WO1998003997A1 - Refroidissement en circuit ferme par un liquide dans des modules r.f. - Google Patents
Refroidissement en circuit ferme par un liquide dans des modules r.f. Download PDFInfo
- Publication number
- WO1998003997A1 WO1998003997A1 PCT/US1997/013326 US9713326W WO9803997A1 WO 1998003997 A1 WO1998003997 A1 WO 1998003997A1 US 9713326 W US9713326 W US 9713326W WO 9803997 A1 WO9803997 A1 WO 9803997A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- assembly according
- heat
- heat exchanger
- pump
- microchannels
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 27
- 238000001816 cooling Methods 0.000 title claims description 32
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- 239000002826 coolant Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims description 14
- 239000012530 fluid Substances 0.000 claims description 13
- 239000000919 ceramic Substances 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000013461 design Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- RVZRBWKZFJCCIB-UHFFFAOYSA-N perfluorotributylamine Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)N(C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RVZRBWKZFJCCIB-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to convection cooling of high power semiconductor devices and more particularly to a module including a self-contained coolant loop having a microchannel heat sink for cooling relatively high power semiconductive devices, such as RF power transistors.
- the number of transistors and related peripheral circuits that are required in such a solid state transmitter is a function of the thermal capacitance of the transistor device packaging and their associated air cooled heat sinks.
- the packaging approach utilized by the ARSR-4 solid state transmitter has been embraced by the industry for several years due to its simplicity, low cost and customer acceptance.
- FIG. 1 is illustrative of an air cooled RF module 10 for an ARSR-4 transmitter.
- the module 10 is shown including a heat generating transistor chip 12; a ceramic substrate 14; a metallic mounting flange 16; a multilayer soft aluminum clad substrate 18 ; a metallic ground plane 20; and a cold plate 22 which is a bonded sandwich of aluminum finstock 24 and sheet metal 26.
- a flow of cooling air directed to the finstock 24 is shown by reference numeral 28.
- the flange 16 is mounted on the ground plane 20 where it is bolted to the substrate 18.
- the groundplane 20 is in turn bolted to the air cooled coldplate 22.
- the maximum device junction temperature of the transistor devices, not shown, located on the chip 12, as dictated by system reliability studies, is typically between 125 and 135°C.
- a conventional packaging and realizable air flow delivery limit the maximum heat dissipation of a silicon RF transistor packet such as shown in Figure 1, to about 10 watts.
- Four design features typically drive the temperature gradient occurring in such a structure. These are the mass of air flow 28, the efficiency of the coldplate 22, the device to substrate interface, i.e. elements 16, 18 and 20, and the internal temperature rise of the chip 12.
- an ARSR-4 transmitter generates over 12 kilowatts average heat dissipation.
- a blower, not shown, used to cool this very large system is a 20 HP piece of apparatus rated to deliver approximately 10,000 cubic feet per minute of air at 8 inches of water pressure drop.
- Such a blower is excessively large, expensive and noisy. In fact, such a blower typically requires that it to be housed in its own cabinet.
- a closed loop liquid cooling arrangement in conjunction with an air-to-liquid heat exchanger integrated into a module which is easily installed and removed as a self-contained unit and furthermore includes a microchannel heat sink which is directly integrated into the chip containing the heat- generating components.
- Fluid coolant is forced through a plurality of microchannels formed in the heat sink by a micropump located on a substrate formed on a ground plane/heat exchanger which includes coolant input and output ducts coupled to the microchannels.
- the ground plane/heat exchanger additionally includes a set of heat exchanger fins which receive air flow from an external blower or fan.
- Figure 1 is an exploded parts diagram depicting a semiconductor component cooling system according to the known prior art
- FIG 2 is a mechanical schematic diagram broadly illustrative of a modular liquid cooling system in accordance with the present invention
- Figure 3 an exploded parts diagram illustrative of the preferred embodiment of the invention.
- Figure 4 is a perspective view of the unit shown in Figure 3 mounted on the ground plane and including a microchannel heat sink utilized for convection cooling of a plurality of semiconductor devices mounted thereon.
- reference numeral 30 denotes a module 30 which includes a load/heat sink 32, a heat exchanger 34 and a fluid coolant pump 36. These elements are shown interconnected by coolant fluid flow paths 38, 40 and 42. In addition, a fan 44 is depicted for forcing air past the heat exchanger 34.
- the load/heat sink 32 as shown in Figures 3 and 4 , is comprised of a body of material having high thermal conductivity which is attached to a ceramic substrate 48. The ceramic substrate 48 is in turn attached to a metal flange member 50.
- the flange 50 as shown in Figure 4, includes a pair of open-ended U-shaped slots 52 which are used for being bolted to the soft substrate portion 35 of a circuit board or groundplane member 54 which doubles as an air-to-liquid heat exchanger.
- the groundplane 54 also has a set of heat exchanger fins 56 depending from the bottom portion thereof; however, now the groundplane 54 also includes fluid flow paths or conduits 40 and 42 leading to and from a liquid coolant feed pump 36 located on the soft substrate 35.
- the ceramic substrate 48 seals the microchannels 62 and serves as a mechanical fluid manifold together with the metal flange 50 and serves to supply a liquid coolant 63 from the pump 36 in and out of the microchannel grooves 62 via pairs of openings 47, 49, and 50, 53.
- 0-ring seals 55 and 57 seal coolant being delivered from and to the pump 36 via the fluid flow paths 40 and 42.
- a coolant 63 such as FC-43 "Fluorinert" brand liquid manufactured by the 3M Company, comprises an optimum type of coolant liquid because of its high boiling point temperature (174 °C) and its non-corrosive nature.
- the pump 36 typically comprises a microminiature piezoelectric diaphragm pump such as shown and described in U.S.
- the pump 36 may comprise a non-mechanical magnetic micropump such as shown and described in the above-referenced copending application Serial No. 08/681,345 (WE58,812), entitled “Non-Mechanical Magnetic Pump For Liquid Cooling", filed in the name of Robin E. Hamilton et al. on July 22, 1996.
- the body 46 of the heat sink 32 is shown including a semiconductor chip 58 having integrated therewith a plurality of semiconductor devices 60 which may be, for example, high powered RF bipolar transistors.
- Beneath semiconductor chip 58 and the semiconductor devices 60 is a plurality of mutually parallel close-ended microchannels 62 of rectangular cross section formed in the material from which the heat sink body 46 is formed.
- Each microchannel 62 comprises an elongated linear groove ranging in width between 0.001 in. and 0.004 in., a depth ranging between 0.004 in. and 0.01 in. , with the spacing therebetween ranging between 0.001 in. and 0.003 in.
- the rectangular spacing sections 64 separating the microchannels 62 act as fins for conducting heat generated by the semiconductor devices 60 to the coolant 63 which is pumped through the microchannel 62 by the micropump 36.
- the heat generating semiconductors e.g. transistors
- the microchannels 62 can be inexpensively etched, using standard photolithographic processes, in the body of silicon, for example.
- Microchannel cooling may be integrated into different electrical components and even with integrated circuits up to wafer scale level of integration. It can also be used with various semiconductors such as silicon, silicon carbide, germanium and gallium arsenide which in turn are bonded to substrates such as, but not constrained to, beryllium oxide and aluminum nitride.
- a microchannel heat sink 32 is far more efficient than conventional liquid heat sinks, for example, as shown in Figure 1.
- the fundamental difference between a microchannel heat sink and a conventional heat sink is the dimensions of the channels 62 ( Figure 4) .
- the use of very narrow microchannels enhances heat transfers in two ways. First, narrow channels can be closely spaced, providing a large number of fins 64, with a combined surface area much greater than the "foot print" of the heat sink body 46. In addition, the small hydraulic diameters of the narrow passages result in relatively high convection heat transfer coefficients.
- the microchannels 62 provide an increase in the maximum power density for a given operating temperature and thus are ideal for direct cooling of hot components.
- a self- contained coolant loop with a microchannel heat sink coupled to a micropump and an air-to-liquid heat exchanger built right into a module which provides the thermal cooling efficiency of a liquid system while offering the simplicity of an air-cooled package.
- a structure is provided which can cool electronic devices with twice the heat dissipation than previously practical with air-cooled designs. Integration of higher power components into the electronics thus minimizes parts count, and reduces the quantity of peripheral circuits.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Circuit fermé de fluide de refroidissement autonome pour des dispositifs à semi-conducteurs, tels que des transistors de haute puissance. Ce circuit de fluide de refroidissement comprend un dissipateur de chaleur (32) à microcanaux, une micropompe (36) et un échangeur de chaleur air-liquide (34) intégré à un module remplaçable (30).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68134496A | 1996-07-22 | 1996-07-22 | |
US08/681,344 | 1996-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998003997A1 true WO1998003997A1 (fr) | 1998-01-29 |
Family
ID=24734879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/013326 WO1998003997A1 (fr) | 1996-07-22 | 1997-07-22 | Refroidissement en circuit ferme par un liquide dans des modules r.f. |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1998003997A1 (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002028160A3 (fr) * | 2000-09-29 | 2002-06-27 | Nanostream Inc | Dispositifs microfluidiques pour transfert thermique |
WO2002039241A3 (fr) * | 2000-11-13 | 2003-02-27 | P21 Gmbh | Composant electrique |
US6629425B2 (en) | 2000-07-24 | 2003-10-07 | Micron Technology, Inc. | MEMS heat pumps for integrated circuit heat dissipation |
EP1576320A4 (fr) * | 2001-09-28 | 2005-10-05 | Univ Leland Stanford Junior | Systeme de refroidissement electro-osmotique a micro-canaux |
EP1622198A2 (fr) | 2004-07-28 | 2006-02-01 | Brother Kogyo Kabushiki Kaisha | Substrat avec composant électronique et tête d'éjection de liquide avec ce substrat |
US7018917B2 (en) | 2003-11-20 | 2006-03-28 | Asm International N.V. | Multilayer metallization |
WO2007002766A3 (fr) * | 2005-06-27 | 2007-04-26 | Intel Corp | Transpondeur optique avec transfert de chaleur actif |
DE102007044754A1 (de) * | 2007-09-19 | 2009-04-09 | Robert Bosch Gmbh | Verfahren zur Herstellung einer elektronischen Baugruppe sowie elektronische Baugruppe |
WO2010086282A1 (fr) * | 2009-01-30 | 2010-08-05 | Robert Bosch Gmbh | Pièce composite et procédé de fabrication d'une pièce composite |
WO2014182380A1 (fr) * | 2013-05-10 | 2014-11-13 | Raytheon Company | Procede pour creer une interface etanche de soudre selective pour un systeme de refroidissement de circuit integre |
US9012278B2 (en) | 2013-10-03 | 2015-04-21 | Asm Ip Holding B.V. | Method of making a wire-based semiconductor device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894709A (en) * | 1988-03-09 | 1990-01-16 | Massachusetts Institute Of Technology | Forced-convection, liquid-cooled, microchannel heat sinks |
US5316077A (en) * | 1992-12-09 | 1994-05-31 | Eaton Corporation | Heat sink for electrical circuit components |
WO1995008844A1 (fr) * | 1993-09-21 | 1995-03-30 | Siemens Aktiengesellschaft | Systeme refrigerant pour un module de puissance a semi-conducteurs |
EP0709885A2 (fr) * | 1994-10-31 | 1996-05-01 | AT&T Corp. | Plaque à circuits imprimés comprenant un système de refroidissement intégré à boucle fermée |
-
1997
- 1997-07-22 WO PCT/US1997/013326 patent/WO1998003997A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894709A (en) * | 1988-03-09 | 1990-01-16 | Massachusetts Institute Of Technology | Forced-convection, liquid-cooled, microchannel heat sinks |
US5316077A (en) * | 1992-12-09 | 1994-05-31 | Eaton Corporation | Heat sink for electrical circuit components |
WO1995008844A1 (fr) * | 1993-09-21 | 1995-03-30 | Siemens Aktiengesellschaft | Systeme refrigerant pour un module de puissance a semi-conducteurs |
EP0709885A2 (fr) * | 1994-10-31 | 1996-05-01 | AT&T Corp. | Plaque à circuits imprimés comprenant un système de refroidissement intégré à boucle fermée |
Non-Patent Citations (1)
Title |
---|
"HERMETICALLY SEALED, FIELD REMOVABLE MODULE HAVING AN INTEGRAL PUMP AND COOLANT HEAT EXCHANGER FOR FORCED CONVECTION IMMERSION COOLING OF ELECTRONIC CIRCUIT MODULES", IBM TECHNICAL DISCLOSURE BULLETIN., vol. 35, no. 4B, September 1992 (1992-09-01), NEW YORK US, pages 443 - 444, XP002046249 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7107777B2 (en) | 2000-07-24 | 2006-09-19 | Micro Technology, Inc. | MEMS heat pumps for integrated circuit heat dissipation |
US6629425B2 (en) | 2000-07-24 | 2003-10-07 | Micron Technology, Inc. | MEMS heat pumps for integrated circuit heat dissipation |
SG105459A1 (en) * | 2000-07-24 | 2004-08-27 | Micron Technology Inc | Mems heat pumps for integrated circuit heat dissipation |
US7084004B2 (en) | 2000-07-24 | 2006-08-01 | Micron Technology, Inc. | MEMS heat pumps for integrated circuit heat dissipation |
US6501654B2 (en) | 2000-09-29 | 2002-12-31 | Nanostream, Inc. | Microfluidic devices for heat transfer |
WO2002028160A3 (fr) * | 2000-09-29 | 2002-06-27 | Nanostream Inc | Dispositifs microfluidiques pour transfert thermique |
WO2002039241A3 (fr) * | 2000-11-13 | 2003-02-27 | P21 Gmbh | Composant electrique |
EP1576320A4 (fr) * | 2001-09-28 | 2005-10-05 | Univ Leland Stanford Junior | Systeme de refroidissement electro-osmotique a micro-canaux |
US7018917B2 (en) | 2003-11-20 | 2006-03-28 | Asm International N.V. | Multilayer metallization |
EP1622198A3 (fr) * | 2004-07-28 | 2007-04-11 | Brother Kogyo Kabushiki Kaisha | Substrat avec composant électronique et tête d'éjection de liquide avec ce substrat |
EP1622198A2 (fr) | 2004-07-28 | 2006-02-01 | Brother Kogyo Kabushiki Kaisha | Substrat avec composant électronique et tête d'éjection de liquide avec ce substrat |
US7352591B2 (en) | 2004-07-28 | 2008-04-01 | Brother Kogyo Kabushiki Kaisha | Substrate mounted with electronic element thereon and liquid ejection head including the substrate |
US7558071B2 (en) | 2004-07-28 | 2009-07-07 | Brother Kogyo Kabushiki Kaisha | Substrate mounted with electronic element thereon |
WO2007002766A3 (fr) * | 2005-06-27 | 2007-04-26 | Intel Corp | Transpondeur optique avec transfert de chaleur actif |
US7457126B2 (en) | 2005-06-27 | 2008-11-25 | Intel Corporation | Optical transponder with active heat transfer |
DE102007044754A1 (de) * | 2007-09-19 | 2009-04-09 | Robert Bosch Gmbh | Verfahren zur Herstellung einer elektronischen Baugruppe sowie elektronische Baugruppe |
WO2010086282A1 (fr) * | 2009-01-30 | 2010-08-05 | Robert Bosch Gmbh | Pièce composite et procédé de fabrication d'une pièce composite |
US8730676B2 (en) | 2009-01-30 | 2014-05-20 | Robert Bosch Gmbh | Composite component and method for producing a composite component |
WO2014182380A1 (fr) * | 2013-05-10 | 2014-11-13 | Raytheon Company | Procede pour creer une interface etanche de soudre selective pour un systeme de refroidissement de circuit integre |
US8987892B2 (en) | 2013-05-10 | 2015-03-24 | Raytheon Company | Method for creating a selective solder seal interface for an integrated circuit cooling system |
US9012278B2 (en) | 2013-10-03 | 2015-04-21 | Asm Ip Holding B.V. | Method of making a wire-based semiconductor device |
US9553148B2 (en) | 2013-10-03 | 2017-01-24 | Asm Ip Holding B.V. | Method of making a wire-based semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5763951A (en) | Non-mechanical magnetic pump for liquid cooling | |
US7327570B2 (en) | Fluid cooled integrated circuit module | |
US6972365B2 (en) | Thermal management system and method for electronics system | |
US6421240B1 (en) | Cooling arrangement for high performance electronic components | |
US5801442A (en) | Microchannel cooling of high power semiconductor devices | |
US6705089B2 (en) | Two stage cooling system employing thermoelectric modules | |
US5036384A (en) | Cooling system for IC package | |
US7492594B2 (en) | Electronic circuit modules cooling | |
US6970358B2 (en) | Stack up assembly | |
US5001548A (en) | Multi-chip module cooling | |
US6496367B2 (en) | Apparatus for liquid cooling of specific computer components | |
WO1998004108A1 (fr) | Refroidissement par microcanaux a l'aide de carburants d'aviation pour dispositifs electroniques d'avion | |
TWI243011B (en) | Cooling system or electronic apparatus, and electronic apparatus using the same | |
US20120087088A1 (en) | Microscale heat transfer systems | |
US20220007551A1 (en) | Impinging jet coldplate for power electronics with enhanced heat transfer | |
JPH10215094A (ja) | Pcカードアレイからの熱除去装置 | |
US20050174735A1 (en) | High performance cooling systems | |
WO1998003997A1 (fr) | Refroidissement en circuit ferme par un liquide dans des modules r.f. | |
US20250142773A1 (en) | Cooling system assembly | |
EP1924809A1 (fr) | Echangeur thermique destine a des applications thermoelectriques | |
US7187550B1 (en) | Gasketed field-replaceable active integrated liquid pump heat sink module for thermal management of electronic components | |
JPH08213526A (ja) | 回路パック | |
US20050047085A1 (en) | High performance cooling systems | |
WO2012048432A1 (fr) | Dispositif de refroidissement d'émetteurs de radiodiffusion à haute puissance | |
US20250093115A1 (en) | Cooling system assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998507253 Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase |