WO1998007959A1 - Procede et dispositif permettant de concasser un materiau par decharges d'energie electrique pulsee, procede et dispositif permettant de generer des impulsions a haute tension - Google Patents
Procede et dispositif permettant de concasser un materiau par decharges d'energie electrique pulsee, procede et dispositif permettant de generer des impulsions a haute tension Download PDFInfo
- Publication number
- WO1998007959A1 WO1998007959A1 PCT/JP1997/002888 JP9702888W WO9807959A1 WO 1998007959 A1 WO1998007959 A1 WO 1998007959A1 JP 9702888 W JP9702888 W JP 9702888W WO 9807959 A1 WO9807959 A1 WO 9807959A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crushing
- electrode
- capacitor
- substance
- voltage
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000007599 discharging Methods 0.000 title claims abstract description 16
- 238000005553 drilling Methods 0.000 claims abstract description 33
- 239000003990 capacitor Substances 0.000 claims description 128
- 208000028659 discharge Diseases 0.000 claims description 94
- 239000000126 substance Substances 0.000 claims description 54
- 230000000630 rising effect Effects 0.000 claims description 9
- 238000009412 basement excavation Methods 0.000 claims description 7
- 230000015556 catabolic process Effects 0.000 claims description 7
- 230000005684 electric field Effects 0.000 claims 1
- 239000011435 rock Substances 0.000 description 27
- 239000000243 solution Substances 0.000 description 25
- 238000010586 diagram Methods 0.000 description 13
- 230000035939 shock Effects 0.000 description 10
- 230000010355 oscillation Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000004579 marble Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C37/00—Other methods or devices for dislodging with or without loading
- E21C37/18—Other methods or devices for dislodging with or without loading by electricity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/18—Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/18—Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
- B02C2019/183—Crushing by discharge of high electrical energy
Definitions
- the present invention relates to a method for crushing a substance such as a bedrock or a concrete by discharge of pulsed electric energy.
- a solid insulator such as a rock is drilled with a drill or the like, and a viscous electrolytic solution (eg, copper sulfate electrolytic solution) is placed in the hole.
- a coaxial electrode is inserted into this hole, and a high-voltage pulse is applied to this electrode.
- a plasma discharge is generated at the electrode, and the electrical energy radiated at this time crushes the rocks and fragments them.
- the inside of the confined area around the electrode is filled with the above-mentioned electrolytic solution so as to increase the destructive force generated by the plasma discharge.
- the rising time of the high voltage pulse is reduced to a predetermined value or less, so that the discharge current easily flows in the electrolyte.
- Japanese Patent Publication No. Sho 62-5202733 discloses that two or more different holes are made at a predetermined distance in a substance such as rock, an electrode is inserted into each hole, and a different hole is formed. Rocks are crushed by plasma discharge between the electrodes. At this time, high-voltage energy is applied to the rock in a very short time in the form of a pulse, which causes crushing.
- Japanese Patent Publication No. Sho 62-5202733 states that the rising time of the applied high-voltage pulse must be within a predetermined time in order to efficiently perform the electrofracture.
- the rise time of the high-voltage pulse is shortened to make the rocks and the like easily crushed, and the amount of electric energy input to the rocks and the like is increased in order to crush a large amount in a wide range. Need to be done.
- the present invention has been made in view of such conventional problems, and has excellent workability of drilling and crushing a preliminary hole at the time of electric crushing, and crushing a substance by pulsed electric energy discharge capable of efficiently performing the electrocrushing. It is an object of the present invention to provide a method, a crushing device, a high-voltage pulse generating method, and a high-voltage pulse generating device.
- an electrode is inserted into a preliminary hole provided in a substance to be crushed, the periphery of the electrode is filled with a solution, and a high-voltage pulse is applied to the electrode.
- a preliminary hole is formed in the substance by passing a discharge current through the electrode for preliminary hole drilling. Thereafter, the electrode for crushing is inserted into the preliminary hole, and a discharge current is passed through the electrode for crushing to crush the substance.
- a second invention is the crushing method according to the first invention, wherein a discharge current flows through the substance during the preliminary hole excavation, and a discharge current flows through the solution during the crushing. This allows a discharge current to flow through the material to be crushed during pre-drilling, so that this material is efficiently and deeply drilled. Also, when crushing, discharge Since the current flows, a shock wave is generated, and this shock wave crushes the material to be crushed in a wide range. As a result, it is possible to efficiently perform electrofracture by pulsed electric energy discharge.
- a discharge current is increased in the substance or the solution by changing a rising time of the high voltage pulse between the preliminary hole excavation and the crushing.
- the characteristic that the breakdown voltage of the substance to be crushed and the withstand voltage of the solution are exchanged according to the rise time of the high-voltage pulse is used.By changing the rise time, the discharge current is reduced in the crushed substance. Or flowing in a solution. Therefore, when a preliminary hole is drilled, a discharge current flows through the material to be crushed, and this material is efficiently and deeply drilled. In addition, during crushing, a discharge current flows through the solution around the electrode, and the shock wave crushes the material to be crushed over a wide area. As a result, electric crushing can be performed efficiently.
- the tip of the electrode in the crushing method of the first invention, is brought into contact with the substance at the time of digging the preliminary hole, and a discharge current flows through the substance. Discharge current is flowing through the solution away from the substance. In this way, when the tip of the electrode is brought into contact with the material to be crushed, a discharge current flows through this material, so that deep drilling can be performed when drilling a preliminary hole.
- a shock current is generated by causing a discharge current to flow through the solution while separating the tip of the electrode from the substance to be crushed, and the substance to be crushed is widely crushed by the shock wave. As a result, electrocrushing can be performed efficiently.
- At least two or more of the electrodes are used to drill at least two of the preliminary holes (4) at the time of digging the preliminary holes, and at least two of these The electrodes are inserted into the above-mentioned spare holes, and a high-voltage pulse is applied between these different electrodes.
- At least two or more electrodes are used to make preliminary holes at the same time, and by discharging between different electrodes inserted into these different preliminary holes, the gap between the preliminary holes and the surrounding area is discharged. Can be crushed extensively.
- the sixth invention of the apparatus for crushing a substance by pulsed electric energy discharge comprises: an electrode inserted into a preliminary hole formed in a substance to be crushed; a solution filling the periphery of the electrode; A pulse generator for applying a voltage pulse, wherein the substance is crushed by a discharge current at the electrode.
- An apparatus for crushing a substance by a Luz electrician energy discharge comprising: the electrode for preliminary hole drilling; and the electrode for crushing.
- a seventh aspect of the present invention is the crushing apparatus of the sixth aspect, further comprising a pulse generator for excavating a preliminary hole and outputting a frame that outputs the high-voltage pulse having a different rising time.
- a pulse generator for excavating a preliminary hole and outputting a frame that outputs the high-voltage pulse having a different rising time.
- the electrode and the pulse generator for preliminary hole drilling and crushing are shared during the preliminary hole drilling and crushing, respectively. Since the electrode for drilling and crushing and the pulse generator are shared during preliminary drilling and crushing, more efficient crushing can be performed. In this case, it is possible to switch the output waveform of the pulse generator between for preliminary hole drilling and crushing.
- a ninth invention is the crushing device according to the sixth invention, wherein at least two or more of the electrodes for preliminary excavation for simultaneously drilling at least two or more of the preliminary holes; At least two crushing electrodes that are inserted into different preliminary holes and between which the high-voltage pulse is applied, between the electrodes inserted into the two or more different preliminary holes.
- the substance is crushed by passing a discharge current through it.
- a preliminary hole is formed simultaneously with at least two or more electrodes, and discharge is performed between different crushing electrodes inserted into the different preliminary holes, so that a wide range can be crushed between the preliminary holes and the periphery thereof.
- a tenth invention of the high-voltage pulse generation method is a method of applying a high-voltage pulse to an electrode, and crushing or crushing a substance to be crushed by a discharge current at the electrode.
- energy is stored in at least two capacitors having different capacitances at different terminal voltage values, respectively, and the energy of the condenser on the side where the high voltage is stored is insulated from a substance. After the electrode is discharged at the early stage of the discharge at the time of destruction, the energy of the capacitor stored at a lower voltage than the electrode is continuously discharged.
- the eleventh invention of the high-voltage pulse generator according to the present invention is directed to a method for crushing a substance by pulsed electric energy discharge in which a high-voltage pulse is applied to an electrode, and a substance to be crushed is excavated or crushed by a discharge current at the electrode.
- High voltage pulse generator of the above two DC power supplies having different output voltage values, a first capacitor in which energy is stored from a high voltage power supply of the two DC power supplies, and a lower voltage.
- a second capacitor having energy stored therein from the power supply and having a capacity greater than the capacity of the first capacitor; and at least two or more capacitors discharging the energy stored in the first or second capacitor at the electrode.
- a trigger switch circuit is provided to a method for crushing a substance by pulsed electric energy discharge in which a high-voltage pulse is applied to an electrode, and a substance to be crushed is excavated or crushed by a discharge current at the electrode.
- the first capacitor stores energy from the high voltage power supply
- the second capacitor which has a larger capacitance than the first capacitor, stores energy from the lower voltage power supply.
- the second invention of the high-voltage pulse generator according to the present invention is that a high-voltage pulse is applied to an electrode, and a substance is crushed by pulse electric energy discharge in which a substance to be crushed is excavated or crushed by a discharge current at the electrode.
- a high-voltage pulse generator comprising: two DC power supplies having different output voltage values; a means for directly discharging the energy of a low-voltage power supply of the two DC power supplies from the electrode; and a higher-voltage power supply.
- the higher the voltage the more energy is stored in the capacitor from the DC power supply.
- the energy of this capacitor is discharged via the trigger switch circuit, so that the discharge becomes easy.
- the energy of the DC power source with the lower voltage is discharged through means (for example, a resistor) that directly discharges from the electrode, so that large energy required for crushing can be input. Therefore, it is possible to perform electro-fracture efficiently.
- FIG. 1 shows a configuration diagram of a crusher of a first embodiment according to the present invention.
- FIG. 2 is an explanatory view of the operation of the crushing apparatus according to the first embodiment during excavation of a preliminary hole.
- FIG. 3 is an operation explanatory view at the time of crushing according to the crushing device of the first embodiment.
- FIG. 4 shows a circuit configuration diagram of the pulse generator of the second embodiment.
- FIG. 5 is an example of an output voltage waveform diagram of the pulse generator of FIG.
- FIG. 6 is another example of the output voltage waveform diagram of the pulse generator of FIG.
- FIG. 7 is a chart showing the relationship between the rise time of the pulse voltage and the withstand voltage of various insulators according to the present invention.
- FIG. 8 shows a circuit configuration diagram of the pulse generator of the third embodiment.
- FIG. 9 is an output voltage waveform diagram of the pulse generator of FIG.
- FIG. 10 is an explanatory diagram of an example of how to use the electrodes in the third embodiment.
- FIG. 11 is an explanatory diagram of an example of how to use another electrode in the third embodiment.
- FIG. 12 is a circuit configuration diagram of a pulse generator according to a fourth embodiment of the present invention.
- FIG. 13 is an output voltage waveform diagram of the pulse generator of FIG.
- FIG. 14 is an explanatory diagram of an example of how to use the electrodes in the fifth embodiment.
- FIG. 15 is an explanatory diagram of an example of how to use another electrode in the fifth embodiment.
- the electrode 1 is an electrode used for both pre-hole drilling and main crushing, and is connected to the pulse generator 10.
- the pulse generator 10 outputs a high-voltage pulse having a predetermined output waveform.
- the electrode 1 includes a cylindrical negative electrode 3 and a positive electrode 2 provided along the central axis of the negative electrode 3, and the positive electrode 2 and the negative electrode 3 are insulated by an insulator.
- the inside of the negative electrode 3 may be in a hollow state or may be filled with an insulator.
- the positive electrode 2 and the negative electrode 3 are connected to a pulse generator 10 respectively.
- the periphery of the front end of the electrode 1 is surrounded by a solution 9 having a predetermined insulation resistance.
- FIG. 2 and FIG. 3 are explanatory diagrams of the operation of the present embodiment, and show the case of digging a preliminary hole and the case of crushing, respectively.
- a high voltage pulse is applied by bringing the tip of the electrode 1 into contact with the surface of rock or the like.
- the discharge current flowing between the positive electrode 2 and the negative electrode 3 flows in the rock, it is possible to reliably excavate a hole in the rock. Since this discharge current flows only in the vicinity of electrode 1, the drilled hole is Is a hole having substantially the same shape as the outer shape of. Therefore, this hole can be used as the spare hole 4.
- FIG. 2 and FIG. 3 are explanatory diagrams of the operation of the present embodiment, and show the case of digging a preliminary hole and the case of crushing, respectively.
- the tip of the electrode 1 is separated from the bottom surface of the preliminary hole 4, and discharge is performed in the solution 9 filled in the preliminary hole 4.
- a shock wave is generated by the discharge current flowing through the solution 9, and the shock wave propagates through the solution 9 and spreads in the lateral direction of the preliminary hole 4. Crushed. Therefore, crushing can be performed efficiently.
- the power supply 11 outputs a predetermined DC high voltage at a predetermined repetition frequency as shown in FIG. 4, and this output is applied to the capacitor 13 via the resistor 12.
- the terminal voltage of the capacitor 13 is applied to the capacitor 15 via the trigger switch circuit 14.
- the trig switch circuit 14 is composed of, for example, a switch for high voltage and high current such as a shunt tube, and an inductance (coil).
- the terminal voltage of the capacitor 15 is applied to the capacitor 17 via the magnetic switch 16, and the terminal voltage of the capacitor 17 is applied to the capacitor 19 via the magnetic switch 18.
- the magnetic switch 16, the capacitor 17, the magnetic switch 18, and the capacitor 19 constitute a pulse compression circuit, and the rising time of the rising of the input pulse voltage is shortened, and the pulse is sharpened. It changes the voltage.
- An output switching switch 20 is provided on the output side of the pulse compression circuit, and a common terminal of the output switching switch 20 is connected to the positive electrode 2 of the electrode 1.
- One of the two output terminals of the output switching switch 20 is connected to the output of the capacitor 15, and the other output terminal is connected to the output of the capacitor 19. Then, the output switching switch 20 selects the terminal voltage of the capacitor 15 and the terminal voltage of the capacitor 19, and applies them to the positive electrode 2 of the electrode 1.
- the other end of each capacitor 13, 15, 17, 19, and the negative electrode 3 of electrode 1 are Each is connected to the negative terminal of the power supply 11.
- the magnetic switches 16 and 18 are capable of magnetically switching the current, and are usually in an unsaturated state while the current value flowing through the magnetic switches 16 and 18 is small. Evening is getting very big. Also, when the value of the current flowing through the magnetic switches 16 and 18 becomes larger than a predetermined value, it becomes saturated and the inductance becomes very small.
- a pulse voltage waveform having a short rise time can be obtained as follows.
- the power supply 11 accumulates electric charge at a predetermined voltage in the capacitor 13 via the resistor 12 during a predetermined time (repetition cycle time).
- the switch of the trigger switch circuit 14 switches to ⁇ N, and the electric charge stored in the capacitor 13 is transferred to the capacitor 15 via the trigger switch circuit 14.
- the transfer of the charge is Complete.
- the magnitude of the unsaturated inductance of the magnetic switch 16 is large, and during the above-mentioned half cycle, it is set to be larger than the inductance of the coil in the trigger switch circuit 14, so that the capacitor i3 Almost all the charge is transferred to the capacitor 15.
- the terminal voltage of the capacitor 15 reaches the peak value.
- the value of the current flowing through the magnetic switch 16 increases and reaches a saturation state. Since the magnitude of the inductance of the magnetic switch 16 in the saturated state is set to be much smaller than the inductance of the coil in the trigger switch circuit 14, the charge of the capacitor 15 is generated in the next half cycle. Does not return to the capacitor 13 but goes to the capacitor 17 via the magnetic switch 16.
- the transfer of the charge is completed during a half cycle of the oscillation cycle time of the LC oscillation circuit constituted by the saturation inductance of the magnetic switch 16 and the capacitors 15 and 17.
- the magnitude of the unsaturated inductance of the magnetic switch 18 is large, and is larger than the saturation inductance of the magnetic switch 16 during the above half period. Therefore, almost all the charge of the capacitor 15 is transferred to the capacitor 17.
- the terminal voltage of the capacitor 17 reaches the peak value.
- the magnitude of the saturation inductance of the magnetic switch ⁇ 8 is set to be much smaller than the saturation inductance of the magnetic switch 16.
- the charge does not return to the capacitor 15 but passes to the capacitor 19 via the magnetic switch 18.
- the transfer of the electric charge is completed during a half cycle of the oscillation cycle time of the LC oscillation circuit constituted by the saturation inductance of the magnetic switch 18 and the capacitors 17 and 19.
- the half cycle time when the charge of the capacitor 13 sequentially transfers to the next stage capacitors 15, 17, and 19 is Go short. Therefore, the rise time of the voltage when the charge is stored in the capacitor 19 is shorter than the rise time of the voltage when the charge is stored in the capacitor 15.
- FIGS. 5 and 6 show the voltage waveforms of the capacitors 15 and 19 at this time. In this way, the rise of the pulse voltage can be made faster by the Panorless compression circuit.
- the output switching switch 20 switches between the voltage of the capacitor 15 and the voltage of the capacitor 19 to select the rise time of the pulse voltage applied to the electrode 1. Further, by switching the rise time of the pulse voltage, it is possible to select whether to discharge in the solution 9 or in the rock for the following reasons. This means that the same electrode 1 can be used to dig a preliminary hole 4 or to perform the main crushing, as in the first embodiment.
- Figure 7 shows the general relationship between the rise time of the applied pulse voltage and the dielectric strength of each insulator when this pulse voltage is applied.
- the horizontal axis represents the rise time of the applied pulse voltage (generally, the time required for the pulse voltage to rise from 10% to 90% of the maximum value)
- the vertical axis represents the withstand voltage
- It is expressed in semilogarithms with the logarithmic scale on the horizontal axis.
- curves 41, 42, and 43 represent water, marble, Represents the characteristics of sandstone.
- the withstand voltage of rock such as marble or sandstone is smaller than that of water when the rise time of the pulse voltage is short.
- the discharge current flows more easily in the rock than in the solution (water), so that it is suitable for drilling the preliminary hole 4 in the rock or crushing the rock deeply.
- rocks such as marble and sandstone have a higher withstand voltage than water. Therefore, in this case, the discharge current flows more easily in the solution (water) than in the rock, and is suitable for crushing over a wide area by the shock wave of the solution.
- a single pulse generator 10 is provided with several circuits capable of generating pulse waveforms having different rise times, and by switching this output circuit, a high-voltage pulse is generated.
- the configuration is not limited to this.For example, separate pulse generators for generating pulse waveforms having different rise times are separately provided, and the output voltage is switched between when drilling a preliminary hole and when crushing. You may do so.
- the electrodes may be different for preliminary drilling and crushing, or the same electrode may be used in common.
- the input energy is increased by changing the pulse voltage waveform.
- Each of the power supplies 21 and 31 is a DC power supply that outputs predetermined voltages VI and V 2 as shown in FIG.
- the predetermined voltages VI and V2 are expressed by the following equations. VI ⁇ V2
- each of the trigger switch circuits 24 and 34 is provided with a series circuit including, for example, a switch composed of a thyratron and the like and a coil having a predetermined inductance.
- FIG. 9 shows an output voltage waveform from the pulse generator 10 having the above configuration, and the operation in the present embodiment will be described with reference to FIG.
- the terminal voltage of the capacitor 23 becomes substantially equal to V I after a predetermined time, and a predetermined amount of charge is accumulated in the capacitor 23.
- the terminal voltage of the capacitor 33 becomes substantially equal to V2 after a predetermined time, and a predetermined amount of electric charge is accumulated in the capacitor 33.
- the switch of the trigger switching circuit 24 is turned ON, the electric charge of the capacitor 23 is transferred to the capacitor 25, and the terminal voltage of the capacitor 25 reaches approximately V I.
- the inductance of the coil in the trigger switching circuit 24 is set to be smaller than the inductance of the coil 26, almost all charges of the capacitor 23 are reduced to the respective capacitors 23, 25. The operation shifts to the capacitor 25 with a natural oscillation cycle time determined by the capacitance of the coil and the inductance of the coil in the trigger switch circuit 24.
- the rising speed of the terminal voltage of the capacitor 35 is increased.
- a pulse voltage having a high peak voltage value (equal to V 2) and a short rise time is applied between the positive electrode 2 and the negative electrode 3, and dielectric breakdown is likely to occur.
- the charge of the capacitor 25 is passed through the coil 26 for a predetermined oscillation cycle time. It shifts to the capacitor 35. As a result, the electric charge of the capacitor 25 is slowly discharged from the electrode 1 more slowly than the discharge of the peak voltage pulse. Since the capacity of the capacitor 25 is larger than that of the capacitor 35, the amount of charge (energy) stored in the capacitor 25 is large, and therefore, the discharge energy input to the rock is increased. As a result, a wide range of rocks can be crushed, and efficient electrocrushing can be performed.
- each of the positive electrode 2 and the negative electrode 3 of the electrode 1 has a rod shape.
- the positive electrode 2 and the negative electrode 3 of the electrode 1 connected to the pulse generator 10 are inserted at a predetermined distance into one preliminary hole 4 filled with the solution 9.
- a shock wave is generated by discharging with the solution 9, and it is possible to crush a large amount in a large area around the preliminary hole 4.
- the positive electrode 2 and the negative electrode 3 are separately inserted into at least two or more different preliminary holes 4 and 4, and the pulse generator 10 is connected between the positive electrode 2 and the negative electrode 3. You may.
- the pulse generation device described in the present embodiment is used. According to the device 10, after the insulation of rocks and the like is destroyed by high-voltage pulses with a fast rise, a large amount of energy is injected into the rocks in a slow discharge time. Therefore, it is possible to increase the breaking force of the electro-fracture.
- the output of the power supply 21 is applied to the capacitor 35 via the resistor 27, and the output voltage of the capacitor 3 is applied to the positive electrode 2 of the electrode 1.
- the output of the power supply 31 is applied to the capacitor 33 via the resistor 32, and the output voltage of the capacitor 33 is applied to the capacitor 35 via the trigger switching circuit 34.
- FIG. 13 shows the output voltage waveform of the pulse generator 10 described above, and the operation of the present embodiment will be described with reference to FIG.
- the voltage VI is output from the power supply 21
- a current flows to the capacitor 35 via the resistor 27, and after a predetermined time, the terminal voltage of the capacitor 35 becomes substantially equal to VI, and a predetermined amount of electric charge is discharged.
- the voltage between the positive electrode 2 and the negative electrode 3 has a low force voltage equal to the above-mentioned voltage VI, so that the discharge has not yet started.
- the terminal voltage of the capacitor 33 becomes substantially equal to V 2 after a predetermined time, and a predetermined amount of charge is accumulated in the capacitor 33.
- FIG. 14 An example in which a plurality of preliminary holes are excavated and crushed over a wide area according to the fifth embodiment will be described with reference to FIGS. 14 and 15.
- FIG. 14 An example in which a plurality of preliminary holes are excavated and crushed over a wide area according to the fifth embodiment will be described with reference to FIGS. 14 and 15.
- FIG. 14 An example in which a plurality of preliminary holes are excavated and crushed over a wide area according to the fifth embodiment will be described with reference to FIGS. 14 and 15.
- a plurality of preliminary holes 4 are drilled as shown in FIG.
- the same electrode 1 may be used repeatedly for excavation, or at least two or more electrodes 1, 1 and a pulse generator IQ, 10 connected to each electrode 1, 1 may be used. It may be used to excavate at the same time.
- both switching switches 45 and 46 are turned off, and when either one of the pulse generators 10a outputs a high-voltage pulse, the positive electrode 2a of electrode 1a and the negative electrode of electrode 1b Discharge current flows between 3b. This allows a large amount of material to be crushed over a wide area because the discharge current flows through the rock between the preliminary holes.
- the present invention provides a method of crushing a substance by pulse electric energy discharge, which can efficiently perform pre-hole drilling and crushing at the time of electro crushing, and can efficiently perform electro crushing, a crushing apparatus thereof, a method of generating a high voltage pulse, And it is useful as a high voltage pulse generator thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Disintegrating Or Milling (AREA)
Description
明 細 書 パルス電気エネルギー放電による物質の破砕方法、 その破砕装置、 その高電 圧パルス発生方法、 及びその高電圧パルス発生装置 技 術 分 野
本発明は、 岩盤やコンクリ一卜等の物質をパルス電気エネルギーの放電により 破砕する方法に関する。 背 景 技 術
従来、 岩盤やコンクリ一卜等を電気エネルギーの放電により破砕する (以下電 気破砕という) 方法が、 いくつか提案されている。
特開平 4 - 2 2 2 7 9 4号公報においては、 ドリル等によって岩石等の固体絶 縁物に穴を開け、 この穴の中に粘性の有る電解液 (例えば硫酸銅電解液) を入れ た状態で、 この穴の中に同軸状の電極を挿入し、 この電極に高電圧パルスを印加 している。 これにより、 電極にプラズマ放電が発生し、 このとき放射される電気 的エネルギーが岩石を破砕して断片化している。 そして、 電極の周囲の閉じ込め られた領域の中を上記電解液で満たし、 プラズマ放電で発生した破壊力を増大さ せるようにしている。 また、 高電圧パルスの上昇時間を所定値以下に小さく し、 電解液中を放電電流が流れ易く している。
また、 特表昭 6 2 - 5 0 2 7 3 3号公報には、 岩石等の物質中に所定距離をお いて 2個以上の異なる穴を開け、 各穴に電極を挿入し、 異なる穴の電極間でブラ ズマ放電させることにより、 岩石を破砕している。 このとき、 極めて短い時間で パルス状に高電圧エネルギーが岩石に加えられることにより、 破砕が行われる。 し力、しな力 ら、 いずれの公報においても、 破砕用の電極を挿入するための穴を 予め別の手段 (例えばドリルなど) により開ける必要がある。 このため、 実際に 電気破砕を行う際は、 穴開け用の手段と破碎用の装置を別に準備する必要があり
、 段取り替え等に工数を要するため作業性があまり良くないという問題がある。 また、 特表昭 6 2 - 5 0 2 7 3 3号公報では、 電気破砕を効率的に行うために 、 印加する高電圧パルスの上昇時間を所定時間以内にする必要があるとしている 。 しかし、 実用的に電気破砕を行うには、 大量の物質を短時間の内に破砕するこ とが求められており、 さらに効率的な方法が要求されている。 従って、 上記のよ うに高電圧パルスの上昇時間を短時間にして岩石等が破砕され易くすると共に、 広い範囲において大量に破砕が行われるようにするため、 岩石等に投入する電気 エネルギー量を増大させる必要がある。
発 明 の 開 示
本発明は、 かかる従来の問題点に着目してなされたもので、 電気破砕時の予備 穴掘削及び破砕の作業性が良く、 且つ電気破砕を効率的に実施できるパルス電気 エネルギー放電による物質の破砕方法、 その破砕装置、 その高電圧パルス発生方 法、 及びその高電圧パルス発生装置を提供することを目的としている。 本発明 に係るパルス電気エネルギー放電による物質の破砕方法の第 1発明は、 破砕対象 の物質に設けた予備穴に電極を挿入し、 この電極の周囲を溶液で満たし、 この電 極に高電圧パルスを印加し、 この電極での放電電流により前記物質を破砕するパ ルス電気エネルギー放電による物質の破砕方法において、 予備穴掘削用の前記電 極により放電電流を流して前記物質に予備穴を開けた後、 この予備穴に破砕用の 前記電極を挿入し、 この破砕用の電極で放電電流を流して前記物質を破砕してい る。
これにより、 予備穴の掘削及びこの予備穴を使用した破砕を共にパルス電気工 ネルギー放電による電気破砕で行うので、 効率的な破砕が可能となる。
第 2発明は、 第 1発明の破砕方法において、 前記予備穴掘削時には前記物質中 に放電電流を流し、 また、 前記破砕時には前記溶液の中に放電電流を流している 。 これにより、 予備穴掘削時には破砕対象の物質中に放電電流を流すので、 この 物質が効率よく、 深く掘削される。 また、 破砕時には電極周囲の溶液中に放電電
流を流すので、 これにより衝撃波が発生し、 この衝撃波が破砕対象物質を広範囲 に破砕する。 この結果、 パルス電気エネルギー放電による電気破砕を効率的に行 うことが可能となる。
第 3発明は、 第 1発明の破砕方法において、 前記予備穴掘削時と破砕時とで、 前記高電圧パルスの上昇時間を変化させることにより、 放電電流を前記物質中又 は溶液の中のいずれに流すかを選択して L、る。
このように、 高電圧パルスの上昇時間により破砕対象物質の絶縁耐圧と溶液の 絶縁耐圧の大きさが入れ換わる特性を利用しており、 上昇時間を変化させること で、 放電電流が破砕対象物質中を流れるか、 又は溶液中を流れるかを選択できる 。 したがって、 予備穴掘削時には破砕対象物質中に放電電流が流れるので、 この 物質が効率よく、 深く掘削される。 また、 破砕時には電極周囲の溶液中に放電電 流が流れるので、 衝撃波が破砕対象物質を広範囲に破砕する。 この結果、 電気破 砕を効率的に行うことができる。
第 4発明は、 第 1発明の破砕方法において、 前記予備穴掘削時には前記電極の 先端部を前記物質に接触させてこの物質中に放電電流を流し、 また、 破砕時には 前記電極の先端部を前記物質から離して溶液の中に放電電流を流している。 このように、 電極の先端部を破碎対象物質に接触させることにより、 この物質 中に放電電流が流れるので、 予備穴掘削時に深く掘削できる。 また、 電極の先端 部を破砕対象物質から離して溶液中に放電電流を流すことにより衝撃波が発生し 、 この衝撃波で破砕対象物質が広範囲に破砕される。 この結果、 電気破砕を効率 的に ί亍える。
第 5発明は、 第 1発明の破砕方法において、 前記予備穴掘削時には、 前記電極 を少なくとも 2個以上使用して前記予備穴 (4) を少なくとも 2個以上開け、 前記 破砕時には、 これら異なる 2個以上の予備穴にそれぞれ前記電極を挿入し、 これ ら異なる電極間に高電圧パルスを印加している。
このように、 少なくとも 2個以上の電極で予備穴を同時に開け、 この異なる予 備穴に挿入した異なる電極間で放電させることにより、 予備穴間及びその周辺を
広範囲に破砕することができる。
本発明に係るパルス電気エネルギー放電による物質の破碎装置の第 6発明は、 破砕対象の物質に開けた予備穴に揷入される電極と、 この電極の周囲を満たす溶 液と、 この電極に高電圧パルスを印加するパルス発生装置とを備え、 この電極で の放電電流により前記物質を破砕する 、。ルス電気工ネルギ一放電による物質の破 砕装置において、 予備穴掘削用の前記電極と、 破砕用の前記電極とを備えている 。 このように、 予備穴掘削用の電極及び破砕用の電極を使用して、 それぞれ予備 穴掘削及び破砕をパルス電気エネルギー放電による電気破砕で行うので、 効率的 な破砕ができる。
第 7発明は、 第 6発明の破砕装置において、 それぞれ異なる上昇時間の前記高 電圧パルスを出力する予備穴掘削用及び破枠用のパルス発生装置を備えている。 このように、 高電圧パルスの上昇時間により破砕対象物質の絶縁耐圧と溶液の 絶縁耐圧の大きさが入れ換わる特性を利用している。 この上昇時間が異なる高電 圧パルスを出力する予備穴掘削用及び破砕用のパルス発生装置によって、 電極に 放電電流を流す。 これにより、 予備穴掘削時に破砕対象物質中に放電電流が流れ るので、 この物質が効率よく、 深く掘削される。 また、 破砕時に電極周囲の溶液 中に放電電流が流れるので、 このときの衝撃波が破砕対象物質を広範囲に破砕す る。 この結果、 電気破砕を効率的に行うことができる。
第 8発明は、 第 6発明の破砕装置において、 予備穴掘削用及び破砕用のそれぞ れの前記電極とパルス発生装置とを、 前記予備穴掘削時及び破砕時に共用してい このように、 予備穴掘削用及び破砕用の電極とパルス発生装置とを予備穴掘削 時及び破砕時に共用するので、 さらに効率的な破砕ができる。 この場合、 パルス 発生装置の出力波形を、 予備穴掘削用と破砕用とで切り換えること等で可能とな 。
第 9発明は、 第 6発明の破砕装置において、 少なくとも 2個以上の前記予備穴 を同時に開ける少なくとも 2個以上の予備掘削用の前記電極と、 これら 2個以上
の異なる予備穴に挿入され、 且つその間に前記高電圧パルスが印加される少なく とも 2個以上の破砕用の前記電極とを備え、 これら異なる 2個以上の予備穴に揷 入された前記電極間に放電電流を流して物質を破砕する。
このように、 少なくとも 2個以上の電極で予備穴を同時に開け、 この異なる予 備穴に挿入した異なる破砕用電極間で放電させることにより、 予備穴間及びその 周辺を広範囲に破砕することができる。
本発明に係る高電圧パルス発生方法の第 1 0発明は、 電極に高電圧パルスを印 加し、 この電極での放電電流により破砕対象の物質を掘削又は破碎するパルス電 気エネルギー放電による物質破砕の高電圧パルス発生方法において、 互いに異な る容量を有する少なくとも 2個のコンデンサに、 異なる端子電圧値でそれぞれェ ネルギ一を蓄積し、 高電圧で蓄積された側の前記コンデンザのエネルギーを物質 の絶縁破壊時の放電初期に前記電極で放電させた後、 これより低電圧で蓄積され た側の前記コンデンサのエネルギーを継続して放電させている。
このように、 破壊対象物質の絶縁破壤時の放電初期には、 高電圧で蓄積したコ ンデンザのエネルギーを放電して放電し易いようにする。 その後、 より低電圧で 蓄積した、 より大容量のエネルギーを放電することによって、 破砕に必要な大き なエネルギーを投入することができる。 したがって、 電気破砕を効率的に行うこ とが可能となる。
本発明に係る高電圧パルス発生装置の第 1 1発明は、 電極に高電圧パルスを印 加し、 この電極での放電電流により破砕対象の物質を掘削又は破砕するパルス電 気エネルギー放電による物質破砕の高電圧パルス発生装置において、 異なる出力 電圧値を有する 2個の直流電源と、 これら 2個の直流電源の内の高い電圧電源か らエネルギーが蓄積される第 1のコンデンサと、 これより低い電圧電源からエネ ルギ一が蓄積され、 この第 1のコンデンサの容量より大きな容量を有する第 2の コンデンザと、 これら第 1又は第 2のコンデンサに蓄積されたエネルギーを前記 電極で放電させる少なくとも 2個以上のトリガスィツチ回路とを備えている。 このように、 互いに異なる容量を有するコンデンサを備え、 容量が小さい方の
第 1のコンデンサには高電圧電源からエネルギーを蓄積し、 容量が第 1のコンデ ンサより大きい第 2のコンデンザには電圧がより低 、方の電源からエネルギーを 蓄積する。 破壊対象物質の絶縁破壊時の放電初期には、 高電圧で蓄積したコンデ ンサのエネルギーをトリガスィツチ回路を介して放電するので、 放電し易くなる
。 その後、 より低電圧で蓄積した、 より大容量のエネルギーを他の卜リガスイツ チ回路によって放電するので、 破砕に必要な大きなエネルギーを投入することが できる。 したがって、 電気破砕を効率的に行うことが可能となる。
本発明に係る高電圧パルス発生装置の第】 2発明は、 電極に高電圧パルスを印 加し、 この電極での放電電流により破砕対象の物質を掘削又は破砕するパルス電 気エネルギー放電による物質破砕の高電圧パルス発生装置において、 異なる出力 電圧値を有する 2個の直流電源と、 これら 2個の直流電源の内の低い電圧電源の エネルギーを前記電極から直接放電させる手段と、 これより高い電圧電源からェ ネルギ一が蓄積されるコンデンサと、 このコンデンサに蓄積されたエネルギーを 前記電極で放電させるトリガスィツチ回路とを備えている。
このように、 電圧が高 ^、方の直流電源からコンデンサにエネルギーを蓄積する。 破壊対象物質の絶縁破壊時の放電初期には、 このコンデンサのエネルギーを卜リ ガスイッチ回路を介して放電するので、 放電し易くなる。 その後、 電圧が低い方 の直流電源のエネルギーを電極から直接放電させる手段 (例えば、 抵抗等) を介 して放電するので、 破砕に必要な大きなエネルギーを投入することができる。 し たがって、 電気破砕を効率的に行うことが可能となる。 図面の簡単な説明
図 1は本発明に係る第 1実施形態の破砕装置の構成図を示す。
図 2は第 1実施形態の破砕装置に係る予備穴掘削時の作用説明図である。
図 3は第 1実施形態の破砕装置に係る破砕時の作用説明図である。
図 4は第 2実施形態のパルス発生装置の回路構成図を示す。
図 5は図 4のパルス発生装置の出力電圧波形図の例である。
図 6は図 4のパルス発生装置の出力電圧波形図の他の例である。
図 7は本発明に係るパルス電圧の上昇時間と各種絶縁物の絶縁耐圧との関係を示 す図表である。
図 8は第 3実施形態のパルス発生装置の回路構成図を示す。
図 9は図 8のパルス発生装置の出力電圧波形図である。
図 1 0は第 3実施形態における電極の使用方法例の説明図である。
図 1 1は第 3実施形態における他の電極の使用方法例の説明図である。
図 1 2は本発明の第 4実施形態のパルス発生装置の回路構成図を示す。
図 1 3は図 1 2のパルス発生装置の出力電圧波形図である。
図 1 4は第 5実施形態における電極の使用方法例の説明図である。
図 1 5は第 5実施形態における他の電極の使用方法例の説明図である。 発明を実施するための最良の形態
本発明に係る各実施形態を、 図面を参照しながら詳細に説明する。
先ず、 第 1実施形態を図 1〜図 3に基づいて説明する。 電極 1は、 図 1に示す ように予備穴掘削及び本破砕に兼用される電極で、 パルス発生装置 1 0に接続さ れている。 パルス発生装置 1 0は、 所定の出力波形を有する高電圧パルスを出力 する。 電極 1は円筒形状の負極 3と、 負極 3の中心軸に沿って設けられた正極 2 とからなり、 正極 2と負極 3間は絶縁体によって絶縁されている。 負極 3の内部 は中空状態でもよいし、 あるいは絶縁体によって満たされていてもよい。 この正 極 2及び負極 3は、 それぞれパルス発生装置 1 0に接続されている。 電極 1の先 端部の周囲は、 所定の絶縁抵抗を有する溶液 9により囲まれている。
図 2及び図 3は本実施形態の作用の説明図であり、 それぞれ予備穴掘削時と破 砕時を表している。 予備穴掘削時は、 図 2に示すように電極 1の先端部を岩石等 の表面に接触させて高電圧パルスを印加している。 このとき、 正極 2と負極 3間 に流れる放電電流は岩石中を流れるので、 確実に岩石の穴を掘削することが可能 である。 この放電電流は電極 1の近傍のみに流れるので、 掘削された穴は電極 1
の外形と略同様の形状をした穴となる。 したがって、 この穴を予備穴 4として使 用することができる。 破砕時は、 図 3に示すように電極 1の先端部をこの予備穴 4の底面から離し、 予備穴 4の中に満たされた溶液 9中で放電させる。 このとき は、 放電電流が溶液 9の中を流れることにより衝撃波が発生し、 この衝撃波は溶 液 9の中を伝搬して予備穴 4の側面方向に広がり、 この衝撃波のエネルギーで岩 石を広範囲に破砕する。 したがって、 破砕を効率的に行うことができる。
次に、 第 2実施形態を図 4〜図 7に基づいて説明する。 本実施形態では、 高電 圧パルスの上昇時間を制御することにより、 放電電流の流れる経路を制御する例 を示している。
電源 1 1は、 図 4に示すように所定の直流高電圧を所定の繰り返し周波数で出 力しており、 この出力は抵抗 1 2を介してコンデンサ 1 3に印加される。 また、 コンデンサ 1 3の端子電圧は、 卜リガスイッチ回路 1 4を介してコンデンサ 1 5 に印加されている。 卜リガスィツチ回路 1 4は、 例えばサイラ 卜口ン管等の高電 圧及び高電流用のスィッチと、 インダクタンス (コイル) とから構成されている 。 さらに、 コンデンサ 1 5の端子電圧は磁気スィッチ 1 6を経由してコンデンサ 1 7に、 また、 コンデンサ 1 7の端子電圧は磁気スィッチ 1 8を経由してコンデ ンサ 1 9に印加されている。 ここで、 磁気スィツチ 1 6、 コンデンサ 1 7、 磁気 スィッチ 1 8、 及びコンデンサ 1 9はパルス圧縮回路を構成しており、 入力され るパルス電圧の立ち上がり時の上昇時間を短時間にし、 急峻にパルス電圧を変化 させるようになっている。
