[go: up one dir, main page]

WO1998018257A1 - Ccd camera device - Google Patents

Ccd camera device Download PDF

Info

Publication number
WO1998018257A1
WO1998018257A1 PCT/JP1996/003041 JP9603041W WO9818257A1 WO 1998018257 A1 WO1998018257 A1 WO 1998018257A1 JP 9603041 W JP9603041 W JP 9603041W WO 9818257 A1 WO9818257 A1 WO 9818257A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mhz
ccd
camera device
video signal
Prior art date
Application number
PCT/JP1996/003041
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Takase
Takashi Takahashi
Tomoki Osada
Teruaki Odaka
Hiroaki Takagishi
Original Assignee
Hitachi, Ltd.
Hitachi Microcomputer System Ltd.
Hitachi Device Engineering, Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Microcomputer System Ltd., Hitachi Device Engineering, Co., Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1996/003041 priority Critical patent/WO1998018257A1/en
Publication of WO1998018257A1 publication Critical patent/WO1998018257A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/44Colour synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals

Definitions

  • the present invention relates to a CCD (Charge Transfer Device) camera device, and particularly to a video signal suitable for a digital video signal compliant with the ITU-RRec601 standard using a 270,000-pixel CCD image sensor compliant with the NTSC system.
  • the present invention relates to technology that is effective when used in a CCD camera device that forms an image. Background art
  • CCD imaging devices such as video cameras due to the spread of digital signal processing, but since they can output digital video signals, image input devices such as personal computers and videophones It is also applied to conference systems.
  • image input devices such as personal computers and videophones It is also applied to conference systems.
  • a 270,000-pixel color CCD image sensor which is generally inexpensively distributed as a CCD image sensor for video cameras, is used as an object by utilizing its electronic zoom processing.
  • An imaging device has been proposed which has a ratio equal to that of the NTSC system and forms a digital signal applicable to a computer system.
  • JP-A-6-334926 discloses an example of such an imaging device.
  • the sampling frequency is 13.5 MHz.
  • the digital video signal output from the NTSC video camera is 14.3 MHz.
  • the digital signal formed by the NTSC system is simply input to a computer, that is, as shown in (A) of FIG.
  • the pixel signal formed in the area is output at 14.3 MHz in conformity with the NTSC system and is input directly to a personal computer, there is no information on the screen as shown in (B) of the figure.
  • the part is displayed, and the aspect ratio of the screen (aspect ratio) shifts. Therefore, according to the above publication, the aspect ratio (aspect ratio) is adjusted by using an electronic zoom system in order to display the entire screen at the same aspect ratio as shown in FIG. ), There is a problem that the circuit scale for performing such correction increases, the system configuration becomes complicated, and the cost is inevitable.
  • the present invention provides a CCD camera device which uses a CCD solid-state image sensor of 27,000 pixels for a video camera, and is realized by a simple configuration to be used for an image input device such as a personal computer. It is an object.
  • a CCD image sensor of about 270,000 pixels is operated with a 9 MHz horizontal scanning pulse to obtain a video signal, and the video signal is converted into a digital signal to be processed by a video signal processing circuit.
  • a pair of pixel signals output from the signal processing circuit are used, and converted into three pixels including a pseudo pixel signal composed of the average value, and synchronized with a 13.5 MHz clock pulse.
  • a luminance signal and a color difference signal conforming to the ITU-RRec601 standard are obtained.
  • FIG. 1 is a schematic block diagram showing an embodiment of a CCD camera device according to the present invention. It is a lip chart,
  • FIG. 2 is a connection diagram between the CCD camera device according to the present invention and a personal convenience store
  • FIG. 3 is an output waveform diagram of a CCD image sensor for explaining the present invention
  • FIG. 4 is a timing chart for explaining the pixel interpolation processing according to the present invention.
  • FIG. 5 is a timing chart of a read operation of the CCD image sensor for explaining the present invention.
  • FIG. 6 is a block diagram showing an embodiment of a video signal processing LSI used in the present invention.
  • FIG. 7 is a block diagram showing an application example of the CCD camera device according to the present invention.
  • FIG. 8 is a display screen diagram of a personal computer for explaining the premise of the present invention.
  • FIG. 1 is a schematic block diagram of an embodiment of a CCD camera device according to the present invention.
  • 1 is a lens mechanism
  • 2 is a CCD image sensor
  • 3 is an analog / digital (hereinafter referred to as AZD) conversion circuit
  • 4 is a video signal processing LSI (large-scale semiconductor integrated circuit).
  • the video signal processing LSI includes the following circuit blocks.
  • 5 is a video signal processing block
  • 6 is a signal change block
  • 7 is a CCD drive circuit
  • 8 is a frequency divider circuit
  • 9 is a clock. It is a pulse generation circuit.
  • Reference numeral 10 denotes a crystal oscillator used in an oscillation circuit that generates a reference signal included in the clock generation circuit.
  • the lens mechanism includes an aperture and a focusing mechanism in addition to a lens, and a shutter mechanism for a still camera.
  • a motor and its driving circuit and control circuit are also included.
  • the CCD image sensor 2 is composed of a power CCD image sensor of about 270,000 pixels. Although the pixel configuration is not particularly limited, 512 pixels are provided in the horizontal direction and 494 pixels are provided in the vertical direction, and a total of about 270,000 pixels are formed in a matrix.
  • the CCD image sensor 2 employs a well-known in-line transfer method, in which photoelectric conversion charges formed by photodiodes constituting about 27,000 pixels are simultaneously read out to a vertical CCD, and The electric charge read out to the vertical CCD is transferred to the horizontal CCD for one horizontal scan, and a pixel signal for one line is output from the horizontal CCD in synchronization with the horizontal scan clock by an amplifier provided in the output unit. It is converted to a signal and output.
  • the transfer operation for one pixel is performed in the vertical CCD, and the signal charge of the next line is transferred to the horizontal CCD. Thereafter, the photoelectric conversion charges are sequentially read out in the same manner as described above. During the reading of the signal charge, the photodiode generates the signal charge to be read next.
  • the signal charge of the photodiode has a function of being swept out to the substrate side, and by appropriately performing such a reset operation, adjustment of the photoelectric conversion time of the photodiode, in other words, exposure Time adjustment (electronic iris) is enabled.
  • the pixel signal read from the CCD image sensor 2 is converted into a digital signal by the A / D conversion circuit 3.
  • This AZD conversion circuit 3 The generated digital signal is input to a video signal processing block included in the video signal processing LSI.
  • the CCD image sensor reads out the pixel signals by a 9 MHz horizontal scanning clock signal.
  • the CCD image sensor 2 is designed in conformity with the NTSC or PAL system, it is suitable for a horizontal interface that is compatible with an interface for computer input as described later. It is operated by a clock signal.
  • a low frequency such as the above 9 MHz is used irrespective of the CCD image sensor based on the NTSC system in which the frequency f 0 of the horizontal scanning pulse is about 9.5 MHz.
  • the sampling frequency in such a standard is 13.5 MHz.
  • This 13.5 MHz frequency is not found in the NTSC and PAL systems.
  • the frequency at 13.5 MHz is 858 times the number of 525 scanning lines in the NTSC system and 864 times the horizontal frequency of 625 scanning lines in the PAL system.In both cases, the frequency is an integer multiple of the horizontal frequency. Can be used. This has the advantage that a common design is possible because the horizontal effective period can be set to the same value for 720 samples in both types.
  • the horizontal clock frequency is used even though the CCD image pickup device used conforms to the NTSC system (or PAL system). Is set to 9 MHz. Then, the signal is converted to 13.5 MHz by the signal conversion circuit and output. For this reason, the clock generating circuit 9 forms a 27 Mz reference frequency signal, and forms a 9 MHz horizontal clock pulse using the frequency dividing circuit included in the CCD driving circuit 7.
  • the clock generating circuit 9 forms a 27 Mz reference frequency signal, and forms a 9 MHz horizontal clock pulse using the frequency dividing circuit included in the CCD driving circuit 7.
  • the pixel signal read as described above is input to the AZD conversion circuit 3 and digitized as a signal having a sampling frequency of 9 MHz and a quantization bit number of 9 bits or 10 bits. .
  • the pixel signal digitized by the A / D conversion circuit 3 is input to a video signal processing block 5 included in a video signal processing LSI 4, where the luminance signal is subjected to processing such as gamma, enhancer, and color processing.
  • the signal undergoes RGB matrix, gamma and color difference conversion processing.
  • the digital signal processed by the video signal processing block 5 has a sampling frequency of 9 MHz according to the read signal from the CCD image sensor 2 described above.
  • the signal conversion circuit 6 converts the signal into a 13.5 MHz digital signal by a clock signal supplied from the frequency dividing circuit 8 so as to conform to the above-mentioned interface for a computer. That is, the frequency dividing circuit 8 divides the 27 MHz reference frequency signal formed by the clock generating circuit 9 into two to form the above 13.5 MHz clock pulse, and Transmit to conversion circuit 6.
  • the signal conversion circuit 6 generates a pseudo-pixel signal having an average value (A + B) Z 2 from a pair of continuous pixels A and B using the above-described clock signal.
  • a pseudo pixel signal is added to one pixel to convert it into three pixels, which are output in synchronization with the above 13.5 MHz clock signal.
  • the ratio of the luminance signal Y, the color difference signals R- ⁇ , and ⁇ - ⁇ is set to 4: 2: 2 so as to conform to the above-mentioned in-plane connection and output.
  • FIG. 2 is a connection diagram of the CCD camera device according to the present invention and a personal computer.
  • a CCD camera device is integrally mounted on the upper part of the display device of the personal convenience display.
  • the image capturing function is added as a function of the personal computer, and it is suitable for videophone use via a personal computer network.
  • the image data captured by the above CCD camera device can be processed and stored in a personal computer in the same way as character data and graphic data, and can be processed remotely via a communication device such as a modem. Data transfer to the ground can be realized.
  • FIG. 4 shows an output waveform diagram of a CCD image sensor for explaining the present invention.
  • the frequency of the horizontal scanning pulse of the CCD image sensor based on the NTSC system is 9.5 MHz as described above.
  • the CCD solid-state imaging device formed in accordance with the NTSC system is designed so that all pixels can be read at the above 9.5 MHz, as shown in FIG.
  • the above design value such as 9 MHz in the present invention as described above
  • FIG. Pixels that cannot be read remain.
  • the unread portion is invalidated.
  • the horizontal scanning clock supplied to the CCD image sensor is changed from the above 9 MHz to a reference frequency signal of 27 MHz so that the signal can be swept out at high speed. .
  • the unread charges also exist in the vertical CCD, and the vertical scan pulse supplied to the vertical CCD is converted to the horizontal scan pulse and the reference frequency signal using the vertical blanking period. By switching, the signal charge is swept out at high speed, and the output from the first pixel of the first line is output from the beginning of the next field.
  • the entire effective pixel area of the CCD image pickup device is not output, but only the pixel signal read by the above-mentioned self is displayed on one screen of the monitor, and the position of the subject is determined by such a display screen. To choose It is not particularly problematic in actual view.
  • FIG. 4 is a timing chart for explaining the pixel interpolation processing according to the present invention.
  • the processing time per pixel is 1 Since it is 11 ns (nanosecond), the processing time of two adjacent pixels, that is, pixel A and pixel B, is 222 ns.
  • the sampling frequency of the interface is 13.5 MHz, the processing time per pixel is 74 ns. In other words, the processing time for two pixels read at 9 MHz is equal to the processing time for three pixels at 13.5 MHz.
  • the signal conversion is performed in the signal conversion circuit.
  • take in two pixels convert them to three pixels, and output them serially with three pixels within the processing time of the two pixels. Things.
  • FIG. 5 shows a timing diagram of a read operation of the CCD image sensor for explaining the present invention.
  • the 270000-pixel CCD solid-state imaging device is designed so that reading is performed at 9.5 (9.53496) MHz.
  • optical black is read out on the basis of the horizontal synchronization pulse as shown in (A) of the figure, the pixel signal from the effective pixel is read out, and finally the dummy bit and the optical bit are read out. It is designed so that the cull black is read and the horizontal period is set. If this is driven by the horizontal scanning pulse of 9 MHz as described above, as shown in Fig. 13 (B), the cycle of one clock pulse will be changed as the frequency is lowered as it is, as it is, as it is in the same setting.
  • the time from the horizontal synchronization pulse to the start of the optical black readout for the CCD drive circuit 7 in FIG. 1 described above becomes a number matching the above 9 MHz horizontal pulse.
  • FIG. 6 is a block diagram showing an embodiment of a video signal processing LSI used in the present invention.
  • the analog pixel signal output from the CCD solid-state imaging device is A / D converted as described above and input as a digital signal. This digital signal is subjected to AGC processing in a digital AGC circuit 11.
  • the color signal system is input to the RGB matrix 12, where the matrix operation is performed, and the white balance detection circuit 13 is used to auto-white the faithful reproduction of white. Detects data for control of the balance, outputs the data from the terminal T2, and takes it into an externally provided controller to control the auto white balance.
  • the luminance signal system is subjected to enhancer processing by an enhancer 15 via a filter 14, and is subjected to 7 correction processing by a gamma processing circuit 16.
  • the timing generation circuit 19 forms various timing signals supplied to the CCD image sensor as described above and a timing signal supplied to the A / D conversion circuit. Then, the reference signal is frequency-divided and supplied to the signal conversion circuit shown as a clock conversion circuit 17.
  • the clock conversion circuit 17 outputs, for example, the above two pixels for each of the color signal and the luminance signal. (Register or flip-flop) that captures the data, an arithmetic circuit that forms a pseudo pixel signal of the average value of two pixels, and a simple circuit such as a shift register that synchronizes with the above 13.5 MHz and outputs it. .
  • the arithmetic circuit can obtain a 1/2 arithmetic result by, for example, shifting the output digital signal of the adder circuit right by one bit (down by one digit) and holding the result in a register or the like.
  • the clock conversion circuit 17 as the above-mentioned signal conversion circuit can realize the above-mentioned signal conversion processing with a simple circuit composed of a register and an addition circuit.
  • a partial design of an existing video signal processing LSI can be realized. You just need to change it.
  • the encoder 18 makes the luminance signal and the color difference signal have a ratio of 4: 2: 2.
  • FIG. 7 is a block diagram showing an application example of the CCD camera device according to the present invention.
  • This embodiment is directed to a digital still camera system using an IC card.
  • the digital still camera system consists of an optical system, a central processing unit CPU, a motor drive circuit, an aperture, a shutter, an image sensor, a signal processing circuit, and an AZD conversion circuit.
  • the subject is received by the optical system, the aperture and the shutter are controlled by a motor drive circuit controlled by the central processing unit CPU, and the subject is imaged on the image sensor via the aperture and the shirt.
  • An image signal formed by the image sensor is read out, input to an analog / digital conversion circuit A / DC, and taken into a signal processing / conversion circuit as a digital signal.
  • the digital signal is input to a signal processing circuit controlled by the central processing unit CPU or the like, and the above-described video signal processing and signal conversion processing are performed.
  • the signal thus formed is stored in, but not limited to, an IC chip with a built-in aperture electric RAM.
  • an IC card with a built-in ferroelectric RAM of the present invention By applying the IC card with a built-in ferroelectric RAM of the present invention to a digital 'still' camera, The digital, still, camera, and system can be made smaller, lighter, thinner, consume less power, and can read and write large amounts of information at high speed, improving the processing capacity of the entire system.
  • the signal is compliant with ITU-R Rec 601, as described above, so it is only necessary to read it out at 13.5 MHz above. Becomes
  • a CCD image sensor of about 270,000 pixels is operated with a 9 MHz horizontal scanning pulse to obtain a video signal, and the video signal is converted into a digital signal and processed by a video signal processing circuit. Synchronized to a 13.5 MHz clock pulse by a circuit with a simple configuration that uses a pair of pixel signals output from the signal processing circuit and converts it to 3 pixels including a pseudo pixel signal consisting of the average value This makes it possible to obtain a luminance signal and a chrominance signal conforming to the ITU-R Rec 601 standard.
  • the pseudo pixel signal formed by the signal conversion circuit is inserted between the pair of continuously output pixel signals and output, thereby performing frequency conversion of the pixel signal. The effect of being able to obtain a video signal closer to the original image by signal interpolation is obtained.
  • the reference frequency signal is an integer multiple of 13.5 MHz (N times), which is divided into 1ZN to form the above 13.5 MHz sampling pulse, which is divided into 2 / 3N. To form the above 9 MHz horizontal scanning pulse.
  • the display device of the personal computer is not a CRT display device but a flat display such as a TFT, a function to omit the ⁇ correction function in the video signal processing circuit is added. You can do it.
  • the present invention can be widely used in various CCD camera devices directed to personal computers, videophone systems, and the like, using a CCD image sensor having about 270,000 pixels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

A CCD camera, in which video signals are obtained by operating a CCD image pickup element having about 270,000 picture elements at a horizontal scanning frequency of 9 MHz, and the video signals are converted to digital signals for signal processing in a video signal processor, paired pixel signals from which are combined with a false pixel signal derived from their average. The resulting 3-pixel signals are synchronized with clock pulses at 13.5 MHz to obtain luminance signals and color difference signals conformable to Rec 601, ITU-R standard.

Description

明 細  Details
CCDカメラ装置 技術分野 CCD camera device technical field
この発明は、 CCD (電荷移送素子) カメラ装置に関し、 特に NTS C方式に準拠した 27万画素の CCD撮像素子を用い、 I TU— R R e c 60 1規格に準拠したディジタル映像信号に好適な映像信号を形成 する C C Dカメラ装置に利用して有効な技術に関するものである。 背景技術  The present invention relates to a CCD (Charge Transfer Device) camera device, and particularly to a video signal suitable for a digital video signal compliant with the ITU-RRec601 standard using a 270,000-pixel CCD image sensor compliant with the NTSC system. The present invention relates to technology that is effective when used in a CCD camera device that forms an image. Background art
ビデオカメラ等の CCD撮像装置は、 ディジタル信号処理の普及によ り多種多様な機能が開発される一方で、 ディジタル映像信号を出力する ことができることから、 パーソナルコンピュータなどの画像入力装置や テレビジョン電話会議システムなどにも応用される。 このような背景の もとに、 一般的にビデオ力メラ用の C C D撮像素子として安価に流通し ている 27万画素カラ一 CCD撮像素子を用い、 その電子ズーム処理を 利用してァスぺクト比が NTSC方式と等しく、 コンピュータシステム に適用可能なディジタル信号を形成するようにした撮像装置が提案され ている。 このような撮像装置の例として、 特開平 6— 334926号公 報がある。  A wide variety of functions have been developed for CCD imaging devices such as video cameras due to the spread of digital signal processing, but since they can output digital video signals, image input devices such as personal computers and videophones It is also applied to conference systems. Against this background, a 270,000-pixel color CCD image sensor, which is generally inexpensively distributed as a CCD image sensor for video cameras, is used as an object by utilizing its electronic zoom processing. An imaging device has been proposed which has a ratio equal to that of the NTSC system and forms a digital signal applicable to a computer system. JP-A-6-334926 discloses an example of such an imaging device.
I TU-R R e c 60 1規格においては、 サンプリング周波数は 1 3. 5MHzである。 NTSC方式のビデオカメラからの出力されるデ イジタル映像信号は、 1 4. 3MHzである。 このために、 上記 NTS C方式で形成されたディジタル信号を単純にコンピュータに入力した場 合、 つまり、 第 8図の (A) に示すように撮像素子受光面での有効画素 領域で形成された画素信号を NT S C方式に準拠した 1 4 . 3 MH zで 出力し、 それをそのままパーソナルコンピュータに入力した場合、 同図 の (B ) に示すように画面上に情報が無い部分が表示されるとともに、 画面の縦横比 (ァスぺクト比) がずれてしまう。 したがって、 同図 (C ) のように画面全体に上記ァクぺクト比を保って表示させるようにする ために、 上記公報に従えば電子ズームシステムを利用して縦横比 (ァス ぺクト比) の補正を行うものであり、 かかる補正を行うための回路規模 が増大し、 かつ複雑なシステム構成となりコスト高は免れないという問 題を有する。 In the ITU-R Rec 601 standard, the sampling frequency is 13.5 MHz. The digital video signal output from the NTSC video camera is 14.3 MHz. For this reason, when the digital signal formed by the NTSC system is simply input to a computer, that is, as shown in (A) of FIG. When the pixel signal formed in the area is output at 14.3 MHz in conformity with the NTSC system and is input directly to a personal computer, there is no information on the screen as shown in (B) of the figure. The part is displayed, and the aspect ratio of the screen (aspect ratio) shifts. Therefore, according to the above publication, the aspect ratio (aspect ratio) is adjusted by using an electronic zoom system in order to display the entire screen at the same aspect ratio as shown in FIG. ), There is a problem that the circuit scale for performing such correction increases, the system configuration becomes complicated, and the cost is inevitable.
したがって、 この発明は、 ビデオカメラ用の 2 7万画素の C C D固体 撮像素子を用し、つつ、 簡単な構成によりパーソナルコンピュータ等の画 像入力装置に用いることを実現した C C Dカメラ装置を提供することを 目的としている。 この発明の前記ならびにそのほかの目的と新規な特徴 は、 本明細書の記述および添付図面から明らかになるであろう。 発明の開示  Accordingly, the present invention provides a CCD camera device which uses a CCD solid-state image sensor of 27,000 pixels for a video camera, and is realized by a simple configuration to be used for an image input device such as a personal computer. It is an object. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings. Disclosure of the invention
本発明は、 約 2 7万画素の C C D撮像素子を 9 MH zの水平走査パル スで動作させて映像信号を得るとともに、 かかる映像信号をディジタル 信号に変換して映像信号処理回路で信号処理を行うとともに、 かかる信 号処理回路から出力される一対の画素信号を用し、、 その平均値からなる 擬似画素信号を含めて 3画素に変換して 1 3 . 5 MH zのクロックパル スに同期化させて I T U— R R e c 6 0 1規格に準拠した輝度信号と 色差信号とを得る。 図面の簡単な説明  According to the present invention, a CCD image sensor of about 270,000 pixels is operated with a 9 MHz horizontal scanning pulse to obtain a video signal, and the video signal is converted into a digital signal to be processed by a video signal processing circuit. At the same time, a pair of pixel signals output from the signal processing circuit are used, and converted into three pixels including a pseudo pixel signal composed of the average value, and synchronized with a 13.5 MHz clock pulse. Then, a luminance signal and a color difference signal conforming to the ITU-RRec601 standard are obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明に係る C C Dカメラ装置の一実施例を示す概略ブ 口ック図であり、 FIG. 1 is a schematic block diagram showing an embodiment of a CCD camera device according to the present invention. It is a lip chart,
第 2図は、 この発明に係る C C Dカメラ装置とパーソナルコンビユー 夕との接続図であり、  FIG. 2 is a connection diagram between the CCD camera device according to the present invention and a personal convenience store,
第 3図は、 この発明を説明するための C C D撮像素子の出力波形図で あり、  FIG. 3 is an output waveform diagram of a CCD image sensor for explaining the present invention;
第 4図は、 この発明に係る画素補間処理を説明するためのタイミング 図であり、  FIG. 4 is a timing chart for explaining the pixel interpolation processing according to the present invention;
第 5図は、 この発明を説明するための C C D撮像素子の読み出し動作 のタイミング図であり、  FIG. 5 is a timing chart of a read operation of the CCD image sensor for explaining the present invention;
第 6図は、 この発明に用いられる映像信号処理 L S Iの一実施例を示 すブロック図であり、  FIG. 6 is a block diagram showing an embodiment of a video signal processing LSI used in the present invention.
第 7図は、 この発明に係る C C Dカメラ装置の応用例を示すプロック 図であり、  FIG. 7 is a block diagram showing an application example of the CCD camera device according to the present invention.
第 8図は、 この発明の前提を説明するためのパーソナルコンピュータ の表示画面図である。 発明を実施するための最良の形態  FIG. 8 is a display screen diagram of a personal computer for explaining the premise of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
この発明をより詳細に説述するために、 添付の図面に従ってこれを説 明する。  The present invention will be described in more detail with reference to the accompanying drawings.
第 1図には、 この発明に係る C C Dカメラ装置の一実施例の概略プロ ック図が示されている。 同図において、 1はレンズ機構、 2は C C D撮 像素子、 3はアナログ/ディジタル (以下、 AZDという) 変換回路で あり、 4は映像信号処理 L S I (大規模半導体集積回路) である。 上記 映像信号処理 L S Iには、 特に制限されないが、 次の各回路ブロックが 含まれる。 5は映像信号処理ブロックであり、 6は信号変化ブロックで あり、 7は C C D駆動回路であり、 8は分周回路であり、 9はクロック パルス発生回路である。 1 0は、 上記クロック発生回路に含まれる基準 信号を発生する発振回路に用いられる水晶振動子である。 FIG. 1 is a schematic block diagram of an embodiment of a CCD camera device according to the present invention. In the figure, 1 is a lens mechanism, 2 is a CCD image sensor, 3 is an analog / digital (hereinafter referred to as AZD) conversion circuit, and 4 is a video signal processing LSI (large-scale semiconductor integrated circuit). Although not particularly limited, the video signal processing LSI includes the following circuit blocks. 5 is a video signal processing block, 6 is a signal change block, 7 is a CCD drive circuit, 8 is a frequency divider circuit, and 9 is a clock. It is a pulse generation circuit. Reference numeral 10 denotes a crystal oscillator used in an oscillation circuit that generates a reference signal included in the clock generation circuit.
上記レンズ機構には、 レンズの他に絞りやピント合わせ機構及びスチ ルカメラ用途ではシャツタ一機構を含むものである。 上記絞り調整やピ ント合わせのためにモ一夕及びその駆動回路及び制御回路も合わせて含 まれるものである。  The lens mechanism includes an aperture and a focusing mechanism in addition to a lens, and a shutter mechanism for a still camera. For the above-mentioned aperture adjustment and focusing, a motor and its driving circuit and control circuit are also included.
上記 C C D撮像素子 2は、 約 2 7万画素の力ラ一 C C D撮像素子から 構成される。 画素構成は、 特に制限されないが、 水平方向に 5 1 2画素 、 垂直方向に 4 9 4画素が設けられ、 全体として約 2 7万画素がマトリ ックス状に構成される。 上記 C C D撮像素子 2は、 公知のイン夕一ライ ン転送方式とされ、 上記約 2 7万画素を構成するフォトダイォードによ り形成された光電変換電荷が一斉に垂直 C C Dに読み出され、 上記垂直 C C Dに読み出された電荷は、 1水平走査分が水平 C C Dに転送され、 かかる水平 C C Dから水平走査クロックに同期して 1 ライン分の画素信 号が出力部に設けられたアンプにより電圧信号に変換されて出力される 。 上記のようにして 1ラインの電荷転送が終了すると、 上記垂直 C C D において 1画素分の転送動作が行われて次のラインの信号電荷が水平 C C Dに転送される。 以下、 上記同様にして上記光電変換電荷が順次に読 み出される。 かかる信号電荷の読み出しの期間、 フォトダイオードにお いては次に読み出すべき信号電荷を生成している。  The CCD image sensor 2 is composed of a power CCD image sensor of about 270,000 pixels. Although the pixel configuration is not particularly limited, 512 pixels are provided in the horizontal direction and 494 pixels are provided in the vertical direction, and a total of about 270,000 pixels are formed in a matrix. The CCD image sensor 2 employs a well-known in-line transfer method, in which photoelectric conversion charges formed by photodiodes constituting about 27,000 pixels are simultaneously read out to a vertical CCD, and The electric charge read out to the vertical CCD is transferred to the horizontal CCD for one horizontal scan, and a pixel signal for one line is output from the horizontal CCD in synchronization with the horizontal scan clock by an amplifier provided in the output unit. It is converted to a signal and output. When the charge transfer of one line is completed as described above, the transfer operation for one pixel is performed in the vertical CCD, and the signal charge of the next line is transferred to the horizontal CCD. Thereafter, the photoelectric conversion charges are sequentially read out in the same manner as described above. During the reading of the signal charge, the photodiode generates the signal charge to be read next.
特に制限されないが、 上記フォトダイオードの信号電荷は、 基板側に 掃き出される機能を持ち、 かかるリセッ ト動作を適宜に行うことにより 、 上記フォトダイオードの光電変換時間の調整、 言い換えるならば、 露 出時間の調整 (電子アイリス) が可能にされる。  Although not particularly limited, the signal charge of the photodiode has a function of being swept out to the substrate side, and by appropriately performing such a reset operation, adjustment of the photoelectric conversion time of the photodiode, in other words, exposure Time adjustment (electronic iris) is enabled.
上記 C C D撮像素子 2から読み出された画素信号は、 A/D変換回路 3によりディジタル信号に変換される。 この AZD変換回路 3により形 成されたディジタル信号は、 上記映像信号処理 LS Iに含まれる映像信 号処理ブロックに入力される。 The pixel signal read from the CCD image sensor 2 is converted into a digital signal by the A / D conversion circuit 3. This AZD conversion circuit 3 The generated digital signal is input to a video signal processing block included in the video signal processing LSI.
この実施例では、 上記 C C D撮像素子は 9 MH zの水平走查クロック 信号により、 上記画素信号の読み出しが行われる。 つまり、 上記 CCD 撮像素子 2は、 NTS C又は PAL方式に準拠して設計されたものであ るにも係わらず、 後述するようなコンピュータ入力用のインターフェイ スに適合しゃすし、ような水平走査クロック信号により動作させられる。 例えば、 水平走査パルスの周波数 f 0を約 9. 5MHzとする NTSC 方式に準拠した C C D撮像素子にもかわらずに、 上記 9 MH zのような 低い周波数が用いられる。  In this embodiment, the CCD image sensor reads out the pixel signals by a 9 MHz horizontal scanning clock signal. In other words, although the CCD image sensor 2 is designed in conformity with the NTSC or PAL system, it is suitable for a horizontal interface that is compatible with an interface for computer input as described later. It is operated by a clock signal. For example, a low frequency such as the above 9 MHz is used irrespective of the CCD image sensor based on the NTSC system in which the frequency f 0 of the horizontal scanning pulse is about 9.5 MHz.
コンピュータ用のインターフェイスとして I TU— R R e c 60 1規格があり、 かかる規格でのサンプリング周波数は 1 3. 5MHzで ある。 この 1 3. 5MHzという周波数は、 NTSC方式及び PAL方 式にない周波数である。 1 3. 5MHzなる周波数は、 NTSC方式に おける走査線数 525本の 858倍、 P A L方式における走査線 625 本の 864倍の水平周波数であり、 どちらの方式においても水平周波数 の整数倍で口ック可能となる。 これにより両方式ともに水平有効期間を 720サンプルで同一値にとれるため、 共通設計が可能であるという利 点がある。  There is an ITU-R Rec 601 standard as an interface for computers, and the sampling frequency in such a standard is 13.5 MHz. This 13.5 MHz frequency is not found in the NTSC and PAL systems. The frequency at 13.5 MHz is 858 times the number of 525 scanning lines in the NTSC system and 864 times the horizontal frequency of 625 scanning lines in the PAL system.In both cases, the frequency is an integer multiple of the horizontal frequency. Can be used. This has the advantage that a common design is possible because the horizontal effective period can be set to the same value for 720 samples in both types.
本願発明では、 上記のようなインタ一フヱイスに適合を簡単にするた めに、 使用する CCD撮像素子が NTSC方式 (又は PAL方式) に準 拠したものであるにもかかわらずに、 水平クロック周波数を 9 MHzに 設定するものである。 そして、 信号変換回路で 1 3. 5 MHzに変換し て出力させる。 このため、 クロック発生回路 9では、 27Mzの基準周 波数信号を形成し、 それを上記 CCD駆動回路 7に含まれる 3分周回路 で 9 MHzの水平クロックパルスを形成する。 CCD駆動回路では、 力、 力、る水平クロックパルスを基準にして、 垂直パルス、 転送ゲートパルスIn the present invention, in order to simplify adaptation to the above interface, the horizontal clock frequency is used even though the CCD image pickup device used conforms to the NTSC system (or PAL system). Is set to 9 MHz. Then, the signal is converted to 13.5 MHz by the signal conversion circuit and output. For this reason, the clock generating circuit 9 forms a 27 Mz reference frequency signal, and forms a 9 MHz horizontal clock pulse using the frequency dividing circuit included in the CCD driving circuit 7. In the CCD drive circuit, Vertical pulse, transfer gate pulse based on horizontal clock pulse
、 リセッ トパルスとして C C D撮像素子 2からの画素信号の読み出しに 必要な各種クロックパルスを発生させる。 In addition, various clock pulses necessary for reading pixel signals from the CCD image sensor 2 are generated as reset pulses.
上記のようにして読み出された画素信号は、 AZD変換回路 3に入力 されて、 サンプリング周波数が 9 MH zで量子化ビット数が 9ビッ ト又 は 1 0ビッ 卜の信号としてディジタル化される。 かかる A/D変換回路 3によりディジタル化された画素信号は、 映像信号処理 L S I 4に含ま れる映像信号処理プロック 5に入力され、 ここで輝度信号はガンマ、 ェ ンハンサなどの処理が施され、 色信号は R G Bマトリックス、 ガンマ、 色差変換処理などが行われる。 この映像信号処理プロック 5での処理さ れたディジタル信号は、 上記の C C D撮像素子 2からの読み出し信号に 従ったサンプリング周波数が 9 MH zである。  The pixel signal read as described above is input to the AZD conversion circuit 3 and digitized as a signal having a sampling frequency of 9 MHz and a quantization bit number of 9 bits or 10 bits. . The pixel signal digitized by the A / D conversion circuit 3 is input to a video signal processing block 5 included in a video signal processing LSI 4, where the luminance signal is subjected to processing such as gamma, enhancer, and color processing. The signal undergoes RGB matrix, gamma and color difference conversion processing. The digital signal processed by the video signal processing block 5 has a sampling frequency of 9 MHz according to the read signal from the CCD image sensor 2 described above.
信号変換回路 6は、 上記コンピュータ用のインタ一フヱイスに適合す るように分周回路 8から供給されるクロック信号により 1 3 . 5 MH z のディジタル信号に変換する。 つまり、 分周回路 8は、 上記上記クロッ ク発生回路 9で形成された 2 7 MH zの基準周波数信号を 2分周して上 記 1 3 . 5 MH zのクロックパルスを形成し、 上記信号変換回路 6に伝 える。 信号変換回路 6では、 上記かかるクロック信号を用い、 連続した 一対の画素 Aと Bから、 その平均値 (A + B ) Z 2の擬似画素信号を生 成し、 上記画素 A、 Bからなる 2つの画素に擬似画素信号を加えて 3つ の画素に変換し、 それを上記 1 3 . 5 MH zのクロック信号に同期させ て出力させる。 この場合、 上記のイン夕一フヱイスに適合するように、 輝度信号 Y、 色差信号 R— Υ、 Β— Υの比率を 4 : 2 : 2にして出力さ せるものである。  The signal conversion circuit 6 converts the signal into a 13.5 MHz digital signal by a clock signal supplied from the frequency dividing circuit 8 so as to conform to the above-mentioned interface for a computer. That is, the frequency dividing circuit 8 divides the 27 MHz reference frequency signal formed by the clock generating circuit 9 into two to form the above 13.5 MHz clock pulse, and Transmit to conversion circuit 6. The signal conversion circuit 6 generates a pseudo-pixel signal having an average value (A + B) Z 2 from a pair of continuous pixels A and B using the above-described clock signal. A pseudo pixel signal is added to one pixel to convert it into three pixels, which are output in synchronization with the above 13.5 MHz clock signal. In this case, the ratio of the luminance signal Y, the color difference signals R-Υ, and Β-Υ is set to 4: 2: 2 so as to conform to the above-mentioned in-plane connection and output.
第 2図は、 この発明に係る C C Dカメラ装置とパーソナルコンビュ一 夕との接続図である。 同図 (A) の実施例では、 パーソナルコンビュ一 夕とケ一ブルを介して専用のコネクタに接続するものである。 この場合 には、 CCDカメラ装置を自由に被写体に向けて撮影し、 その画像を取 り込むことができる。 同図 (B) の実施例では、 パーソナルコンビユー 夕の表示装置の上部に、 C C Dカメラ装置を一体的に取付けたものであ る。 この構成は、 パーソナルコンピュータの機能として、 上記画像取り 込み機能が付加され、 パーソナルコンピュータのネットワークを介した テレビ電話的な使レ、方に向し、ている。 FIG. 2 is a connection diagram of the CCD camera device according to the present invention and a personal computer. In the embodiment of FIG. It is connected to a dedicated connector via evening and cable. In this case, the user can freely shoot the CCD camera device at the subject and capture the image. In the embodiment shown in FIG. 1B, a CCD camera device is integrally mounted on the upper part of the display device of the personal convenience display. In this configuration, the image capturing function is added as a function of the personal computer, and it is suitable for videophone use via a personal computer network.
上記 C C Dカメラ装置で取り込まれた画像デ一夕は、 パ一ソナルコン ピュー夕において、 文字デ一夕等やグラフィックデ一夕と同様に加工、 保存が可能となり、 モデムなどの通信器を介して遠隔地へのデータ転送 などが実現できる。  The image data captured by the above CCD camera device can be processed and stored in a personal computer in the same way as character data and graphic data, and can be processed remotely via a communication device such as a modem. Data transfer to the ground can be realized.
第 4図には、 この発明を説明するための CCD撮像素子の出力波形図 が示されている。 NTS C方式に準拠した CCD撮像素子の水平走査パ ルスの周波数は、 上記のように 9. 5 MHzである。 つまり、 NTSC 方式に準拠して形成されている CCD固体撮像素子は、 同図 (A) に示 すように、 上記 9. 5 MHzで全ての画素の読み出しができるように設 計されている。 かかる CCD固体撮像素子に対して、 本願発明では上記 のように 9MHzのように上記設計値に対して低い周波数で駆動すると 、 同図 (B) に示すように、 約 5%ほど 1水平走査期間内に読み出せな い画素が残ってしまう。 このため、 本願発明の CCDカメラ装置におい ては、 上記第 8図 (A) に示したような撮像素子の有効画素領域のうち 、 上記読み残しの部分を無効にするものである。  FIG. 4 shows an output waveform diagram of a CCD image sensor for explaining the present invention. The frequency of the horizontal scanning pulse of the CCD image sensor based on the NTSC system is 9.5 MHz as described above. In other words, the CCD solid-state imaging device formed in accordance with the NTSC system is designed so that all pixels can be read at the above 9.5 MHz, as shown in FIG. When such a CCD solid-state imaging device is driven at a lower frequency than the above design value such as 9 MHz in the present invention as described above, as shown in FIG. Pixels that cannot be read remain. For this reason, in the CCD camera device of the present invention, in the effective pixel area of the image sensor as shown in FIG. 8A, the unread portion is invalidated.
CCD撮像素子では、 上記 1水平走査期間のうち、 表示期間のみにお いて上記水平走査クロック信号により信号電荷を読み出すようにすると 、 上記読み残しの電荷が次の走査開始に読み出されてしまうという誤動 作を引き起こす。 そこで、 同図 (B) において、 水平同期パルスがロウ レベルの水平帰線期間において、 上記読み残しの信号電荷を掃き出させ るようにするものである。 このため、 特に制限されないが、 C C D撮像 素子に供給される水平走査クロックを、 上記 9 MH zから基準周波数信 号である 2 7 MH zとして、 信号の掃き出しを高速に行うようにするも のである。 In the CCD image sensor, if signal charges are read out by the horizontal scanning clock signal only in the display period in the one horizontal scanning period, the unread charges will be read out at the next scanning start. May cause malfunction. Therefore, in FIG. During the horizontal retrace period of the level, the above-mentioned unread signal charges are swept out. For this reason, although not particularly limited, the horizontal scanning clock supplied to the CCD image sensor is changed from the above 9 MHz to a reference frequency signal of 27 MHz so that the signal can be swept out at high speed. .
このことは、 垂直 C C Dにおいても読み残し電荷が存在するものであ るために、 垂直帰線期間を利用し、 上記垂直 C C Dに供給される垂直走 査パルスを水平走査パルスや上記基準周波数信号に切り替えて、 高速に 信号電荷の掃き出しを行い、 次のフィ一ルドの先頭からは最初のライン の 1番目の画素から出力させるようにするものである。  This is because the unread charges also exist in the vertical CCD, and the vertical scan pulse supplied to the vertical CCD is converted to the horizontal scan pulse and the reference frequency signal using the vertical blanking period. By switching, the signal charge is swept out at high speed, and the output from the first pixel of the first line is output from the beginning of the next field.
上記のようにこの発明に係る駆動方式では C C D撮像素子の有効画素 領域の全部が出力されないが、 モニタ一画面等では上言己読み取った画素 信号のみが表示され、 かかる表示画面により被写体の位置を選ぶために 実視上においては特に問題となるものではない。  As described above, in the driving method according to the present invention, the entire effective pixel area of the CCD image pickup device is not output, but only the pixel signal read by the above-mentioned self is displayed on one screen of the monitor, and the position of the subject is determined by such a display screen. To choose It is not particularly problematic in actual view.
第 4図には、 この発明に係る画素補間処理を説明するためのタイミン グ図が示されている。 NT S C方式に準拠した画素数が約 2 7万画素の C C D固体撮像素子を用い、 それを上記のように 9 MH zの水平走査パ ルスで読み出した場合、 1画素当たりの処理時間は、 1 1 1 n s (ナノ 秒) となるため、 隣接する 2画素、 すなわち画素 Aと画素 Bの処理時間 は 2 2 2 n sとなる。 一方、 上記インタ一フェイスのサンプリング周波 数 1 3 . 5 MH zでは、 1画素あたりの処理時間が 7 4 n sである。 つ まり、 上記 9 MH zで読み出される 2つの画素分の処理時間が、 上記 1 3 . 5 MH zでは 3画素分の処理時間に等しいことになる。  FIG. 4 is a timing chart for explaining the pixel interpolation processing according to the present invention. When using a CCD solid-state image sensor with approximately 27,000 pixels in accordance with the NTSC system and reading it with a 9 MHz horizontal scanning pulse as described above, the processing time per pixel is 1 Since it is 11 ns (nanosecond), the processing time of two adjacent pixels, that is, pixel A and pixel B, is 222 ns. On the other hand, when the sampling frequency of the interface is 13.5 MHz, the processing time per pixel is 74 ns. In other words, the processing time for two pixels read at 9 MHz is equal to the processing time for three pixels at 13.5 MHz.
本願発明では、 上記信号変換回路において、 かかる信号変換を行うも のである。 つまり、 2つの画素を取り込んで、 それを 3画素に変換して 上記 2つの画素の処理時間内に 3画素とシリアルに出力させるようにす るものである。 In the present invention, the signal conversion is performed in the signal conversion circuit. In other words, take in two pixels, convert them to three pixels, and output them serially with three pixels within the processing time of the two pixels. Things.
すなわち、 第 4図に示すように、 画素 Aと画素 Bを取り込んで、 画素 Aを出力さている間に、 上記取り込んで画素 Aと画素 Bを加算して、 そ れを 1 2にして平均値を求め、 かかる擬似画素 (A + B ) Z 2を上記 画素 Aに引き続いて出力させ、 最後に画素 Bを出力させる。 上記 3つの 画素 A— (A + B) 2 - Bのそれぞれの画素の出力時間は、 上記のよう に 7 4 n sにされる。 つまり、 上記 C C D撮像素子から 9 MH zで読み 出された画素信号が、 1 3 . 5 MH zの画素信号に変換されて出力され るものとなる。 ただし、 上記のような信号変換のためには、 2つの画素 を取り込むための時間 2 2 2 n sが必要になり、 この分画素信号が出力 されるタイミングが遅くされる。 したがって、 かかるタイミングの遅れ を補うように、 水平同期パルスのタイミングも上記時間でけ遅らせて出 力させる。 これにより、 画面上において上記信号変換処理分だけ表示画 面がずれることを防止することができる。  That is, as shown in FIG. 4, while pixel A and pixel B are fetched and pixel A is being output, the above fetched pixel A and pixel B are added, the result is set to 12 and the average value is calculated. The pseudo pixel (A + B) Z 2 is output subsequently to the pixel A, and finally the pixel B is output. The output time of each of the three pixels A— (A + B) 2 −B is set to 74 ns as described above. That is, the pixel signal read at 9 MHz from the CCD image sensor is converted to a 13.5 MHz pixel signal and output. However, for the above-described signal conversion, a time of 222 ns for capturing two pixels is required, and the timing at which the pixel signal is output is delayed by this amount. Therefore, to compensate for such a delay in the timing, the timing of the horizontal synchronizing pulse is also delayed by the above time and output. Thereby, it is possible to prevent the display screen from being shifted on the screen by the signal conversion processing.
第 5図には、 この発明を説明するための C C D撮像素子の読み出し動 作の夕イミング図が示されている。 上記のように 2 7万画素の C C D固 体撮像素子は、 9 . 5 ( 9 . 5 3 4 9 6 ) MH zで読み出しが行われる ように設計されてい。 つまり、 同図 (A) のように水平同期パルスを基 準にして、 ォプチカルブラックの読み出しが行われ、 続いて有効画素か らの画素信号が読み出され、 最後にダミービットとォプチカルブラック の読み出しが行われ、 水平期間期間になるように設計されている。 これ を上記のように 9 MH zの水平走査パルスで駆動すると、 同図 (B ) の ように、 そのままの設定では、 上記のような周波数が低くされることに 応じて 1つのクロックパルスの周期が長くなるので、 上記黒レベルを規 定するォプチカルブラックの位置が、 水平同期信号に対して遅くなる。 そして、 1つの画素の信号転送時間も上記のように長くなり、 ダミービ ッ トとォプチカルブラックの挿入を考えると、 上記水平 CCDの転送時 間が短くなり、 有効画素信号の読み出しカ^、つそう少なくなつてしまう 。 そこで、 特に制限されないが、 上記第 1図の CCD駆動回路 7に対す て、 水平同期パルスから上記ォプチカルブラックの読み出しに入るまで の時間が、 上記 9 MHzの水平パルスに合った数になるように設定する 。 これにより、 同図 (B) において矢印で付したように、 上記 (A) の 場合と同じ位置でォプチカルブラックの読み出し開始を行うようにする ものである。 FIG. 5 shows a timing diagram of a read operation of the CCD image sensor for explaining the present invention. As described above, the 270000-pixel CCD solid-state imaging device is designed so that reading is performed at 9.5 (9.53496) MHz. In other words, optical black is read out on the basis of the horizontal synchronization pulse as shown in (A) of the figure, the pixel signal from the effective pixel is read out, and finally the dummy bit and the optical bit are read out. It is designed so that the cull black is read and the horizontal period is set. If this is driven by the horizontal scanning pulse of 9 MHz as described above, as shown in Fig. 13 (B), the cycle of one clock pulse will be changed as the frequency is lowered as it is, as it is, as it is in the same setting. Since the length becomes longer, the position of the optical black that defines the black level becomes slower with respect to the horizontal synchronization signal. The signal transfer time of one pixel also becomes longer as described above, Considering the insertion of dots and optical black, the transfer time of the above horizontal CCD is shortened, and the readout time of the effective pixel signal is reduced. Therefore, although not particularly limited, the time from the horizontal synchronization pulse to the start of the optical black readout for the CCD drive circuit 7 in FIG. 1 described above becomes a number matching the above 9 MHz horizontal pulse. Set as follows. As a result, as indicated by the arrow in FIG. 11B, the reading of optical black is started at the same position as in the case of FIG.
第 6図には、 この発明に用いられる映像信号処理 LS Iの一実施例の ブロック図が示されている。 CCD固体撮像素子から出力されたアナ口 グ画素信号は、 上記の A/D変換されてディジタル信号として入力され る。 このディジタル信号は、 ディジタル AGC回路 1 1で AGC処理が 行われる。  FIG. 6 is a block diagram showing an embodiment of a video signal processing LSI used in the present invention. The analog pixel signal output from the CCD solid-state imaging device is A / D converted as described above and input as a digital signal. This digital signal is subjected to AGC processing in a digital AGC circuit 11.
色信号系は、 上記のような AGC処理後、 RGBマトリックス 1 2に 入力され、 ここでマトリックス演算が行われて、 ホワイトバランス検波 回路 1 3で白 (ホワイト) を忠実に再現するためのオートホワイトバラ イス制御のためのデータを検出し、 端子 T 2から出力されて外部に設け られたコントローラに取り込まれ、 ォ一トホワイトバランスの制御が行 われる。 輝度信号系は、 フィルタ 1 4を介してェンハンサ 1 5にてェン ハンサ処理が行われ、 ガンマ処理回路 1 6において 7補正処理が行われ る。  After the AGC processing as described above, the color signal system is input to the RGB matrix 12, where the matrix operation is performed, and the white balance detection circuit 13 is used to auto-white the faithful reproduction of white. Detects data for control of the balance, outputs the data from the terminal T2, and takes it into an externally provided controller to control the auto white balance. The luminance signal system is subjected to enhancer processing by an enhancer 15 via a filter 14, and is subjected to 7 correction processing by a gamma processing circuit 16.
タイミング発生回路 1 9は、 上記のような CCD撮像素子に供給され る各種タイミング信号と、 上記 A/D変換回路に供給されるタイミング 信号を形成する。 そして、 基準信号が分周されてクロック変換回路 1 7 として示された上記信号変換回路に供給される。 クロック変換回路 1 7 は、 色信号及び輝度信号のそれぞれに対して、 例えば、 上記 2つの画素 を取り込むメモリ (レジスタ又はフリップフロップ) と、 2つの画素の 平均値の擬似画素信号を形成する演算回路及び上記 1 3 . 5 MH zに同 期して出力させるシフトレジスタ等の簡単な回路で構成できる。 上記演 算回路は、 例えば、 加算回路の出力ディジ夕ル信号を 1 ビッ ト右シフト ( 1桁下げる) させてレジスタ等に保持させることにより 1 / 2の演算 結果を得ることができる。 このため、 上記信号変換回路としてのクロッ ク変換回路 1 7は、 レジス夕と加算回路からなる簡単な回路で上記信号 変換処理が実現でき、 例えば、 既存の映像信号処理 L S Iの部分的な設 計変更で済むことなる。 エンコーダ 1 8は、 上記輝度信号と色差信号と を 4 : 2 : 2の比率でさせるものである。 The timing generation circuit 19 forms various timing signals supplied to the CCD image sensor as described above and a timing signal supplied to the A / D conversion circuit. Then, the reference signal is frequency-divided and supplied to the signal conversion circuit shown as a clock conversion circuit 17. The clock conversion circuit 17 outputs, for example, the above two pixels for each of the color signal and the luminance signal. (Register or flip-flop) that captures the data, an arithmetic circuit that forms a pseudo pixel signal of the average value of two pixels, and a simple circuit such as a shift register that synchronizes with the above 13.5 MHz and outputs it. . The arithmetic circuit can obtain a 1/2 arithmetic result by, for example, shifting the output digital signal of the adder circuit right by one bit (down by one digit) and holding the result in a register or the like. For this reason, the clock conversion circuit 17 as the above-mentioned signal conversion circuit can realize the above-mentioned signal conversion processing with a simple circuit composed of a register and an addition circuit. For example, a partial design of an existing video signal processing LSI can be realized. You just need to change it. The encoder 18 makes the luminance signal and the color difference signal have a ratio of 4: 2: 2.
第 7図は、 この発明に係る C C Dカメラ装置の応用例を示すプロック 図である。 この実施例は、 I Cカードを使用したデジタル ·スチル ·力 メラ · システムに向けられている。 デジタル ·スチル · カメラシステム は光学系, 中央処理装置 C P U, モータ駆動回路, 絞り, シャッター, イメージセンサ, 信号処理回路および AZD変換回路等によって構成さ れる。 被写体は、 光学系に受像され、 中央処理装置 C P Uによって制御 されたモ一夕駆動回路によって絞り、 シャッターが制御され、 上記絞り 、 シャツ夕一を介して、 イメージセンサ上に上記被写体が結像される。 上記ィメ一ジセンサによつて結像された画像信号が読み出され、 アナ口 グ /ディジ夕ル変換回路 A/D Cに入力されてディジタル信号として信 号処理/変換回路に取り込まれる。 上記デジ夕ル信号は上記中央処理装 置 C P U等によって制御された信号処理回路に入力され、 前記のような 映像信号処理と、 信号変換処理が行われる。 このようにして形成された 信号は、 特に制限されないが、 フヱ口エレクトリック R AM内蔵 I C力 ードに記憶される。 このようにデジタル 'スチル 'カメラに本発明のフ エロエレクトリック R AM内蔵 I Cカードを適用することによって、 上 記デジタル ·スチル ·カメラ ·システムの小型化, 軽量化, 薄型化が図 れると共に低消費電力化が図れ、 さらに大容量の情報を高速に読み書き できるので、 システム全体としての処理能力が向上する。 そして、 それ を読み出して、 コンピュータに入力する場合には、 上記のように I TU -R Re c 60 1に準拠した信号とされているので、 上記 1 3. 5M H zで読み出すだけで済むものとなる。 FIG. 7 is a block diagram showing an application example of the CCD camera device according to the present invention. This embodiment is directed to a digital still camera system using an IC card. The digital still camera system consists of an optical system, a central processing unit CPU, a motor drive circuit, an aperture, a shutter, an image sensor, a signal processing circuit, and an AZD conversion circuit. The subject is received by the optical system, the aperture and the shutter are controlled by a motor drive circuit controlled by the central processing unit CPU, and the subject is imaged on the image sensor via the aperture and the shirt. You. An image signal formed by the image sensor is read out, input to an analog / digital conversion circuit A / DC, and taken into a signal processing / conversion circuit as a digital signal. The digital signal is input to a signal processing circuit controlled by the central processing unit CPU or the like, and the above-described video signal processing and signal conversion processing are performed. The signal thus formed is stored in, but not limited to, an IC chip with a built-in aperture electric RAM. By applying the IC card with a built-in ferroelectric RAM of the present invention to a digital 'still' camera, The digital, still, camera, and system can be made smaller, lighter, thinner, consume less power, and can read and write large amounts of information at high speed, improving the processing capacity of the entire system. Then, when reading it out and inputting it to a computer, the signal is compliant with ITU-R Rec 601, as described above, so it is only necessary to read it out at 13.5 MHz above. Becomes
上記の実施例から得られる作用効果は、 下記の通りである。  The operational effects obtained from the above embodiment are as follows.
( 1 ) 約 27万画素の CCD撮像素子を 9 MHzの水平走査パルスで 動作させて映像信号を得るとともに、 かかる映像信号をディジタル信号 に変換して映像信号処理回路で信号処理を行うとともに、 かかる信号処 理回路から出力される一対の画素信号を用レ、、 その平均値からなる擬似 画素信号を含めて 3画素に変換するという簡単な構成の回路により 1 3 . 5MHzのクロックパルスに同期化させるという I TU— R Re c 60 1規格に準拠した輝度信号と色差信号を得ることができるという効 果が得られる。  (1) A CCD image sensor of about 270,000 pixels is operated with a 9 MHz horizontal scanning pulse to obtain a video signal, and the video signal is converted into a digital signal and processed by a video signal processing circuit. Synchronized to a 13.5 MHz clock pulse by a circuit with a simple configuration that uses a pair of pixel signals output from the signal processing circuit and converts it to 3 pixels including a pseudo pixel signal consisting of the average value This makes it possible to obtain a luminance signal and a chrominance signal conforming to the ITU-R Rec 601 standard.
(2) 27 MHzの基準周波数を用い、 それを 3分周すること及び 2 分周するという極めて簡単な構成により、 上記 9 MH zの水平走査パル ス、 2分周することにより上記 1 3. 5 MHzのサンプリング周波数を 得ることができるという効果が得られる。  (2) Using a 27 MHz reference frequency and dividing it by 3 and dividing it by 2 with a very simple configuration, the above 9 MHz horizontal scanning pulse is divided by 2 and the above 13. The effect is obtained that a sampling frequency of 5 MHz can be obtained.
(3) 上記信号変換回路で形成される上記擬似画素信号は、 上記連続 して出力される一対の画素信号の間に挿入されて出力されることにより 、 画素信号の周波数変換を行いつつ、 かかる信号補間により原画により 近レ、映像信号を得ることができるという効果が得られる。  (3) The pseudo pixel signal formed by the signal conversion circuit is inserted between the pair of continuously output pixel signals and output, thereby performing frequency conversion of the pixel signal. The effect of being able to obtain a video signal closer to the original image by signal interpolation is obtained.
(4) 上記映像信号処理回路として、 ビデオカメラ用の映像信号処理 回路をそのまま利用することにより、 上記信号変換を追加するだけで済 むという効果が得られる。 以上本発明者よりなされた発明を実施例に基づき具体的に説明したが 、 本願発明は前記実施例に限定されるものではなく、 その要旨を逸脱し ない範囲で種々変更可能であることはいうまでもない。 例えば、 基準周 波数信号は、 1 3. 5 MHzの整数倍 (N倍) とし、 それを 1ZNに分 周して、 上記 1 3. 5MHzのサンプリングパルスを形成し、 2/3N に分周して上記 9 MH zの水平走査パルスを形成するものであってもよ レ、。 また、 パーソナルコンピュータの表示装置が CRT表示装置ではな く、 T FT等のフラッ トディスクプレイの場合には、 前記映像信号処理 回路での Ί補正機能は省略させるようにする機能を付加するものであつ てもよレ、。 産業上の利用可能性 (4) By using the video signal processing circuit for a video camera as it is as the video signal processing circuit, it is possible to obtain an effect that only the signal conversion needs to be added. Although the invention made by the inventor has been specifically described based on the embodiment, the invention of the present application is not limited to the embodiment, and it can be said that various modifications can be made without departing from the gist of the invention. Not even. For example, the reference frequency signal is an integer multiple of 13.5 MHz (N times), which is divided into 1ZN to form the above 13.5 MHz sampling pulse, which is divided into 2 / 3N. To form the above 9 MHz horizontal scanning pulse. When the display device of the personal computer is not a CRT display device but a flat display such as a TFT, a function to omit the は correction function in the video signal processing circuit is added. You can do it. Industrial applicability
以上のように、 この発明は、 約 27万画素の CCD撮像素子を用いて パーソナルコンピュータやテレビ電話システム等に向けられた各種の C C Dカメラ装置に広く利用することができる。  As described above, the present invention can be widely used in various CCD camera devices directed to personal computers, videophone systems, and the like, using a CCD image sensor having about 270,000 pixels.

Claims

請 求 の 範 囲 The scope of the claims
1. 約 27万画素の C C D撮像素子を 9 MH zの水平走査パルスで動作 させて映像信号を得るとともに、 かかる映像信号をディジタル信号に変 換して映像信号処理回路で信号処理を行い、 かかる信号処理回路から出 力される一対の画素信号を用い、 擬似画素信号を含めて 3画素に変換し て 1 3. 5MHzのクロックパルスに同期化させて I TU— R Re c 60 1規格に準拠した輝度信号と色差信号とを得ることを特徴とする C CDカメラ装置。 1. A CCD image sensor of about 270,000 pixels is operated by a 9 MHz horizontal scanning pulse to obtain a video signal, and the video signal is converted into a digital signal, and the video signal is processed by a video signal processing circuit. Using a pair of pixel signals output from the signal processing circuit, convert to 3 pixels including pseudo pixel signals and synchronize with 13.5 MHz clock pulse to comply with ITU-R Rec 601 standard A CCD camera device for obtaining a luminance signal and a color difference signal.
2. 1 3. 5 MHz又はその整数倍の周波数の基準クロック信号を発生 させ、 かかる基準クロック信号に基づいて 9 MHzの第 1のクロックパ ルス及び上記 1 3. 5MHzの第 2のクロックパルスを形成するクロッ ク発生回路と、 2. Generate a reference clock signal having a frequency of 13.5 MHz or an integer multiple thereof, and form a first clock pulse of 9 MHz and a second clock pulse of 13.5 MHz based on the reference clock signal. Clock generation circuit
上記 9 MHzの第 1のクロックパルスを受けて、 それに同期して画像 信号を出力する約 27万画素の CCD撮像素子と、  A CCD image sensor of approximately 270,000 pixels that receives the 9 MHz first clock pulse and outputs an image signal in synchronization with the first clock pulse;
上記 CCD撮像素子から読み出された画像信号を受け、 それをディジ 夕ル信号に変換する AZD変換回路と、  An AZD conversion circuit that receives an image signal read from the CCD image sensor and converts it into a digitized signal;
上記 A/D変換回路により形成された画像信号を受ける映像信号処理 回路と、  A video signal processing circuit for receiving the image signal formed by the A / D conversion circuit,
上記映像信号処理回路から連続して出力される一対の画素信号を用レ、 、 その平均値からなる擬似画素信号を含めて 3画素に変換するとともに 上記第 2のクロックパルスに同期化させる機能を持つ信号変換回路とを 備えてなることを特徴とする CCDカメラ装置。  A function of converting a pair of pixel signals continuously output from the video signal processing circuit into three pixels including a pseudo pixel signal composed of an average value thereof and synchronizing with the second clock pulse. A CCD camera device, comprising: a signal conversion circuit.
3. 上記基準クロック信号の周波数は 27 MHzに設定されるものであ り、 上記第 1のクロックパルスは、 上記基準クロック信号を 3分周して 9 MHzに変換され、 上記第 2のクロックパルスは、 上記基準クロック を 2分周して 1 3. 5 MHzに変換されるものであることを特徴とする 請求の範囲第 2項記載の C C Dカメラ装置。 3. The frequency of the reference clock signal is set to 27 MHz. The first clock pulse is converted to 9 MHz by dividing the reference clock signal by 3, and the second clock pulse is converted to 9 MHz. Is the above reference clock 3. The CCD camera device according to claim 2, wherein the frequency is divided by 2 and converted to 13.5 MHz.
4. 上記信号変換回路で形成される上記擬似画素信号は、 上記連続して 出力される一対の画素信号の間に挿入されて出力されるものであること を特徴とする請求の範囲第 2項記載の CCDカメラ装置。  4. The pseudo pixel signal formed by the signal conversion circuit is inserted between the pair of continuously output pixel signals and output. The described CCD camera device.
5. 上記映像信号処理回路は、 ビデオカメラ用の映像信号処理回路がそ のまま利用され、 輝度信号に対するガンマ補正及びェンハンサ処理機能 と、 色信号に対する RGBマトリクス、 ガンマ補正及び色差変換処理機 能を含むものであることを特徴とする請求の範囲第 2項記載の C C D力 メラ装置。  5. The above video signal processing circuit uses the video signal processing circuit for video camera as it is, and provides gamma correction and enhancer processing functions for luminance signals, and RGB matrix, gamma correction and color difference conversion processing functions for color signals. 3. The CCD force camera device according to claim 2, wherein the CCD force camera device includes:
6. 上記映像信号処理回路は、 ビデオカメラ用の映像信号処理回路がそ のまま利用され、 輝度信号に対するガンマ補正及びェンハンサ処理機能 と、 色信号に対する RGBマトリクス、 ガンマ補正及び色差変換処理機 能を含むものであることを特徴とする請求の範囲第 3項記載の C C D力 メラ装置。  6. The video signal processing circuit uses the video signal processing circuit for the video camera as it is, and provides gamma correction and enhancer processing functions for luminance signals, and RGB matrix, gamma correction and color difference conversion processing functions for color signals. 4. The CCD force camera device according to claim 3, wherein the CCD force camera device includes:
7. 上記信号変換回路は、 I TU— RRe c 6 0 1規格に準拠して、 輝 度信号と色差信号を出力させるものであることを特徴とする請求の範囲 第 2項記載の C C Dカメラ装置。  7. The CCD camera device according to claim 2, wherein the signal conversion circuit outputs a luminance signal and a color difference signal in accordance with the ITU-RRec601 standard. .
PCT/JP1996/003041 1996-10-21 1996-10-21 Ccd camera device WO1998018257A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003041 WO1998018257A1 (en) 1996-10-21 1996-10-21 Ccd camera device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003041 WO1998018257A1 (en) 1996-10-21 1996-10-21 Ccd camera device

Publications (1)

Publication Number Publication Date
WO1998018257A1 true WO1998018257A1 (en) 1998-04-30

Family

ID=14153992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003041 WO1998018257A1 (en) 1996-10-21 1996-10-21 Ccd camera device

Country Status (1)

Country Link
WO (1) WO1998018257A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846871A (en) * 1994-07-28 1996-02-16 Hitachi Ltd Imaging device
JPH08275061A (en) * 1995-04-03 1996-10-18 Toshiba Corp Pixel square method of image information and image input device using the same method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846871A (en) * 1994-07-28 1996-02-16 Hitachi Ltd Imaging device
JPH08275061A (en) * 1995-04-03 1996-10-18 Toshiba Corp Pixel square method of image information and image input device using the same method

Similar Documents

Publication Publication Date Title
US6130420A (en) Solid state image sensing apparatus, camera using the apparatus, and method for driving the apparatus
US6784941B1 (en) Digital camera with video input
US6903770B1 (en) Digital camera which produces a single image based on two exposures
US6342921B1 (en) Lattice-type solid state image pickup device
KR20110109905A (en) Camera system, image processing unit and camera unit
JP2008131407A (en) Solid-state imaging device and imaging apparatus using the same
EP0557062B1 (en) Solid state image pickup apparatus
EP0794662B1 (en) Electronic still camera
US20050190270A1 (en) Method and apparatus for processing image signal
US6593967B1 (en) Electronic camera having dual clocked line memory
US6118481A (en) Solid state image pick-up device and image pick-up apparatus
JPH10276361A (en) Imaging apparatus and method, imaging system, image information providing apparatus and method, image data processing apparatus and method, and transmission medium
US7236194B2 (en) Image signal processing apparatus
JP2000152260A (en) Driving method of imaging element and imaging apparatus
US20030160880A1 (en) Transferring method of electric charge from image sensing device and the image sensing device
WO1998018257A1 (en) Ccd camera device
JPH09163210A (en) Imaging system
US7508426B2 (en) Image pickup device, and driving controlling method for solid-state imaging device
TW200849980A (en) Image pickup apparatus and image pickup method
JPH08195912A (en) Solid-state imaging device
KR100213946B1 (en) Solid-state imaging device
KR20050094445A (en) Frame conversion method, frame conversion circuit, and electronic camera
JPH118801A (en) Image sensor
JP2002027332A (en) Imaging device
US20030169356A1 (en) Image sensing apparatus and method of controlling same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase