[go: up one dir, main page]

WO1998003297A1 - Procede de brasage en deux etapes pour joindre des materiaux ayant des coefficients d'expansion thermique differents - Google Patents

Procede de brasage en deux etapes pour joindre des materiaux ayant des coefficients d'expansion thermique differents Download PDF

Info

Publication number
WO1998003297A1
WO1998003297A1 PCT/US1997/012969 US9712969W WO9803297A1 WO 1998003297 A1 WO1998003297 A1 WO 1998003297A1 US 9712969 W US9712969 W US 9712969W WO 9803297 A1 WO9803297 A1 WO 9803297A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor layer
copper
carbon
thermal expansion
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1997/012969
Other languages
English (en)
Inventor
James L. Mcafee
Donald A. Deuser
John T. Niemann
Daniel S. Schwartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mcdonnell Douglas Corp
Original Assignee
Mcdonnell Douglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/835,257 external-priority patent/US5855313A/en
Application filed by Mcdonnell Douglas Corp filed Critical Mcdonnell Douglas Corp
Priority to AU40449/97A priority Critical patent/AU4044997A/en
Publication of WO1998003297A1 publication Critical patent/WO1998003297A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite

Definitions

  • first part and a second part, the first part having a CTE lower that the CTE of the second part, using a two-step brazing process designed to minimize differential CTE induced strains retained at the joint interface.
  • first part will be referred to as the "low CTE part” and the second part will be referred to as the "high CTE part” hereafter.
  • the first step of the process consists of a high temperature brazing cycle that joins a thin metallic anchor layer to the joint surface of the low CTE part.
  • the metallic anchor layer is thin and ductile enough so that, as it contracts more than the low CTE part during cooling from braze temperature, the anchor layer yields (or plastically deforms) to relieve strains that would otherwise accumulate.
  • the high temperature braze material must be capable of wetting the facing surfaces of both the low CTE part and the metallic anchor layer to achieve a structurally and thermally effective joint.
  • the metallic anchor layer must be thin, ductile, and compatible with the high temperature braze material as well as the lower temperature braze materials used in the second step of the process.
  • the second step of the process is a significantly lower temperature brazing cycle that joins the anchor layer on the low CTE part to the joint surface of the high CTE part.
  • the low temperature braze material must effectively wet the facing surfaces of both the anchor layer on the low CTE part and the high CTE part to achieve a thermally efficient joint.
  • the lowest melting point braze material compatible with the materials and design requirements is selected to minimize the interfacial strains and maintain thermal continuity in the completed joint.
  • carbon-carbon composites shall refer to the class of carbon-based materials that consist of carbon fibers infiltrated with a solid carbon matrix.
  • brazing means the joining of two parts by means of melting braze or solder materials between faying surfaces of the parts, the melted material wetting the faying surfaces and solidifying to effectively join the two parts.
  • braze will be used to include both braze and solder materials in foil, powder, paste, and wire forms.
  • Low CTE parts that are particularly useful when joined to high CTE parts by the method of die present invention include, but are not limited to, carbon-carbon composites (C-C), solid carbon, and graphite materials. Most particularly useful for joining to high CTE parts are C-C parts.
  • the high temperature braze materials used to join the low CTE part to the anchor layer material are commercially available metal braze alloys.
  • the braze material typically has a thickness of one half (50%) of the anchor layer thickness selected. Thicknesses of 0.0005 - 0.005 inch are preferred with thicknesses of 0.0015 - 0.0035 inch most preferred.
  • preferred braze materials include alloys of copper, silicon, silver, and titanium.
  • Anchor layer materials which are useful for joining to the low CTE parts are typically metals.
  • Particularly useful anchor layer metals include, but are not limited to, copper and copper based materials, with C 10100 oxygen free electronic grade (OFE) copper most particularly preferred.
  • the anchor layer material must be of a thickness and ductility such that, after being brazed to the low CTE part in the first brazing step, the anchor layer foil will yield and plastically deform to reduce the differential CTE-induced strains that would otherwise result. Thicknesses between 0.001 - 0.010 inch are preferred with thicknesses of 0.003 - 0.007 inch particularly preferred.
  • Low temperature brazing materials useful for joining the anchor layer to the high CTE part are typically metal alloys with significantly lower melting points than the high temperature brazing materials.
  • the low temperature brazing materials may be commercially available brazing elements or alloys comprised of aluminum, copper, silicon, and tin. Typical melting points range from about 700°C - 300°C. The lowest melting point material which is compatible with materials and design requirements should be selected to minimize the differential CTE strains induced in the low temperature braze step.
  • the high CTE parts may comprise any suitable material that has a higher CTE than the low CTE part.
  • the high CTE parts are made from metals that produce an order of magnitude difference between the CTE's of the high and low CTE parts.
  • the high CTE parts that are joined to low CTE parts by the process of this invention comprise copper and copper based materials. Most particularly preferred is C 10100 oxygen free electronic grade (OFE) copper.
  • the method of the present invention will be specifically exemplified, without being limited in any way, by describing the joining a C-C (low CTE) part to a C 10100 OFE copper (high CTE) part.
  • the anchor layer comprises a 0.006 inch thick OFE copper foil.
  • the high temperature braze material used is a 0.003 inch thick Cu-ABATM foil.
  • the low temperature braze material used is a 0.003 inch thick aluminum-silicon braze foil. It will be understood by those skilled in the practice of the art that the process may be used in conjunction with other high and low CTE parts comprised of other materials.
  • the mating surfaces of the low and high CTE parts, anchor layer material, and high and low braze materials are appropriately cleaned in preparation for brazing operations.
  • the faying surfaces of the low CTE C-C parts may be mechanically abraded with 600 grit abrasive paper and then ultrasonically cleaned in a suitable solvent such as reagent quality ethanol for 15 minutes.
  • the C-C parts are then preferably dried and maintained in vacuum until brazing is ready to proceed.
  • the faying surfaces of the high CTE copper parts, copper anchor layer foil, and braze foils are preferably lightly abraded with 600 grit abrasive paper, solvent cleaned, and stored in a dry atmosphere, such as a vacuum dry box at approximately 180° C and 0.06 torr, until brazing proceeds.
  • the first step in the two-step process is to join a thin copper anchor layer foil to the C-C part in a high temperature brazing operation.
  • a Cu-ABATM braze foil is placed on the faying surface of the C-C part and a CIOIOO OFE copper foil anchor layer is placed on top of the braze foil.
  • the braze foil and copper anchor layer are preferably aligned and mechanically clamped in intimate contact to the C-C part using, for example, a simple graphite fixture.
  • the graphite fixture does not contact the braze foil or braze attachment to the fixture will result.
  • the fixture containing the C-C part, Cu-ABATM braze foil, and copper anchor layer assembly is then preferably placed in a furnace and a typical load of 0 - 5 psi is applied to the exposed surface of the copper anchor layer foil.
  • a vacuum furnace capable of ⁇ 10- 4 torr is used but atmosphere furnaces may also be used.
  • the furnace is preferably ramped to T t ⁇ at a rate of less than 50 ° C per minute.
  • the temperature is preferably first ramped to approximately 900 °C at a rate of about 10 o C/min_ held at approximately 900 °C for about 15 minutes, and ramped to T, ⁇ at a rate of about 10°C/min.
  • the brazing temperature is sustained for 10 minutes to allow complete wetting of the C-C and copper faying surfaces by the braze alloy.
  • the part is then slowly cooled to allow the copper anchor layer to freely yield to minimize the interfacial strains that occur from the differential thermal contraction in the C-C part and copper anchor layer.
  • the brazed subassembly is then preferably stored in vacuum until the second (low temperature) brazing step is ready to proceed.
  • the second step of the two-step process joins the C-C part/copper anchor layer subassembly to the C 10100 OFE copper part in a low temperature brazing process.
  • _ n aluminum-silicon braze foil, for this system preferably Lucas-Milhaupt Alloy 62-718, is placed on the faying surface of the high CTE copper part.
  • the C-C part/copper anchor layer subassembly is then preferably positioned on top of the braze foil so that the copper anchor layer and the braze foil are in intimate contact.
  • the assembly is preferably aligned and mechanically clamped together in a graphite fixture.
  • the fixture containing the assembly is then placed in a furnace and a load of 3 - 200 psi is applied to the exposed surface of the C-C part.
  • the furnace may be either a vacuum or an atmosphere furnace.
  • the brazed assembly is then slowly cooled to room temperature, completing the two-step brazing process.
  • the method of the present invention is particularly useful in the manufacture of high temperature heat exchangers, which typically consist of a low CTE material (like C-C, or ceramic) attached to a thermally conductive material, such as a metal, with a high CTE.
  • the joint produced by the process of the invention will be thermally conductive, and hence will permit the transfer of heat from the low CTE material to the high CTE material.
  • Such high temperature heat exchangers are useful in a variety of applications, including nuclear fusion reactors, and combustion chambers, leading edges, and actively cooled structures on hypersonic vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

Cette invention se rapport à un procédé en deux étapes permettant de joindre une première pièce à une seconde pièce, la première pièce ayant un coefficient d'expansion thermique inférieur au coefficient d'expansion thermique de la seconde pièce. On utilise à cet effet une couche d'ancrage qui est soudée à une température inférieure par brasage à la première pièce ayant un coefficient d'expansion thermique élevé. La couche d'ancrage possède une épaisseur telle qu'en refroidissant, elle va céder pour contribuer à soulager les contraintes qui se sont accumulées du fait de la différence des coefficients d'expansion thermique entre elle et la première pièce. La couche d'ancrage est ensuite soudée par brasage à la pièce ayant un coefficient d'expansion thermique élevé. Ce procédé est particulièrement utile pour joindre des pièces en composite carbone-carbone à des substrats de cuivre, dans la fabrication d'échangeurs de chaleur haute température utilisés par exemple dans des réacteurs à fusion nucléaire.
PCT/US1997/012969 1996-07-24 1997-07-23 Procede de brasage en deux etapes pour joindre des materiaux ayant des coefficients d'expansion thermique differents Ceased WO1998003297A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU40449/97A AU4044997A (en) 1996-07-24 1997-07-23 Two-step brazing process for joining materials with different coefficients of thermal expansion

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US2235196P 1996-07-24 1996-07-24
US60/022,351 1996-07-24
US08/835,257 US5855313A (en) 1997-04-08 1997-04-08 Two-step brazing process for joining materials with different coefficients of thermal expansion
US08/835,257 1997-04-08

Publications (1)

Publication Number Publication Date
WO1998003297A1 true WO1998003297A1 (fr) 1998-01-29

Family

ID=26695831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/012969 Ceased WO1998003297A1 (fr) 1996-07-24 1997-07-23 Procede de brasage en deux etapes pour joindre des materiaux ayant des coefficients d'expansion thermique differents

Country Status (2)

Country Link
AU (1) AU4044997A (fr)
WO (1) WO1998003297A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2782378A1 (fr) 1998-08-14 2000-02-18 Snecma Piece de structure comportant une partie en materiau composite thermostructural refroidie par circulation de fluide
FR2785664A1 (fr) 1998-11-05 2000-05-12 Snecma Echangeur de chaleur en materiau composite et procede pour sa fabrication
WO2006024971A3 (fr) * 2004-07-20 2006-07-13 Enea Ente Nuove Tec Procede de jonction destine a un materiau ceramique et un materiau metallique et comprenant une interposition d'un materiau de transition
GB2558523A (en) * 2015-06-25 2018-07-18 Delavan Inc Braze joints
CN115194275A (zh) * 2022-06-02 2022-10-18 哈尔滨工业大学 一种用于钛合金与镍基高温合金异种金属钎焊的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958364A (en) * 1987-12-22 1990-09-18 General Electric Cgr Sa Rotating anode of composite material for X-ray tubes
US5161728A (en) * 1988-11-29 1992-11-10 Li Chou H Ceramic-metal bonding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958364A (en) * 1987-12-22 1990-09-18 General Electric Cgr Sa Rotating anode of composite material for X-ray tubes
US5161728A (en) * 1988-11-29 1992-11-10 Li Chou H Ceramic-metal bonding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2782378A1 (fr) 1998-08-14 2000-02-18 Snecma Piece de structure comportant une partie en materiau composite thermostructural refroidie par circulation de fluide
FR2785664A1 (fr) 1998-11-05 2000-05-12 Snecma Echangeur de chaleur en materiau composite et procede pour sa fabrication
WO2006024971A3 (fr) * 2004-07-20 2006-07-13 Enea Ente Nuove Tec Procede de jonction destine a un materiau ceramique et un materiau metallique et comprenant une interposition d'un materiau de transition
GB2558523A (en) * 2015-06-25 2018-07-18 Delavan Inc Braze joints
US10688577B2 (en) 2015-06-25 2020-06-23 Delavan Inc. Braze joints
GB2558523B (en) * 2015-06-25 2021-04-07 Delavan Inc Braze Joints
GB2588358A (en) * 2015-06-25 2021-04-21 Delavan Inc Braze Joints
CN115194275A (zh) * 2022-06-02 2022-10-18 哈尔滨工业大学 一种用于钛合金与镍基高温合金异种金属钎焊的方法

Also Published As

Publication number Publication date
AU4044997A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
US4699310A (en) Method of bonding alumina to metal
US4602731A (en) Direct liquid phase bonding of ceramics to metals
EP0123212B1 (fr) Assemblage céramique lié et son procédé de fabrication
US4735866A (en) Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics
GB2234239A (en) Metal-ceramic structure with intermediate high temperature reaction barrier layer
EP0197397B1 (fr) Procédé pour lier des pièces céramiques à des pièces métalliques
EP1135348B1 (fr) Procede d'assemblage de metal et de ceramique
EP0932472B1 (fr) Procede pour lier du rhenium a du niobium
US5855313A (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JP2001044345A (ja) 基板一体型構造体
JPH0753277A (ja) 黒鉛と金属の接合方法
EP0795524B1 (fr) Corps lié, et procédé de fabrication d'un corps lié par utilisation d'un agent de brasage
WO1998003297A1 (fr) Procede de brasage en deux etapes pour joindre des materiaux ayant des coefficients d'expansion thermique differents
JP3119906B2 (ja) 炭素系材料と金属の接合体
JPH08119761A (ja) 接合用ろう材及びその接合用ろう材により接合された接合体
JP3302714B2 (ja) セラミックス−金属接合体
JPH01308884A (ja) 材料接合方法および接合体
JPH0142914B2 (fr)
JPH0672779A (ja) 炭素部材の接合方法
JPH069907B2 (ja) 黒鉛と金属からなる複合材の製造方法
JPH069906B2 (ja) 黒鉛と銅または銅合金からなる複合材
JPH0317793B2 (fr)
JPH0460947B2 (fr)
JPH0159998B2 (fr)
JPS62252376A (ja) アルミナセラミツクスと銅板との接合方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998507218

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase