[go: up one dir, main page]

WO1998008134A1 - Dispositif d'affichage a cristaux liquides - Google Patents

Dispositif d'affichage a cristaux liquides Download PDF

Info

Publication number
WO1998008134A1
WO1998008134A1 PCT/JP1997/002862 JP9702862W WO9808134A1 WO 1998008134 A1 WO1998008134 A1 WO 1998008134A1 JP 9702862 W JP9702862 W JP 9702862W WO 9808134 A1 WO9808134 A1 WO 9808134A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
signal wiring
electrode
video signal
display device
Prior art date
Application number
PCT/JP1997/002862
Other languages
English (en)
French (fr)
Inventor
Naoto Hirota
Original Assignee
Obayashiseikou Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17518813&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998008134(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Obayashiseikou Co., Ltd. filed Critical Obayashiseikou Co., Ltd.
Publication of WO1998008134A1 publication Critical patent/WO1998008134A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Definitions

  • the present invention relates to a large screen active matrix type liquid crystal display device having a wide viewing angle and high image quality.
  • a method of applying an electric field to a liquid crystal composition layer using a pair of comb electrodes formed on one substrate of a conventional active matrix type liquid crystal display device is disclosed in, for example, JP-A-7-36058 and JP-A-7-159786.
  • a display method proposed in Japanese Patent Application Laid-Open No. 6-160878 is referred to as a horizontal electric field method, even if the main electric field applied to the liquid crystal composition layer is in a direction substantially parallel to the substrate interface.
  • Fig. 1 and Fig. 2 show examples of the conventional lateral electric field method.
  • the liquid crystal drive electrode (2) which is a comb-shaped pixel electrode, and the common electrode (3) are linearly arranged in parallel, and the distance between the electrodes (3) and (4) The separations a are all the same.
  • the transmittance characteristics of the electric field type liquid crystal cell with respect to the driving voltage are as follows. When a voltage higher than the voltage shown in ':) is applied, the brightness decreases: The video signal voltage seems to be slightly too high. In such a case, the gradation of the image is inverted. ⁇ In the gradation display characteristics, this gradation inversion is a very big problem, resulting in an extremely unnatural image display.
  • liquid crystal driving voltage tends to be higher than that in a conventional vertical electric field type ⁇ crystal display device.
  • C also required high-voltage output, resulting in high costs.
  • the alignment film and the liquid crystal used in the horizontal electric field type liquid crystal display device must be combined with a fringe angle of 1 degree or less, which is around 4 to 7 degrees used in the conventional TN liquid crystal display device. Alignment film cannot be used. For this reason, if a horizontal electric field type liquid crystal display device is to be manufactured on a conventional T : liquid crystal display device production line, it is necessary to change the material of the alignment mask and the liquid crystal material, resulting in lower production efficiency.
  • the color filter substrate well, like the conventional ⁇ ⁇ ⁇ ⁇ liquid crystal display, Also, the color filter and substrate have a transparent conductive film on the entire surface, unlike conventional liquid crystal display devices, so they are susceptible to the effects of static electricity. There are two problems:
  • the present invention has been made to solve these problems, and an object of the present invention is to provide a horizontal electric field liquid crystal display device with no grayscale inversion, good viewing angle characteristics, a low-voltage driving IC, and a high response speed. Further, it is to increase the degree of freedom in selecting a usable liquid crystal composition and an alignment film material, and to improve the liquid crystal process (the yield is improved and the cost is reduced). Disclosure
  • the following means are formed on a substrate at each intersection of a scanning signal wiring, a video signal wiring, and the scanning signal wiring and a video signal wiring.
  • An active matrix substrate having a thin film transistor, a liquid crystal drive electrode connected to the thin film transistor, and a common electrode at least partially formed to face the liquid crystal drive electrode; and an active matrix substrate facing the active matrix substrate.
  • a counter substrate, and a liquid crystal display device comprising a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate,
  • the distance between the liquid crystal drive electrode and the common electrode is two or more types within the pixel, and the distance between the electrodes is different from the center of the pixel as a boundary. Arranged symmetrically—
  • the common electrode is connected in the direction in which the video signal wiring extends, and within the effective display screen, the common electrode is not connected to each other across the video signal wiring.
  • Means 3 the common electrodes connected to the video signal wiring extending in all directions are separated into an odd group and an even group, and the odd group and the even group are shared according to the period of the scanning signal.
  • a voltage waveform having a phase opposite to that of the common electrode is applied to each of the electrodes, and a video signal waveform having a phase opposite to that of the common electrode is applied to each of the liquid crystal driving electrodes facing the common electrodes of the odd and even groups.
  • a liquid crystal display device characterized by a driving method.
  • L means 5j
  • the liquid crystal driving electrode and the scanning signal wiring and the power are obtained from the additional capacitance formed by overlapping the liquid crystal driving electrode and the common electrode via the insulating film;
  • the structure was such that the additional capacitance formed by being superposed through the insulating film was larger:
  • the structure is such that the video signal wiring and the pixel pole are bent at an angle of 1 ° to 1 ° with respect to the liquid crystal direction.
  • the scanning signal wiring and the pixel electrode are arranged so as to be bent at an angle of 1 ° to ⁇ 45 ° with respect to the liquid crystal alignment direction.
  • the video signal wiring and the pixel electrode are arranged so as to be bent in a range from 45 degrees to 135 degrees except 90 degrees with respect to the liquid crystal alignment direction.
  • an insulating film is used as an overcoat layer covering one layer of a power filter formed on a counter substrate, and a boundary between the R, G, and B power filters is formed.
  • a conductive or semiconductor electrode was formed as a black mask on the overcoat insulating film.
  • ⁇ Means 16> In Means 3, common electrodes connected in the direction in which the video signal wiring extends are separated into an odd group and an even group, and the power video signal wiring is divided into two vertically at the center of the screen. :
  • the scanning signal wires divided into two groups at the center of the surface are divided into upper and lower groups, and are simultaneously driven by the upper and lower groups.
  • video signal voltage waveforms of opposite phase to the group and applying the voltage waveform of the video signal wiring and the common electrode drive waveform of opposite phase to the odd and even groups of common electrodes.
  • BEST MODE FOR CARRYING OUT THE INVENTION A liquid crystal display device characterized by a driving method in which different video signals are written in two horizontal lines above and below a liquid crystal display device.
  • FIG. 1 and 2 when the distance between the liquid crystal drive electrode and the common electrode is not uniform in one pixel ⁇ , but is composed of a combination of two or more kinds of electrode distances, FIG. As shown in Fig. 3, even if the shortest distance between the electrodes is inverted, even if the grayscale inversion occurs at the widest distance between the electrodes, inversion occurs. As shown in Fig. 5, Fig. 8, Fig. 10, If the distance between the electrodes is symmetrical or symmetrical up and down from the center of the element, increase the distance between the electrodes closest to the scanning signal wiring and video signal wiring. The result is a uniform image with little crosstalk:
  • a 5 V drive video signal drive IC that can reduce the video signal drive voltage of the dot inversion drive method to less than half even in the horizontal electric field type liquid crystal display device can be used.
  • the dot inversion drive does not generate horizontal cross and vertical cross talk, so that good image quality can be obtained.
  • the common electrode connection part completely covers the TFT part, which prevents light from entering the F-cho, so the black mask on one side of the color filter is omitted. By eliminating the black mask on the CF side, the aperture ratio can be increased, the brightness can be increased, and the liquid crystal panel can be made.
  • the resistance value of the common electrode had to be reduced because it was driven with a voltage waveform of the opposite phase to that of the common electrode.There was no flexibility in the material._ The entire common electrode had a large area overlapping the video signal wiring, and the overall capacitance In order to avoid this, there is a problem that the power consumption increases when driving. There was a problem that the number of pull-out terminals increased—an increase in the number of pull-out terminals caused an increase in the number of drives 1 C, an increase in IC cost, and an increase in connection failures.
  • the capacitance formed by the scanning signal wiring and the liquid crystal driving electrode is determined by the capacitance formed by the common electrode and the liquid crystal driving electrode. For this reason, as shown in FIG. 41, the driving voltage amplitude V * of the scanning signal wiring can be reduced, so that the bias voltage applied to the TFT is also reduced and the characteristic shift of the TFT can be reduced.
  • TFT thin film transistor
  • the liquid crystal drive electrode can be formed simultaneously with the formation of the thin-film transistor (TI "T) (;," Since the method of (1) is used, the miniaturization and processing accuracy can be much improved compared to the conventional processing method using the etching method. As shown in FIGS. 42, 43, FIG. 57, and FIG.
  • TI "T thin-film transistor
  • FIGS. 42, 43, FIG. 57, and FIG. By forming the liquid crystal driving electrode at the same time as the drain electrode, the problem of poor contact between the drain electrode and the liquid crystal driving electrode does not occur, and the processing accuracy of the distance between the liquid crystal driving electrode and the common electrode increases. The occurrence of brightness unevenness is reduced over the entire screen.
  • Liquid crystal drive By processing both the electrode and the common electrode by dry etching, the distance between the electrodes can be reduced, and the liquid crystal drive voltage is reduced. It is possible to increase the response speed of the liquid crystal at the same time.
  • the liquid crystal molecules generate two kinds of rotational movements, left rotation and right rotation, inside the pixel electrode.
  • the viewing angle characteristic is shifted. Within a single pixel, two types of rotational movement of liquid crystal molecules, left rotation and right rotation, occur. In this case, even when the tilt angle is large, the characteristics of the viewing angle do not shift. Therefore, in the in-plane switching mode liquid crystal display device using the structure of the present invention, the tilt angle is not limited.
  • high resistance layer overcoat By using a layer, an inexpensive electrodeposition color filter can be used for the horizontal electric field type liquid crystal. Good flatness, no unevenness of the cell gear, It is possible to make cost cheap good liquid crystal panel of the scan door
  • the alignment film having a tilt angle of about 3 to 6 degrees which has been conventionally used in a liquid crystal display device of the vertical electric field type, to reduce the tilt angle to less than ⁇ degrees.
  • the viewing angle characteristics of a horizontal electric field type liquid crystal cell can be greatly improved by reducing the fringe tilt angle to 1 degree or less.
  • the alignment film used can be used without changing it, it can be used by simply inserting one of the V-irradiation device, ion infra- structure device, or plasma surface treatment device into the conventional liquid crystal cell production line. It is possible to create an electric field type liquid crystal display device, which can increase production efficiency and investment efficiency:
  • Fig. 5-1 and Fig. 55 by using masking processing, one pixel can be formed. , Two types of fret tilt angles It can be on the set Control of viewing angle characteristics is freed.
  • the scanning signal wiring can be lengthened twice, so that the electron transfer is slow.
  • Amorphous thin-film transistors can also be used sufficiently: even if the image is enlarged, the length of the video signal wiring is reduced to 1 /, and the number of intersections between the scanning signal wiring and the video signal wiring is reduced to i / 2. This eliminates the problem of the resistance of video signal wiring, that is, the use of conventional metal materials eliminates the need to change the process.
  • dot inversion drive can be introduced for ultra-high-definition display, and a low-voltage drive IC can be used, so that the cost is low and there is no display unevenness.
  • High quality images can be realized using amorphous silicon thin film transistors
  • FIGS. 4 and 5 are a cross-sectional view and a plan view of a unit pixel of the present invention.
  • the scanning signal wiring (gate electrode) 1 formed on ⁇ is preferably made of an anodizable metal such as A 1, but it is better to use r, Mo, Ti, W, Ta. ⁇ b
  • a two-layer structure or a three-layer structure of Cu having a low electric resistance value and the refractory metal is used in a super-large display device.
  • an amorphous silicon (a-Si) film is formed and used as an active active layer of the transistor: the video signal wiring 2 overlaps a part of the amorphous silicon.
  • Forming the drain electrode ⁇ In the case of Fig. 4, the drain electrode ⁇ and the liquid crystal drive electrode 4 are formed at the same time with the same metal material.
  • the common electrode 3 is formed: Matrix of the above unit pixels Active matrix: An alignment film made of a polyimide is formed on the surface of a substrate, and a rubbing treatment is performed on the surface. An opposite substrate having an alignment film formed on the surface is also rubbed. And a liquid crystal composition containing rod-shaped liquid crystal molecules ⁇ ⁇ ⁇ between the active matrix substrates, and polarizing plates 10 and ⁇ disposed on the outer surfaces of the two substrates:
  • the distance between the common electrode 3 and the liquid crystal drive electrode 4 has two types, a and b.
  • the distances a and b between the electrodes are arranged symmetrically. 8 and 10, the number of electrodes is increasing, and the distance between the electrodes is also a combination of a and b, and a, b, and c, as shown in Figs. 7, 9, and 1.
  • Combinations are considered to be symmetrical as in Figure 5, but symmetry is not always required:
  • Fig. 58 it can also be applied to the case where the distance between the common electrode 3 and the liquid crystal drive electrode 4 is set up and down.
  • the types of distance between the electrodes are a, b, and c. It is possible to introduce more than just three types.
  • _ In the case of Fig. 5, Fig. 6, Fig. 8, and Fig. 10, the liquid crystal molecules are easily affected by the electric field from the video signal wiring (2) Therefore, it is conventionally known that the crosstalk in the direction along the video signal wiring can be reduced by arranging the common electrode 3 so that ⁇ is sandwiched between them.
  • FIGS. 13 and 64 show unit pixels in which the common electrode is connected to the video signal wiring in the same direction and the common electrode is not connected to the video signal wiring across the video signal wiring inside the effective display screen.
  • the connection portion of the common electrode covers the upper part of the thin-film transistor.
  • the thin-film transistor semiconductor layer can be formed without a black mask (BM) on the color filter of the opposite substrate. Since no light penetrates, the leakage current does not increase when the thin film transistor is turned off.
  • FIGS. 18, 19, 20, 20, 21, 22, and 23 show these unit pixels as: Fig. 20, Fig. 22, and Fig. 23 show the pixel electrodes parallel to the scanning signal wiring, but the connection direction of the common electrode is the same as the video signal wiring. Has become:
  • the scanning signal wiring 1 and the common electrode 3 are short-circuited.
  • the cross-sectional structure as shown in Fig. 44 and Fig. 57 is required.
  • the common electrode is formed on the upper part of the substrate, and the protective insulating film below the common electrode and the upper insulating film ® are used.
  • an oxide-based insulating film or organic insulating film having a small dielectric constant can be used, so that an increase in load when driving the scanning signal wiring can be minimized (Example 3) FIGS.
  • FIG. 11 and 15 Is a plan view in which the common electrode connected in the same direction to the solid video signal wiring in Example 2 is connected and separated into an odd group and an even group outside the effective display screen.
  • FIG. One set of books.Three books can be considered as one set and connected and separated into an odd group and an even group.
  • Figure 59 is a plan view of the structural arrangement surrounding the entire effective display screen with the odd-numbered group connection electrodes @ and the even-numbered group connection electrodes, and the common connection electrodes, scanning signal wiring, and video signal wiring are static electricity. With this structure, the problem of static electricity failure in the liquid crystal self-process can be significantly reduced.
  • This figure shows a common electrode separated into an odd group and an even group. Each phase is reversed according to the period of the scanning signal.
  • the horizontal line inversion driving method as in the present invention has the advantage of reducing the horizontal crosstalk.
  • the video signal wiring driving circuit C can also reduce the signal amplitude and thus is inexpensive.
  • V-power IC can be used.
  • FIG. 12 Fig. 12, Fig. 43, Fig. 44, Fig. 57, Fig. 64, Fig. 65, Fig. 24 show that the thin film semiconductor layer is doped with impurities and activated to lower the resistance, and as a liquid crystal drive electrode 3A and 3B are a cross-sectional view and a plan view of a unit pixel according to an embodiment of the present invention:
  • a scanning signal wiring (gate electrode) 1 is formed on a glass substrate 2, and a gate insulating film 2 is formed so as to cover this. From this, an amorphous silicon film is formed, and a continuous insulation film ⁇ on the bath channel side is formed continuously without breaking the vacuum.
  • the amorphous silicon film at this time has a film thickness of about 300 A to 700 ⁇ ⁇ . About 2000A is enough for the insulation film. ⁇ Except for the back channel protective insulating film ®, the other part is etched with a hydrofluoric acid based etchant to expose the surface of the amorphous silicon film.
  • the PH 3 gas Phosphorus treatment may be used to adsorb phosphorus on the surface of the amorphous silicon layer, and then activate the melt diffusion of phosphorus when the silicon layer is melted by an excimer laser.
  • the exposed area becomes a low-resistance holographic silicon layer: After the positive resist is stripped, the thin film transistor source and drain electrodes 32 and the liquid crystal drive electrode ⁇ ⁇ are simultaneously dry-etched.
  • FIG. 9 is a drive voltage waveform diagram in which a video signal waveform having a phase opposite to that of the common electrode is applied to the liquid crystal drive electrodes facing the common electrodes of the odd-numbered group and the even-numbered group, respectively.
  • FIGS. 16 and 17 are polar diagrams showing how the video signal pressure is written to the pixels having the structural arrangements of FIGS. 14 and 15 of the present invention. It is divided into plus and minus based on the common electrode potential. Such a writing drive method is called a dot inversion drive method.
  • FIGS. 24, 27, and 29 show that the liquid crystal driving electrode 4 and the common electrode 3 scan with the liquid crystal driving electrode ⁇ more than the additional capacitance formed by superimposing the common electrode 3 via the insulating film.
  • FIG. 4 is a plan view of a unit pixel in a case where an additional capacitance 16 formed by overlapping a signal wiring 1 with an insulating film interposed therebetween is larger.
  • Figure 30, Figure 31, Figure 32, Figure 33, Figure 34, and Figure 35 are plan views in which these unit plane elements are arranged in a stripe or delta arrangement.
  • cross-sectional structures as shown in Figs. 12, 26, 28, 42, 44, 57, and 65.
  • a cross-sectional structure as shown in FIG. 66 may be used.
  • the overlapping area of the liquid crystal drive electrode and the common electrode should be as small as possible.
  • FIG. 41 is a timing chart of a scanning signal voltage waveform and a video signal voltage waveform for driving the in-plane switching mode liquid crystal display panel of the fourth embodiment.
  • the scanning signal has a quaternary waveform.
  • the common electrode potential is close to the median value of the video signal waveform and is fixed at the potential.
  • a coupling drive system is used.
  • a capacitance between pixel electrodes formed between a liquid crystal driving electrode and a common electrode via a liquid crystal composition is used.
  • the common electrode 3 is formed last, but this common electrode is also made of a material that can be processed by dry etching (such as high melting point metals such as Mo, Ti, Nb, Ta and their alloys or silicide compounds of these). As a result, it is possible to produce an in-plane switching liquid crystal display capable of high-speed response.
  • a material that can be processed by dry etching such as high melting point metals such as Mo, Ti, Nb, Ta and their alloys or silicide compounds of these.
  • FIG. 3 is a cross-sectional view of a case where molybdenum silicide is formed.
  • Fig. 57 after forming an amorphous silicon film doped with impurities by plasma CVD on the amorphous silicon film, the impurity amorphous silicon layer is changed to low-impurity polysilicon by excimer laser. It is sectional drawing at the time of changing to a layer.
  • Molybdenum silicide is also one of the dry etching materials. Similar silicide is formed by sputtering not only Mo but also other refractory metals.
  • Figs. 52, 19, 21, 31, and 33 show video signal wiring and pixel electrodes.
  • the liquid crystal drive electrode and part of the common electrode facing the liquid crystal drive electrode is a plan view of a structure in which the liquid crystal alignment direction is bent at an angle of ⁇ 1 ° to ⁇ 45 ° with respect to the liquid crystal alignment direction. is there.
  • the dielectric anisotropy of the liquid crystal molecules is positive.
  • Fig. 52 when a voltage is applied to the common electrode 3 and the liquid crystal drive electrode and an electric field is generated between the electrodes, the liquid crystal molecules ⁇ make two kinds of rotational movements, left rotation and right rotation, at the bent part. I do. Since two types of rotational movement are possible inside the unit pixel, the deviation of the viewing angle characteristic does not occur regardless of the magnitude of the pretilt angle. [Embodiment 8] Figs.
  • Figs. 53, 19, 21, 31, and 33 show that the video signal and the surface element force are bent in the range of 45 to 135 degrees, excluding 90 degrees, with respect to the liquid crystal alignment direction. It is a top view in the case of a structure.
  • the dielectric anisotropy of the liquid crystal molecules is negative.
  • Fig. 53 when a voltage is applied to the common electrode 3 and the liquid crystal drive electrode ⁇ ⁇ and an electric field is generated between the electrodes, the liquid crystal molecules ⁇ rotate left and right two ways around the bend. exercise. By allowing two types of rotational movement inside the unit pixel, the deviation of the viewing angle characteristics does not occur regardless of the magnitude of the pretilt angle.
  • FIG. 4 is a plan view of a structure bent in the range of FIG.
  • the dielectric anisotropy of liquid crystal molecules is negative.
  • two kinds of liquid crystal molecule rotational motions ie, left rotation and right rotation, occur inside the unit pixel. Regardless of the magnitude of the pretilt angle, the deviation of the viewing angle characteristics does not occur.
  • the rubbing treatment is performed so that the liquid crystal molecules at the interface with the upper and lower substrates are almost parallel to each other.
  • the polarizing axis (optical axis) of the polarizing plate is arranged so as to be substantially orthogonal at both the top and bottom, and a normally black mode in which light does not pass from the surface element when no electric field is applied is used.
  • the black mask used for these color filters has the same angle as the angle at which the video signal wiring and scanning signal wiring are bent, and a part of the BM is bent. There is a special feature in what you do.
  • FIGS. 45, 46, and 47 are cross-sectional views of a color filter and a substrate of an in-plane switching mode liquid crystal display device.
  • Color fill of R, G, B on glass substrate 11 Form a tar.
  • an organic or inorganic high-resistance material ( ⁇ ⁇ ⁇ ' ⁇ ⁇ ⁇ ⁇ ⁇ ' ⁇ ) is formed for flattening and preventing electrostatic charge during the liquid crystal process.
  • Fig. 56 in the horizontal electric field method, there is an experimental result that the voltage holding ratio hardly decreases even if the liquid crystal specific resistance decreases to about 10 9 ⁇ 'cm.
  • the transparent ITO is formed on the entire surface, and then the R, G, and B color filters are formed by the electrodeposition method.
  • the sum of the thickness of the high resistance material, the thickness of one color filter, and the thickness of the liquid crystal layer is required to be at least twice the distance between the liquid crystal drive electrode and the common electrode. If the total thickness is more than twice the distance between the electrodes, the electric field generated between the liquid crystal drive electrode and the common electrode will be affected by the transparent conductive film (ITO) 10 formed on the entire surface of the color filter. It is possible to generate a transverse electric field in a direction parallel to the substrate without receiving much.
  • FIGS. 48 and 49 are cross-sectional views of a color filter substrate of a liquid crystal display device of an in-plane switching mode.
  • Form R, G, B color filters on the glass substrate 1.
  • an organic or inorganic insulating film @ is formed for planarization. In this state, various problems occur due to static electricity generated in the liquid crystal process. Therefore, a black mask is formed on the insulating film @ to further discharge static electricity.
  • a transparent conductive electrode 10 is formed, the same pattern as that of the black mask may be used.
  • the lateral electric field type liquid crystal display device is affected by an electric field due to external static electricity. A major problem arises that it cannot be converted.
  • Fig. 67 there is a method of forming a transparent conductive film on the outside of the glass substrate on the color filter side. In this case, however, a high insulating filter layer or a flattening film is formed during the liquid crystal process. In some cases, the trapped static electricity cannot be removed while trapped, which causes poor alignment.
  • Example 13 As shown in Figs. 50 and 51, if the liquid crystal drive electrode and the common electrode are simply arranged in parallel, the viewing angle characteristic is deviated when the pretilt angle of the liquid crystal is large. Resulting in. Used for conventional vertical electric field type liquid crystal display devices In addition, since the pretilt angle of the alignment film is as large as 3 to 7 degrees, the viewing angle characteristic is inevitably deviated. Polyimide after orientation film firing a pre-tilt angle by using the same alignment layer as a way of reducing the 1 degree or less, and UV irradiation treatment, He, Ne, Ar, N 2, 0 2 gas, such as ionized ion implantation Processing methods have been developed.
  • FIG. 62 shows that, as in Embodiment 2, the common electrode is connected to the video signal wiring in the same direction, and within the effective display surface, the common electrode crosses the video signal wiring. Not connected to each other.
  • the common electrode is divided into an odd group and an even group, and the odd groups are connected to each other outside the effective display screen.
  • the difference from the second embodiment is that the video signal wiring is divided vertically into two at the center.
  • the terminals to be connected to the IC for driving the video signal wiring are also separated into two upper and lower parts, respectively, and the number of terminals is also doubled. If the number of scanning signal lines is greatly increased, as in GA for 0/8, the structure of this embodiment reduces the resistance of the video signal wiring and reduces the number of intersecting scanning signal lines. Is reduced by half, the coupling capacitance is reduced, and the driving load of the video signal wiring is greatly reduced.
  • FIG. 63 shows a drive voltage waveform for driving the in-plane switching mode liquid crystal display device having the structure according to the fourteenth embodiment.
  • Two scanning signal lines are operated simultaneously in the upper half area and the lower half area. Since the common electrode is connected in the upper half region and the lower half region, it is driven by a method in which the polarity is inverted in accordance with the driving cycle of the scanning signal wiring.
  • the common electrode is divided into an odd group and an even group. Opposite-phase voltages having different polarities are applied to the odd-numbered group and the even-numbered group, which are connected to the common connection electrodes @ and ⁇ , in reverse according to the period of the scanning signal wiring.
  • the video signal wiring is divided into an odd-numbered group and an even-numbered group, and signal voltages of opposite phases with different polarities are applied to the corresponding common electrodes of the odd-numbered group and the even-numbered group.
  • the odd-numbered and even-numbered video signal lines are divided into upper and lower halves, and different in-phase video signals are applied. This is a two-scan line simultaneous access dot inversion drive system.
  • a frame memory is provided, so it would be good to be able to extract image data for two run signal wirings from this frame memory at the same time.
  • the selection time of scanning signal wiring is reduced to 10 sec or less if the conventional one-scan signal wiring access method is used.
  • the driving capability of the amorphous silicon thin film transistor is approached, and the video signal voltage cannot be accurately transmitted to the liquid crystal driving electrode.
  • the simultaneous scanning dot inversion drive method of the present invention the selection time is twice as long as that of the conventional method, so that a sufficient video signal writing time can be secured even with an amorphous silicon thin film transistor. Also greatly expands the degree of freedom Industrial applicability
  • an inexpensive 5 VIC can be used for the video signal drive IC, and a conventional liquid crystal member can be used, so that an inexpensive and highly reliable image display device can be provided.
  • an ultra-high-definition large-screen liquid crystal display can be realized using amorphous silicon thin film transistors ⁇ [Explanation of symbols]
  • A-- The angle at which the alignment direction of the P-type liquid crystal molecules intersects the pixel electrode (common electrode and liquid crystal drive electrode)

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

液晶表示装置 明細書
技術分野
本発明は、 広視野角 ·高画質の大画面アクティブマ卜リ ックス型液晶表示装 置に関する
背景技術
従来のァクティブマトリックス型液晶表示装置の一方の基板上に形成した櫛 歯 電極対を用いて、 液晶組成物層に電界を印加する方式が、 例えば特開平 7-36058号ゃ特開平 7- 159786号、特開平 6- 160878号公報により提案されて 、 る 以下液晶組成物層に印加する主たる電界方向が、基板界面にほぼ平行な方 向であろ表示方式を、 横電界方式と称する.
図 1 , 図 2が従来の横電界方式の例である 櫛齒状の画素電極である液晶駆動 電極①と共通電極③とは、直線状で平行に配置されており、③と④の電極間距 離 aは、 すべて同じである.
潢電界方式の液晶セルの駆動電圧に対する透過率特性は、図 3にあ よ':)に ある電圧以上の電圧を印加すると輝度が低下してしまう: 映像信号電圧が、少 し高すぎろような場合には、画像の階調が反転してしまう二とになる. 喈調表 示特性において、 この階調反転は、 非常に大きな問題であり、 きわめて不自然 な画像表示となってしまう
横電界方式の液晶表示装置では、液晶駆動電圧が従来の縦電界方式の τ 晶表示装置よりも高くなる傾向があり、駆動するドライバ一! Cも高電圧出力 の のが要求され、 コスト高になる問題があった
さらに横電界方式の液晶表示装置で用いられる配向膜と液晶には、 フレチル ト角が 1度以下の組み合せが要求され、従来の T N液晶表示装置で用いられて いた 4度〜 7度の付近の配向膜が使用できない— そのために、横電界方式の液 晶表示装置を従来の T :液晶表示装置の製造ラインで作ろ場合、配向摸の材料 や液晶材料の変更が必要となり、生産効率が ί氐下するという問題が発生する. たカラーフィルター基板に:ま、 従来 Λ Τ Ν液晶表示装置のように、 表面 またカラ一フィルタ一基板には、 従来の 液晶表示装置のように、 表面 全体に透明導電性膜がな 'v、ために静電気の影饗を受けやすく、チヤ一ジァッフ した場合、 配向不良をお二す問題がある:
横電界方式の液晶表示装置で用いられる画素電極の加工は、 ゥェッ トエツ チング加工によるものが多く、電極間距離を非常に小さくすることができない そのために、 液晶の応答速度は、 従来の T N液晶よりも遅く、 動画対応が困難 であった:
本発明は、 これらの課題を解決するものであり、その目的とするところは、 階調反転のない、 視角特性が良好で、 低電圧駆動 I Cが利用でき、 応答速度の 速い横電界液晶表示装置を提供することにある. さらに、使用可能な液晶組成 物及び配向膜材料の選択の自由度を上げ、液晶フロセス ('リ歩留りを向上し、 コ ス :、を安くすることである: 発明の開示
前記課題を解決し、上記目的を達成するために本発明では、以下の手段を用 いる 基板上に走査信号配線と映像信号配線と前記走査信号配線と映像信号 配線との各交差部に形成された薄膜トランジスタと、前記薄膜トランジスタに 接続された液晶駆動電極と、少なくとも一部が前記液晶駆動電極と対向して形 成された共通電極とを有するァクティブマ卜リ ックス基板と、前記ァクティブ マトリ ックス基板に対向する対向基板と、前記ァクティブマ卜リックス基板と 前記対向基板に挟持された液晶層とからなる液晶表示装置において、
〔手段 1〕前記液晶駆動電極と前記共通電極との電極間距離が、 1画素内で、 すべて均一でなく、 2種類以上の電極間距離の組み合せとした.
〔手段 2 ] 手段 1において、 液晶駆動電極と共通電極との電極間距離が、 】画 素内で、 2種類以上存在し、 画素の中央を境にして異なる電極間距離を、 左右 対称または上下対称に配置した—
〔手段 3〕 共通電極を映像信号配線の伸びている方向に連結し、 有効表示画 面内部では、共通電極が映像信号配線を横ぎつて互 、に連結しな',、構造とした [手段 4」 手段 3において、 映像信号配線の伸びている万向に運結された共 通電極を、奇数群と偶数群に分離し、走査信号の周期にあわせて奇数群と偶数 群の共通電極にそれぞれ逆相の電圧波形を印加させ、かつ奇数群と偶数群の共 通電極に対向している液晶躯動電極に、共通電極とは逆相の映像信号波形をそ れぞれ印加する駆動方式を特徴とする液晶表示装置.
L手段 5 j 横 ¾界方式の液晶表示装置において、 液晶駆動電極と共通電極と が絶縁膜を介して重畳されることで形成された付加容量より 、液晶駆動電極 と走査信号配線と力;、絶縁膜を介して重畳されることで形成された付加容量の 方が大きくなるような構造とした:
〔手段 6 ] 手段 5において、 共通電極の電位は固定しておき、 液晶駆動電極 には、走査信号の周期にあわせて、共通電極電位に対して正負の映像信号電圧 を又 1L ;こ睿きこみ、かつ前記液晶組成物層;こ印加される電)土 より高まるよソ に、絶縁膜を介して液晶駆動電極と重畳されている走査信号配線にも電 ί言号 波形を印加する容量結合駆動方^:を用 t、た液晶表示装置
〔手段 7〕横電界方式の液晶表示装置において、薄膜半導体層に不純物をド —ビングし、 活性化して低抵抗化して、 液晶駆動電極とした
ί手段 8 J 手段 7において、 前記映像信号配線と画素諠極が、 液晶 &向方向 に対し、 ェ 1度からェ 度の角度の範囲で屈曲している構造配置にした _
〔手段 9〕 手段 7において、 前記走査信号配線と画素電極が、 液晶配向方向 に対し、 土 1度から ±45度の角度の範囲で屈曲している構造配置にした
ί手段 10〕 手段 7において、 前記映像信号配線と画素電極が、 液晶配向方 向に対し、 90度をのぞく 45度から 135度の範囲で屈曲している構造配置に した.
:手段 1 1〕 手段 7において、 前記走査信号配線と画素電極が、 液晶配向方 向に対し、 90度をのぞく 45度から 135度の範囲で屈曲している構造配置に した:
:手段 12〕 横電界方式の液晶表示装置において、 対向基板に形成された力 ラ一フィルタ一層の上を覆つ: Γ—パ一コート層に、 高抵抗 U 0' i2 ' cm〜i (广 Ω - cm) を用いた:
〔手段 〕 手段 12において、 カラ一フィルタ一層と才ーバーコー 層と液 晶層の厚みを合計したものが、液晶駆動電極と共通電極との電極間距離の 2倍 以上あることを特徵とする液晶表示装置—
〔手段 14〕 横電界方式の液晶表示装置において、 対向基板に形成された力 ラ一フィルタ一層の上を覆うオーバ一コ一卜層に絶縁膜を用い、 R, G , B力 ラーフィルターの境界のオーバ一コ一卜絶縁膜上に導電性、または半導体の電 極をブラックマスクとして形成した.
〔手段 15〕 横電界方式の液晶表示装置の製造工程において、 液晶を配向させ るための配向膜を塗布し、 焼成後、 配向膜にじ V照射 理 ¾たは、 Ik., ヽし、 Ar, , ( などのイオンインァラテ一シヨン処理やフラズマ処理をした後、 ラ ビング処理することで、 液晶ブレチルト角を 1度以下に低下させた
ί手段 16〕 手段 3において、 映像信号配線の伸びている方向に連結された共 通電極を、奇数群と偶数群に分離し、力 ^つ映像信号配線を画面の中央で上下に 2分割した:
〔手段 17〕 手段 16において、 面面の中央で上下の群に 2分割された走査信 号配線を同時に上群と下群とで駆動し、上下の映像信号配線には、奇数群と偶 数群とで逆相の映像信号電圧波形を印加し、共通電極の奇数群と偶数群には、 それぞれの映像信号配線の電圧波形と逆相の共通電極駆動波形を印加するこ とで、同時に画面の上下の 2本の水平ラインに異なる映像信号を書きこむ駆動 方式を特徴とする液晶表示装置: 発明を実施するための最良の形態
上記手段 1 , 2の如く、 前記液晶駆動電極と、 前記共通電極との電極間距 離が、 1画素內ですべて均一でなく、 2種類以上の電極間距離の組み合せで 構成されている場合、 図 3にあるように、 一番短 、電極間距離の所が階調反 転しても、 電極間距離の広 、所では、 反転が生じて ' 、な 、ので、 画素全 ί本で は、 階調反転がくいとめられる: 図 5 , 図 . 図 8 , 図 10にあるように画 素の中央を境にして、 異なる電極間距離が、 左右対称または上下対称に配置 されている場合には、走査信号配線や映像信号配線に一番近接している電極 の電極間距離を大きくすることで、クロス トークの少ない均一な画像を得る ことができる:
上記手段 3, 4により、 横電界方式の液晶表示装置でも、 ドッ ト反転駆動 方式の映像信号駆動電圧を半分以下に低減することが可能となる 5 V駆動 の映像信号駆動 I Cを使用することができるので、コス卜を安くすることが できる: 図 16, 図 17にあるように、 ドッ ト反転駆動では、 水平クロス 、 -- クと垂直クロストークが発生しにくいので、良好な画質を得ることができる さらに図 13にあるように、 共通電極の連結部で T F T部分を完全に覆う二 とで、 丁 F丁に光が侵入することを防止できるので、 カラーフィルタ一側の ブラックマスクを省略することができ、カラ一フィルタ一のコス:、をさげる ことが可能となる- C F側ブラックマスクがなくなることで、 開口率が上昇 し輝度の明る 、液晶ハネルを作ることができる.
上記手段 5, 6により、 横電界方式の液晶表示装置でも、 水平ライン反転 駆動方式の映像信号駆動電圧を半分以下に低減することが可能となる—図 2 1, 図 27, 図 29にあるように、 絶縁膜を介して液晶駆動電極と走査信号配線に 大きな容量を形成し、この容量を用いて液晶駆動電極の電位をコン トロール するために、共通電極に特別な駆動信号波形を印加する必要はない. つまり 共通電極電位は、映像信号電圧の中央値に近い電位に固定しておけばよい 従来の水平ライン反転駆動方式では、 共通電極全体を、 走査信号配線の周期 にあわせて映像信号波形と逆相の電圧波形で駆動するため、共通電極の抵抗 値を小さく しなければならず、材料の自由度がなかった _ 共通電極全体では、 映像信号配線と重畳する面積が大きく、 全体の容量が大きくなるために、 駆 動する場合、 消費電力が大きくなるという問題があった: これをさけるため に図 60, 図 61のような駆動方式もあるが、 共通電極を個別に駆動するため の引き出し端子が増加するという問題があった—引き出し端子の増加は.駆動 1 Cの数の増加、 I Cコス トの増加、 接続不良の増加の原因になる 本発明 のよ に共通電極電位を固定して、容量結合水平ライン反転 ¾S」 w 界方式液晶を駆動することで、 超大型液晶表示装置を、 コス 卜を安く、 しか も消費電力の増加を最小におさえて実現することができる 横電界方式の場 合には、従来の縦電界方式と異なり、 走査信号配線と液晶駆動電極とが形成 する容量を共通電極と液晶駆動電極とが形成する容量にく らベて大きく形 成できる: このために図 41にあるように、走査信号配線の駆動電圧振幅 V * を小さくできるので、 T F Tにかかるバイァス電圧も小さくなり、 T F Tの 特性シフ卜を小さくおさえることができる. このことで、 薄膜卜ランジスタ ( T F T ) のゲ一ト絶縁膜の形成温度を下げることが可能となり、 大型基板 製造時のタク 卜タイムの短縮と基板の熱歪曲や、熱収縮の低減につながり製 造コス トの低減が可能となる.
上記手段 7により、 液晶駆動電極を、 薄膜卜ランジスタ ( T I'' T ) ( ;、"レ ィン電極形成時に同時に形成することができるようになる:薄膜シリコン層 の加工には、 ドライエッチングの方法が用いられるので、 従来のゥエツ トェ ッチングを用いた加工方法よりも、微細化と加工精度をはるかに向上するこ とができる— 図 42, 図 43, 図 , 図 57にあるように、 液晶駆動電極をド レイン電極と同時に形成することで、 ドレイン電極と液晶駆動電極とのコン タク 卜不良問題が発生しなくなり、液晶駆動電極と共通電極との電極間距離 の加工精度も上がるので、 画面全体で輝度ムラの発生が減少する.. 液晶駆動 電極と共通電極の両方をドライエツチングで加工することにより、電極間距 離を小さくすることができるので、液晶駆動電圧を下げることができ、 液晶 の応答速度を上げることも同時に可能となる.
上記手段 7, 8, 9, 10, 11を用いることで、 図■ , 図 5: こあるように、 画素電極 (液晶駆動電極と共通電極の一部) 内で、 横電界が印加された場合、 液晶分子は、画素電極内部で左回転と右回転の 2通りの回転運動が発生すろ 図 51 の従来の横電界方式では、 一方向の回転運動だけなので、 フレチル :、 角が大きい場合、 図 50のように、 視野角の特性に片寄りが発生する ひと つの画素内部で、左回転と右回転の 2通りの液晶分子の回転運動が発生すろ 場合には、 ブレチルト角が大きくても、 視野角の特性の片寄りが発生しない. このことより、 本発明の構造を用いた横電界方式の液晶表示装置では、 フレ チルト角の制限を受けないので、配向膜と液晶の選択の自由度が大きくなる. 液晶ァロセスで使用するシ一ル材と配向膜、注入口封止材など従来の縦電界 方式の液晶セルフロセスで使用していたものを使用することができるので、 生産効率、 投資効率を上げることができる: 偏光板の有効利用率も上がるの で、 コス ト d o w nができる二 階調反転も防止できる:
上記手段 12, 13, 14を用いることで、 カラ一フィルタ一全面に透明導電 体膜( I T O ) がなくても、 液晶セルフロセスでの静電気のチャージアツフ がなくなり、 ハーティクルの付着が減少する- 配向膜にも本発明と同程度 (10¾ 0 * ^〜10" Q ' ciri) の抵抗性を持たせることで、 その効果は増大する. 図- 15, 図 46, 図 47, 図 48, 図 )にあるように、 ©, ⑩, ©, ⑩はに Γ O や金属または金属酸化物と金属の積層物か金属シリサイ ド、不純物ド--ヒン グ活性した半導体層を用いることで、液晶セル完成後に外部からの静電気ダ メージを完全に防止することができる:高抵抗層のォ一バーコ一:、層を用い ることで安価な電着カラ一フィルタ一を横電界方式液晶に用いることがで きるので、 平面度の良い、 セルギヤッブのムラのない、 コン トラス トの良好 な液晶パネルをコス ト安く作ることが可能となる
上記手段 15により、 従来縦電界方式の液晶表示装置に用いていたフレチ ルト角 3〜 6度程度の配向膜の特性を変化させ、フレチル卜角〗度以下にす る二とができる: 図 50にあるように、 フレチルト角を 1度以下に下げるこ とで、 横電界方式の液晶セルの視角特性を大幅に改善できる 本発明の製造 方法を用いれば、従来縦電界方式の液晶セルフ口セスで使用していた配向膜 を変更せずに使用できるので、 じ V照射装置, イオンインフランテ一シヨン 装置,ブラズマ表面処理装置のどれか一台を従来の液晶セル製造ラインに導 入するだけで横電界方式の液晶表示装置を作ることが可能となる一生産効率、 投資効率を上げる二とができる: また図 5-1, 図 55にあるように、 マスキン グ処理を用いることで 1画素内で、フレチルト角を 2種類以上設定できるよ うになるので、視角特性のコン 卜ロールが自由になる 階調反転も防止でき る
上記手段 16, 17により、 フレーム周波数と走査信号配線が増加する超高精 細表( S X G Aやじ X G A) の場合でも走査信号配線ァ ;、"レス時間を 2倍に 長くできるので、電子移動の遅いァモルファス薄膜卜ランジスタでも十分に 対応が可能となる: さらに大画化した場合でも映像信号配線の長さが 1/ に なるのと、 走査信号配線と映像信号配線の交差する数も i/2になるので、映 像信号配線の抵抗の問題が解消する.つまり従来用いていた金属材料を用い ることができるので、 フロセス変更の必要がなくなる. 従来の V G A , S V G A表示装置と同じフロセスで作ることができるので、 生産効率、投资効率 が上がる„ 本発明によれば、 超高精細表示にドッ ト反転駆動を導入でき、 低 電圧駆動 I Cを利用できるので、 コス 卜の安い、表示ムラのない高品位画像 をアモルファスシリコン薄膜トランジスタを用いて実現できる
【実 施 例】
ί実施例 1 ] 図 4, 図 5は、 本発明の単位画素の断面図及び平面図である. ガ ラス基板
⑩上に、 走査信号配線 (ゲ一卜電極) ①を形成した 走査信号配線は、 A 1 な どの陽極酸化処理可能な金属が良いが、 し 'r, Mo, Ti, W, Ta. ヽ b などの純金 属ゃ合金でもよい. 電気抵抗値の低い Cuと前記高融点金属との二層構造、 三 層構造などが、 超大型表示装置では用いられる. 走査信号配線①の上に、 ゲー 卜絶縁膜⑤を形成してから、 非晶質シリコン (a — Si ) 膜 を形成し、 卜ラン ジスタの活性能動層とする:非晶質シリコンの一部に重畳するように映像信号 配線②と ドレイン電極 ©を形成する: 図 4の場合には、 ドレイン電極 ©と液晶 駆動電極④は、同じ金属材料で同時に形成される. これらすベてを被覆するよ うに S i\膜や Si0膜よりなる保護絶縁膜⑥を形成する 次に共通電極③を形 成する:以上の単位画素をマ 卜リ ックス状に配置したァクティブマ :、リヅクス 基板の表面にホリイミ ドよりなる配向膜⑦を形成し、表面にラビング処理を施 した 同じく表面にラビング処理を施した配向膜⑧を表面に形成した対向基板 ⑪と、前記アクティブマ卜リックス基板の間に棒状の液晶分子⑨を含む、液晶 組成物を封入し、 二枚の基板の外表面に偏光板⑩, ⑬を配置した:
図 5にあるように、 共通電極③と液晶駆動電極④との電極間距離は、 a, b 2 種類あり、 図 5では電極間距離 aと bは、 左右対称に配置されている: 図 (う, 図 8 , 図 10では、 電極の数が増加しており、 電極間距離も aと bの組み合せ と、 aと bと cの組み合せとがあり、 図 7, 図 9, 図】 1に整理した. 図 5 と 同様に左右対称配置になるように、組み合せを考えてあるが、対称性が必ず必 要というわけではない:
図 58にあるように、 共通電極③と液晶駆動電極④との電極間距離の配置を上 下方向にした場合にも適用することができる.. 電極間距離の種類も a, b, c の 3種類だけではなく、 それ以上の種類を導入することも可能である _ 図 5, 図 6, 図 8, 図 10の場合には、 映像信号配線②からの電界の影響を 液晶分子が受けやすいので、共通電極③で②をはさみこむように配置する二と で映像信号配線②にそった方向のクロストークを低減できることは、従来から 知られている: その効果をさらに向上するためには、映像信号配線②に一番近 い電極間距離 aを一番大きな値に設定すると良い _つまり a 〉 b cか a > c ≥ bの条件で電極間距離を配置するとクロス卜ークはさらに低減できる」 階調反転の問題は、 映像信号電圧が大きすぎる時に発生するが、 特に液晶 ブレチル卜角が大きい場合には正面方向よりも液晶の配向方向の傾めからみ た時により階調反転しやすくなる: これを改善するには、配向方向に対するフ レチルト角を 2種類以上もたせたり、正と負のブレチルト角をもたせたりする 方法もある力 一番簡単なのは、 フレチルト角を 0 (ゼロ) 度にすることであ る: しかし量産で用いられているラビング処理による配向方法では、完全にフ レチルト角はゼロ度にすることができず、どうしても 0. 5度前後のフレチルト 角は発生してしまう:正面と傾めから見た時の階調反転を防止する方法として は、横電界方式の液晶表示装置においては、本発明のように一画素内での電極 間距離の値を 2種類以上設定することが特に有効である 通常の 5 V駆動で液 晶を駆動する場合、 5 V以下で透過率が最大になる電極間距離と、 5 V以上で 透過率が最大になる電極間距離の組み合せで電極を配置すろと良い 図 3の特 性では、 5 V駆動では、電極間距離を 5 μ mと 7. 5 /i mの 2種類で設定すると 良い
〔実施例 2〕 図 13, 図 64は、 共通電極が映像信号配線にそう方向で連結され、 有効表示画面内部では、共通電極が映像信号配線を横ぎつて互いに連結されて いない場合の単位画素の平面図である 図 13では、 共通電極の連結部が薄膜 トランジスタの上部を覆っており、 この場合には、対向基板のカラーフィルタ 一にはブラックマスク ( B M) がなくても薄膜トランジスタ 半導体層①には、 光が侵入しないので、薄膜トランジスタの OFF時のリ一ク電流の増大はな 、 図 18, 図 19, 図 20, 図 21, 図 22, 図 23は、 これらの単位画素をス:、ライフ 配列や、 デルタ配列に配置した平面図である: 図 20, 図 22, 図 23は画素電極 が走査信号配線と平行になっているが、共通電極の連結方向は映像信号配線に そう方向になっている:
このような平面配列を実現するためには、図】 にあるような従来の断面構造で は、走査信号配線①と共通電極③とがショー卜してしまうため、 図 4, 図 12, 図 42, 図 44, 図 57にあるような断面構造が必要となる. これらの断面構造で は共通電極が基板の上部に形成されており、共通電極の下の保護絶緣膜⑥や上 層絶緣膜 ®に誘電率の小さな酸化物系の絶縁膜や有機絶緣膜が使用できる そ のために走査信号配線の駆動時の負荷の増大を最小におさえることができる 〔実施例 3〕 図 1 1, 図 15は、 実施例 2でのべた映像信号配線にそう方向 で連結された共通電極を、有効表示画面外で奇数群と偶数群とに連結分離した 平面図である.. 図 15は、 共通電極 2本を 1組としている. 3本を 1組として 考えて奇数群と偶数群に連結分離することも可能である. 図 59は、 奇数群連 結電極 @と偶数群連結電極 とで有効表示画面全体を囲んだ構造配置の平面 図である.それぞれの共通連結電極と走査信号配線、 映像信号配線とは静電気 対策用の非線形抵抗素子で連結されている. この構造により、液晶セルフロセ スでの静電気不良問題をいちじるしく低減することが可能である.図©は、 奇 数群と偶数群に分離した共通電極に走査信号の周期にあわせて、それぞれ逆相 は、従来の縦電極方式とくらベて非常に小さくなるので、 走査信号配線上の付 加容量の効果が大きくなり、 V r (—)や V r ( + )の電圧振幅が小さくてすむ. このため薄膜トランジスタの走査信号配線(ゲ一卜電極) と ドレイン電極に印 加されるバイアス電圧も小さくなるので、薄膜トランジスタの特性シフトも小 さくなる- 横電界方式では、液晶駆動電極と共通電極との交差面積を小さくで きるので、本発明のような水平ライン反転駆動方式でも、水平方向のクロス 卜 —クを低減できる利点があ 映像信号配線駆動〖 Cも信号振幅を小さくでき るので安価な 5 V電源の I Cがしょうできる. コス ト d o w nに効果がある _
〔実施例 6 ] 図- 12, 図 43, 図 44, 図 57, 図 64, 図 65, 図 24は、 薄膜半導 体層に不純物をドーヒングし、活性化して低抵抗化し、液晶駆動電極として用 いる実施例の単位画素の断面図及び平面図である: ガラス基板⑩上に、走査信 号配線 (ゲ一ト電極) ①を形成し、 これを覆うようにゲート絶緣膜⑤を形成し てから、非晶質シリコン膜を形成し真空をやぶらずにバソクチャネル側保護絶 縁膜⑩を連続形成する この時の非晶質シリコン膜は 300 A〜 700 Λ程度の膜 厚が良い: バックチャネル保護絶緣膜は 2000A程度で十分である ·. バックチ ャネル保護絶縁膜 ®を残して、それ以外はフッ酸系のエッチング液でェッチン グして非晶質シリコン膜の表面を出す: ポジレジス卜をはく りせずに PI I :1ガ スをもとにしたイオンシャワードービングで 10 個/ U!f'程度、 非晶質シ リコ ンにリンをドーピングする:その後エキシマレ一ザ一により活性化処理をおこ なう: イオンシャワード一ビングのかわりに、 PH 3ガスを用いたフラズマ於 電処理により非晶質シリコン層の表面にリンを吸着させ、その後エキシマレ一 ザ一によりシリコン層を溶融させる時にリンを溶融拡散活性化することでも 良い: これらの処理によりレーザ一照射を受けた領域は、抵抗の低いホリシリ コン層になる: ポジレジス トを剥離した後、 次は薄膜トランジスタのソース電 極と ドレイン電極㉜と、液晶駆動電極⑤を同時にドライエッチング:こよって形 成します: 液晶駆動電極を低抵抗のポリシリコン膜で形成する利点は、 このド ライエツチングによる微細ハタ一ン加工が可能な点にあります—横電界方式の 液晶表示装置は、応答速度が遅いという指摘がなされているが、液晶駆動電極 の電圧信号波形を印加し、かつ奇数群、偶数群の共通電極に対向している液晶 駆動電極に、共通電極とは逆相の映像信号波形をそれぞれ印加する駆動電圧波 形図である。 図 16, 図 17は、 本発明の図 14, 図 15の構造配列の画素に映像 信号靈圧がどのように書きこまれたかを示す極性図である。共通電極電位を基 準にしてプラスとマイナスとに分けています。このような書きこみ駆動方式は、 ドット反転駆動方式と呼ばれています cこの駆動方式では水平ストロークが発 生しなくなり良好な画像が得られます。映像信号波形と逆相の SIEを共通電極 に印加することで、液晶相に大きな電圧を印加できるので、共通電極電位を固 定していた従来のドッ卜反転駆動の場合の映像信号駆動振幅よりも 1/2 以下 に低減が可能となります。 これにより、安価な 5 V駆動の I Cを使用すること ができるのでコスト d o w nが可能となる。
〔実施例 4〕 図 24, 図 27, 図 29は、 液晶駆動電極④と共通電極③とが絶縁 膜を介して重畳されることで形成された付加容量よりも、液晶駆動電極④と走 査信号配線①とが絶縁膜を介して重畳されることで形成された付加容量⑯の 方が大きい場合の単位画素の平面図である。 図 30, 図 31, 図 32, 図 33, 図 34, 図 35は、 これらの単位面素をストライプ配列やデルタ配列に配置した平 面図である。 これらの平面構造を歩留りよく実現するためには、 図 12, 図 26, 図 28, 図 42, 図 44, 図 57, 図 65のような断面構造が望ましい。 液晶駆動電 極と走査信号配線とで形成される付加容量をさらに大きくする場合には、 図 66 にあるような断面構造を用いると良い。 液晶駆動電極と共通電極との重畳 面積は可能なかぎり小さくすると良い。
〔実施例 5〕 図 41は、 実施例 4の横電界方式液晶表示パネルを駆動する 走査信号電圧波形と映像信号電圧波形のタイミング図である。走査信号は 4値 波形となっている。共通電極電位は映像信号波形の中央値に近レ、電位に固定し てある。液晶駆動電極と走査信号配線とが絶縁膜を介して重畳されることで形 成された付加容量を通して、走査信号電圧の V r (一)や V r ( + )を液晶組成物 に印加する容量結合駆動方式を用いている。横電界方式の液晶表示装置では、 液晶駆動電極と共通電極とで液晶組成物を介して形成される画素電極間容量 と共通電極との電極間距離を 3 程度にまで微細化してくると応答速度も速 くなり、動面にも十分対応可能である。 3 μ程度までならば従来のゥエツトェ ツチングで加工可能であるが、ゥエツトエッチングでは線幅のコントロール精 度が十分ではない。その点ドライエッチングでは加工精度の再現性は、すでに I Cで証明済みである。不純物をドープしたポリシリコンは、 ドライエツチン グ加工しやすい材質なので、大画面液晶表示装置には最も適した電極材料であ る。 次に映像信号配線②を形成した後、保護絶縁膜⑥で完全に覆う。共通電極 ③を最後に形成するが、 この共通電極もドライエッチングで加工可能な材料 (Mo, Ti, Nb, Taなどの高融点金属とこれらの合金、 またはこれらのシリサ ィド化合物など)を用いることで、高速応答可能な横電界方式液晶表示を作る ことができる。
図 44では、 不純物をドーピングしてレーザ一活性化したドレイン電極の上 に、 さらに抵抗を下げるために、 Moをスパッタリングやイオンプレーティン グ法を用いて、 うすく形成し、 表面反応により、 MoSix (モリブデンシリサイ ド) を作った場合の断面図である。 図 57では、 非晶質シリコン膜の上に、 プ ラズマ C V D法を用いて不純物をド一プしたアモルファスシリコン膜を形成 した後、 エキシマレーザーにより、 不純物アモルファスシリ コン層を抵抗の 低い不純物ポリシリコン層にかえた場合の断面図である。 モリブデンシリサ ィドもドライエッチングしゃすい材料のひとつである。 Moだけでなく他の高 融点金属をスパッタリングしても同様のシリサイドは形成される-
〔実施例 7〕 図 52, 図 19, 図 21, 図 31, 図 33は、 映像信号配線と画素電極
(液晶駆動電極と液晶駆動電極に対向している共通電極の一部)が液晶配向方 向に対し、 ± 1度から ±45度の角度の範囲で屈曲している構造の場合の平面 図である。 液晶分子の誘電率異方性は正である。 図 52にあるように共通電極 ③と液晶駆動電極 に電圧が印加され電極間に電界が発生した時に、液晶分子 ⑨は、屈曲部を境にして左回転と右回転の 2通りの回転運動をする。単位画素 内部で 2通りの回転運動が可能になることでプレチルト角の大きさによらず 視野角特性の片寄りが発生しなくなる。 〔実施例 8〕 図 52, 図 20, 図 22, 図 23, 図 32, 図 34, 図 35は、 走査信号 酉 S線と画素電極とが、 液晶配向方向に対して、 ± 1度から ±45度の角度の範 囲で屈曲している構造の場合の平面図である。液晶分子の誘電率異方性は正で ある。実施例 7と同様に単位画素内部で左回転と右回転の 2通りの液晶分子回 転運動が発生する。プレチルト角の大きさによらず視野角特性の片寄りが発生 しなくなる。
〔実施例 9〕 図 53, 図 19, 図 21, 図 31, 図 33は、 映像信号 と面素電極 力 液晶配向方向に対し、 90度をのぞく 45度から 135度の範囲で屈曲してい る構造の場合の平面図である。 液晶分子の誘電率異方性は負である。 図 53に あるように、共通電極③と液晶駆動電極②に電圧が印加され電極間に電界が発 生すると、液晶分子㉒は、屈曲部を境にして左回転と右回転の 2通りの回転運 動をする。単位画素内部で 2通りの回転運動が可能になることで、プレチルト 角の大きさによらず、 視野角特性の片寄りが発生しなくなる。
〔実施例 10〕 図 53, 図 20, 図 22, 図 23, 図 32, 図 34, 図 35は、 走査信号 配線と画素電極と力 液晶配向方向に対して 90度をのぞく 45度から 135度の 範囲で屈曲している構造の場合の平面図である。液晶分子の誘電率異方性は負 である。実施例 9と同様に単位画素内部で左回転と右回転の 2通りの液晶分子 回転運動が発生する。プレチルト角の大きさによらず、視野角特性の片寄りが 発生しなくなる。
