[go: up one dir, main page]

WO1997036462A1 - Procede et dispositif de traitement plasmique - Google Patents

Procede et dispositif de traitement plasmique Download PDF

Info

Publication number
WO1997036462A1
WO1997036462A1 PCT/JP1997/001071 JP9701071W WO9736462A1 WO 1997036462 A1 WO1997036462 A1 WO 1997036462A1 JP 9701071 W JP9701071 W JP 9701071W WO 9736462 A1 WO9736462 A1 WO 9736462A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
sample
plasma processing
microwave
introduction window
Prior art date
Application number
PCT/JP1997/001071
Other languages
English (en)
French (fr)
Inventor
Hiroshi Mabuchi
Junya Tsuyuguchi
Katsuo Katayama
Toshihiro Hayami
Hideo Ida
Tomomi Murakami
Naohiko Takeda
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP07346796A external-priority patent/JP3147769B2/ja
Priority claimed from JP01891297A external-priority patent/JP3204145B2/ja
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to EP97908539A priority Critical patent/EP0830052A4/en
Priority to US08/952,779 priority patent/US6091045A/en
Priority to KR1019970708142A priority patent/KR100293033B1/ko
Publication of WO1997036462A1 publication Critical patent/WO1997036462A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube

Definitions

  • the present invention relates to a plasma processing apparatus and a plasma processing method used for etching, asshing, CVD, and the like in the manufacture of a large-scale integrated circuit (LSI) and a liquid crystal display (LCD).
  • LSI large-scale integrated circuit
  • LCD liquid crystal display
  • Reactive gas plasma treatment is widely used in manufacturing processes such as LSI and LCD.
  • dry etching technology using plasma has become an indispensable basic technology in manufacturing processes such as LSI and LCD.
  • a plasma processing apparatus using microwaves generally has a problem that it is difficult to generate plasma uniformly over a wide area.
  • the present applicant has proposed a plasma processing apparatus using a dielectric plate (Japanese Patent Application Laid-Open No. 62-5600).
  • FIG. 1 is a schematic vertical sectional view showing a conventional plasma processing apparatus using a dielectric plate.
  • a sample table 15 is provided inside the reaction vessel 11 (reaction chamber 1 2), and a microwave introduction window 14 is provided above the reaction chamber 12 so as to face the sample table 15.
  • the reaction chamber 12 is hermetically sealed.
  • my black A dielectric plate 32 is provided opposite the wave introduction window 14 with the hollow portion 31 interposed therebetween.
  • a microwave introduction window 1 4 flat quartz glass (S i 0 2) and alumina ( ⁇ 1 2 ⁇ 3) is used.
  • Microwaves are oscillated by a microwave oscillator 35 and introduced into a dielectric plate 32 through a waveguide 34.
  • An electric field is formed below the dielectric plate 32 by the microwaves propagating through the dielectric plate 32, and this electric field is transmitted through the microwave introduction window 14 and introduced into the reaction chamber 12;
  • the gas introduced from the gas introduction tube 25 is excited by this electric field to generate plasma.
  • plasma processing such as etching.
  • This device has the advantage that by increasing the area of the microwave introduction window 14 and the dielectric plate 32, it is possible to generate plasma uniformly in a wide plane area.
  • a conventional plasma processing apparatus using a dielectric plate is configured to generate plasma over a wider area than the sample in order to ensure uniformity of the plasma processing speed within the sample surface. For this reason, the plasma density is reduced overall, and the plasma processing speed of the sample is reduced. Also, when etching a fine hole pattern, it is not possible to perform vertical etching up to the bottom of the hole (deterioration of pattern removability). There was a problem.
  • the present invention has been made to solve the above-described problems, and by increasing the plasma density of a region irradiated to a sample, the plasma processing speed of the sample can be improved, and a fine hole pattern can be obtained.
  • An object of the present invention is to provide a plasma processing apparatus capable of improving the pattern removability in the above etching. Disclosure of the invention
  • the plasma processing apparatus includes a dielectric plate for a microwave waveguide, a microphone opening window introduced to face the dielectric plate, and a microwave introduction window.
  • the area facing the sample stage means “the area facing the area where the sample is placed on the sample stage”.
  • the microwave In a device using a normal dielectric plate, the microwave mainly travels through the dielectric plate to form a standing wave because the dielectric constant of the dielectric plate is higher than the dielectric constant of the atmosphere.
  • the electric field strength of this microwave attenuates exponentially with distance from the dielectric plate.
  • the micro mouth wave leaking from the dielectric plate passes through the micro wave introduction window. It is introduced into the reaction chamber to generate plasma. As a result, plasma can be generated uniformly under the microwave introduction window.
  • An apparatus using a dielectric plate is characterized in that the microwave that decays exponentially with respect to the distance from the dielectric plate is introduced into the reaction chamber through the microphone mouth wave introduction window. It is directly introduced into the reaction chamber through the introduction window. ⁇ 1 This is different from the usual ECR plasma equipment.
  • the thickness of the microwave introduction window in a region directly facing the sample on the sample stage is made thinner than the outside thereof.
  • the plasma in this region irradiated to the sample on the sample stage is generated stronger than the plasma in the region irradiated to the other regions, and a plasma density distribution that is efficient for sample processing can be obtained.
  • the plasma processing apparatus of the present invention changes the plasma density distribution by changing the thickness of the microwave introduction window depending on the position with the portion facing the sample as the center. Therefore, this microwave waveguide 7/01071
  • FIG. 1 is a schematic vertical sectional view showing a conventional plasma processing apparatus using a dielectric plate.
  • FIG. 2 is a schematic longitudinal sectional view showing a first embodiment of the plasma processing apparatus of the present invention.
  • FIG. 3 is a schematic longitudinal sectional view showing one example of a microwave introduction window of the plasma processing apparatus of the present invention, and
  • FIG. 4 is a bottom view thereof.
  • FIG. 5, FIG. 6, FIG. 7, and FIG. 8 are schematic longitudinal sectional views showing another example of the microphone mouth wave introduction window of the plasma processing apparatus of the present invention.
  • FIG. 9 is a schematic longitudinal sectional view showing a second embodiment of the plasma processing apparatus of the present invention.
  • FIG. 10 is an enlarged view of the microwave introduction window portion of FIG.
  • FIG. 11 is a schematic longitudinal sectional view showing an example of a microwave introduction window
  • FIG. 12 is a schematic bottom view thereof.
  • FIGS. 13 and 14 are schematic longitudinal sectional views showing another example of the microwave introduction window portion of the plasma processing apparatus of the present invention.
  • FIG. 15 is a schematic longitudinal sectional view showing a third embodiment of the plasma processing apparatus of the present invention.
  • FIG. 16 is a schematic plan view showing an example of the microwave adjusting plate of the plasma processing apparatus of the present invention.
  • FIG. 17 is a schematic longitudinal sectional view showing a fourth embodiment of the plasma processing apparatus of the present invention.
  • FIG. 18 is a schematic plan view showing an example of an annular portion forming a part of the microwave introduction window of the plasma processing apparatus of the present invention.
  • Fig. 19 shows the etching level for the micro ⁇ -wave introduction windows with different recess depths.
  • FIG. 9 is a diagram showing the measurement results of G.
  • FIG. 20A, FIG. 20B, and FIG. 20C show the etch for window B (example of the present invention).
  • 20A is a schematic diagram of an observation photograph of a cross-sectional shape of a ring portion
  • FIG. 20A is a plasma discharge 20 minutes after
  • FIG. 20B is a plasma discharge 570 minutes after
  • FIG. 20C is a plasma discharge 970 Minutes after etching.
  • FIGS. 21A, 21B, and 21C are schematic diagrams of observation photographs of the cross-sectional shape of the etching portion with respect to the window G (comparative example).
  • FIG. 21A shows the plasma discharge after 20 minutes.
  • FIG. 21B shows etching after 570 minutes of plasma discharge, and
  • FIG. 21C shows etching after 790 minutes of plasma discharge.
  • FIG. 22 is a diagram showing the measurement results of the etching rate uniformity with respect to the concave portion diameter DA1 of the microwave introduction window.
  • FIG. 23 is a diagram showing a change in the number of particles with respect to the plasma discharge time.
  • FIG. 24 and 25 are diagrams showing the distribution of the etching rate in the wafer surface
  • FIG. 24 is a diagram showing the results of the present invention example
  • FIG. 25 is a diagram showing the results of the comparative example. is there.
  • FIG. 26 is a graph showing the measurement results of the plasma density.
  • FIG. 2 is a schematic longitudinal sectional view showing a first embodiment of the plasma processing apparatus of the present invention.
  • the reaction vessel 11 has a rectangular parallelepiped shape and a hollow inside, and is usually made of a metal such as aluminum stainless steel. Inside the reaction vessel 11, a cylindrical reaction chamber 12 is provided. A microwave introduction window 14 is provided at the top of the reaction chamber 12 through a 0-ring 20, and the reaction chamber 12 is hermetically sealed. A concave portion 14a is formed in a portion of the microphone mouthpiece introducing window 14 facing the sample S. The microwave introduction window 14 will be described later.
  • the sample stage 15 is disposed at a position facing the microwave introduction window 14, and the sample S is placed on the sample stage 15.
  • the sample stage 15 includes a mechanism (not shown) such as an electrostatic chuck for holding the sample S and a constant temperature medium circulation mechanism (not shown) for holding the sample S at a predetermined temperature.
  • a mechanism such as an electrostatic chuck for holding the sample S and a constant temperature medium circulation mechanism (not shown) for holding the sample S at a predetermined temperature.
  • the sample stage 15 is fixed on a base 16 and is insulated from the reaction vessel 11 by an insulating member 18.
  • the periphery of the sample stage 15 is covered with a plasma shield member 17.
  • the reaction vessel 11 is provided with a gas introduction hole 25 for introducing a gas into the reaction chamber 12 and an exhaust port 26 connected to an exhaust device (not shown).
  • the wall of the reaction vessel 11 is configured to be heated to a predetermined temperature by a heater or the like.
  • a dielectric plate 32 covered with a metal plate 33 of aluminum or the like is provided so as to face the microwave introduction window 14.
  • the dielectric plate 32 is connected to a microwave oscillator 35 via a waveguide 34.
  • a material of the dielectric plate 32 a material having a small dielectric loss, for example, a fluorine resin such as Teflon (registered trademark), polyethylene, or polystyrene is suitable.
  • the frequency of the microwave is, for example, 2.45 GHz.
  • Material microwave introduction window 1 4 has a heat resistance and microphone filtering permeability, and small dielectric dielectric loss, such as quartz glass (S i 0 2) and alumina (A 1 2_Rei_3 ) Is suitable.
  • the part of the microwave introduction window 14 facing the sample S is the outer part Make the thickness thinner than. That is, the microwave introduction window 14 has a concave portion on the surface facing the sample S. In order to form a recess, for example, the portion may be cut.
  • the shape of the recess may be any shape such as a circle or a rectangle in plan view, and may be determined in consideration of the shape of the sample and the uniformity of the plasma processing speed in the sample surface. For example, when processing silicon wafers, it is generally preferable to use a circular shape.
  • the diameter of the concave portion may be determined according to the purpose, for example, when the purpose is to perform uniform plasma processing, or when the purpose is to increase the plasma processing speed at the center of the sample.
  • the diameter is preferably about 1.0 to 1.2 times the diameter of the sample. If it is desired to particularly increase the plasma processing speed in the center of the sample, it is preferable that the diameter be approximately 0.9 times or less the diameter of the sample.
  • the depth of the concave portion may be determined in consideration of the target plasma processing speed of the plasma processing and its uniformity. For example, when the plasma processing speed is to be improved, the depth of the concave portion is preferably 4 mm or more when the thickness of the microwave introduction window is 30 mm. When the thickness of the window is 20 mm, the depth of the recess is preferably 2 mm or more. That is, the depth of the recess is preferably about 0.1 times or more the thickness of the microwave introduction window. However, for any microwave introduction window of any thickness, if the remaining thickness is less than 10 mm, there will be a problem in strength.Therefore, it is preferable to determine the depth of the recess so that the remaining thickness is more than that. .
  • FIG. 3 is a schematic longitudinal sectional view showing an example of a microwave introduction window
  • FIG. 4 is a bottom view thereof.
  • the microwave introduction window 14 in this example has a circular concave portion 14a (diameter D A , depth HA) at the center facing the sample S.
  • FIG. 5 is a schematic longitudinal sectional view showing another example of the microwave introduction window.
  • the microwave introduction window 14 is composed of a window body 14d and an annular portion 14e. As shown in this figure, the microwave introduction window may be composed of a plurality of members. When the microwave introduction window is composed of a plurality of members, the material of each member may be different.
  • FIGS. 6 and 7 are schematic longitudinal sectional views showing still another example of the microwave introduction window.
  • the side surface of the concave portion 14a of the microwave introduction window may have a stepped shape as shown in FIG. 6, or may have a tapered shape as shown in FIG. Further, the side surface of the concave portion 14a may be arcuate (curved).
  • FIG. 8 is a schematic longitudinal sectional view showing an example of a microwave introduction window in which a concave portion is formed on a surface opposite to a surface facing a reaction chamber. As described above, it is more effective to provide the concave portion on the surface facing the reaction chamber 12. However, the concave portion may be provided on the surface opposite to the surface facing the reaction chamber 12.
  • the plasma processing method will be described with reference to FIG. 2 by taking the case of etching the sample S as an example.
  • a microwave is generated by the microwave oscillator 35, and the microwave is introduced into the dielectric plate 32 through the waveguide 34.
  • Mic mouth waves leaking from the dielectric plate 32 pass through the microwave introduction window 14 and are introduced into the reaction chamber 12 to generate plasma.
  • the sample S is etched by this plasma.
  • the plasma processing method of the present invention uses an apparatus in which the microwave introduction window 14 is provided with a concave portion 14 a at a portion facing the sample S. As a result, the electric field strength of the microwave directly above the sample S can be increased, the plasma density can be increased, and the plasma processing speed of the sample S can be increased. Further, according to the plasma processing method of the present invention, the concave portion of the microwave introduction window is provided.
  • the plasma density distribution can be changed.
  • the plasma processing of the sample can be performed more uniformly, and conversely, the plasma processing speed in the central portion of the sample S can be increased as necessary.
  • FIG. 9 is a schematic vertical sectional view showing a second embodiment of the plasma processing apparatus of the present invention.
  • This device is a device that performs plasma processing on the sample S while applying a high frequency.
  • a high frequency power supply 28 and a counter electrode 21 are added to the device configuration of FIG.
  • the counter electrode 21 is provided on the periphery of the microwave introduction window 14 in such a shape as to protrude from the surrounding wall of the reaction vessel 11, and serves as a ground electrode for the sample table 15 to which high frequency is applied. Play a role.
  • the peripheral portion of the microwave introduction window refers to a portion directly above the sample as a center portion and an outer portion thereof.
  • the counter electrode 21 is preferably made of aluminum whose surface is subjected to alumite treatment.
  • the frequency of the high-frequency power supply 28 is, for example, 400 kHz or 13.56 MHz.
  • FIG. 10 is an enlarged view of the microwave introduction window portion of FIG.
  • the microwave introduction window 14 has a circular concave portion 14a (diameter DAI, depth HA1) formed by an annular convex portion 14b (inner diameter DAI, outer diameter DA2). Further, the annular convex portion 14b protects the tip 21a of the counter electrode from plasma.
  • FIG. 11 is a schematic longitudinal sectional view of the micro wave introduction window
  • FIG. 12 is a schematic bottom view thereof.
  • the microwave introduction window 14 By forming the microwave introduction window 14 in such a shape, the plasma density in a region facing the sample S can be increased. Furthermore, since the surface of the tip 21a of the counter electrode is not sputtered, the number of particles generated can be further reduced.
  • FIG. 13 is a schematic longitudinal sectional view showing another example of the microphone mouthpiece introduction window portion.
  • the microwave introduction window 14 may be shaped as shown in this figure.
  • FIG. 14 is a schematic vertical sectional view showing still another example of the micro wave introduction window portion.
  • the tip 2 la of the counter electrode does not have to have a structure capable of protecting the tip from the plasma as shown in this figure.
  • a plasma processing method using this plasma processing apparatus will be described with reference to FIG. 9 by taking a case where a sample S is etched as an example.
  • Microwave is generated by the microwave oscillator 35, and the microwave is introduced into the dielectric plate 32 through the waveguide 34. Mic mouth waves leaking from the dielectric plate 32 pass through the microwave introduction window 14 to generate plasma in the reaction chamber 12.
  • the high frequency power supply 28 is used to move around the sample stage 15 A wave is applied to generate a bias voltage on the sample S surface.
  • the sample S is etched by irradiating the surface of the sample S with ions while controlling the energy of the ions in the plasma by the bias voltage.
  • the plasma processing method of the present invention uses an apparatus in which a concave portion 14a is provided in a portion of the microwave introduction window 14 facing the sample S.
  • a concave portion 14a is provided in a portion of the microwave introduction window 14 facing the sample S.
  • the uniformity of the plasma processing speed can be improved.
  • the shape of the microwave introduction window is configured to protect the surface of the counter electrode, the tip of the counter electrode is prevented from being sputtered, and the number of generated particles can be reduced.
  • FIG. 15 is a schematic longitudinal sectional view showing a third embodiment of the plasma processing apparatus of the present invention.
  • a microwave adjusting plate 23 is further provided on the microwave introduction window 14.
  • FIG. 16 is a schematic plan view showing an example of the microwave adjusting plate.
  • the microphone mouthpiece adjusting plate 23 is provided with a hole 23a in the center of a metal plate such as aluminum.
  • the microwave adjusting plate 23 limits the region where the microwave is introduced into the reaction chamber 12 and limits the region where plasma is generated. As a result, it is possible to further increase the plasma density above the sample S or adjust the distribution of the plasma density.
  • FIG. 17 is a schematic longitudinal sectional view showing a fourth embodiment of the plasma processing apparatus of the present invention.
  • the microwave introduction window is composed of a window body 14d and an annular portion (annular dielectric) 14e.
  • FIG. 18 is a schematic plan view showing one example of the annular portion 14e.
  • the annular portion 14e may be made of, for example, quartz or alumina.
  • This apparatus performs plasma processing while applying a high frequency to the sample S, as in the apparatus described in the second embodiment.
  • This device is provided with a high frequency power supply 28 and a counter electrode 21.
  • This device has a counter electrode outer edge insulating plate 22 made of aluminum or the like on the outer periphery of the counter electrode 21.
  • the counter electrode 21 and the side wall of the reaction vessel 11 are separated by an insulator. ing.
  • the annular portion 14 e is pressed against the window body 14 d by the counter electrode 21.
  • This device like the device described in the third embodiment, is used to increase the plasma density in the region facing the sample S and to adjust the plasma density distribution. It has.
  • the annular portion 14 e to the window body 14 d, it is also possible to increase the thickness of the periphery of the microphone in the region facing the sample of the mouth wave introduction window 14 with respect to the thickness thereof.
  • the same effect can be obtained. That is, the plasma density in the region facing the sample S can be increased, the plasma processing speed of the sample S can be improved, and the pattern can be easily removed in etching a fine hole pattern.
  • annular portion (annular dielectric) 14 e for focusing the plasma at the center may be appropriately designed according to the intended plasma treatment.
  • the plasma processing apparatus is, for example, a silicon oxide film (Si 0 It is suitable for processes in which ion control is particularly important, such as the hole pattern etching step 2). The test results are described below.
  • Tests 1 to 4 consisted of a plasma processing apparatus with the configuration shown in Fig. 15 equipped with the microwave introduction window shown in Figs. 11 and 12 and the microwave adjustment plate shown in Fig. 16. Using. Microwave introduction windows were made of quartz and used in seven shapes shown in Table 1.
  • the frequency of the microwave used in the following tests is 2.45 GHz, and the frequency of the high frequency is 400 kHz.
  • the etching rate of the silicon oxide film was measured using a plasma processing apparatus having a microwave introduction window having a different recess depth H A ] as shown in FIG.
  • window A 12 mm
  • window B 2 mm
  • window G 0 mm
  • the sample is a 6-inch silicon wafer on which a silicon oxide film has a thickness of 1 ⁇ m.
  • the etching conditions are as follows. The gas was CHF 3 , the microwave power was 130 W, and the high frequency power was 600 W.
  • FIG. 19 is a diagram showing the measurement results of the etching rate for each window.
  • the silicon oxide film was etched into a hole pattern having a diameter of 0.4 m using a plasma processing apparatus having a microwave introduction window having a concave portion and a microwave introducing window having no concave portion.
  • a plasma processing apparatus having a microwave introduction window having a concave portion and a microwave introducing window having no concave portion.
  • the pattern removability was evaluated.
  • Observation of the cross-sectional shape of the etching portion was performed using a scanning electron microscope (SEM) by etching the sample at each time of a predetermined integrated plasma discharge time.
  • SEM scanning electron microscope
  • the windows B (with recess) and G (without recess) in Table 1 were used as the microwave introduction windows.
  • a silicon oxide film with a thickness of 1.5 m was formed. Its diameter on the 0. 4 "m is 6 Lee emissions lethal Li co N'weha the registry pattern is formed of holes.
  • Etching conditions are as follows. Gas is CHF 3 and CO, microwave power 130 W and high frequency power were set to 600 W.
  • FIG. 20A, FIG. 20B and FIG. 20C are schematic views of photographs taken by observing the cross-sectional shape of the etched portion of the sample when using the window B (example of the present invention).
  • Figure 20A is a photograph of the cross-sectional shape of the etched part of the sample etched after 20 minutes of plasma discharge
  • Figure 20B is 570 minutes after plasma discharge
  • Figure 20C is a sample that was etched after 790 minutes of plasma discharge. It is a schematic diagram.
  • a silicon oxide film 42 and a resist 41 are stacked on a silicon wafer 43, and a hole 44 is formed in the silicon oxide film 42.
  • the center indicates the cross-sectional shape of the etched portion at the center of the wafer, and the rim indicates the cross-sectional shape of the etching portion at a position 10 mm from the edge of the wafer.
  • FIG. 21A, FIG. 21B and FIG. 21C are schematic diagrams of observation photographs of the cross-sectional shape of the etching part when the window G (comparative example) is used.
  • Figure 21A is after 20 minutes of plasma discharge
  • Figure 21B is after 570 minutes of plasma discharge
  • Figure 21C is plasma
  • It is a schematic diagram of the observation photograph of the cross-sectional shape of the etched part after etching for 970 minutes after discharge. The center and periphery indicate the same as in the previous figures.
  • the silicon oxide film was etched using a plasma processing apparatus equipped with a microwave introduction window having a different diameter DA1 of the concave portion, and the in-wafer uniformity of the etching rate (etching rate uniformity) was measured.
  • Test 1 The test was conducted on five types of microwave introduction windows, Window A, Window C, Window D, Window E, and Window F in Table 1. The sample and etching conditions are the same as in Test 1.
  • FIG. 22 is a view showing the measurement results of the etching rate uniformity with respect to the concave portion diameter D A1 of the microwave introduction window.
  • the dotted line in the figure is the result of the window F without the concave portion (Comparative Example).
  • the number of particles is a value obtained by counting particles having a size of 0.2 "m or more on a 6-inch wafer (entire surface).
  • the plasma generation conditions are as follows. Gas C HF 3 and CO, microwave power is 1 300 W, RF power was set to 600W.
  • FIG. 23 is a diagram showing a change in the number of particles with respect to the plasma discharge time.
  • window A Example of the present invention
  • the number of particles on the wafer was less than 50 and stable.
  • window G comparative example
  • the number of particles on the wafer exceeded 100.
  • the increase in the number of particles can be suppressed by forming the microwave introduction window into a shape that protects the tip of the counter electrode.
  • the effect of improving and uniformizing the plasma processing speed by the annular portion 14e as the plasma focusing means added to the window body 14d was evaluated.
  • the evaluation was based on the uniformity of the etching rate of the BPSG film on the 6-inch silicon wafer.
  • the micro adjustment plate 23 limits the transmission area of the micro wave shown in FIG. 16 to the central rectangular area.
  • the etching conditions are as follows. CHF 3 flow rate 20 sccm, the pressure is 30 mTorr, microwave power is 1 300 W, RF power was set to 600W, the sample stage temperature is 0. As a comparative example, the same measurement was performed when the annular portion 14e was not used.
  • FIGS. 24 and 25 are diagrams showing the distribution of the etching rate in the wafer surface.
  • FIG. 24 shows the result of the present invention example using the annular portion 14 e
  • FIG. 25 does not use the annular portion 14 e. It is a result of a comparative example.
  • the unit is nmZmin.
  • “10” indicates a region where the etching rate is 800 nm / min or more
  • “1” indicates a region where the etching rate is less than SOOnmZmin.
  • the effect of the annular portion 14e, which is the plasma focusing means, on the plasma density was measured.
  • the measurement position of the plasma density was the center position of the sample stage and 40 positions from the microwave introduction window.
  • a Langmuir probe was used for measuring the plasma density.
  • the plasma generation conditions are as follows. CHF 3 flow rate at 2 0 sccm, microphones b wave power is set to 1 3 0 0 W, the pressure was varied in the range of 1 0 ⁇ 80 mTorr. However, high frequency power was not applied.
  • FIG. 26 is a graph showing the measurement results of the plasma density.
  • the symbol ⁇ is the result of the example of the present invention using the annular portion 14 e, and the symbol ⁇ is the result of the comparative example not using the annular portion 14 e.
  • the plasma processing apparatus and the plasma processing method of this invention can improve the plasma processing rate of a sample by increasing the plasma density of a specific area.
  • ADVANTAGE OF THE INVENTION The plasma processing apparatus and the plasma processing method of this invention can improve the pattern removability in the etching of a fine hole pattern.
  • the plasma processing apparatus and the plasma processing method of the present invention can improve the uniformity of the plasma processing speed by optimizing the shape of the concave portion provided in the microphone mouthpiece introducing window. Furthermore, the plasma processing apparatus and the plasma processing method of the present invention can be used to protect the tip of the electrode by providing a shape of the microwave introduction window when an electrode or the like needs to be provided near the microwave introduction window. The number of particles can also be reduced by adopting a shape that changes.
  • the plasma processing apparatus and the plasma processing method of the present invention are applied to a manufacturing process of a large-scale integrated circuit (LSI) and a liquid crystal display (LCD), the yield of elements can be improved.
  • LSI large-scale integrated circuit
  • LCD liquid crystal display

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)

Description

明 細 書 プラズマ処理装置およびプラズマ処理方法 技術分野
本発明は、 大規模集積回路 (L S I ) および液晶ディ スプレイ (L C D) の製造等において、 エッチング、 アツシング、 C V Dなどに用いら れるプラズマ処理装置およびプラズマ処理方法に関する。 背景技術
反応性ガスのプラズマによる処理が、 L S Iおよび L C D等の製造プ ロセスにおいては、 広く採用されている。 特にプラズマを用いた ドライ エツチング技術は、 L S Iおよび L C D等の製造プロセスにおいて不可 欠の基本技術となっている。
近年、 マイ クロ波を用いてプラズマを発生させる装置が、 これらのプ ラズマ処理に用いられるようになってきている。 マイ クロ波を用いる方 が、 従来の 1 3. 56 MH z前後の高周波を用いるのに比べて、 高密度 のプラズマを発生させることが容易なためである。
しかし、 一般にマイ クロ波を用いたプラズマ処理装置では、 広い領域 に均一にプラズマを発生させることが難しいという問題がある。 そこで, 本出願人は、 この問題を解決すべく誘電体板を用いたプラズマ処理装置 を提案している (特開昭 62— 5600号公報) 。
図 1 は、 従来の誘電体板を用いたプラズマ処理装置を示す模式的縦断 面図である。
反応容器 1 1 (反応室 1 2 ) の内部には試料台 1 5が設けられている, 反応室 1 2の上部にはマイ クロ波導入窓 1 4が試料台 1 5と対面するよ うに設けられ、 反応室 1 2は気密に封止されている。 そして、 マイ クロ 波導入窓 1 4に対向して中空部 3 1 を挟んで誘電体板 3 2が設けられて いる。 マイ クロ波導入窓 1 4 と しては、 石英ガラス (S i 0 2 ) やアルミ ナ (Α 1 2 Ο 3 ) の平板が用いられる。
マイ ク□波は、 マイ ク ロ波発振器 3 5で発振され、 導波管 3 4 を介し て誘電体板 3 2 に導入される。 誘電体板 3 2を伝播するマイ クロ波によ り誘電体板 3 2の下方に電界が形成され、 この電界がマイ クロ波導入窓 1 4を透過して、 反応室 1 2に導入され、 この電界により ガス導入管 2 5から導入されるガスが励起されてプラズマが生成される。 このプラズ マによって、 試料 Sの表面にエッチングなどのプラズマ処理が施される。
この装置は、 マイ ク ロ波導入窓 1 4および誘電体板 3 2の面積を大き くすることによ り、 広い平面領域に均一にブラズマを発生させるこ とが できるという利点を備えている。
しかしながら、 従来の誘電体板を用いたプラズマ処理装置においては、 ブラズマ処理速度の試料面内の均一性を確保するため、 試料に比べて広 い領域でプラズマを発生させる構成と している。 そのため、 プラズマ密 度が全体的に低下し、 試料のプラズマ処理速度が低下するという問題や、 微細なホールパターンのェッチングにおいては、 ホール底部までの垂直 なエッチングができない (パターンの抜け性悪化) という問題があった。 本発明は、 上記の課題を解決するためになされたものであり、 試料に 照射される領域のプラズマ密度を高めるこ とによ り、 試料のプラズマ処 理速度を向上させ、 また微細なホールパターンのエッチングにおいては パターンの抜け性を向上させることが可能なプラズマ処理装置を提供す ることを目的と している。 発明の開示
本発明のプラズマ処理装置は、 マイ ク ロ波導波路用の誘電体板、 誘電 体板に対向 して設けられているマイ ク 口波導入窓、 およびこのマイ クロ 波導入窓に対面するように内部に試料台が配置されている反応容器を備 えるプラズマ処理装置であって、 マイ ク ロ波導入窓の試料台と対面する 領域の厚みがその外側に比べて薄いことを特徴と している。
なお、 こ こで言う 「試料台と対面する領域」 は、 「試料台の試料が載 置される領域と対面する領域」 を意味している。
通常の誘電体板を用いた装置では、 誘電体板の誘電率が大気の誘電率 に比べ大きいため、 マイ クロ波は主に誘電体板を進行し、 定在波を形成 する。 このマイ クロ波の電界強度は誘電体板からの距離に対して指数関 数的に減衰する。 すなわち、 誘電体板を用いた装置は、 誘電体板から洩 れて く る (誘電体板からの距離に対して指数関数的に減衰する) マイ ク 口波をマイ ク ロ波導入窓を介して反応室に導入し、 プラズマを発生させ ることを特徴と している。 その結果、 マイ クロ波導入窓の下に均一にプ ラズマを発生させることができるのである。 誘電体板を用いた装置は、 誘電体板からの距離に対して指数関数的に減衰するマイ クロ波をマイ ク 口波導入窓から反応室に導入する点が、 マイ クロ波をマイ クロ波導入窓 を介して直接反応室に導入する Ϊ1常の E C Rプラズマ装置などとは異な つている。
本発明のプラズマ処理装置では、 試料台上の試料と直接対面する領域 のマイ クロ波導入窓の厚みをその外側に比べて薄く している。 そのため, 試料台上の試料に照射されるこの領域のプラズマをそれ以外の領域に照 射される領域のプラズマに比べて強く発生させ、 試料の処理に効率的な プラズマ密度分布とすることができる。 その結果、 試料のプラズマ処理 速度を向上させ、 また微細なホールパターンのエッチングにおいてはパ ターンの抜け性を向上させるこ とができる。
また、 本発明のプラズマ処理装置は、 試料と対面する部分を中心と し てマイ クロ波導入窓の厚みを位置によ り異ならせることによって、 ブラ ズマ密度分布を変化させるものである。 したがって、 こ のマイ クロ波導 7/01071
入窓の断面形状を適切に選択することによ り、 試料を均一にプラズマ処 理するのみならず、 逆に必要に応じて試料の中央部のプラズマ処理速度 を高めたりすることもできる。 図面の簡単な説明
図 1 は、 従来の誘電体板を用いたプラズマ処理装置を示す模式的縦断 面図である。
図 2は、 本発明のプラズマ処理装置の第 1 の実施の形態を示す模式的 縱断面図である。 図 3は、 本発明のプラズマ処理装置のマイ ク ロ波導入 窓の 1 例を示す模式縱断面図であり、 図 4はその底面図である。
図 5、 図 6、 図 7および図 8は、 本発明のプラズマ処理装置のマイ ク 口波導入窓の別の例を示す模式的縱断面図である。
図 9は、 本発明のプラズマ処理装置の第 2の実施の形態を示す模式的 縱断面図である。 図 1 0は、 図 9のマイ クロ波導入窓部分の拡大図であ る。 図 1 1 は、 マイ クロ波導入窓の 1 例を示す模式的縦断面図であり、 図 1 2は、 その模式的底面図である。
図 1 3および図 1 4は、 本発明のプラズマ処理装置のマイ ク ロ波導入 窓部分の別の例を示す模式的縦断面図である。
図 1 5は、 本発明のプラズマ処理装置の第 3の実施の形態を示す模式 的縦断面図である。 図 1 6は、 本発明のプラズマ処理装置のマイ クロ波 調整板の 1 例を示す模式的平面図である。
図 1 7は、 本発明のプラズマ処理装置の第 4の実施の形態を示す模式 的縦断面図である。 図 1 8は、 本発明のプラズマ処理装置のマイ クロ波 導入窓の一部を構成する環状部の 1 例を示す模式的平面図である。
図 1 9は、 凹部深さの異なるマイ ク π波導入窓に対するエッチングレ
— トの測定結果を示す図である。
図 2 0 A、 図 2 0 B、 図 2 0 Cは、 窓 B (本発明例) に対するエッチ ング部の断面形状の観察写真の模式図であり、 図 2 0 Aはプラズマ放電 2 0分後、 図 2 0 Bはプラズマ放電 5 7 0分後、 図 2 0 Cはプラズマ放 電 9 7 0分後にエッチングしたものである。
図 2 1 A、 図 2 1 B、 図 2 1 Cは、 窓 G (比較例) に対するエツチン グ部の断面形状の観察写真の模式図であり、 図 2 1 Aはプラズマ放電 2 0分後、 図 2 1 Bはプラズマ放電 5 7 0分後、 図 2 1 Cはプラズマ放電 9 7 0分後にエッチングしたものである。
図 2 2は、 マイ クロ波導入窓の凹部直径 DA1に対するエッチングレー ト均一性の測定結果を示す図である。
図 2 3は、 パーテ ィ クル数のプラズマ放電時間に対する変化を示す図 である。
図 24および図 2 5は、 ウェハ面内のエッチング速度の分布を示す図 であり、 図 2 4は本発明例の結果を示す図であり、 図 2 5は比較例の結 果を示す図である。
図 2 6は、 プラズマ密度の測定結果を示すグラフである。 発明を実施するための最良の形態
以下、 本発明のプラズマ処理装置およびプラズマ処理方法に関する第 1 から第 4の実施の形態、 および、 本発明のプラズマ処理装置およびプ ラズマ処理方法に関する試験結果について図面に基づいて説明する。 (第 1 の実施の形態)
( 1 ) 装置の全体構成
図 2は、 本発明のプラズマ処理装置の第 1 の形態を示す模式的縱断面 図である。
反応容器 1 1 は、 形状が直方体で内部が中空であり、 通常、 アルミ二 ゥムゃステン レス鋼などの金属で作製される。 反応容器 1 1の内部には 円筒形の反応室 1 2が設けられている。 反応室 1 2の上部には、 マイ クロ波導入窓 1 4が 0 リ ング 2 0を介し て設けられており、 反応室 1 2は気密に封止される。 マイ ク口波導入窓 1 4の試料 Sと対面する部分には、 凹部 1 4 aが形成されている。 マイ クロ波導入窓 1 4については後述する。
試料台 1 5がマイ クロ波導入窓 1 4 と対面する位置に配設されており、 試料 Sは試料台 1 5に載置される。 試料台 1 5は、 試料 Sを保持するた めの静電チャ ッ クなどの機構 (図示せず) や試料 Sを所定温度に保持す るための恒温媒体循環機構 (図示せず) などを備えている。 また、 試料 台 1 5は、 基台 1 6上に固定され、 絶縁部材 1 8により反応容器 1 1 と 絶縁されている。 試料台 1 5の周囲はプラズマシール ド部材 1 7 で覆わ れる。
反応容器 1 1 には、 反応室 1 2内にガスを導入するためのガス導入孔 2 5および排気装置 (図示せず) に接続される排気口 2 6が設けられて いる。 反応容器 1 1 の壁は、 ヒータなどによ り所定の温度に加熱できる 構成などとされる。
反応容器 1 1 の上方には、 アルミニウムなどの金属板 3 3で上部を覆 われた誘電体板 3 2が、 マイ クロ波導入窓 1 4 と対向するように して設 けられている。 誘電体板 3 2は導波管 3 4を介してマイ クロ波発振器 3 5 と連結されている。 誘電体板 3 2の材料は、 誘電損失の小さい材料、 例えばテフロン (登録商標) などのフ ッ素樹脂やポリエチ レンやポリス チレンなどが適している。 マイ クロ波の周波数は、 例えば 2 . 4 5 G H zである。
( 2 ) マイ ク口波導入窓
マイ クロ波導入窓 1 4の材料は、 耐熱性とマイ ク ロ波透過性を有し、 かつ誘電損失が小さい誘電体、 例えば石英ガラス ( S i 0 2 ) やアルミ ナ (A 1 2〇3 ) などが適している。
マイ クロ波導入窓 1 4のうち試料 S と対面する部分は、 その外側部分 に比べて厚みを薄くする。 すなわち、 マイ クロ波導入窓 1 4は、 試料 S と対面する面に凹部を備えている。 凹部を形成するには、 例えばその部 分を削れば良い。
凹部の形状は、 平面的には円形や矩形などどのような形状でも良く、 試料の形状やプラズマ処理速度の試料面内均一性を考慮して決めれば良 い。 例えば、 シリ コンウェハを処理するような場合は、 通常円形とする ことが好ま しい。
凹部の径は、 均一なプラズマ処理を目的とする場合や、 試料の中央部 のプラズマ処理速度を高めることを目的とする場合など、 その目的に応 じて決めれば良い。 プラズマ密度を高めかつ均一性を改善するには、 試 料の径に対して 1 . 0〜 1 . 2倍程度とすることが好ま しい。 試料の中 央部のプラズマ処理速度を特に高めたい場合には、 試料の径に対して 0 . 9倍程度以下とするこ とが好ま しい。
凹部の深さは、 目的とするプラズマ処理のプラズマ処理速度およびそ の均一性を考慮して決めれば良い。 例えばプラズマ処理速度の向上を目 的とする場合、 通常、 マイ ク ロ波導入窓の厚みが 3 0 m mの場合、 凹部 の深さは 4 m m以上とすることが好ま しく、 マイ ク ロ波導入窓の厚みが 2 0 m mの場合、 凹部の深さは 2 m m以上とするこ とが好ま しい。 すな わち、 凹部の深さは、 マイ クロ波導入窓の厚みに対して、 0 . 1 倍程度 以上とすることが好ま しい。 ただし、 いずれの厚みのマイ クロ波導入窓 も、 残りの厚みが 1 0 m m以下となると、 強度上の問題が生じるため、 これ以上の厚みが残るように凹部の深さを決めることが好ま しい。
図 3は、 マイ クロ波導入窓の 1 例を示す模式的縱断面図であり、 図 4 はその底面図である。
この例のマイ クロ波導入窓 1 4は、 試料 S と対面する中央部に円形の 凹部 1 4 a (直径 D A、 深さ H A) を有している。
図 5は、 マイ クロ波導入窓の別の例を示す模式的縱断面図である。 マイ クロ波導入窓 1 4は窓本体 1 4 d と環状部 1 4 eから構成されて いる。 この図に示すように、 マイ クロ波導入窓は複数の部材から構成さ れても良い。 なお、 マイ クロ波導入窓は複数の部材から構成する場合、 それぞれの部材の材質を異ならせても良い。
なお、 この例については、 第 4の実施の形態で詳述する。
図 6および図 7は、 マイ クロ波導入窓のさらに別の例を示す模式的縱 断面図である。
マイ クロ波導入窓の凹部 1 4 aの側面は、 図 6に示すように階段状と しても良く、 また図 7に示すようにテーパ状と しても良い。 また、 凹部 1 4 aの側面は弧状 (曲線) と しても良い。
図 8は、 反応室に面する面と反対の側の面に凹部を形成したマイ クロ 波導入窓の例を示す模式的縱断面図である。 前述したように、 凹部は、 反応室 1 2に面する面に設ける方が効果があるが、 反応室 1 2に面する 面と反対の側の面に設けても良い。
( 3 ) プラズマ処理方法
試料 Sをエッチングする場合を例と して、 プラズマ処理方法について 図 2に基づき説明する。
①反応室 1 2を排気口 2 6から排気し、 ガス導入孔 2 5から反応室 1 2 にガスを供給する。
②マイ クロ波発振器 3 5でマイ クロ波を発生させ、 導波管 3 4を介して 誘電体板 3 2にマイ クロ波を導入する。 誘電体板 3 2から洩れて く るマ イ ク 口波がマイ クロ波導入窓 1 4を透過して反応室 1 2に導入され、 プ ラズマが発生する。 このプラズマによ り、 試料 Sがエッチングされる。 本発明のプラズマ処理方法は、 マイ クロ波導入窓 1 4に試料 Sと対面 する部分に凹部 1 4 aが設けられている装置を用いている。 その結果、 試料 Sの真上部分のマイ ク ロ波の電界強度を強く し、 プラズマ密度を高 め、 試料 Sのプラズマ処理速度を高めることができる。 また、 本発明のプラズマ処理方法によれば、 マイ クロ波導入窓の凹部
1 4 aの形状を変える (マイ クロ波導入窓 1 4の断面形状を変える) こ とにより、 プラズマ密度分布を変化させることができる。 その結果、 よ り均一に試料をプラズマ処理したり、 逆に必要に応じて試料 Sの中央部 のプラズマ処理速度を高めたりすることもできる。
(第 2の実施の形態)
( 1 ) 装置の全体構成
図 9は、 本発明のプラズマ処理装置の第 2の実施の形態を示す模式的 縦断面図である。
この装置は、 高周波を印加しながら試料 Sをプラズマ処理する装置で ある。 高周波電源 2 8および対向電極 2 1 が、 図 2の装置構成に加えら れている。
対向電極 2 1 は、 マイ クロ波導入窓 1 4の周縁部に反応容器 1 1 の周 囲壁から張り出すような形状で設けられており、 高周波が印加される試 料台 1 5に対する接地電極の役割を果たす。 なお、 こ こでいうマイ クロ 波導入窓の周縁部とは、 試料の真上にあたる部分を中央部と し、 その外 側部分のことである。
このような位置に対向電極 2 1 を設けることにより、 試料 Sへのパー テ ィ クルの付着や金属汚染が低減する。 また、 試料 Sに安定したバイァ ス電位を発生させるこ とができる。 この対向電極 2 1 は、 表面がアルマ ィ ト処理されたアルミ ニウムなどが適している。
なお、 高周波電源 2 8の周波数は、 4 0 0 k H zや 1 3. 5 6 MH z などである。
( 2 ) マイ ク口波導入窓部分
図 1 0は、 図 9のマイ クロ波導入窓部分の拡大図である。
マイ クロ波導入窓 1 4は、 環状の凸部 1 4 b (内径 DAI、 外径 DA2) によ り、 円形の凹部 1 4 a (直径 DAI、 深さ HA1) が形成されている。 また、 環状の凸部 1 4 bは、 対向電極の先端 2 1 aをプラズマから保護 している。
図 1 1 は、 マイ ク ロ波導入窓の模式的縦断面図であり、 図 1 2は、 そ の模式的底面図である。
マイ クロ波導入窓 1 4 をこのような形状とするこ とにより、 試料 Sと 対面する領域のプラズマ密度を高めることができる。 さ らに、 対向電極 の先端 2 1 aの表面がスパッ タ されないので、 パーテ ィ クルの発生数を さらに低減させるこ ともできる。
図 1 3は、 マイ ク 口波導入窓部分の別の例を示す模式的縦断面図であ る。
対向電極の先端 2 1 aをプラズマから保護するには、 マイ ク ロ波導入 窓 1 4をこの図に示すような形状と しても良い。
図 1 4は、 マイ ク ロ波導入窓部分のさらに別の例を示す模式的縱断面 図である。
パーティ クルの発生が特に問題にならない場合は、 この図に示すよう に、 対向電極の先端 2 l a をプラズマから保護できる構造と しなく ても 良い。
( 3 ) ブラズマ処理方法
このプラズマ処理装置を用いたプラズマ処理方法について、 試料 Sを エッチングする場合を例と して、 図 9 に基づき説明する。
①反応室 1 2を排気口 2 6から排気し、 ガス導入孔 2 5から反応室 1 2 にガスを供給する。
②マイ クロ波発振器 3 5でマイ クロ波を発生させ、 導波管 3 4を介して 誘電体板 3 2にマイ ク ロ波を導入する。 誘電体板 3 2から洩れてく るマ イ ク口波がマイ クロ波導入窓 1 4を透過して、 反応室 1 2にプラズマを 発生させる。
③プラズマ発生とほぼ同時に高周波電源 2 8を用いて試料台 1 5に高周 波を印加し、 試料 S表面にバイアス電圧を発生させる。 このバイ アス電 圧によってプラズマ中のイオンのエネルギーを制御しつつ、 試料 Sの表 面にイオンを照射させて、 試料 Sをエッチングする。
本発明のプラズマ処理方法は、 第 1 の形態と同様、 マイ クロ波導入窓 1 4 に試料 S と対面する部分に凹部 1 4 aが設けられている装置を用い ている。 その結果、 第 1 の形態と同様に、 試料 Sの真上部分のマイ クロ 波の電界強度を強く し、 この領域のプラズマ密度を高め、 試料 Sのブラ ズマ処理速度を向上することができる。 また微細なホールパターンのェ ツチングにおいてはパターンの抜け性を向上させることができる。
なお、 マイ クロ波導入窓の凹部の形状を適切なものにするこ とにより、 プラズマ処理速度の均一性を高めるこ とができる。
また、 マイ クロ波導入窓の形状を対向電極の表面を保護する形状とす れば、 対向電極の先端がスパッタされることを防止し、 パーティ クルの 発生数を低減させることもできる。
(第 3の実施の形態)
図 1 5は、 本発明のプラズマ処理装置の第 3の実施の形態を示す模式 的縱断面図である。
この装置では、 図 9に示した装置構成に加え、 さ らにマイクロ波調整 板 2 3がマイ クロ波導入窓 1 4の上に設けられている。
図 1 6は、 マイ クロ波調整板の 1例を示す模式的平面図である。
マイ ク口波調整板 2 3は、 アルミニウムなどの金属板の中央部に孔 2 3 aを設けたものである。
マイ クロ波調整板 2 3は、 マイ クロ波を反応室 1 2に導入する領域を 制限し、 プラズマの発生領域に制限するものである。 その結果、 試料 S の上部のプラズマ密度をより高めたり、 プラズマ密度の分布を調整した りすることができる。
(第 4の実施の形態) 図 1 7は、 本発明のプラズマ処理装置の第 4の実施の形態を示す模式 的縱断面図である。
マイ クロ波導入窓は、 図 5 に示したように、 窓本体 1 4 d と環状部 (環状の誘電体) 1 4 eから構成されている。
図 1 8は、 環状部 1 4 eの 1例を示す模式的平面図である。
この例は、 同心円状の完全な環状のものである。 環状部 1 4 eは、 例 えば石英やアルミ ナなどで作製すれば良い。
この装置は、 第 2の実施の形態で説明した装置と同じく、 試料 Sに高 周波を印加しながらプラズマ処理を施すものである。 この装置には、 高 周波電源 2 8および対向電極 2 1 が設けられている。 この装置は、 対向 電極 2 1 の外周部分にアルミ ナなどで作製される対向電極外縁絶緣板 2 2を有しており、 対向電極 2 1 と反応容器 1 1 の側壁とが絶縁体で分離 されている。 環状部 1 4 eは、 対向電極 2 1 によ り窓本体 1 4 dに押さ えつけられている。
この装置は、 第 3の実施の形態で説明した装置と同じく、 試料 S と対 面する領域のプラズマ密度をより高めたり、 プラズマ密度分布を調整し たりする目的で、 マイ クロ波調整板 2 3を備えている。
このように窓本体 1 4 dに環状部 1 4 eを加えることにより、 マイ ク 口波導入窓 1 4の試料と対面する領域の厚みに対してその周縁の厚みを 厚く することによつても、 同様の効果を得ることができる。 すなわち、 試料 S と対面する領域のプラズマ密度を高め、 試料 Sのプラズマ処理速 度を向上させ、 また微細なホールパターンのエッチングにおいてはバタ —ンの抜け性を向上させることができる。
なお、 プラズマを中央に集束させる環状部 (環状の誘電体) 1 4 eの 形状は、 目的とするプラズマ処理に応じて適宜設計すれば良いこ とは言 うまでもない。
なお、 本発明のプラズマ処理装置は、 例えばシ リ コ ン酸化膜 ( S i 0 2 ) のホールパターンのエッ チング工程のよう にイ オ ンの制御が特に重 要な処理に好適である。 試験結果について、 以下に説明する。
試験 1 から試験 4には、 図 1 1 および図 1 2 に示したマイ クロ波導入 窓および図 1 6に示したマイ クロ波調整板を備えた図 1 5に示した構成 のプラズマ処理装置を用いた。 マイ クロ波導入窓は石英で作製し、 表 1 に示す 7種類の形状のものを用いた。
表 1
Figure imgf000015_0001
試験 5および試験 6は、 図 1 8に示した環状部 1 4 eおよび図 1 6に 示したマイ ク ロ波調整板を備えた図 1 7に示した構成のプラズマ処理装 置を用いた。
以下の試験で用いたマイ ク ロ波の周波数は 2. 4 5 G H z、 高周波の 周波数は 4 0 0 k H zである。
(試験 1 )
凹部の深さ HA】が異なるマイ クロ波導入窓を備える、 図 1 5に示した 構成のプラズマ処理装置を用いて、 シ リ コン酸化膜のエッチングレー ト を測定した。
マイ クロ波導入窓は、 表 1 の窓 A (H A ! = 1 2 mm) 、 窓 B (H A I = 2 mm) および窓 G (H A ! = 0 mm) の 3種類を用いた。 試料は、 シ リ コ ン酸 化膜が厚さ 1 〃 m成膜された 6イ ンチシ リ コ ンウェハである。 エ ツ チン グ条件は次の通りである。 ガスは C H F 3 、 マイ クロ波電力は 1 3 00 W、 高周波電力は 6 0 0 Wと した。
図 1 9は、 それぞれの窓に対するエッチングレー トの測定結果を示す 図である。
マイ クロ波導入窓の凹部深さ HA1を大き くすることにより、 エツチン グレー ト を増加させることできるこ とを確認した。
(試験 2)
凹部の設けたマイ クロ波導入窓と凹部を設けないマイ クロ波導入窓を 備えるプラズマ処理装置を用いて、 シ リ コ ン酸化膜に対して径が 0. 4 mホールパターンのエッチングした。 エッチング部の断面形状を観察 するこ とによ りパターン抜け性を評価した。 エツチング部の断面形状の 観察は、 所定の積算プラズマ放電時間の時点毎に、 試料をエッチングし、 走査型電子顕微鏡 (S E M) を用いて行った。
マイ クロ波導入窓は、 表 1 の窓 B (凹部あり) および窓 G (凹部なし) を用いた。 試料は、 シ リ コ ン酸化膜が厚さ 1. 5 m成膜され、 さ らに その上に径が 0. 4 " mホールの レジス ト パターンが形成された 6イ ン チシ リ コ ンウェハである。 エッチング条件は次の通りである。 ガスは C H F 3 および C O、 マイ クロ波電力は 1 3 0 0 W、 高周波電力は 6 0 0 Wと した。
図 2 0 A、 図 2 0 Bおよび図 2 0 Cは、 窓 B (本発明例) を用いたと きの試料のエッチング部の断面形状を観察し撮影した写真の模式図であ る。 図 20 Aはプラズマ放電 2 0分後、 図 2 0 Bはプラズマ放電 5 7 0 分後、 図 2 0 Cはプラズマ放電 9 7 0分後にエッチングした試料のエツ チング部の断面形状の観察写真の模式図である。
シ リ コ ンウェハ 4 3上にシ リ コ ン酸化膜 42およびレジス ト 4 1 が積 層されており、 シ リ コ ン酸化膜 4 2にはホール 4 4が形成されている。 また、 中心はウェハの中心位置のエッチング部の断面形状であり、 周縁 はウェハの端から 1 0 mmの位置でのエツチング部の断面形状であるこ とを示している。
図 2 1 A、 図 2 1 Bおよび図 2 1 Cは、 窓 G (比較例) を用いたとき のエ ッ チング部の断面形状の観察写真の模式図である。 前述の図 2 0 A、 図 2 0 B、 図 2 0 Cと同じく、 図 2 1 Aはプラズマ放電 2 0分後、 図 2 1 Bはプラズマ放電 5 7 0分後、 図 2 1 Cはプラズマ放電 9 7 0分後に エッチングしたもののエッチング部の断面形状の観察写真の模式図であ る。 中心および周縁は、 前述の図と同様のことを示している。
図 2 0 A、 図 2 0 Bおよび図 2 0 Cからわかるように、 本発明例では, プラズマ放電時間が長く なつても、 垂直形状のホールを形成することが でき、 パターン抜け性は良好であった。 一方、 図 2 1 A、 図 2 I Bおよ び図 2 1 Cからわかるように、 比較例では、 プラズマ放電時間が短いと き (図 2 1 A) は垂直形状のホールを形成するこ とができたが、 プラズ マ放電時間が長く なるにつれて (図 2 1 B、 図 2 1 C) 、 ホールの形状 は先細り となり、 パターン抜け性が悪化していた。 すなわち、 マイ クロ波導入窓に凹部を設けることにより、 エッチング 時のパターン抜け性を向上させられるこ とを確認した。
(試験 3)
凹部の直径 DA1が異なるマイ ク ロ波導入窓を備えるプラズマ処理装置 を用いて、 シリ コン酸化膜をエッチングし、 エッチングレー トのウェハ 面内均一性 (エッチングレー ト均一性) を測定した。
表 1の窓 A、 窓 C、 窓 D、 窓 Eおよび窓 Fの 5種類のマイ クロ波導入 窓について試験を行った。 試料およびエッチング条件は試験 1の場合と 同じである。
図 22は、 マイ クロ波導入窓の凹部直径 DA1に対するエッチングレー ト均一性の測定結果を示す図である。 なお、 図中の点線は、 凹部のない 窓 F (比較例) の結果である。
凹部直径 DA1が 1 50 mm~ l 8 Ommの範囲の場合には、 凹部のな い窓 F (比較例) に比べて、 エッチングレー トの均一性が改善されるこ とを確認した。
(試験 4)
対向電極の先端が保護されている窓 Aと対向電極の先端が保護されて いない窓 G (比較例) を備えるプラズマ処理装置を用いて、 プラズマを 発生させて、 パーティ クル数の時間変化を測定した。 パーテ ィ クル数は、 6イ ンチウェハ上 (全面) で大きさが 0. 2 "m以上のパーテ ィ クルを カウン ト した値である。
プラズマ発生条件は、 次の通りである。 ガスは C HF3 および C O 、 マイ クロ波電力は 1 300W、 高周波電力は 600Wと した。
図 23は、 パーティ クル数のプラズマ放電時間に対する変化を示す図 である。
窓 A (本発明例) では、 ウェハ上のパーテ ィ ク ル数が 50個未満と少 なく、 かつ安定していた。 一方、 窓 G (比較例) では、 所定の時間を経 過すると、 ウェハ上のパーテ ィ クル数が 1 00個を超えた。
すなわち、 マイ クロ波導入窓を対向電極の先端を保護する形状とする ことにより、 パーテ ィ クル数の増加を抑制できるこ とを確認した。
(試験 5)
図 1 7に示した装置を用いて、 窓本体 1 4 dに付加されたプラズマ集 束手段である環状部 1 4 eによるプラズマ処理速度の向上および均一化 の効果を評価した。 評価は、 6イ ンチシ リ コンウェハ上の B P S G膜の エッチング速度の均一性で評価した。 なお、 マイ クロ調整板 23は、 図 1 6に示したマイ ク ロ波の透過領域を中央の矩形領域に制限するものと した。
エッチング条件は以下の通りである。 C H F 3流量は 20 sccm、 圧力は 30 mTorr, マイ クロ波電力は 1 300W、 高周波電力は 600W、 試料 台温度は 0でと した。 比較例と して、 環状部 1 4 eを用いない場合につ いて、 同様の測定を行った。
図 24および図 25は、 ウェハ面内のエッチング速度の分布を示す図 であり、 図 24は環状部 1 4 eを用いる本発明例の結果であり、 図 25 は環状部 1 4 eを用いない比較例の結果である。 単位は、 nmZm i n である。 なお、 図 24中の 「十」 はエッチング速度が 800 nm/m i n以上の領域を、 「一」 はエッチング速度が S O O nmZm i n未満の 領域を示している。
本発明例 (図 24) は、 比較例 (図 25) に比べ、 エッチング速度を 向上させるこ とができ、 しかもその分布を均一にするこ ともできた。 (試験 6)
プラズマ集束手段である環状部 1 4 eが、 ブラズマ密度に及ぼす影響 を測定した。 プラズマ密度の測定位置は、 試料台の中心位置であって、 マイ クロ波導入窓から 40 の位置と した。 プラズマ密度の測定にはラ ングミ ユーアブローブを用いた。 プラズマ発生条件は、 以下の通りである。 C H F 3 流量は 2 0 sccmで、 マイ ク ロ波電力は 1 3 0 0 Wと し、 圧力は 1 0ΠΙΤΟΓΓ〜 80 mTorrの範囲 で変化させた。 ただし、 高周波電力は、 印加しなかった。
図 2 6は、 プラズマ密度の測定結果を示すグラフである。 記号□は、 環状部 1 4 eを用いる本発明例の結果であり、 記号△は、 環状部 1 4 e を用いない比較例の結果である。
プラズマ集束手段を設けること (□) により、 プラズマ密度を格段に 高められることが確認できた。 産業上の利用可能性
本発明のプラズマ処理装置およびブラズマ処理方法は、 特定領域のプ ラズマ密度を高めることによ り、 試料のプラズマ処理速度を向上させる ことができる。 本発明のプラズマ処理装置およびプラズマ処理方法は、 微細なホールパターンのエッチングにおいてはパターンの抜け性を向上 させることができる。
また、 本発明のプラズマ処理装置およびプラズマ処理方法は、 マイ ク 口波導入窓に設ける凹部の形状を最適化することによりプラズマ処理速 度の均一性を向上させることができる。 さ らに、 本発明のプラズマ処理 装置およびプラズマ処理方法は、 マイ ク ロ波導入窓の近傍に電極などを 設ける必要がある場合には、 マイ クロ波導入窓の形状を電極先端部を保 護する形状とすることにより、 パーティ クル数を低減させることもでき る。
したがって、 本発明のプラズマ処理装置およびプラズマ処理方法を大 規模集積回路 (L S I ) および液晶ディ スプレイ (L C D) の製造工程 などに適用した場合、 素子の歩留まりを向上させることができる。

Claims

請求の範囲
1 . マイ ク ロ波導波路用の誘電体板、 誘電体板に対向 して設けられてい るマイ クロ波導入窓、 およびこのマイ クロ波導入窓に対面するように内 部に試料台が配置されている反応容器を備えるプラズマ処理装置であつ て、 マイ クロ波導入窓の試料台と対面する領域の厚みがその外側に比べ て薄いプラズマ処理装置。
2 . マイ クロ波導入窓が試料台と対面する領域の外周部に環状の誘電体 を備えている請求の範囲第 1 項記載のプラズマ処理装置。
3 . 試料台に高周波を印加する手段と、 試料台に対向する電気的に接地 された対向電極とを備え、 前記対向電極が反応容器の内側であってマイ クロ波導入窓の周縁部に設けられている請求の範囲第 1項または第 2項 記載のプラズマ処理装置。
4 . 請求の範囲第 1項から第 3項までのいずれかに記載のプラズマ処理 装置を用いて、 試料にプラズマ処理を施すプラズマ処理方法
PCT/JP1997/001071 1996-03-28 1997-03-27 Procede et dispositif de traitement plasmique WO1997036462A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97908539A EP0830052A4 (en) 1996-03-28 1997-03-27 DEVICE AND METHOD FOR TREATING PLASMA
US08/952,779 US6091045A (en) 1996-03-28 1997-03-27 Plasma processing apparatus utilizing a microwave window having a thinner inner area
KR1019970708142A KR100293033B1 (ko) 1996-03-28 1997-03-27 플라즈마 처리장치 및 플라즈마 처리방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP07346796A JP3147769B2 (ja) 1996-03-28 1996-03-28 プラズマ処理装置および処理方法
JP8/73467 1996-03-28
JP9/18912 1997-01-31
JP01891297A JP3204145B2 (ja) 1997-01-31 1997-01-31 プラズマ処理装置

Publications (1)

Publication Number Publication Date
WO1997036462A1 true WO1997036462A1 (fr) 1997-10-02

Family

ID=26355655

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1997/001071 WO1997036462A1 (fr) 1996-03-28 1997-03-27 Procede et dispositif de traitement plasmique
PCT/JP1997/001070 WO1997036461A1 (fr) 1996-03-28 1997-03-27 Procede et dispositif de traitement plasmique

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001070 WO1997036461A1 (fr) 1996-03-28 1997-03-27 Procede et dispositif de traitement plasmique

Country Status (5)

Country Link
US (2) US6091045A (ja)
EP (2) EP0830052A4 (ja)
KR (2) KR100293034B1 (ja)
TW (1) TW328617B (ja)
WO (2) WO1997036462A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117732698A (zh) * 2023-12-27 2024-03-22 飞比达电子元器件(苏州)有限公司 一种电晕效率高的涂布机电晕装置及电晕方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092486A (en) * 1996-05-27 2000-07-25 Sumimoto Metal Indsutries, Ltd. Plasma processing apparatus and plasma processing method
KR100263902B1 (ko) * 1998-04-20 2000-09-01 윤종용 표면 파 플라즈마 식각장치
JP4014300B2 (ja) 1998-06-19 2007-11-28 東京エレクトロン株式会社 プラズマ処理装置
KR100408259B1 (ko) * 1998-11-04 2004-01-24 엘지.필립스 엘시디 주식회사 공정챔버_
JP3430053B2 (ja) * 1999-02-01 2003-07-28 東京エレクトロン株式会社 プラズマ処理装置
JP4469054B2 (ja) * 2000-03-10 2010-05-26 サムコ株式会社 誘導結合形プラズマ処理装置
JP2002299240A (ja) * 2001-03-28 2002-10-11 Tadahiro Omi プラズマ処理装置
WO2003000559A1 (fr) * 2001-06-26 2003-01-03 Mitsubishi Shoji Plastics Corporation Dispositif de fabrication d'un recipient en plastique revetu d'un film de carbone sous forme de diamant amorphe, recipient ainsi obtenu et procede de fabrication dudit recipient
US6744212B2 (en) * 2002-02-14 2004-06-01 Lam Research Corporation Plasma processing apparatus and method for confining an RF plasma under very high gas flow and RF power density conditions
JP4008728B2 (ja) * 2002-03-20 2007-11-14 株式会社 液晶先端技術開発センター プラズマ処理装置
US6845734B2 (en) * 2002-04-11 2005-01-25 Micron Technology, Inc. Deposition apparatuses configured for utilizing phased microwave radiation
JP3723783B2 (ja) * 2002-06-06 2005-12-07 東京エレクトロン株式会社 プラズマ処理装置
AU2003255013A1 (en) * 2002-08-14 2004-03-03 Tokyo Electron Limited Plasma processing device
JP4141764B2 (ja) * 2002-08-20 2008-08-27 東京エレクトロン株式会社 プラズマ処理装置
JP2004153240A (ja) 2002-10-09 2004-05-27 Advanced Lcd Technologies Development Center Co Ltd プラズマ処理装置
JP2004200307A (ja) * 2002-12-17 2004-07-15 Tokyo Electron Ltd プラズマ処理装置
JP4563729B2 (ja) * 2003-09-04 2010-10-13 東京エレクトロン株式会社 プラズマ処理装置
KR100872260B1 (ko) * 2004-02-16 2008-12-05 도쿄엘렉트론가부시키가이샤 플라즈마 처리장치 및 플라즈마 처리방법
US7845309B2 (en) * 2004-07-13 2010-12-07 Nordson Corporation Ultra high speed uniform plasma processing system
US7897009B2 (en) * 2004-12-17 2011-03-01 Tokyo Electron Limited Plasma processing apparatus
TW200640301A (en) * 2005-05-12 2006-11-16 Shimadzu Corp Surface wave plasma processing apparatus
KR100771508B1 (ko) * 2005-08-26 2007-10-31 주식회사 피에스엠 마이크로웨이브 플라즈마 방전 시스템
JP5082229B2 (ja) * 2005-11-29 2012-11-28 東京エレクトロン株式会社 プラズマ処理装置
CN101213643A (zh) * 2006-01-31 2008-07-02 东京毅力科创株式会社 微波等离子体处理装置
JP4677918B2 (ja) * 2006-02-09 2011-04-27 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US8006640B2 (en) * 2006-03-27 2011-08-30 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP4850592B2 (ja) * 2006-06-14 2012-01-11 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
US20090120366A1 (en) * 2007-01-29 2009-05-14 Sumitomo Electric Industries, Ltd. Microwave plasma cvd device
JP5475261B2 (ja) * 2008-03-31 2014-04-16 東京エレクトロン株式会社 プラズマ処理装置
DE102008034260B4 (de) * 2008-07-16 2014-06-26 Siltronic Ag Verfahren zum Abscheiden einer Schicht auf einer Halbleiterscheibe mittels CVD in einer Kammer und Kammer zum Abscheiden einer Schicht auf einer Halbleiterscheibe mittels CVD
US8415884B2 (en) * 2009-09-08 2013-04-09 Tokyo Electron Limited Stable surface wave plasma source
JP5835985B2 (ja) * 2010-09-16 2015-12-24 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
GB201021865D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021860D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for diamond synthesis
GB201021853D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021870D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021855D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave power delivery system for plasma reactors
US9637838B2 (en) 2010-12-23 2017-05-02 Element Six Limited Methods of manufacturing synthetic diamond material by microwave plasma enhanced chemical vapor deposition from a microwave generator and gas inlet(s) disposed opposite the growth surface area
GB201021913D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave plasma reactors and substrates for synthetic diamond manufacture
CN103988320A (zh) * 2011-10-07 2014-08-13 夏普株式会社 光电转换装置的制造方法
JP2015130325A (ja) * 2013-12-03 2015-07-16 東京エレクトロン株式会社 誘電体窓、アンテナ、及びプラズマ処理装置
US9947516B2 (en) * 2014-06-03 2018-04-17 Tokyo Electron Limited Top dielectric quartz plate and slot antenna concept
CN107307848B (zh) * 2017-05-27 2021-04-06 天津海仁医疗技术有限公司 一种基于高速大范围扫描光学微造影成像的人脸识别及皮肤检测系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112138A (ja) * 1992-09-30 1994-04-22 Sumitomo Metal Ind Ltd マイクロ波プラズマ処理装置
JPH06120155A (ja) * 1992-10-07 1994-04-28 Sumitomo Metal Ind Ltd マイクロ波導入装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2472279A1 (fr) * 1979-12-18 1981-06-26 Thomson Csf Fenetre hyperfrequence et guide d'onde comportant une telle fenetre
JPS61241930A (ja) * 1985-04-18 1986-10-28 Matsushita Electric Ind Co Ltd プラズマcvd装置
JPS625600A (ja) * 1985-06-28 1987-01-12 住友金属工業株式会社 マイクロ波プラズマ処理装置
US5038712A (en) * 1986-09-09 1991-08-13 Canon Kabushiki Kaisha Apparatus with layered microwave window used in microwave plasma chemical vapor deposition process
JPH0267632A (ja) * 1988-09-01 1990-03-07 Hitachi Ltd 電子計算機における分岐命令構成法
JPH04117437A (ja) * 1990-09-07 1992-04-17 Yokohama Rubber Co Ltd:The ゴム配合用硫黄
EP0478283B1 (en) * 1990-09-26 1996-12-27 Hitachi, Ltd. Microwave plasma processing method and apparatus
JPH04117437U (ja) * 1991-03-29 1992-10-21 住友金属工業株式会社 マイクロ波プラズマ装置
US5234526A (en) * 1991-05-24 1993-08-10 Lam Research Corporation Window for microwave plasma processing device
JP3375646B2 (ja) * 1991-05-31 2003-02-10 株式会社日立製作所 プラズマ処理装置
US5279669A (en) * 1991-12-13 1994-01-18 International Business Machines Corporation Plasma reactor for processing substrates comprising means for inducing electron cyclotron resonance (ECR) and ion cyclotron resonance (ICR) conditions
US5306985A (en) * 1992-07-17 1994-04-26 Sematech, Inc. ECR apparatus with magnetic coil for plasma refractive index control
JP3042208B2 (ja) * 1992-09-22 2000-05-15 住友金属工業株式会社 マイクロ波プラズマ処理装置
JPH0786246A (ja) * 1993-09-16 1995-03-31 Hitachi Ltd マイクロ波プラズマエッチング装置
JP3171222B2 (ja) * 1994-06-14 2001-05-28 日本電気株式会社 マイクロ波プラズマ処理装置
KR0153842B1 (ko) * 1994-06-14 1998-12-01 나카무라 다메아키 마이크로파 플라즈마 처리장치
JPH083770A (ja) * 1994-06-14 1996-01-09 Nec Corp マイクロ波プラズマ処理装置
JP3613817B2 (ja) * 1994-10-05 2005-01-26 株式会社日立製作所 プラズマ処理装置
JP3042347B2 (ja) * 1995-02-28 2000-05-15 住友金属工業株式会社 プラズマ装置
US5645644A (en) * 1995-10-20 1997-07-08 Sumitomo Metal Industries, Ltd. Plasma processing apparatus
JPH09232099A (ja) * 1996-02-20 1997-09-05 Hitachi Ltd プラズマ処理装置
US5874706A (en) * 1996-09-26 1999-02-23 Tokyo Electron Limited Microwave plasma processing apparatus using a hybrid microwave having two different modes of oscillation or branched microwaves forming a concentric electric field

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112138A (ja) * 1992-09-30 1994-04-22 Sumitomo Metal Ind Ltd マイクロ波プラズマ処理装置
JPH06120155A (ja) * 1992-10-07 1994-04-28 Sumitomo Metal Ind Ltd マイクロ波導入装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0830052A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117732698A (zh) * 2023-12-27 2024-03-22 飞比达电子元器件(苏州)有限公司 一种电晕效率高的涂布机电晕装置及电晕方法

Also Published As

Publication number Publication date
EP0830052A1 (en) 1998-03-18
KR100293033B1 (ko) 2001-06-15
WO1997036461A1 (fr) 1997-10-02
EP0830052A4 (en) 2000-02-02
EP0831680A1 (en) 1998-03-25
TW328617B (en) 1998-03-21
US6091045A (en) 2000-07-18
US5951887A (en) 1999-09-14
KR100293034B1 (ko) 2001-06-15
KR19990014799A (ko) 1999-02-25
KR19990014798A (ko) 1999-02-25
EP0831680A4 (en) 2000-02-02

Similar Documents

Publication Publication Date Title
WO1997036462A1 (fr) Procede et dispositif de traitement plasmique
WO2002052628A1 (fr) Procede et appareil de traitement au plasma
JP3204145B2 (ja) プラズマ処理装置
JP5036092B2 (ja) マイクロ波プラズマ処理装置
CN114068320A (zh) 硅的干蚀刻方法
KR20220133852A (ko) 플라스마 처리 장치 및 플라스마 처리 방법
US5804923A (en) Plasma processing apparatus having a protected microwave transmission window
JP3676680B2 (ja) プラズマ装置及びプラズマ生成方法
TW469533B (en) Dry etching apparatus
JP3222859B2 (ja) プラズマ処理装置
JPH02106925A (ja) ドライエッチング装置
JP3147769B2 (ja) プラズマ処理装置および処理方法
JP4437350B2 (ja) 反応容器及びそれを備えるプラズマ処理装置
JP3085019B2 (ja) プラズマ処理方法および装置
JP2000164392A (ja) マイクロ波プラズマ処理装置
JP3643549B2 (ja) マイクロ波プラズマ処理装置およびマイクロ波プラズマ処理方法
JP3555447B2 (ja) ドライエッチング装置
JP4488551B2 (ja) マイクロ波プラズマ処理装置及び封止部材
JP4052735B2 (ja) プラズマ処理装置
JP4298876B2 (ja) プラズマ処理装置
JP3164188B2 (ja) プラズマ処理装置
JP2003183860A (ja) エッチング方法
JPH06275566A (ja) マイクロ波プラズマ処理装置
JPH0770510B2 (ja) プラズマ処理装置
JP3081885B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019970708142

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08952779

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997908539

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1998 952779

Date of ref document: 19980208

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997908539

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970708142

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997908539

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970708142

Country of ref document: KR