WO1998010040A1 - Esters d'alcool complexes a viscosite elevee - Google Patents
Esters d'alcool complexes a viscosite elevee Download PDFInfo
- Publication number
- WO1998010040A1 WO1998010040A1 PCT/US1997/015696 US9715696W WO9810040A1 WO 1998010040 A1 WO1998010040 A1 WO 1998010040A1 US 9715696 W US9715696 W US 9715696W WO 9810040 A1 WO9810040 A1 WO 9810040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alcohol
- alcohol ester
- complex
- complex alcohol
- equivalents
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/08—Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/14—Use of additives to fuels or fires for particular purposes for improving low temperature properties
- C10L10/16—Pour-point depressants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/42—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/42—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
- C10M105/46—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M111/00—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/68—Esters
- C10M129/78—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids, hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/68—Esters
- C10M129/78—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids, hydroxy carboxylic acids
- C10M129/82—Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids, hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/048—Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution, non-macromolecular and macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/008—Lubricant compositions compatible with refrigerants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
- C10M2203/022—Well-defined aliphatic compounds saturated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
- C10M2203/024—Well-defined aliphatic compounds unsaturated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/04—Well-defined cycloaliphatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/104—Aromatic fractions
- C10M2203/1045—Aromatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/106—Naphthenic fractions
- C10M2203/1065—Naphthenic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/108—Residual fractions, e.g. bright stocks
- C10M2203/1085—Residual fractions, e.g. bright stocks used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/003—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/0206—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
- C10M2205/0265—Butene used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/06—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/028—Overbased salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/26—Overbased carboxylic acid salts
- C10M2207/262—Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/2805—Esters used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/281—Esters of (cyclo)aliphatic monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
- C10M2207/2825—Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
- C10M2207/2835—Esters of polyhydroxy compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/285—Esters of aromatic polycarboxylic acids
- C10M2207/2855—Esters of aromatic polycarboxylic acids used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/286—Esters of polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/30—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/30—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
- C10M2207/301—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/30—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
- C10M2207/304—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/30—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
- C10M2207/304—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
- C10M2207/3045—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
- C10M2207/345—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/401—Fatty vegetable or animal oils used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
- C10M2207/4045—Fatty vegetable or animal oils obtained from genetically modified species used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/086—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/1033—Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
- C10M2209/1045—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/105—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
- C10M2209/1055—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/106—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
- C10M2209/1065—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/107—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
- C10M2209/1075—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106 used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/108—Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
- C10M2209/1085—Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/109—Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
- C10M2209/1095—Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides [having hydrocarbon substituents containing less than thirty carbon atoms]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides [having hydrocarbon substituents containing less than thirty carbon atoms]
- C10M2215/082—Amides [having hydrocarbon substituents containing less than thirty carbon atoms] containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbased sulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/088—Neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/089—Overbased salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2221/00—Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/003—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/023—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/0405—Phosphate esters used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/049—Phosphite
- C10M2223/0495—Phosphite used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/0603—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/065—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/08—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-nitrogen bonds
- C10M2223/083—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-nitrogen bonds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/10—Phosphatides, e.g. lecithin, cephalin
- C10M2223/103—Phosphatides, e.g. lecithin, cephalin used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/06—Organic compounds derived from inorganic acids or metal salts
- C10M2227/061—Esters derived from boron
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/06—Organic compounds derived from inorganic acids or metal salts
- C10M2227/061—Esters derived from boron
- C10M2227/062—Cyclic esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/02—Unspecified siloxanes; Silicones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/02—Unspecified siloxanes; Silicones
- C10M2229/025—Unspecified siloxanes; Silicones used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/0405—Siloxanes with specific structure used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/041—Siloxanes with specific structure containing aliphatic substituents
- C10M2229/0415—Siloxanes with specific structure containing aliphatic substituents used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/042—Siloxanes with specific structure containing aromatic substituents
- C10M2229/0425—Siloxanes with specific structure containing aromatic substituents used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/043—Siloxanes with specific structure containing carbon-to-carbon double bonds
- C10M2229/0435—Siloxanes with specific structure containing carbon-to-carbon double bonds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/044—Siloxanes with specific structure containing silicon-to-hydrogen bonds
- C10M2229/0445—Siloxanes with specific structure containing silicon-to-hydrogen bonds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/045—Siloxanes with specific structure containing silicon-to-hydroxyl bonds
- C10M2229/0455—Siloxanes with specific structure containing silicon-to-hydroxyl bonds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/046—Siloxanes with specific structure containing silicon-oxygen-carbon bonds
- C10M2229/0465—Siloxanes with specific structure containing silicon-oxygen-carbon bonds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/047—Siloxanes with specific structure containing alkylene oxide groups
- C10M2229/0475—Siloxanes with specific structure containing alkylene oxide groups used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/048—Siloxanes with specific structure containing carboxyl groups
- C10M2229/0485—Siloxanes with specific structure containing carboxyl groups used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/05—Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/042—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/044—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/046—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/06—Instruments or other precision apparatus, e.g. damping fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
- C10N2040/13—Aircraft turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/135—Steam engines or turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/22—Metal working with essential removal of material, e.g. cutting, grinding or drilling
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/26—Two-strokes or two-cycle engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/32—Wires, ropes or cables lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/34—Lubricating-sealants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/36—Release agents or mold release agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/38—Conveyors or chain belts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/40—Generators or electric motors in oil or gas winning field
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/42—Flashing oils or marking oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/44—Super vacuum or supercritical use
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/50—Medical uses
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
Definitions
- the present invention relates generally to high viscosity complex alcohol esters with low polybasic acid ester content for use as lubricant basestocks.
- it relates to complex alcohol esters formed by reacting a polyhydroxyl compound (i.e. a polyol) with a polybasic acid or anhydride of a polybasic acid, and a limited excess of monohydric alcohol, i.e., 0-20% excess alcohol, more preferably 0-15%.
- a polyhydroxyl compound i.e. a polyol
- monohydric alcohol i.e., 0-20% excess alcohol, more preferably 0-15%.
- These complex alcohol esters are preferably biodegradable, have a high viscosity, low metals content, low acid content, good pour point, and provide excellent lubricity and seal swell.
- Lubricants in commercial use today are prepared from a variety of natural and synthetic basestocks admixed with various additive packages and solvents depending upon their intended application.
- the basestocks typically include mineral oils, highly refined mineral oils, poly alpha olefins (PAO), polyalkylene glycols (PAG), phosphate esters, silicone oils, diesters or polyol esters.
- PAO poly alpha olefins
- PAG polyalkylene glycols
- phosphate esters phosphate esters
- silicone oils diesters or polyol esters.
- Neopolyol esters usually are comprised of neopolyols and monocarboxylic acids.
- neopolyols such as neopentyl glycol, trimethylolethane, trimethylolpropane, monopentaerythritol, technical grade pentaerythritol, dipentaerythritol, tripentaerythritol and the like can be esterified with carboxylic acids ranging from formic acid, acetic acid, propionic acid, up through long chain carboxylic acids both linear and branched. Typically, the acids employed range from C5 to C 22 .
- One typical method of production of polyol esters would be to react a neopolyol with a carboxylic acid at elevated temperatures in the presence or absence of an added catalyst.
- Catalysts such as sulfuric acid, p-toluene sulfonic acid, phosphorous acid, and soluble metal esterification catalysts are conventionally employed.
- neopolyol esters While the method of production of neopolyol esters as outlined above is well known, the method produces materials with a set of standard properties. For a given combination of neopolyol and acid (or mixtures thereof) there is a set of product properties such as viscosity, viscosity index, molecular weight, pour point, flash point, thermal and oxidative stability, polarity, and biodegradability which are inherent to the compositions formed by the components in the recipe.
- product properties such as viscosity, viscosity index, molecular weight, pour point, flash point, thermal and oxidative stability, polarity, and biodegradability which are inherent to the compositions formed by the components in the recipe.
- a polybasic acid such as, e.g., adipic acid, sebacic acid, azelaic acid and/or acid anhydrides such as, succinic, maleic and phthalic anhydride and the like enables one to have the components of a polymeric system when reacted with a neopolyol.
- the present inventors have discovered that the ratio of polybasic acid to polyol is critical in the formation of a complex alcohol ester. That is, if this ratio is too low then a complex alcohol ester contains undesirable amounts of heavies which reduce biodegradability and increases the hydroxyl number of the ester which increases the corrosive nature of the resultant ester which is also undesirable. If, however, the ratio is too high then the resultant complex alcohol ester will have an undesirably low viscosity and poor seal swell characteristics.
- the complex alcohol esters of the present invention meet this need by providing lubricants with a unique level of biodegradability in conjunction with effective lubricating properties. They also provide excellent stability, low temperature properties (i.e., low pour points), low metal catalyst content, low acidity, high viscosity, and high viscosity index.
- the complex alcohol ester with low polybasic acid ester content according to the present invention is formed by using no more than 20% molar excess alcohol during the reaction step. Furthermore, the present inventors have discovered that these unique complex alcohol esters according to the present invention can also be formed such that they have low metal catalyst and acid contents by treating the crude reactor product with water at elevated temperatures and pressures greater than one atmosphere. That is, the present inventors have unexpectedly discovered that high temperature hydrolysis can be used to remove a substantial portion of the metal catalyst from the complex alcohol ester reaction product without any significant increase in the total acid number of the resulting product.
- the complex alcohol esters of the present invention also exhibit the following attributes: excellent lubricity, seal swell, biodegradability, low toxicity, friction modification, high viscosity, thermal and oxidative stability and polarity.
- a complex alcohol ester which comprises the reaction product of an add mixture of the following: a polyhydroxyl compound represented by the general formula:
- R(OH) n wherein R is any aliphatic or cyclo-aliphatic hydrocarbyl group and n is at least 2, provided that the hydrocarbyl group contains from about 2 to 20 carbon atoms; a polybasic acid or an anhydride of a polybasic acid, provided that the ratio of equivalents of the polybasic acid to equivalents of alcohol from the polyhydroxyl compound is in the range between about 1.6: 1 to 2: 1; and a monohydric alcohol, provided that the ratio of equivalents of the monohydric alcohol to equivalents of the polybasic acid is in the range between about 0.84: 1 to 1.2: 1 ; wherein the complex alcohol ester exhibits a pour point of less than or equal to -20°C, preferably -40°C, a viscosity in the range between about 100-700 cSt at 40°C, preferably between 100-200, and having a polybasic acid ester concentration of less than or equal to 70 wt.%, based on the complex alcohol ester.
- the ratio of equivalents of the polybasic acid to equivalents of alcohol from the polyhydroxyl compound is preferably in the range between about 1.75: 1 to 2: 1.
- the polyhydroxyl compound is selected from the group consisting of: trimethylolpropane, trimethylolethane and trimethylolbutane, then the ratio of equivalents of the polybasic acid to equivalents of alcohol from the polyhydroxyl compound is preferably in the range between about 1.6: 1 to 2: 1.
- the ratio of equivalents of the polybasic acid to equivalents of alcohol from the polyhydroxyl compound is preferably in the range between about 1.83 : 1 to 2: 1.
- the unique complex alcohol ester according to the present invention exhibits lubricity, as measured by the coefficient of friction, less than or equal to 0.1 and is at least about 60% biodegradable as measured by the Sturm test, preferably the Modified Sturm test.
- the complex alcohol ester may also exhibit at least one of the properties selected from the group consisting of: (a) a total acid number of less than or equal to about 1.0 mgKOH/gram, (b) a hydroxyl number in the range between about 0 to 50 mgKOH/gram, (c) a metal catalyst content of less than about 25 ppm, (d) a molecular weight in the range between about 275 to 250,000 Daltons, (e) a seal swell equal to about DTDA (diisotridecyladipate), (f) a viscosity at -25°C of less than or equal to about 100,000 cps, (g) a flash point of greater than about 200°C, (h) aquatic toxicity of greater than about 1,000 ppm, (i) a specific gravity of less than about 1.0, (j) a viscosity index equal to or greater than about 150, and (k) an oxidative and thermal stability as measured by HPDSC at 220°C of greater than about 10 minutes.
- the present invention also covers a lubricant which comprises the aforementioned complex alcohol ester and a lubricant additive packages.
- the lubricant is preferably selected from the group consisting of: crankcase engine oils, two-cycle engine oils, catapult oils, hydraulic fluids, drilling fluids, aircraft and other turbine oils, greases, compressor oils, functional fluids, gear oils, and other industrial and engine lubrication applications.
- the preferred additive package comprises at least one additive selected from the group consisting of: viscosity index improvers, corrosion inhibitors, oxidation inhibitors, dispersants, lube oil flow improvers, detergents and rust inhibitors, pour point depressants, anti-foaming agents, anti-wear agents, seal swellants, friction modifiers, extreme pressure agents, color stabilizers, demulsifiers, wetting agents, water loss improving agents, bactericides, drill bit lubricants, thickeners or gellants, anti-emulsifying agents, metal deactivators, coupling agents, surfactants, and additive solubilizers.
- the present invention also includes a unique process for producing complex alcohol ester with low metal catalyst content and a low total acid number which comprises the steps of: (a) reacting a polyhydroxyl compound, a polybasic acid or an anhydride of a polybasic acid, and a monohydric alcohol at temperatures and pressures capable of causing the esterification of the reaction mixture; (b) adding a metal catalyst to the reaction mixture to form a crude complex alcohol ester product; and (c) hydrolyzing the crude complex alcohol ester product in the presence of between about 0.5 to 4 wt.% water, preferably 2 to 3 wt .%, based on the crude complex alcohol ester product, at a temperature of between about 100 to
- the process may also include the steps of: (d) adding at least one adsorbent to the reaction mixture following esterification; (e) removing water used in hydrolysis step (c) by heat and vacuum in a flash step; (f) filtering solids from the esterified reaction mixture; (g) removing excess alcohol by steam stripping or any other distillation method; and (h) removing residual solids from the stripped ester in a final filtration.
- TAN total acid number
- Complex alcohol esters provide a unique level of biodegradability, in conjunction with effective lubricating properties. They also provide excellent stability, high viscosity, low toxicity, friction modification, seal compatibility, and polarity.
- the complex alcohol ester according to the present invention comprises the reaction product of an add mixture of the following: a polyhydroxyl compound represented by the general formula:
- R(OH) n wherein R is any aliphatic or cyclo-aliphatic hydrocarbyl group and n is at least 2, provided that the hydrocarbyl group contains from about 2 to 20 carbon atoms; a polybasic acid or an anhydride of a polybasic acid, provided that the ratio of equivalents of the polybasic acid to equivalents of alcohol from the polyhydroxyl compound is in the range between about 1.6: 1 to 2: 1 ; and a monohydric alcohol, provided that the ratio of equivalents of the monohydric alcohol to equivalents of the polybasic acid is in the range between about 0.84: 1 to 1.2: 1 ; wherein the complex alcohol ester exhibits a pour point of less than or equal to -20°C, a viscosity in the range between about 100-700 cSt at 40°C and having a polybasic acid ester concentration of less than or equal to 70 wt .%, based on the complex alcohol ester.
- the present inventors have unexpectedly discovered that if the ratio of polybasic acid to polyol (i.e., polyhydroxyl compound) is too low, then an unacceptable amount of cross-linking occurs which results in very high viscosities, poor low temperature properties, poor biodegradability, and poor compatibility with other basestocks and with additives. If, however, the ratio of polybasic acid to polyol is too high, then an unacceptable amount of polybasic acid ester (e.g., adipate di-ester) is formed resulting in poor seal compatibility and low viscosity which limits the complex alcohol ester's applicability.
- polybasic acid to polyol i.e., polyhydroxyl compound
- the complex alcohol ester also exhibits the following properties: seal swell less than (diisotridecyladipate) DTD A, viscosity at -25°C less than or equal to
- Trimethylolpropane (TMP) ester typically have a viscosity at -25°C less than or equal to 50,000 cps.
- the ratio of monohydric alcohol to polybasic acid is too high (i.e., 1.2 to 1), then an unacceptable amount of polybasic acid ester is formed resulting in poor seal compatibility and low viscosity which limits the complex alcohol ester's applicability.
- This complex alcohol ester exhibits lubricity, as measured by the coefficient of friction, of less than or equal to 0.1 and is at least about 60% biodegradable as measured by the Sturm test. It is preferable that the polybasic acid is adipic acid and the branched monohydric alcohol is in the range of C5 to C ⁇ 3 , more preferably between about Cg to C 10 , e.g., isodecyl alcohol or 2-ethylhexanol.
- the complex alcohol ester of the present invention exhibits at least one of the following additional properties selected from the group consisting of: a total acid number of less than or equal to about 1.0 mgKOH/gram, a hydroxyl number of greater than or in the range between about 0-50 mgKOH/gram, a metal catalyst content of less than about 10 ppm, a molecular weight in the range between about 275 to 250,000 Daltons, a seal swell equal to about DTDA (diisotridecyladipate), a viscosity at -25°C of less than or equal to about 100,000 cps, a flash point of greater than about 200°C, aquatic toxicity of greater than about 1,000 ppm, a specific gravity of less than about 1.0, a viscosity index equal to or greater than about 150, and an oxidative and thermal stability as measured by HPDSC at 220°C of greater than about 10 minutes.
- additional properties selected from the group consisting of: a total acid number of less than or equal to about
- the ratio of equivalents of the polybasic acid to equivalents of alcohol from the polyhydroxyl compound is in the range between about 1.75: 1 to 2.1; and a monohydric alcohol, provided that the ratio of equivalents of the monohydric alcohol to equivalents of the polybasic acid is in the range between about 0.84: 1 to 1 2.1, wherein the complex alcohol ester exhibits a pour point of less than or equal to -20°C, a viscosity in the range between about 100-700 cSt at 40°C and having a low polybasic acid ester concentration of less than or equal to 70 wt.%, based on the complex alcohol ester
- Another preferred complex alcohol ester according to the present invention comprises the reaction product of a polyol selected from the group consisting of trimethylolpropane, trimethylolethane and trimethylolbutane, a polybasic acid or
- the complex alcohol ester also exhibits the following properties: seal swell less than (diisotridecyladipate) DTDA, viscosity at -25°C less than or equal to 150,000 cps, flash point greater than 450°C, aquatic toxicity of less than 1,000 ppm, a specific gravity of less than 1.0, a viscosity index of less than 150 and HPDSC at 220°C of greater than about 10 minutes.
- Trimethylolpropane (TMP) ester typically have a viscosity at -25°C less than or equal to 50,000 cps.
- Still another complex alcohol ester comprises the reaction product of: a polyol of di-pentaerythritol; a polybasic acid or an anhydride of a polybasic acid, provided that the ratio of equivalents of the polybasic acid to equivalents of alcohol from the polyhydroxyl compound is in the range between about 1.83:1 to 2:1; and a monohydric alcohol, provided that the ratio of equivalents of the monohydric alcohol to equivalents of the polybasic acid is in the range between about 0.84: 1 to 1.2: 1; wherein the complex alcohol ester exhibits a pour point of less than or equal to -20°C, a viscosity in the range between about 100-700 cSt at 40°C and having a low polybasic acid ester concentration of less than or equal to 70 wt.%, based on the complex alcohol ester.
- Complex alcohol esters are produced by the esterification of polyols with dibasic acids and "end-capped” with monohydric alcohols in either single step or two step reactions. Catalysts are typically used to achieve greater than 99% conversion of the acid functionality present. Metal catalysts are preferred for several reasons, but have a disadvantage in that metallic residues are left in the final product after conventional removal techniques are used.
- the processes proposed herein use metal catalysts, but avoid the presence of significant amounts of metals in the final product and maintaining a low TAN, by either ( 1 ) adding the catalyst to the reaction between about 88 to 92% conversion of the polybasic acid is achieved rather than at the start of the reaction or, preferably, (2) treating the crude esterification product (after 99.8% of the hydroxyl functionalities are esterified) with water in an amount of between about 0.5 to 4 wt.%, based on crude esterification product, more preferably between about 2 to 3 wt. %, at elevated temperatures of between about 100 to 200°C, more preferably between about 1 10 to 175°C, and most preferably between about 125 to 160°C, and pressures greater than one atmosphere.
- the process used to form the complex alcohol ester according to the present invention includes the following steps wherein a polyol and monohydric alcohol are reacted with a polycarboxylic (polybasic) acid or an anhydride of a polycarboxylic acid. For each hydroxyl group on the polyol, approximately one mole of polycarboxylic acid is used in the reaction mixture. Enough monohydric alcohol (e.g., less than 20% excess, more preferably between about 5-15% excess, is used to react with all of the carboxylic acid groups ignoring that the polyol also reacts with these acid groups.
- a polycarboxylic (polybasic) acid or an anhydride of a polycarboxylic acid For each hydroxyl group on the polyol, approximately one mole of polycarboxylic acid is used in the reaction mixture. Enough monohydric alcohol (e.g., less than 20% excess, more preferably between about 5-15% excess, is used to react with all of the carboxylic acid groups ignoring that the
- esterification reaction can take place with or without a sulfuric acid, phosphorus acid, sulfonic acid, para-toluene sulfonic acid or titanium, zirconium or tin-based catalyst, at a temperature in the range between about 140 to 250°C and a pressure in the range between about 30 mm Hg to 760 mm Hg (3.999 to 101.308 kPa) for about 0.1 to 16 hours, preferably 2 to 12 hours, most preferably 6 to 8 hours.
- the stoichiometry in the reactor is variable, and vacuum stripping of excess alcohol generates the preferred final composition.
- Optional steps include the following:
- adsorbents such as alumina, silica gel, activated carbon, clay and/or filter aid to the reaction mixture following esterification before further treatment, but in certain cases clay treatment may occur later in the process following either flash drying or steam or nitrogen stripping and in still other cases the clay may be eliminated from the process altogether;
- esterification process allows for the formation of an ester product having low metals (i.e., approximately less than 25 ppm metals (10 ppm if the metal is titanium) based on the total ester product, low ash (i.e., approximately less than 15 ppm ash based on the total ester product), and low total acid number (TAN) (i.e., approximately less than or equal to 1.0 mgKOH/gram).
- low metals i.e., approximately less than 25 ppm metals (10 ppm if the metal is titanium
- low ash i.e., approximately less than 15 ppm ash based on the total ester product
- TAN total acid number
- esterification catalysts titanium, zirconium and tin-based catalysts such as titanium, zirconium and tin alcoholates, carboxylates and chelates are preferred. See US-A-3056818 (Werber) and US-A-5324853 (Jones et al.) which disclose various specific catalysts which may be used in the esterification process of the present invention and which are incorporated herein by reference. It is also possible to use sulfuric acid, phosphorus acid, sulfonic acid and para-toluene sulfonic acid as the esterification catalyst, although they are not as preferred as the metal catalysts discussed immediately above, since they are very difficult to remove by conventional methods from this product.
- the present inventors have synthesized a composition and a method of production of that composition which provides a high viscosity oil having good low temperature properties, low metals, low acidity, high viscosity index, and acceptable rates of biodegradability as measured by the Sturm test.
- One preferred manufacturing process using a batch process is as follows. (1) charge a polyol, polybasic acid and monohydric alcohol into an esterification reactor; (2) raise the temperature of the reacting mass to 220°C, while reducing vacuum to cause the alcohol present to boil and then separating water from the overhead vapor stream and returning alcohol to the reactor; (3) add tetraisopropyl titanate catalyst to the reacting mixture when 88 to 92% of the acid functionalities present in polybasic acid have been esterified; (4) continue reaction to about 99% conversion or other desired level of conversion of the acid functionalities present in polybasic acid; (5) stop the reaction by removing vacuum and heat; (6) carbon treat the product, if necessary to reduce its color; (7) hydrolyze titanium catalyst in the crude reactor product with about 0.5 to 4 wt.% water at a temperature in the range between about 100 to 200°C and a pressure of above 1 atmosphere; (8) filter the titanium catalyst residue and carbon, if present; and (9) strip unreacted excess monohydric alcohol from the crude product
- the present inventors have discovered that under certain highly specific conditions, the amount of titanium in the product can be reduced to a level below 10 ppm using the above process.
- the process employed to make low residual titanium complex alcohol esters requires a minimum residence time of titanium in the reactor at certain temperatures (ca. 220°C), the minimum amount of titanium catalyst required to assure the required conversion levels, and very effective contacting and mixing with the hydrolysis water solution employed to convert the organo titanium species to insoluble titanium dioxide.
- the process can be terminated at some conversion without the use of a catalyst (e.g., at 90% or greater conversion).
- Oxo alcohols are manufactured via a process, whereby propylene and other olefins are oligomerized over a catalyst (e.g., a phosphoric acid on Kieselguhr clay) and then distilled to achieve various unsaturated (olefinic) streams largely comprising a single carbon number. These streams are then reacted under hydroformylation conditions using a cobalt carbonyl catalyst with synthesis gas (carbon monoxide and hydrogen) so as to produce a multi-isomer mix of aldehydes/alcohols.
- a catalyst e.g., a phosphoric acid on Kieselguhr clay
- synthesis gas carbon monoxide and hydrogen
- the mix of aldehydes/alcohols is then introduced to a hydrogenation reactor and hydrogenated to a mixture of branched alcohols comprising mostly alcohols of one carbon greater than the number of carbons in the feed olefin stream.
- One particularly preferred oxo-alcohol is isodecyl alcohol, prepared from the corresponding C9 olefin.
- the alcohol is isodecyl alcohol
- the polyol is trimethylolpropane and the acid is the C ⁇ diacid, e.g. adipic acid, a preferred complex alcohol ester is attained.
- this complex alcohol ester wherein the alcohol is a branched oxo- alcohol has a surprisingly high viscosity index of ca. 150 and is surprisingly biodegradable as defined by the Modified Sturm test.
- This complex alcohol ester can be prepared with a final acidity (TAN) of less than 1.0 mg KOH/gram and with a conversion of the adipic acid of greater than 99%.
- TAN final acidity
- a catalyst is required, and further, it is preferable to add the catalyst within a relatively narrow conversion window.
- the present inventors have discovered that the catalyst can also be added at anytime during the reaction product and removed to an amount of less than 25 ppm (10 ppm in the instance where titanium is used) and still obtain a final acidity (TAN) of less than 1.0 mg KOH/gram, so long as the esterification reaction is followed by a hydrolysis step wherein water is added in an amount of between about 0.5 to 4 wt.%, based on crude esterification product, more preferably between about 2 to 3 wt. %, at elevated temperatures of between about 100 to 200°C, more preferably between about 1 10 to 175°C, and most preferably between about 125 to 160°C, and pressures greater than one atmosphere.
- Such high temperature hydrolysis can successfully remove the metals to less than 25 ppm without increasing the TAN to greater than 1.0 mgKOH gram.
- the low metals and low acid levels achieved by use of this novel high temperature hydrolysis step is completely unexpected.
- the present inventors have also discovered that the actual product is a broad mix of molecular weights of esters and that, if so desired, an amount of diisodecyl adipate can be removed from the higher molecular weight ester via wipe film evaporation or other separation techniques if desired.
- titanium catalysts or other metal catalysts such as tin
- titanium catalysts or other metal catalysts such as tin
- titanium metal are typically found in the final product even after extensive efforts to hydrolyze the organic titanium to titanium dioxide at conventional hydrolysis temperatures and subsequent removal via filtration.
- any C 5 to C ⁇ 3 branched and/or linear monohydric alcohol selected from the group consisting of: isopentyl alcohol, n-pentyl alcohol, isoheptyl alcohol, n-heptyl alcohol, iso-octyl alcohol (e.g., either 2-ethyl hexanol or Cekanoic 8), n- octyl alcohol, iso-nonyl alcohol (e.g., 3,5,5-trimethyl-l-hexanol or Cekanoic 9), n- nonyl alcohol, isodecyl alcohol, and n-decyl alcohol; provided that the amount of linear monohydric alcohol is present in the range between about 0-20 mole %, based on the total amount of monohydric alcohol (i.e., the ratio of equivalents of monohydric alcohol to equivalent
- the preferred range of alcohol are C 8 to do branched and/or linear monohydric alcohols.
- Oxo alcohols are manufactured via a process, whereby propylene and other olefins are oligomerized over a catalyst (e.g., a phosphoric acid on Kieselguhr clay) and then distilled to achieve various unsaturated (olefinic) streams largely comprising a single carbon number. These streams are then reacted under hydroformylation conditions using a cobalt carbonyl catalyst with synthesis gas (carbon monoxide and hydrogen) so as to produce a multi-isomer mix of aldehydes/alcohols. The mix of aldehydes/alcohols is then introduced to a hydrogenation reactor and hydrogenated to a mixture of branched alcohols comprising mostly alcohols of one carbon greater than the number of carbons in the feed olefin stream.
- a catalyst e.g., a phosphoric acid on Kieselguhr clay
- synthesis gas carbon monoxide and hydrogen
- the branched oxo alcohols are preferably monohydric oxo alcohols which have a carbon number in the range between about C 5 to C ⁇ 3 .
- the most preferred monohydric oxo alcohols according to the present invention include iso-oxo octyl alcohol, e.g., Cekanoic 8 alcohol, formed from the cobalt oxo process and 2- ethylhexanol which is formed from the rhodium oxo process.
- iso is meant to convey a multiple isomer product made by the oxo process. It is desirable to have a branched oxo alcohol comprising multiple isomers, preferably more than 3 isomers, most preferably more than 5 isomers.
- Branched oxo alcohols may be produced in the so-called "oxo" process by hydroformylation of commercial branched C 4 to C ⁇ olefin fractions to a corresponding branched C 5 to C- 3 alcohol/aldehyde-containing oxonation product.
- oxo branched C 4 to C ⁇ olefin fractions
- branched C 5 to C- 3 alcohol/aldehyde-containing oxonation product it is desirable to form an alcohol/aldehyde intermediate from the oxonation product followed by conversion of the crude oxo alcohol/aldehyde product to an all oxo alcohol product.
- the production of branched oxo alcohols from the cobalt catalyzed hydroformylation of an olefinic feedstream preferably comprises the following steps: (a) hydroformylating an olefinic feedstream by reaction with carbon monoxide and hydrogen (i.e., synthesis gas) in the presence of a hydroformylation catalyst under reaction conditions that promote the formation of an alcohol/aldehyde-rich crude reaction product; (b) demetalling the alcohol/aldehyde-rich crude reaction product to recover therefrom the hydroformylation catalyst and a substantially catalyst-free, alcohol/aldehyde-rich crude reaction product; and
- the olefinic feedstream is preferably any C 4 to C [2 olefin, more preferably branched C 7 to C 9 olefins.
- the olefinic feedstream is preferably a branched olefin, although a linear olefin which is capable of producing all branched oxo alcohols is also contemplated herein.
- the hydroformylation and subsequent hydrogenation in the presence of an alcohol-forming catalyst is capable of producing branched C5 to C ]3 alcohols, more preferably branched Cg alcohol (i.e., Cekanoic 8), branched C 9 alcohol (i.e., Cekanoic 9) and iso-decyl alcohol.
- Each of the branched oxo C5 to C ]3 alcohols formed by the oxo process typically comprises, for example, a mixture of branched oxo alcohol isomers, e.g., Cekanoic
- 8 alcohol comprises a mixture of 3, 5 -dimethyl hexanol, 4,5-dimethyl hexanol, 3,4- dimethyl hexanol, 5-methyl heptanol, 4-methyl heptanol and a mixture of other methyl heptanols and dimethyl hexanols.
- POLYOLS Among the polyols (i.e., polyhydroxyl compounds) which can be reacted with the diacid and monohydric alcohol are those represented by the general formula:
- R(OH) n wherein R is any aliphatic or cyclo-aliphatic hydrocarbyl group (preferably an alkyl) and n is at least 2.
- the hydrocarbyl group may contain from about 2 to about 20 or more carbon atoms, and the hydrocarbyl group may also contain substituents such as chlorine, nitrogen and/or oxygen atoms.
- the polyhydroxyl compounds generally may contain one or more oxyalkylene groups and, thus, the polyhydroxyl compounds include compounds such as polyetherpolyols.
- the number of carbon atoms i.e., carbon number, wherein the term carbon number as used throughout this application refers to the total number of carbon atoms in either the acid or alcohol as the case may be
- number of hydroxy groups i.e., hydroxyl number
- the following alcohols are particularly useful as polyols: neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, mono-pentaerythritol, technical grade pentaerythritol, and di-pentaerythritol.
- the most preferred alcohols are technical grade (e.g., approximately 88% mono-, 10% di- and 1-2% tri- pentaerythritol) pentaerythritol, monopentaerythritol, di-pentaerythritol, and trimethylolpropane.
- Selected polybasic or polycarboxylic acids include any C 2 to C- diacids, e.g., adipic, azelaic, sebacic and dodecanedioic acids.
- Anhydrides of polybasic acids can be used in place of the polybasic acids, when esters are being formed. These include succinic anhydride, glutaric anhydride, adipic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, nadic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, and mixed anhydrides of polybasic acids.
- the complex alcohol ester composition according to the present invention can be used in the formulation of various lubricants, such as, crankcase engine oils (i.e., passenger car motor oils, heavy duty diesel motor oils, and passenger car diesel oils), two-cycle engine oils, catapult oil, hydraulic fluids, drilling fluids, aircraft and other turbine oils, greases, compressor oils, functional fluids, gear oils, and other industrial and engine lubrication applications.
- crankcase engine oils i.e., passenger car motor oils, heavy duty diesel motor oils, and passenger car diesel oils
- the lubricating oils contemplated for use with the complex alcohol ester compositions of the present invention include both mineral and synthetic hydrocarbon oils of lubricating viscosity and mixtures thereof with other synthetic oils
- the synthetic hydrocarbon oils include long chain alkanes such as cetanes and olefin polymers such as oligomers of hexene, octene, decene, and dodecene, etc
- the other synthetic oils include (1) fully esterified ester oils, with no free hydroxyl s, such as pentaerythritol esters of monocarboxylic acids having 2 to 20 carbon atoms, trimethylol propane esters of monocarboxylic acids having 2 to 20 carbon atoms, (2) polyacetals and (3) siloxane fluids.
- Especially useful among the synthetic esters are those made from polycarboxylic acids and monohydric alcohols
- Solvents that can be used include the hydrocarbon solvents, such as toluene, benzene, xylene, and the like
- the formulated lubricant according to the present invention preferably comprises about 60-99% by weight of at least one polyol ester composition of the present invention, about 1 to 20% by weight lubricant additive package, and about 0 to 20% by weight of a solvent
- the complex alcohol ester MASS % MASS % composition can be used in the formulation of (Broad) (Preferred) crankcase lubricating oils (i.e., passenger car motor oils, heavy duty diesel motor oils, and passenger car diesel oils) for spark-ignited and compression-ignited engines
- crankcase lubricating oils i.e., passenger car motor oils, heavy duty diesel motor oils, and passenger car diesel oils
- the preferred crankcase lubricating oil is typically formulated using the complex alcohol ester formed according to the present invention or such an ester blended with other conventional basestock oils, together with any conventional crankcase additive package
- the additives listed below are typically used in such amounts so as to provide their normal attendant functions Typical amounts for individual components are also set forth below. All the values listed are stated as mass percent active ingredient ADDITIVE
- Viscosity Modifier 1 0.01- 6 0 - 4
- each of the components may be added directly to the basestock by dispersing or dissolving it in the basestock at the desired level of concentration. Such blending may occur at ambient temperature or at an elevated temperature.
- all the additives except for the viscosity modifier and the pour point depressant are blended into a concentrate or additive package described herein as the additive package, that is subsequently blended into basestock to make finished lubricant.
- a concentrate or additive package described herein as the additive package that is subsequently blended into basestock to make finished lubricant.
- Use of such concentrates is conventional.
- the concentrate will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration in the final formulation when the concentrate is combined with a predetermined amount of base lubricant.
- the concentrate is preferably made in accordance with the method described in US-A-4938880. That patent describes making a pre-mix of ashless dispersant and metal detergents that is pre-blended at a temperature of at least about 100°C. Thereafter, the pre-mix is cooled to at least 85°C and the additional components are added.
- the final crankcase lubricating oil formulation may employ from 2 to 15 mass % and preferably 5 to 10 mass %, typically about 7 to 8 mass % of the concentrate or additive package with the remainder being basestock.
- the ashless dispersant comprises an oil soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed.
- the dispersants comprise amine, alcohol, amide, or ester polar moieties attached to the polymer backbone often via a bridging group.
- the ashless dispersant may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having a polyamine attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and polyalkylene polyamine.
- the viscosity modifier functions to impart high and low temperature operability to a lubricating oil.
- the VM used may have that sole function, or may be multifunctional.
- Multifunctional viscosity modifiers that also function as dispersants are also known.
- Suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene and higher alpha-olefins, polymethacrylates, polyalkylmethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, inter polymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/ isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene and isoprene/divinylbenzene.
- Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life.
- Detergents generally comprise a polar head with a long hydrophobic tail, with the polar head comprising a metal salt of an acidic organic compound.
- the salts may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as may be measured by ASTM D2896) of from 0 to 80. It is possible to include large amounts of a metal base by reacting an excess of a metal compound such as an oxide or hydroxide with an acidic gas such as carbon dioxide.
- the resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g. carbonate) micelle.
- Such overbased detergents may have a TBN of 150 or greater, and typically of from 250 to 450 or more.
- Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
- a metal particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
- the most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium.
- Particularly convenient metal detergents are neutral and overbased calcium sulfonates having TBN of from 20 to 450 TBN, and neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450.
- Dihydrocarbyl dithiophosphate metal salts are frequently used as anti-wear and antioxidant agents.
- the metal may be an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel or copper.
- the zinc salts are most commonly used in lubricating oil in amounts of 0.1 to 10, preferably 0.2 to 2 wt. %, based upon the total weight of the lubricating oil composition. They may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohol or a phenol with P2 5 and then neutralizing the formed DDPA with a zinc compound.
- DDPA dihydrocarbyl dithiophosphoric acid
- a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
- multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
- any basic or neutral zinc compound could be used but the oxides, hydroxides and carbonates are most generally employed.
- Commercial additives frequently contain an excess of zinc due to use of an excess of the basic zinc compound in the neutralization reaction.
- Oxidation inhibitors or antioxidants reduce the tendency of basestocks to deteriorate in service which deterioration can be evidenced by the products of oxidation such as sludge and varnish-like deposits on. the metal surfaces and by viscosity growth.
- oxidation inhibitors include hindered phenols, alkaline earth metal salts of alkylphenolthioesters having preferably C 5 to C J2 alkyl side chains, calcium nonylphenol sulfide, ashless oil soluble phenates and sulfurized phenates, phosphosulfurized or sulfurized hydrocarbons, phosphorous esters, metal thiocarbaraates, oil soluble copper compounds as described in US-4867890, and molybdenum containing compounds.
- Friction modifiers may be included to improve fuel economy.
- Oil-soluble alkoxylated mono- and diamines are well known to improve boundary layer lubrication.
- the amines may be used as such or in the form of an adduct or reaction product with a boron compound such as a boric oxide, boron halide, metaborate, boric acid or a mono-, di- or trialkyl borate.
- Rust inhibitors selected from the group consisting of nonionic polyoxyalkylene polyols and esters thereof, polyoxyalkylene phenols, and anionic alkyl sulfonic acids may be used.
- Copper and lead bearing corrosion inhibitors may be used, but are typically not required with the formulation of the present invention.
- such compounds are the thiadiazole polysulfides containing from 5 to 50 carbon atoms, their derivatives and polymers thereof.
- Derivatives of 1,3,4 thiadiazoles such as those described in U.S. Patent Nos. 2,719, 125; 2,719, 126; and 3,087,932; are typical.
- Other similar materials are described in U.S. Pat. Nos. 3,821,236; 3,904,537, 4,097,387; 4,107,059; 4, 136,043; 4, 188,299; and 4,193,882.
- additives are the thio and polythio sulfenamides of thiadiazoles such as those described in UK. Patent Specification No. 1,560,830. Benzotriazoles derivatives also fall within this class of additives. When these compounds are included in the lubricating composition, they are preferably present in an amount not exceeding 0.2 wt % active ingredient.
- a small amount of a demulsifying component may be used.
- a preferred demulsifying component is described in EP 330,522. It is obtained by reacting an alkylene oxide with an adduct obtained by reacting a bis-epoxide with a polyhydric alcohol.
- the demulsifier should be used at a level not exceeding 0.1 mass % active ingredient. A treat rate of 0.001 to 0.05 mass % active ingredient is convenient.
- Pour point depressants otherwise known as lube oil flow improvers, lower the minimum temperature at which the fluid will flow or can be poured.
- Such additives are well known. Typical of those additives which improve the low temperature fluidity of the fluid are C g to Cig dialkyl fumarate/vinyl acetate copolymers and polyalkylmethacryla.es.
- Foam control can be provided by many compounds including an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
- additives can provide a multiplicity of effects; thus for example, a single additive may act as a dispersant-oxidation inhibitor. This approach is well known and does not require further elaboration.
- the complex alcohol ester composition can be used in the formulation of two-cycle engine oils together with other basestocks and selected lubricant additives.
- the preferred two-cycle engine oil is typically formulated using the complex alcohol ester composition formed according to the present invention together with a lower viscosity basestock component and any conventional two- cycle engine oil additive package.
- the additives listed below are typically used in such amounts so as to provide their normal attendant functions.
- the additive package may include, but is not limited to, viscosity index improvers, corrosion inhibitors, oxidation inhibitors, coupling agents, dispersants, extreme pressure agents, color stabilizers, surfactants, diluents, detergents and rust inhibitors, pour point depressants, antifoaming agents, and anti-wear agents
- the two-cycle engine oil according to the present invention can employ typically about 5-15 wt % complex alcohol ester, 60-80 wt % low viscosity ester, and 5-20 wt.% low viscosity basestock, about 1 to 5% solvent, with the remainder comprising an additive package
- Catapults are instruments used on aircraft carriers at sea to eject the aircraft off of the carrier.
- the complex alcohol ester composition can be used in the formulation of catapult oils together with other basestocks such as esters, polyalphaolefins, etc. and selected lubricant additives
- the preferred catapult oil is typically formulated using the complex alcohol ester composition formed according to the present invention together with lower viscosity basestocks and any conventional catapult oil additive package.
- the additives listed below are typically used in such amounts so as to provide their normal attendant functions
- the additive package may include, but is not limited to, viscosity index improvers, corrosion inhibitors, oxidation inhibitors, extreme pressure agents, color stabilizers, detergents and rust inhibitors, antifoaming agents, anti-wear agents, and friction modifiers These additives are disclosed in Klamann, "Lubricants and Related Products", Verlag Chemie. Deerfield Beach, FL, 1984, which is incorporated herein by reference
- the catapult oil according to the present invention can employ typically about 5-20 wt.% complex alcohol ester, 70-90 wt % other basestocks, with the remainder comprising an additive package
- the complex alcohol ester composition can be used in the formulation of hydraulic fluids together with selected lubricant additives
- the preferred hydraulic fluids are typically formulated using the complex alcohol ester composition formed according to the present invention together with other basestocks any conventional hydraulic fluid additive package
- the additives listed below are typically used in such amounts so as to provide their normal attendant functions.
- the additive package may include, but is not limited to, viscosity index improvers, corrosion inhibitors, boundary lubrication agents, demulsifiers, pour point depressants, and antifoaming agents.
- the hydraulic fluid according to the present invention can employ typically about 10-90 wt.% complex alcohol ester, 0-90 wt.% other basestocks, with the remainder comprising an additive package.
- the complex alcohol ester composition can be used in the formulation of drilling fluids together with other biodegradable basestocks and selected lubricant additives.
- the preferred drilling fluids are typically formulated using the complex alcohol ester composition formed according to the present invention together with any conventional drilling fluid additive package.
- the additives listed below are typically used in such amounts so as to provide their normal attendant functions.
- the additive package may include, but is not limited to, viscosity index improvers, corrosion inhibitors, wetting agents, water loss improving agents, bactericides, and drill bit lubricants.
- the drilling fluid according to the present invention can employ typically about 60 to 90% basestock and about 5 to 25% solvent, with the remainder comprising an additive package.
- Suitable hydrocarbon solvents include: mineral oils, particularly those paraffin base oils of good oxidation stability with a boiling range of from 200- 400°C such as Mentor 28®, sold by Exxon Chemical Americas, Houston, Texas; diesel and gas oils; and heavy aromatic naphtha.
- the complex alcohol ester composition can be used in the formulation of turbine oils together with selected lubricant additives.
- the preferred turbine oil is typically formulated using the complex alcohol ester composition formed according to the present invention together with any conventional turbine oil additive package.
- the additives listed below are typically used in such amounts so as to provide their normal attendant functions.
- the additive package may include, but is not limited to, viscosity index improvers, corrosion inhibitors, oxidation inhibitors, thickeners, dispersants, anti-emulsifying agents, color stabilizers, detergents and rust inhibitors, and pour point depressants.
- the turbine oil according to the present invention can employ typically about 65 to 75% basestock and about 5 to 30% solvent, with the remainder comprising an additive package, typically in the range between about 0.01 to about 5.0 weight percent each, based on the total weight of the composition.
- the complex alcohol ester composition can be used in the formulation of greases together with selected lubricant additives.
- the main ingredient found in greases is the thickening agerit or gellant and differences in grease formulations have often involved this ingredient.
- the thickener or gellants other properties and characteristics of greases can be influenced by the particular lubricating basestock and the various additives that can be used.
- the preferred greases are typically formulated using the complex alcohol ester composition formed according to the present invention together with any conventional grease additive package.
- the additives listed below are typically used in such amounts so as to provide their normal attendant functions.
- the additive package may include, but is not limited to, viscosity index improvers, oxidation inhibitors, extreme pressure agents, detergents and rust inhibitors, pour point depressants, metal deactivators, anti-wear agents, and thickeners or gellants.
- the grease according to the present invention can employ typically about 80 to 95% basestock and about 5 to 20% thickening agent or gellant, with the remainder comprising an additive package.
- Typical thickening agents used in grease formulations include the alkali metal soaps, clays, polymers, asbestos, carbon black, silica gels, polyureas and aluminum complexes. Soap thickened greases are the most popular with lithium and calcium soaps being most common. Simple soap greases are formed from the alkali metal salts of long chain fatty acids with lithium 12-hydroxystearate, the predominant one formed from 12-hydroxystearic acid, lithium hydroxide monohydrate and mineral oil. Complex soap greases are also in common use and comprise metal salts of a mixture of organic acids.
- the complex alcohol ester composition can be used in the formulation of compressor oils together with selected lubricant additives.
- the preferred compressor oil is typically formulated using the complex alcohol ester composition formed according to the present invention together with any conventional compressor oil additive package.
- the additives listed below are typically used in such amounts so as to provide their normal attendant functions.
- the additive package may include, but is not limited to, oxidation inhibitors, additive solubilizers, rust inhibitors/metal passivators, demulsifying agents, and anti-wear agents.
- the compressor oil according to the present invention can employ typically about 80 to 99% basestock and about 1 to 15% solvent, with the remainder comprising an additive package.
- the complex alcohol ester composition can be used in the formulation of gear oils together with selected lubricant additives.
- the preferred gear oil is typically formulated using the complex alcohol ester composition formed according to the present invention together with any conventional gear oil additive package.
- the additives listed below are typically used in such amounts so as to provide their normal attendant functions.
- the additive package may include, but is not limited to, extreme pressure agents and antiwear agents (i.e., friction modifiers), corrosion inhibitors, antifoam agents, demulsifiers, rust inhibitors and antioxidants. Depending on the basestock selected and multigrade viscosity range, pour-point depressants and viscosity modifiers may also be used.
- the gear oil according to the present invention can employ typically about 72 to 99% basestock (preferably 90 to 99%) and 1 to 28% of an additive package (preferably 1 to 10%).
- an additive package preferably 1 to 10%
- a solvent or diluent may also be added wherein the weight % of the basestock and/or additive package would be reduced accordingly.
- HPDSC high pressure differential scanning calorimetry
- the monohydric alcohol a branched or unbranched C - C ⁇ 3 alcohol (most preferably isodecyl alcohol) is typically present in an excess of about 10 to 50 mole % or more.
- the excess monohydric alcohol is used to force the reaction to completion
- the composition of the feed acid is adjusted so as to provide the desired composition of the ester product After the reaction is complete, the excess monohydric alcohol is removed by stripping and additional finishing EXAMPLE 1
- a complex alcohol ester is formed according to the present invention by reacting 1 0 mole of tnmethylol propane, 2 75 moles of adipic acid, and 3 025 moles of isodecyl alcohol
- the temperature of the reaction mixture is raised to 220°C while reducing the vacuum to cause the alcohol present to boil Water is concurrently separated from the overhead vapor stream produced, and alcohol is returned to the reactor
- Tetraisopropyl titanate catalyst is added to the reacting mixture when 90% of the acid functionalities present in the adipic acid have been esterified
- the reaction is continued to 99 8% conversion of the acid functionalities present in adipic acid
- the reaction is brought to a stop by removing the vacuum and heat
- the product is carbon treated to reduce its color, and the titanium catalyst is hydrolyzed in the crude reactor product with 2 wt % water
- the carbon and hydrolyzed titanium catalyst residue are filtered and unreacted excess isodecyl alcohol is stripped from the crude product Accordingly, the amount of titanium
- the resultant complex alcohol ester has a surprisingly high viscosity index of ca 150 and is surprisingly biodegradable as defined by the Modified Sturm test
- This complex alcohol ester has a final acidity (TAN) of less than I 0 mg KOH/gram EXAMPLE 2
- Example 1 To produce a product according to the present invention that is substantially free of metals (l e , less than 10 ppm), the process of Example 1 is employed, however the process is terminated at a conversion point (e g 98%) before the titanium catalyst is added according to Example 1 EXAMPLE 3
- NPG denote neopentyl glycol
- TMP denotes trimethylolpropane
- OIT denotes oxidation induction time (minutes until decomposition)
- HPDSC denotes high pressure differential calo ⁇ metry
- TMP is trimethylolpropane
- AA is adipic acid
- IHA is isohexyl alcohol
- TPE is technical grade pentaerythritol iso-Ci K is isostearate
- TPE/C810/Ck8 TMP/7810 1 1 6 00 5 92 TMP/AA/IDA TMP/1770 2 3 5 54 5 18
- C810 is a mixture of linear Cg and C I0 acids
- Ck8 is an iso-octyl alcohol form from the cobalt oxo process
- 7810 is a blend of n-C7, C8 and CIO acids
- 1770 is a blend of n-C7 and ⁇ -branched C7 acids
- ester blend according to the present invention demonstrated far superior torque than a blend of conventional ester basestocks
- the finished complex alcohol ester composition had a specific gravity of 1 013, a viscosity of 260 9 cSt at 40°C, a viscosity of 24 2 cSt at 100°C, and a viscosity index of 117 EXAMPLE 8
- the latter, low hydroxyl complex alcohol ester was produced by using a different adipic acid to trimethylolpropane feed ratio than the high hydroxyl ester.
- Six esterifications at different excesses of isodecyl alcohol and adipic acid to trimethylolpropane molar ratios were carried out using a one step process in which tetraisopropyl titanate catalyst was added (at a 0.0005 catalyst to adipic acid ratio) at between 89 and 91% conversion. They were finished by simply hydrolyzing with 2 weight percent water at 90°C for 2 hours, filtering, and stripping.
- the complex alcohol esters of the present invention were formed by the unique process according to the present invention wherein the catalyst is only added after approximately 90% conversion had been achieved. These esters were compared to esters formed when the catalyst was added at the outset of the esterification reaction.
- EXAMPLE 11 In all eighteen ( 18) basestocks were tested by the present inventors The basestocks included herein are as follows Adipates DIDA, DTDA Polyalphaolefins: PAO 4, PAO 6, PAO 40, PAO 100
- Polyisobutylenes PSP 5, Parapol 450, Parapol 700, Parapol 950
- DTDA denotes diisotridecyladipate
- HPDSC High Pressure Differential Scanning Calorimetry
- Table 6 covers the results from thermal/oxidative stability tests
- Table 7 contains the data from the wear test D- 2783
- Table 8 covers the wear and friction data from D4172
- Table 9 covers the sonic shear test results
- the data obtained from the various lubricity/wear tests are set forth below in Tables 9 and 10.
- the output from the ASTM D-2783 test is the load wear index, a calculated number that is a relative measure of the load carrying characteristics of the oil. The higher the load wear index, the higher the load the oil is able to carry without showing significant wear.
- the complex alcohol esters of the present invention behave as if they are more viscous than they actually are Thus, their predicted load wear index, based on their viscosity, is much less than the load wear index actually measured. Likewise, the viscosity predicted based on the measured load wear index is much higher than the viscosity actually measured for these materials, as much as 4 to 10 times higher than the measured viscosity.
- PAO 100 100 25 53
- PAO 100 100 0 70 0 100
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Lubricants (AREA)
Abstract
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51295198A JP2001507334A (ja) | 1996-09-06 | 1997-09-05 | 高粘度の複合アルコールエステル |
BR9712807-4A BR9712807A (pt) | 1996-09-06 | 1997-09-05 | ésteres de álcool complexos de alta-viscosidade |
CA002262466A CA2262466A1 (fr) | 1996-09-06 | 1997-09-05 | Esters d'alcool complexes a viscosite elevee |
EP97941442A EP0925339A1 (fr) | 1996-09-06 | 1997-09-05 | Esters d'alcool complexes a viscosite elevee |
AU43349/97A AU4334997A (en) | 1996-09-06 | 1997-09-05 | High viscosity complex alcohol esters |
NO991076A NO991076L (no) | 1996-09-06 | 1999-03-04 | H°yvisk°se komplekse alkoholestere |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2559696P | 1996-09-06 | 1996-09-06 | |
US60/025,596 | 1996-09-06 | ||
US08/799,011 | 1997-02-07 | ||
US08799011 US5750750C1 (en) | 1997-02-07 | 1997-02-07 | High viscosity complex alcohol esters |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998010040A1 true WO1998010040A1 (fr) | 1998-03-12 |
Family
ID=26699952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/015696 WO1998010040A1 (fr) | 1996-09-06 | 1997-09-05 | Esters d'alcool complexes a viscosite elevee |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0925339A1 (fr) |
JP (1) | JP2001507334A (fr) |
KR (1) | KR20010029465A (fr) |
CN (1) | CN1075107C (fr) |
AU (1) | AU4334997A (fr) |
BR (1) | BR9712807A (fr) |
CA (1) | CA2262466A1 (fr) |
NO (1) | NO991076L (fr) |
WO (1) | WO1998010040A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6376435B1 (en) * | 1999-05-19 | 2002-04-23 | Exxonmobil Research And Engineering Company | Lubrication system for internal combustion engines (law952) |
WO2006049187A1 (fr) | 2004-11-01 | 2006-05-11 | Nippon Oil Corporation | Composition d’huile destinee au meulage/decoupage a tres faible lubrification |
EP2312019A1 (fr) * | 2009-10-01 | 2011-04-20 | Rhein Chemie Rheinau GmbH | Additifs de protection contre la corrosion pour un procédé de finissage, un procédé de fabrication de ceux-ci et leur utilisation dans la protection des métaux contre la corrosion |
US9080127B2 (en) | 2009-06-24 | 2015-07-14 | Fujifilm Corporation | Composition, compound and film forming method |
US9255058B2 (en) | 2009-09-28 | 2016-02-09 | Fujifilm Corporation | Complex alcohol ester composition, method for production same, and use of same |
US9834736B2 (en) | 2013-12-16 | 2017-12-05 | Fujifilm Corporation | Lubricating oil composition for internal combustion engines of passenger and commercial four-wheeled vehicles |
US9976100B2 (en) | 2014-02-27 | 2018-05-22 | Fujifilm Corporation | Lubricant composition |
CN113801018A (zh) * | 2021-10-29 | 2021-12-17 | 中国石油化工股份有限公司 | 一种二元酸异构醇酯及其制备方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009048775A1 (de) * | 2009-10-08 | 2011-04-21 | Oxea Deutschland Gmbh | Verfahren zur Herstellung von Polyolestern |
JP5537999B2 (ja) * | 2010-03-08 | 2014-07-02 | Jx日鉱日石エネルギー株式会社 | 冷媒r32用冷凍機油 |
CN103512278B (zh) * | 2012-06-27 | 2015-11-18 | 广东美芝制冷设备有限公司 | 一种制冷装置 |
JP6118900B2 (ja) | 2013-07-31 | 2017-04-19 | 富士フイルム株式会社 | 複合ポリエステル組成物の製造方法、複合ポリエステル組成物、潤滑剤組成物及び潤滑剤 |
CN105452327B (zh) | 2013-07-31 | 2017-06-06 | 富士胶片株式会社 | 复合聚酯组合物、润滑剂组合物、润滑剂及复合聚酯组合物的制造方法 |
JP6218648B2 (ja) * | 2014-03-11 | 2017-10-25 | 富士フイルム株式会社 | 潤滑剤組成物および潤滑剤組成物の製造方法 |
JP5767353B2 (ja) * | 2014-03-14 | 2015-08-19 | Jx日鉱日石エネルギー株式会社 | 冷媒r32用冷凍機油 |
JP6704805B2 (ja) * | 2015-07-08 | 2020-06-03 | 住鉱潤滑剤株式会社 | 非延焼性グリース組成物 |
JP6676762B2 (ja) | 2016-08-31 | 2020-04-08 | 富士フイルム株式会社 | 潤滑剤組成物の製造方法及び潤滑剤組成物 |
CN107573982B (zh) * | 2017-09-30 | 2020-08-21 | 黄山市强力化工有限公司 | 一种耐高温型合成酯润滑油基础油及其制备方法 |
CN108048188B (zh) * | 2017-12-30 | 2020-11-13 | 深圳市前海龙达新能源有限公司 | 一种46#抗氨液压油及其制备方法 |
TWI699432B (zh) * | 2018-11-09 | 2020-07-21 | 百達精密化學股份有限公司 | 基礎油及潤滑油 |
EP4379756A4 (fr) | 2021-07-29 | 2024-12-04 | FUJIFILM Corporation | Fluide magnétorhéologique et dispositif à fluide magnétorhéologique |
CN114805076B (zh) * | 2022-03-03 | 2024-01-23 | 广州米奇化工有限公司 | 酯类化合物及其制备方法、加工液和应用 |
WO2025079533A1 (fr) * | 2023-10-12 | 2025-04-17 | Eneos株式会社 | Ester complexe pour huiles de machine de réfrigération et son procédé de production, huile de machine de réfrigération, composition de fluide de travail et procédé d'amélioration de la stabilité d'un ester complexe |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2187894A1 (en) * | 1972-06-12 | 1974-01-18 | Inst Francais Du Petrole | Lubricants for 2-stroke and rotary engines - contg high-viscosity simple, complex or ether esters as base lubricant |
GB1460665A (en) * | 1974-02-11 | 1977-01-06 | Ciba Geigy Ag | Transmission device |
US4155861A (en) * | 1971-05-05 | 1979-05-22 | Studiengesellschaft Aktiengesellschaft | Ester lubricant |
US5372736A (en) * | 1993-10-27 | 1994-12-13 | Nalco Chemical Company | Synthetic hot mill lubricant for high temperature applications |
EP0706992A1 (fr) * | 1994-10-15 | 1996-04-17 | Röhm GmbH | Oligoesters biodégradables utilisables comme lubrifiant |
-
1997
- 1997-09-05 CA CA002262466A patent/CA2262466A1/fr not_active Abandoned
- 1997-09-05 WO PCT/US1997/015696 patent/WO1998010040A1/fr not_active Application Discontinuation
- 1997-09-05 JP JP51295198A patent/JP2001507334A/ja active Pending
- 1997-09-05 EP EP97941442A patent/EP0925339A1/fr not_active Withdrawn
- 1997-09-05 KR KR1019997001794A patent/KR20010029465A/ko not_active Withdrawn
- 1997-09-05 BR BR9712807-4A patent/BR9712807A/pt unknown
- 1997-09-05 CN CN97197697A patent/CN1075107C/zh not_active Expired - Fee Related
- 1997-09-05 AU AU43349/97A patent/AU4334997A/en not_active Abandoned
-
1999
- 1999-03-04 NO NO991076A patent/NO991076L/no not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155861A (en) * | 1971-05-05 | 1979-05-22 | Studiengesellschaft Aktiengesellschaft | Ester lubricant |
FR2187894A1 (en) * | 1972-06-12 | 1974-01-18 | Inst Francais Du Petrole | Lubricants for 2-stroke and rotary engines - contg high-viscosity simple, complex or ether esters as base lubricant |
GB1460665A (en) * | 1974-02-11 | 1977-01-06 | Ciba Geigy Ag | Transmission device |
US5372736A (en) * | 1993-10-27 | 1994-12-13 | Nalco Chemical Company | Synthetic hot mill lubricant for high temperature applications |
EP0706992A1 (fr) * | 1994-10-15 | 1996-04-17 | Röhm GmbH | Oligoesters biodégradables utilisables comme lubrifiant |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6376435B1 (en) * | 1999-05-19 | 2002-04-23 | Exxonmobil Research And Engineering Company | Lubrication system for internal combustion engines (law952) |
WO2006049187A1 (fr) | 2004-11-01 | 2006-05-11 | Nippon Oil Corporation | Composition d’huile destinee au meulage/decoupage a tres faible lubrification |
EP1832647A4 (fr) * | 2004-11-01 | 2009-02-25 | Nippon Oil Corp | Composition d huile destinee au meulage/decoupage a tres faible lubrification |
US8173582B2 (en) | 2004-11-01 | 2012-05-08 | Nippon Oil Corporation | Oil composition for use in trace oil supply cutting/grinding work |
US9080127B2 (en) | 2009-06-24 | 2015-07-14 | Fujifilm Corporation | Composition, compound and film forming method |
US9255058B2 (en) | 2009-09-28 | 2016-02-09 | Fujifilm Corporation | Complex alcohol ester composition, method for production same, and use of same |
EP2312019A1 (fr) * | 2009-10-01 | 2011-04-20 | Rhein Chemie Rheinau GmbH | Additifs de protection contre la corrosion pour un procédé de finissage, un procédé de fabrication de ceux-ci et leur utilisation dans la protection des métaux contre la corrosion |
US9834736B2 (en) | 2013-12-16 | 2017-12-05 | Fujifilm Corporation | Lubricating oil composition for internal combustion engines of passenger and commercial four-wheeled vehicles |
US9976100B2 (en) | 2014-02-27 | 2018-05-22 | Fujifilm Corporation | Lubricant composition |
CN113801018A (zh) * | 2021-10-29 | 2021-12-17 | 中国石油化工股份有限公司 | 一种二元酸异构醇酯及其制备方法 |
CN113801018B (zh) * | 2021-10-29 | 2024-05-28 | 中国石油化工股份有限公司 | 一种二元酸异构醇酯及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
NO991076L (no) | 1999-05-06 |
JP2001507334A (ja) | 2001-06-05 |
CA2262466A1 (fr) | 1998-03-12 |
AU4334997A (en) | 1998-03-26 |
BR9712807A (pt) | 1999-11-23 |
CN1075107C (zh) | 2001-11-21 |
EP0925339A1 (fr) | 1999-06-30 |
CN1229426A (zh) | 1999-09-22 |
KR20010029465A (ko) | 2001-04-06 |
NO991076D0 (no) | 1999-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5942475A (en) | Engine oil lubricants formed from complex alcohol esters | |
US5994278A (en) | Blends of lubricant basestocks with high viscosity complex alcohol esters | |
EP0925339A1 (fr) | Esters d'alcool complexes a viscosite elevee | |
AU727824B2 (en) | Polyol ester compositions with unconverted hydroxyl groups for use as lubricant base stocks | |
AU712058B2 (en) | Polyol ester compositions with unconverted hydroxyl groups | |
US5750750A (en) | High viscosity complex alcohol esters | |
AU720560B2 (en) | High stability and low metals esters based on 3,5,5-trimethyl-1-hexanol | |
US6177387B1 (en) | Reduced odor and high stability aircraft turbine oil base stock | |
EP1141178A1 (fr) | Compositions et composes complexes solubles d'ester d'alcool | |
EP0927151B1 (fr) | Base d'huile de turbine aeronautique a odeur reduite et grande stabilite | |
JP2002501552A (ja) | ヒドロペルオキシルラジカルを生成可能な酸化防止剤および酸化防止剤ブースタ | |
KR20010029464A (ko) | 복합 알코올 에스테르로부터 형성된 엔진 오일 윤활제 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 97197697.X Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2262466 Country of ref document: CA Ref document number: 2262466 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019997001794 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 1998 512951 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997941442 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1997941442 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997001794 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1019997001794 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997941442 Country of ref document: EP |