実施例 7 , 実施例 8, 実施例 9, 実施例 10ともに、 上下基板との界面での 液晶分子の配向は、互いにほぼ平行になるようにラビング処理してある。偏光 板の偏光軸(光学軸) は、上下ともにほぼ直交配置になるようにしてあり、無 電界時には面素から光が通過しないノーマリーブラックモードを用いている。 これらのカラーフィルターに用いるブラックマスクは、 図 36, 図 37, 図 38, 図 39にあるように、 映像信号配線や走査信号配線が屈曲している角度と同じ 角度で、 B Mの一部が屈曲しているところに特徵がある。
〔実施例 11〕 図 45, 図 46, 図 47は、 横電界方式の液晶表示装置のカラ一フ ィルタ一基板の断面図である。 ガラス基板⑪の上に R, G, Bのカラ一フィル タ―を形成する。次に平坦化と液晶プロセス中での静電気帯電防止のために、 有機や無機の高抵抗材 (Ιί^ Ω ' αι^ΙΟ^ Ω ' αη) を形成する。 図 56にあるよう に、 横電界方式では、 液晶比抵抗が 109 Ω 'cm程度まで低下しても電圧保持率 がほとんど低下しないという実験結果がある。 図 45, 図 46では、 透明 I T O を全面形成してから電着法により R, G, Bのカラーフィルタ一層を形成して いる。 この場合には、上記高抵抗材の膜厚とカラーフィルタ一層の膜厚と液晶 層の厚みを合計したものが、液晶駆動電極と共通電極との電極間距離の 2倍以 上必要となる。電極間距離の 2倍以上これらの総合計厚みがあれば、液晶駆動 電極と共通電極の間に発生する電界は、カラ一フィルタ一側に全面形成された 透明導電膜( I T O)⑩の影響をあまりうけず、基板と平行な方向に横電界を 発生させることができる。
〔実施例 12〕 図 48, 図 49は、横電界方式の液晶表示装置のカラーフィルター 基板の断面図である。 ガラス基板⑪の上に、 R, G, Bのカラ一フィルタ一を 形成する。次に平坦化として有機や無機の絶縁膜 @を形成する。 このままでは 液晶プロセスで発生する静電気のために、いろいろな問題が発生するので、絶 縁膜 @の上にさらに静電気を逃がすためのブラックマスク⑫を形成する 図 49 にあるようにすでに榭脂ブラックマスクが形成されてある場合には、 ブラ ックマスクと同じパターンで透明導電電極⑩を形成しても良い。
実施例 11, 実施例 12にあるように、 カラーフィルタ一基板側になんらかの 導電性電極が形成されていないと、横電界方式の液晶表示装置では外部からの 静電気による電界の影響を受けるので、実用化することができないという大問 題が発生する。 図 67のように、 カラーフィルター側ガラス基板の外界側に透 明導電膜⑩を形成する方法もあるがこの場合には、絶縁性の高い力ラーフィル ター層や平坦化膜に液晶プロセス中で発生した静電気がトラップされたまま 除去できない場合があり、 配向不良の原因となるので良くない。
〔実施例 13〕 図 50, 図 51にあるように、 液晶駆動電極と共通電極がただ単 に平行に配置されているだけでは、液晶のプレチルト角が大きい場合に視角特 性に片寄りが発生してしまう。従来の縦電界方式の液晶表示装置に用レ、られて 、た配向膜のプレチルト角は 3度〜 7度とプレチルト角が大きいので、視角特 性にどうしても片寄りが生じてしまう。同じ配向膜を使用してプレチルト角を 1度以下に低下させる方法としてポリイミ ド配向膜焼成後、 U V照射処理や、 He, Ne, Ar, N2, 02などのガスをイオン化してイオンプランテーション処理す る方法が開発されている。 リアクティブイオンエッチング装置を用いた 02ガ スを用いたプラズマ処理でも同じ効果がある。これらの処理をした後ラビング 配向処理することで、プレチルト角を 1度以下にして、液晶分子を一軸方向に 配向させることが可能である。 図 54, 図 55にあるように、 上記のし ' V処理や イオンプランテ一ション処理, プラズマ処理を、ホトマスクゃホトレジストを 用いたマスクにより 1画素内の半分に限定することも可能である。本実施例を 用いることで、従来用いていた配向膜を横電界方式の液晶表示装置に使用して も視角特性の片寄りは発生しなくなる。
〔実施例 14〕 図 62は、 実施例 2にあるように、 共通電極が映像信号配線に、 そう方向で連結されており、有効表示面面内部では、共通電極が映像信号配線 を横ぎつて互いに連結されていない。共通電極は奇数群と偶数群にわかれてお り奇数群どうし、偶数群どうしは、有効表示画面外で互いに連結されている。 実施例 2と異なるのは、映像信号配線が中央で上下に 2分割されている点であ る。映像信号配線を駆動するための I Cと接合される端子もそれぞれ上下 2ケ 所にわかれており、端子の数も 2倍に增加している。 0八用の≤ 0 ゃじ G Aのように、走査信号線の数が大幅に増加する場合、本実施例の構造では、 映像信号配線の抵抗が小さくなることと、走査信号線と交差する数が半分に低 下するために、結合容量が低減するので、映像信号配線の駆動負荷が大幅に低 減する。
〔実施例 15〕 図 63は、 実施例 14にある構造の横電界方式の液晶表示装置を 駆動するための駆動電圧波形である。 走査信号配線は、 同時に 2本、上半分領 域と下半分領域で動作するようになっている。共通電極は、上半分領域と下半 分領域で連結されているので、走査信号配線の駆動周期にあわせて極性を反転 させる方式で駆動される。共通電極は奇数群と偶数群に分離され、それぞれ共 通連結電極 @と ©に連結されている、 奇数群と偶数群には、極性の異なる逆相 の電圧が走査信号配線の周期にあわせて反転印加される。映像信号配線は、奇 数群と偶数群にわかれており、それぞれが対応している奇数群と偶数群の共通 電極と極性の異なる逆相の信号電圧が印加される。奇数群と偶数群の映像信号 配線は、上半分と下半分に 2分割され、それぞれ同相の異なる映像信号が印加 される。 2走査線同時アクセス ドッ 卜反転駆動方式である。 コンビュ一クなど の O A用表示装置の場合、 フレームメモリーが用意されているので、 このフレ ームメモリ一から同時に 2 本の走查信号配線分の画像データを取り出せるよ うにすれば良レ、。 S X G Aや U X G Aのように走査信号配線の数ゃフレーム周 波数が大幅に増加する場合、走査信号配線の選択時間が従来の 1走査信号配線 アクセス方式のままでは、 10 sec以下になってしまう 10 sec以下にな つてしまうと、アモルファスシリコン薄膜トランジスタの駆動能力の限界に近 くなり、映像信号電圧を正確に液晶駆動電極に伝達できなくなる。本発明の 2 走査線同時ァクセスドッ ト反転駆動方式ならば、選択時間が従来の 2倍にのび るので、ァモルファスシリコン薄膜卜ランジスタでも十分な映像信号書きこみ 時間が確保できる, 映像信号配線の材料の自由度も大幅に広くなる 産業上の利用可能性
本発明によれば、 第 1に、 画像の階調反転のない視角特性の良好な画像を得 ることができる。 第 2に、 映像信号駆動 I Cに安価な 5 V I Cを利用でき、 従 来の液晶部材を使用できるので、コス卜の安い信頼性の高い画像表示装置を提 供できる。第 3に、外部からの静電気の影響を受けない動画対応の高速動作可 能な横電界液晶表示装置を作れる。 第 4に、超高精細 ·大画面液晶表示装置を アモルファスシリコン薄膜トランジスタを用いて実現できる^ 【符号の説明】
1——走査信号 ,
2——映像信号配線
3——共通電極
4——液晶駆動電極
5——ゲート絶縁膜
6—保護絶縁膜
7—液晶配向膜 (T F T基板側)
8—液晶配向膜 (対向基板側…カラーフィルター基板側)
9——液晶分子 (正の誘電率異方性液晶)
10— T F T側ガラス基板
11——対向ガラス基板
12—— T F T基板側偏光板
13——対向基板側偏光板
14——上層絶縁膜
15—— ドレインスノレ一ホーノレ
16——保持容量形成領域
17——陽極酸化膜
18——走査信号配線と同じ材料で同時に形成された共通電極 (中央線) 19—共通電極スルーホール
20——共通電極スルーホールで共通電極 (中央線) と、 コンタク トしてい る画素亀極
21——カラーフィルタ一のプラックマスク
22—液晶分子 (負の誘電率異方性液晶)
23——走査信号配線駆動波形
24——奇数番映像信号波形
25——偶数番映像信号波形
26—奇数番共通電極駆動波形 —偶数番共通電極駆動波形
——( n— 1 )番走査信号配線駆動波形
—— n番走査信号配線駆動波形
——映像信号波形
——共通電極電位
——不純物イオン打ち込み後、 活性化させ低抵抗化した poly-Si ドレイン 電極
—不純物イオン打ち込み後、 活性化させた poly-Si半導体層の上にメタ ルシリサイドを形成したドレイン電極
——ノンド一プアモルファスシリコン層の上に不純物ドープした半導体 ドレイン電極
——反射防止膜をつけたブラックマスク
——透明導電膜層
——カラ一フィルタ一層
——高抵抗平坦化膜
——樹脂ブラックマスク
——帯電防止用反射防止膜付ブラックマスク電極
——平坦化絶縁膜
——帯電防止用ブラックマスク電極
—静電気対策用素子
——奇数番共通電極駆動用連結電極
——偶数番共通電極駆動用連結電極
——静電気対策用連結電極
— n番共通電極駆動波形
―上半分領域 n番走査信号配線駆動波形
——下半分領域 n番走査信号配線駆動波形
—上半分領域 M番映像信号波形
——下半分領域 M番映像信号波形 —— M番共通電極駆動波形
——上半分領域映像信号配線 ―下半分領域映像信号配線 ——上半分領域走査信号配線 ——下半分領域走査信号配線 —付加容量コンタクトスル一ホール
A—— P型液晶分子の配向方向と画素電極(共通電極と液晶駆動電極)の交 差する角度
B— N型液晶分子の配向方向と画素電極(共通電極と液晶駆動電極)の交差 する角度
BP——バックチヤネル側保護絶縁膜
P—液晶分子の配向方向と偏光板の偏光軸方向 (光学軸)
Q——偏光板の偏光軸方向 (光学軸)
D—映像信号配線と同時に形成されたトランジスタ · ドレイン電極 S一一不純物をイオン打ち込み後、 レ一ザ一ァニールによって活性化させ 低抵抗になった poly-Si液晶駆動電極
T——半導体層
U——配向膜にじ V照射してラビング処理した低プレチルト化領域
J——不純物イオン打ち込み後レーザーァニール処理にて poly-Si化した不 純物半導体層の上にメタルシリサイドを形成した液晶駆動電極 K——ノンド一プアモルファスシリコン層の上に不純物ド一プした半導体液 晶駆動電極
a —共通電極と液晶駆動電極の電極間距離
b——共通電極と液晶駆動電極の電極間距離
c——共通電極と液晶駆動電極の電極間距離
sc——映像信号配線と同時に形成された液晶駆動用付加容量電極

Claims

請求の範囲
1。基板上に走査信号配線と映像信号配線と前記走査信号配線と映像信号配線 との各交差部に形成された薄膜トランジスタと、前記薄膜トランジスタに接続 された液晶駆動電極と、少なくとも一部が、前記液晶駆動電極と対向して形成 された共通電極とを有するアクティブマトリックス基板と、前記アクティブマ トリックス基板に対向する対向基板と、前記アクティブマトリックス基板と前 記対向基板に挟持された液晶層とからなる液晶表示装置において、前記液晶駆 動電極と、前記共通電極との電極間距離が、 1画素內ですべて均一でなく、 2 種類以上の電極間距離の組み合せで形成されていることを特徴とする液晶表 示装置。
2。 特許請求の範囲第 1項において、 液晶駆動電極と共通電極との電極間距 離が、 1画素内で 2種類以上存在し、画素の中央を境にして異なる電極間距離 が左右対称または、上下対称に配置されていることを特徴とする液晶表示装置。
3 0 基板上に走査信号配線と映像信号配線と前記走査信号配線と映像信号配 線との各交差部に形成された薄膜トランジスタと前記薄膜トランジスタに接 続された液晶駆動電極と、少なくとも一部が、前記液晶駆動電極と対向して形 成された共通電極とを有するアクティブマ卜リックス基板と、前記アクティブ マトリックス基板に対向する対向基板と、前記アクティブマ卜リックス基板と 前記対向基板に挟持された液晶層とからなる液晶表示装置において、共通電極 が映像信号配線にそう方向で連結され、有効表示画面内部では、共通電極が映 像信号配線を横ぎつて互いに連結されていないことを特徵とする液晶表示装 置。
4。 特許請求の範囲第 3項において、 映像信号配線にそう方向で連結された 共通電極を、奇数群と偶数群に分離し、走査信号の周期にあわせて奇数群、偶 数群の共通電極に、それぞれ逆相の電圧波形を印加させ、 かつ奇数群、偶数群 の共通電極に対向している液晶駆動電極に、共通電極とは逆相の映像信号波形 をそれぞれ印加することを特徴とする液晶表示装置。 5。 基板上に走査信号配線と映像信号配線と前記走査信号配線と映像信号配 線との各交差部に形成された薄膜トランジスタと前記薄膜トランジスタに接 続された液晶駆動電極と、少なくとも一部が、前記液晶駆動電極と対向して形 成された共通電極とを有するアクティブマトリックス基板と、前記アクティブ マトリックス基板に対向する対向基板と、前記アクティブマトリックス基板と 前記対向基板に挟持された液晶層と力 らなる液晶表示装置において、前記液晶 駆動電極と前記共通電極とが絶縁膜を介して重畳されることで形成された付 加容量よりも、前記液晶駆動電極と前記走査信号配線とが絶縁膜を介して重畳 されることで形成された付加容量の方が大きいことを特徴とする液晶表示装 置。
6。特許請求の範囲第 5項において、共通電極電位は固定しておき、液晶駆動 電極には、走査信号の周期にあわせて共通電極電位に対して正、負の映像信号 «1£を交互に書きこみ、かつ前記液晶組成物層に印加される MIEがより高まる ように、絶縁膜を介して液晶駆動電極と重畳されている走査信号配線にも電圧 信号波形を印加する容量結合駆動方式を用いた液晶表示装置。
7。 基板上に、 走査信号配線と映像信号配線と前記走査信号配線と映像信号 配線との各交差部に形成された薄膜トランジスタと、前記薄膜トランジスタに 接続された液晶駆動電極と、少なくとも一部が、前記液晶駆動電極と対向して 形成された共通電極とを有するアクティブマトリックス基板と前記ァクティ ブマトリックス基板に対向する対向基板と、前記ァクティブマトリックス基板 と、前記対向基板に挟持された液晶層とからなる液晶表示装置において、薄膜 半導体層に不純物をドーピングし、活性化して低抵抗化して、液晶駆動電極に 用いることを特徴とする液晶表示装置。
8。特許請求の範囲第 7項において、前記映像信号配線と画素電極 (液晶駆動 電極と液晶駆動電極に対向している共通電極の一部)力 液晶配向方向に対し、 ± 1度から ±45度の角度の範囲で、 屈曲している構造配置を特徴とする液晶 表示装置。
9。 特許請求の範囲第 7項において、 前記走査信号配線と画素電極が、 液晶 配向方向に対し、 ± 1度から ±45度の角度の範囲で、 屈曲している構造配置 を特徴とする液晶表示装置。
10。 特許請求の範囲第 7項において、 前記映像信号配線と画素電極が、液晶 配向方向に対し、 90度をのぞく 45度から 135度の範囲で屈曲している構造配 置を特徴とする液晶表示装置。
11。特許請求の範囲第 7項において、前記走査信号配線と画素電極が、液 晶配向方向に対し、 90度をのぞく 45度から 135度の範囲で屈曲している構造 配置を特徴とする液晶表示装置。
120 基板上に走査信号配線と映像信号配線と、 前記走査信号配線と映像信 号配線との各交差部に形成された薄膜トランジスタと前記薄膜トランジスタ に接続された液晶駆動電極と、少なくとも一部が前記液晶駆動電極と対向して 形成された共通電極とを有するアクティブマトリックス基板と、前記ァクティ ブマトリックス基板に対向する対向基板と、前記アクティブマトリックス基板 と前記対向基板に挟持された液晶層とからなる液晶表示装置において、前記対 向基板に形成されたカラーフィルタ一層の上を覆うォ一バーコ一ト層に、高抵 抗材 (Κ^ Ω '
Figure imgf000026_0001
を用いたことを特徴とする液晶表示装置。
13, 特許請求の範囲第 12項において、 カラーフィルタ一層と、 ォ一バーコ 一ト層と、液晶層の厚みを合計したものが、液晶駆動電極と共通電極との電極 間距離の 2倍以上であることを特徴とする液晶表示装置。
14。前記対向基板に形成されたカラ一フィルター層の上を覆うオーバーコ一 ト層に絶縁膜を用い、 R, G , Bカラーフィルタ一の境界のオーバーコート絶 縁膜上に、導電性または半導体の電極をブラックマスクとして形成したことを 特徴とする液晶表示装置。
15。 基板上に走査信号配線と映像信号配線と前記走査信号配線と映像信号配 線との各交差部に形成された薄膜トランジスタと、前記薄膜トランジスタに接 続された液晶駆動電極と、少なくとも一部が前記液晶駆動電極と対向して形成 された共通電極とを有するアクティブマトリックス基板と、前記アクティブマ 卜リックス基板に対向する対向基板と、前記アクティブマトリックス基板と前 記対向基板に挟持された液晶層とからなる液晶表示装置を作る工程において、 液晶を配向させるための配向膜を塗布し、焼成後、配向膜に U V照射処理また は、 He, Ne, Ar, N2, 02などのイオンインプラテ一シヨン処理やプラズマ処理 をした後、 ラビング処理することで、液晶プレチルト角を 1度以下に低下させ ることを特徴とする製造ェ
16。 特許請求の範囲第 3項において、 映像信号配線にそう方向で連結された 共通電極を、 奇数群と偶数群に分離し、 かつ映像信号配線を画面の中央で上 下に 2分割したことを特徵とする液晶表示装置。
17。 特許請求の範囲第 16項において、 画面の中央で上下の群に 2分割され た走査信号配線を同時に上群と下群とで駆動し、 上下の映像信号配線には、 奇数群と偶数群とで逆相の映像信号電圧波形を印加し、 共通電極の奇数群と 偶数群には、 それぞれの映像信号配線の電圧波形と逆相の共通電極駆動波形 を印加することで、 同時に面面の上下の 2本の水平ラインに異なる映像信号 を書きこむ駆動方式を特徴とする液晶表示装置。
PCT/JP1997/002862 1996-08-19 1997-08-18 Dispositif d'affichage a cristaux liquides WO1998008134A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/272792 1996-08-19
JP27279296A JP3567183B2 (ja) 1996-08-19 1996-08-19 液晶表示装置

Publications (1)

Publication Number Publication Date
WO1998008134A1 true WO1998008134A1 (fr) 1998-02-26

Family

ID=17518813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002862 WO1998008134A1 (fr) 1996-08-19 1997-08-18 Dispositif d'affichage a cristaux liquides

Country Status (3)

