[go: up one dir, main page]

WO1997039232A1 - Moteur a combustion interne a chambre de combustion independante a volume constant - Google Patents

Moteur a combustion interne a chambre de combustion independante a volume constant Download PDF

Info

Publication number
WO1997039232A1
WO1997039232A1 PCT/FR1997/000655 FR9700655W WO9739232A1 WO 1997039232 A1 WO1997039232 A1 WO 1997039232A1 FR 9700655 W FR9700655 W FR 9700655W WO 9739232 A1 WO9739232 A1 WO 9739232A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
combustion chamber
expansion
combustion
volume
Prior art date
Application number
PCT/FR1997/000655
Other languages
English (en)
Inventor
Guy Negre
Cyril Negre
Original Assignee
Guy Negre
Cyril Negre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9491355&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997039232(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US09/171,286 priority Critical patent/US6397579B1/en
Priority to GB9822539A priority patent/GB2327103B/en
Priority to DE19781700T priority patent/DE19781700T1/de
Priority to RO98-01486A priority patent/RO117471B1/ro
Priority to HK99104934.3A priority patent/HK1019780B/xx
Application filed by Guy Negre, Cyril Negre filed Critical Guy Negre
Priority to JP9536805A priority patent/JP2000508403A/ja
Priority to BR9708675-4A priority patent/BR9708675A/pt
Priority to AU26420/97A priority patent/AU731600B2/en
Priority to PL97329333A priority patent/PL183942B1/pl
Publication of WO1997039232A1 publication Critical patent/WO1997039232A1/fr
Priority to SE9803515A priority patent/SE511407C2/sv

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/06Engines with prolonged expansion in compound cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G3/00Combustion-product positive-displacement engine plants
    • F02G3/02Combustion-product positive-displacement engine plants with reciprocating-piston engines

Definitions

  • the invention relates to a method of a cyclic internal combustion engine with an independent combustion chamber and at constant volume.
  • Cyclic internal combustion engines and separate combustion chamber and separate compression and expansion chamber as described in French patents 2319769 or 2416344 allow a certain number of improvements in operation compared to conventional engines.
  • the suction and compression are carried out in a chamber controlled by a piston while the expansion and the exhaust are carried out in another chamber; the independent combustion chamber is connected to these chambers by channels provided with shutters.
  • the variable volumes of these two chambers are controlled cyclically in phase and the time available for combustion and the transfer of the gaseous masses is particularly short and does not allow complete combustion to be carried out like conventional engines.
  • the method according to the invention overcomes this defect and considerably improves the operation of this type of engine, it is characterized by the means used and more particularly by the fact that the cycle of the compression chamber which includes suction and compression is offset in advance compared to the cycle of the expansion chamber which includes expansion and exhaust so that one can obtain a combustion time much longer than in conventional engines, to fix ideas a conventional engine as well that the motors described in the aforementioned patents perform the combustion of their charge over approximately 30 to 45 ° degrees of rotation of their motor shaft whereas with the motor method according to the invention there is up to 180 ° of rotation ( during the exhaust time) to fill the chamber and burn the mixture, which depending on the filling method used may allow combustion times of the order of 150 ° or even 160 ° of rotation of the motor shaft.
  • the chamber will be, or may be, coated with a thermal barrier made of ceramic or other insulating heat-insulating materials so as not to lose calories at through the walls which can thus be very hot, likewise it will be particularly advantageous, and this, for the same reasons, to coat with a thermal barrier made of ceramic or other heat-insulating insulating materials the walls of the expansion chamber (piston head , room sky, transfer channel etc.)
  • the operating mode of the compressor can then vary without changing the principle of the invention; If it seems convenient to use a piston compressor in current practice, any other mode of producing compressed air can be used - compressor with one or more piston, rotary vane, gear (Roots, Lyshom) or turbo compressor driven by exhaust gases. As for certain applications it is possible to use a reserve of air in a bottle (or other container) which will be expanded in the combustion chamber, or even compressed air from a network (example of an engine stationary in a factory using compressed air network).
  • the operating mode of the expansion chamber can also vary without changing the principle of the invention; if it also seems convenient here to use a piston sliding in a cylinder and driving a crankshaft by means of a connecting rod, any rotating capsulism system can also be used - rotary with radial vanes, with rotary piston such as the tracing of a conchoid of a circle or a trochoid, etc.
  • the engine according to the invention operates with homogeneous air-fuel mixtures and the mixture can be produced by a carburetor before admission to the compressor, but an injection system (electronic or mechanical) between the compressor and the combustion chamber, however direct injection into the combustion chamber can also be used without changing the operating principle.
  • an injection system electronic or mechanical
  • the engine according to the invention also works with heterogeneous self-igniting mixtures such as diesel engines.
  • the spark plug located in the chamber is eliminated and a direct diesel injector supplied by a pump and its equipment of the type commonly used on diesel engines is installed in said combustion chamber.
  • At least 2 separate combustion chambers can be installed, operating identical to that described above and which can be supplied together, separately or alternatively in order to improve the thermodynamic efficiency at low loads - for example use of a single chamber for powers used less than half the total power of the engine, and, use of the two chambers beyond
  • FIG. 1 shows schematically seen in cross section an embodiment of the engine according to the invention where the compression and expansion chambers are each controlled by a crank rod system and a piston sliding in a cylinder - Figure 2 represents the same engine after introducing the air-fuel mixture into the combustion chamber
  • FIG. 3 shows the same engine when transferring gases from the combustion chamber to the expansion chamber.
  • FIG. 9 shows in cross section another embodiment where the expansion chamber and the expansion are produced in a rotary system of the radial vane type
  • Figures 1 to 4 show an embodiment of the engine according to the invention where the compression and expansion chambers are each controlled by a crank rod and piston system sliding in a cylinder, seen in cross section where we can see the compression chamber 1, the independent constant-volume combustion chamber 2 in which a spark plug 3 is installed, and the expansion chamber 4
  • the compression chamber 1 is connected to the combustion chamber 2 by a duct 5, the l opening and closing are controlled by a watertight flap 6
  • the combustion chamber 2 is connected to the expansion chamber 4 by a transfer duct 7 whose opening and closing are controlled by a watertight flap 8
  • the compression chamber is supplied in compressed year by a conventional set of piston compressor: a piston 9 sliding in a cylinder 10 controlled by a connecting rod 11 and a crankshaft 12
  • the mixture of fresh air-fuel is admitted through a duct inlet 13 whose opening is controlled by a valve 14
  • the expansion chamber 4 controls a conventional set of piston engine, a piston 15 sliding in a cylinder 16 which drives the rotation of a crankshaft by a connecting rod 17 18 the evacuation of the burnt gases is effected through an exhaust duct 19 whose opening is controlled by a valve 20
  • crankshaft 18 drives the compressor at the same speed by a link 21 with an angular offset of the top dead centers of the expansion piston and the compressor piston, the latter being in advance by an angle which is chosen as a function of the combustion time. desired.
  • FIG. 1 shows the engine while the compressor piston 9 is close to its top dead center and the shutter 6 has just opened to allow the constant-volume combustion chamber 2 to be supplied with fresh air fuel mixture while the piston 15 of the expansion chamber 4 pushes back to the exhaust 19 opened by the valve 20, the burnt and relaxed gases of the preceding cycle.
  • each crankshaft revolution corresponds to an expansion (or engine time) and that the choice of offset between the top dead center of the compressor piston 9 and the top dead center of the expansion piston 15 determines the combustion time of the mixture in the combustion chamber at constant volume 2.
  • FIGS 5,6,7 and 8 show schematically in cross section another embodiment of the engine according to the invention where there is introduced between the compressor and the combustion chamber at constant volume 2 an air buffer capacity compressed 22, supplied with compressed air by any appropriate means through a conduit 23, maintained at substantially constant pressure, and which has the effect of avoiding certain pumping effects and pressure losses due to the dead transfer volume and to the expansion during filling of the combustion chamber 2.
  • the duct 5, the opening and closing of which are controlled by the flap 6 connects the compressed air buffer capacity 22 to the independent combustion chamber (2) and includes a fuel injector 24 intended to produce the air-fuel mixture substantially before it is introduced into the combustion chamber 2.
  • a flap 25 also located in this conduit makes it possible to adjust the load admitted into the combustion chamber (accelerator).
  • FIG. 5 represents the engines when the shutter 6 has just been opened to admit, through the duct 5 into the combustion chamber at constant volume 2, compressed air mixed with fuel sprayed by the injector 24 , while the expansion piston 15 has just started its upward stroke to repel the atmosphere, through the conduit 19 (the exhaust valve 20 having been opened), the burnt and relaxed gases of the preceding cycle and the shutter 8 of the transfer duct has just closed.
  • the shutter 6 is closed, and the independent combustion chamber 2 is isolated, the ignition is then caused by the spark plug 3 and the combustion of the mixture air-fuel in the combustion chamber at constant volume 2 while the expansion piston 15 continues to rise and provides exhaust through the duct 19.
  • the crankshaft 18, continues its rotation in FIG. 7, the expansion piston 15 reaches its top dead center, the exhaust valve 20 closes, and the tight shutter 8 is opened.
  • the gases under very high pressure contained in the independent combustion chamber 2 expand through the conduit 7 in the expansion chamber 4, and repel the piston 15, thus ensuring the engine time.
  • FIG. 9 represents another operating mode of the engine according to the invention where the expansion chamber and the expansion are produced in a rotary device with rotating capsulism of the radial vane type, consisting of a cylindrical outer casing or stator 26 in which rotates around an eccentric axis a drum or rotor 27 tangent to the stator and provided with a radial pallet 28 which slides freely in its housing 29 to be applied to the external wall of the stator 26, thus delimiting a variable volume between itself , the rotor and the stator, which increases from a small practically zero value in the vicinity of the generator of contact between the rotor and the stator.
  • a rotary device with rotating capsulism of the radial vane type consisting of a cylindrical outer casing or stator 26 in which rotates around an eccentric axis a drum or rotor 27 tangent to the stator and provided with a radial pallet 28 which slides freely in its housing 29 to be applied to the external wall of the stator 26, thus delimiting a variable volume between
  • the flap 8 is opened and the gases under very high pressure contained in the combustion chamber 2 expand in the expansion chamber 30 and, bearing on the pallet 28, cause the rotor to rotate, while the pallet 28 pushes the exhausted and expanded gases from the preceding cycle before it at the exhaust 31
  • the closure of the flap 8 and the opening of the flap 6 allowing the fresh charge to be renewed in the independent chamber 2 will intervene at the end of expansion when the pallet 28 is close to the exhaust duct. apartment 31.
  • the number of pallets, their positions can vary as well as any other rotary system realizing a rotating capsulism such as the tracing of a conchoid of a circle or a trochoid (rotary pistons of type Board, Wankel ete) can be used as chamber relaxation without changing the principle of the invention just described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Procédé et dispositifs de moteur, à combustion interne cyclique, à chambre de combustion indépendante à volume constant dans lequel, pour chaque cylindre ou élément de travail, la chambre de compression (1), la chambre de combustion (2), et la chambre de détente (4) sont constituées de trois parties séparées et entièrement indépendantes. Le cycle de la chambre de compression est décalé en avance par rapport à celui de la chambre de détente afin de permettre des temps de combustion importants. Le mélange carburé comprimé est introduit dans la chambre de combustion (2) dès l'ouverture d'un volet (6) obturant un conduit (5) ménagé entre la chambre de compression et la chambre de détente; dès la fermeture de ce volet (6), la combustion s'effectue dans la chambre indépendante à volume constant et isolée durant une longue période. Lorsque le volume de la chambre de détente (4) est à sa plus petite valeur, on ouvre un volet (8) obturant un conduit (7) ménagé entre la chambre de combustion et la chambre de détente, et les gaz brûlés sous haute pression se détendent en repoussant le piston (15) pour assurer le temps moteur. Toutes applications de moteur.

Description

MOTEUR A COMBUSΗON INTERNE A CHAMBRE DE COMBUSΗON INDEPENDANTE A VOLUME CONSTANT
L'invention concerne un procède de moteur à combustion interne cyclique à chambre de combustion indépendante et à volume constant.
Les moteurs à combustion interne cyclique et à chambre de combustion indépendante et chambre de compression et de détente séparées tel que décrits dans les brevets français 2319769 ou encore 2416344 permettent un certains nombres d'améliorations du fonctionnement par rapport aux moteurs conventionnels. Dans ce type de moteur l'aspiration et la compression sont réalisés dans une chambre commandée par un piston alors que la détente et l'échappement sont réalisés dans une autre chambre; la chambre de combustion indépendante est reliée à ces chambres par des canaux munis d'obturateurs. Toutefois,, les volumes variables de ces deux chambres sont commandés cycliquement en phase et le temps disponible pour la combustion et le transfert des masses gazeuses est particulièrement court et ne permet pas de réaliser une combustion complète à l'instar des moteurs conventionnels.
Le procédé suivant l'invention permet de palier ce défaut et d'améliorer considérablement le fonctionnement de ce type de moteur, il est caractérisé par les moyens mis en oeuvre et plus particulièrement par le fait que le cycle de la chambre de compression qui comprend aspiration et compression est décalé en avance par rapport au cycle de la chambre de détente qui comprend détente et échappement de telle sorte que l'on puisse obtenir un temps de combustion bien plus long que dans les moteurs conventionnels, pour fixer les idées un moteur classique ainsi que les moteurs décrits dans les brevets précédemment cités réalisent la combustion de leur charge sur environ 30 à 45 ° degrés de rotation de leur arbre moteur alors qu'avec le procédé de moteur suivant l'invention on dispose jusqu'à 180° de rotation (durant le temps échappement) pour assurer le remplissage de la chambre et brûler le mélange, ce qui suivant le mode de remplissage utilisé peut autoriser des durées de combustion de l'ordre de 150° voire 160° de rotation de l'arbre moteur . D'autre part et afin d'éviter les pertes de calories à travers les parois durant cette longue combustion la chambre sera, ou pourra être, revêtue d'une barrière thermique en céramique ou autre matériaux isolants calorifuges afin de ne pas perdre de calories à travers les parois qui peuvent ainsi être très chaudes, de même il sera particulièrement intéressant, et ce, pour les mêmes raisons, de revêtir d'une barrière thermique en céramique ou autres matériaux isolants calorifuges les parois de la chambre de détente (tête de piston, ciel de chambre, canal de transfert etc..)
On comprend dès lors le fonctionnement du moteur suivant l'invention et les améliorations apportées par rapports aux moteurs conventionnels ainsi qu'aux moteurs décrits dans les brevets précités. L'interdépendance, notamment, en cycle des chambres de compression et de détente ainsi que la protection thermique de la chambre de combustion et, ou de la chambre de détente, permettent de réaliser sans perte thermique importante des combustions de durée 3 à 4 fois plus importantes que celles des moteurs classiques et d'améliorer ainsi le rendement, par ailleurs il est également possible avec cette disposition de pouvoir réaliser une chambre de combustion qui ne dépend pas à sa base du diamètre du piston, et de pouvoir approcher ou atteindre ainsi la forme sphérique idéale sans aspérités ni « recoins » dans lesquels les gaz ne brûlent pas et produisent des hydrocarbures imbrûlés. Ces avantages combinés, d'une longue durée de combustion, d'une forme de chambre de combustion compacte proche de la sphère sans aspérités ni recoins, thermiquement isolée avec des parois chaudes permettent d'obtenir des émissions de polluants à l'échappement bien plus faibles que dans les moteurs conventionnels.
Selon un autre mode de procédé suivant l'invention, il est possible de ménager entre la chambre de compression et la chambre de combustion, une capacité tampon d'accumulation d'air comprimé qui va permettre d'éviter des effets de pompages, et des pertes de pression dues aux volumes morts de transfert et à la détente lors du remplissage de la chambre de combustion
Le mode de fonctionnement du compresseur peut alors varier sans pour autant changer le principe de l'invention; s'il apparaît commode d'utiliser en pratique courante un compresseur à piston ,tout autre mode de production d'air comprimé peut être utilisé - compresseur à un ou plusieurs étages à piston, rotatif à palettes, à engrenages (Roots, Lyshom) ou turbo compresseur entraîné par les gaz d'échappement. De même que pour certaines applications il est possible d'utiliser une réserve d'air en bouteille (ou autre container) qui sera détendu dans la chambre de combustion, voire encore de l'air comprimé d'un réseau (exemple d'un moteur à poste fixe dans une usine utilisant de l'air comprimé en réseau).
Le mode de fonctionnement de la chambre de détente peut également varier sans pour autant changer le principe de l'invention; s'il apparaît ici aussi commode d'utiliser en pratique un piston coulissant dans un cylindre et entraînant un vilebrequin par l'intermédiaire d'une bielle, tout système de capsulisme tournant peut être également utilisé - rotatif à palettes radiales, à piston rotatif tel que le tracé d'une conchoïde de cercle ou d'une trochoïde, etc.
Le moteur suivant l'invention fonctionne avec des mélanges homogènes air-carburant et le mélange peut être réalisé par un carburateur avant l'admission au compresseur, mais l'on préférera un système d'injection (électronique ou mécanique) entre le compresseur et la chambre de combustion, toutefois une injection directe dans la chambre de combustion pourra également être utilisée sans pour autant changer le principe de fonctionnement.
Le moteur suivant l'invention fonctionne également avec des mélanges hétérogènes à auto inflammation comme les moteurs diesel. Dans ce cas la bougie d'allumage implantée dans la chambre est supprimée et un injecteur direct de gazole alimenté par une pompe et son équipement de type utilisé couramment sur les moteur diesel, est implantée dans ladite chambre de combustion..
Par ailleurs, il peut être implanté au moins 2 chambres de combustions séparées, de fonctionnement identique à celui décrit ci-dessus et qui pourront être alimentées ensembles, séparément ou alternativement afin d'améliorer le rendement thermodynamique lors des faibles charges - pour exemple utihsation d'une seule chambre pour des puissances utilisées inférieures à la moitié de la puissance totale du moteur, et, utilisation des deux chambres au-delà
D'autres buts, avantages et caractéristiques de l'invention apparaîtront à la lecture de la description à titre non limitatif de plusieurs modes de réalisation faite en regard des dessins annexés où
- la figure 1 représente schématiquement vu en coupe transversale un mode de réalisation du moteur suivant l'invenuon où les chambres de compression et de détente sont commandées chacune par un système bielle manivelle et un piston coulissant dans un cylindre - la figure 2 représente ce même moteur après avoir introduit le mélange air-carburant dans la chambre de combustion
- la figure 3 représente ce même moteur au moment du transfert des gaz de la chambre de combustion vers la chambre de détente.
- la figure 4 représente ce même moteur en cours d'échappement et de compression - la figure 5 représente un autre mode de fonctionnement vu en coupe transversale où une capacité tampon d'accumulation d'air comprimé est installée entre le compresseur et la chambre de combustion, lors de l'admission du mélange air-carburant comprimé dans la chambre de combustion
- la figure 6 représente ce même moteur durant la combustion - la figure 7 représente ce même moteur en début de détente
- la figure 8 représente ce même moteur en fin de détente
- la figure 9 représente en coupe transversale un autre mode de réalisation où la chambre de détente et la détente sont réalisées dans un système rotatif de type à palettes radiales
Les figures 1 à 4 représentent un mode de réalisation du moteur suivant l'invention ou les chambres de compression et de détente sont commandées chacune par un système bielle manivelle et piston coulissant dans un cylindre, vu en coupe transversale où l'on peut voir la chambre de compression 1, la chambre de combustion indépendante à volume constant 2 dans laquelle est implantée une bougie d'allumage 3, et la chambre de détente 4 La chambre de compression 1 est reliée à la chambre de combustion 2 par un conduit 5 dont l'ouverture et la fermeture sont commandées par un volet etanche 6 La chambre de combustion 2 est reliée à la chambre de détente 4 par un conduit de transfert 7 dont l'ouverture et la fermeture sont commandées par un volet etanche 8
La chambre de compression est alimentée en an comprimé par un ensemble classique de compresseur à piston : un piston 9 coulissant dans un cylindre 10 commandé par une bielle 11 et un vilebrequm 12 Le mélange d'air-carburant frais est admis par un conduit d'admission 13 dont l'ouverture est commandée par une soupape 14
La chambre de détente 4 commande un ensemble classique de moteur à piston un piston 15 coulissant dans un cylindre 16 qui entraîne par une bielle 17 la rotation d'un vilebrequin 18 l'évacuation des gaz brûlés s'effectuant à travers un conduit d'échappement 19 dont l'ouverture est commandée par une soupape 20
Le vilebrequin 18 entraîne à même vitesse le compresseur par une liaison 21 avec un décalage angulaire des points morts hauts du piston de détente et du piston du compresseur, ce dernier étant en avance d'un angle qui est choisi en fonction de la durée de combustion désirée.
La figure 1 représente le moteur alors que le piston compresseur 9 est proche de son point mort haut et que le volet 6 vient de s'ouvrir pour permettre l'alimentation de la chambre de combustion à volume constant 2 en mélange air carburant frais alors que le piston 15 de la chambre de détente 4 repousse à l'échappement 19 ouvert par la soupape 20, les gaz brûlés et détendus du cycle précèdent.
Poursuivant la rotation dans le sens des aiguilles d'une montre, figure 2, le piston compresseur 9 vient de franchir son point mort haut, et entame sa course descendante; le volet 6 vient d'être fermé et obture le conduit 5, la soupape d'admission 14 s'ouvre pour permettre le renouvellement en mélange air-carburant frais du compresseur (admission). Dès la fermeture du volet 6 on provoque l'allumage par la bougie 3 et la combustion du mélange air-carburant dans la chambre indépendante à volume constant 2, alors que le piston de détente 15 poursuit son ascension et assure l'échappement à travers le conduit 19.
Les vilebrequins 12 et 18 poursuivant leurs rotations (ici représentés environ 100° plus tard), le piston de détente 15 arrive à son point mort haut, la soupape d'échappement 20 se referme et l'on commande l'ouverture du volet etanche 8; les gaz sous très haute pression contenus dans la chambre de combustion indépendante 2 se détendent à travers le conduit de transfert 7 dans la chambre de détente 4 et repoussent le piston 15, assurant ainsi le temps moteur, alors que le piston compresseur 9 est en train de teπniner l'admission en mélange air-carburant frais.
La détente va se poursuivre sur environ 180 degrés de rotation du vilebrequin , figure 4, le volet etanche 8 est alors refermé et la soupape d'échappement 20 s'ouvre, alors que le piston compresseur 9 va comprimer le mélange air-carburant dans la chambre de compression 1 et que l'on va ouvrir le volet 6 pour admettre le nouveau mélange air-carburant frais dans la chambre à volume constant 2 et recommencer le cycle (fig.1)
On constate aisément qu'à chaque tour de vilebrequin (moteur et compresseur) correspond une détente (ou temps moteur) et que le choix du décalage entre le point mort haut du piston compresseur 9 et le point mort haut du piston de détente 15 détermine le temps de combustion du mélange dans la chambre de combustion à volume constant 2.
Par ailleurs, le volume de détente déplacé par le piston de détente 15 peut être plus grand que le volume déplacé par le compresseur 9. Cette différence pourra être déterminée en fonction des différences des courbes polytropiques de compression et de détente, dans le but d'obtenir en fin de détente la pression la plus faible possible, gage d'un bon rendement et d'émissions sonores faibles. Les figures 5,6,7 et 8, représentent vu schématiquement en coupe transversale un autre mode de réalisation de moteur suivant l'invention où l'on introduit entre le compresseur et la chambre de combustion à volume constant 2 une capacité tampon d'air comprimé 22, alimentée en air comprimé par tout moyen approprié à travers un conduit 23, maintenue à pression sensiblement constante, et qui a pour effet d'éviter certains effets de pompages et les pertes de pression dues au volume mort de transfert et à la détente lors du remplissage de la chambre de combustion 2. Le conduit 5 dont l'ouverture et la fermeture sont commandées par le volet 6 relie la capacité tampon d'air comprimé 22 à la chambre de combustion indépendante (2) et comporte un injecteur de carburant 24 destiné à réaliser le mélange air-carburant sensiblement avant son introduction dans la chambre de combustion 2. Un volet 25 également implanté dans ce conduit permet de régler la charge admise dans la chambre de combustion (accélérateur).
La figure 5 représente le moteurs alors que l'on vient d'ouvrir le volet 6 pour admettre à travers le conduit 5 dans la chambre de combustion à volume constant 2, de l'air comprimé mélangé à du carburant pulvérisé par l'injecteur 24, alors que le piston de détente 15 vient d'entamer sa course ascendante pour repousser à l'atmosphère, par le conduit 19 (la soupape d'échappement 20 ayant été ouverte), les gaz brûlés et détendus du cycle précèdent et que le volet 8 du conduit de transfert vient de se refermer.
Dès que le mélange a été introduit dans la chambre de combustion indépendante 2, figure 6, on referme le volet 6, et la chambre de combustion indépendante 2 se trouve isolée, on provoque alors l'allumage par la bougie 3 et la combustion du mélange air-carburant dans la chambre de combustion à volume constant 2 alors que le piston de détente 15 poursuit son ascension et assure l'échappement à travers le conduit 19.
Le vilebrequin 18, poursuit sa rotation figure 7, le piston de détente 15 arrive à son point mort haut, la soupape d'échappement 20 se referme, et l'on commande l'ouverture du volet etanche 8. Les gaz sous très haute pression contenus dans la chambre de combustion indépendante 2 se détendent à travers le conduit 7 dans la chambre de détente 4, et repoussent le piston 15, assurant ainsi le temps moteur.
La détente va se poursuivre sur environ 180 degrés de rotation du vilebrequin 18, figure 8, le volet etanche 8 est alors refermé et la soupape d'échappement 20 s'ouvre, dés lors, on ouvre le volet 6 pour admettre une nouvelle charge de mélange air-carburant frais dans la chambre à volume constant 2 et recommencer le cycle (fig.5)
On constate qu'avec l'introduction d'une capacité tampon d'air comprimé, le principe de fonctionnement du moteur reste le même. Toutefois le compresseur d'air devient totalement indépendant, n'a plus besoin d'être calé angulairement par rapport au vilebrequin moteur 18 et son choix de principe en est ainsi facilité. D'autre part, plus le volume de cette capacité sera grand, plus les effets de pompages et de pertes de pression dans le volume de transfert et à la détente lors du remplissage de la chambre de combustion seront atténués. La figure 9 représente un autre mode de fonctionnement du moteur suivant l'invention où la chambre de détente et la détente sont réalisées dans un dispositif rotatif à capsulisme tournant de type à palette radiale, constitué d'un carter extérieur cylindrique ou stator 26 dans lequel tourne autour d'un axe excentré un tambour ou rotor 27 tangent au stator et pourvu d'une palette radiale 28 qui coulisse librement dans son logement 29 pour être appliquée sur la paroi extérieure du stator 26, délimitant ainsi un volume variable entre elle-même, le rotor et le stator, qui croit depuis une petite valeur pratiquement nulle au voisinage de la génératrice de contact entre le rotor et le stator. Dans le sens de rotation et peu après cette génératrice est percé le conduit de transfert 7 (dont l'ouverture et la fermeture sont commandées par le volet 8 de liaison entre la chambre de combustion à volume constant 2 et la chambre de détente. Toujours dans le sens de rotation mais avant la génératrice de contact entre le rotor et le stator est percé un orifice d'échappement 31. Dés que la palette découvre le conduit 7, on provoque l'ouverture du volet 8 et les gaz sous très haute pression contenus dans la chambre de combustion 2 se détendent dans la chambre de détente 30 et, prenant appui sur la palette 28, provoquent la rotation du rotor, alors que la palette 28 repousse devant elle à l'échappement 31 les gaz brûlés et détendus du cycle précèdent. La fermeture du volet 8 et l'ouverture du volet 6 permettant le renouvellement de la charge fraîche dans la chambre indépendante 2 interviendra en fin de détente lorsque la palette 28 sera proche du conduit d'échappement 31.
Le nombre de palettes, leurs positionnements peuvent varier de même que tout autre système rotatif réalisant un capsulisme tournant tel que le tracé d'une conchoïde de cercle ou d'une trochoïde (pistons rotatifs de type Planche ,Wankel ete ) peut être utilisé comme chambre de détente sans changer pour cela le principe de l'invention qui vient d'être décrite.
Bien entendu, l'invention n'est nullement limitée aux modes de réalisations décrits et représentés; elle est susceptible de nombreuses variantes accessibles à l'homme de l'art, suivant les applications envisagées et sans que l'on ne s'écarte de l'esprit de l'invention.

Claims

REVENDICATIONS
1. -Procédé de moteur à combustion interne cyclique comportant pour chaque cylindre ou élément de travail, une chambre de combustion dans laquelle le mélange air carburant est comprimé puis enflammé dans le but de produire un travail par élévation de la température et de la pression , dans lequel la chambre de compression (1), la chambre de combustion (2), et la chambre de détente (4) sont constituées de trois parties séparées et indépendantes relies entre elles par un ou plusieurs canaux munis d'obturateurs, dans lequel on comprime et enflamme un mélange air- carburant que l'on va détendre ( en ouvrant le canal approprié) dans la chambre de détente (4) lorsque cette dernière sera sensiblement à son plus petit volume pour produire un travail, caractérisé en ce que le cycle de la chambre de compression est décalé en avance par rapport au cycle de la chambre de détente décalage pouvant aller jusqu'à 180°, afin de permettre d'effectuer la combustion durant une très grande période pouvant aller jusqu'à 3 ou 4 fois plus de temps qu'un moteur conventionnel, pendant le temps d'échappement, permettant ainsi de parfaire la combustion pour éviter les formations de gaz polluants.
2.- Procédé de moteur à combustion interne suivant la revendication 1 caractérisé en ce que la forme de la chambre de combustion indépendante (2) se rapproche de la forme d'une sphère qui est la forme idéale pour obtenir à volume égal la plus petite surface de paroi dans le but d'éviter les pertes de calories à travers lesdites parois, ainsi que les plus petites distances de front de flamme, et l'absence de "recoins" ou le mélange air-carburant ne brûle pas et produit des hydrocarbures imbrûlés.
3 - Procédé de moteur à combustion interne suivant les revendications 1 et 2 caractérisé en ce que la chambre de combustion (2) est revêtue d'une barrière thermique en céramique ou tout autre matériaux isolants calorifuges afin de ne pas perdre de calories à travers les parois qui peuvent être ainsi maintenues à très haute température, et permettre de ce fait de ne pas éteindre la flamme sur lesdites parois évitant ainsi la production d'hydrocarbure imbrûlés dans les gaz d'échappement.
A.- Procédé de moteur à combustion interne suivant les revendications 1 à 3 caractérisé en ce que les parois de la chambre de détente
(4) et/ou, celles du canal de liaison (8) entre cette dernière et la chambre de combustion (2) sont revêtues d'une barrière thermique en céramique ou tout autre matériaux isolant calorifuges afin de ne pas perdre de calories à travers les parois qui peuvent ainsi être maintenues à haute température et améliorer le rendement de la détente.
5.- Procédé de moteur suivant l'une quelconque des revendications 1 à 4 caractérisé en ce que entre la chambre de compression (1) (ou le compresseur), et la chambre de combustion indépendante (2), on implante une capacité tampon d'air comprimé (22) qui va permettre d'éviter des effets de pompage ainsi que des pertes de pression dus au volume mort de transfert et à la détente lors du remplissage de la chambre de combustion. Il va sans dire que, dans ce cas, le conduit de liaison (5) et son système d'ouverture et de fermeture commandées (6) se trouvent entre la capacité tampon et la chambre de combustion.
PCT/FR1997/000655 1996-04-15 1997-04-14 Moteur a combustion interne a chambre de combustion independante a volume constant WO1997039232A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PL97329333A PL183942B1 (pl) 1996-04-15 1997-04-14 Silnik spalinowy o cyklicznym wewnętrznym spalaniu
GB9822539A GB2327103B (en) 1996-04-15 1997-04-14 A procedure for operating a cyclic internal combustion engine
DE19781700T DE19781700T1 (de) 1996-04-15 1997-04-14 Verfahren für eine zyklische Verbrennungskraftmaschine mit einer unabhängigen Verbrennungskammer mit konstantem Volumen
RO98-01486A RO117471B1 (ro) 1996-04-15 1997-04-14 Motor cu ardere interna cu camera de ardere independenta cu volum constant
HK99104934.3A HK1019780B (en) 1996-04-15 1997-04-14 Internal combustion engine with constant-volume independent combustion chamber
US09/171,286 US6397579B1 (en) 1996-04-15 1997-04-14 Internal combustion engine with constant-volume independent combustion chamber
JP9536805A JP2000508403A (ja) 1996-04-15 1997-04-14 独立し、一定の容量の燃焼室を備えたサイクル内燃機関
BR9708675-4A BR9708675A (pt) 1996-04-15 1997-04-14 Motor de combustão interna com câmara de combustão independente de volume constante
AU26420/97A AU731600B2 (en) 1996-04-15 1997-04-14 Internal combustion engine with constant-volume independent combustion chamber
SE9803515A SE511407C2 (sv) 1996-04-15 1998-10-15 Förfarande för att driva en förbränningsmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9604890A FR2748776B1 (fr) 1996-04-15 1996-04-15 Procede de moteur a combustion interne cyclique a chambre de combustion independante a volume constant
FR96/04890 1996-04-15

Publications (1)

Publication Number Publication Date
WO1997039232A1 true WO1997039232A1 (fr) 1997-10-23

Family

ID=9491355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000655 WO1997039232A1 (fr) 1996-04-15 1997-04-14 Moteur a combustion interne a chambre de combustion independante a volume constant

Country Status (17)

Country Link
US (1) US6397579B1 (fr)
JP (1) JP2000508403A (fr)
KR (1) KR20000005474A (fr)
CN (1) CN1086444C (fr)
AU (1) AU731600B2 (fr)
BR (1) BR9708675A (fr)
CA (1) CA2250998A1 (fr)
CZ (1) CZ328898A3 (fr)
DE (1) DE19781700T1 (fr)
ES (1) ES2147715B1 (fr)
FR (1) FR2748776B1 (fr)
GB (1) GB2327103B (fr)
PL (1) PL183942B1 (fr)
RO (1) RO117471B1 (fr)
RU (1) RU2178090C2 (fr)
SE (1) SE511407C2 (fr)
WO (1) WO1997039232A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063206A1 (fr) * 1998-06-03 1999-12-09 Guy Negre Procede de fonctionnement et dispositif de moteur a injection d'air comprime additionnel fonctionnat en mono-energie, ou en bi-energie bi ou tri modes d'alimentation
FR2797429A1 (fr) 1999-08-12 2001-02-16 Guy Negre Reseau de transport comportant une flotte de vehicules, bateau et station de rechargement en air comprime pour un tel reseau
FR2797474A1 (fr) 1999-08-12 2001-02-16 Guy Negre Station de rechargement en air comprime comportant une turbine entrainee par le debit d'un cours d'eau
WO2001069080A1 (fr) 2000-03-15 2001-09-20 Guy Negre Station de rechargement en air comprime comportant une turbine entrainee par le debit d'un cours d'eau
WO2005095769A1 (fr) 2004-03-30 2005-10-13 Alexandr Nikolaevich Sergeev Moteur a combustion interne et son procede de commande
EP1914058A1 (fr) 2006-10-16 2008-04-23 MDI Motor Development International S.A. Pocédé de fabrication d'une coque structurelle d'une voiture économique
JP2008544153A (ja) * 2005-06-24 2008-12-04 エムディーアイ−モーター・ディベロップメント・インターナショナル・エス.エー. 定圧で連続的に「低温」燃焼し、アクティブチャンバを備えた低温エンジン−コンプレッサユニット
US8191350B2 (en) 2006-09-05 2012-06-05 Mdi-Motor Development International S.A. Compressed-air or gas and/or additional-energy engine having an active expansion chamber
US8276384B2 (en) 2006-07-21 2012-10-02 Mdi-Motor Development International S.A. Ambient temperature thermal energy and constant pressure cryogenic engine
WO2016055923A3 (fr) * 2014-10-09 2016-06-09 Calogero Provenzano Moteur à combustion interne à piston axial

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543225B2 (en) 2001-07-20 2003-04-08 Scuderi Group Llc Split four stroke cycle internal combustion engine
US6722127B2 (en) 2001-07-20 2004-04-20 Carmelo J. Scuderi Split four stroke engine
RU2216635C2 (ru) * 2001-08-09 2003-11-20 Гребенников Валерий Иванович Энергетическая техническая система гребенникова
JP4541707B2 (ja) * 2002-03-14 2010-09-08 ニュートン・プロパルション・テクノロジーズ・リミテッド ガスタービンエンジンシステム
RU2235214C2 (ru) * 2002-03-26 2004-08-27 Орлов Александр Георгиевич Способ работы двигателя внутреннего сгорания (варианты)
CZ297785B6 (cs) * 2003-04-01 2007-03-28 Zpusob a zarízení pro premenu tepelné energie na mechanickou
MY138166A (en) 2003-06-20 2009-04-30 Scuderi Group Llc Split-cycle four-stroke engine
US6986329B2 (en) 2003-07-23 2006-01-17 Scuderi Salvatore C Split-cycle engine with dwell piston motion
RU2246627C1 (ru) * 2003-08-25 2005-02-20 Гребенников Валерий Иванович Многоцелевой двигатель внутреннего сгорания
ES2694251T3 (es) * 2004-01-12 2018-12-19 Liquidpiston, Inc. Motor de combustión de ciclo híbrido y métodos
GB2413361A (en) * 2004-04-20 2005-10-26 Leslie Maidment Fixed-displacement i.c. engine with expansion ratio greater than compression ratio
CN100347422C (zh) * 2005-09-12 2007-11-07 李岳 连续燃烧恒功率发动机
US7353786B2 (en) * 2006-01-07 2008-04-08 Scuderi Group, Llc Split-cycle air hybrid engine
BRPI0714591A2 (pt) 2006-08-02 2013-05-07 Liquidpiston Inc motor rotativo de ciclo hÍbrido
US7513224B2 (en) * 2006-09-11 2009-04-07 The Scuderi Group, Llc Split-cycle aircraft engine
US7387093B2 (en) * 2006-10-02 2008-06-17 James Scott Hacsi Internal combustion engine with sidewall combustion chamber and method
JP2011530044A (ja) 2008-08-04 2011-12-15 リキッドピストン, インコーポレイテッド 等積熱添加エンジンおよび方法
US8156919B2 (en) 2008-12-23 2012-04-17 Darrow David S Rotary vane engines with movable rotors, and engine systems comprising same
RU2435975C2 (ru) * 2009-02-16 2011-12-10 Владимир Николаевич Меньшов Двигатель внутреннего сгорания меньшова
RU2398118C1 (ru) * 2009-04-20 2010-08-27 Анатолий Александрович Рыбаков Поршневой двигатель с внешней камерой сгорания
GB0907496D0 (en) * 2009-05-01 2009-06-10 Hall Keith G Engines and drives
WO2010129872A1 (fr) * 2009-05-07 2010-11-11 Scuderi Group, Llc Admission d'air pour composants d'un moteur à division du cycle
WO2011009453A2 (fr) * 2009-07-24 2011-01-27 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Moteur à pistons axiaux, procédé pour faire fonctionner un moteur à pistons axiaux et procédé de réalisation d'un échangeur thermique d'un moteur à pistons axiaux
US10001011B2 (en) * 2009-08-03 2018-06-19 Johannes Peter Schneeberger Rotary piston engine with operationally adjustable compression
US8117826B1 (en) * 2010-04-20 2012-02-21 Howard Kenneth W External combustion engine with rotary piston controlled valve
US8813695B2 (en) * 2010-06-18 2014-08-26 Scuderi Group, Llc Split-cycle engine with crossover passage combustion
DE102010025048A1 (de) * 2010-06-18 2011-12-22 Seneca International Ag Brennkraftmotor
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
BR112013007823A2 (pt) 2010-10-01 2016-06-21 Scuderi Group Inc motor v híbrido de ar de ciclo dividido
CN103518041A (zh) 2011-01-27 2014-01-15 史古德利集团公司 具有凸轮相位器的空转可变阀制动系统
JP2014503752A (ja) 2011-01-27 2014-02-13 スクデリ グループ インコーポレイテッド バルブ不作動化付ロストモーション可変バルブ作動システム
BR112013024765B1 (pt) 2011-03-29 2021-06-22 Liquidpiston, Inc Mecanismo de rotor cicloide
CN102168613B (zh) * 2011-04-15 2012-11-14 贾守训 万能燃料发动机
RU2477375C2 (ru) * 2011-05-03 2013-03-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный морской технический университет" Способ осуществления цикла поршневого двигателя и поршневой двигатель
CN102213137B (zh) * 2011-05-12 2013-04-24 魏永久 一种独立燃烧室双活塞两冲程内燃发动机
CN103133177B (zh) * 2011-12-01 2017-05-10 摩尔动力(北京)技术股份有限公司 往复通道熵循环发动机
RU2485334C1 (ru) * 2011-12-05 2013-06-20 Ривенер Мусавирович Габдуллин Способ работы двигателя внутреннего сгорания
WO2013103503A1 (fr) 2012-01-06 2013-07-11 Scuderi Group, Inc. Système d'actionnement variable de soupapes à mouvement perdu
US9528435B2 (en) 2013-01-25 2016-12-27 Liquidpiston, Inc. Air-cooled rotary engine
WO2014151845A1 (fr) 2013-03-15 2014-09-25 Scuderi Group, Inc. Moteurs à cycle divisé avec injection directe
CN103216359A (zh) * 2013-04-24 2013-07-24 优华劳斯汽车系统(上海)有限公司 一种持续燃烧的内燃机
CN103883399B (zh) * 2014-04-02 2014-12-24 绿能高科集团有限公司 一种原动机的半闭式正时定容热力循环方法及系统
CN103993955A (zh) * 2014-04-08 2014-08-20 杨浩仁 往复蓄热式内燃机
CN103926196B (zh) * 2014-04-29 2018-05-25 平湖瓦爱乐发动机测试技术有限公司 一种球形多功能定容弹
CN104963771B (zh) * 2014-07-24 2018-02-09 摩尔动力(北京)技术股份有限公司 往复活塞稳流燃烧发动机
WO2016048184A1 (fr) * 2014-09-25 2016-03-31 Борис Львович ЕГОРОВ Moteur à combustion interne et procédé de fonctionnement
CN104819048A (zh) * 2015-05-02 2015-08-05 周虎 一种燃烧室独立的内燃机
US10247065B2 (en) * 2015-06-19 2019-04-02 Cesar Mercier Two-stroke internal combustion engine with crankcase lubrication system
RU2665766C2 (ru) * 2016-01-26 2018-09-04 Юрий Владимирович Синельников Однотактный двигатель внутреннего сгорания
RU2631842C1 (ru) * 2016-08-12 2017-09-26 Анатолий Александрович Рыбаков Способ управления коэффициентом избытка воздуха перепускными клапанами между компрессорными и рабочими полостями поршней однотактного двигателя с внешней камерой сгорания
RU2641998C1 (ru) * 2016-11-23 2018-01-23 Анатолий Александрович Рыбаков Способ управления уровнем зарядки пневмоаккумулятора двухтактного двигателя с внешней камерой сгорания
EP3517755B1 (fr) * 2018-01-26 2020-07-22 Patentec AS Moteur à combustion interne
CN108730045B (zh) * 2018-03-29 2020-09-01 刘法锐 一种自适应阀控活塞发动机
RU2746820C2 (ru) * 2018-11-19 2021-04-21 Александр Александрович Горшков Способ работы двигателя внутреннего сгорания
RU193641U1 (ru) * 2019-04-26 2019-11-07 Александр Алексеевич Выволокин Роторный пневматический двигатель-компрессор с функцией двигателя внутреннего сгорания
US11092072B2 (en) * 2019-10-01 2021-08-17 Filip Kristani Throttle replacing device
CN116378821A (zh) * 2023-04-24 2023-07-04 南通大学 一种分缸燃烧式内燃机及其工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2167356A5 (fr) * 1972-01-13 1973-08-24 Baudouin Auguste
FR2319769A1 (fr) * 1975-07-31 1977-02-25 Ferraro Raul Installation pour la transformation de l'energie de combustion
FR2416344A1 (fr) * 1978-02-02 1979-08-31 Kovacs Andre Moteur a combustion interne a chambre de compression et de detente separees
US4715326A (en) * 1986-09-08 1987-12-29 Southwest Research Institute Multicylinder catalytic engine
US4783966A (en) * 1987-09-01 1988-11-15 Aldrich Clare A Multi-staged internal combustion engine
DE4136223C1 (fr) * 1991-11-02 1992-12-24 Ivan, Constantin, Prof. Dr.Rer.Nat., 4330 Muelheim, De

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149370A (en) * 1977-02-28 1979-04-17 Eduardo Ayala Vargas Self starting internal combustion engine with means for changing the expansion ratio
CH654067A5 (fr) * 1982-09-24 1986-01-31 Roger Bajulaz Moteur a combustion et procede pour sa mise en action.
GB2186913B (en) * 1986-02-25 1989-11-08 Coventry City Council Internal combustion engine
SU1643754A1 (ru) * 1988-01-25 1991-04-23 Leontev Aleksej A Двигатель внутреннего сгорани
JPH03202663A (ja) * 1989-12-28 1991-09-04 Aisin Seiki Co Ltd 熱機関
RU2015361C1 (ru) * 1991-04-03 1994-06-30 Научно-исследовательский конструкторско-технологический институт тракторных и комбайновых двигателей Камера сгорания двигателя внутреннего сгорания
US5311739A (en) * 1992-02-28 1994-05-17 Clark Garry E External combustion engine
JP3202663B2 (ja) 1997-08-26 2001-08-27 東北日本電気株式会社 基板引き抜き防止構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2167356A5 (fr) * 1972-01-13 1973-08-24 Baudouin Auguste
FR2319769A1 (fr) * 1975-07-31 1977-02-25 Ferraro Raul Installation pour la transformation de l'energie de combustion
FR2416344A1 (fr) * 1978-02-02 1979-08-31 Kovacs Andre Moteur a combustion interne a chambre de compression et de detente separees
US4715326A (en) * 1986-09-08 1987-12-29 Southwest Research Institute Multicylinder catalytic engine
US4783966A (en) * 1987-09-01 1988-11-15 Aldrich Clare A Multi-staged internal combustion engine
DE4136223C1 (fr) * 1991-11-02 1992-12-24 Ivan, Constantin, Prof. Dr.Rer.Nat., 4330 Muelheim, De

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063206A1 (fr) * 1998-06-03 1999-12-09 Guy Negre Procede de fonctionnement et dispositif de moteur a injection d'air comprime additionnel fonctionnat en mono-energie, ou en bi-energie bi ou tri modes d'alimentation
FR2779480A1 (fr) 1998-06-03 1999-12-10 Guy Negre Procede de fonctionnement et dispositif de moteur a injection d'air comprime additionnel fonctionnant en mono energie, ou en bi energie bi ou tri modes d'alimentation
CN1118620C (zh) * 1998-06-03 2003-08-20 居伊·内格尔 在两种或三种动力模式中用单能源或双能源工作的辅助压缩空气注入发动机的工作方法和装置
FR2797474A1 (fr) 1999-08-12 2001-02-16 Guy Negre Station de rechargement en air comprime comportant une turbine entrainee par le debit d'un cours d'eau
WO2001012983A1 (fr) 1999-08-12 2001-02-22 Guy Negre Reseau de transport comportant une flotte de vehicules, bateau et station de rechargement en air comprime pour un tel reseau
FR2797429A1 (fr) 1999-08-12 2001-02-16 Guy Negre Reseau de transport comportant une flotte de vehicules, bateau et station de rechargement en air comprime pour un tel reseau
WO2001069080A1 (fr) 2000-03-15 2001-09-20 Guy Negre Station de rechargement en air comprime comportant une turbine entrainee par le debit d'un cours d'eau
WO2005095769A1 (fr) 2004-03-30 2005-10-13 Alexandr Nikolaevich Sergeev Moteur a combustion interne et son procede de commande
EP1748166A4 (fr) * 2004-03-30 2009-06-03 Alexandr Nikolaevich Sergeev Moteur a combustion interne et son procede de commande
JP2008544153A (ja) * 2005-06-24 2008-12-04 エムディーアイ−モーター・ディベロップメント・インターナショナル・エス.エー. 定圧で連続的に「低温」燃焼し、アクティブチャンバを備えた低温エンジン−コンプレッサユニット
US8276384B2 (en) 2006-07-21 2012-10-02 Mdi-Motor Development International S.A. Ambient temperature thermal energy and constant pressure cryogenic engine
US8191350B2 (en) 2006-09-05 2012-06-05 Mdi-Motor Development International S.A. Compressed-air or gas and/or additional-energy engine having an active expansion chamber
EP1914058A1 (fr) 2006-10-16 2008-04-23 MDI Motor Development International S.A. Pocédé de fabrication d'une coque structurelle d'une voiture économique
WO2016055923A3 (fr) * 2014-10-09 2016-06-09 Calogero Provenzano Moteur à combustion interne à piston axial

Also Published As

Publication number Publication date
FR2748776A1 (fr) 1997-11-21
FR2748776B1 (fr) 1998-07-31
GB2327103A (en) 1999-01-13
GB2327103A9 (en) 1999-01-20
ES2147715A2 (es) 2000-09-16
RU2178090C2 (ru) 2002-01-10
KR20000005474A (ko) 2000-01-25
JP2000508403A (ja) 2000-07-04
RO117471B1 (ro) 2002-03-29
SE9803515L (sv) 1998-10-15
HK1019780A1 (en) 2000-02-25
CZ328898A3 (cs) 1999-02-17
CN1086444C (zh) 2002-06-19
US6397579B1 (en) 2002-06-04
PL329333A1 (en) 1999-03-29
GB2327103A8 (en) 1999-01-20
CA2250998A1 (fr) 1997-10-23
AU731600B2 (en) 2001-04-05
SE511407C2 (sv) 1999-09-27
BR9708675A (pt) 2000-01-04
PL183942B1 (pl) 2002-08-30
AU2642097A (en) 1997-11-07
SE9803515D0 (sv) 1998-10-15
ES2147715R (fr) 2001-02-16
ES2147715B1 (es) 2001-09-01
DE19781700T1 (de) 1999-05-12
CN1219216A (zh) 1999-06-09
GB2327103B (en) 2000-04-12
GB9822539D0 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
WO1997039232A1 (fr) Moteur a combustion interne a chambre de combustion independante a volume constant
EP1084334B1 (fr) Procede de fonctionnement et dispositif de moteur a injection d'air comprime additionnel fonctionnat en mono-energie, ou en bi-energie bi ou tri modes d'alimentation
EP1201892B1 (fr) Moteur à combustion interne à cinq temps
EP0376909A1 (fr) Moteur à combustion interne
EP0104541B1 (fr) Procédé de transformation d'énergie thermique en énergie mécanique à l'aide d'un moteur à combustion ainsi que ce nouveau moteur
EP0743449A1 (fr) Moteur de combustion interne pourvu d'un systeme d'injection directe de carburant avec assistance par air comprime
EP0034085B1 (fr) Générateur de gaz à variation de volume
FR2485087A1 (fr) Moteur a combustion interne
EP0034958B1 (fr) Moteur avec pistons rotatifs à variation cyclique de vitesse et moyens d'entraînement
FR2561710A1 (fr) Moteur a combustion interne a deux temps et son cycle
EP1498590B1 (fr) Moteur à combustion interne à quatre temps suralimenté avec dispositif d'échappement des gaz d'échappement à volume variable et procédé de fonctionnement d'un tel moteur
FR2841598A1 (fr) Appareil de commande pour un moteur a combustion interne et son procede de commande
US5555866A (en) Rotary engine
FR2644512A1 (fr) Dispositif d'ejection d'air pour moteur a deux temps
EP0358655B1 (fr) Procede et dispositif d'amenagement d'un moteur a deux temps a post-remplissage
FR2634821A1 (fr) Perfectionnement aux moteurs a capsulisme
FR2778430A1 (fr) Moteur a combustion interne rotatif sans pistons
WO1986000374A1 (fr) Procede d'amelioration du fonctionnement d'un moteur a combustion interne a deux temps
FR2604478A1 (fr) Moteur a combustion interne, permettant en particulier l'emploi de materiaux plastiques dans sa construction
MXPA98008486A (en) Internal combustion engine with independent combustion chamber of volume consta
FR2593855A1 (fr) Moteurs thermiques a grand rendement thermodynamique
FR2531139A1 (fr) Dispositif de controle d'un circuit de gaz d'une chambre de combustion
FR3087837A1 (fr) Ensemble pour turbomachine
BE411808A (fr)
FR3041702A1 (fr) Dispositif moteur comportant une turbine, notamment pour automobiles

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97194691.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2250998

Country of ref document: CA

Ref document number: 2250998

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV1998-3288

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/008486

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 9850020

Country of ref document: ES

Kind code of ref document: A

Ref document number: 1997 9039

Country of ref document: AT

Date of ref document: 19971023

Kind code of ref document: A

Ref document number: 9822539

Country of ref document: GB

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 009850020

Country of ref document: ES

Ref document number: P009850020

Country of ref document: ES

Ref document number: 19979039

Country of ref document: AT

Ref document number: 98035157

Country of ref document: SE

Ref document number: 1019980708251

Country of ref document: KR

Ref document number: 98-01486

Country of ref document: RO

WWP Wipo information: published in national office

Ref document number: 98035157

Country of ref document: SE

WWP Wipo information: published in national office

Ref document number: PV1998-3288

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 09171286

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19781700

Country of ref document: DE

Date of ref document: 19990512

WWE Wipo information: entry into national phase

Ref document number: 19781700

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019980708251

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 9850020

Country of ref document: ES

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 9850020

Country of ref document: ES

Kind code of ref document: A

WWR Wipo information: refused in national office

Ref document number: PV1998-3288

Country of ref document: CZ

WWR Wipo information: refused in national office

Ref document number: 1019980708251

Country of ref document: KR

WWX Former pct application expired in national office

Ref document number: 9850020

Country of ref document: ES

Kind code of ref document: A