WO1997038685A1 - Use of an osmolyte in the preparation of a medicament for treating complications resulting from ischemia - Google Patents
Use of an osmolyte in the preparation of a medicament for treating complications resulting from ischemia Download PDFInfo
- Publication number
- WO1997038685A1 WO1997038685A1 PCT/EP1997/001861 EP9701861W WO9738685A1 WO 1997038685 A1 WO1997038685 A1 WO 1997038685A1 EP 9701861 W EP9701861 W EP 9701861W WO 9738685 A1 WO9738685 A1 WO 9738685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- osmolyte
- cells
- use according
- betaine
- complications
- Prior art date
Links
- 230000000065 osmolyte Effects 0.000 title claims abstract description 71
- 208000028867 ischemia Diseases 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title claims description 9
- 239000003814 drug Substances 0.000 title claims description 5
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims abstract description 61
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229960003237 betaine Drugs 0.000 claims abstract description 31
- 206010021143 Hypoxia Diseases 0.000 claims abstract description 27
- 230000036542 oxidative stress Effects 0.000 claims abstract description 20
- 230000007954 hypoxia Effects 0.000 claims abstract description 16
- 229960003080 taurine Drugs 0.000 claims abstract description 16
- 150000004001 inositols Chemical class 0.000 claims abstract 2
- 210000004027 cell Anatomy 0.000 claims description 48
- 210000000056 organ Anatomy 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 19
- 210000002889 endothelial cell Anatomy 0.000 claims description 18
- 210000004185 liver Anatomy 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 12
- 108010076864 Nitric Oxide Synthase Type II Proteins 0.000 claims description 8
- 102000011779 Nitric Oxide Synthase Type II Human genes 0.000 claims description 8
- 208000010125 myocardial infarction Diseases 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 102000004877 Insulin Human genes 0.000 claims description 6
- 108090001061 Insulin Proteins 0.000 claims description 6
- 150000001413 amino acids Chemical class 0.000 claims description 6
- 230000017531 blood circulation Effects 0.000 claims description 6
- 229940125396 insulin Drugs 0.000 claims description 6
- 230000000302 ischemic effect Effects 0.000 claims description 6
- 230000001575 pathological effect Effects 0.000 claims description 6
- 239000003527 fibrinolytic agent Substances 0.000 claims description 5
- 230000001146 hypoxic effect Effects 0.000 claims description 5
- 229920005862 polyol Polymers 0.000 claims description 5
- 150000003077 polyols Chemical class 0.000 claims description 5
- 229960000103 thrombolytic agent Drugs 0.000 claims description 5
- 230000030833 cell death Effects 0.000 claims description 4
- 150000003956 methylamines Chemical class 0.000 claims description 4
- 238000004321 preservation Methods 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 210000003494 hepatocyte Anatomy 0.000 claims description 3
- 230000007102 metabolic function Effects 0.000 claims description 3
- 230000000671 osmolytic effect Effects 0.000 claims description 3
- 239000003755 preservative agent Substances 0.000 claims description 3
- 229940124597 therapeutic agent Drugs 0.000 claims description 3
- 230000002537 thrombolytic effect Effects 0.000 claims description 3
- 239000003146 anticoagulant agent Substances 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims description 2
- 230000002265 prevention Effects 0.000 claims description 2
- 210000004556 brain Anatomy 0.000 claims 1
- 239000000969 carrier Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- BXYUEGANNHFECO-UHFFFAOYSA-O trimethyl(2-sulfoethyl)azanium Chemical compound C[N+](C)(C)CCS(O)(=O)=O BXYUEGANNHFECO-UHFFFAOYSA-O 0.000 claims 1
- 238000002560 therapeutic procedure Methods 0.000 abstract description 18
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 abstract 1
- 210000001865 kupffer cell Anatomy 0.000 description 20
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 17
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 17
- 230000006378 damage Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 12
- 230000006870 function Effects 0.000 description 10
- 210000002540 macrophage Anatomy 0.000 description 10
- 230000010410 reperfusion Effects 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 102100028873 Sodium- and chloride-dependent taurine transporter Human genes 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 9
- 108020004999 messenger RNA Proteins 0.000 description 9
- 108010017629 taurine transporter Proteins 0.000 description 9
- 108010078791 Carrier Proteins Proteins 0.000 description 8
- 101001094083 Homo sapiens Sodium- and chloride-dependent betaine transporter Proteins 0.000 description 8
- 208000027418 Wounds and injury Diseases 0.000 description 8
- 208000014674 injury Diseases 0.000 description 8
- 102100035259 Sodium- and chloride-dependent betaine transporter Human genes 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 241000700159 Rattus Species 0.000 description 6
- 230000003915 cell function Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 6
- 229960000367 inositol Drugs 0.000 description 6
- 230000010412 perfusion Effects 0.000 description 6
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 6
- 206010002660 Anoxia Diseases 0.000 description 5
- 241000976983 Anoxia Species 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000007953 anoxia Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 206010012601 diabetes mellitus Diseases 0.000 description 5
- 239000012894 fetal calf serum Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 238000002054 transplantation Methods 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 238000000636 Northern blotting Methods 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 4
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 4
- 230000036571 hydration Effects 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000009469 supplementation Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241000700157 Rattus norvegicus Species 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 108010083817 betaine plasma membrane transport proteins Proteins 0.000 description 3
- 229960001231 choline Drugs 0.000 description 3
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 3
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 3
- 230000004064 dysfunction Effects 0.000 description 3
- 230000003511 endothelial effect Effects 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 230000006492 vascular dysfunction Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102000015212 Fas Ligand Protein Human genes 0.000 description 2
- 108010039471 Fas Ligand Protein Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 108010023197 Streptokinase Proteins 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 210000001130 astrocyte Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000005779 cell damage Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 229960002986 dinoprostone Drugs 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000002107 myocardial effect Effects 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 230000008723 osmotic stress Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000005522 programmed cell death Effects 0.000 description 2
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- 229960005202 streptokinase Drugs 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 108020004463 18S ribosomal RNA Proteins 0.000 description 1
- BFFPVEVGHKMWLT-UHFFFAOYSA-N 2-amino-3,7-dihydropurin-6-one;3,7-dihydropurin-6-one Chemical compound O=C1NC=NC2=C1NC=N2.O=C1NC(N)=NC2=C1NC=N2 BFFPVEVGHKMWLT-UHFFFAOYSA-N 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-L 2-oxoglutarate(2-) Chemical compound [O-]C(=O)CCC(=O)C([O-])=O KPGXRSRHYNQIFN-UHFFFAOYSA-L 0.000 description 1
- 108020005029 5' Flanking Region Proteins 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 206010002388 Angina unstable Diseases 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 101100533757 Caenorhabditis elegans snf-3 gene Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 206010057573 Chronic hepatic failure Diseases 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 208000010334 End Stage Liver Disease Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 206010030302 Oliguria Diseases 0.000 description 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 1
- 208000004880 Polyuria Diseases 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 1
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 208000007814 Unstable Angina Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000002686 anti-diuretic effect Effects 0.000 description 1
- 229940124538 antidiuretic agent Drugs 0.000 description 1
- 239000003160 antidiuretic agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 239000003633 blood substitute Substances 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000003185 calcium uptake Effects 0.000 description 1
- 239000000372 cardioplegic agent Substances 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000029215 cell volume homeostasis Effects 0.000 description 1
- 229960004788 choline alfoscerate Drugs 0.000 description 1
- 208000011444 chronic liver failure Diseases 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000004163 cytometry Methods 0.000 description 1
- 230000001120 cytoprotective effect Effects 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000035619 diuresis Effects 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 150000002066 eicosanoids Chemical class 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- SUHOQUVVVLNYQR-MRVPVSSYSA-O glycerylphosphorylcholine Chemical compound C[N+](C)(C)CCO[P@](O)(=O)OC[C@H](O)CO SUHOQUVVVLNYQR-MRVPVSSYSA-O 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000002989 hepatic vein Anatomy 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000002727 hyperosmolar Effects 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 201000004332 intermediate coronary syndrome Diseases 0.000 description 1
- 230000007154 intracellular accumulation Effects 0.000 description 1
- NTHXOOBQLCIOLC-UHFFFAOYSA-N iohexol Chemical compound OCC(O)CN(C(=O)C)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NTHXOOBQLCIOLC-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000012332 laboratory investigation Methods 0.000 description 1
- 208000006443 lactic acidosis Diseases 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- -1 myo-inositol Chemical class 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 230000011224 negative regulation of urine volume Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000007959 normoxia Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000008816 organ damage Effects 0.000 description 1
- 230000004768 organ dysfunction Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000003094 perturbing effect Effects 0.000 description 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000003761 preservation solution Substances 0.000 description 1
- 238000009117 preventive therapy Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000003966 vascular damage Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000007279 water homeostasis Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/047—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/205—Amine addition salts of organic acids; Inner quaternary ammonium salts, e.g. betaine, carnitine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- the present invention relates to the use of organic osmolytes in the manufacture of a therapeutic agent capable of treating or preventing complications resulting from ischemia, hypoxia or oxidative stress.
- osmolytes In mammals, osmolytes have been identified in astrocytes, renal medulla cells and lens epithelia. The need for osmolytes in renal medulla cells is obvious, because ambient medullary osmolarity can increase up to 3800 mosmol/1 during antidiuresis and decrease to 170 mosmol/1 during diuresis. In the antidiuretic state (high extracellular osmolarity), intracellular osmolarity increases in renal medullary cells as the result of the intracellular accumulation of inositol and betaine which are taken up via sodium ion dependent transporters. These sodium ion dependent transporters are induced upon hyperosmotic exposure in renal cells and astrocytes.
- Organ transplantation has become an established therapy for end stage liver and heart disease, although primary graft non-function or dysfunction is serious clinical problem.
- Cold ischemic storage and the following reperfusion of the donated organ are identified as major contributors to failing primary graft function and is shown to have a detrimental impact on endothelial and immune competent cells, injuries to the endothelial cells precipitates a malfunction vascular system and consequently, an inadequate oxygen and substrate delivery, as well as an impaired waste product clearance.
- the challenged endothelium enhances the expression of adhesive molecules facilitating the binding and infiltration of immune competent cells in the tissue area at risk.
- Immune competent cells respond to ischemia and reperfusion by producing a number of biologically toxic mediators, again leading to the dysfunction of surrounding cells, including the vascular endothelium and in certain cases the whole organ.
- the early organ dysfunction is considered to originate from injuries of endothelial cells resulting in inadequate oxygen and substrate delivery as well as reduced waste product clearance. Beyond transplantation injuries, resulting from ischemia and reperfusion, these are a well recognized clinical problems in, for example, myocardial infarction and the following thrombolytic treatment. As disclosed in Laboratory Investigation, 1996, Vol. 74, No. 1, p.
- both myocardial ischemia and hypoxia can induce cell death , such as programmed cell death (apoptosis) in the heart following myocardial infarction which may lead to massive loss of cells and further organ damages.
- cell death such as programmed cell death (apoptosis) in the heart following myocardial infarction which may lead to massive loss of cells and further organ damages.
- apoptosis programmed cell death
- the inflammatory response to ischemia and reperfusion is suggested to be primarily mediated by resident macrophages, the Kupffer cells, while the heart in such a situation suffers from invading immune competent cells which might cause persistent injuries.
- oxidative stress In response to ischemia/reperfusion and inflammatory mediators, endothelial and immune competent cells produce oxygen free radicals which exert a detrimental metabolic load on exposed cells termed oxidative stress.
- the oxidative stress precipitates severe damages to biological molecules, especially to DNA, lipids and proteins.
- the protection against oxidative stress and hence the salvage of tissues and organs might be achieved only partially by supplying antioxidants and ensuring an adequate level of antioxidant enzymes. It would therefore also be desirable to be able to provide a therapy which also is useful for improving the protection of cells against damages originating from oxidative stress.
- taurine possibly contributes to a regulation of the myocardial calcium uptake and thus may increase the myocardial activity.
- certain osmolytes such as betaine and taurine, have a powerful capacity to maintain the cellular integrity in specific cells, and thereby the organ function, subjected to a depletion of oxygen in an anoxia model or oxidative stress, as demonstrated in an isolated, perfused liver.
- the present invention shows that selected osmolytes can be employed as important regulators of endothelial and immune competent cell function.
- the osmolytes have a capacity to protect these cell types or to affect such cells to modulate their response to the mentioned complications and thereby maintaining the function of vital organs challenged by pathologic events, such as an inadequate blood supply.
- the failing liver is an early event in sepsis and accompanied by raised enzyme leakage from the liver, for example lactate dehydrogenase (LDH) which indicates a compromised cellular integrity.
- LDH lactate dehydrogenase
- As a sign of an adequate treatment the hepatic function and enzyme leakage is restored to near normal levels within days. This course of pathological events and the impact of a successful treatment, reflects the clinical importance of the marked decrease in LDH leakage in response to osmolyte treatment following anoxia, as will be described in the present invention.
- the present invention demonstrates that otherwise metabolically inert osmolytes have a high potency in protecting organs or tissues from such damages and dysfunctions resulting from ischemia and reperfusion, hypoxia or oxidative stress.
- the present invention is related to the use of an effective amount of an osmolyte in the preparation of a therapeutic agent capable treating or preventing complications resulting from ischemia, hypoxia or oxidative stress by affecting cells which produce mediators of such complications.
- a therapeutic agent capable treating or preventing complications resulting from ischemia, hypoxia or oxidative stress by affecting cells which produce mediators of such complications.
- Such cells may have an active part in the immune system and typically include, but are not strictly limited to, immune competent cells, endothelial cells and hepatocytes.
- this type of cells are protected to maintain their regular metabolic function or are affected to modulate their response to the complications of ischemia, hypoxia and oxidative stress, in order to maintaining the function of vital organs challenged from pathologic events, such an inadequate blood supply.
- ischemic or hypoxic conditions typically origin from a situation where the ordinary blood flow of substrates to an organ or a tissue is interrupted or reduced, so the regular metabolism is altered. Such situations can occur in connection to a large variety of traumatic events, such as myocardial infarction, bypass surgery of the heart or other organs or organ transplantation.
- the present invention also serves as a cytoprotective therapy by increasing a correct cellular hydration in response to stress.
- patients suffering from identified vascular dysfunctions such as those suffering from the effects or diabetes or who are expecting additional surgery or therapy can benefit from a therapy with selected osmolytes according to the present invention in connection with their regular therapy.
- the osmolytes are defined as agents used by the cells to regulate the level of hydration by a specific transport mechanism through the cellular membranes. Such agents traditionally have been considered biologically inert, except for their function as substrates in metabolic pathways.
- the osmolytes are defined as agents that are used in the regulation of the cellular hydration with the additional capacity to protect organs against injuries resulting from ischemia, hypoxia and oxidative stress.
- osmolytes are useful for the preservation of the organ function at abnormal temperatures (hypothermia) induced during preservation prior to the transplantation
- the osmolytes are preferably selected from a group consisting of polyols, amino acids and methylamines which are endogenously occurring in the body for regulating the individual cellular volume and osmolarity after exposure to osmotic variations and other stimuli related to the immune defense, as explained in our co-pending Swedish patent application 9601395-8
- amino acid osmolytes methylamine osmolytes, such as taurine and betaine and certain polyols, such as myo-inositol
- methylamine osmolytes such as taurine and betaine
- certain polyols such as myo-inositol
- the osmolytes can be administered as salts or as precursors, such as alkyl esters of osmolytes or osmolytes in ohgopeptides, capable of being released at their functional cellular target.
- osmolytes can be administered when suitable, as is examphfied by a supplement of choline as a precursor to betaine
- choline can be converted to betaine by hepatocytes for transport to the Kupffer cells of the liver where it may exert the mentioned effects Choline can however not be converted to betaine by the Kupffer cells.
- the present invention it is possible to add one or several constituents capable of contributing to a prevention of the impairing effects resulting from the ischemic or hypoxic conditions
- constituents capable of contributing to a prevention of the impairing effects resulting from the ischemic or hypoxic conditions
- examples of such compounds are for example, found among certain amino acids, their precursors and derivatives, such as alpha-ketoglutarate as disclosed in WO 95/34301 (Pharmacia AB) which hereby is inco ⁇ orated as a reference.
- An important aspect of the present invention is to use therapeutically effective amounts of an osmolyte and a thrombolytic agent in combination for the manufacture of an agent capable of treating complications resulting from ischemia, hypoxia or oxidative stress
- an agent capable of treating complications resulting from ischemia, hypoxia or oxidative stress
- Such an agent will be especially useful for treating complications in relation to myocardial infarction wherein the thrombolytic agent with a capacity to induce lysis of blood clots, or the procedure of percutaneous transluminal coronary angioplasty (PTCA) is combined with osmolytes to minimize the risk of coronary and vascular damages and restenosis.
- PTCA percutaneous transluminal coronary angioplasty
- the present invention is also related to a composition
- a composition comprising an effective amount of the mentioned osmolytes for administration to an organ or a tissue being subjected, or at the risk of being subjected, to an insufficient supply of substrates necessary for maintaining the normal metabolic function together with a pharmacologically acceptable carrier.
- Such compositions are especially suitable for being supplied to the heart in connection with its interruption from a regular blood flow for example for treating myocardial infarction, during coronary bypass surgery or transplantation.
- Such compositions can further comp ⁇ se agents as inco ⁇ orated in conventional preservation solutions or cardioplegic agents, such as Plegisol® (Abbott Laboratories), St Thomas solution or the University of Wisconsin solution or other preservative agents or energy substrates as suggested in WO 95/34301.
- compositions can preferably as mentioned be combined with a conventional thrombolytic agent, such as streptokinase
- a conventional thrombolytic agent such as streptokinase
- the thrombolytic agent can be added to the osmolytic composition, or administered separately in a predetermined manner.
- inventive compositions can also be included in blood cardioplegia and in solutions useful as blood substitutes.
- the compositions according to the present invention are also useful as solutions for the preservation of organs interrupted from their regular blood flow m combination with conventional preservative agents.
- compositions for the treatment of patients suffering from diabetes or such post-traumatic patients dependent on an insulin therapy comprising an effective amount insulin in a conventional dosage form together with a therapeutically effective amount of at least one of the selected osmolytes, as mentioned above.
- Such a composition can be in the form of an injectible preparation or an otherwise administerable dosage form of a conventional insulin in an effective amount, either directly mixed with osmolytes, or with the osmolyte preparation separately administerable in the as a part of kit, to be self administered by the patient in the connection with the insulin therapy
- Effective amounts of the osmolytes in the inventive compositions shall, suitably after administration, provide between about 50 ⁇ M up to about 10 mM of osmolyte concentration in the fluid supplied to the organ or the tissue, preferably between a concentration of about 0 1 mM up to about 1-2 mM and most preferably about 0 5 mM
- An especially effective composition has been shown to comp ⁇ se betaine and taurine at a total concentration of about 0 2 mM
- Fig 1 shows an anoxic model on a perfused liver, wherein lactate dehydrogenase
- LDH LDH in the effluent is used as a marker on cellular impairments is plotted against the perfusion time for control and the inco ⁇ oration of 0 1 mM and 1 mM of betaine in the perfusion solution of 385 mosm/1, respectively
- Fig. 2 shows the effect of ambient osmolahty on mRNA levels for the betaine transporter (BGT-1 ), the taurine transporter (TAUT), the myo-inositol transporter (SMIT) and GAPDH in the rat liver endothelial cells. Changes in osmolahty were performed by appropriate addition/removal of sodium chloride. The mRNA levels were determined by Northern blot analysis
- Fig 3 shows the time-dependent induction of BGT-1 (betaine transporting protein) and TAUT (taurine transporting protein) and SMIT (the myo-inositol transporter) mRNA- levels in rat Kupffer cells
- BGT-1 betaine transporting protein
- TAUT taurine transporting protein
- SMIT the myo-inositol transporter
- mRNA levels for BGT-1 , TAUT, SMIT and glyceraldehydephosphate dehydrogenase (GAPDH) as a standard were determined by Northern blot analysis
- Fig 4 shows an anoxic model on perfused liver similar to the one shown in
- Fig 1 wherein the LDH release is measured in the effluent after periusion with solutions of 385 mosmM enriched with 0 100 mM betaine, 0 100 mM betaine + 0 100 mM taurine
- Fig 5 shows a similar anoxic model as in Fig 1 , wherein PGE2 (prostaglandin E2) levels are measured in the effluent du ⁇ ng anoxia and reperfusion with a 385 mosmM solution which has been provided with 0 100 mM betaine and 1 mM betaine, respectively Fig.
- PGE2 prostaglandin E2
- FIG. 6 shows a model for inducing oxidative stress, wherein a rat liver is exposed to a solution of 0.2 mM t-butylhydroperoxide (t-BOOH) and perfusion with a 305 mosmM solution without and with 1 mM betaine.
- the protective effect of 1 mM betaine in the perfusate is determined as LDH release in the effluent.
- Fig. 7A shows the modulation of the CD95 ligand mRNA expression (a mediator for apoptosis) in rat Kupffer cells in response to LPS challenge ( 1 ug/ml for 6h). In experiments shown in bars 1 and 2, the cells were not incubated with LPS.
- Fig. 7B shows the same experiment as in Fig 7A performed with rat sinusoidal endothelial cells.
- Fig. 8 shows the influence of betaine on the transporters for betaine and taurine
- BGT-1 and TAUT inducible nitric oxide synthase mRNA levels in RAW 264.7 mouse macrophages during hyperosmolarity.
- the macrophages were exposed to LPS (1 ⁇ g/ml) for 6 hours in the presence or absence of 0.1 or 5 mmol/1 betaine.
- the mRNA levels of the transporters and iNOS were determined by Northern blot analysis.
- Kupffer cells from male Wistar rats of 300-400 g body weight raised in the local institute for laboratory animals were isolated by collagenase-pronase perfusion and separated by a single Nycodenz gradient and centrifugal elutriation.
- Cells were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated fetal calf serum (FCS) for 48 h.
- FCS heat-inactivated fetal calf serum
- the experiments were performed during the following 24 h using Krebs-Henseleit hydrogen carbonate buffer (pH 7.4) containing 10 mM glucose and 1 % FCS.
- Endothelial cells of male Wistar rats were isolated according to the collagenase- pronase method and centrifugal elutriation technique, as described for the Kupffer cells Isolated endothelial cells were incubated the first day for 4 hours in the appropriate culture medium adjusted to the desired osmolarity (205, 255, 305 or 405 mosmol/1) The cells were harvested following incubation and used for mRNA analysis The cell viability was routinely tested by determination of enzyme leakage, 4 hours of a hyperosmotic (405 mosm/1) or a hypoosmotic incubation was without effect on viability
- Livers of Wistar rats were perfused in situ as described in Eur. J. Biochem , 1989, Vol 181 , p 709-716, in the physiological antegrade direction (from portal to hepatic vein) in an open recirculating system
- the perfusion medium used was bicarbonate buffered Krebs-Henseleit saline medium (equlibrated with O2/CO2 95:5 by volume).
- Anoxia was introduced by interrupting the supply oxygenated buffer
- LDH lactate dehydrogenase
- RNA from near-confluent culture plates of Kupffer cells and endothelial cells were isolated by using guanidinethiocyanate solution. RNA samples were electrophoresed in a 0.8% agarose/3% formaldehyde and then blotted onto Hybond-N nylon membranes with 20X SSC (3 M NaCl, 0.3 M sodium citrate). After brief rinsing with water and UV- crosslinking (Hoefer UV-crosslinker 500), the membranes were inspected under UV illumination to determine RNA integrity and location of the 28S and 18S rRNA bands.
- 20X SSC 3 M NaCl, 0.3 M sodium citrate
- Blots were then subjected to a 3 h-prehybridization at 43 jC in 50% deionized formamide, in sodium phosphate buffer (0.25 M, pH 7.2), containing 0.25 M NaCl, 1 mM EDTA, 100 mg/ml salmon sperm DNA and 7% SDS.
- Hybridization was carried out in the same solution with approx. 106 cpm/ml ( ⁇ -32P)dCTP-labeled random primed BGT-1 , TAUT and GAPDH cDNA probes.
- Membranes were washed three times in 2x SSC/0.1 % SDS and twice in sodium phosphate buffer (25 mM, pH 7.2)/EDTA (1 mM)/l % SDS. Blots were then exposed to Kodak AR X-omat film at 70 °C with intensifying screens and analysed with PDI densitometry scanning (Pharmacia, Freiburg, Germany).
- hypoxia resulted m a marked increase in LDH release demonstrating a deteriorating cell and organ integrity and function.
- the described cell and tissue damage was characterized by an early injury, evident during hypoxia challenge recognized by an escalating LDH release and a late injury when normoxia was reinstituted (reperfusion injury)
- treatment with 0.1 mM and 1 mM betaine solution was determined to diminish or even abolish the injury during and following hypoxia.
- Fig. 2 and Fig. 3 show that mRNA for the betaine transport protein, BGT- 1 , the taurine transport protein, TAUT and the myo-inositol transporter SMIT, were expressed both in endothelial cells and Kupffer cells.
- Fig. 2 The endothelial cells were strongly dependent on ambient osmolarity (Fig. 2) which demonstrates that osmolytes are important components in the regulation of cellular function in both immune competent cells and the endothelial cells of the vasculature. Moreover, in endothelial cells TAUT tended to be more intensively expressed than BGT-1 in response to the 4 hours of exposure to hyperosmolarity. In Kupffer cells, there was a time dependent increase in BGT-1 and TAUT mRNA expression, see Fig. 3. These findings shows that the composition of osmolytes, used according to the present invention, can be tailored to optimize therapeutic efficacy with respect to a target cell type, as well as the timing of the therapeutic intervention.
- Fig. 4 shows that a co-administration of taurine and betaine during anoxia leads to a reduced leakage of LDH from the Kupffer cells, when compared to a supplementation of betaine only, or a standard solution of 385 mosmM
- a supplementation of osmolytes will consequently suppress the macrophage activity which can be triggered by an ischemic or hypoxic event which otherwise could lead to a rupture of vascular plaques leading to thrombosis and an even more serious organ or tissues damages resulting from occlusions of vessel lumens, see e.g. The Lancet, 1996, Vol. 347, pag. 305-306, P Weisberg et al.
- Fig. 7A and 7B demonstrates the capacity of osmolytes in protection of apoptosis
- Fig. 8 shows that osmolytes are effective in downregulating inducible nit ⁇ c oxide synthase (iNOS).
- iNOS inducible nit ⁇ c oxide synthase
- a supplementation of selected osmolytes, according to the present invention to patients identified as being at risk of acquiring life-threatening coronary syndromes of unstable angina and myocardial infarction, precipitated by the rupture of cardiovascular plaques will be of benefit, since such a therapy will selectively modulate the activity of macrophages on the plaques.
- the inventive osmolyte therapy thus demonstrates a considerable potential for supplying to such at risk patients who expect complementary surgery or therapy
- the present invention has contributing potential, in terms of treating, but also in preventing damages resulting from ischemia and subsequent reperfusion by a capacity in stabilizing vascular plaques
- a further aspect of preventing life threatening coronary syndromes by the inventive osmolyte therapy concerns patients suffering from pathologically raised levels of circulating metabolites capable of exerting osmotic stress on the vasculature, exemplified by raised levels of circulating glucose in the diabetic state
- endothelial cells subjected to osmotic stress express osmolyte transporting proteins and thereby susceptibility to osmolyte therapy for their normalization of their cellular hydration and function.
- osmolytes have a potential in preventing vascular dysfunctions leading to impairments of the blood flow, vascular dysfunction and related diseases in the diabetic patient, for example by being administered in connection with conventional insulin therapy as a preventive therapy for cardiovascular or other vascular diseases in the diabetic state.
- the beneficial effect of osmolytes on the tissue capacity for scavenging oxygen free radicals serves as a mechanistic basis for the described improvement of tolerance to oxidative stress as shown in Fig. 6 .
- the extent of damages from oxidative stress, also resulting from reperfusion, can consequently be reduced therapy of supplying selected osmolytes.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cardiology (AREA)
- General Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9536745A JP2000508651A (en) | 1996-04-12 | 1997-04-14 | Use of osmolyte to manufacture a medicament for treating complications caused by ischemia |
EP97919356A EP0946167A1 (en) | 1996-04-12 | 1997-04-14 | Use of an osmolyte in the preparation of a medicament for treating complications resulting from ischemia |
AU23860/97A AU2386097A (en) | 1996-04-12 | 1997-04-14 | Use of an osmolyte in the preparation of a medicament for treating complicati ons resulting from ischemia |
US08/878,557 US5880098A (en) | 1996-04-12 | 1997-06-19 | Therapeutic treatment |
NO984759A NO984759L (en) | 1996-04-12 | 1998-10-12 | Use of an osmolyte in the manufacture of a medicament for the treatment of complications caused by ischemia |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9601396A SE9601396D0 (en) | 1996-04-12 | 1996-04-12 | New therapeutic treatment 2 |
SE9601396-6 | 1996-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997038685A1 true WO1997038685A1 (en) | 1997-10-23 |
Family
ID=20402175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1997/001861 WO1997038685A1 (en) | 1996-04-12 | 1997-04-14 | Use of an osmolyte in the preparation of a medicament for treating complications resulting from ischemia |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0946167A1 (en) |
JP (1) | JP2000508651A (en) |
AU (1) | AU2386097A (en) |
CA (1) | CA2251071A1 (en) |
NO (1) | NO984759L (en) |
SE (1) | SE9601396D0 (en) |
WO (1) | WO1997038685A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6080788A (en) * | 1997-03-27 | 2000-06-27 | Sole; Michael J. | Composition for improvement of cellular nutrition and mitochondrial energetics |
WO2000051596A1 (en) * | 1999-03-02 | 2000-09-08 | Jallal Messadek | Antithrombotic use of glycine betaine |
WO2000076528A3 (en) * | 1999-06-12 | 2001-09-07 | Bitop Gmbh | Pharmaceutical preparation containing proteins |
WO2001076572A3 (en) * | 2000-04-12 | 2002-04-11 | Bitop Gmbh | Use of compatible solutes as substances having free radical scavenging properties |
RU2259822C1 (en) * | 2004-02-27 | 2005-09-10 | ЗАО "НПО ПЦ Биофизика" | Anti-ischemic remedy possessing anti-arrhythmic and anti-atherogenic activity and method for applying the means |
WO2006050585A3 (en) * | 2004-11-10 | 2007-03-22 | Jallal Messadek | Modulation of nitric oxide synthases by betaines |
DE102008006780A1 (en) * | 2008-01-30 | 2009-08-06 | Bitop Ag | Use of tetrahydropyrimidines |
US7608640B2 (en) | 1999-03-02 | 2009-10-27 | Jallal Messadek | Glycine betaine and its use |
US7780990B2 (en) | 2005-02-15 | 2010-08-24 | Jallal Messadek | Combination therapeutic compositions and method of use |
US7786077B2 (en) | 2005-04-27 | 2010-08-31 | Jallal Messadek | Insulins combinations |
US8343947B2 (en) | 2003-07-15 | 2013-01-01 | Jallal Messadek | Therapeutic treatment |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5084089B2 (en) * | 2001-06-14 | 2012-11-28 | 大塚製薬株式会社 | Pharmaceutical composition |
DE10330768A1 (en) * | 2003-07-07 | 2005-02-24 | bitop Aktiengesellschaft für biotechnische Optimierung | Use of osmolytes obtained from extremophilic bacteria for the preparation of inhalable medicaments for the prophylaxis and treatment of pulmonary and cardiovascular diseases, and an inhalation device containing osmolyte as an active ingredient |
JP2021147393A (en) * | 2020-03-13 | 2021-09-27 | ロート製薬株式会社 | Oxidation stress inhibitor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0359257A2 (en) * | 1988-09-15 | 1990-03-21 | Perstorp Ab | Use of inositol triphosphate in the preparation of a medicament against diabetes |
JPH0381219A (en) * | 1989-08-24 | 1991-04-05 | Motoyasu Murakami | Treatment for gastric mucosal disorders |
WO1991009601A1 (en) * | 1989-12-21 | 1991-07-11 | Perstorp Ab | Use of inositolphosphates for preparing medicament |
WO1991014435A1 (en) * | 1990-03-19 | 1991-10-03 | Brigham And Women's Hospital | Treatment of osmotic disturbance with organic osmolytes |
WO1992015546A1 (en) * | 1991-03-05 | 1992-09-17 | The Regents Of The University Of California | Compounds and method for protection of cells and tissues from irreversible injury due to lactic acidosis |
DE4331711A1 (en) * | 1992-09-18 | 1994-03-24 | Pasteur Merieux Serums Vacc | Solution for perfusion, preservation and re-perfusion of organs |
WO1996032906A1 (en) * | 1995-04-18 | 1996-10-24 | Nutrition 21 | Magnesium taurate as a therapeutic agent |
-
1996
- 1996-04-12 SE SE9601396A patent/SE9601396D0/en unknown
-
1997
- 1997-04-14 EP EP97919356A patent/EP0946167A1/en not_active Withdrawn
- 1997-04-14 CA CA002251071A patent/CA2251071A1/en not_active Abandoned
- 1997-04-14 WO PCT/EP1997/001861 patent/WO1997038685A1/en not_active Application Discontinuation
- 1997-04-14 AU AU23860/97A patent/AU2386097A/en not_active Abandoned
- 1997-04-14 JP JP9536745A patent/JP2000508651A/en active Pending
-
1998
- 1998-10-12 NO NO984759A patent/NO984759L/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0359257A2 (en) * | 1988-09-15 | 1990-03-21 | Perstorp Ab | Use of inositol triphosphate in the preparation of a medicament against diabetes |
JPH0381219A (en) * | 1989-08-24 | 1991-04-05 | Motoyasu Murakami | Treatment for gastric mucosal disorders |
WO1991009601A1 (en) * | 1989-12-21 | 1991-07-11 | Perstorp Ab | Use of inositolphosphates for preparing medicament |
WO1991014435A1 (en) * | 1990-03-19 | 1991-10-03 | Brigham And Women's Hospital | Treatment of osmotic disturbance with organic osmolytes |
WO1992015546A1 (en) * | 1991-03-05 | 1992-09-17 | The Regents Of The University Of California | Compounds and method for protection of cells and tissues from irreversible injury due to lactic acidosis |
DE4331711A1 (en) * | 1992-09-18 | 1994-03-24 | Pasteur Merieux Serums Vacc | Solution for perfusion, preservation and re-perfusion of organs |
WO1996032906A1 (en) * | 1995-04-18 | 1996-10-24 | Nutrition 21 | Magnesium taurate as a therapeutic agent |
Non-Patent Citations (4)
Title |
---|
CANAS, P.E.: "The Role of Taurine and its Derivatives on Cellular Hypoxia: A Physiological View", ACTA PHYSIOL. PHARMACOL. THER. LATINOAM. (ARGENTINA), vol. 42, no. 3, 1992, pages 133 - 137, XP002037363 * |
MINOR T. ET AL: "Taurine Reduces Experimental Liver Injury After Cold Ischemic Preservation and a Period of Rewarming Prior to Reperfusion", ADV. EXP. MED. BIOL. (UNITED STATES), vol. 403, 1996, pages 157 - 161, XP002037362 * |
RAO P.S. ET AL: "Protection of Ischemiac Heart from Reperfusion Injury by Myo-Inositol Hexaphosphate, a Natural Antioxidant", ANN. THORAC. SURG. (UNITED STATES), vol. 52, no. 4, 1991, pages 908 - 912, XP002037360 * |
WINGENFELD P. ET AL: "Protecting Effect of Taurine against Hypoxic Cell Damge in Renal Tubular Cells Cultured in Different Transplant Preservation Solutions", ADV. EXP. MED. BIOL. (USA), vol. 359, 1994, pages 159 - 169, XP002037361 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6080788A (en) * | 1997-03-27 | 2000-06-27 | Sole; Michael J. | Composition for improvement of cellular nutrition and mitochondrial energetics |
WO2000051596A1 (en) * | 1999-03-02 | 2000-09-08 | Jallal Messadek | Antithrombotic use of glycine betaine |
BE1012495A3 (en) * | 1999-03-02 | 2000-11-07 | Messadek Jallal | Glycine betaine-for its use antithrombotic. |
JP2002538113A (en) * | 1999-03-02 | 2002-11-12 | メッサデク ジャラル | Use of glycine betaine for antithrombotic applications |
US7608640B2 (en) | 1999-03-02 | 2009-10-27 | Jallal Messadek | Glycine betaine and its use |
US6855734B2 (en) | 1999-03-02 | 2005-02-15 | Jallal Messadek | Glycine betaine and its use |
US7147849B2 (en) | 1999-06-12 | 2006-12-12 | Bitop Ag | Pharmaceutical formulation |
WO2000076528A3 (en) * | 1999-06-12 | 2001-09-07 | Bitop Gmbh | Pharmaceutical preparation containing proteins |
WO2001076572A3 (en) * | 2000-04-12 | 2002-04-11 | Bitop Gmbh | Use of compatible solutes as substances having free radical scavenging properties |
JP2003531833A (en) * | 2000-04-12 | 2003-10-28 | ビトプ アクチェンゲゼルシャフト フューア ビオテヒニシェ オプティミールング | Use of compatible solutes as materials with free radical scavenging properties |
US8343947B2 (en) | 2003-07-15 | 2013-01-01 | Jallal Messadek | Therapeutic treatment |
RU2259822C1 (en) * | 2004-02-27 | 2005-09-10 | ЗАО "НПО ПЦ Биофизика" | Anti-ischemic remedy possessing anti-arrhythmic and anti-atherogenic activity and method for applying the means |
WO2006050585A3 (en) * | 2004-11-10 | 2007-03-22 | Jallal Messadek | Modulation of nitric oxide synthases by betaines |
US8318805B2 (en) | 2004-11-10 | 2012-11-27 | Jallal Messadek | Modulation of nitric oxide synthases by betaines |
US7780990B2 (en) | 2005-02-15 | 2010-08-24 | Jallal Messadek | Combination therapeutic compositions and method of use |
US7786077B2 (en) | 2005-04-27 | 2010-08-31 | Jallal Messadek | Insulins combinations |
DE102008006780A1 (en) * | 2008-01-30 | 2009-08-06 | Bitop Ag | Use of tetrahydropyrimidines |
Also Published As
Publication number | Publication date |
---|---|
SE9601396D0 (en) | 1996-04-12 |
AU2386097A (en) | 1997-11-07 |
EP0946167A1 (en) | 1999-10-06 |
JP2000508651A (en) | 2000-07-11 |
CA2251071A1 (en) | 1997-10-23 |
NO984759D0 (en) | 1998-10-12 |
NO984759L (en) | 1998-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5880098A (en) | Therapeutic treatment | |
Hoffman et al. | Myocardial reperfusion injury: etiology, mechanisms, and therapies | |
Wang et al. | Effect of vitamin E against adriamycin-induced toxicity in rabbits | |
EP0464084B1 (en) | Use of eicosapentaenoic acid for the treatment of cachexia | |
Buehler et al. | Effects of endogenous ascorbate on oxidation, oxygenation, and toxicokinetics of cell-free modified hemoglobin after exchange transfusion in rat and guinea pig | |
Powers et al. | Twenty-five percent albumin prevents lung injury following shock/resuscitation | |
Bolcal et al. | Protective effects of antioxidant medications on limb ischemia reperfusion injury | |
EP0946167A1 (en) | Use of an osmolyte in the preparation of a medicament for treating complications resulting from ischemia | |
US5457130A (en) | Eicosapentaenoic acid used to treat cachexia | |
Chen et al. | Type 2 diabetic mellitus related osteoporosis: focusing on ferroptosis | |
Mavier et al. | Human monocyte-mediated tumor cytotoxicity. I. Demonstration of an oxygen-dependent myeloperoxidase-independent mechanism. | |
US5843996A (en) | Intravenous magnesium gluconate for treatment of conditions caused by excessive oxidative stress due to free radical distribution | |
Ikeda et al. | Liver graft exposure to carbon monoxide during cold storage protects sinusoidal endothelial cells and ameliorates reperfusion injury in rats | |
US20120041006A1 (en) | Compositions for Raising Uric Acid Levels and Methods of Using the Same | |
Ishizaki et al. | COMPARISON OF VARIOUS LAZAROID COMPOUNDS FOR PROTECTION AGAINST ISCHEMIC LIVER INJURY1, 2 | |
Bezinover et al. | Use of a third-generation perfluorocarbon for preservation of rat DCD liver grafts | |
Mikrut et al. | The effect of bradykinin on the oxidative state of rats with acute hyperglycaemia | |
WO1997038686A1 (en) | Use of an osmolyte for treating the effects of an infection, an inflammation or an immune dysfunction | |
CN115414344A (en) | Application of L-citrulline in preparation of medicine for preventing and treating iron overload | |
JP4709552B2 (en) | LFA-1 inhibitor and use thereof | |
Wu et al. | Reactive oxygen species in reoxygenation injury of rat brain capillary endothelial cells | |
Deng et al. | Myocardial ischemia/reperfusion injury: mechanism and targeted treatment for ferroptosis | |
Peng et al. | β‐Carotene exhibits antioxidant and anti‐apoptotic properties to prevent ethanol‐induced cytotoxicity in isolated rat hepatocytes | |
Gerlach et al. | Acute MPTP treatment produces no changes in mitochondrial complex activities and indices of oxidative damage in the common marmoset ex vivo one week after exposure to the toxin | |
Goel et al. | Herbicides poisoning: Paraquat and diquat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 332069 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997919356 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2251071 Country of ref document: CA Ref country code: CA Ref document number: 2251071 Kind code of ref document: A Format of ref document f/p: F |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1997919356 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997919356 Country of ref document: EP |