Country Link
JP (1) JP3567183B2 (ja)
TW (1) TW406206B (ja)
WO (1) WO1998008134A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2870947A1 (fr) * 2004-05-31 2005-12-02 Lg Philips Lcd Co Ltd Afficheur a cristaux liquides et procede de commande
US7176938B2 (en) 2004-06-14 2007-02-13 Sharp Laboratories Of America, Inc. System for reducing crosstalk
US7502087B2 (en) 2004-05-31 2009-03-10 Lg Display Co., Ltd. In-plane switching liquid crystal display and driving method thereof
US7505018B2 (en) 2004-05-04 2009-03-17 Sharp Laboratories Of America, Inc. Liquid crystal display with reduced black level insertion
US7525528B2 (en) 2004-11-16 2009-04-28 Sharp Laboratories Of America, Inc. Technique that preserves specular highlights
US7532192B2 (en) 2004-05-04 2009-05-12 Sharp Laboratories Of America, Inc. Liquid crystal display with filtered black point
US7556836B2 (en) 2004-09-03 2009-07-07 Solae, Llc High protein snack product
US7573457B2 (en) 2001-11-09 2009-08-11 Sharp Laboratories Of America, Inc. Liquid crystal display backlight with scaling
US7602369B2 (en) 2004-05-04 2009-10-13 Sharp Laboratories Of America, Inc. Liquid crystal display with colored backlight
US7612757B2 (en) 2004-05-04 2009-11-03 Sharp Laboratories Of America, Inc. Liquid crystal display with modulated black point
US7623105B2 (en) 2003-11-21 2009-11-24 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive color
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3120751B2 (ja) 1996-11-06 2000-12-25 日本電気株式会社 横電界方式の液晶表示装置
TW530180B (en) * 1998-04-27 2003-05-01 Hitachi Ltd Active matrix type liquid crystal display
KR100315919B1 (ko) * 1998-11-12 2002-06-20 윤종용 액정표시장치및그제조방법
JP3481509B2 (ja) 1999-06-16 2003-12-22 Nec液晶テクノロジー株式会社 液晶表示装置
JP3264270B2 (ja) 1999-07-26 2002-03-11 日本電気株式会社 液晶表示装置
JP2002323706A (ja) * 2001-02-23 2002-11-08 Nec Corp 横電界方式のアクティブマトリクス型液晶表示装置及びその製造方法
KR100984345B1 (ko) * 2003-05-30 2010-09-30 삼성전자주식회사 박막 트랜지스터 표시판 및 이를 포함하는 액정 표시 장치
JP4154598B2 (ja) 2003-08-26 2008-09-24 セイコーエプソン株式会社 液晶表示装置の駆動法、液晶表示装置及び携帯型電子機器
KR100564219B1 (ko) 2003-12-11 2006-03-28 엘지.필립스 엘시디 주식회사 횡전계형 액정표시장치용 어레이 기판
US8395577B2 (en) 2004-05-04 2013-03-12 Sharp Laboratories Of America, Inc. Liquid crystal display with illumination control
US7777714B2 (en) 2004-05-04 2010-08-17 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive width
US7872631B2 (en) 2004-05-04 2011-01-18 Sharp Laboratories Of America, Inc. Liquid crystal display with temporal black point
KR100789091B1 (ko) 2004-06-30 2007-12-26 엘지.필립스 엘시디 주식회사 횡전계 방식 액정 표시 장치 및 그 제조 방법
KR101098891B1 (ko) * 2004-09-30 2011-12-26 엘지디스플레이 주식회사 횡전계형 액정표시장치
US7898519B2 (en) 2005-02-17 2011-03-01 Sharp Laboratories Of America, Inc. Method for overdriving a backlit display
US8050512B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
US8050511B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
KR101112584B1 (ko) * 2004-12-27 2012-02-15 엘지디스플레이 주식회사 횡전계형 액정표시장치
KR101158116B1 (ko) * 2005-03-04 2012-06-19 엘지디스플레이 주식회사 수평전계방식 액정표시소자
KR101256660B1 (ko) * 2005-08-31 2013-04-19 엘지디스플레이 주식회사 횡전계방식 액정표시장치 및 그 제조방법
US8121401B2 (en) 2006-01-24 2012-02-21 Sharp Labortories of America, Inc. Method for reducing enhancement of artifacts and noise in image color enhancement
EP2924498A1 (en) 2006-04-06 2015-09-30 Semiconductor Energy Laboratory Co, Ltd. Liquid crystal desplay device, semiconductor device, and electronic appliance
JP2007334317A (ja) * 2006-05-16 2007-12-27 Semiconductor Energy Lab Co Ltd 液晶表示装置及び半導体装置
TW202449481A (zh) 2006-05-16 2024-12-16 日商半導體能源研究所股份有限公司 液晶顯示裝置
JP4952158B2 (ja) * 2006-09-15 2012-06-13 ソニー株式会社 液晶装置の製造方法
JP5429584B2 (ja) 2007-09-26 2014-02-26 Nltテクノロジー株式会社 表示装置及びそれらを用いた携帯機器、端末装置
KR101096356B1 (ko) * 2007-11-14 2011-12-20 하이디스 테크놀로지 주식회사 횡전계모드 액정표시장치
US8760479B2 (en) 2008-06-16 2014-06-24 Samsung Display Co., Ltd. Liquid crystal display
JP5610710B2 (ja) * 2008-09-30 2014-10-22 株式会社ジャパンディスプレイ 液晶装置、電子機器
US8310609B2 (en) * 2008-09-30 2012-11-13 Sony Corporation Liquid crystal device, electronic apparatus, and method of manufacturing liquid crystal device
JP5454872B2 (ja) * 2008-09-30 2014-03-26 株式会社ジャパンディスプレイ 液晶装置、電子機器
WO2011007598A1 (ja) 2009-07-13 2011-01-20 シャープ株式会社 液晶表示装置
US8804081B2 (en) * 2009-12-18 2014-08-12 Samsung Display Co., Ltd. Liquid crystal display device with electrode having opening over thin film transistor
JP2013007956A (ja) * 2011-06-27 2013-01-10 Japan Display Central Co Ltd 液晶表示装置
JP2013097190A (ja) * 2011-11-01 2013-05-20 Japan Display Central Co Ltd 液晶表示装置
JP6431321B2 (ja) * 2014-09-12 2018-11-28 株式会社ジャパンディスプレイ 液晶表示装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619030A (en) * 1979-07-25 1981-02-23 Sharp Corp Production of liquid crystal display element
JPS56138713A (en) * 1980-04-01 1981-10-29 Dainippon Printing Co Ltd Orienting substrate for liquid crystal display and its manufacture
JPS63234203A (ja) * 1987-03-23 1988-09-29 Toshiba Corp カラ−フイルタ−の製造方法
JPS6484221A (en) * 1987-09-28 1989-03-29 Matsushita Electric Industrial Co Ltd Production of liquid crystal display device
JPH0380225A (ja) * 1989-08-23 1991-04-05 Seiko Epson Corp アクティブマトリックス基板
JPH04223428A (ja) * 1990-12-25 1992-08-13 Nec Corp アクティブマトリックス液晶表示装置
JPH05143020A (ja) * 1991-11-18 1993-06-11 Nec Gumma Ltd マトリクス型液晶表示装置の駆動方法
JPH06110048A (ja) * 1992-09-29 1994-04-22 Citizen Watch Co Ltd 液晶表示装置
JPH06222366A (ja) * 1992-12-04 1994-08-12 Fujitsu Ltd 液晶表示装置及びその製造方法
JPH0736058A (ja) * 1993-07-20 1995-02-07 Hitachi Ltd アクティブマトリックス型液晶表示装置
JPH07134301A (ja) * 1993-11-09 1995-05-23 Hitachi Ltd 液晶表示装置
JPH07191336A (ja) * 1993-12-27 1995-07-28 Toshiba Corp 液晶表示装置
JPH07306417A (ja) * 1994-03-17 1995-11-21 Hitachi Ltd アクティブマトリクス型液晶表示装置
WO1996000408A1 (fr) * 1994-06-24 1996-01-04 Hitachi, Ltd. Afficheur a cristaux liquides de type matrice active et son procede d'activation
JPH085990A (ja) * 1994-06-24 1996-01-12 Toshiba Corp アクティブ・マトリクス型液晶表示装置およびその駆動方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619030A (en) * 1979-07-25 1981-02-23 Sharp Corp Production of liquid crystal display element
JPS56138713A (en) * 1980-04-01 1981-10-29 Dainippon Printing Co Ltd Orienting substrate for liquid crystal display and its manufacture
JPS63234203A (ja) * 1987-03-23 1988-09-29 Toshiba Corp カラ−フイルタ−の製造方法
JPS6484221A (en) * 1987-09-28 1989-03-29 Matsushita Electric Industrial Co Ltd Production of liquid crystal display device
JPH0380225A (ja) * 1989-08-23 1991-04-05 Seiko Epson Corp アクティブマトリックス基板
JPH04223428A (ja) * 1990-12-25 1992-08-13 Nec Corp アクティブマトリックス液晶表示装置
JPH05143020A (ja) * 1991-11-18 1993-06-11 Nec Gumma Ltd マトリクス型液晶表示装置の駆動方法
JPH06110048A (ja) * 1992-09-29 1994-04-22 Citizen Watch Co Ltd 液晶表示装置
JPH06222366A (ja) * 1992-12-04 1994-08-12 Fujitsu Ltd 液晶表示装置及びその製造方法
JPH0736058A (ja) * 1993-07-20 1995-02-07 Hitachi Ltd アクティブマトリックス型液晶表示装置
JPH07134301A (ja) * 1993-11-09 1995-05-23 Hitachi Ltd 液晶表示装置
JPH07191336A (ja) * 1993-12-27 1995-07-28 Toshiba Corp 液晶表示装置
JPH07306417A (ja) * 1994-03-17 1995-11-21 Hitachi Ltd アクティブマトリクス型液晶表示装置
WO1996000408A1 (fr) * 1994-06-24 1996-01-04 Hitachi, Ltd. Afficheur a cristaux liquides de type matrice active et son procede d'activation
JPH085990A (ja) * 1994-06-24 1996-01-12 Toshiba Corp アクティブ・マトリクス型液晶表示装置およびその駆動方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7573457B2 (en) 2001-11-09 2009-08-11 Sharp Laboratories Of America, Inc. Liquid crystal display backlight with scaling
US7623105B2 (en) 2003-11-21 2009-11-24 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive color
US7602369B2 (en) 2004-05-04 2009-10-13 Sharp Laboratories Of America, Inc. Liquid crystal display with colored backlight
US7505018B2 (en) 2004-05-04 2009-03-17 Sharp Laboratories Of America, Inc. Liquid crystal display with reduced black level insertion
US7532192B2 (en) 2004-05-04 2009-05-12 Sharp Laboratories Of America, Inc. Liquid crystal display with filtered black point
US7612757B2 (en) 2004-05-04 2009-11-03 Sharp Laboratories Of America, Inc. Liquid crystal display with modulated black point
US7502087B2 (en) 2004-05-31 2009-03-10 Lg Display Co., Ltd. In-plane switching liquid crystal display and driving method thereof
FR2870947A1 (fr) * 2004-05-31 2005-12-02 Lg Philips Lcd Co Ltd Afficheur a cristaux liquides et procede de commande
US7342592B2 (en) 2004-06-14 2008-03-11 Sharp Laboratories Of America, Inc. System for reducing crosstalk
US7176938B2 (en) 2004-06-14 2007-02-13 Sharp Laboratories Of America, Inc. System for reducing crosstalk
US7556836B2 (en) 2004-09-03 2009-07-07 Solae, Llc High protein snack product
US7525528B2 (en) 2004-11-16 2009-04-28 Sharp Laboratories Of America, Inc. Technique that preserves specular highlights
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight

Also Published As

Publication number Publication date
JP3567183B2 (ja) 2004-09-22
TW406206B (en) 2000-09-21
JPH1062802A (ja) 1998-03-06

Similar Documents

Publication Publication Date Title
WO1998008134A1 (fr) Dispositif d'affichage a cristaux liquides
JP3831863B2 (ja) 液晶表示装置
US6281957B1 (en) In-plane switching mode liquid crystal display device
TWI380430B (en) Electrostatic discharge protection circuit, manufacturing method thereof and liquid crystal display device having the same
JP2701698B2 (ja) 液晶表示装置
KR100536851B1 (ko) 액정표시장치
US7138656B2 (en) Liquid crystal display panel and fabricating method thereof
JP5329169B2 (ja) 薄膜トランジスタ基板及びこれを含む液晶表示装置
US8305538B2 (en) Low-cost large-screen wide-angle fast-response liquid crystal display apparatus
CN101055361B (zh) 横电场方式的液晶显示装置
US20090033608A1 (en) Display device
US6762819B2 (en) Liquid crystal display device with electrodes on barrier ribs and fabricating method thereof
JP2002287163A (ja) 液晶表示装置及びその製造方法
JPH06214244A (ja) アクティブマトリクス型液晶表示装置
US20080284965A1 (en) Liquid crystal display device and fabricating method thereof
US8355090B2 (en) Liquid crystal display having reduced kickback effect
JPH0728091A (ja) 液晶表示装置
WO2018170983A1 (zh) 阵列基板和液晶显示面板
JP3194873B2 (ja) アクティブマトリックス型液晶表示装置およびその駆動方法
KR100430376B1 (ko) 액정디스플레이
US9373647B2 (en) Thin film transistor array panel and liquid crystal display including the same
JP2005010721A (ja) 液晶表示装置
JP2002122876A (ja) 液晶表示装置
KR20020054909A (ko) 프린지필드구동 액정표시장치 및 그 제조방법
CN114764203A (zh) 一种显示面板及显示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA