[go: up one dir, main page]

WO1997039168A1 - Electrolyte pour l'electropolissage, procede d'electropolissage d'un acier inoxydable ou d'un alliage de nickel mettant en oeuvre cet electrolyte, et son application a la decontamination - Google Patents

Electrolyte pour l'electropolissage, procede d'electropolissage d'un acier inoxydable ou d'un alliage de nickel mettant en oeuvre cet electrolyte, et son application a la decontamination Download PDF

Info

Publication number
WO1997039168A1
WO1997039168A1 PCT/FR1997/000648 FR9700648W WO9739168A1 WO 1997039168 A1 WO1997039168 A1 WO 1997039168A1 FR 9700648 W FR9700648 W FR 9700648W WO 9739168 A1 WO9739168 A1 WO 9739168A1
Authority
WO
WIPO (PCT)
Prior art keywords
electropolishing
electrolyte
acid
stainless steel
nickel alloy
Prior art date
Application number
PCT/FR1997/000648
Other languages
English (en)
Inventor
Jean-Noël SAAS
Jean-Paul Gauchon
Francis Dalard
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to DE69701135T priority Critical patent/DE69701135T2/de
Priority to EP97918208A priority patent/EP0892862B1/fr
Publication of WO1997039168A1 publication Critical patent/WO1997039168A1/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/24Polishing of heavy metals of iron or steel

Definitions

  • the present invention relates to an electrolyte for electropolishing, a method of electropolishing a stainless steel or a
  • this process can be used in particular for electropolishing and decontamination of austenitic, ferritic and austeno-ferritic stainless steels and
  • Electropolishing is a process known since 1930 and in particular from document FR-A-707526. This process consists in carrying out an anodic dissolution of the metal part to be treated. This
  • Electropolishing can be used on various metals, but is particularly suitable for stainless steel or for alloys such as
  • 'electropolishing can be used in particular on
  • -osurisee REP
  • these metals for example Inconel 600 and AISI 308L steel
  • such a treatment can be carried out either as a surface preparation method to reduce the susceptibility of the material to be contaminated, or as a method of decontamination by dissolution of the contaminated oxides.
  • polishing electrolytes have a high viscosity - which makes them difficult to use - and contain very little water: namely substantially less than 20% by mass.
  • Electropolishing electrolytes are generally very concentrated acidic media which can be classified into two main categories: - a first category includes electrolytes formed from a mixture based on sulfuric acid, phosphoric acid and water with possible addition of chromic acid or other organic agents. These electrolytes are the most common in the field of electropolishing.
  • compositions of the solutions which give, either on the one hand an anodic passivatjon, or on the other hand a shine are very different; in particular, the brightening and polishing solutions have a zero or very low water concentration, the authors conclude that the brightening conditions are obtained by an anion ratio (such as sulphate, phosphate) on water which is sufficiently high.
  • an anion ratio such as sulphate, phosphate
  • a second category of electrolyte for electropolishing includes electrolytes based on perchloric acid.
  • the solvent is therefore of the organic type: it may for example be acetic acid or acetic anhydride of methanol or alternatively monobutyl ether of ethylene glycol: these electrolytes are gradually being abandoned, because they are very dangerous and have explosive properties as described in the book by WJ TEGART "Electrolytic and chemical polishing of metals". Editions Dunod, Paris, 1960. As a result, during the manufacture and use of many baths must be taken.
  • the electrolyte used for electropolishing austenofer ⁇ mila steels is the same as that used for Inconel 600 and belongs to the first category mentioned above: it is a ternary mixture of sulfuric acid, phosphoric acid and water in very small quantities, to which we can add certain additives such as oxalic acid, chromium or aluminum oxides.
  • the electrolyte must not contain sulfuric acid, since sulfur is prohibited from these primary circuits because it is likely to cause corrosion problems.
  • the third reason is that the phosphoric acid added to this electrolyte has the disadvantage, as well as the phosphates which are derived therefrom, of posing significant problems in terms of the treatment of the effluents charged with these compounds resulting from the electropolishing treatment.
  • nitric acid has the same troublesome properties as perchloric acid already mentioned above, insofar as it is oxidizing.
  • nitric acid like perchloric acid
  • a body or an organic compound capable of being oxidized in particular in the presence of water the oxidation reaction can cause an explosion.
  • the electrolyte must be safe and risk-free to use and inexpensive.
  • the electrolyte must also be free from fluoride, chloride and sulfur ions. Its processing temperature should preferably be less than 60 ° C.
  • This electrolyte must also not contain phosphoric acid and / or phosphates and be completely recyclable or destructible by current effluent treatment techniques.
  • the use of one electrolyte must be compatible with the possibilities of nuclear sites and in particular with the possibilities of treatment of effluents in nuclear power plants.
  • the volume of general solid and liquid waste likely to be stored must be reduced to a minimum.
  • the object of the present invention is therefore to provide an electrolyte for electropolishing which satisfies, inter alia, all the requirements mentioned above.
  • Another subject of the present invention is an electropolishing and / or decontamination process using the above electrolyte which can give satisfactory results on all types of stainless steel, as well as on nickel alloys such as Inconels used in particular in the nuclear industry.
  • nitric acid as the main basic constituent of melanaea, responds to an approach which differs fundamentally steps previously taken in this area of technology.
  • glycolic acid into the mixture while retaining a high water concentration also goes against another prejudice in this field of the technique which is reflected by numerous documents and which wanted that does not mix in an electrolyte for electropolishing an oxidizing acid such as nitric acid with compounds
  • glycolic acid incorporated in the e1 ectrolyte makes it possible in particular to increase the viscosity while maintaining a high water concentration, namely greater than or equal to 28-29% by mass.
  • glycolic acid or hvdroxyacetic acid also denoted by the letters HOAC is part of the series of hydroxycarboxylic acids.
  • Glycolic acid is a relatively strong organic acid, soluble in water in all proportions and combines the acid and alcohol functions.
  • the alcohol function can be used in particular for its solvent power; 1 HOAC also has bactericidal and descaling properties and is commonly used as a base for the formulation of cleaners intended for household and collective use.
  • Glycolic acid is also used, as mentioned in document US-A-4 137 132 in the chromating baths.
  • Document JP-A-55047399 describes an electrolyte for electropolishing Fe-Al-Si alloys which comprises a binary mixture of glycolic acid (40 to 60% by volume) and sulfuric acid. This mixture contains neither water nor nitric acid.
  • the HILL EF document "Development of the glycolic-cit ⁇ c acids (GCA) process for decontamination of LMFBR components", Trans. Am. N ⁇ cl. Soc, 30, 1978 relates to the use of a mixture of glycolic acid (2.5% by weight) and citric acid (2.5% by weight) in aqueous solution, called CGA mixture, a 70 -90 ° C, with a view to chemically decontaminating and without supply of current to the weakly contaminated components in stainless steel 304 and 316 from the LMFBR sector. This document therefore does not describe a electrolyte for electropolishing and further relates to a mixture of two organic acids.
  • GCA glycolic-cit ⁇ c acids
  • the electrolyte according to the invention based on a specific ternary mixture from the point of view of its constituents and their proportions, makes it possible to obtain a shiny surface of the samples of treated metals.
  • austemitic stainless steels such as steels 316L and 304L, as ferritic steels such as steel 430, as austenitic-ferritic steels such as l 308L steel, or Inconels such as the Inconel 600, 690 or 800.
  • the electrolyte according to the invention will be particularly suitable for treating the surfaces of such devices.
  • the electrolyte according to the invention is therefore characterized by great versatility.
  • the electrolyte according to the invention also allows smoothing and polishing of austenitic-ferritic steel samples, for example of the 308L type without a preferential attack on the ferritic network, which constitutes a decisive advantage of the electrolytes according to the invention over the electrolytes of the prior art , in particular the phosphophoric electrolytes.
  • the electrolyte according to the invention also has the obvious advantage over the electrolytes of the prior art of being free of fluoride ions, chlorides and sulphates which are corrosive with respect to stainless steels and nickel alloys.
  • the electrolyte according to the invention has the additional advantage of not containing phosphates and / or phosphoric acid, which reduces the volume of the general waste and makes it easier to alternate.
  • This electrolyte according to the invention does not require heating to be able to be used, it is in fact usable generally at room temperature, that is to say generally from 15 ° C to 45 ° C, preferably from 20 to 30 ° C, more preferably from 20 to 25 ° C and in any case at a temperature below 45 ° C.
  • the elecfrolyte according to the invention has a favorable viscosity, generally between errr ⁇ 1.3 and 3 mm / s.
  • the electrolyte according to the invention also exhibited good conservation properties in the 39168 PCI7FR97 / 00648
  • time at room temperature and it can be stored for a period of for example from one to two months without its essential characteristics being affected.
  • the electrolyte does not contain reagents capable of giving rise to very aggressive, oxidizing or explosive reactions. It can be prepared and used without taking any special precautions and safe for the user.
  • the spent electrolyte can be easily and completely reprocessed by distillation, since the mixture contains a high proportion by mass of nitric acid and water and the glycolic acid is transformed into oxalic acid.
  • It can also be mineralized in a caicinator, which allows this electrolyte to be used to decontaminate components from reprocessing plants.
  • the nitric acid recovered in the distillate can be recycled, which, from an economic point of view is particularly advantageous.
  • the electrolyte generally has the composition expressed in mass fractions mentioned above.
  • a preferred composition will include:
  • Such a preferred electrolyte is more chemically stable, the instability being characterized by the production of nitrous acid, nitrous vapors and the formation of oxalic acid beyond its solubility limit.
  • the invention also relates to a method of electropolishing a stainless steel or a nickel alloy in which said stainless steel or said nickel alloy is brought into contact with
  • This process has all the advantageous characteristics linked to the electrolyte and already mentioned above; this process according to the invention using the specific electrolyte of the invention also makes it possible to achieve high Faradic dissolution yields, generally greater than 80, or even 85%, the dissolution rate being in particular 950 ⁇ m / h .
  • This process can be used for electropolishing all types of stainless steels - both austemetic, for example 316L, 304L, and ferritic, for example 430 or austenoferritic, for example 308L, but also nickel alloys such as Inconels, for example 1 'Inconel 600 or 1' Inconel 640 or 1 'Inconel 800.
  • the invention also relates to a method of electrodecontamination of stainless steels or of nickel alloys contaminated in particular on their surface by radioelements, for example Cobalt 60, in which the contaminated metallic wing is brought into contact with the electrolyte described above.
  • radioelements for example Cobalt 60
  • These stainless steels and / or alloys are, for example, those encountered in the nuclear industry or in another industry.
  • Stainless steels and / or nickel alloys are for example constituent of a component of a nuclear power plant or a reprocessing plant and are encountered in particular in the primary circuit of nuclear power plants such as piping, steam generators. ...
  • the process allows in particular the dissolution of contaminating metallic elements, contained essentially in the oxides of the surface layer, and therefore a significant reduction in contamination to allow intervention by maintenance personnel.
  • the operating conditions of the electropolishing and decontamination process can be easily determined by a person skilled in the art in this field of the technique depending in particular on the material to be treated. They will generally be as follows.
  • composition of the electrolyte for electropolishing and / or decontamination is that already indicated above, namely: - glycolic acid: from 152 to 538 g / kg,
  • the current density is generally greater than or equal to 0.5 A / cm 2 , it is preferably between 0.5 A / cm 2 and 1.5 A / cm 2 , for example lA / cm 2 ; in fact, a certain risk of overheating can cause pitting beyond 1.7 A / cm 2 .
  • the temperature is generally room temperature, preferably at 45 ° C, preferably 20 to 30 ° C, more preferably 20 to 25 ° C and the hydrodynamic regime is preferably a laminar regime.
  • the duration of the process is generally from 60 sec to 80 sec for an erosion, for example of 20 ⁇ m. 5
  • the operating conditions for the electropolishing and electrodecontamination procedures are generally identical.
  • the used electrolysis is thus treated with a view to its elimination, its recycling and / or its rejection.
  • the electrolyte used contains neither phosphoric acid nor phosphate, and the treatment of effluents is thereby greatly facilitated.
  • glycolic acid can oxidize to oxalic acid.
  • reaction between nitric acid and oxalic acid is a slow reaction and that the gases given off: carbon dioxide, carbon dioxide and water do not react with the mixture of acids. .
  • the treatment of the electrolyte used at the end of the electropolishing process with a view to its destruction and / or -> its recycling can therefore comprise:
  • nitric effluent which can be sent to the effluent treatment station; or a distillation of the used electrolyte, followed for example by a calcinator. concentrates sleep the residues can be vitrified, for example, as is the case for certain waste from reprocessing plants.
  • the distillate can optionally be recycled for the reuse of nitric acid in the electropolishing process.
  • FIGS. 4 to 9 represent two- and three-dimensional anamorphic roughness profiles of the surface of the Inconel 600.
  • FIGS. 2 to 9 therefore represent and illustrate the method according to the invention implementing the specific electrolyte according to the invention in the particular case of an electropolishing treatment of an austeno-ferritic steel 308L.
  • FIG. 1 makes it possible to visualize the results obtained with an electrolyte of the prior art (sulfuric and phosphoric acid) and to compare the results obtained with the electrolyte of the invention. The following examples describe and illustrate the invention.
  • Example 1 Results in electropolishing on Inconel 600. This electropolishing treatment is carried out with an electrolyte whose composition is as follows:
  • the treatment is carried out on Inconel 600 samples.
  • Electrolyte flow rate 20 1 / h
  • Treated area 30 cm 2 .
  • the objective of such a treatment is to achieve smoothing and shining of the surface of the samples in Inconel 600.
  • the filter possibly used was 0.8 mm.
  • the starting samples in Inconel 600 are sanded and the values of the starting parameters are therefore the following: 0, 9 ⁇ Ra ⁇ 1, 35 ⁇ m.
  • the bi- and three-dimensional roughness profiles present in FIGS. 4 to 9 show that we observe a disappearance of the micro-roughnesses, a decrease in the arithmetic roughness, as well as a leveling of the sample.
  • the optical haze index is defined by measuring the diffuse light in a geometry at 20 degrees and the brightness index by the reflected intensity / emitted intensity ratio, following a specular reflection. The results are given in the tables
  • Table 2 gives the results when the measurement is made perpendicular to the sanding lines; this is the worst case.
  • Table 3 gives the results carried out parallel to the stripes • this is the most favorable case, since the light is not diffracted by the stripes, but by the surface micro-faults TABLE 2
  • the electropolishing treatment is carried out with an electrolyte according to the invention, the composition of which is as follows:
  • the intensity-potential curves are produced (Fig. 10) using a rotating disk electrode with a surface area of 0.2 mm 2 at 25 ° C and a speed of rotation of 1000 rpm.
  • the intensity-potential curves obtained (where the potential expressed in V on the abscissa is plotted relative to the saturated calomel electrode (DHW) and on the ordinate the current density in mA / cm 2 ) for 304L steel (in dashes) ) for 316L steel (solid line), for 308L steel (dashed line) and for Inconel (dotted line) show that the electrolyte according to the invention makes it possible to polish all types of stainless steels , whether they are austemetic (304L and 316L), fer ⁇ tic or austeno-fer ⁇ tic (308L as in Example 1), and Inconel type alloys. The surface obtained is in all cases polished and shiny.
  • EXAMPLE 3 (COMPARATIVE):
  • An electrolyte according to the invention having the same composition as that of Example 1 is used under the following conditions:
  • the treated surface is a Cobalt 60 contaminated surface forming part of a thermal sleeve in 304L stainless steel taken from the Blayais power station (Jende - France).
  • the electrolyte according to the prior art has also been used under the same conditions and on the same surface.
  • the electrolyte according to the invention allows a significant reduction in activity, greater than the comparison electrolyte, without having the drawbacks thereof.
  • the electrolyte of the invention can be used in particular to decontaminate the components of PWR pressurized water reactors and makes it possible to sufficiently reduce "hot spots” to allow the intervention of operators in maintenance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

L'invention a trait à un électrolyte d'électropolissage constitué d'un mélange d'acide glycolique, d'acide nitrique et d'eau dans les concentrations suivantes: acid glycolique de 152 à 538 g/kg, acide nitrique de 170 à 568 g/kg, eau de 280 à 678 g/kg. L'invention concerne également un procédé d'électropolissage d'un acier inoxydable ou d'un alliage de nickel tel qu'un Inconel mettant en oeuvre cet électrolyte, qui trouve son application en particulier dans la décontamination de surfaces contaminées par des radioéléments, notamment dans l'industrie nucléaire.

Description

ELECTROLYTE POUR L'ELECTROPOLISSAGE, PROCEDE
D'ELECTROPOLISSAGE D'UN ACIER INOXYDABLE OU D'UN
ALLIAGE DE NICKEL METTANT EN OEUVRE CET ELECTROLYTE, ET
SON APPLICATION A LA DECONTAMINATION
La présente invention concerne un electrolyte pour 1 'électropolissage, un procédé d'électropolissage d'un acier inoxydable ou d'un
10 alliage de nickel mettant en oeuvre cet electrolyte, et son application à la décontamination, ce procédé peut être utilisé en particulier pour 1 ' électropolissage et la décontamination des aciers inoxydables austénitiques, ferritiques et austéno-ferritiques et
15 des alliages de nickel.
L' électropolissage est un procédé connu depuis 1930 et notamment par le document FR-A-707526. Ce procédé consiste à effectuer une dissolution anodique de la pièce métallique a traiter. Ce
20 traitement conduit soit à un nivelage, soit à un orillantage de la surface en l'absence de corrosion cristallographique. La densité de courant de a.ssolution est déterminée à partir de la courbe intensité-potentiel. Ce voltampérogramme présente un
2^ oalier de diffusion au cours duquel le polissage est oossible .
L'électropolissage peut être mis en oeuvre s.r divers métaux, mais convient particulièrement bien poαr l'acier inoxydable ou pour des alliages tels que
"•ιι i ' Inconel .
De ce fait, le traitement
: ' clectropolissage peut être utilisé en particulier sur
:ι divers constituants des générateurs αe vapeur des
^"'traies nucléaires du type à réacteur à eau
: : -osurisee (REP) ou ces métaux (par exemple l' Inconel 600 et l'acier AISI 308L) sont mis en oeuvre ; un tel traitement peut être réalise soit comme mode de préparation de surface pour diminuer la susceptibilité du matériau à se contaminer, soit comme mode de décontamination par dissolution des oxydes contamines.
La grande majorité des électrolytes de polissage connus ont une viscosité élevée - ce qui les rend difficiles a mettre en oeuvre - et contiennent très peu d'eau : à savoir sensiblement moins de 20 % en masse.
Les électrolytes d'électropolissage, en effet, sont généralement des milieux acides très concentres que l'on peut classer en deux grandes catégories : - une première catégorie comprend les électrolytes formés d'un mélange a base d'acide sulfurique, d'acide phosphorique et d'eau avec addition éventuelle d'acide chromique ou d'autres agents organiques. Ces électrolytes sont les plus courants dans le domaine de 1 'électropolissage.
Ainsi, le document de FEDOT'EV "Electropolishing, anodizmg and electroJytic picklinq of metals", Moscou, Robert Draper Ltd. Teddington, 1959 décrit-il un procède d'électropolissage dans lequel il est fait référence à 1 ' électropolissage d'acier allié (Table 9, page 76) par des mélanges ternaires d'acides sulfurique, phosphorique, et d'eau en faible quantité, a savoir inférieure a 20 % en poids. Ces mélanges sont éventuellement additionnes d'acide chromique pour augmenter la brillance de la surface traitée.
CL. FAUST dans "Electropolishing", Métal Fαrushing, Septembre 1992, 9, pp. 89-91 indique cje 1 ' électropolissage est un traitement idéal pour ac_ers inoxydables parmi lesquels sont cites les aciers înoxydaoles de type 302, 410 et 430. Diverses apparences, depuis un aspect satine jusqu'à un aspect brillant "comme un miroir" peuvent être obtenues avec des bains d'acide phosphorique et d'acide sulfurique qui contiennent tous très peu d'eau. Les bains préfères, qui permettent d'obtenir le brillant de type "miroir" sont ceux dans lesquels la proportion d'eau est la plus réduite, c'est-à-dire généralement inférieure à 20 % en poids, comme l'indique la figure 1 de ce document . MAGAINO S., MATLOSZ M., LANDOLT D., dans
"An impédance study of stainless steel electropolishing".- J. Electrochem. Soc, 140, 5, 1993 étudient 1 ' électropolissage de l'acier inoxydable dans des solutions concentrées d'acide phosphorique et d'acide sulfurique. Une faible concentration en eau apparaît comme étant plutôt favorable au brillantage. Par exemple, 1 ' électropolissage d'acier Fe 13Cr par des mélanges contenant 65 % d'acide phosphorique, 20 % d'acide sulfurique et 15 % d'eau est étudie. Dans un article de HOAR T. P., MEARS D.C.
ROTHWELL G. P. "The relationships between anodic passivity, brightening and pitting" - Corrosion Science, 5, 1965, pp. 279-289, il est indique que la passivaticn anodique est produite par la formation sur la surface de l'anode, d'un film d'oxyde très mince de faible conductivité ionique, tandis que le brillant anodique est, quant a lui, produit par le passage de cations dans et a travers des films très minces, solides et compacts, de conductivite amonique élevée, qui ne sont pas composes d'oxyde pur, mais d'oxyαe contamine par des anions étrangers issus de la solution αe brillantage.
Les auteurs indiquent, en effet, que les compositions des solutions qui donnent, soit d'une part une passivatjon anodique, soit d'autre part un brillantage, sont très différentes ; en particulier, les solutions de brillantage et de polissage présentent une concentration en eau nulle ou très faible, les auteurs en concluent que les conditions de brillantage sont obtenues par un rapport anion (tel que sulfate, phosphate) sur eau suffisamment élevé.
Dans un article résumant les connaissances essentielles sur 1 ' électropolissage, D. LANDOLT "Fundamental aspect of electropolishing" dans Electrochem. Acta, 32, 1, 1987 pp. 1-11 indique que de nombreux électrolytes d'électropolissage de cette première catégorie, mis en oeuvre dans la pratique, contiennent une faible quantité d'eau et que les raisons pour cela données dans la littérature semblent quelque peu contradictoires, bien que diverses explications théoriques puissent permettre d'expliquer que de faibles concentrations en eau soient favorables a 1 ' électropolissage .
Une deuxième catégorie d' electrolyte pour 1 ' électropolissage, comprend les électrolytes a base d'acide perchlorique.
Dans ce type d ' electrolyte, contenant un omon très agressif et oxydant, tel que le perchlorate, l'utilisation de l'eau comme solvant est contre indiquée.
Le solvant est donc de type organique : il peut s'agir par exemple d'acide acétique ou d'anhydride acétique de méthanol ou encore d'éther monobutylique de 1 ' ethylene glycol : ces électrolytes sont peu a peu abanαonnes, car ils sont très dangereux et ont des propriétés explosives comme cela est décrit dans l'ouvrage de W.J. TEGART "Polissage electrolytique et chimique des métaux". Editions Dunod, Paris, 1960. De ce fait, lors de la fabrication et de l'utilisation de ces bains, de nombreuses précautions doivent être prises .
Jusqu'à présent, 1 ' electrolyte utilise pour 1 ' électropolissage des aciers austénoferπtiques est le même que celui utilise pour 1 ' Inconel 600 et appartient a la première catégorie mentionnée ci-dessus : il s'agit d'un mélange ternaire acide sulfurique, acide phosphorique et eau en très faible quantité, auquel on peut ajouter certains additifs tels que l'acide oxalique, des oxydes de chrome ou d'aluminium.
Ce type d' electrolyte doit être remplacé pour trois raisons essentielles :
La première raison est que, si ces électrolytes donnent de bons résultats sur 1 ' Inconel 600 ou sur des aciers inoxydables austenitiques (316L, 30 ... ) cela n'est pas le cas pour les aciers austénoferritiques . La structure biphasée de ces aciers leur confère en effet un comportement original dans la mesure ou il est courant d'observer une dissolution préférentielle de l'une des phases, généralement la ferrite, par rapport a l'autre.
Même si 1 ' électropolissage de telles surfaces permet d'améliorer le Ra ou rugosité arithmétique de 20 % environ après une érosion de 20 ur, l'échantillon est mat et une attaque de la ferrite est observée comme cela est montre sur la figure 1 qui reoresente la visualisation au microscope électronique a oalayage de la surface d'un échantillon d'acier 308L ayant subi un traitement d'électropolissage en milieu acde sulfurique et acide phosphorique avec une érosion -_-_ 40 μm.
La deuxième raison conduisant au replacement de ce type d' electrolyte est le fait que
.- o certaines applications des électrolytes
J' iectropolissage telle que dans les circuits primaires des réacteurs a eau pressurisée (REP), l ' electrolyte ne doit pas contenir d'acide sulfurique, car le soufre est proscrit de ces circuits primaires du fait qu'il est susceptible d'engendrer des problèmes de corrosion.
La troisième raison est que l'acide phosphorique ajoute dans cet electrolyte présente l'inconvénient, de même que les phosphates qui en sont dérives, de poser des problèmes importants au niveau du traitement des effluents charges en ces composes issus du traitement d'électropolissage.
Il a ete suggère de mettre en oeuvre l'acide nitrique dans les électrolytes α' électropolissage, mais l'acide nitrique présente les mêmes propriétés gênantes que l'acide perchlorique déjà mentionnées ci-dessus, dans la mesure ou il est oxydant .
Si l'acide nitrique, a l'instar de l'acide perchlorique est mélange a un corps ou a un compose organique susceptible d'être oxyde en particulier en présence d'eau, la reaction d'oxydation peut provoquer une explosion.
Des essais d'électropolissage et de décontamination ont cependant déjà ete réalises sur des aciers inoxydables austenitiques (304L, 316L) dans l'acide nitrique (9 mol/1), par exemple dans les documents de TURNER A D , JUNKISON A R , POTTINGER J S., LAIN M.J. - Nuclear science and technology - "Development of remote electrochemical décontamination for hot cell applications" Commission of the European Communities - Final report - EUR 14192 - 1993 "toutefois, aucun essai n'a ete effectue sur l'acier austeno-ferπtique 308L De plus, cet electrolyte présente des inconvénients, car sa Viscosité est trop raibJe. n ne permet pas d'obtenir un polissage de bonne qualité a cause de défauts d'ondulation lies au régime hydrodynamique.
Il existe donc un besoin pour un electrolyte présentant une viscosité réduite sans toutefois être trop faible, afin de permettre une mise en oeuvre facile, pouvant être utilise aussi bien sur les Inconels tels que 1 ' Inconel 600 et les aciers inoxydables austenitiques, ferritiques que sur les aciers austeno-ferπtiques, et donnant d'excellents résultats dans tous les cas : c'est-à-dire essentiellement une surface brillante (et non pas mate) de l'échantillon sans attaque cπstallographique, a savoir pas de piqûres ou d'attaque intergranulaire ou de corrosion sélective d'une phase par rapport a
1 ' autre .
L ' electrolyte doit être d'une utilisation sûre et sans risques, et peu coûteux.
L ' electrolyte doit d'autre part être exempt des ions fluorures, chlorures et soufre. Sa température de mise en oeuvre doit être de préférence inférieure a 60°C.
Il doit également présenter de Donnes conditions de conservation dans le temps a température ambiante.
Cet electrolyte doit en outre, ne pas contenir d'acide phosphorique et/ou phosphates et être totalement recyclable ou destructible par les techniques actuelles de traitement des effluents. Notamment, l'utilisation de 1 ' electrolyte do_t être compatible avec les possibilités des sites nucléaires et en particulier avec les possibilités de traitement des effluents dans les centrales nucléaires. Le volume de déchets solides et liquides génères, susceptibles d'être stockes doit être enfin réduit au minimum.
L'objet de la présente invention est donc de fournir un electrolyte pour 1 ' électropolissage qui satisfasse, entre autres, a toutes les exigences citées ci-dessus .
Un autre objet de la présente invention est un procède d'électropolissage et/ou de décontamination mettant en oeuvre 1 ' electrolyte ci-dessus qui puisse donner des résultats satisfaisants sur tous types d'acier inoxydable, ainsi que sur les alliages de nickel tels que les Inconels utilises en particulier dans l'industrie nucléaire. Ces objets et d'autres encore sont atteints, conformément a l'invention, par un electrolyte constitue d'un mélange ternaire acide glycolique, acide nitrique et eau dans les concentrations suivantes : - acide glycolique de 152 a 538 g/kg
- acide nitrique de 170 a 568 g/kg
- eau de 280 a 678 g/kg
La formulation de cet electrolyte va de manière surprenante a l' encontre de tous les préjuges e/istant dans la littérature puisque maigre toutes les contre-indications qui se trouvent dans l'art antérieur et en particulier dans les documents mentionnes ci-dessus ; 1 ' electrolyte selon la présente invention utilise l'eau comme solvant a une concentration élevée, supérieure aux concentrations conseillées dans l'art antérieur (inférieures a 20 o en masse)
De même, 1 ' utilisatior d'acide nitrique comme constituant de base princiDal au melanae, ^oTespond a une démarche qui s'écarte fondamentalement des démarches suivies jusqu'alors dans ce domaine de la technique.
Enfin, l'incorporation d'acide glycolique dans le mélange tout en conservant une concentration en 5 eau élevée va également a l' encontre d'un autre préjuge dans ce domaine de la technique qui est reflète par de nombreux documents et qui voulait qu'on ne mélange pas dans un electrolyte pour 1 ' électropolissage un acide oxydant comme l'acide nitrique avec des composes
10 organiques tels que l'acide glycolique en présence d'eau
Ce sont donc au moins trois préjuges techniques largement répandus dans l'art antérieur, tel qu'il est en particulier reflète par les documents
!:> cites et discutes ci-dessus, qui ont ete surmontes par les inventeurs de la présente demande, puisqu'il a ete choisi d'une part d'utiliser l'eau comme solvant a une proportion élevée, d'autre part d'utiliser l'acide nitrique comme constituant de base, et enfin 0 d'incorporer de l'acide glycolique dans le mélange.
L'acide glycolique, incorpore dans 1 ' e1 ectrolyte permet notamment d'augmenter la viscosité tout en conservant une concentration en eau élevée, a savoir supérieure ou égale a 28-29 % en masse. -> Rappelons que l 'acide glycolique ou acide hvdroxyacetique encore désigne par îes lettres HOAC fait partie de la série des acides hydroxy- carboxyliques .
Il provient des jus de la canne a sucre, de O i_ oetterave ou de Ja rafle de vigne C'est un produit racilement disponible et de prix peu eleve Sa formule est HO- C COOH
H
L'acide glycolique est un acide organique, relativement fort, soluble dans l'eau en toutes proportions et cumule les fonctions acide et alcool. La fonction alcool peut être utilisée en particulier pour son pouvoir solvant ; 1 ' HOAC possède également des propriétés bactéricides et détartrantes et est couramment utilisé comme base pour la formulation de nettoyants destines aux usages ménagers et collectifs.
L'acide glycolique est également utilise, comme le mentionne le document US-A-4 137 132 dans les bains de chromatage.
Le document US-A-4 137 132 décrit des bains pour le dépôt électrolytique d'alliages or-nickel et chrome-nickel qui contiennent de l'acide glycolique.
Le document JP-A-55047399 décrit un electrolyte pour 1 ' électropolissage d'alliages Fe-Al-Si qui comprend un mélange binaire d'acide glycolique (40 a 60 % en volume) et d'acide sulfurique. Ce mélange ne contient ni eau ni acide nitrique.
Le document de HILL E.F. : "Development of the glycolic-citπc acides (GCA) process for décontamination of LMFBR components", Trans. Am. Nαcl. Soc, 30, 1978 est relatif à l'utilisation d'un mélange d'acide glycolique (2,5 % en poids) et d'acide citrique (2,5 % en poids) en solution aqueuse, appelé mélange CGA, a 70-90°C, en vue de decontammer chimiquement et sans apport de courant αes composants faiblement contamines en acier inoxydable 304 et 316 provenant de la filière LMFBR. Ce document ne décrit donc pas un electrolyte pour 1 ' électropolissage et de plus concerne un mélange de deux acides organiques.
La formulation des électrolytes est un domaine complètement imprévisible, et les propriétés d'un mélange donné ne peuvent absolument pas être déduites des propriétés des mélanges connus qui en diffèrent par un de leurs constituants ou des propriétés de chacun des constituants du mélange donne pris individuellement. Rien ne pouvait donc laisser supposer que l'incorporation d'acide glycolique dans un electrolyte pour 1 'électropolissage allait conduire a l'ensemble des propriétés surprenantes et avantageuses, caractéristiques de 1 'electrolyte selon l'invention. De plus, le choix de l'acide glycolique, parmi les nombreux acides organiques existants, afin de l'incorporer dans un tel mélange, n'était absolument pas évident et est en lui-même surprenant et inattendu.
L' electrolyte selon l'invention base sur un mélange ternaire spécifique du point de vue de ses constituants et de leurs proportions, permet d'obtenir une surface brillante des échantillons de métaux traités .
On aboutit en effet a un lissage et a un brillantage de la surface aussi bien par exemple des aciers inoxydables austémtiques tels que les aciers 316L et 304L, que des aciers ferritiques tels que l'acier 430, que des aciers austéno-ferritiques tels que l'acier 308L, ou encore des Inconels tels que 1' Inconel 600, 690 ou 800.
Du fait que l 'acier 308L et 1 ' Inconel sont les constituants essentiels des générateurs de vapeur, 1 ' electrolyte selon l'inventior conviendra αonc particulièrement pour traiter les surfaces de tels appareils. L ' electrolyte selon l'invention se caractérise donc par une grande polyvalence. En effet, au contraire des électrolytes de l'art antérieur qui ne donnaient de bons résultats d'électropolissage que pour 1 ' Inconel 600 ou les aciers inoxydables austémtiques (316, 304, etc.), 1 ' electrolyte selon l'invention permet également le lissage et le brillantage des échantillons en acier austéno-ferritique, par exemple de type 308L sans que ne se produise une attaque préférentielle du réseau ferritique, ce qui constitue un avantage décisif des électrolytes selon l'invention sur les électrolytes de l'art antérieur, en particulier les électrolytes suifophosphoriques .
L' electrolyte selon l'invention présente également l'avantage évident sur les électrolytes de l'art antérieur d'être exempt des ions fluorures, chlorures et sulfates qui sont corrosifs vis-à-vis des aciers inoxydables et des alliages de nickel.
L'electrolyte selon l'invention présente l 'avantage supplémentaire de ne pas contenir de phosphates et/ou d'acide phosphorique, ce qui redu±t le volume des déchets génères et en facilite le ti alternent .
Cet electrolyte selon l'invention ne nécessite pas de chauffage pour pouvoir être mis en oeuvre, il est en effet utilisable généralement a température ambiante, c'est-a-dire généralement de 15°C a 45°C, de préférence de 20 a 30°C, de préférence encore de 20 a 25°C et en tous les cas a une température inférieure a 45°C.
L ' elecfrolyte selon l'invention présente une viscosité favorable, généralement comprise errr^ 1,3 et 3 mm /s .
L' electrolyte selon l'invention présenta également de bonnes propriétés de conservation dans le 39168 PCI7FR97/00648
13
temps à température amoiante, et il peut être stocké sur une durée par exemple de un à deux mois sans que ses caractéristiques essentielles ne soient affectées.
L' electrolyte ne contient pas de réactifs susceptibles de donner lieu à des réactions très agressives, oxydantes, ou explosives. Il peut être préparé et utilisé sans prendre de précautions particulières et sans danger pour l'utilisateur.
L'electrolyte usé peut être facilement et totalement retraité par distillation, puisque le mélange contient une forte proportion en masse d'acide nitrique et d'eau et que l'acide glycolique se transforme en acide oxalique.
Il peut également être minéralisé dans un caicinateur, ce qui permet d'utiliser cet electrolyte pour décontaminer des composants des usines de retraitement .
L'acide nitrique récupéré dans le distillât peut être recyclé, ce qui, d'un point de vue économique est particulièrement avantageux.
Enfin, l'utilisation de 1 ' electrolyte selon l'invention, du fait de la présence d'acide nitrique, est compatible avec les possibilités de retraitement des effluents des centrales électriques, nucléaires, ainsi que des autres sites nucléaires, qui constituent un des domaines d'application préféré de 1 'electrolyte selon la présente invention.
L'electrolyte a généralement la composition exprimée en fractions massiques mentionnée ci-dessus. Une composition préférée comprendra :
- acide glycolique : de 152 à 538 g/kg
- acide nitrique : de 170 à 240 g/kg
- eau : de 292 à 678 g/kg.
Un tel electrolyte préféré est plus stable chimiquement, l'instabilité se caractérisant par la production d'acide nitreux, de vapeurs nitreuses et la formation d'acide oxalique au-delà de sa limite de solubilité .
L'invention concerne également un procédé d'électropolissage d'un acier inoxydable ou d'un alliage de nickel dans lequel ledit acier inoxydable ou ledit alliage de nickel est mis en contact avec
1 ' electrolyte décrit ci-dessus.
Ce procédé présente l'ensemble des caractéristiques avantageuses liées à 1 ' electrolyte et déjà mentionnées ci-dessus ; ce procédé selon l'invention mettant en oeuvre 1 ' electrolyte spécifique de l'invention, permet également d'atteindre des rendements faradiques de dissolution élevés, généralement supérieurs à 80, voire 85 %, la vitesse de dissolution étant notamment de 950 μm/h.
Ce procédé peut servir a 1 ' électropolissage de tous types d'aciers inoxydables - aussi bien austémtiques, par exemple 316L, 304L, que ferritiques, par exemple 430 ou austénoferritiques, par exemple 308L mais aussi d'alliages de nickel tels que les Inconels, par exemple 1 ' Inconel 600 ou 1 ' Inconel 640 ou encore 1 ' Inconel 800.
On constate donc que ce procède peut être employé pour traiter les divers alliages utilises notamment dans l'industrie nucléaire. Il est bien évident que ce procède conviendra également pour le traitement des aciers inoxydables et alliages de nickel rencontres dans tous types d'industries. L'invention concerne également un procédé d ' electrodecontaminati on d'aciers inoxydables ou d'alliages de nickel contamines notamment a leur surface par des radioéléments, par exemple le Cobalt 60, dans lequel l'ailiaqe métallique contamine est mis en contact avec l ' electrolyte décrit ci-dessus. Ces aciers inoxydables et/ou alliages sont par exemple ceux rencontrés dans l'industrie nucléaire ou dans une autre industrie.
Les aciers inoxydables et/ou alliages de nickel sont par exemple constitutifs d'un composant d'une centrale nucléaire ou d'une usine de retraitement et se rencontrent notamment dans le circuit primaire des centrales nucléaires telles que les tuyauteries, les générateurs de vapeur .... Le procédé permet notamment une dissolution des éléments métalliques contaminants, contenus essentiellement dans les oxydes de la couche superficielle, et donc une réduction notable de la contamination pour permettre une intervention du personnel de maintenance.
Les conditions opératoires du procédé d'électropolissage et de décontamination peuvent être facilement déterminées par l'homme du métier dans ce domaine de la technique en fonction notamment du matériau à traiter. Elles seront généralement les suivantes .
La composition de 1 ' electrolyte pour 1 ' électropolissage et/ou la décontamination est celle déjà indiquée ci-dessus, à savoir : - acide glycolique : de 152 à 538 g/kg,
- acide nitrique : de 170 à 568 g/kg
- eau : de 280 à 678 g/kg.
La densité de courant est généralement supérieure ou égale à 0,5 A/cm2, elle est de préférence comprise entre 0,5 A/cm2 et 1,5 A/cm2, par exemple lA/cm2 ; en effet, un certain risque d ' échauffement peut provoquer une piqûration au-delà de 1,7 A/cm2.
La température est généralement la température ambiante, à savoi- lt α 45°C, de préférence 20 a 30°C, de préférence encore 20 a 25°C et le régime hydrodynamique est de préférence un régime laminaire.
La durée du procède est généralement de 60 sec à 80 sec pour une érosion par exemple de 20 μm. 5 Les conditions opératoires des procèdes d'électropolissage et d'électrodecontamination sont généralement identiques.
L' electrolyse use est ainsi traité en vue de son élimination, de son recyclage et/ou de son 0 rejet.
Selon une caractéristique particulièrement intéressante de la présente invention, 1 'electrolyte utilise ne contient ni acide phosphorique ni phosphate, et le traitement des effluents s'en trouve de ce fait 5 grandement facilité.
En effet, l'acide glycolique peut s'oxyder en acide oxalique. D'autre part, il a été démontre que la reaction entre l'acide nitrique et l'acide oxalique est une reaction lente et que les gaz dégages : oxyde 0 αe carbone, anhydride carbonique et eau ne reagissent pas avec le mélange d'acides.
Selon l'invention, le traitement de 1 ' electrolyte use a l'issue du procède d'électropolissage en vue de sa destruction et/ou de -> son recyclage peut donc comprendre :
- une oxydation en voie humide de l'acide glycolique en acide oxalique, puis en C02, terme final de l'oxydation. Dans ce cas, on obtient un effluent nitrique qui peut être envoyé a la station du 0 traitement des effluents ; ou une distillation de 1 ' electrolyte use, suivie par exemple d'une calcinatior. des concentrât s dort les résidus peuvent être par exemple vitrifies, comme c'est le cas pour certains déchets des usines de ι retraitement. Le distillât peut éventuellement être recycle en vue de la réutilisation de l'acide nitrique dans le procède d'électropolissage.
L'invention sera mieux comprise a la lecture de la description suivante d'un mode de réalisation préférentiel donné a titre d'exemple îllustratif et non limitatif, cette description étant faite en référence aux dessins joints dans lesquels :
- la figure 1 représente une visualisation au MEB (microscope électronique à balayage) de la surface d'un échantillon d'acier inoxydable 308L ayant subi un traitement d'électropolissage en milieu acide sulfurique et acide phosphorique (érosion de 40 μm) , les figures 2 et 3 représentent une visualisation au MEB de la surface d'un échantillon d' Inconel 600 ayant subi un traitement d'électropolissage en milieu acide nitrique et acide glycolique, c'est-à-dire avec un electrolyte conforme à l'invention (érosion de 30,7 μm) , les figures 4 à 9 représentent des profils de rugosité anamorphoses bi et tridimensionnels de la surface de 1 ' Inconel 600.
Les différents profils bi et tridimensionnels présentés sont respectivement : la surface initiale de l'acier (figures 4, 6 et 8), puis cette même surface après une érosion de 30 μm (figures 5, 7 et 9) .
- les figures 6 et 7 montrent tous les pics de la microrugosite, alors que sur les figures 8 et 9 a r/ec lissage filtre de 0,8 mm), ces pics ont disparu pour faire apparaître un planage (macrorugosité) .
- la figure 10 représente les couroes . ". msitcs (ordonnée : densité de courant en mA/cm2) - (abscisse : potentiel en volt/électrode au Cdlomel sature : ECS) pour des aciers inoxydables austémtiques 316L (courbe en trait plein) et 304L
(courbe en tirets) , pour un acier austeno-ferπtique
308L (courbe en trait mixte) , et pour de 1 ' Inconel
(courbe en pointillés) . Les figures 2 à 9 représentent et illustrent donc le procédé selon l'invention mettant en oeuvre 1 ' electrolyte spécifique selon l'invention dans le cas particulier d'un traitement d'électropolissage d'un acier austéno-ferritique 308L. La figure 1 permet de visualiser les résultats obtenus avec un electrolyte de l'art antérieur (acide sulfurique et phosphorique) et de comparer les résultats obtenus avec 1 ' electrolyte de 1 ' invention . Les exemples suivants décrivent et illustrent l'invention.
Exemple 1 : Résultats en électropolissage sur de 1 ' Inconel 600. Ce traitement d'électropolissage est effectue avec un electrolyte dont la composition est la suivante :
- acide glycolique : 213 g/kg
- acide nitrique : 239 g/kg - eau : 548 g/kg.
Le traitement est effectué sur des échantillons en Inconel 600.
Les conditions opératoires sont les suivantes : Débit d'electrolyte : 20 1/h
Température 20°C
Densité de courant 1 A/cm2
Distance Anode-Cathode : 2 cm
Surface traitée : 30 cm2. L'objectif d'un tel traitement est d'aboutir au lissage et au brillantage de la surface des échantillons en Inconel 600.
Pour mesurer l'état de la surface, on utilise deux types de mesures :
1° ) Mesures de profil de rugosité
Ces mesures sont reflétées essentiellement par deux paramètres : d'une part, la rugosité arithmétique (Ra) et d'autre part la rugosité maximale (Rmax) toutes deux exprimées en micromètres.
Ces mesures de rugosité ont été effectuées avec un appareil "SURFASCAN" de la Société SOMICRONIC. La longueur d'évaluation est de 20 mm ; et les mesures sont effectuées selon les normes NF-E05-015 et NF-E05-052.
Le filtre éventuellement utilise était de 0, 8 mm.
Les échantillons de départ en Inconel 600 sont poncés et les valeurs des paramètres de départ sont donc les suivantes : 0, 9 < Ra < 1, 35 μm .
Les résultats obtenus sont les suivants et sont présentés dans le Tableau 1.
TABLEAU 1
Figure imgf000021_0001
Les profils de rugosité bi et tridimensionnels présentes sur les figures 4 a 9 montrent que l'on observe une disparition des micro-rugosites, une diminution de la rugosité arithmétique, ainsi qu'un planage de l'échantillon
2 ° ) Mesures d'indices de brillance et d'indices de voile optique
Des mesures d'indices de brillance et des mesures d'indices de voile optique ont ete effectuées sur les échantillons.
Ces mesures ont ete effectuées selon les normes suivantes : DIN 67530 ; ISO 2813 ; ASTM D523 en mettant en oeuvre un brillancemetre "HAZEGLOSS" de la Société BYK GARDNER. L'indice de voile optique est défini par la mesure de la lumière diffuse dans une géométrie a 20 degrés et 1 ' indice de brillance par le rapport intensité reflechie/mtensite émise, suite a une reflexion speculaire. Les résultats sont donnes dans les tableaux
2 et 3 suivants.
Le tableau 2 donne les résultats lorsque la mesure est effectuée perpendiculairement aux raies de ponçage ; il s'agit du cas le plus défavorable. Le tableau 3 donne les résultats effectues parallèlement aux rayures il s'agit du cas le plus favorable, puisque la lumière n'est pas diffractee par les rayures, mais par les microdefauts de surface TABLEAU 2
Figure imgf000023_0001
TABLEAU 3
e
Des observations optiques complètent les Ό mesures effectuées ci-dessus :
- les échantillons d'Inconel 600 obtenus par ce traitement d'électropolissage présentent à l'oeil nu un aspect brillant,
- αes observation au microscope électronique a balayage !> (MEB) (conditions d'observation : grandissements X 500) d-> la surface de l'échantillon d'Inconel 600 ayant subi - - traitement d'électropolissage (érosion de 30 μm) ~"r tient clairement une surface nette, lisse et propre, SαP.a attaque cristallographique (voir figures 2 et 3) . >) z.<~ effet dans le cas contraire, la surface aurait un -socet mat . EXEMPLE 2 RESULTATS EN ELECTROPOLISSAGE sur des aciers inoxydables austénitiques (316L et 304L) , austénoferritiques 308 L, et sur l' Inconel .
Le traitement d'électropolissage est effectué avec un electrolyte selon l'invention dont la composition est la suivante :
- acide glycolique : 272 g/kg
- acide nitrique : 305 g/kg
- eau : 423 g/kg. On réalise les courbes intensités-potentiels (Fig. 10) a l'aide d'une électrode a disque tournant de surface 0,2 mm2 à 25°C et à une vitesse de rotation de 1000 tr/mm.
Les courbes intensités-potentiels obtenues (où sont portés en abscisse le potentiel exprimé en V par rapport à l'électrode au calomel saturé (ECS) et en ordonnée la densité de courant en mA/cm2) pour l'acier 304L (en tirets) pour l'acier 316L (en trait plein), pour l'acier 308L (en trait mixte) et pour 1 ' Inconel (en pointillés) montrent que 1 ' electrolyte selon l'invention permet de polir tous les types d'aciers inoxydables, qu'ils soient austémtiques (304L et 316L), ferπtiques ou austéno-ferπtiques (308L comme dans l'Exemple 1), et les alliages de type Inconel. La surface obtenue est dans tous les cas polie et brillante. EXEMPLE 3 (COMPARATIF) :
On effectue un traitement d'électropolissage dans les mêmes conditions que l'exemple 2 sur des échantillons analogues d'acier 308L, mais en utilisant un electrolyte classique d'électropolissage ayant la composition suivante :
- acide sulfurique : 440 g/kg,
- acide phosphorique : 440 g/kg, - eau : 120 g/kg. Les échantillons d'acier 308L obtenus par ce traitement d'électropolissage présentent ur aspect mat .
Une observation au microscope électronique à balayage MEB de la surface de l'échantillon d'acier 308L, réalisée dans les mêmes conditions que pour l'exemple 2, ayant subi le traitement d'électropolissage (érosion de 40 μm) montre clairement qu'une attaque de la ferrite s'est produite, ce qui confirme l'aspect mat observé (Fig. 1) .
On obtient donc, grâce au procédé selon l'invention, mettant en oeuvre un electrolyte spécifique, un brillantage de la surface en acier austeno-ferritique sans attaque préférentielle du reseau ferπtique, alors que 1 ' electrolyte de l'art antérieur donne une surface mate et une attaque de la ferrite . EXEMPLE 4 : RESULTATS EN DECONTAMINATION
Un electrolyte selon l'invention ayant la même composition que celui de l'exemple 1 est mis en oeuvre dans les conditions suivantes :
- Régime laminaire
- Température : 25°C
- Densité de courant : 1,5 A/cm2 - Surface traitée : 28 a 30 cm2 (selon
1 ' échantillon) .
La surface traitée est une surface contaminée en Cobalt 60 faisant partie d'une manchette thermique en acier inox 304L prélevée sur la centrale du Blayais (Gironde - France) .
A des fins de comparaison, on a également mis en oeuvre dans les mêmes conditions et sur la même surface, 1 ' electrolyte suivant αe l'art antérieur.
Il s'agit d'un electrolyte suifo-phosphorique ayant la composition qui suit : - acide sulfurique : 440 g/kg
- acide phosphorique : 220 g/kg
- eau : 340 g/kg.
Les résultats sont rassemblés dans le tableau 4 ci-dessous.
TABLEAU 4
Figure imgf000026_0001
On note que 1 'electrolyte selon l'invention permet une réduction de l'activité significative, supérieure à 1 ' electrolyte de comparaison, sans en présenter les inconvénients.
L' electrolyte de l'invention est utilisable en particulier pour décontaminer les composants des réacteurs à eau pressurisée REP et permet de réduire suffisamment les "points chauds" pour permettre l'intervention des opérateurs en maintenance.

Claims

REVENDICATIONS
1. Electrolyte d'électropolissage caractérisé en ce qu'il est constitué d'un mélange d'acide glycolique, d'acide nitrique et d'eau dans les concentrations suivantes :
- acide glycolique de 152 à 538 g/kg,
- acide nitrique de 170 à 568 g/kg,
- eau de 280 à 678 g/kg.
2. Procédé d'électropolissage d'un acier inoxydable ou d'un alliage de nickel caractérisé en ce que ledit acier inoxydable ou alliage de nickel est mis en contact avec 1 ' electrolyte selon la revendication 1.
3. Procédé selon la revendication 2, caractérisé en ce que l'acier inoxydable est choisi parmi les aciers inoxydables ferritiques, austémtiques et austénoferritiques .
4. Procédé selon la revendication 2, caractérisé en ce que l'alliage de nickel est choisi parmi 1 ' Inconel 600, 1 ' Inconel 690 et 1 ' Inconel 800. 5. Procédé selon la revendication 2, caractérisé en ce que la densité de courant est comprise entre 0,5 et 1,
5 A/cm2.
6. Procédé selon la revendication 2, caractérisé en ce que 1 ' électropolissage est effectué à température ambiante.
7. Procédé selon la revendication 2, caractérisé en ce que le traitement de 1 ' electrolyte usé comprend une oxydation en voie humide de l'acide glycolique en gaz carbonique, moyennant quoi on obtient un effluent nitrique qui peut être envoyé à la station de traitement des effluents.
8. Procédé selon la revendication 2, caractérisé en ce que le traitement de 1 ' electrolyte usé comprend une distillation dudit electrolyte, suivie d'une calcination des concentrats.
9. Procédé selon la revendication 8, caractérisé en ce que les résidus de la calcination des concentrats issus de ladite distillation sont vitrifiés.
10. Procédé selon la revendication 8, caractérisé en ce que le distillât issu de ladite distillation est recyclé en vue de la réutilisation de l'acide nitrique dans le procédé d'électropolissage.
11. Procédé selon la revendication 2, caractérisé en ce que 1 'electrolyte est mis en contact avec la surface contaminée en radioéléments d'un acier inoxydable ou d'un alliage au nickel.
12. Procédé selon la revendication 2, caractérisé en ce que l'acier inoxydable ou l'alliage de nickel sont constitutifs d'un composant d'une centrale nucléaire ou d'une usine de retraitement.
PCT/FR1997/000648 1996-04-12 1997-04-11 Electrolyte pour l'electropolissage, procede d'electropolissage d'un acier inoxydable ou d'un alliage de nickel mettant en oeuvre cet electrolyte, et son application a la decontamination WO1997039168A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69701135T DE69701135T2 (de) 1996-04-12 1997-04-11 Elektropolierelektrolyt und seine verwendungen zum elektropolieren von rostfreiem stahl oder nickellegierungen sowie zur dekontanimierung
EP97918208A EP0892862B1 (fr) 1996-04-12 1997-04-11 Electrolyte pour l'electropolissage, procede d'electropolissage d'un acier inoxydable ou d'un alliage de nickel mettant en oeuvre cet electrolyte, et son application a la decontamination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9604586A FR2747399B1 (fr) 1996-04-12 1996-04-12 Electrolyte pour l'electropolissage, procede d'electropolissage d'un acier inoxydable ou d'un alliage de nickel mettant en oeuvre cet electrolyte, et son application a la decontamination
FR96/04586 1996-04-12

Publications (1)

Publication Number Publication Date
WO1997039168A1 true WO1997039168A1 (fr) 1997-10-23

Family

ID=9491143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000648 WO1997039168A1 (fr) 1996-04-12 1997-04-11 Electrolyte pour l'electropolissage, procede d'electropolissage d'un acier inoxydable ou d'un alliage de nickel mettant en oeuvre cet electrolyte, et son application a la decontamination

Country Status (4)

Country Link
EP (1) EP0892862B1 (fr)
DE (1) DE69701135T2 (fr)
FR (1) FR2747399B1 (fr)
WO (1) WO1997039168A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501051B2 (en) 2004-10-06 2009-03-10 Basf Aktiengesellschaft Electropolishing electrolyte and method for planarizing a metal layer using the same
US10309032B2 (en) * 2013-10-29 2019-06-04 Westinghouse Electric Company Llc Targeted heat exchanger deposit removal by combined dissolution and mechanical removal
CN112730004A (zh) * 2020-12-21 2021-04-30 安徽工业大学 一种1Cr13马氏体不锈钢中δ-铁素体的金相腐蚀方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102797029B (zh) * 2012-09-10 2015-04-15 广州波耳化工材料有限公司 电解抛光剂
US11447887B2 (en) 2020-12-10 2022-09-20 Saudi Arabian Oil Company Surface smoothing of copper by electropolishing
US11512400B2 (en) 2020-12-10 2022-11-29 Saudi Arabian Oil Company Electrochemical reduction of carbon dioxide
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US12258272B2 (en) 2021-08-12 2025-03-25 Saudi Arabian Oil Company Dry reforming of methane using a nickel-based bi-metallic catalyst
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2442591A (en) * 1942-09-30 1948-06-01 American Rolling Mill Co Electrolytic polishing of stainless steel
US2607722A (en) * 1947-01-28 1952-08-19 Armco Steel Corp Electrolytic polishing of stainless steel
US2695872A (en) * 1948-12-15 1954-11-30 Armco Steel Corp Electrolytic polishing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2442591A (en) * 1942-09-30 1948-06-01 American Rolling Mill Co Electrolytic polishing of stainless steel
US2607722A (en) * 1947-01-28 1952-08-19 Armco Steel Corp Electrolytic polishing of stainless steel
US2695872A (en) * 1948-12-15 1954-11-30 Armco Steel Corp Electrolytic polishing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501051B2 (en) 2004-10-06 2009-03-10 Basf Aktiengesellschaft Electropolishing electrolyte and method for planarizing a metal layer using the same
US10309032B2 (en) * 2013-10-29 2019-06-04 Westinghouse Electric Company Llc Targeted heat exchanger deposit removal by combined dissolution and mechanical removal
CN112730004A (zh) * 2020-12-21 2021-04-30 安徽工业大学 一种1Cr13马氏体不锈钢中δ-铁素体的金相腐蚀方法

Also Published As

Publication number Publication date
DE69701135D1 (de) 2000-02-17
DE69701135T2 (de) 2000-08-31
FR2747399B1 (fr) 1998-05-07
EP0892862A1 (fr) 1999-01-27
FR2747399A1 (fr) 1997-10-17
EP0892862B1 (fr) 2000-01-12

Similar Documents

Publication Publication Date Title
EP0892862B1 (fr) Electrolyte pour l&#39;electropolissage, procede d&#39;electropolissage d&#39;un acier inoxydable ou d&#39;un alliage de nickel mettant en oeuvre cet electrolyte, et son application a la decontamination
Razdan et al. Influence of trivalent-dopants on the structural and electrochemical properties of uranium dioxide (UO2)
CN106757299B (zh) 一种镍基合金金相组织的电解抛光腐蚀剂及其使用方法
Liu et al. Electrochemical milling of TB6 titanium alloy in NaNO3 solution
Deng et al. Effects of pH and H2O2 on the chemical mechanical polishing of titanium alloys
CN106567122A (zh) 一种钛及钛合金的电化学抛光电解液及其抛光方法
FR2547450A1 (fr) Procede et appareillage pour le perfectionnement dans ou en ce qui concerne la decontamination de surfaces metalliques dans des reacteurs de centrale nucleaire et solution oxydante utilisee
Milošev et al. The effect of surface pretreatment of aluminum alloy 7075-T6 on the subsequent inhibition by cerium (III) acetate in chloride-containing solution
EP1121690B1 (fr) Composition de degraissage et procedes utilisant cette composition
US4701246A (en) Method for production of decontaminating liquid
Kumar et al. Magnetorheological finishing of chemically treated electroless nickel plating
EP0425012B1 (fr) Bains et procédé pour le polissage chimique de surfaces en cuivre ou en alliage de cuivre
Kumar et al. Parametric investigation of electropolishing to enhance the surface characteristics of maraging steel with organic electrolytes
FR2731717A1 (fr) Procede d&#39;oxydation electrochimique de am (vii) en am (vi), utilisable pour separer l&#39;americium des solutions de retraitement de combustibles nucleaires uses
FR2739106A1 (fr) Electrolyte pour l&#39;electropolissage, procede d&#39;electropolissage d&#39;un acier inoxydable ou d&#39;un alliage de nickel mettant en oeuvre cet electrolyte, et son application a la decontamination
Qin et al. Experimental investigation on chemical mechanical polishing of ZA27 alloy considering galvanic corrosion at Zn/Al interface
CN111020551B (zh) 利用ZrO2/MoO3复合纳米膜层对铁质文物保护的方法
Girginov et al. Addition of transition elements to the phosphate sealing of cerium oxide protective primer deposited on AA2024-T3 alloy
EP0727243B1 (fr) Mousse de décontamination à l&#39;ozone, et procédé de décontamination utilisant cette mousse
Lv et al. Investigation on the Dry-Type Electrochemical Polishing of 304 Stainless Steel with Ion-Exchange Resin Particles
JPS59118900A (ja) 電解研摩液
FR2599543A1 (fr) Procede de decontamination de materiaux solides contamines par des elements contaminants, en particulier par des elements radioactifs tels que le ruthenium
Mudali et al. Mixed RuO2/TiO2/PtO2-coated titanium anodes for the electrolytic dissolution of nuclear fuels
Chen et al. Influence of Fluoride Ions on the Passivation and Repassivation Behavior of Titanium in Hot Concentrated Nitric Acid Solution
SU985161A1 (ru) Раствор дл электрохимического полировани

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997918208

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997918208

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97536801

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1997918208

Country of ref document: EP