electrodes are formed by a snow, a laser, or a printing technique, and a substrate layer is formed on the entire surface by sputtering and a printing technique. Then, a pattern mask opposite to the black matrix pattern is formed by photolithography, and grooves are formed in the required pattern shape by dry or wet etching. It is manufactured by forming a pattern mask similar to the liquid pattern, and forming a convex shape on the surface by sputtering and printing technology.
特にダミーパター ン基板 Eを用いスぺ一サ用ビーズ 7をカラーフ ィ ル タ基板 1 に転写するとき、 ブラ ックマ ト リ クス 4またはブラ ックマ ト リ クス 4の下に埋め込まれた電極 1 0、 1 1 にスぺ一サ用ビーズ 7 と異極 の電荷を有するよう に電圧をかけ、 かつ、 表示画素部 2 にスぺーサ用ビ ーズ 7 と同極の電荷を有するように電圧をかけるこ とにより、 実施例 1 の第 9図に示すよう にブラ ッ クマ ト リ クス 4上では引力が、 表示画素部 2では斥力がスべ一サ用ビーズ 7に作用するため、 より効率よ く ブラ ッ クマ ト リ クス 4上にのみスぺーサ用ビーズ 7を分散させるとこ とが可能 である。 In particular, when transferring the spacer beads 7 to the color filter substrate 1 using the dummy pattern substrate E, the black matrix 4 or the electrodes 10 buried under the black matrix 4 are used. A voltage is applied to 11 so that it has a charge of a different polarity from the spacer beads 7, and a voltage is applied to the display pixel section 2 so that it has a charge of the same polarity as the spacer beads 7. As a result, as shown in FIG. 9 of the first embodiment, an attractive force acts on the black matrix 4 and a repulsive force acts on the beads 7 for the display in the display pixel portion 2, thereby improving the efficiency. It is possible to disperse the spacer beads 7 only on the black matrix 4.
また、 上記スぺーサ用ビーズ 7の分散は駆動電極基板を用いても可能 である。 スぺ一サ用ビーズ 7をダミ ーパターン基板 Dまたは E上に分散 配置させた後、 ダミ ーパターン基板 2 3 に形成された電極 2 4の印加電 圧を保ちながら反転させ、 実施例 1 の第 1 2図に示す駆動電極基板 1 0 1 に形成したブラ ックマ ト リ クス 4 と同様のピッチ及びパターン幅を有 する透明電極 1 2 とのパターン位置あわせを行う。 両者のパターン位置 設定終了後、 ダミ ーパターン基板 2 3の電極 2 4にかかる電圧をスぺ一 サ用ビーズ 7 と同極に、 駆動電極基板 1 0 1 のブラックマ ト リ クス 4 と 同様のピッチ及びパターン幅を有する透明電極 1 2にかかる電圧をスぺ
—サ用ビーズ 7 と異極にするこ とにより、 スぺ一サ用ビーズ 7はクーロ ンカによりダミーパターン基板 2 3からは反発力を、 また基板 1 からは 引力を受けるため、 ブラ ッ クマ ト リ クス 4 と同様のピッチ及びパターン 幅を有する透明電極 1 2上に移動し分散配置する。 The spacer beads 7 can be dispersed by using a drive electrode substrate. After dispersing the spacer beads 7 on the dummy pattern substrate D or E, the beads are inverted while maintaining the voltage applied to the electrodes 24 formed on the dummy pattern substrate 23, and the first of the first embodiment. Pattern alignment with the transparent electrode 12 having the same pitch and pattern width as the black matrix 4 formed on the drive electrode substrate 101 shown in FIG. 2 is performed. After the pattern positions of both are set, the voltage applied to the electrode 24 of the dummy pattern substrate 23 is set to the same polarity as that of the beads 7 for the spacer, and the same pitch and pitch as those of the black matrix 4 of the drive electrode substrate 101 are used. The voltage applied to the transparent electrode 1 2 having the pattern width -By making the polarity of the beads 7 different from that of the beads 7, the beads 7 of the spacer receive a repulsive force from the dummy pattern substrate 23 and an attractive force from the substrate 1 by a cooler, so that the black mat It is moved and dispersed on the transparent electrode 12 having the same pitch and pattern width as the liquid 4.
特に駆動電極基板 Bを用いるとき、 ブラ ックマ ト リ クス 4 と同様のピ ッチ及びパターン幅を有する透明電極 1 2 にスぺ一サ用ビーズ 7 と異極 の電荷を印加することに加え、 ブラ ックマ ト リ クスと同様のピッチ及び パター ン幅のパター ンを有する透明電極 1 2以外の透明電極 1 3 にスぺ —サ用ビーズ 7 と同極の電荷を印加するこ とにより、 より効率よ く ブラ ックマ ト リ クス 4 と同様のピッチ及びパターン幅を有する電極 1 2上に スぺーサ用ビーズを分散させるとこ とが可能である。 In particular, when the drive electrode substrate B is used, in addition to applying a charge of a different polarity to the spacer beads 7 to the transparent electrode 12 having the same pitch and pattern width as the black matrix 4, By applying a charge of the same polarity as the spacer beads 7 to the transparent electrode 13 other than the transparent electrode 13 having a pattern with the same pitch and pattern width as the black matrix, more efficient It is possible to disperse spacer beads on the electrode 12 having the same pitch and pattern width as the black matrix 4.
(実施例 7 ) (Example 7)
次にカラ一フィルタ基板のブラ ックマ 卜 リ クスと同様のパターンに沿 つた空孔を有する分散用フィルタをカラーフィルタ基板または駆動電極 基板上に設置し、 フィルタ空孔部にスぺーサ用ビーズを 1個ずつ配置さ せ、 カラ一フィルタ基板に形成されたブラ ッ クマ ト リ クスまたは駆動電 極基板上にスぺーサ用ビーズを分散配置させるスぺ一サ用ビーズの分散 方法の実施例について説明する。 Next, a dispersion filter having holes in a pattern similar to the black matrix of the color filter substrate is placed on the color filter substrate or the drive electrode substrate, and spacer beads are placed in the filter holes. Example of the method for dispersing spacer beads by disposing spacer beads on the black matrix formed on the color filter substrate or the drive electrode substrate by arranging them one by one. explain.
第 2 2図に分散用フィルタを示す。 ' Fig. 22 shows the dispersion filter. '
分散用フィルタ 3 0は、 使用するカラーフィルタ基板および駆動電極 基板より大きな平面基板であり、 ブラ ッ クマ ト リ クス 4 と同様のピッチ 及びパターン幅状に、 使用するスぺ一サ用ビーズ 7の径より 0 . 5 ~ 4 mほど大きな径の空孔 3 1 が設けてある。 この空孔 3 1 の形状は、 円 形の他、 四角形 · 六角形等の多角形や楕円形などスぺ一サ用ビーズ 1個 が挿入可能な形状ならば良い。 またフィルタ 3 0の基板材料は、 ガラス、 セラ ミ ッ クスなど各種材料からなり、 基板厚さは、 使用されるスぺーサ
用ビーズ 7の径と同等以上 1 . 5倍未満とする。 The dispersion filter 30 is a flat substrate that is larger than the color filter substrate and the drive electrode substrate to be used, and has the same pitch and pattern width as the black matrix 4 and the spacer beads 7 to be used. A hole 31 having a diameter about 0.5 to 4 m larger than the diameter is provided. The shape of the hole 31 may be a shape other than a circle, such as a polygon such as a square or a hexagon, or an ellipse, into which one spacer bead can be inserted. The substrate material of the filter 30 is made of various materials such as glass and ceramics, and the thickness of the substrate depends on the spacer used. The diameter should be equal to or more than 1.5 times the diameter of beads 7 for use.
第 2 3図に分散用フィ ルタ 3 0を用いたスぺーサ用ビーズ 7の分散配 置方法の概念図を示す。 実施例 1の第 2図に示したスぺーサ用ビーズ分 散装置を用い、 分散用フィルタ 3 0をカラ一フィルタ基板または駆動電 極基板上に設置した後装置内に揷入する。 スぺーサ用ビーズ噴出ノズル 1 6から散布されたスぺ一サ用ビーズ 7は、 フィルタ 3 0上または空孔 3 1 内に散布される。 このフィルタ 3 0の上を、 スク レーバ等 3 2のよ うな一辺に直線形状を持つ平板を用い、 フィルタ 3 0の表面に接触しな がらスぺーサ用ビーズ 7を除去するこ とにより、 空孔部 3 1 には 1個の スぺーサ用ビーズ 7のみが存在するこ とになる。 第 2 3図に示すよう に スク レ一パ 3 2を走査させた後、 フィルタ 3 0を取り外すこ とにより、 カラ一フィルタ基板に形成されたブラ ックマ ト リ クス 4上または駆動電 極基板 1 0 1上にスぺーサ用ビーズ 7を分散配置する。 FIG. 23 shows a conceptual diagram of a method of dispersing and disposing the spacer beads 7 using the dispersing filter 30. Using the spacer bead dispersing device shown in FIG. 2 of the first embodiment, the dispersing filter 30 is set on the empty filter substrate or the driving electrode substrate and then inserted into the device. The spacer beads 7 sprayed from the spacer bead ejection nozzles 16 are sprayed on the filter 30 or in the holes 31. A flat plate having a linear shape on one side, such as a scrubber 32, is used on the filter 30. By removing the spacer beads 7 while making contact with the surface of the filter 30, an empty space is obtained. Only one spacer bead 7 exists in the hole 31. As shown in Fig. 23, after the scraper 32 is scanned, the filter 30 is removed, so that the black matrix 4 formed on the empty filter substrate or the drive electrode substrate 1 is removed. 01 Disperse and arrange spacer beads 7 on 1.
また、 カラ一フィ ルタ基板 1 としては、 実施例 1 の第 4図から第 7図 に示すカラ一フィルタ基板 Aまたは Bまたは Cまたは Dを用いてもよい。 カラーフィノレタ基板 1 のブラ ッ クマ 卜 リ クス 4 またはブラ ックマ 卜 リ ク スと同様のピッチ及びパターン幅を有する電極 1 0、 1 1 をスぺ一サ用 ビーズ 7の有する電荷と異極にするこ とにより、 スぺーサ用ビーズ 7が カラ一フィルタ基板 1 に吸着し、 より効率よ く ブラックマ ト リ クス 4上 にのみスぺーサ用ビーズ 7を分散させるとこ とが可能である。 特にカラ —フィルタ基板 Cまたは Dを用いるとき、 ブラックマ 卜 リ クス 4上また はブラックマ ト リ クスと同様のピッチ及びパターン幅のパターンを有す る透明電極 1 0、 1 1 にスぺーサ用ビーズ 7 と異極の電荷を印加するこ とに加え、 表示画素部 2 にスぺーサ用ビーズ 7 と同極の電荷を印加する こ とにより、 さ らに効率よ く ブラ ックマ ト リ クス 4上にのみスぺーサ用 ビーズ 7を分散させるとこ とが可能である。
同様に、 実施例 2の第 1 0図又は第 1 1 図に示す駆動電極基板 Aまた は Bを用い、 駆動電極基板 1 0 1 のブラ ッ クマ ト リ クス 4 と同様のピッ チ及びパターン幅のパ夕一ンを有する透明電極 1 2をスぺーサ用ビーズ 7の有する電荷と異極にするこ とにより、 スぺーサ用ビーズ 7が駆動電 極基板 1 0 1上のブラ ッ クマ ト リ クス 4 と同様のピッチ及びパ夕一ン幅 のパターンを有する透明電極 i 2 に吸着し、 より効率よ く ブラ ッ クマ ト リ クス 4 と同様のピッチ及びパターン幅のパターンを有する透明電極 1 2上にのみスぺ一サ用ビーズ 7を分散させるとこ とが可能である。 特に 駆動電極基板 Bを用いるとき、 ブラ ッ クマ ト リ クス 4 と同様のピッチ及 びパターン幅のパターンを有する透明電極にスぺ一サ用ビーズ 7 と異極 の電荷を印加することに加え、 ブラ ックマ ト リ クス 4 と同様のピッチ及 びパターン幅のパターンを有する透明電極以外の透明電極にスぺ一サ用 ビーズ 7 と同極の電荷を印加するこ とにより、 さ らに効率よ く ブラ ック マ ト リ クス 4 と同様のピッチ及びパターン幅上にのみスぺーサ用ビーズ 7を分散させるこ とが可能である。 Further, as the color filter substrate 1, a color filter substrate A or B or C or D shown in FIGS. 4 to 7 of the first embodiment may be used. The electrodes 10 and 11 having the same pitch and pattern width as the black matrix 4 or the black matrix of the color finoleta substrate 1 are made to have a different polarity from the electric charge of the beads 7 for the spacer. By doing so, the spacer beads 7 are adsorbed on the color filter substrate 1, and the spacer beads 7 can be more efficiently dispersed only on the black matrix 4. In particular, when a color filter substrate C or D is used, spacer beads are provided on the transparent electrodes 10 and 11 having a pattern of the same pitch and pattern width on the black matrix 4 or the black matrix. In addition to applying a charge having a different polarity to that of the black matrix 7, a charge having the same polarity as that of the spacer beads 7 is applied to the display pixel portion 2 to the black matrix 4. It is possible to disperse the spacer beads 7 only in the case. Similarly, using the drive electrode substrate A or B shown in FIG. 10 or FIG. 11 of the second embodiment, the same pitch and pattern width as the black matrix 4 of the drive electrode substrate 101 are used. By making the transparent electrode 12 having a transparent electrode 12 of a different polarity from the electric charge of the spacer beads 7, the spacer beads 7 become black mats on the drive electrode substrate 101. A transparent electrode 1 having a pattern with the same pitch and pattern width as that of the matrix 4 is adsorbed to the transparent electrode i 2 having a pattern with the same pitch and pattern width as the matrix 4, and more efficiently having a pattern with the same pitch and pattern width as the black matrix 4. It is possible to disperse the beads 7 for the spacer only on 2. In particular, when the driving electrode substrate B is used, in addition to applying a charge having a different polarity from the spacer beads 7 to a transparent electrode having a pattern having the same pitch and pattern width as the black matrix 4, By applying a charge of the same polarity as that of the spacer beads 7 to a transparent electrode other than a transparent electrode having a pattern of the same pitch and pattern width as the black matrix 4, it is possible to further improve the efficiency. It is possible to disperse the spacer beads 7 only on the same pitch and pattern width as the black matrix 4.
(実施例 8 ) (Example 8)
次にカラ一フィルタ基板のブラ ックマ ト リ クスと同様のパターンに沿 つた空孔を有する分散用電極付きフィルタをカラーフィルタ基板または 駆動電極基板上に設置し、 静電気力を利用してフィルタ空孔部にスぺー サ用ビーズを 1個ずつ誘導し、 カラ一フ ィ ル夕基板に形成されたブラ ッ クマ ト リ クス上または駆動電極基板上の所定位置にスぺ一サ用ビーズを 分散配置させるスぺーサ用ビーズ分散方法について説明する。 Next, a filter with a dispersion electrode having holes in a pattern similar to the black matrix of the color filter substrate is placed on the color filter substrate or the drive electrode substrate, and the filter holes are formed using electrostatic force. The spacer beads are guided one by one into the section, and the spacer beads are dispersed and arranged at a predetermined position on the black matrix formed on the color filter substrate or on the drive electrode substrate. The method of dispersing the spacer beads will be described.
第 2 4図に分散用電極付きフィルタを示す。 Fig. 24 shows a filter with dispersion electrodes.
電極付き分散用フイルク 3 3は、 使用するカラーフィルタ基板 1 より 大きな平面基板であり、 ブラ ッ クマ ト リ クス 4 と同様のピッチ及びパタ —ン幅に沿って、 使用するスぺーサ用ビーズ 7の径より 0 . 5 〜 4 m
ほど大きな径の空孔 3 5が設けてある。 空孔 3 5の形状は円形の他、 四 角形 · 六角形等の多角形や楕円形などスぺーサ用ビーズ 1個が揷入可能 な形状ならば良い。 フィルタ 3 3は、 フィルタ表面と空孔壁とに形成さ れた電極 3 6、 3 7を持ち、 特に空孔壁には使用されるスぺ一サ用ビー ズ径と同じ大きさの電極 3 7が、 空孔壁に沿って 2個以上形成されてい る。 また、 基板はガラス、 セラ ミ ッ クスなど各種材料からなり、 基板厚 さは、 使用されるスぺーサ用ビーズ 7の径の 2倍以上とする。 The dispersion film with electrodes 3 3 is a flat substrate larger than the color filter substrate 1 to be used, and the spacer beads 7 to be used along the same pitch and pattern width as the black matrix 4. 0.5 to 4 m from the diameter of A hole 35 having a larger diameter is provided. The shape of the holes 35 is not limited to a circle, but may be any shape such as a polygon such as a square or a hexagon, or an oval such that one spacer bead can be inserted. The filter 33 has electrodes 36 and 37 formed on the filter surface and the pore wall, and particularly has an electrode 3 having the same size as the bead diameter for the spacer used on the pore wall. 7 are formed along the hole wall. The substrate is made of various materials such as glass and ceramics, and the thickness of the substrate is at least twice the diameter of the spacer beads 7 used.
第 2 5図に電極付き分散用フイルクを用いたスぺーサ用ビーズ分散配 置方法の概念図を示す。 実施例 1 の第 2図に示したスぺーサ用ビーズ分 散装置を用い、 分散用フィルタ 3 3をカラ一フィルタ基板 1 または駆動 電極基板 1 0 1上に設置した後装置内に挿入する。 このとき、 電極付き 基板 3 3は表面電極 3 4をスぺ一サ用ビーズ 7の持つ電荷と同極に、 空 孔壁電極 3 6、 3 7を表面電極 3 4 に近いものから順にスぺーサ用ビー ズ 7の持つ電荷と異極、 同極、 異極 · · · と交互に異なる電荷を持たせ るよう に印加する。 スぺーサ用ビーズ噴出ノズル 1 6から散布されたス ぺ一サ用ビーズ 7は、 フィルタ表面では斥力が、 空孔部 3 5内では弓(力 が発生するため、 空孔部に移動する。 このとき、 空孔部は使用するスぺ ーサ用ビーズ 7の径と同じ大きさの電極により交互に異なる電荷を持つ ために、 空孔部 3 5には一個のスぺ一サ用ビーズ 7が存在するこ とにな る。 この後、 空孔電極 3 6、 3 7をカラーフィルタ基板側に形成したも のから順に、 その電荷を反転させ空孔部 3 5に存在する一個のスぺーサ 用ビーズ 7をカラーフィルタ側に空孔電極 3 6、 3 7の大きさ分だけ移 動する。 この空孔電極 3 6、 3 7の電荷反転を繰り返すこ とによりスぺ ーサ用ビーズ 7は空孔壁に沿って、 カラ一フィルタ基板 1 のブラ ッ クマ ト リ クス 4上または駆動電極の所定位置上に誘導され、 ブラ ックマ ト リ クス 4上にのみスぺ一サ用ビーズ 7を分散させるとこ とが可能である。
なお、 フィルタの空孔数ゃ密度などを変えるこ とにより、 スぺ一サ用ビ —ズ 7の分散を任意に制御するこ とが可能である。 Fig. 25 shows a conceptual diagram of the bead dispersing method for spacers using a dispersing film with electrodes. Using the spacer bead dispersing device shown in FIG. 2 of the first embodiment, the dispersing filter 33 is placed on the empty filter substrate 1 or the driving electrode substrate 101 and then inserted into the device. At this time, the substrate with electrodes 33 has the surface electrode 34 in the same polarity as the electric charge of the spacer beads 7, and the pore wall electrodes 36, 37 in the order from the closest to the surface electrode 34. It is applied so that the charge of the service bead 7 and the different polarity, the same polarity, the different polarity... The spacer beads 7 sprayed from the spacer bead ejection nozzles 16 move to the holes because a repulsive force is generated on the filter surface and a bow (force) is generated in the holes 35. At this time, since the holes have different charges by electrodes having the same size as the diameter of the spacer beads 7 to be used, the hole 35 has one spacer bead 7. Thereafter, in order from the hole electrodes 36 and 37 formed on the color filter substrate side, the electric charges are inverted and one space existing in the hole portion 35 is formed. The beads 7 for the spacer are moved to the color filter side by the size of the pore electrodes 36 and 37. The charge reversal of the pore electrodes 36 and 37 is repeated so that the beads 7 for the spacer are obtained. Is guided along the hole wall on the black matrix 4 of the empty filter substrate 1 or on the predetermined position of the drive electrode. It is possible to disperse the spacer beads 7 only on the black matrix 4. The dispersion of the beads 7 for the spacer can be arbitrarily controlled by changing the number of holes and the density of the filter.
また、 カラ一フィル夕基板と しては、 実施例 1 の第 4図から第 7図に 示すカラーフィルタ基板 Aまたは Bまたは Cまたは Dを用いてもよい。 カラ一フィルタ基板のブラ ッ クマ ト リ クス 4 またはブラ ッ クマ ト リ クス 4 と同様のピッチ及びパターン幅を有する電極をスぺーサ用ビーズ 7の 有する電荷と異極にするこ とにより、 スぺ一サ用ビーズがカラ一フィ ル 夕基板 1 に吸着し、 より効率よ く ブラ ックマ ト リ クス 4上にスぺーサ用 ビーズ 7を分散させるとこ とが可能である。 特にカラ一フィルタ基板 C または Dを用いるとき、 ブラ ックマ ト リ クス 4上またはブラ ッ クマ ト リ クス 4 と同様のピッチ及びパターン幅を有する透明電極 1 0、 1 1 にス ぺーサ用ビーズ 7 と異極の電荷を印加するこ とに加え、 表示画素部 2 に スぺ一サ用ビーズ 7 と同極の電荷を印加するこ とにより、 さらに効率よ く ブラ ッ クマ ト リ クス 4上にのみスぺーサ用ビーズ 7を分散させるとこ が可能である。 Further, as the color filter substrate, a color filter substrate A or B or C or D shown in FIGS. 4 to 7 of the first embodiment may be used. The black matrix 4 of the empty filter substrate or an electrode having the same pitch and pattern width as the black matrix 4 is made to have a different polarity from the electric charge of the spacer beads 7 so that The spacer beads are adsorbed on the color filter substrate 1, and the spacer beads 7 can be more efficiently dispersed on the black matrix 4. In particular, when a color filter substrate C or D is used, spacer beads 7 are provided on the transparent electrodes 10 and 11 having the same pitch and pattern width as the black matrix 4 or the same as the black matrix 4. By applying a charge of the same polarity as that of the spacer beads 7 to the display pixel section 2 in addition to applying a charge of a different polarity to the black matrix 4, Only the spacer beads 7 can be dispersed.
同様に、 駆動電極基板としては、 実施例 2の第 1 0図又は第 1 1 図に 示す駆動電極基板 Aまたは Bを用いてもよい。 駆動電極基板 1 0 1 のブ ラ ックマ ト リ クス 4 と同様のピッチ及びパターン幅を有する透明電極 1 2をスぺ一サ用ビーズ 7の有する電荷と異極にすることにより、 スぺー サ用ビーズ Ίが駆動電極基板 1 0 1上のブラ ッ クマ ト リ クス 4 と同様の ピツチ及びパターン幅を有する透明電極 1 2 に吸着し、 より効率よ く ブ ラ ックマ ト リ クス 4 と同様のピッチ及びパターン幅を有する透明電極 1 2上にのみスぺ一サ用ビーズ 7を分散させるとことが可能である。 特に 駆動電極基板 Bを用いるとき、 ブラ ッ クマ ト リ クス 4 と同様のピッチ及 びパターン幅を有する透明電極 1 2 にスぺーサ用ビーズ 7 と異極の電荷 印加するこ とに加え、 ブラ ックマ ト リ クス 4 と同様のピッチ及びバタ
一ン幅を有する透明電極 1 2以外の透明電極 1 3 にスぺーサ用ビーズ 7 と同極の電荷を印加するこ とにより、 さ らに効率よ く ブラ ッ クマ ト リ ク ス 4 と同様のピッチ及びパターン幅上にのみスぺ一サ用ビーズ 7を分散 させるこ とが可能である。 Similarly, as the driving electrode substrate, the driving electrode substrate A or B shown in FIG. 10 or FIG. 11 of Embodiment 2 may be used. The transparent electrode 12 having the same pitch and pattern width as the black matrix 4 of the drive electrode substrate 101 is made to have a different polarity from the electric charge of the spacer beads 7 so as to form a spacer for the spacer. The beads 吸着 adhere to the transparent electrode 12 having the same pitch and pattern width as the black matrix 4 on the drive electrode substrate 101, and the same pitch as the black matrix 4 more efficiently. Further, it is possible to disperse the spacer beads 7 only on the transparent electrode 12 having the pattern width. In particular, when the drive electrode substrate B is used, in addition to applying a charge of a different polarity to the spacer beads 7 to the transparent electrode 12 having the same pitch and pattern width as the black matrix 4, Pitch and flutter similar to that of Matrix 4 By applying a charge of the same polarity as that of the spacer beads 7 to the transparent electrodes 13 other than the transparent electrodes 1 and 2 having the same width as in the black matrix 4, it is more efficient. It is possible to disperse the spacer beads 7 only on the pitch and pattern width.
(実施例 9 ) (Example 9)
最後に、 直径数 mの微細口を有する微細ノズルから液化ガラスを噴 出するこ とにより、 カラーフィルタ基板に形成されたブラ ックマ 卜 リ ク ス上および駆動電極基板の所定位置上にスぺ一サ用ビーズを分散配置さ せるスぺ一サ用ビーズ分散方法について説明する。 Finally, liquefied glass is spouted from a fine nozzle having a fine opening with a diameter of several meters, so that the liquid glass is spread over a black matrix formed on the color filter substrate and a predetermined position on the drive electrode substrate. The method of dispersing the beads for the spacer in which the beads for the distributor are dispersed will be described.
第 2 6図に微細ノズル方式によるスぺ一サ用ビーズ分散配置方法を示 す。 装置は、 溶液槽 (図示せず) と溶液を噴出する微細ノズル 4 2、 微 細ノズル 4 2に溶液を補給するポンプ (図示せず) とからなっており、 微細ノズル 4 2噴射口に直交してカラーフィルタ基板または駆動電極基 板が設置されている。 溶液槽には液化ガラスが充填されており、 微細ピ ス ト ン機構を有する微細ノズル 4 2からイ ンクジェ ッ ト方式により液化 ガラスが噴出される。 この実施例で用いられる微細ノズル 4 2の径は 0 数 mと非常に微細なものを使用しており、 噴出された液化ガラスは微 細ノ ズル 4 2から離脱されることにより大気中で球形のガラスビーズと なり、 カラーフィルタ基板に付着し、 所要の高さを有するスぺーサ用ビ ーズ 4 3 として使用される。 微細ノズル 4 2をカラ一フィルタ基板 4 0 のブラ ックマ ト リ クス 4 1 に沿って移動、 または、 微細ノズル 4 2を固 定しガラス基板 4 0を移動するこ とによって、 ブラ ッ クマ ト リ クス 4 1 上にスぺ一サ用ビーズ 4 3を分散配置するこ とが可能である。 また同様 にして、 ブラ ックマ ト リ クス 4 1 と同様のピッチ及びパターン幅に沿つ て、 駆動電極基板 4 0上にスぺーサ用ビーズ 4 3を分散配置させること も可能である。
また、 上記微細ノズル 4 0は 1本に限らず、 第 2 7図に示すよう にカラ 一フィルタ基板 4 0のブラ ッ クマ 卜 リ クス 4 1 の間隔にあわせて複数個 設置されていても良く 、 複数個のノズル 4 2を設置するこ とにより作業 能率を向上できる。 このよう なイ ンクジエ ツ 卜方式による分散方法では、 任意の場所にスぺ一サ用ビーズ 4 3を分散させるこ とが可能で、 微細ノ ズル 4 2の径の調整により任意にスぺーサ用ビーズ 4 3の高さを変える こ とが出来る。 また、 スぺーサ用ビーズ 4 3の配置密度に関しても、 基 板 4 0または微細ノズル 4 2の移動速度を調整するこ とにより任意に変 えるこ とが可能である。 Figure 26 shows the method of dispersing and distributing beads for a spacer using the fine nozzle method. The device consists of a solution tank (not shown), a fine nozzle 42 for ejecting the solution, and a pump (not shown) for replenishing the solution to the fine nozzle 42. Then, a color filter substrate or a drive electrode substrate is provided. The liquid tank is filled with liquefied glass, and liquefied glass is ejected from a fine nozzle 42 having a fine piston mechanism by an ink jet method. The diameter of the fine nozzle 42 used in this embodiment is very small, that is, a few meters, and the liquefied glass that has been ejected is separated from the fine nozzle 42 by a spherical shape in the atmosphere. The glass beads adhere to the color filter substrate and are used as spacer beads 43 having a required height. By moving the fine nozzle 42 along the black matrix 41 of the color filter substrate 40, or by fixing the fine nozzle 42 and moving the glass substrate 40, the black matrix is obtained. It is possible to disperse the spacer beads 43 on the box 41. Similarly, spacer beads 43 can be dispersedly arranged on the drive electrode substrate 40 along the same pitch and pattern width as the black matrix 41. The number of the fine nozzles 40 is not limited to one, and a plurality of fine nozzles 40 may be provided at intervals of the black matrix 41 of the empty filter substrate 40 as shown in FIG. 27. By installing a plurality of nozzles 42, the work efficiency can be improved. In such a dispersing method using the ink jet method, it is possible to disperse the spacer beads 43 at an arbitrary location, and arbitrarily adjust the diameter of the fine nozzles 42 for the spacer. The height of beads 43 can be changed. Also, the arrangement density of the spacer beads 43 can be arbitrarily changed by adjusting the moving speed of the substrate 40 or the fine nozzle 42.
上記実施例 1〜 9により、 カラーフィルタ基板上に分散させた場合は ブラ ッ クマ ト リ クス上にのみ、 また、 駆動電極基板上に分散させた場合 はブラ ックマ 卜 リ クスと同様のピッチ及びパターン幅の所定位置にのみ スぺーサ用ビーズを分散させることが可能である。 これらの基板を用い、 それぞれスぺーサ用ビーズが付着していない駆動電極基板またはカラ一 フィルタ基板にパターン位置合わせをした後、 接合するこ とによってギ ャ ップ高さ精度士 0 . 0 5 m以内の高精度かつ高画質の液晶パネルを 得るこ とができる。 According to Examples 1 to 9 described above, when dispersed on a color filter substrate, only on a black matrix, and when dispersed on a drive electrode substrate, the same pitch and pitch as those of the black matrix were used. It is possible to disperse spacer beads only at predetermined positions of the pattern width. Using these substrates, pattern alignment is performed on the drive electrode substrate or color filter substrate to which no spacer beads are attached, respectively, and then the substrates are joined together to achieve a gap height accuracy of 0.05. High-precision and high-quality liquid crystal panels within a distance of m can be obtained.
上記実施例 1〜 9からも明らかなように、 第 1 図に示すように液晶パ ネルのブラ ッ クマ 卜 リ クスの投影領域に対するスぺ一 材の入域率は 7 0〜 1 0 0 %とし、 表示画素部へのビーズの付着を 3 0 %以下に抑える ことができるので、 光漏れや色調ムラなどの画像品質を著しく 向上させ る As is clear from the above Examples 1 to 9, as shown in FIG. 1, the entrance ratio of the black material to the projection area of the black matrix of the liquid crystal panel is 70 to 100%. The adhesion of beads to the display pixel area can be suppressed to 30% or less, which significantly improves image quality such as light leakage and uneven color tone.
特に、 実施例 1 の第 4図から第 7図に示すカラ一フィルタ基板 Aまた は Bまたは Cまたは Dや実施例 2の第 1 0図、 第 1 1 図に示す駆動電極 基板 Aまたは Bを用いるとき、 ブラ ックマ ト リ クス上にスぺーサ用ビー ズをクーロン力の引力を利用して配置させるため、 ブラ ックマ ト リ クス
にかかる電荷を維持するこ とによって、 基板移動中のスぺ一サ用ビーズ 移動も防止することが出来る。 In particular, the color filter substrate A or B or C or D shown in FIGS. 4 to 7 of Example 1 or the drive electrode substrate A or B shown in FIGS. 10 and 11 of Example 2 is used. When used, the black matrix is used to place spacer beads on the black matrix using the attractive force of Coulomb force. By maintaining the electric charge, the movement of the spacer beads during the movement of the substrate can be prevented.
この構成により、 所要パターンの透明電極を形成した一対のガラス基 板をスぺ一サ用ビーズを介して対向させるカラー液晶パネルにおいて、 前記カラ一パネルを構成するカラ一フィルタ基板に形成されたブラ ッ ク マ ト リ クス上にのみスぺ一サ用ビーズを分布配置させるこ とにより、 ス ベーサ材は表示画素部には存在しないため、 スぺーサ材に起因する光漏 れなどがなく なると同時に、 セルギヤ ップ高さ精度の良い高画質の力ラ —液晶パネル及びカラー液晶表示装置を得るこ とができる。 産業上の利用可能性 According to this configuration, in a color liquid crystal panel in which a pair of glass substrates on which transparent electrodes of a required pattern are formed are opposed to each other through spacer beads, a color filter formed on a color filter substrate constituting the color panel is provided. By distributing the spacer beads only on the matrix, the spacer material does not exist in the display pixel area, so light leakage due to the spacer material is eliminated. At the same time, it is possible to obtain a liquid crystal panel and a color liquid crystal display device having high cell-gap height accuracy and high image quality. Industrial applicability
本発明によるカラー液晶表示装置は、 パーソナルコンピュータ、 テレ ビ、 時計、 カーナビゲ一シヨ ン、 コンピュータゲーム、 テレビ電話、 計 測装置、 検査装置、 加工装置、 画像処理装置、 医療機器、 モニターシス テム、 通信会議システムなど各種の電子装置の表示部と して搭載される、 光漏れや色調むらのない高画質の表示装置が提供でき、 特に、 スぺ一サ 材は表示画素部には存在しないため、 スぺーサ材に起因する光漏れなど がなく なると同時にセルギヤ ップ高さ精度土 0 . 0 5 m以内の高精度 かつ高画質のカラー液晶パネルおよびカラー液晶表示装置を得るこ とが でき、 産業上極めて有効である。
The color liquid crystal display device according to the present invention includes a personal computer, a television, a clock, a car navigation system, a computer game, a videophone, a measuring device, an inspection device, a processing device, an image processing device, a medical device, a monitor system, and a communication device. A high-quality display device without light leakage or uneven color tone can be provided as a display unit for various electronic devices such as conference systems. In particular, since there is no sputter material in the display pixel unit, In addition to eliminating light leakage caused by the spacer material, it is possible to obtain high-precision and high-quality color liquid crystal panels and color liquid crystal display devices with a cell gap height accuracy of 0.05 m or less at the same time. It is extremely effective.
Claims
請求の範囲 The scope of the claims
1 - 一対の基板間にスぺーサ材を備えるカラー液晶表示装置において、 力ラ一液晶パネルを構成するブラ ッ クマ ト リ クスの領域にスぺ一サ材 を分散配置させたことを特徴とするカラ一液晶表示装置。 1-A color liquid crystal display device having a spacer material between a pair of substrates, wherein the spacer material is dispersed and arranged in a black matrix region forming a liquid crystal panel. A liquid crystal display device.
2 . 上記スぺーサ材は、 球状であることを特徴とする請求の範囲第 1 項 記載のカラー液晶表示装置。 2. The color liquid crystal display device according to claim 1, wherein the spacer material is spherical.
3 . 上記球状スぺ一サ材は、 プラスチック、 シリ カ又はアルミ ナのいず れかから成るこ とを特徴とする請求の範囲第 2項記載のカラー液晶表示 装置。 3. The color liquid crystal display device according to claim 2, wherein said spherical spacer material is made of any one of plastic, silica and alumina.
4 . 上記球状スぺーサ材の大きさは、 粒径 9 m以下としたこ とを特徴 とする請求の範囲第 2項記載のカラ一液晶表示装置。 4. The color liquid crystal display device according to claim 2, wherein the size of the spherical spacer material is 9 m or less in particle size.
5 . 所定のパターンの透明電極を形成した一対のガラス基板をスぺーサ 材を介して対向させたカラ一液晶パネルを具備したカラー液晶表示装置 において、 該カラー液晶パネルを構成するカラーフィルタ基板または駆 動電極基板の少なく ともどちらか一方の基板のブラ ッ クマ ト リ クスに対 応する領域にスぺーサ材を分散配置させ、 セルギヤ ップを形成したこ と を特徴とするカラー液晶表示装置。 5. A color liquid crystal display device including a color liquid crystal panel in which a pair of glass substrates on which transparent electrodes of a predetermined pattern are formed are opposed to each other with a spacer material interposed therebetween, wherein a color filter substrate constituting the color liquid crystal panel or A color liquid crystal display device having a cell gap formed by dispersing and disposing a spacer material in at least one of the driving electrode substrates in a region corresponding to the black matrix. .
6 . 上記カラ一フィルタ基板は、 そのブラ ッ クマ ト リ クスに対応した領 域に電極を備え、 これに任意の電圧を印加可能な配線構造を持つこ とを 特徴とする請求の範囲第 5項記載のカラー液晶表示装置。 6. The color filter substrate according to claim 5, wherein an electrode is provided in a region corresponding to the black matrix, and a wiring structure capable of applying an arbitrary voltage to the electrode is provided. Item 6. A color liquid crystal display device according to item 1.
7 . 上記電極は、 透明電極であるこ とを特徴とする請求の範囲第 6項記 載のカラー液晶表示装置。 7. The color liquid crystal display device according to claim 6, wherein the electrode is a transparent electrode.
8 . 上記カラ一フィルタ基板はそのブラ ッ クマ 卜 リ クスに対応した電極 に任意の電圧が印加可能な配線構造とともに、 表示画素部に任意の電圧 が印加可能な配線構造を持つこ とを特徴とする請求の範囲第 5項記載の
カラー液晶表示装置。 8. The color filter substrate has a wiring structure that can apply an arbitrary voltage to the electrodes corresponding to the black matrix and a wiring structure that can apply an arbitrary voltage to the display pixel section. Claim 5 Color liquid crystal display.
9 . 上記駆動電極基板は、 この駆動電極基板と対をなすカラ一フィルタ 基板に形成されているブラ ッ クマ ト リ クスの領域に対向して電極を備え これに任意の電圧が印加可能な配線構造を持つこ とを特徴とする請求の 範囲第 5項記載のカラ一液晶表示装置。 9. The drive electrode substrate has electrodes facing the black matrix region formed on the color filter substrate paired with the drive electrode substrate, and has a wiring to which an arbitrary voltage can be applied. 6. The color liquid crystal display device according to claim 5, wherein the color liquid crystal display device has a structure.
1 0 . 上記駆動電極基板は、 上記ブラ ックマ 卜 リ クスの領域に対向した 電極を除く駆動電極部上に該電極とは異極の電圧が印加可能な透明電極 を有するこ とを特徴とする請求の範囲第 5項記載のカラー液晶表示装置, 10. The drive electrode substrate is characterized in that it has a transparent electrode to which a voltage having a different polarity from that of the electrode can be applied on the drive electrode portion excluding the electrode facing the black matrix region. The color liquid crystal display device according to claim 5,
1 1 . 上記ブラ ッ クマ 卜 リ クスの投影領域に対する上記スぺ一サ材の入 域率は、 7 0〜 1 0 0 %であるこ とを特徴とする請求の範囲第 1項乃至 第 5項いずれかに記載のカラー液晶表示装置。 11. The claim 1 to claim 5, wherein an entrance ratio of the spacer material to a projection area of the black matrix is 70 to 100%. The color liquid crystal display device according to any one of the above.
1 2 . カラーフィルタ基板又は駆動電極基板のブラ ックマ ト リ クスの領 域に対応して設けた電極に、 スぺーサ材の持つ電荷とは異極の電荷をか け、 上記ブラ ックマ ト リ クス対応領域上にスぺーサ材を分布配置させる こ とを特徴とするカラー液晶表示装置の製造方法。 1 2. Apply a different polarity charge to that of the spacer material to the electrodes provided in the color filter substrate or the drive electrode substrate corresponding to the black matrix area, and apply the black matrix described above. A method of manufacturing a color liquid crystal display device, characterized in that spacer materials are distributed and arranged on a region corresponding to a matrix.
1 3 . カラ一フィルタ基板又は駆動電極のブラ ックマ ト リ クスの領域に 対応して設けた電極にスぺーサ材の持つ電荷と異極の電荷をかけ、 かつ カラ一フィ ルタ基板の表示画素部に対応した電極または駆動電極基板の ブラ ックマ ト リ クスに対応した領域を除く領域に形成された電極にスぺ 一サ材と同極の電荷をかけ、 ブラ ックマ ト リ クス対応領域にスぺーサ材 を分布配置されるこ とを特徴とする力ラー液晶表示装置の製造方法。 13. Apply the charge of the spacer material and the charge of the different polarity to the electrodes provided in the black matrix area of the color filter substrate or the drive electrode, and display pixels of the color filter substrate. Apply the same polarity charge as the spacer material to the electrodes corresponding to the electrodes or the electrodes formed on the drive electrode substrate except for the area corresponding to the black matrix, and apply the black matrix to the black matrix-compatible area. A method for manufacturing a liquid crystal display device, characterized in that a laser material is distributed and arranged.
1 4 . カラーフィルタ基板に形成されたブラックマ ト リ クスに対応する 領域に電極を形成したダミーパターンの該電極にスぺーサ材の持つ電荷 とは異極の電荷を印加して上記ダミ一基板上にスぺーサ材を分散配置さ せたのち、 このダミ ー基板上のスぺ一サ材をカラーフィルタ基板のブラ ックマ 卜 リ クスに対応する領域上に転写させるこ とを特徴とする力ラ一
液晶表示装置の製造方法。 14 4. Apply a charge of a different polarity to the charge of the spacer material to the electrode of the dummy pattern in which the electrode is formed in the area corresponding to the black matrix formed on the color filter substrate, After the spacer material is dispersed and arranged on the upper surface, the force that transfers the spacer material on the dummy substrate to an area corresponding to the black matrix of the color filter substrate is transferred. Raichi A method for manufacturing a liquid crystal display device.
1 5 . カラーフィルタ基板に形成されたブラ ックマ ト リ クスに対応する 領域に第 1 の電極を備え該第 1 の電極を除く 基板表面に、 第 2の電極を 備えたダミ 一基板の該第 1 の電極にスぺーサ材の持つ電荷とは異極の電 荷を印加し第 2の電極には同極の電荷を印加するこ とによ りダミ ーパタ —ン基板上にスぺーサ材を分散配置させたのち、 このダミ ー基板上のス ぺーサ材をカラーフィルタ基板または駆動電極基板のブラ ッ クマ 卜 リ ス クに対応する領域上に転写させるこ とを特徴とする力ラー液晶表示装置 の製造方法。 15. The first electrode is provided in a region corresponding to the black matrix formed on the color filter substrate, and the first electrode of the dummy substrate provided with the second electrode is provided on the surface of the substrate excluding the first electrode. By applying a charge of a different polarity to the charge of the spacer material to the first electrode and applying a charge of the same polarity to the second electrode, the spacer material is placed on the dummy pattern substrate. After the spacers are dispersed, the spacer material on the dummy substrate is transferred onto a region corresponding to the black matrix risk of the color filter substrate or the drive electrode substrate. Display device manufacturing method.
1 6 . ガラス基板のブラ ックマ ト リ クスに対応する領域に凹部を有しこ の凹部の領域にスぺーサ材を分散させる力ラー液晶表示装置の製造方法 であって、 スぺーサ材を溶液に分散させ、 該溶液中に前記ガラス基板を 浸瀵前記ガラス基板を前記溶液から引き上げ、 前記ガラス基板表面の凹 部に前記スぺーサ材を配置させるこ とを特徴とする力ラ一液晶表示装置 の製造方法。 16. A method of manufacturing a liquid crystal display device having a concave portion in a region corresponding to a black matrix of a glass substrate and dispersing a spacer material in the region of the concave portion, wherein the spacer material is provided. Dispersing in a solution, immersing the glass substrate in the solution, lifting the glass substrate from the solution, and disposing the spacer material in a concave portion of the surface of the glass substrate. Display device manufacturing method.
1 7 . 請求の範囲第 1 6項に記載のカラー液晶表示装置の製造方法にお いて、 前記ガラス基板を前記溶液より斜め方向に引き上げるこ とを特徴 とするカラー液晶表示装置の製造方法。 17. The method for manufacturing a color liquid crystal display device according to claim 16, wherein the glass substrate is pulled obliquely from the solution.
1 8 . ブラ ックマ 卜 リ スクに対応する領域に空孔を設けた分散フィルタ を使用して、 この分散フィル夕の空孔にスベーサ材を充填し、 この分散 フィルタのスぺ一サ材をカラ一フィルタ基板又は駆動電極基板のブラ ッ クマ ト リ クスに対応する領域に載置させることを特徴とするカラー液晶 表示装置の製造方法。 18. Using a dispersion filter with holes in the area corresponding to the black matrix risk, fill the holes of this dispersion filter with a spacer material, and replace the spacer material of this dispersion filter with the color. A method for manufacturing a color liquid crystal display device, comprising: mounting a filter substrate or a drive electrode substrate on a region corresponding to black matrix.
1 9 . 微細口を有する単数又は複数のノズルから液化ガラスをガラス基 板のブラ ックマ ト リ クスに対応する位置に噴出し、 スぺ一サ材を形成す るこ とを特徴とするカラ一液晶表示装置の製造方法。
1 9. A liquid characterized in that liquefied glass is ejected from one or more nozzles having fine openings to a position corresponding to the black matrix of the glass substrate to form a spacer material. A method for manufacturing a liquid crystal display device.
2 0 . 請求の範囲第 1項乃至第 1 1項いずれかに記載のカラ一液晶表示 装置を搭載した電子装置。
20. An electronic device equipped with the color liquid crystal display device according to any one of claims 1 to 11.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP1996/000755 WO1997036205A1 (en) | 1996-03-22 | 1996-03-22 | Color liquid crystal display device and its manufacture |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP1996/000755 WO1997036205A1 (en) | 1996-03-22 | 1996-03-22 | Color liquid crystal display device and its manufacture |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1997036205A1 true WO1997036205A1 (en) | 1997-10-02 |
Family
ID=14153099
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP1996/000755 WO1997036205A1 (en) | 1996-03-22 | 1996-03-22 | Color liquid crystal display device and its manufacture |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO1997036205A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005321540A (en) * | 2004-05-07 | 2005-11-17 | Sekisui Chem Co Ltd | Method for manufacturing liquid crystal display device |
| JP2008281740A (en) * | 2007-05-10 | 2008-11-20 | Toppan Printing Co Ltd | Spacer forming method and blanket base material used therefor |
| US7701545B2 (en) | 2004-11-02 | 2010-04-20 | Sharp Kabushiki Kaisha | Substrate for liquid crystal display devices |
| US8174664B2 (en) | 2004-10-14 | 2012-05-08 | Sharp Kabushiki Kaisha | Multilayer substrate |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5792314A (en) * | 1980-11-29 | 1982-06-08 | Casio Comput Co Ltd | Manufacture of display cell vessel |
| JPH03288828A (en) * | 1990-04-05 | 1991-12-19 | Oki Electric Ind Co Ltd | Formation of spacer |
| JPH0446320A (en) * | 1990-06-13 | 1992-02-17 | Matsushita Electric Ind Co Ltd | Production of liquid crystal panel |
| JPH04204417A (en) * | 1990-11-29 | 1992-07-24 | Matsushita Electric Ind Co Ltd | Manufacturing method of liquid crystal display panel |
| JPH0561052A (en) * | 1991-08-30 | 1993-03-12 | Stanley Electric Co Ltd | Liquid crystal display device manufacturing method |
| JPH05333346A (en) * | 1992-06-02 | 1993-12-17 | Sharp Corp | Liquid crystal display device and its production |
| JPH06250194A (en) * | 1993-02-25 | 1994-09-09 | Toshiba Corp | Production of liquid crystal display device |
-
1996
- 1996-03-22 WO PCT/JP1996/000755 patent/WO1997036205A1/en active Application Filing
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5792314A (en) * | 1980-11-29 | 1982-06-08 | Casio Comput Co Ltd | Manufacture of display cell vessel |
| JPH03288828A (en) * | 1990-04-05 | 1991-12-19 | Oki Electric Ind Co Ltd | Formation of spacer |
| JPH0446320A (en) * | 1990-06-13 | 1992-02-17 | Matsushita Electric Ind Co Ltd | Production of liquid crystal panel |
| JPH04204417A (en) * | 1990-11-29 | 1992-07-24 | Matsushita Electric Ind Co Ltd | Manufacturing method of liquid crystal display panel |
| JPH0561052A (en) * | 1991-08-30 | 1993-03-12 | Stanley Electric Co Ltd | Liquid crystal display device manufacturing method |
| JPH05333346A (en) * | 1992-06-02 | 1993-12-17 | Sharp Corp | Liquid crystal display device and its production |
| JPH06250194A (en) * | 1993-02-25 | 1994-09-09 | Toshiba Corp | Production of liquid crystal display device |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005321540A (en) * | 2004-05-07 | 2005-11-17 | Sekisui Chem Co Ltd | Method for manufacturing liquid crystal display device |
| US8174664B2 (en) | 2004-10-14 | 2012-05-08 | Sharp Kabushiki Kaisha | Multilayer substrate |
| US7701545B2 (en) | 2004-11-02 | 2010-04-20 | Sharp Kabushiki Kaisha | Substrate for liquid crystal display devices |
| JP2008281740A (en) * | 2007-05-10 | 2008-11-20 | Toppan Printing Co Ltd | Spacer forming method and blanket base material used therefor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100545717C (en) | Liquid crystal display device and manufacturing method thereof | |
| US5066512A (en) | Electrostatic deposition of lcd color filters | |
| US7691248B2 (en) | Apparatus and process for producing electrophoretic device | |
| US5838413A (en) | Method for distributing spacer particles onto the substrate of a liquid crystal display element, a jig plate and distributing apparatus for distribution therewith | |
| US7522253B2 (en) | Method of forming a liquid crystal layer using an ink jet system | |
| JP2001343672A (en) | Electrophoretic display device and manufacturing method thereof | |
| WO2011019186A2 (en) | Apparatus for dispensing liquid crystals using ultrasonic waves | |
| US20060068082A1 (en) | Method of electrostatic deposition | |
| US5103763A (en) | Apparatus for formation and electrostatic deposition of charged droplets | |
| WO1997036205A1 (en) | Color liquid crystal display device and its manufacture | |
| JP2004046153A (en) | Substrate coating method, substrate coating apparatus, method of manufacturing liquid crystal display, and method of manufacturing surface illumination device | |
| JP2002072218A (en) | Method and device for spraying spacer | |
| KR101252856B1 (en) | liquid crystal dispensing apparatus | |
| CN100498475C (en) | Method and device of manufacturing liquid crystal display device and the liquid crystal display | |
| JP5608114B2 (en) | Method for manufacturing electrophoretic display device | |
| KR101366987B1 (en) | Method for manufacturing color filter substrate | |
| JPH05216050A (en) | Production of liquid crystal display panel | |
| KR100411149B1 (en) | Spacer scattering method and scattering apparatus of liquid crystal panel and liquid crystal panel structure produced by the method | |
| JP5794722B2 (en) | Method for manufacturing electrophoretic display device | |
| CN100420988C (en) | Dispenser for liquid crystal display panel and dispensing method using same | |
| CN100399112C (en) | Dispenser for manufacturing liquid crystal display panel and method for manufacturing liquid crystal display panel using it | |
| JP2012032510A (en) | Manufacturing method of electrophoresis display device | |
| JP5496025B2 (en) | Method for manufacturing electrophoretic display device | |
| KR20210041677A (en) | Reservoir and Apparatus for treating substrate with the reservoir | |
| JP2000258776A (en) | Spraying device for spacer particles for liquid crystal |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR SG US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| 122 | Ep: pct application non-entry in european phase |