このパルス圧縮回路の出力側には、 出力切り換えスィッチ 2 0が設けられてお り、 この出力切り換えスィッチ 2 0の共通端子は電極 1の正極 2に接続されてい る。 出力切り換えスィッチ 2 0の 2つの出力端子の内のいずれか一^ 3は、 コンデ ンサ 1 5の出力に接続されており、 他の出力の端子はコンデンサ 1 9の出力に接 続されている。 そして、 この出力切り換えスィッチ 2 0によって、 コンデンサ 1 5の端子電圧とコンデンサ 1 9の端子電圧が選択され、 電極 1の正極 2に印加さ れる。 各コンデンサ 1 3、 1 5、 1 7、 1 9の他端、 及び電極 1の負極 3は、 そ
れぞれ電源 1 1の負極端子に接続されている。
ここで、 磁気スィッチ 1 6、 1 8は磁気的に電流をスィッチできるものであり 、 通常、 磁気スィッチ 1 6、 1 8を流れる電流値が小さい間は未飽和状態にあつ て、 その未飽和インダク夕ンスは非常に大きくなつている。 また、 磁気スィッチ 1 6、 1 8を流れる電流値が所定値以上に大きくなると、 飽和状態になってこの ィンダクタンスは非常に小さくなる。
このような構成のパルス発生装置 1 0によると、 以下のようにして、 ヒ昇時間 が短いパルス電圧波形を得ることができる。
先ず、 電源 1 1が所定時間 (繰り返し周期時間) の間に抵抗 1 2を介してコン デンサ 1 3に所定電圧で電荷を蓄積する。 次に、 卜リガスィッチ回路 1 4のスィ ツチが〇Nし、 コンデンサ 1 3に蓄積された電荷はこのトリガスィッチ回路 1 4 を経由してコンデンサ 1 5に移行する。 このとき、 卜リガスイッチ回路 1 4内の 前記コイルとこれらのコンデンサ 1 3、 1 5とによって構成される L C発振回路 の固有発振周波数で決まる周期時間の半周期の間に、 上記電荷の移行は完了する 。 磁気スィッチ 1 6の未飽和インダクタンスの大きさ力く、 上記半周期の間は、 卜 リガスィツチ回路 1 4内の前記コイルのィンダク夕ンスより大きくなるように設 定されているので、 コンデンサ i 3の電荷は殆ど全部コンデンサ 1 5に移行する 。 そして、 電荷移行完了時、 コンデンサ 1 5の端子電圧はピーク値に達する。 この後、 磁気スィツチ 1 6を流れる電流値が大きくなって飽和状態に達するよ うになつている。 磁気スィッチ 1 6の飽和状態でのインダクタンスの大きさは卜 リガスィツチ回路 1 4内の前記コイルのィンダクタンスより非常に小さくなるよ うに設定されているので、 次の半周期にはコンデンサ 1 5の電荷はコンデンサ 1 3に戻らずに、 磁気スィッチ 1 6を経由してコンデンサ 1 7に移行する。 このと き、 磁気スィツチ 1 6の飽和ィンダクタンスとコンデンサ 1 5、 1 7とによって 構成される L C発振回路の発振周期時間の半周期の間に、 上記電荷の移行は完了 する。 この場合も、 同様にして、 磁気スィッチ 1 8の未飽和インダクタンスの大 きさ力く、 上記半周期の間は、 磁気スィッチ 1 6の飽和インダクタンスより大きく
なるように設定されているので、 コンデンサ 1 5の電荷はほとんど全部コンデン サ 1 7に移行する。 そして、 電荷移行完了時、 コンデンサ 1 7の端子電圧はピ一 ク値に達する。
以後、 上記と同様にして、 磁気スィッチ〗 8の飽和インダクタンスの大きさは 磁気スィツチ 1 6の飽和ィンダクタンスより非常に小さくなるように設定されて いるので、 次に半周期にはコンデンサ 1 7の電荷はコンデンサ 1 5に戻らずに、 磁気スィッチ 1 8を経由してコンデンサ 1 9に移行する。 このとき、 磁気スイツ チ 1 8の飽和ィンダクタンスとコンデンサ 1 7、 1 9とによって構成される L C 発振回路の発振周期時間の半周期の間に、 上記電荷の移行は^了する。 コンデ ンサ 1 3、 1 5、 1 7、 1 9の大きさがそれぞれ等しいとすると、 コンデンサ 1 3の電荷が順次次段のコンデンサ 1 5、 1 7、 1 9に移行するときの半周期時間 は短くなつて行く。 したがって、 コンデンサ 1 5に電荷が蓄積されるときの電圧 の上昇時間よりも、 コンデンサ 1 9に電荷が蓄積されるときの電圧の上昇時間の 方が短くなる。 図 5及び図 6は、 このときのコンデンサ 1 5及びコンデンサ 1 9 の電圧波形を表している。 このようにして、 パノレス圧縮回路によって、 パルス電 圧の立ち上がりを速くすることができる。
そして、 出力切り換えスィッチ 2 0により、 コンデンサ 1 5の電圧とコンデン サ 1 9の電圧を切り換えて、 電極 1に印加するパルス電圧の上昇時間を選択する ことが可能となる。 さらに、 パルス電圧の上昇時間を切り換えることによって、 以下の理由から、 溶液 9の中で放電させるか、 あるいは、 岩石中で放電させるか を選択可能となる。 このことは、 第 1実施形態と同じく、 同一の電極 1を使用し て予備穴 4を掘削したり、 本破砕を行うことができることを意味している。 図 7は、 印加パルス電圧の上昇時間と、 このパルス電圧を印加したときの各絶 縁物の絶縁耐圧との一般的な関係を示している。 ここで、 横軸は印加パルス電圧 の上昇時間 (通常、 パルス電圧の最大値の 1 0 %から 9 0 %まで上昇するのに要 する時間) を、 縦軸は絶縁耐圧を表しており、 また横軸を対数目盛りとした片対 数で表している。 同図において、 曲線 4 1、 4 2、 4 3はそれぞれ水、 大理石、
砂岩の特性を表している。 同図でも分かるように、 溶液 9として例えば水を使用 した場合、 大理石や砂岩等の岩石の絶縁耐圧は、 パルス電圧の上昇時間が短いと き、 水よりも小さい絶縁耐圧を有している。 したがって、 このときは、 溶液 (水 ) よりも岩石の方に放電電流が流れ易くなり、 よって、 岩石に予備穴 4を掘削し たり、 あるいは、 岩石を深く破砕するのに適している。 また、 上記において、 パ ルス電圧の上昇時間が長いとき、 大理石や砂岩等の岩石の絶緣耐圧は水よりも大 きい絶縁耐圧を有している。 したがって、 このときは、 岩石より溶液 (水) の方 に放電電流が流れ易くなり、 よって、 溶液の衝撃波により広範囲に破砕するのに 適している。
以上のように、 同一の溶液 9を使用している場合でも、 印加するパルス電圧の 上昇時間と、 この上昇時間に対する、 破砕の対象としている岩石等の成分の絶縁 耐圧と、 溶液 9の絶縁耐圧との関係から、 印加するパルス電圧の上昇時間を変化 させることによって放電電流の経路を選択できる。 これが、 本発明により、 溶液 9の中で放電させるか、 あるいは、 岩石中で放電させるかが選択可能となる理由 である。
なお、 本実施形態では、 一台のパルス発生装置 1 0内に、 異なった上昇時間を 有するパルス波形を発生させることができる回路をいくつか備え、 この出力回路 を切り換えることによつて高電圧パルスの上昇時間を変えている例を示している 。 しかし、 構成としてはこれに限定されずに、 例えば、 異なった上昇時間を有す るパルス波形を発生させるパルス発生装置をそれぞれ別々に設け、 この出力電圧 を予備穴掘削時と破砕時とで切り換えるようにしてもよい。 この際に、 電極も、 予備穴掘削用と破砕用とで異なつた電極としてもよいし、 同一の電極を共用して も構わない。
次に、 第 3実施形態を図 8及び図 9に基づいて説明する。 本実施形態は、 パル ス電圧波形を変化させて投入エネルギーを増大させている。
各電源 2 1、 3 1は、 図 8に示すようにそれぞれ所定の電圧 V I 、 V 2 を出力 する直流電源である。 ここで、 所定電圧 V I 、 V2 は数式
V I < V2
を満足するように、 例えば V I - 3 0 K V . V 2 二 2 0 0 K Vに設定している。 電源 2 1の出力は、 抵抗 2 2を介してコンデンサ 2 3に印加され、 コンデンサ 2 3の出力電圧はトリガスィッチ回路 2 4を介してコンデンサ 2 5に印加される。 コンデンサ 2 5の出力電圧は、 コイル 2 6を介して電極 1の正極 2に印加される 。 また、 電源 3 1の出力は抵抗 3 2を介してコンデンサ 3 3に印加され、 コンデ ンサ 3 3の出力電圧は、 トリガスィッチ回路 3 4を介してコンデンサ 3 5に印加 される。 そしてコンデンサ 3 5の出力電圧も、 正極 2に印加される。 なお、 各コ ンデンサ 2 3、 2 5の容量は、 各コンデンサ 3 3、 3 5より大きなものとする。 また、 各トリガスィッチ回路 2 4、 3 4には、 第 2実施形態と同様に、 例えばサ イラ トロン等で構成されるスィツチと、 所定のインダクタンスを有するコイルと の直列回路が設けられている。
図 9は上記構成のパルス発生装置 1 0からの出力電圧波形を表しており、 同図 を参照して本実施形態での作用を説明する。
電源 2 1から電圧 V I が出力されると、 所定時間後にコンデンサ 2 3の端子電 圧が略 V I と等しくなり、 所定量の電荷がコンデンサ 2 3に蓄積される。 また、 電源 3 1から電圧 V2 が出力されると、 所定時間後にコンデンサ 3 3の端子電圧 が略 V 2 と等しくなり、 所定量の電荷がコンデンサ 3 3に蓄積される。 そして、 トリガスィツチ回路 2 4のスィツチが O Nすると、 コンデンサ 2 3の電荷がコン デンサ 2 5に移行し、 コンデンサ 2 5の端子電圧が略 V I に達する。 このとき、 トリガスィツチ回路 2 4内の前記コイルのィンダクタンスがコイル 2 6のィンダ クタンスより小さくなるように設定されているので、 コンデンサ 2 3の略全ての 電荷は、 各コンデンサ 2 3、 2 5の容量とトリガスィッチ回路 2 4内の前記コィ ルのィンダクタンスとによって決まる固有発振周期時間でもって、 コンデンサ 2 5に移行する。
次に、 コンデンサ 2 5の端子電圧が略 V I に達したとき、 トリガスィッチ回路 3 4のスィツチが O Nすると、 コンデンサ 3 3の電荷がコンデンサ 3 5に移行し
、 コンデンサ 3 5の端子電圧が V 2 になる。 このとき、 トリガスィッチ回路 3 4 内の前記コイルのィンダクタンスがコイル 2 6のィンダク夕ンスより小さくなる ように設定されているので、 コンデンサ 3 3の略全ての電荷は、 コンデンサ 3 5 に移行する。 各コンデンサ 3 3、 3 5の容量は、 各コンデンサ 2 3、 2 5の容量 より小さいので、 トリガスィッチ回路 2 4、 3 4内の前記各コイルのインダクタ ンスが等しいとすると、 上記のコンデンサ 3 5への電荷の移行時間は前述のコン デンサ 2 5への移行時間よりも速くなる。 したがって、 コンデンサ 3 5の端子電 圧の立ち上がり速度が速くなる。 この結果、 正極 2と負極 3間にピーク電圧値 ( V 2 と等しい) が高く、 且つ上昇時間が短いパルス電圧が印加されることになり 、 絶縁破壊が起こり易くなる。
上記のように、 コンデンサ 3 5の電荷によって放電が開始した後、 コンデンサ 3 5の端子電圧が低下して来ると、 コンデンサ 2 5の電荷がコイル 2 6を経由し て所定の発振周期時間でもってコンデンサ 3 5に移行するようになる。 これによ つて、 コンデンサ 2 5の電荷が上記のピーク電圧パルスの放電より時間をかけて ゆつくりと電極 1から放電される。 コンデンサ 2 5の容量はコンデンサ 3 5より 大きいので、 コンデンサ 2 5に蓄積された電荷量 (エネルギー) は大きく、 した がって、 岩石に投入する放電エネルギーが増大される。 この結果、 広範囲の岩石 を破碎すること可能となり、 効率的な電気破砕ができる。
このときの電極 1の使用方法を、 図 1 0及び図 1 1に示す。 ここでは、 電極 1 の各正極 2及び負極 3の形状が棒状となっている例を示している。 図 1 0のよう に、 パルス発生装置 1 0に接続された電極 1の正極 2及び負極 3を、 溶液 9で満 たした一つの予備穴 4内に所定距離をおいて挿入する。 このとき、 溶液 9で放電 させることにより衝撃波を発生させ、 予備穴 4を中心にして広範囲に大量に破砕 することができる。 あるいは、 図 1 1のように少なくとも二つ以上の異なる予備 穴 4 , 4内に正極 2及び負極 3を別々に挿入し、 この正極 2と負極 3の間にパル ス発生装置 1 0を接続してもよい。 これにより、 正極 2と負極 3の間の岩石等に 電流が流れ、 本破砕が行われる。 この場合、 本実施形態で説明したパルス発生装
置 1 0によると、 立ち上がりの早い高電圧パルスで岩石等の絶縁が破壊された後 、 ゆっくりした放電時間で大量のエネルギーが岩石に投入される。 したがって、 電気破砕の破壊力を増大させることができる。
次に、 第 4実施形態を図 1 2及び図〗 3に基づいて説明する。 なお、 図 1 2に おいて図 8の構成部品と同じ構成には、 同一の符号を付して説明を省略する。 各電源 2 し 3 1の出力電圧 V I 、 V 2 は、 前記问様に数式
V】 < V 2
を満足するように設定している。 電源 2 1の出力は、 抵抗 2 7を介してコンデン サ 3 5に印加され、 コンデンサ 3 の出力電圧は電極 1の正極 2に印加される。 また、 電源 3 1の出力は抵抗 3 2を介してコンデンサ 3 3に印加され、 コンデン サ 3 3の出力電圧はトリガスィツチ回路 3 4を介してコンデンサ 3 5に印加され る。
図 1 3は上記のパルス発生装置 1 0の出力電圧波形を示しており、 同図を参照 して本実施形態の作用を説明する。 電源 2 1から電圧 V I が出力されると、 抵抗 2 7を経由してコンデンサ 3 5に電流が流れ、 所定時間後にコンデンサ 3 5の端 子電圧が略 V I と等しくなり、 所定量の電荷がコンデンサ 3 5に蓄積される。 こ のとき、 正極 2と負極 3間の電圧は上記電圧 V I と等しくなる力 電圧が低いの で、 まだ放電を開始していない。 また、 電源 3 1力、ら電圧 V 2 が出力されると、 所定時間後にコンデンサ 3 3の端子電圧が略 V 2 と等しくなり、 所定量の電荷が コンデンサ 3 3に蓄積される。 次に、 トリガスィッチ回路 3 4のスィッチが O N すると、 コンデンサ 3 3の電荷がコンデンサ 3 5に移行し、 コンデンサ 3 5の端 子電圧が V 2 に上昇する。 このとき、 トリガスィッチ回路 3 4内の前記コイルの ィンダクタンスが抵抗 2 7より小さくなるように設定されているので、 コンデン サ 3 3の略全ての電荷は、 コンデンサ 3 5に移行する。 各コンデンサ 3 3、 3 5 の容量を十分に小さく しているので、 コンデンサ 3 5への電荷の移行時問は短時 間となる。 したがって、 コンデンサ 3 5の端子電圧の立ち上がり速度が速くなる 。 この結果、 正極 2と負極 3間にピーク電圧値が V 2 と等しく、 力、つ、 上昇時間
が短いパルス電圧が印加され、 絶縁が破壊されて放電が開始される。
このように、 コンデンサ 3 5の電荷によって放電が開始した後、 コンデンサ 3 5の端子電圧が低下して来ると、 電源 2 1から抵抗 2 7を介してコンデンサ 3 5 に電荷が蓄積される。 正極 2と負極 3間の絶縁が破壊されているので、 コンデン サ 3 5の端子電圧が V I になっても、 放電は継続される。 これによつて、 上記の ピーク電圧パルスの放電より時間をかけてゆつくりと、 電源 2 1からの電荷が電 極 1から放電される。 これにより、 岩石に投入する放電エネルギーが増大される 。 この結果、 広範囲の岩石を破砕すること可能となり、 効率的な電気破砕ができ る。
次に、 第 5実施形態によって、 複数の予備穴を掘削して広範囲に破碎を行う例 を、 図 1 4及び図 1 5に基ずいて説明する。
先ず、 複数の予備穴 4 , 4を図 1 4に示すように掘削する。 このとき、 同一の 電極 1を繰り返し使って掘削してもよいし、 あるいは、 少なくとも 2個以上の電 極 1, 1 と、 各電極 1, 1にそれぞれ接続されたパルス発生装置 I Q , 1 0とを 使用して同時に掘削してもよい。
また、 図 1 5に示すように、 2つの予備穴 4, 4内にそれぞれ別々の破砕用の 電極 1 a , 1 bを挿入する。 このとき、 破砕用の各電極 1 a , 1 bと各パルス発 生装置 1 0 a , 1 0 bとの間には各切り換えスィッチ 4 5、 4 6を設け、 り換 ぇスィツチ 4 5により一方の電極 1 aの負極 3 aとパルス発生装置 1 0 aの負極 間を切断可能とし、 切り換えスィッチ 4 6により他方の電極 1 bの正極 2 bとパ ルス発生装置 1 0 bの正極間を切断可能としている。 破砕時には、 各切り換えス イッチ 4 5、 4 6を共に O F Fしておき、 いずれか一方のパルス発生装置 1 0 a から高電圧パルスを出力すると、 電極 1 aの正極 2 aと電極 1 bの負極 3 b間で 放電電流が流れる。 これによつて、 両予備穴間の岩石等の中を放電電流が流れる ので、 広範囲で大量の物質の破砕が可能となる。
産業上の利用可能性
本発明は、 電気破砕時の予備穴掘削及び破砕の作業性が良く、 11つ電気破砕を 効率的に実施できるパルス電気エネルギー放電による物質の破砕方法、 その破砕 装置、 その高電圧パルス発生方法、 及びその高電圧パルス発生装置として有用で ある。
Claims
1 . 破碎対象の物質に設けた予備穴 (4) に電極を挿入し、 この電極の周囲を溶液 (9) で満たし、 この電極に高電圧パルスを印加し、 この電極での放電電流により 前記物質を破砕するパルス電気エネルギー放電による物質の破砕方法において、 予備穴掘削用の前記電極により放電電流を流して前記物質に予備穴 (4 ) を開け た後、 この : T'備穴に破砕用の前記電極を挿入し、 この破砕用の電極で放電電流を 流して前記物質を破砕することを特徴とするパルス電気エネルギー放電による物 質の破砕方法。
2 . 前記予備穴掘削時には前記物質中に放電電流を流し、 また、 前記破砕時には 前記溶液(9) の中に放電電流を流すことを特徴とする請求の範囲 1記載のパルス 電気エネルギー放電による物質の破砕方法。
3 . 前記予備穴掘削時と破砕時とで、 前記高電圧パルスの上昇時間を変化させる ことにより、 放電電流を前記物質中又は溶液(9) の中のいずれに流すかを選択す ることを特徴とする請求の範囲 1記載のパルス電気エネルギー放電による物質の 破砕方法。
4 . 前記予備穴掘削時には前記電極の先端部を前記物質に接触させてこの物質中 に放電電流を流し、 また、 破砕時には前記電極の先端部を前記物質から離して溶 液(9) の中に放電電流を流すことを特徴とする請求の範囲 1記載のパルス電気工 ネルギ一放電による物質の破砕方法。
5 . 前記予備穴掘削時には、 前記電極を少なくとも 2個以上使用して前記予備穴 (4) を少なくとも 2個以上開け、 前記破砕時には、 これら異なる 2個以上の予備 穴にそれぞれ前記電極を揷入し、 これら異なる電極間に高電圧 、。ルスを印加する ことを特徴とする請求の範囲 1記載のパルス電気エネルギー放電による物質の破
砕方法。
6 . 破砕対象の物質に開けた予備穴 (4) に挿入される電極と、 この電極の周囲を 満たす溶液(9) と、 この電極に高電圧パルスを印加するパルス発生装置(10)とを 備え、 この電極での放電電流により前記物質を破砕するパルス電気エネルギー放 電による物質の破砕装置において、
予備穴掘削用の前記電極と、 破砕用の前記電極とを備えたことを特徴とするパ ルス電気エネルギー放電による物質の破砕装置。
7 . それぞれ異なる上昇時間の前記高電圧パルスを出力する予備穴掘削用及び破 砕用のパルス発生装置(10)を備えたことを特徴とする請求の範囲 6 載のパルス 電気エネルギー放電による物質破砕装置。
8 . 予備穴掘削用及び破砕用のそれぞれの前記電極とパルス発生装置(10)とを、 前記予備穴掘削時及び破砕時に共用することを特徴とする請求の範囲 6記載のパ ルス電気エネルギー放電による物質の破碎装置。
9 . 少なくとも 2個以上の前記予備穴(4) を同時に開ける少なくとも 2個以上の 予備掘削用の前記電極と、 これら 2個以上の異なる予備穴 (4) に挿入され、 且つ その間に前記高電圧パルスが印加される少なくとも 2個以上の破砕用の前記電極 とを備え、 これら異なる 2個以上の予備穴に挿入された前記電極間に放電電流を 流して物質を破砕することを特徴とする請求の範囲 6記載のパルス電気工ネルギ 一放電による物質の破砕装置。
1 0 . 電極に高電圧パルスを印加し、 この電極での放電電流により破砕対象の物 質を掘削又は破砕するパルス電気エネルギー放電による物質破砕の高電圧パルス 発生方法において、
瓦いに異なる容量を有する少なくとも 2個のコンデンサに、 異なる端子電圧値 でそれぞれエネルギーを蓄積し、 高電圧で蓄積された側の前記コンデンサのエネ ルギーを物質の絶緣破壊時の放電初期に前記電極で放電させた後、 これより低電 圧で蓄積された側の前記コンデンサのエネルギ一を継続して放電させることを特 徴とする高電圧ノ、°ルス発生方法。
1 1 . 電極に高電)王パルスを印加し、 この電極での放電電流により破碎対象の物 質を掘削又は破砕するパルス電気エネルギー放電による物質破砕の高電圧パルス 発生装置において、
異なる出力電圧値を有する 2個の直流電源 (21, 31) と、 これら 2個の直流電源 の内の高い電圧電源(31)からエネルギーが蓄積される第 1のコンデンサ(33, 35) と、 これより低い電圧電源 (21)からエネルギーが蓄積され、 この第 1のコンデン ザの容量より大きな容量を有する第 2のコンデンサ(23, 25) と、 これら第 1又は 第 2のコンデンザに蓄積されたエネルギーを前記電極で放電させる少なくとも 2 個以上の卜リガスィツチ回路 (24, 34) とを備えたことを特徴とする高電圧パルス 発生装置。
1 2 . 電極に高電圧パルスを印加し、 この電極での放電電流により破砕対象の物 質を掘削又は破砕するパルス電気エネルギー放電による物質破砕の高電圧パルス 発生装置において、
異なる出力電圧値を有する 2個の直流電源(21, 3】) と、 これら 2個の直流電源 の内の低い電圧電源 (21)のエネルギーを前記電極から直接放電させる手段と、 こ れより高い電圧電源(31)からエネルギーが蓄積されるコンデンサ(33, 35) と、 こ のコンデンサに蓄積されたエネルギーを前記電極で放電させる トリガスィツチ回 路 (34)とを備えたことを特徴とする高電圧パルス発生装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8/241164 | 1996-08-22 | ||
JP8241164A JPH1061371A (ja) | 1996-08-22 | 1996-08-22 | パルス電気エネルギー放電による物質の破砕方法、その破砕装置、その高電圧パルス発生方法、及びその高電圧パルス発生装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998007959A1 true WO1998007959A1 (fr) | 1998-02-26 |
Family
ID=17070214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1997/002888 WO1998007959A1 (fr) | 1996-08-22 | 1997-08-20 | Procede et dispositif permettant de concasser un materiau par decharges d'energie electrique pulsee, procede et dispositif permettant de generer des impulsions a haute tension |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH1061371A (ja) |
KR (1) | KR19980018739A (ja) |
WO (1) | WO1998007959A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8109345B2 (en) | 2004-11-17 | 2012-02-07 | Schlumberger Technology Corporation | System and method for drilling a borehole |
US9416594B2 (en) | 2004-11-17 | 2016-08-16 | Schlumberger Technology Corporation | System and method for drilling a borehole |
CN109647598A (zh) * | 2019-01-18 | 2019-04-19 | 三峡大学 | 一种用于固体水中破碎的高压脉冲装置 |
CN116517541A (zh) * | 2023-05-26 | 2023-08-01 | 东北大学 | 一种基于高压脉冲放电的岩石方形作业区采掘装置及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2009308490A1 (en) * | 2008-10-21 | 2010-04-29 | Perfect Point Edm Corporation | Hand-held electro-discharge device |
KR102179100B1 (ko) * | 2018-02-14 | 2020-11-18 | 서울대학교산학협력단 | 충격파 발생 장치 및 이를 이용한 충격파 발생 방법 |
CN112044569B (zh) * | 2020-08-24 | 2021-08-27 | 东北大学 | 一种组合式多电极高压脉冲放电碎裂硬岩装置及破裂方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60188594A (ja) * | 1984-03-07 | 1985-09-26 | 三菱重工業株式会社 | 岩盤破砕方法 |
JPS62502733A (ja) * | 1985-05-03 | 1987-10-22 | シ−イ−イ−イ− コ−ポレ−シヨン | パルス電気エネルギ−放電による物質の断片化方法及び装置 |
JPH04222794A (ja) * | 1990-04-20 | 1992-08-12 | Noranda Inc | プラズマ爆破法 |
JPH09119283A (ja) * | 1995-06-13 | 1997-05-06 | Aitatsuku Kk | 固体絶縁体の破壊方法 |
-
1996
- 1996-08-22 JP JP8241164A patent/JPH1061371A/ja active Pending
-
1997
- 1997-08-18 KR KR1019970039221A patent/KR19980018739A/ko not_active Withdrawn
- 1997-08-20 WO PCT/JP1997/002888 patent/WO1998007959A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60188594A (ja) * | 1984-03-07 | 1985-09-26 | 三菱重工業株式会社 | 岩盤破砕方法 |
JPS62502733A (ja) * | 1985-05-03 | 1987-10-22 | シ−イ−イ−イ− コ−ポレ−シヨン | パルス電気エネルギ−放電による物質の断片化方法及び装置 |
JPH04222794A (ja) * | 1990-04-20 | 1992-08-12 | Noranda Inc | プラズマ爆破法 |
JPH09119283A (ja) * | 1995-06-13 | 1997-05-06 | Aitatsuku Kk | 固体絶縁体の破壊方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8109345B2 (en) | 2004-11-17 | 2012-02-07 | Schlumberger Technology Corporation | System and method for drilling a borehole |
US9416594B2 (en) | 2004-11-17 | 2016-08-16 | Schlumberger Technology Corporation | System and method for drilling a borehole |
CN109647598A (zh) * | 2019-01-18 | 2019-04-19 | 三峡大学 | 一种用于固体水中破碎的高压脉冲装置 |
CN116517541A (zh) * | 2023-05-26 | 2023-08-01 | 东北大学 | 一种基于高压脉冲放电的岩石方形作业区采掘装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
KR19980018739A (ko) | 1998-06-05 |
JPH1061371A (ja) | 1998-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2180661C (en) | Method and apparatus for plasma blasting | |
US4653697A (en) | Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy | |
US5845854A (en) | Method of solid insulator destruction | |
Sack et al. | Triggered Marx generators for the industrial-scale electroporation of sugar beets | |
WO1998007959A1 (fr) | Procede et dispositif permettant de concasser un materiau par decharges d'energie electrique pulsee, procede et dispositif permettant de generer des impulsions a haute tension | |
IL180636A (en) | High-voltage switch and use thereof in a microwave generator | |
EP0589494B1 (en) | Discharge exciting pulse laser device | |
US5412254A (en) | High voltage pulse generator | |
WO1999022900A1 (en) | Apparatus and method for breaking solid insulator with electric pulse | |
US4975921A (en) | Integrated prepulse circuits for efficient excitation of gas lasers | |
Chernyshev et al. | Electroexplosive foil 500 kV current opening switch characteristics research | |
GB2204728A (en) | Gas discharge driver circuit | |
US4612643A (en) | Electric glow discharge using prepulse and charge storage device | |
US3564305A (en) | Method and apparatus for creating pulsed magnetic field in a large volume | |
RU2111607C1 (ru) | Генератор импульсов высокого напряжения (варианты) | |
US5568019A (en) | Multi-gap high impedance plasma opening switch | |
JP4362171B2 (ja) | プラズマ破壊装置およびこれを用いた破壊方法 | |
JPH1088957A (ja) | 破砕装置及び破砕方法 | |
RU2157047C1 (ru) | Генератор мощных сильноточных импульсов | |
JPH10212891A (ja) | 電気破砕方法 | |
Gubanov et al. | A nanosecond high-voltage periodically pulsed generator based on a helix forming line | |
JP2021531697A (ja) | パルス放電装置 | |
Kúdelčìk et al. | Surface Discharge Over Rock in Transformer Oil | |
Mayes et al. | A novel Marx generator topology design for low source impedance | |
Kolyada et al. | The use of a magnetic switch for commutation of high-current pulse circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE GB IT |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: CA |
|
122 | Ep: pct application non-entry in european phase |