[go: up one dir, main page]

WO1998030799A2 - Procede pour utiliser la totalite de l'energie gravitationnelle d'un fluide en ecoulement, et appareil correspondant - Google Patents

Procede pour utiliser la totalite de l'energie gravitationnelle d'un fluide en ecoulement, et appareil correspondant Download PDF

Info

Publication number
WO1998030799A2
WO1998030799A2 PCT/JP1997/000007 JP9700007W WO9830799A2 WO 1998030799 A2 WO1998030799 A2 WO 1998030799A2 JP 9700007 W JP9700007 W JP 9700007W WO 9830799 A2 WO9830799 A2 WO 9830799A2
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
energy
water
turbine
gravity
Prior art date
Application number
PCT/JP1997/000007
Other languages
English (en)
French (fr)
Inventor
Toshitaka Yasuda
Original Assignee
Toshitaka Yasuda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshitaka Yasuda filed Critical Toshitaka Yasuda
Priority to PCT/JP1997/000007 priority Critical patent/WO1998030799A2/ja
Priority to AU12106/97A priority patent/AU1210697A/en
Publication of WO1998030799A2 publication Critical patent/WO1998030799A2/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the natural permanent motion mechanism based on the coexistence fusion action and the law of conservation of energy is based on natural phenomena in the atmosphere such as water current, wind, typhoon, tornado, or light, radiant heat, Widely present in radio waves, electric fields, magnetic fields, universal gravitational propagation mechanisms, and the like, and this natural permanent motion mechanism is a basic component of natural phenomena in the above two regions.
  • Newton's law of motion only has the force associated with the mass moving in the one-dimensional direction, and there are no boundary conditions for the operating conditions of the force and energy.
  • the existing natural law based on Newton's law of motion cannot handle the coexistence and fusion of the forces and energies that exist and act in a stationary state. could not be clarified.
  • the present invention relates to the difference in the supply direction and the difference in the share of the action due to the difference in the acting direction of the force and the difference in the one-dimensional force in the fluid such as air and water in which the total gravity PGH exists.
  • Generation of the total gravity energy E ⁇ by coexistence of the total gravity pressure PH in the three-dimensional direction and the total gravity force PH in the three-dimensional direction that exists and acts in the stationary state, and the wind and water flow do not reduce the flow rate (Without affecting the upstream and downstream sides) and the previously unknown laws of nature relating to the permanent motion of the natural world in the energy mechanisms that drive wind turbines and water turbines and the strong wind generation mechanisms of typhoons.
  • the pressure tube and the structure of the wind turbine and the water turbine in the pressure tube are set as described in the claims, and necessary artificial energy is supplied to the wind turbine and the water turbine.
  • the generated gravitational total pressure energy E C ⁇ in the downstream pressure pipe is converted into kinetic energy to maintain the flow rate in the pressure pipe, and the gravitational static pressure PGHS near the water turbine or wind turbine is reduced.
  • the total pressure energy E GH is converted into kinetic energy by maintaining the flow rate and lowering the static pressure P n HS to drive the wind turbine or water turbine, and the artificial energy is generated by a part of the output of the wind turbine or water turbine.
  • the natural winds and water currents Using gravity total pressure energy of the flowing fluid to achieve a third type perpetual motion that mimics the perpetual motion that drives and hydraulic turbine and is intended for that device. Background technology
  • the inventor recognizes that the natural law of fluid mechanics based on Newton's law of motion states that in a water flow, the flow velocity is slightly below the water surface, and that the water flow and wind do not reduce the flow rate (Without affecting the upstream and downstream sides), such as a permanent motion energy mechanism that can drive water turbines and wind turbines, and a permanent motion strong wind generation mechanism for typhoons and tornadoes. There is a deficiency that natural phenomena in "fluids operated by pressure energy ⁇ cannot be explained.
  • Mathematical expressions can approximate natural phenomena, so if the observed range is converted into a mathematical expression, natural phenomena within that range can be put to practical use regardless of whether they are correct or not.
  • mathematical formulas have nothing to do with the composition of nature and the nature of natural phenomena, and nature itself and natural phenomena are not composed of mathematical formulas. What can be obtained by mathematical analysis is an approximate calculation of natural phenomena, and is merely a reference material for elucidating the structure of nature and the essence of natural phenomena.
  • the obtained hypothesis includes the total gravitational total pressure energy generated by using the universal gravitational total pressure P ;; H as an energy source ⁇ ⁇ ( ; ⁇ based on light, radiant heat, radio waves, electric field, magnetic field, magnetic gravitational force, and universal gravitational force.
  • the common propagation medium such as light, radiant heat, radio waves, electric fields, magnetic fields, and universal gravitation
  • the common propagation medium such as light, radiant heat, radio waves, electric fields, magnetic fields, and universal gravitation
  • the obtained hypothesis includes a beautiful natural eternal motion mechanism related to the generation and change of elementary particles and the whole universe based on the universal gravitational total pressure energy E GH generated using the universal gravitational total pressure ⁇ ⁇ ⁇ ⁇ ⁇ as an energy source.
  • the third type of perpetual motion of the present invention can be realized by artificially imitating that mechanism.
  • the current deadlock in natural science can be fundamentally resolved.
  • the present invention provides a method of using total gravity energy and a device therefor.
  • the present invention constitutes the "contents of the invention” shown in [2] based on the "new law of motion J of fluid” shown in [1], which was not known until now.
  • the new law of motion of fluid is the supply direction due to the difference in the direction of action of force in non-viscous fluids such as air and water on which the total gravitational pressures ⁇ ,, and [2] apply. And the effect sharing, the one-dimensional force flow maintaining action and the three-dimensional gravitational total pressure P u ⁇ that exists and acts in a stationary state.
  • the generation of the total gravity energy E due to the existing fusion action, and the wind and water flow do not reduce the flow velocity (without affecting the upstream and downstream sides), and the energy mechanism and typhoon that drive the wind turbine and water turbine
  • This is a previously unknown law of nature relating to the permanent motion existing in nature, such as the strong wind generation mechanism, and if these permanent motions existing in nature are artificially imitated, the third class of the present invention A permanent movement is realized.
  • the first law The rule of the difference in the supply possible direction due to the difference in the direction of the force acting.
  • resistance cancellation pressure difference Pn and weight dynamics pressure replenishing pressure P C, IVA and inlet flow maintained kinetic energy E, .. lambda 1 and the outflow flow rate maintained movement E Nerugi ⁇ ⁇ .
  • the fluid is supplied in the pressure pipe, the common flowing fluid passes through each part in the pressure pipe, the action sharing of the second law described later, and the description about the excess of the third law 3)
  • the action of the supplied force or energy is transmitted to the entire flowing fluid in the pressure pipe, and the respective action is performed at the position where each should work.
  • the energy is consumed to maintain the flow rate, but it is stabilized at a flow rate that is not consumed by the gravitational total pressure energy E (;
  • the inflow rate maintained kinetic energy ⁇ ⁇ 1 and outflow rate maintained kinetic energy E Alpha.
  • both the downstream side and the upstream side of the turbine or the wind turbine are required to generate the total gravity energy ⁇ ( ; ⁇ ⁇ ⁇ ) by the coexistence fusion action on the downstream side and the upstream side of the turbine or the wind turbine.
  • the outflow flow maintenance movement energy ⁇ ⁇ ⁇ ⁇ is required.
  • the coexisting fusion action at each position along the flow of the flowing fluid is, as described above, the total gravity PGH acting in the three-dimensional direction and the force acting in the one-dimensional direction at each position along the flow. Since it exists in a stationary state with a separate energy source, it operates independently for each of the above-mentioned positions, and generates the total gravity pressure Pc ,, and the flow rate and the total gravity energy EG ,, at that position.
  • the flow rate is common between the upstream and downstream coexistence fusion actions, and the upstream total pressure P Monand the gravity and the total pressure energy E GH, downstream of the gravity total pressure [rho [pi "gravity total pressure energy E FI H Hitoshi Toga becomes properly, the energy source of the coexistence fusion effect of each position is separately lineage.
  • coexistence fusion has a common maximum flow rate with no action or reaction between upstream and downstream.
  • Energy that is artificially supplied which is not a conservative force, is consumed, but the gravitational total pressure energy E 0 ⁇ ⁇ , which is a conservative force, is stable (constant condition) without consumption.
  • the gradient of the water surface under atmospheric pressure is assumed to be the sole energy source through which water flows, but this is incorrect, and correctly, the gradient of the water surface under atmospheric pressure is
  • the gradient of the water surface under atmospheric pressure is
  • it is generated in accordance with the flow rate on the downstream side (the most downstream end), and is responsible for maintaining the flow rate at that position that is in proportion to the flow rate on the downstream side.
  • the conventional method of measuring the viscosity of water using a translation plate is to measure the viscosity between water and a solid plane, not to measure the viscosity between water and water.
  • the movement of the water between the translation plates is caused by the movement of the solid plane of the viscometer and the movement of the water in contact with the solid plane due to the viscous resistance between the water and the solid plane. This is because the whole must be replaced and moved, not due to the viscosity of water and water, there is no viscosity between water and water. The absence of viscosity between water and air or air is evident from everyday experience.
  • Navier-Stokes equation of motion for viscous fluid in conventional hydrodynamics cannot be used for water or air, aside from being correct or wrong.
  • the invention according to claim 1 or 9 of the present invention is a basic type of the third kind of permanent movement that artificially imitates the natural permanent movement.
  • the replenished gravitational static pressure PG1IS is converted into kinetic energy at the exit of a water turbine or wind turbine by the flow maintenance action of the coexistence fusion action of the third law to recover the flow velocity, and the compound of the fourth law It flows away without any change in the flow rate due to the coexistence fusion action.
  • the water flow and wind under atmospheric pressure are generated by the total gravity pressure energy E (the total gravity pressure ⁇ ⁇ , which is the energy source of the turbine, and the total gravity pressure energy ⁇ (; Since the gravity total pressure ⁇ ⁇ , which is the pressure energy source ofquaint, is a separate system, it has a natural permanent motion mechanism that can extract the output of the water turbine and windmill.
  • the gravitational total pressure energy E G ⁇ is maintained at a constant value by the rising air current of the typhoon eye, and this rising air flow rises and is carried away by the jet stream .
  • the wind blows from the surroundings to the eyes of the typhoon in accordance with the amount of air carried away by the ascending current and the jet current of the typhoon, but the pressure is balanced between the eyes of the typhoon and the surroundings Therefore, the wind does not blow from the radial direction to the eyes of the typhoon, and due to the combination with the kinetic energy obtained from the rotation of the earth, a strong wind blows counterclockwise around the eyes of the typhoon, flow and gravity total pressure energy of atmosphere flow tube blowing wind E gamma, "and is kept constant amount tangentially Te.
  • the typhoon has a downstream side of a strong wind region that uses the ascending airflow and the jet stream of the typhoon as an energy source, and an upstream side of the strong wind region that uses the total gravity of the atmosphere P G , as an energy source.
  • the energy source since the energy source is separate, it exists as long as the updraft of the typhoon eye is maintained, and it is a natural perpetual motion in which strong winds do a great deal of work around the typhoon eye.
  • the test device is divided into three parts, ⁇ is a conical pressure tube that is housed in a rigid PVC tube and has a reduced cross-sectional area from both ends toward the center, and B is a rigid PVC tube. Front energy supply means with blades attached to the submersible motor housed in the pipe.C is a rear energy supply means with blades attached to the submersible motor housed in the rigid PVC pipe.
  • the test apparatus was designed to have a depth and width slightly (2 to 6 cm) larger than the outer diameter of a rigid PVC pipe of about 30 cm, and a flow velocity of V (m / sec). ) Will be installed in the slope channel F.
  • Demonstration test No. 1 installed a pressure pipe with a narrow cross-sectional area at the center in the water flow, and clarified the magnitude, action position, and action content of the artificial energy required to be supplied when passing the water stream through the inside.
  • the conventional equation of fluid dynamics Bernoulli's equation of motion cannot be applied, and it is demonstrated that the “new fluid law of fluid” of the present invention can be correctly applied.
  • the water flow passes through the rigid PVC pipe when the water depth is less than the inner diameter of the rigid PVC pipe, but when the water depth exceeds the outer diameter of the rigid PVC pipe, the water flow becomes
  • the rigid PVC pipe will not pass through and will stagnate at the entrance of the rigid PVC pipe and diverge to the outside of the rigid PVC pipe, especially the water flow at the water surface will be disturbed.
  • the above is due to the following two factors, the action of maintaining the flow rate of the one-dimensional force along the flow of the law of coexistence and fusion of the third law and the action of supplying the total gravity of the three-dimensional gravity.
  • the gravitational total pressure energy EG is generated by the coexistence and fusion action with, which clearly shows that the gravitational total pressure energy E (; H maintains the flow.
  • the first is: In other words, while the water depth is shallow and the gradient water surface exists in the rigid PVC pipe, the flow direction component P G Face D of the total gravity pressure based on this gradient water surface exists, and the flow direction component P n of this total gravity pressure exists. Since the flow maintaining action of ⁇ generates coexistence and fusion action with the gravitational total pressure Pc ,, the gravitational total pressure energy ⁇ ⁇ . ⁇ , the water flow passes through the hard ⁇ VC pipe.
  • This phenomenon is the outflow collision resistance that requires cost for countermeasures in conventional hydropower facilities.As described above, there are the population collision resistance and the outflow collision resistance, so the water flow passes through the rigid PVC pipe. In order to achieve this, it is necessary to generate the total gravity energy E GH that causes the water flow to flow out according to the third law in the rigid PVC pipe downstream from the center.
  • the energy supply means When the energy supply means is activated, the water flow starts to pass through the rigid PVC pipe, and the flow velocity inside and outside the rigid PVC pipe coincides with each other, and the water flow in the population of the rigid PVC pipe disappears.
  • the pressure supplied by the energy supply means to the water flow in the rigid PVC pipe with the flow velocity inside and outside the rigid PVC pipe being matched is generated by the energy supply means based on the voltage and current of the motor of the energy supply means at that time
  • the energy supply means supplies the above (1) to (4) collectively without supplying them separately. That is, the above indicates that the energy supplied collectively acts naturally in the above-mentioned manner (1) to (6) and stabilizes the flow in the above state.
  • the third, fourth, and fifth laws of the "new law of fluid motion" are natural laws that are satisfied when the flow of a flowing fluid under atmospheric pressure is stable.
  • the front energy supply means B and the fiber pressure pipe A are installed in the slope channel F.
  • Demonstration test No. 2 clarifies the magnitude, operation position, and contents of the artificial energy that needs to be supplied when a pressure pipe with a narrow cross section at the center is installed in the water flow and the water flow passes through the inside. Based on the fact that Bernoulli's equation of motion in conventional fluid mechanics cannot be applied, and that the "new fluid law of fluid" of the present invention can be applied correctly, and based on the third and fourth laws, the third kind of permanent Demonstrate that the energy of exercise can be extracted.
  • the pressure supplied by the front energy supply means B to the water flow in the rigid PVC pipe when the flow velocity inside and outside the rigid PVC pipe is the same is the voltage and current of the motor of the front energy supply means B at that time.
  • the first law 1), 2), 3) and the second law 1) of the "new law of fluid motion" , 2), 3rd law 1), 2), 3), 4) and 4th law 1) is generated by the front energy supply means B based on the above, and the first law 1), 2), 3) and the second law 1) of the "new law of fluid motion" , 2), 3rd law 1), 2), 3), 4) and 4th law 1),
  • Outlet flow maintenance motion energy which is the dynamic pressure of the flow velocity V at the outlet S of the conical pressure pipe ⁇ ⁇ ⁇ . [(V) 2 (2 X 9.8)] ⁇ ⁇ It is equal to the sum of the gravitational dynamic pressure replenishment pressure ⁇ ,, ⁇ of claim 1 [dynamic pressure of flow velocity V ⁇ (V) 2 Z ( 2X9.8 ) ⁇ ].
  • inlet flow maintained kinetic energy ⁇ ⁇ ⁇ of 1 is the gravitational total pressure energy of a predetermined flow rate (cross-sectional area X flow rate V of the rigid [rho VC tube) the generated, in part of the minimum sectional area portion S 3 whether et downstream of the conical pressure tube a, resistance cancellation pressure difference 3 [rho.
  • the water flow is maintained based on the fourth law complex coexistence fusion with the gravitational total pressure energy E niethat naturally exists in the side water flow.
  • the front energy supply means B, the conical pressure pipe A, and the rear energy supply means C are installed in the slope channel F.
  • the water flow does not pass through the rigid PVC pipe, but stagnates at the entrance of the rigid PVC pipe and diverges outside the rigid PVC pipe, especially the flow of water at the water surface is disturbed.
  • the pressure that the front energy supply means B and the rear energy supply means C supply to the water flow with the inner and outer flow velocities of the rigid PVC pipes matched is based on the voltage and current of the collector at that time.
  • the dynamic pressure of the flow velocity V 3 at the minimum sectional area portion S 3 becomes about three times the sum of the dynamic pressure of the 1 ⁇ 6.
  • the gravity total pressure energy EG which naturally exists in the water flow on the upstream side of the inlet of the rigid PVC pipe of the front energy supply means B, and the inside and the cone of the rigid PVC pipe of the front energy supply means B
  • the total gravity energy E r; H generated in the upstream area from the minimum cross-sectional area S 3 of the pressure pipe A, and the downstream and upstream of the conical pressure pipe A in the minimum cross-sectional area S 3
  • the total gravity energy E (; H) generated in the rigid PVC pipe of the energy supply means C and the gravity total pressure energy ⁇ ( ; ⁇ ⁇ ) naturally existing in the water flow downstream of the outlet of the conical pressure pipe A Water flow is maintained based on the combined coexistence and fusion action of the fourth law.
  • the total gravity force of the pressure energy source of the total gravity force energy E c ⁇ at the upstream and downstream sides of the minimum cross-sectional area S 3 of the conical pressure pipe A is the ⁇ system. Since the dynamic pressure of the flow velocity V 3 of the minimum cross-sectional area S 3 is about three times the sum of the dynamic pressures of the above-mentioned 1 to 6, the minimum cross-sectional area of the conical pressure pipe A is as described in claim 1.
  • a pressure pipe in which flowing fluid such as air or water flows into the inlet and flows out from the outlet is installed in the wind or water stream, or installed in a moving body that moves in the air, on the ground, on water, or in water, By acting the total gravity P c ,,,, of the flowing fluid, such as air or water, existing outside the pressure pipe on both the flow population and the outlet of the pressure pipe,
  • the energy source of the type 3 permanent motion is as follows: 2) Under the conditions described below, based on the third law, the total gravity of the flowing fluid existing outside the pressure pipe P (;leton By the action, the fluid in the pressure pipe on both the upstream side and the downstream side of the water turbine or the wind turbine generates a separate gravity total pressure P G ,, as a pressure energy source. It is.
  • the part where the cross-sectional area of the pressure tube before and after the turbine or wind turbine shrinks while deflecting in the circumferential direction from both the population side and the outlet side toward the turbine or wind turbine is reduced.
  • the gravitational dynamic pressure P (, H v ) acting along the flow acts along the flow from the inlet to the water turbine or windmill, and the three-dimensional direction of the flowing fluid outside the pressure pipe
  • the gravitational static pressure P (; H acts back to the flow from the outlet to the water turbine or wind turbine, so that the pressure energy source of the total gravity P CII differs between the upstream and downstream pressure pipes of the water turbine or wind turbine.
  • the gravitational total pressure P CH acting on the fluid in the pressure pipe is converted into the energy of water flow, wind, typhoon, tornado, etc. existing in the natural world based on the coexistence fusion action of the third law and the combined coexistence fusion action of the fourth law
  • the gravity total pressure PG In the same state as the gravity total pressure PG , in the natural permanent motion that can take out the energy, the energy can be taken out when the water turbine or the windmill is driven, so that the latter half of the above 1) is achieved.
  • the gravitational dynamic pressure P GHV of the flowing fluid outside the pressure pipe that cannot act retroactively from the outlet between the outlet and the water turbine or wind turbine, and in the pressure pipe downstream of the water turbine or wind turbine
  • predetermined flow rate flow velocity outside pressure pipe X (Cross-sectional area) Resistance to cancel the resistance that the following fluid receives when it passes through the entire length of the pressure pipe.
  • Resistance canceling pressure difference PD inflow flow rate maintaining kinetic energy ⁇ ⁇
  • outflow flow rate maintaining kinetic energy ⁇ ⁇ . Play a role in maintaining the flow rate of the fluid in the pressure pipe by the one-dimensional force of the third law.
  • the flow fluid of the predetermined flow rate or less is reduced by the anti-cancellation pressure difference, the inflow flow rate maintenance kinetic energy ⁇ ⁇ , and the outflow flow rate maintenance kinetic energy E FA .
  • the gravity dynamic pressure charging pressure Pc IIVA flows into the inlet of the pressure pipe due to wind, water flow, or movement of the moving body, flows out of the outlet of the pressure pipe, flows away, and coexists with the third law.
  • the fusion action and the composite coexistence fusion action of the fourth law are established.
  • the fluid upstream of the inlet of the pressure pipe the fluid in the pressure pipe upstream of the turbine or wind turbine, and the turbine or wind turbine
  • the fluid in the pressure pipe on the downstream side of the pipe and the fluid on the downstream side of the outlet of the pressure pipe do not act or react according to the law of conservation of energy when the flow rate is within the above-mentioned predetermined flow rate. Stable in the state where the common maximum flow rate of each part in the pressure pipe,
  • the first gravity total pressure PG simply existing upstream of the inlet of the pressure pipe, the second gravity total pressure P ( ; t) between the inlet and the water turbine or the wind turbine, and between the water turbine or the wind turbine and the outlet
  • the third gravity total pressure P GH of the above and the fourth gravity total pressure P GI1 naturally existing downstream of the outlet of the pressure pipe are equal in another system
  • the fourth gravity total pressure P C VolunteerX The flow rate is different from the gravity total pressure P ( ; ll) which exists in a different system naturally as the pressure energy source, and the second gravity total pressure energy E between the flowing population and the turbine or wind turbine G
  • the third gravitational total pressure energy E GH is converted into kinetic energy without resistance in the pressure pipe on the downstream side of the water turbine or the wind turbine in a state where there is no resistance. Maintaining the flow rate and lowering the static gravity P GHS near the water turbine or wind turbine,
  • a pressure pipe in which a flowing fluid such as air or water flows into an inlet and flows out from an outlet is installed in the air or water, or in the air, on the ground, on water or in the air. Installed on a moving body that moves in water, this pressure pipe is connected to an opening that receives the total gravity of the external fluid P GH and an outflow that faces both ends of this opening [By making the outlet and inlet circulation pressure pipes at least one place
  • a flow fluid having a predetermined flow rate or less in the outflow / inflow circulation pressure pipe flows out from the outflow port while receiving the total gravity of the fluid existing outside through the opening section, passes through the opening section, and flows through the opening section. It is possible to realize an advanced type of the third type of permanent movement in which the fluid flows into the inlet and circulates in the outflow / inflow circulation pressure pipe.
  • the use place In the case of the basic type, the use place is limited to the place where there is water current and wind. In the case of the advanced type, the use place does not need water flow and wind.
  • each of the outflow and inflow pressure pipes having openings at both ends and being separated has a resistance. It is necessary to supply the counter pressure difference and the flow maintenance kinetic energy E ⁇ ⁇
  • the resistance canceling pressure difference ⁇ the gravitational dynamic pressure supplementary pressure P (: ,, VA , the inflow flow rate maintaining motion energy Enfl l , Artificial supply of kinetic energy for maintaining the outflow flow rate ⁇ ) () etc. upstream of the water turbine or wind turbine.
  • each energy supply means can be downsized.
  • the second gravitational total pressure energy of the flowing fluid between the inlet and the turbine or the wind turbine The inlet of the flowing fluid at the inlet of the turbine or the wind turbine due to the E GH
  • the third gravity total pressure energy of the fluid E GH is higher than the static gravity P GHS0 at the outlet of the water turbine or the wind turbine at the outlet of the turbine, and the static pressure difference between them is the resistance cancellation pressure difference ⁇ .
  • the energy supply means can be miniaturized, and the power loss generated when driving the energy supply means can be reduced.
  • the output can be changed, and the basic type can respond to fluctuations in water speed and wind speed outside the pressure pipe.
  • the cross-sectional area is circumferentially increased from both the inlet side and the outlet side toward the water turbine or the wind turbine.
  • the output can be increased or decreased while maintaining the rotation speed of the water turbine or the windmill constant. (9) An apparatus using the gravitational total pressure energy of the flowing fluid according to the ninth aspect of the present invention will be described.
  • a water turbine or a wind turbine provided in the pressure pipe to maintain a constant flow rate regardless of the load factor
  • a front guide vane provided before and after the water turbine or wind turbine to reduce the cross-sectional area of the pressure pipe while deflecting it in the circumferential direction from both the inlet and outlet sides toward the water turbine or wind turbine; and
  • the rear guide vane section
  • Energy transmission and supply means for supplying a part of the output of the water turbine or windmill to the front energy supply means
  • the method of using the gravitational total pressure energy of the flowing fluid according to the first and third aspects of the present invention can be implemented.
  • An opening that is installed in the air or water, or that is installed on a moving body that moves in the air, on the ground, on water, or in water, and that receives the total pressure P of the fluid existing outside and this opening The use of the gravitational total pressure energy of the flowing fluid according to the second aspect of the present invention according to the second aspect of the present invention, wherein the outflow and inflow ports facing each other at both ends of the fluid fluid are formed as at least one outflow / inflow circulation pressure pipe. The method can be implemented.
  • the method of using the gravitational total pressure energy of the flowing fluid according to the fourth aspect of the present invention can be implemented.
  • the apparatus for using gravitational total pressure energy of a flowing fluid wherein a front energy supply means provided in a pressure pipe on the upstream side of the water turbine or the wind turbine;
  • the rear energy supply means provided in the pressure pipe is , Resistance canceling the pressure difference [rho,), gravity hydrodynamic replenishment pressure ⁇ (: " ⁇ ⁇ , inlet flow maintained kinetic energy E lambda,, supplies share the outflow rate maintained kinetic energy E FA like..
  • the method of using the gravitational total pressure energy of the flowing fluid according to the fifth invention of the present application can be implemented.
  • the cross-sectional area of the outlet of the front guide vane section is larger than the cross-sectional area of the inlet of the rear guide vane section.
  • the method of using the total gravity pressure energy of the flowing fluid according to the sixth aspect of the present invention can be implemented.
  • the apparatus for using a gravitational total pressure energy of a flowing fluid according to claim 9, 10, 10, 11, 12, or 13, wherein a sectional area of a front guide vane portion and a rear guide vane portion is provided.
  • the method of using the gravitational total pressure energy of the flowing fluid according to the eighth aspect of the present invention can be performed.
  • FIG. 1 is a sectional view showing the configuration of a basic type of the third type of permanent movement according to the present invention.
  • Figure 2 shows the effect of maintaining the flow rate of the resistance counteracting pressure difference P R ) of the new law of motion of the fluid in the basic type of the third kind of permanent motion of the present invention, and the effect of the total gravity pressure P FI It is a figure which shows operation
  • FIG. 3 is a cross-sectional view showing an evolved configuration of the third kind permanent movement of the present invention.
  • FIG. 4 shows the resistance canceling pressure difference of a new law of fluid motion in the advanced type of the third kind of permanent motion according to the present invention.
  • FIG. 6 is a diagram showing the operation of the flow rate maintaining action of the gravitational force and the action of supplying the gravitational total pressure PGclude.
  • Fig. 5 shows the case where the basic type of the third kind of permanent movement of the present invention is installed in the orifice FIG.
  • FIG. 6 is a schematic diagram of a case where the basic type of the third kind of permanent movement according to the present invention is installed over two waterways.
  • FIG. 7 is a schematic diagram showing a case where the basic type of the third kind of permanent movement of the present invention is installed in an artificial circulation channel.
  • FIG. 8 is a cross-sectional view illustrating the configuration of the verification test apparatus.
  • Figure 9 is a diagram showing how to install the demonstration test on a slope channel. Best form to carry out the invention
  • the present embodiment is used in a tidal current, a river, a water channel, or the like, at a position where the flow below the surface of the water is fast, which is used by hanging from ⁇ .
  • the total gravity pressure P GH increases, so that a large output can be obtained.
  • the pressure pipe 1 has an axial flow turbine 6 provided in the center, an inlet 2, an outlet 3, and a cross-sectional area of the pressure pipe 1 from both the inlet 2 and the outlet 3. It has an inflow section 9, a front guide vane section 5, an outflow section 10, and a rear guide vane section 7 that shrink while deviating in the circumferential direction.
  • the front guide vane section 5 and the rear guide vane section 7 have a function of adjusting the deflection angle of the guide vane.
  • the front energy supply means 4 is an axial pump, and is provided between the inflow section 9 and the front guide vane section 5 in the present embodiment.
  • the rear energy supply means 8 is an axial pump, and is provided between the outflow portion 10 and the rear guide vane portion 7 in the present embodiment.
  • 9a is a front conical part for forming a cylindrical passage and changing the cross-sectional area
  • 10a is a rear conical part for forming a cylindrical passage and changing the cross-sectional area
  • 11 is a water wheel 6 Generator connected to
  • a mantle tube is attached to the pressure tube 1 so that the water flow is not disturbed, and the outer shape is made cylindrical.
  • the front guide vane portion 5 and the rear guide vane portion 7 are cylindrical. Therefore, one or both of the inner and outer side surfaces can be made conical surfaces to increase the reduction ratio.
  • the one-dimensional resistance canceling pressure difference Pn that is not the preservation force is distributed over the entire length of the pressure pipe, and its gradient cancels out the resistance of each part in the pressure pipe for a given flow of water flow, consuming it. Is done.
  • the resistance canceling pressure difference PD cancels the resistance of each part in the pressure pipe against the water flow of the predetermined flow rate
  • the inflow flow rate maintaining kinetic energy E ,, A and the second gravity Due to the coexistence and fusion action with the total pressure P GH
  • the second gravity total pressure energy E G ⁇ ⁇ is generated and the predetermined flow rate is maintained Downstream of the turbine 6, the outflow flow rate maintenance kinetic energy E ⁇ and the third gravity total gravity E ⁇ ⁇ ⁇ ⁇
  • the third gravitational total pressure energy E fiH is generated by the coexisting fusion action with the pressure ⁇ ( ; ⁇ ⁇ ) , and the predetermined flow rate is maintained.
  • a third gravitational total pressure energy E gamma second gravitational total pressure energy E G A, of another system gravity the total pressure P G "has a pressure energy source, the inlet 2 upstream and outlet 3
  • the downstream side includes the first and fourth gravity total pressure energy ⁇ ⁇ ( ;) , which naturally exists with another system of gravity total pressure P ( ; H as a pressure energy source, so
  • the composite coexisting fusion effect is established up to the downstream side of the outlet 3, and between the upstream side and the downstream side with the inlet 2 as the boundary, between the upstream side and the downstream side with the boundary of the outlet of the turbine 6, and outflow. There is no action or reaction to the water flow at the predetermined flow rate between the upstream side and downstream side with ⁇ 3 as the boundary surface.
  • a predetermined flow of water between the outlet of the turbine 6 and the outlet 3 flows out of the discharge 3 along with the predetermined flow of water flowing downstream of the outflow 3 and the inlet 2 and the turbine
  • the water flow between the outlets 6 drives the turbine 6 and flows out of the outlet of the turbine 6. With this water flow, the water flow upstream of the inlet 2 flows into the inlet 2.
  • the second gravity total pressure energy ⁇ (;found) is converted into kinetic energy, and the water flow having a predetermined flow rate is deflected in the circumferential direction to flow into the water turbine 6 at the water turbine driving flow velocity V.,.
  • V water turbine driving flow velocity
  • a circumferential rotational component V TD is divided into the outflow direction component V T0 flowing from hydraulic turbine 6, the upstream side of the outlet of the water wheel 6, the circumferential rotational component V TD and the outflow direction component [nu ⁇ , ⁇ 0 and Keeps the water flow at the predetermined flow rate, and the outflow direction component V T0 causes the water flow at the predetermined flow rate to flow out of the outlet of the turbine 6 without any action.
  • the driving energy of the circumferential rotation component V TD can be used as the driving energy of the turbine 6 when the load factor of the turbine 6 is in the range of 0 to 100%.
  • the turbine 6 rotates at the standard rotation speed when the load factor is 100%, if the load factor decreases, However, the rotation speed of the turbine 6 increases.
  • Front energy supply unit 4 supplies 1. Resistive cancel the pressure difference Pn below 2. Gravity total pressure replenishing pressure P C1IVA, 3. Inlet flow maintained kinetic energy E kappa lambda, the energy corresponding to the.
  • the front energy supply means 4 and the rear energy supply means 8 are provided. However, for the above-mentioned reason, only one of them is used, and all necessary artificial energy is supplied from one of them. You may.
  • the resistance canceling pressure difference PD is the pressure difference that cancels the resistance of the flowing fluid of (predetermined flow rate-flow velocity outside the pressure pipe 1 x cross-sectional area of the inlet 2) when passing through the entire length of the pressure pipe 1.
  • the empirical formula used from: Calculate from the resistance cancellation pressure difference P D dynamic pressure difference X coefficient.
  • the inflow flow rate maintenance kinetic energy ⁇ ⁇ is equivalent to the kinetic energy of the water flow at the inlet 2, and when the flow rate is increased, the total gravity force energy EG t , is generated by the coexistence and fusion action of the third law It is necessary energy together with the outflow flow rate maintenance kinetic energy ⁇ ⁇ ⁇ described later.
  • the rear energy supply means 8 supplies the necessary energy for the following 1. Outflow flow rate maintaining kinetic energy E AO.
  • the outflow flow maintenance kinetic energy E PAD is necessary for generating the total gravity pressure energy E CM by the coexistence action of the third law even when the flow rate is stable and decreasing.
  • the gravitational total pressure energy E GH generated in the pressure pipe 1 reduces the gravitational static pressure P GHS near the water turbine, so that the above-mentioned inflow flow rate maintaining kinetic energy E, becomes unnecessary except when the flow rate is increased.
  • the output of the front energy supply means 4 and the rear energy supply means 8 is increased or decreased in accordance with the increase or decrease of the load, the flow rate in the pressure pipe 1 is increased or decreased, and the output is maintained while the rotation speed of the water turbine 6 is kept constant. Increase or decrease.
  • the output of the front energy supply means 4 and the rear energy supply means 8 is increased or decreased in accordance with the increase or decrease of the flow velocity, and the circumferential direction of the front guide vane section 5 and the rear guide vane section 7 is increased. Is increased or decreased in accordance with the increase or decrease in the flow velocity, and the rotation speed of the turbine 6 is maintained constant.
  • the advanced type of perpetual motion of type 3 can be used by installing the pressure pipe in the air or water, or by installing it on a moving body that moves in the air, on the ground, on the water, or in the water. Can be used in place of almost all energy sources such as internal combustion engines and external combustion engines You.
  • the present embodiment is configured so that it can be installed in the hood of a car instead of the gasoline engine of the car.
  • reference numeral 1 denotes a pressure pipe having the same structure as the pressure pipe 1 of the first embodiment shown in FIG.
  • Openings 13 and 13 are provided at the inlet 2 and the outlet 3 of the pressure pipe 1. Outside the openings 13, 13, the inflow port 2 a and the outflow port 3 a of the circulating pressure pipe 12 a face each other, and as a whole, the total gravity of the fluid existing outside, 1 ⁇ ; Receiving openings 13 and 13 and outflow and inflow circulating pressure pipes 12 with outlets 3 and 3a and inlets 2 and 2a facing each other at both ends of openings 13 and 13 An external energy supply means 14 is provided in the circulating pressure pipe 12a, and the curved portion of the circulating pressure pipe 12a is provided with a seno and a wrench 1 so as not to bias the flow rate. 5 and 15 are provided.
  • the openings 13, 13 can be applied to the flow population 2 and the outlet 3 of the pressure pipe 1 by applying the total gravity P ( ; H) of the flowing fluid existing outside the pressure pipe 1.
  • the function of the external energy supply means 14 is shared by the energy supply means in the pressure pipe 1.
  • FIG. 4 the difference from the first embodiment in FIG. 2 is that in FIG. 2, the upstream side of the inlet 2 and the downstream side of the outflow
  • the fluid flowing at a predetermined flow rate in the outflow and inflow circulation pressure pipes 12 is changed to the total gravity Pc of the fluid existing outside, and the openings 13 and 13 are formed.
  • the description is omitted because it is the same as that of the first embodiment of FIG.
  • the total length of the inflow circulation pressure pipes 12 will be about 2 m, so six units will be installed side by side in the bonnet.
  • the flow velocity in the circulating pressure pipe 12a is set to 2 mZ sec.
  • the output will be small unless the reduction ratio is less than 1/5.
  • the front energy supply means 4 and the rear energy supply means 8 are provided. However, for the above-mentioned reason, only one of them is used, and the necessary artificial energy is collectively collected from one of them. May be supplied.
  • the resistance canceling pressure difference is (predetermined flow rate-flow rate outside pressure pipe 1 x inflow port
  • Cross-sectional area of 2 is the pressure difference that counteracts the resistance that occurs when the flowing fluid passes through the entire length of the pressure pipe 1.
  • the empirical formula that has been conventionally used is: resistance-cancelling pressure difference,,) -dynamic pressure difference X coefficient Ask from.
  • the inflow flow rate maintaining kinetic energy, .. ⁇ ⁇ is the inflow flow rate maintenance kinetic energy ⁇
  • the inflow flow rate maintenance kinetic energy ⁇ ⁇ ⁇ is the outflow flow rate maintenance kinetic energy ⁇ ⁇ ⁇ described later when the flow rate is stable and when it decreases.
  • E G ⁇ ⁇ ⁇ the gravitational total pressure energy
  • E c H the gravitational total pressure energy
  • the rear energy supply means 8 supplies the necessary energy for the following 1. Outflow flow rate maintaining kinetic energy E ⁇ ⁇ .
  • the external energy supply means 14 has the following external flow rate maintaining kinetic energy E O-
  • External resistance cancellation pressure difference ⁇ . . Is the kinetic energy for maintaining the external flow rate due to the structure of the circulation pressure pipe 12a. -Let it be equal to ⁇ .
  • the turbine output will be 1.558 kW.
  • the output of the front energy supply means 4, the rear energy supply means 8 and the external energy supply means 14 is increased or decreased, and the flow rate in the pressure pipe 1 is increased or decreased. Increase or decrease the output while keeping it constant.
  • the basic type operates stably if the outflow speed from the outlet 3 of the pressure pipe 1 is adjusted to the flow velocity of the flowing fluid under the atmospheric pressure outside the outlet 3 of the pressure pipe I. Can be used for the special applications shown.
  • Fig. 5 can be used as part of artificial energy.
  • Fig. 6 can be used as part of artificial energy.
  • a gradient water channel 17 is constructed by the energy of the water circulation means 18 and the basic type pressure pipe 1 is installed in the gradient water channel 17.
  • the developed type has the same cross-sectional area of the slope channel 17 and the cross-sectional area of the pressure pipe 1.
  • the basic types of the present invention are: (1) tidal currents, ocean currents, rivers, waterways such as waterways, (2) in the wind, (3) mobile bodies on or under water, (4) mobile bodies in the atmosphere, (5) It can be used for a boring orifice shown in Fig. 5, using a head, two canals with a head drop between water surfaces as shown in Fig. 6, and (6) an artificial circulation canal shown in Fig. 7.
  • the developed type of the present invention can be applied to almost all applications such as conventional water turbines, wind turbines, internal combustion engines, and external combustion engines.
  • an advanced version of the invention is:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)

Description

明 細 書 流動流体の重力全圧エネルギの使用方法とその装置 技 術 分 野
重力全圧 P (; Hを有する空気や水等の流体が存在する地球上の領域においては、 又は、 1 9 6 0年代に発見された 2 . 7 ° Kの宇宙背景放射によって宇宙全体に 充満していると推定できる万有引力全圧 P G Hを有する光、 輻射熱、 電波、 電界、 磁界、 万有引力の共通伝播媒体が存在する宇宙全体の領域においては、 後述のよ うに、 静止状態で存在し 3次元方向に作用する重力全圧 Ρ (; Ηまたは万有引力全圧 Ρ Ηの重力全圧供給作用または万有引力全圧供給作用と 1 次元方向に作用する力 の流量または振動量または歪み量維持作用との共存融合作用により、 流体の移動 による重力全圧エネルギ E C 1I、 又は、 共通伝播媒体の振動や歪みによる万有引力 全圧エネルギ E C Hが発生し、 前記重力全圧エネルギ E は空気や水等の流れを維 持し、 前記万有引力全圧エネルギ E c„は前記共通伝播媒体の光速 Cの縦波振動ま たは歪みの伝播を維持し、 光、 輻射熱、 電波、 電界、 磁界、 万有引力を光速 Cで 伝播している。
そして、 これらの領域では、 後述のように、 前記共存融合作用とエネルギ保存 則とに基づく 自然永久運動機構が水流、 風、 台風、 龍巻等の大気圏内の自然現象 、 又は、 光、 輻射熱、 電波、 電界、 磁界、 万有引力の共通伝播機構等に広く 存在 し、 この自然永久運動機構が前記 2つの領域の自然現象の基本的な構成機構にな つている。
しかし、 ニュー ト ンの運動法則は、 1 次元方向に移動する質量に伴う力しか极 えず、 又、 力やエネルギの作用条件等に対する境界条件がないので、 前記自然永 久運動機構の構成要素である静止状態で存在し作用する力やエネルギの前記共存 融合作用を扱えず、 ニュー ト ンの運動法則に基づく既存の自然法則では、 自然の 基本的な構成機構である自然永久運動機構の存在を解明できなかった。
本発明は、 重力全圧 P G Hが存在する空気や水等の流体における、 力の作用方向 次元の相違による供給可能方向の相違および作用分担の相違と、 1 次元方向の力 の流量維持作用と静止状態で存在し作用する 3次元方向の重力全圧 P Hの重力全 圧供給作用との共存融合作用による重力全圧エネルギ E ^の発生と、 風や水流が 流量を低下しないで (上流側と下流側とに影響を及ぼさないで) 風車や水車を駆 動するエネルギ機構や台風の強風発生機構等における自然界の永久運動とに関す るこれまで知られていなかった自然法則と して 「流体の新しい運動法則」 を発見 し、
この 「流体の新しい運動法則」 に基づいて、 特許請求の範囲に記載のように圧 力管および圧力管内の風車や水車の構造を設定し、 必要な人為エネルギを供給し て、 前記風車や水車の上流側の圧力管内と下流側の圧力管内とに、 大きさが等し く 別系統の重力全圧 P C= Hを圧力エネルギ源とする重力全圧エネルギ E G„が発生す るようにし、 発生した下流側の圧力管内の重力全圧エネルギ E C„を運動エネルギ に変換して圧力管内の流量を維持すると共に前記水車または風車近傍の重力静圧 P G H S を低下し、 発生した上流側の重力全圧エネルギ E G Hを前記流量の維持と重 カ静圧 P n H S の低下とによって運動エネルギに変換して前記風車や水車を駆動し 、 前記風車や水車の出力の一部で前記人為エネルギを賄う という、 自然界の風や 水流が風車や水車を駆動する前記永久運動を模倣した第 3種永久運動を実現する 流動流体の重力全圧エネルギの使用方法とその装置に関するものである。 背 景 技 術
既存の自然法則の範囲内における永久運動と自然現象とに関する従来の認識と 発明者の認識とは下記の通りになる。
C 1 ) 考え方
1 . 既存の自然法則の範囲内での永久運動
二ユー ト ンの運動法則が定義する力やエネルギに基づく既存の自然法則 の範囲内では、 供給するエネルギより大きな出力が得られる機関は存在しないと いうエネルギ保存則と、 エネルギは遡ることがないという熱力学第 2法則と、 周 囲に変化を及ぼさない可逆変化は存在しないというェン ト 口ピ一増加則とによる 永久運動否定理由が支配し、 自然界には永久運動は存在せず、 エネルギを取り出 せる永久運動を人為的に実現することは不可能であるという従来の認識と、 発明 者の認識とがー致する。
2 . 既存の流体力学の自然法則の不備
し力、し、 発明者の認識では、 ニュー ト ンの運動法則に基づく 流体力学の 自然法則には、 水流では水面から少し下の部分の流速が最も速いこと、 水流や風 が流量を低下しないで (上流側や下流側に影響を及ぼさないで) 水車や風車を駆 動できるという永久運動的なエネルギ機構、 台風や龍巻の永久運動的な強風発生 機構等の 「大気圧下の重力全圧エネルギ Ε ΰ Ηによって動作する流体」 における自 然現象を説明できないという不備がある。
但し、 この不備は、 自然現象に関するものであり、 「大気圧とは関係がない人 為エネルギで動作する流体」 を使用する流体機器の実用化には関係がなく 、 実害 がないので話題にならず放置されている。
3 . 光、 輻射熱、 電波、 電界、 磁界、 万有引力の自然法則の不備
又、 光、 輻射熱、 電波、 電界、 磁界、 万有引力等に関する既存の自然法 則は、 観測可能範囲内でのこれらの個々の現象を数式的に説明できるが、 これら の現象の本質と伝播機構とを統一して説明できず、 又、 光、 輻射熱、 電波、 万有 引力等が宇宙の果てから果てまで伝播する永久運動的な現象を説明できないとい う不備があるという従来の認識と、 発明者の認識とがー致する。
但し、 この不備は、 光、 輻射熱、 電波、 電界、 磁界、 万有引力等を使用する機 器の実用化には関係がなく 、 実害がないので世間の話題にならず学界では 2 1 世 紀の課題と して、 誰かが解決するのを待っている。
4 . 素粒子、 宇宙の自然法則の不備
又、 素粒子、 宇宙等に関する既存の自然法則は、 観測可能範囲内でのこ れらの個々の現象を数式的に説明しょう と しているが、 これらを統一場理論で説 明できず、 又、 素粒子の生成、 宇宙の生成と変化、 素粒子や宇宙の永久運動的な 動作等を統一して説明できないという不備があるという従来の認識と、 発明者の 認識とがー致する。
但し、 この不備は、 主と して自然現象に関するものであり、 これまでの原子力 の利用には原理的な トラブルがなく 、 実害がないので世間の話題にならず学界で は 2 1 世紀の課題と して、 誰かが解決するのを待っている。 5 . これまでの自然科学の不備
これまでの自然科学は、 ニュー ト ン以来、 自然現象の本質の解明を諦め ることから出発しており、 本質を理解できないが観測できる現象を数式的に解析 したものがその分野別の自然法則となっている。 即ち、 従来の自然科学の自然法 則は、 自然の構成と自然現象の本質が判らないままに、 自然現象を数式的に近似 的に表現したものに過ぎない。
従って、 現在の自然科学は、 自然現象を、 数式的に解析して各分野別に利用可 能にしているが、 自然の構成と自然現象の本質の解明に行き詰ま つており、 旦っ 、 境界条件を考慮していないので、 各分野を共通して説明できる自然法則を作れ ないでいる。
数式は、 自然現象を近似計算できるので、 観測した範囲を数式化すれば、 正し い正しく ないとは無関係にその範囲内の自然現象の実用化が可能になる。 しかし 、 数式は自然の構成と自然現象の本質とは無関係であり、 自然そのものと自然現 象とは数式で構成されていない。 数式的な解析で得られるものは、 あく までも自 然現象の近似計算であり、 自然の構成と自然現象の本質の解明に関する参考資料 に過ぎない。
6 . 新しい自然法則の必要性
従って、 従来の自然科学の行き詰まりを解決し、 自然の構成と自然現象 の本質とを解明するには、 自然の構成と自然現象の本質とを観測結果に基づいて 直接考えて理解するという壁を突破して、 新しい自然法則を見つけることが必要 である。
創造的にものを考える場合、 地球上で最も優秀なのは人間の頭脳であり、 数式 やコンピュータは人間の頭脳に対する補助手段に過ぎない。
( 2 ) 既存の自然法則の不備内容とその解決
1 . 不備内容の認識
発明者は、 少年時代の水遊び、 積木遊び、 コ リ ン トゲーム等の遊びの経 験が、 ニュー ト ンの運動法則 (第 2法則は流体内に静止状態で存在し作用する重 力全圧 P r; llや重力全圧エネルギ E c; ,,を扱えず、 第 2、 第 3法則は境界条件が抜け ている) に矛盾し、 既存の流体力学 (大気圧下の流動流体は上流側のエネルギを 消費して下流側に流れるという考え方) に矛盾することを念頭に置いて、 前記 ( 1 ) 考え方の 6 に従って前記 i〜 5の内容を見直した結果、 i . 永久運動、 2 . 流体力学、 3 . 光、 輻射熱、 電波、 電界、 磁界、 万有引力、 4 . 素粒子、 宇宙等 の各分野に関する既存の自然法則に、 万有引力をエネルギ源と し流体内 (或いは 光、 輻射熱、 電波、 電界、 磁界、 万有引力の共通伝播媒体内) に静止状態で存在 し作用する万有引力全圧 P (; Mや万有引力全圧エネルギ Ε ,,の取り扱いと、 各種自 然現象を正しく分類し共通理解するに必要な境界条件とに関する共通の不備があ ることに気付いた。
2 . 不備内容を解決する 「流体の新しい運動法則」 の発見
そこで、 発明者は、 既存の自然法則から離れて、 重力全圧 P G Hが存在す る空気や水等の流体における、 力の作用方向次元の相違による供給可能方向の相 違および作用分担の相違と、 1 次元方向の力の流量維持作用と静止状態で存在す る 3次元方向の重力全圧 P e nの重力全圧供給作用との共存融合作用および複合共 存融合作用による重力全圧エネルギ E (;„の発生と、 風や水流が流量を低下しない で (上流側と下流側とに影響を及ぼさないで) 風車や水車を駆動するエネルギ機 構や台風の強風発生機構等における自然界の永久運動とに関する検討を行った。 そして、 その検討結果から、 1 . 永久運動、 2 . 流体力学、 3 . 光、 輻射熱、 電波、 電界、 磁界、 万有引力、 4 . 素粒子、 宇宙等の各分野に共通に適用するこ とを念頭において、 重力全圧 P (, Hが存在する空気や水等の流体における、 力の作 闲方向次元の相違による供給可能方向の相違および作用分担の相違と、 1次元方 向の力の流量維持作用と静止状態で存在し作用する 3次元方向の重力全圧 P t; 1,の 重力全圧供給作用との共存融合作用および複合共存融合作用による重力全圧エネ ルギ E「,„の発生と、 風や水流が流量を低下しないで (上流側と下流側とに影響を 及ぼさないで) 風車や水車を駆動するエネルギ機構や台風の強風発生機構等の自 然界の永久運動とに関するこれまで知られていなかった自然法則である 「流体の 新しい運動法則」 を纏めた。
3 . 「流体の新しい運動法則」 の適用範囲と永久運動に対する認識
この 「流体の新しい運動法則」 に基づく と、 後述の第 1 、 第 2、 第 3法 則に示すように、 熱力学第 2法則とェン ト口ピー増加則とエネルギ保存則とによ る永久運動否定理由が無意味になり、 後述の第 4、 第 5法則に示すように、 水流 、 風、 台風、 龍巻等の大気圧下の流体の自然現象は、 気温 · 気圧等の変化、 地球 の自転等のエネルギ変動要因に対して、 大気圏内の地球規模の流動流体の流管内 の流量と重力全圧エネルギ E G„とを地球上のどの位置でも一定値に維持しよう と するエネルギ保存則に基づく 自然永久運動であり、 且つ、 エネルギを消費する位 置 (水車や風車の設置位置、 台風の目の周辺位置) の上流側と下流側の流動流体 のェネルギが别系統であることによりエネルギを取り出せる自然永久運動である ことが判る。
又、 1 9 6 0年代に発見され宇宙空間全体に存在する 2 . 7 ° Kの宇宙背景放 射は、 光、 輻射熱、 電波、 電界、 磁界、 万有引力等の共通伝播媒体が宇宙空間に 充満していることを示すと仮定し、 この仮定と、 「流体の新しい運動法則」 の第
2法則の力やエネルギの作用方向次元の相違による作用分担の相違と、 第 3法則 の共存融合作用による重力全圧エネルギ E G Hの発生機構とを組み合わせると、 宇 宙の果てから果てまで伝播する光、 輻射熱、 電波、 万有引力等の構成とこれらの 伝播機構、 及び、 電界、 磁界等の構成とこれらの伝播機構とを統一的に説明でき る仮説が得られる。
そして、 得られた仮説には、 万有引力全圧 P ;; Hをエネルギ源と して発生する万 有引力全圧エネルギ Ε (; Ηに基づく光、 輻射熱、 電波、 電界、 磁界、 万有引力の伝 播に関する自然永久運動機構が存在する。
又、 光、 輻射熱、 電波、 電界、 磁界、 万有引力等の共通伝播媒体が、 宇宙の物 質を構成する最小構成粒子で構成されていると仮定すると、 現在行き詰まつてい る素粒子の統一場理論と、 現在明らかでない宇宙の構成との両者を統一して説明 できる仮説が得られる。
そして、 得られた仮説には、 万有引力全圧 Ρ Ηをエネルギ源と して発生する万 有引力全圧エネルギ E G Hに基づく 素粒子や全宇宙の生成と変化に関する壮大な自 然永久運動機構が存在する。
既存の自然法則では、 永久運動は存在し得なかったが、 「流体の新しい運動法 則」 の第 5法則が示す永久運動は、 エネルギ保存則に基づき、 大気圏内の自然現 象や素粒子や宇宙の自然現象をエネルギの安定状態に維持する最も基本的な自然 エネルギ機構である。
4 . 本発明の第 3種永久運動の実現と自然科学の行き詰ま りの解消
上記のように、 現在の自然科学が行き詰ま っているのは、 自然界におけ る永久運動機構の存在とその機構を理解できる自然法則を知らなかったことに起 因している。
従って、 水流、 風、 台風、 龍巻等の自然現象を構成する自然永久運動の機構を 解明すれば、 その機構を人為的に模倣して本発明の第 3種永久運動を実現し、 且 つ、 現在の自然科学の行き詰まりを根本的に解消することができる。
木発明は、 「流体の新しい運動法則」 という重力全圧 P C Hが作用する空気や水 等の流体に関するこれまで知られていなかった自然法則に基づき、 水車や風車を 設けた圧力管を大気圧下の流体中に設置し、 前記圧力管や風車や水車の構造を必 要条件に合わせて設定し必要な人為エネルギを供給して、 前記風車や水車の上流 側と下流側との重力全圧エネルギ E c„の圧力ェネルギ源である重力全圧 P „を別 系統で大きさを等し くすることにより、 前記風車や水車の下流側の重力全圧エネ ルギ E G Hに圧力管内の流量を維持させ、 前記風車や水車の上流側の重力全圧エネ ルギ Ε (; Ηに前記風車や水車を駆動させ、 前記風車や水車の出力の一部で前記必要 な人為エネルギを賄う という機構を有し、 前述のように、 風や水流が流量を低下 しないで (上流側と下流側とに影響を及ぼさないで) 風車や水車を駆動するエネ ルギ機構や台風の強風発生機構等の自然永久運動を模倣した第 3種永久運動を実 現する流動流体の重力全圧エネルギの使用方法とその装置を提供する。 発 明 の 開 示
本発明は、 これまで知られていなかった [ 1 ] に示す 「流体の新しい運動法則 J に基づいて [ 2 ] に示す 「発明の内容」 を構成している。
[ 1 ] 流体の新しい運動法則
流体の新しい運動法則は、 重力全圧 Ρ ,,が作用する空気や水等の粘性がな い流体 [後述の第 4法則の 2 ) 参照] における、 力の作用方向次元の相違による 供給可能方向の相違および作用分担の相違と、 1 次元方向の力の流量維持作用と 静止状態で存在し作用する 3次元方向の重力全圧 P u„の重力全圧供給作用との共 存融合作用による重力全圧エネルギ E ,の発生と、 風や水流が流速を低下するこ となく (上流側と下流側とに影響を及ぼすことなく ) 風車や水車を駆動するエネ ルギ機構や台風の強風発生機構等の自然界に存在する永久運動とに関するこれま で知られていなかった自然法則であり、 自然界に存在するこれらの永久運動を人 為的に模倣すれば、 本発明の第 3種永久運動が実現する。
( 1 ) 第 1法則 : 力の作用方向次元の相違による供給可能方向の相違の法則
1 ) 流体内では、 力やエネルギの供給可能方向は、 供給されるカゃェネル ギの作用方向次元と一致する。
2 ) 本発明では、 第 1法則に基づき、 請求項 1又は 9 に記載のように、 水 車または風車の前後に圧力管の断面積が流入口側と流出口側との双方から水車ま たは風車に向かつて円周方向に偏向しながら縮小する部分を設けることにより、 圧力管内を流動流体が流れれば水車または風車近傍の重力静圧 P C 1,S が低下し、 圧力管外の流動流体の重力全圧 P G„が流入口から水車または風車まで流れに沿つ て作用し、 圧力管外の流動流体の重力全圧 P C;M =重力静圧 P GHS +重力動圧 P G,, V の重力静圧 P GHS が流出口から水車または風車まで流れに遡って作用し、 水車 または風車の上流側と下流側とで重力全圧エネルギ E G„の圧力エネルギ源である 重力全圧 P (; Hの系統が異なるようにしている。
従って、 本発明の第 3種永久運動に対しては、 力やエネルギは遡らないという 熱力学第 2法則による永久運動否定理由は関係がなく なる。
そして、 水車または風車の上流側と下流側とで圧力エネルギ源が異なるように することが、 後述の第 5法則のように、 エネルギを取り出し得る本発明の第 3種 永久運動の必須条件であり、 自然界に広く存在する自然永久運動機構を模倣する ものである。
3 ) 本発明では、 請求項 1 に記載するように、 抵抗打消し圧力差 Pn と重 力動圧補充圧力 P C,I V Aと流入流量維持運動エネルギ Ε ,..Λ 1 と流出流量維持運動ェ ネルギ Ε ΡΛ。 とを圧力管内の何処に供給しても、 圧力管内の各部分を共通の流動 流体が通過することと、 後述の第 2法則の作用分担と、 第 3法則の 3 ) の過剰分 に関する記載とに基づいて、 前記の供給された力やエネルギの作用が、 それぞれ 圧力管内の流動流体全体に伝わり、 それぞれが作用すべき位置にそれぞれの作用 を及ぼすことができるので、 圧力管の流入口の上流側の流体と、 水車または風車 の上流側の圧力管内の流体と、 水車または風車の下流側の圧力管内の流体と、 圧 力管の流出口の下流側の流体とが、 流量が所定流量 (=圧力管外の流速 X流入口 の断面積) 以下の範囲内で、 エネルギ保存則によって作用 ,反作用が無く、 保存 力でない人為的に供給するエネルギは流量維持に消費されるが、 保存力である後 述の重力全圧エネルギ E (;„には消費がない流量に安定する。
尚、 流入流量維持運動エネルギ ΕΡΛ 1 と流出流量維持運動エネルギ Ε Α。 とは 、 流れの増加時には、 水車または風車の下流側と上流側とに共存融合作用により 重力全圧エネルギ Ε(;„を発生させるために水車または風車の下流側と上流側との 双方に必要であるが、 流れの安定時または減少時には、 流出流量維持運動エネル ギ Ε Λ。 だけがあれば良い。
( 2 ) 第 2法則 : 力の作用方向次元の相違による作用分担の相違の法則
1 ) 重力全圧 P OMが作用する流動流体内では、 作用方向次元が異なる ( 3 次元方向と 1次元方向) 力は、 重力全圧エネルギ Eu„ =重力全圧 PcH x流量の発 生における作用分担が異なる。
例えば、 後述の第 3法則の共存融合作用による重力全圧エネルギ E G 1,発生の法 則に示すように、 3次元方向の重力全圧 P Hは重力全圧供給作用を分担し、 1次 元方向の力は流量維持作用を分担する。
従って、 各種の力やエネルギの作用分担を正確に理解しておれば、 必要な作用 を分担する人為的力やエネルギを第 1 法則に従って供給し、 重力全圧 P (; が存在 する圧力管内の流動流体の動作を流体の新しい運動法則に基づいて目的に合わせ て制御できる。
2 ) ェン トロピ一を作用分担別に計算すると、 保存力でない 1 次元方向の 力のェン 卜口 ピーは増加するが、 保存力である重力全圧エネルギ E G Hのェン 卜 口 ピーは一定値になる。 即ち、 ェン トロピーの計算結果は、 前述の第 1 法則の 3 ) に記載のように、 保存力でない人為的に供給するエネルギは消費されるが、 保存 力である後述の重力全圧エネルギ E GHには消費がないことを示し、 本発明のよう に、 1 次元方向の力やエネルギを人為的に供給し 2系統の重力全圧エネルギ E C,, によって第 3種永久運動を構成することが可能であることを示す。 従って、 他に影響を及ぼさない可逆変化は存在しないといぅェン ト ロピ一増加 則による永久運動否定理由は、 第 3種永久運動には無関係になる。
( 3 ) 第 3法則 : 3次元方向の重力全圧 P G„と 1 次元方向の力との共存融合作 用による重力全圧エネルギ E FI H発生の法則
1 ) 重力全圧 P CHが作用する流動流体内では、 重力をエネルギ源と し流体 内の各位置に静止して存在し 3次元方向に作用する重力全圧 Ρ ΰΗが、 その位置を 通過する流動流体に重力全圧 Ρ Μ =重力動圧 Pc,,V +重力静圧 Pc,IS を供給する 重力全圧供給作用を有し、 前記その位置で流れに沿って静止して存在し流れ方向 の 1 次元方向に作用する力 (大気圧下の流体における重力全圧の流れ方向成分 P ,,Η, 又は重力全圧勾配 P G,,D 、 大気圧下の流体中に設置された圧力管内の流体に おける抵抗打消し圧力差 +流量維持運動エネルギ E A等) が流量を維持する 流量維持作用を有し、 これらの作用の共存融合作用が、 前記その位置に、 重力全 圧エネルギ ΕπΗ =重力全圧 Pcll x流量 = (重力動圧 PCHV +重力静圧 PCHS ) 流量を発生させる。
即ち、 重力全圧 P (: Hが作用する流動流体内には、 ニュー ト ンの運動法則の 1 次 元方向の力に関する 「慣性の法則」 、 「力 =質量 X加速度の法則」 、 「作用 ·反 作用の法則」 では扱えない 3次元方向に作用し静止して存在する重力全圧 P GMに 基づく重力全圧エネルギ E (: Hが存在する。
このことが、 二ユー ト ンの運動法則に基づく 従来の流体力学の理論が重力全圧 P (, Hが作用する流動流体に適用できない理由である。
2 ) 流動流体の流れに沿う各位置の共存融合作用は、 前述のように、 3次 元方向に作用する重力全圧 P G Hと 1 次元方向に作用する力とが流れに沿った各位 置毎に別個のエネルギ源で静止状態で存在するので、 前記各位置毎に独立して作 用し、 その位置に重力全圧 Pc,,と流量と重力全圧エネルギ E G,,とを発生させる。 従って、 後述の第 4法則の複合共存融合作用に示すように、 上流側と下流側の 共存融合作用間では、 流量が共通し、 上流 ·下流間で、 上流側の重力全圧 P „と 重力全圧エネルギ E G Hと、 下流側の重力全圧 Ρ Π„と重力全圧エネルギ E FI Hとが等 しく なるが、 各位置の共存融合作用のエネルギ源は别系統である。
即ち、 共存融合作用は上流 · 下流間で、 作用 ·反作用が無い共通最大流量を共 有し、 保存力でない人為的に供給するエネルギ等は消費されるが、 保存力である 重力全圧エネルギ E0„には消費がない状態 (境界条件) に安定する。
3 ) 従って、 3次元方向に作用する重力全圧 Pc„と 1 次元方向に作用する 力との何れかに過剰分があれば、 上流 · 下流間の共通最大流量が維持される状態 まで共存融合作用し、 過剰分は共存融合作用しないで、 3次元方向に作用する重 カ静圧 P CHS または 1次元方向に作用する力のままで残存し、 2 ) に記載のよう に、 上流 ·下流間で、 重力全圧 P (; と流量とが共通し、 作用 · 反作用が無く 、 上 流側の重力全圧エネルギ E(;Hと下流側の重力全圧エネルギ とが等しく なる状 態で安定し、 この状態 (境界条件) でエネルギ保存則が成立する。
4 ) 重力全圧 P GHが存在する圧力管内の流体に人為エネルギにより 1 次元 方向に作用する力 (抵抗打消し圧力さ Ρ,, と流量維持運動エネルギ Ε κΑ) を供給 すると、 上記 3 ) の状態を維持しながら、 共存融合作用により大きな重力全圧ェ ネルギ EGH =重力全圧 P(;H x流量が発生する。
従って、 本発明の第 3種永久運動には、 供給エネルギより大きな出力が得られ る機関は存在しないというエネルギ保存則による永久運動否定理由は関係が無く なる。
5 ) 大気圧下の水流では水面から少し下の部分の流速が最も速いことを、 従来の流体力学では説明できないが、 第 3法則の 1 次元方向に作用する力 (重力 全圧の流れ方向成分 PUIII) ) の流量維持作用によって説明できる。
( 4 ) 第 4法則 : 上流 · 下流の共存融合作用間の複合共存融合作用の法則
1 ) 重力全圧 Pw,が作用する流動流体の最下流端で或る流量が流れると、 その流動流体の上流側では、 流れに沿う各位置に存在する共存融合作用間の複合 共存融合作用により、 上流側の共存融合作用と下流側の共存融合作用との間で、 重力静圧 P(;HS が釣り合った状態で、 上流 ,下流間に抵抗 (作用 · 反作用) が発 生しない流速で、 前記或る流量に等しい流量が共通して流れ、 この状態 (境界条 件) でエネルギ保存則が成立して安定する。
この場合、 エネルギ保存則により上記の境界条件で安定するのは、 その流動流 体を構成する各流管毎に、 全長にわたつて流量と重力全圧エネルギ El;„とが等し く なるように流れ方向の 1次元方向に作用する力の方向が変わり、 それによつて 流速が変わり各流管の断面積が長さ方向で変化し流量が一定に維持される作用が あるからである。
従って、 第 4法則によると、 大気圧下で定常流になっている流動流体では、 下 流側の流体の流れに従って上流側の流体が流れ、 上流側と下流側間に抵抗 (作用 · 反作用) がなく 、 周囲に同じ質量の流体がある流体中では流体の位置エネルギ は作用しないことになり、 この状態 (境界条件) でエネルギ保存則が成立して安 定する。 そ して、 これらは、 従来の流体力学のベルヌ一ィの運動方程式が間違つ ていることを示し、 発明者が少年時代に水遊び、 積木遊び、 コ リ ン トゲーム等で 理解した水の流れ方に一致している。
又、 従来の流体力学では、 大気圧下の水流の水面の勾配を水を流す単独のエネ ルギ源と しているがこれは誤りであり、 正しく は、 大気圧下の水流の水面の勾配 は、 水が流れた結果と して下流側 (最下流端) の流量に応じて発生し、 下流側の 流量と釣り合う流量をその位置で維持する作用を分担していることになる。
2 ) 流動流体を構成する各流管毎に、 エネルギ保存則により、 全長にわた つて流量と重力全圧エネルギ E G„とが等しく なるように流れ方向の 1 次元方向に 作用する力の方向の分布が変わり、 各流管の断面積が変化するのは、 従来の流体 力学で言われている流体間の粘性抵抗によるものではなく、 流量を一定量に維持 し重力全圧エネルギ E (;„を一定値に維持しよう とするエネルギ保存則によるもの である。
尚、 従来から行われている平行移動板による水の粘性の測定方法は、 水と固体 平面との粘性の測定であり、 水と水との粘性の測定ではない。 平行移動板間の水 が動く のは、 粘性測定器の固体平面が動き水と固体平面間の粘性抵抗で前記固体 平面に接する部分の水が動く ことにより、 粘性測定器内の閉鎖系では水全体が入 れ替わって動かざるを得ないためであり、 水と水との粘性によるものではなく 、 水と水との間には粘性は存在しない。 水と水との間や空気と空気との間に粘性が 存在しないことは、 日常経験からも明らかである。
従って、 従来の流体力学の粘性流体に関するナビエ · ス トークスの運動方程式 は、 正しいか間違っているかは別にして、 水や空気には使用できない。
そして、 「流体の新しい運動法則」 は、 水と水との間や空気と空気との間等の I
ように内部に粘性が存在しない流体に重力全圧 P G Hが作用している領域の自然法 則である。
3 ) 従来の流体力学の理論では、 大気圧下の水路の流速や流量の計算を理 論的に行えず、 実験式を使用しているが、 第 3、 第 4法則を使用すれば理論的に 計算できる。
( 5 ) 第 5法則 : 重力全圧 P C Hが作用する流動流体の永久運動機構の法則
1 ) 第 4法則の複合共存融合作用の法則が成立している大気圧下の風や水 流等の流動流体においては、 永久運動機構によりエネルギが取り出される位置の 上流側の重力全圧エネルギ E G Hの圧力エネルギ源である重力全圧 P G„と、 ェネル ギが取り出される位置の下流側の重力全圧エネルギ Ε ,,の圧力エネルギ源である 重力全圧 P G »とが別系統であるので、 エネルギが取り出される位置の下流側の重 力全圧エネルギ E G Ηが流動流体の流量維持作用を行い、 エネルギが取り出される 位置の上流側の重力全圧エネルギ E G„が取り出されるエネルギを賄う ことができ る。 従って、 最上流端の流入流量と最下流端の流出流量とが、 複合共存融合作用 の維持エネルギ系とは別のエネルギ系で維持されておれば、 下記 3 ) 、 4 ) に記 載の説明のように、 大気圧下の水流や風が流量を低下することなく (上流側と下 流側とに影響を及ぼすことなく ) 水車や風車を駆動するエネルギ機構、 又は、 台 風の強風発生機構等の自然永久運動機構が構成される。
本発明の請求項 1 または 9 に記載のものは、 前記の自然永久運動を人為的に模 倣した第 3種永久運動の基本型である。
2 ) 上記 1 ) において、 取り出したエネルギの一部により最下流端の流出 流量を最上流端の流入流量に循環させることができれば、 永久運動を維持できる 本発明の請求項 2または 1 0 に記載のものは、 この形式の永久運動であり第 3 種永久運動の発展型であるが、 この形式の永久運動は自然界には見つからない。
3 ) 下記のように、 大気圧下の水流や風が流量を低下することなく水車や 風車を駆動する自然永久運動機構は、 上記 1 ) を実証している。
大気圧下の水流や風に設置した水車や風車が水流や風の運動エネルギを消費し て駆動される場合、 水車や風車を駆動して運動エネルギを失った水流や風は、 先 ず、 第 3法則の共存融合作用の重力全圧供給作用により、 失った流速に相当する 重力静圧 P G H S の補充を重力をエネルギ源とする重力全圧 P G„から受け、 次いで
、 補充された重力静圧 P G 1I S 分を、 第 3法則の共存融合作用の流量維持作用によ り、 水車や風車の出口で運動エネルギに変換して流速を回復し、 第 4法則の複合 共存融合作用により流量に変化を残さないで流れ去る。
即ち、 大気圧下の水流や風は、 水車や風車の上流側の重力全圧エネルギ E (.„の 压カエネルギ源である重力全圧 Ρ π„と、 下流側の重力全圧エネルギ Ε (;„の圧力ェ ネルギ源である重力全圧 Ρ ,とが別系統であることにより、 水車や風車の出力を 取り出せる自然永久運動機構を有する。
4 ) 下記のように、 大気圏内の自然現象である台風は、 上記 1 ) を実証し ている。
大気圏内では、 エネルギ保存則と第 4法則の複合共存融合作用とによ り、 大気圏内の大気の流れの地球規模の流管内の流量と重力全圧エネルギ E G„と が地球上の総ての位置で常に一定値に維持されている。
そして、 高気圧の内部では気圧が高いので風が弱く なつて重力全圧エネルギ E (: Hが一定値に維持され、 低気圧の内部では気圧が低いので風が強く なって重力全 圧エネルギ E « Hが一定値に維持されている。 即ち、 台風の目の近傍の気圧が低い 部分で風が強いのは、 低気圧による重力静圧エネルギ
Figure imgf000016_0001
の不足分を、 強風の 重力動圧エネルギ E G„v で補って重力全圧エネルギ E G Hを一定値に維持するため である。
又、 気圧が低いが静かな台風の目では、 台風の目の上昇気流により重力全圧ェ ネルギ E G„が一定値に維持され、 この上昇気流は上昇してジエ ツ ト気流で運び去 られる。
従って、 台風の目の上昇気流とジェ ッ ト気流とで運び去られる大気量に合わせ て、 台風の目に周囲から風が吹き込むが、 台風の目とその周囲との間では気圧が 釣り合っているので、 台風の目に対して半径方向からは風が吹き込まず、 地球の 自転から得られる運動エネルギとの組合せにより、 台風の目の周囲では反時計方 向に強風が吹き、 台風の目に対して接線方向から風が吹き込み大気圏の流管内の 流量と重力全圧エネルギ Ε Γ,„とが一定量に維持される。 即ち、 台風は、 台風の目の上昇気流とジエ ツ ト気流とをエネルギ源とする強風 域の下流側と、 大気の重力全圧 P G ,,をエネルギ源とする強風域の上流側とが、 ェ ネルギ源を別にしていることにより、 台風の目の上昇気流が維持される限り存在 し台風の目の周辺で強風が大きな仕事をする自然永久運動である。
5 ) 本発明では、 請求項 1 または 9 に記載のようにして、 水車または風車 を設けた圧力管内で、 水車または風車の上流側の重力全圧エネルギ E G Hの圧力ェ ネルギ源である重力全圧 P G llと、 水車または風車の下流側の重力全圧エネルギ E Γ. Ηの圧力エネルギ源である重力全圧 とを别系統にしている。
又、 請求項 1 または 9 に記載の第 3種永久運動の基本型は、 自然界の自然永久 運動そのままの模倣でいるので、 圧力管外の流体が流れていることが必要である 又 請求項 2 または 1 0 に記載の第 3種永久運動の発展型では、 前記 2 ) に記 載のように、 取り出した出力エネルギの一部により最下流端の流出流量を最上流 端の流入流量に循環させている。
( 6 ) 流体の新しい運動法則の実証試験
本実証試験は、 大気圧下の水流が流れる機構は、 従来の流体力学のベル ヌ一ィの運動方程式ではなく、 本発明の 「流体の新しい運動法則」 に基づく こと を実証し、 「流体の新しい運動法則」 の第 3法則の共存融合作用の法則と、 第 4 法則の複合共存融合作用の法則と、 第 5法則の永久運動の法則とに基づいて、 本 発明の第 3種永久運動が成立することを実証する。
試験装置
図 8に示すように、 試験装置は 3部分に分かれており、 Αは、 硬質 P V C管内に収められて両端から中央部に向かつて断面積が縮小している円錐圧力管 , Bは、 硬質 P V C管内に収められた水中モータに羽根を付けた前部エネルギ供 給手段、 Cは、 硬質 P V C管内に収められた水中モータに羽根を付けた後部エネ ルギ供給手段であり、 図 9 ( a ) 、 ( b ) 、 ( c ) に示すように、 試験装置を、 約 3 0 c mの硬質 P V C管の外径より僅かに ( 2〜 6 c m ) 大きな深さと幅を有 し流速が V ( m / s e c ) の勾配水路 F内に設置する。
I ) 実証試験その 1 図 9 ( a ) に示すように、 前部エネルギ供給手段 Bまたは後部エネル ギ供給手段 Cの一方のみを勾配水路 F内に設置する。
実証試験その 1 は、 中央部の断面積が絞られた圧力管を水流中に設置し、 水流 に内部を通過させる場合に供給する必要がある人為エネルギの大きさと作用位置 と作用内容とを明らかにし、 従来の流体力学のベルヌ一ィの運動方程式が適用で きず、 本発明の 「流体の新しい運動法則」 が正しく適用できることを実証する。
1. エネルギ供給手段の起動前
勾配水路の水深を次第に深く していく と、 水深が硬質 P V C管の内 径以下の場合には、 水流が硬質 P V C管内を通過するが、 水深が硬質 P V C管の 外径を越えると、 水流は、 硬質 P V C管内を通らなく なり、 硬質 P V C管の入口 で淀んで硬質 P V C管の外側にそれ、 特に、 水面での水の流れが乱れる。
上記のことは、 下記の 2つの事項により、 第 3法則の共存融合作用の法則の流 れに沿った 1 次元方向の力の流量維持作用と 3次元方向の重力全圧 の重力全 圧供給作用との共存融合作用によつて重力全圧エネルギ E G,,が発生し、 この重力 全圧エネルギ E (;Hが流れを維持することを明らかに示している。
第 1 は次の事項である。 即ち、 水深が浅く硬質 P V C管内に勾配水面が存在し ている間は、 この勾配水面に基づく重力全圧の流れ方向成分 PGD が存在し、 こ の重力全圧の流れ方向成分 P n の流量維持作用が重力全圧 Pc,,の重力全圧供給 作用と共存融合作用して重力全圧エネルギ Ε Γ.Μを発生するので、 水流が硬質 Ρ V C管内を通過する。
そして、 水深が硬質 Ρ V C管の外径を越えると、 硬質 P V C管内には、 勾配水 面が無く なり重力全圧の流れ方向成分 PG1IU による流量維持作用が無く なるので 、 水流は硬質 P V C管内を通らなく なる。
この現象が、 従来の水力発電設備で対策に費用を要する流人口衝突抵抗である 第 2 は次の事項である。 即ち、 エネルギ供給手段の硬質 P V C管のように、 中 央部の断面積が水中モータで小さ く なっていると、 硬質 P V C管内を水流が流れ た場合、 中央部の流速が速く なり、 中央部の重力静圧 Pt;liS が低下する。 そして 、 硬質 P V C管外の水が流れている場合には、 「流体の新しい運動法則」 の第 1 I 7
法則により、 その水流の重力静圧 P GHS のみが流出口から中央部まで作用するの で、 中央部より下流側に流量維持作用を存在させても、 重力全圧 P «„ =重力静圧
P (;„S +重力動圧 P CV の重力動圧 P (;,,V が不足し、 重力全圧 の重力全圧供 給作用が機能せず、 共存融合作用による重力全圧エネルギ Ε θΗが発生せず、 水が 流れない。
この現象が、 従来の水力発電設備で対策に費用を要する流出口衝突抵抗である 上記のように、 流人口衝突抵抗と流出口衝突抵抗とが存在するので、 水流に硬 質 P V C管内を通過させるには、 中央部から下流側の硬質 P V C管内に、 第 3法 則に基づいて水流を流出させる重力全圧エネルギ E GHを発生させる必要がある。
2. エネルギ供給手段の起動後
エネルギ供給手段を起動すると、 水流が硬質 P V C管内を通り始め 、 やがて硬質 P V C管の内外の流速が一致し、 硬質 P V C管の人口での水流の乱 れが無く なる。
硬質 P V C管の内外の流速が一致した状態で、 エネルギ供給手段が硬質 P V C 管内の水流に供給している圧力は、 その時のエネルギ供給手段のモータの電圧、 電流に基づいてエネルギ供給手段が発生する圧力を別個に測定した結果と、 「流 体の新しい運動法則」 の第 1法則の 1 ) 、 2 ) 、 3 ) と、 第 2法則の 1 ) 、 2 ) と、 第 3法則の 1 ) 、 2 ) 、 3 ) 、 4 ) と、 第 4法則の 1 ) とから、
① 流入 O S , の流速 Vの動圧である流入流量維持運動エネルギ Ε Α Ι C V 2 / ( 2 X 9. 8 ) ] と、
② 水中モータがある部分の流速が V , の場合に硬質 Ρ V C管内の抵抗を打ち 消す抵抗打消し圧力差 Ρη [ { ( V , ) 2 / ( 2 X 9. 8 ) } X係数 ( 0. 1〜 0. 3 ) ] と、
③ 流出口 S 2 の流速 Vの動圧である流出流量維持運動エネルギ Ε ,..Λ。 [V2 ./ ( 2 X 9. 8 ) ] と、
④ 水中モータの下流側の硬質 Ρ V C管内の重力動圧 P(;,1V の不足を補充する 重力動圧補充圧力
Figure imgf000019_0001
[V2 / ( 2 9. 8 ) ] とである。
従来の流体力学のベルヌ一ィの運動方程式が大気圧下の水流に適用できるとす れば、 ②の抵抗打消し圧力差 P ,> だけで硬質 P V C管の内外の流速が一致する害 であるので、 上記の事実は、 ベルヌーィの運動方程式は、 大気圧下の水流には適 用できないことを示す。
3 . 「流体の新しい運動法則」 の適用
そ して、 この場合、 「流体の新しい運動法則」 によると、 硬質 P V
C管内で、 ②の抵抗打消し圧力差 Ρ ,) が硬質 Ρ V C管内の抵抗を打ち消し、 ①の 流入流量維持運動エネルギ Ε , が水中モータの上流側の硬質 Ρ V C管内に共存 融合作用によつて重力全圧エネルギ Ε (;„を発生させ、 ③の流出流量維持運動エネ ルギ Ε κ Α。 と④の重力動圧補充圧力 P G H V Aとが水中モータの下流側の硬質 P V C 管内に第 4法則の共存融合作用によつて重力全圧エネルギ E C Hを発生させている そして、 硬質 P V C管の流入口の上流側に自然に存在する重力全圧エネ 'レギ E と、 硬質 P V C管の流出口の下流側に自然に存在する重力全圧エネルギ E f; Hと 、 中央部の上流側に発生した重力全圧エネルギ E G„と、 中央部の下流側に発生し た重力全圧エネルギ E c„とが第 4法則の複合共存融合作用を構成することにより 、 中央部の下流側に発生した重力全圧エネルギ E G„が、 中央部から下流側の水流 を維持し、 それによつて、 中央部の重力静圧 P (;s を低下させ、 中央部の上流側 に発生した重力全圧エネルギ E (; が、 前記の水流の維持と中央部の重力静圧 P G„ s の低下によって中央部までの水流を維持する。 中央部の上流側と下流側とでは 、 水流は共通であるが、 エネルギ系統は別個であり、 第 5法則の自然永久運動の 条件を満たしている。
そして、 上記において、 エネルギ供給手段は上記①〜④を分離して供給せず一 括して供給している。 即ち、 上記は、 一括して供給したエネルギが自然に上記① 〜④に分離して作用し、 上記の状態に流れを安定させていることを示す。 即ち、 「流体の新しい運動法則」 の第 3、 第 4、 第 5法則は、 大気圧下の流動流体の流 れが安定した場合に成立する自然法則であることが明らかである。
2 ) 実証試験その 2
図 9 ( b ) に示すように、 前部エネルギ供給手段 Bと円維圧力管 Aと を勾配水路 F内に設置する。 実証試験その 2は、 中央部の断面積が絞られた圧力管を水流中に設置し、 水流 に内部を通過させる場合に供給する必要がある人為エネルギの大きさと作用位置 と作用内容とを明らかにし、 従来の流体力学のベルヌ一ィの運動方程式が適用で きず、 本発明の 「流体の新しい運動法則」 が正し く適用できることと、 第 3、 第 4法則に基づいて、 第 3種永久運動のエネルギを取り出せることを実証する。
1. 前部エネルギ供給手段 Βの起動前
勾配水路の水深を次第に深く して、 円錐圧力管 Αの断面が水没する と、 水流は、 硬質 P V C管内を通らなく なり、 硬質 P V C管の入口で淀んで硬質 P V C管の外側にそれ、 特に、 水面での水の流れが乱れる。
2. 前部エネルギ供給手段 Bの起動後
前部エネルギ供給手段 Bを起動すると、 水流が硬質 P V C管内を通 り始め、 やがて硬質 P V C管の内外の流速が一致し、 硬質 P V C管の入口での水 流の乱れが無く なる。
3. 硬質 P V C管の内外の流速が一致した状態で、 前部エネルギ供給手 段 Bが硬質 P V C管内の水流に供給している圧力は、 その時の前部エネルギ供給 手段 Bのモータの電圧、 電流に基づいて前部エネルギ供給手段 Bが発生する圧力 を别個に測定した結果と、 「流体の新しい運動法則」 の第 1法則の 1 ) 、 2 ) 、 3 ) と、 第 2法則の 1 ) 、 2 ) と、 第 3法則の 1 ) 、 2 ) 、 3 ) 、 4 ) と、 第 4 法則の 1 ) とから、
① 流入 a s ! の流速 Vの動圧である流入流量維持運動エネルギ Ef,A I [ V2 / ( 2 X 9. 8 ) ] と、
② 前部エネルギ供給手段 Bの硬質 P V C管内の抵抗を打ち消す抵抗打消し圧 力差 P ,) [ { C V , ) 2 / ( 2 X 9. 8 ) } X係数 ( 0. 1〜 0. 3 ) ] と、
③ 円錐圧力管 A内を所定流量 (勾配水路の流速 X硬質 P V C管の流入□ S , の断面積) の水流が流れた場合に最小断面積部分 S 3 における流速が V3 の場合 の抵抗打消し圧力差 Ρ,) [ { ( V , ) 2 / ( 2 X 9. 8 ) } X係数 ( 0 , 1〜() . 3 ) ] と、
④ 円錐圧力管 Αの流出口 S の流速 Vの動圧である流出流量維持運動エネル ギ Ε Α。 [ (V) 2 ( 2 X 9. 8 ) ] と、 ⑤ 請求項 1 の重力動圧補充圧力 Ρπ,,νΛ [流速 Vの動圧 { (V) 2 Z ( 2 X 9 . 8 ) } ] との和に一致する。
そして、 最小断面積部分 S 3 における流速 V . の動圧は、 前記①〜⑤の動圧の 和の 3倍程度になる。
尚、 ①は、 流速増加時には、 最小断面積部分 S の上流側と下流側とに重力全 圧エネルギ E を発生させるために必要であるが、 流速の安定時と減少時には、 下流側の重力全圧エネルギ Ec„を維持できればよいので不要になると推定される
4. この場合、 従来の流体力学のベルヌ—ィの運動方程式が大気圧下の 水流に適用できれば、 前記の②の抵抗打消し圧力差 PD と、 ③の抵抗打消し圧力 差 Ρ,) とだけで硬質 Ρ V C管の内外の流速が一致する害であるので、 上記 3の事 実は、 ベルヌ一ィの運動方程式は、 大気圧下の水流には適用できないことを示す
5. 「流体の新しい運動法則」 の適用
そして、 この場合、 「流体の新しい運動法則」 によると、 前部エネ ルギ供給手段 Βの硬質 Ρ V C管内と、 円錐圧力管 Αの最小断面積部分 S 3 から上 流側の部分内とにおいて、 ②と③との抵抗打消し圧力差 Ρ,) が抵抗を打ち消し、 ①の流入流量維持運動エネルギ ΕκΛ Ι が、 所定流量 (硬質 Ρ V C管の断面積 X流 速 V ) の重力全圧エネルギ を発生し、 円錐圧力管 Aの最小断面積部分 S 3 か ら下流側の部分内で、 ③の抵抗打消し圧力差 Ρ。 が抵抗を打ち消し、 ⑤の重力動 圧補充圧力 が、 流出口から円錐圧力管 A内に遡れない重力動圧 P の代 わりを勤め、 ④の流出流量維持運動エネルギ Ε ^。 が円錐圧力管 Aの最小断面積 部分 S 3 から下流側の部分内の所定流量 (硬質 P V C管の断面積 X流速 V ) の重 力全圧エネルギ EcHを発生する。
6. 上記 5により、 前部エネルギ供給手段 Bの硬質 P V C管の流入口の 上流側の水流に自然に存在する重力全圧エネルギ E と、 前部エネルギ供給手段 Bの硬質 P V C管内と円錐圧力管 Aの最小断面積部分 S から上流側の部分内と に発生した重力全圧エネルギ EG1,と、 円錐圧力管 Aの最小断面積部分 S 3 から下 流側の部分内に発生した重力全圧エネルギ Ec,,と、 円錐圧力管 Λの流出口の下流 I I
側の水流に自然に存在する重力全圧エネルギ E „との間の第 4法則の複合共存融 合作用に基づいて水流が維持されている。
7 . そして、 円錐圧力管 Aの最小断面積部分 S 3 の上流側と下流側との 重力全圧エネルギ E (;„の圧力エネルギ源の重力全圧 Ρ ΰ Ι1が别系統であり、 円錐圧 力管 Αの最小断面積部分 S 3 の流速 V 3 の動圧は、 前記①〜⑤の動圧の和の 3倍 程度であるので、 請求項 1 に記載のようにして円錐圧力管 Aの最小断面積部分 S , に負荷率の如何に係わらず通過する水流の流量が等しい軸流水車を設置すれば 、 铀流水車の負荷率を 0〜 1 0 0 %に変動させても、 釉流水車内の重力静圧 P G„ は変化せず水流の流量も変化しないので、 エネルギを取り出して使用でき、 こ の取り出したエネルギの一部で前記①〜⑤の人為エネルギを賄う第 3種永久運動 が実現する。
3 ) 実証試験その 3
図 9 ( c ) に示すように、 前部エネルギ供給手段 Bと円錐圧力管 Aと 後部エネルギ供給手段 Cとを勾配水路 F内に設置する。
実証試験その 3 は、 中央部の断面積が絞られた圧力管を水流中に設置し、 水流 に内部を通過させる場合に供給する必要がある人為エネルギの大きさと作用位置 と作用内容とを明らかにし、 従来の流体力学のベルヌ一ィの運動方程式が適用で きず、 本発明の 「流体の新しい運動法則」 が正しく 適用できることと、 第 4、 第 5法則に基づいて、 第 3種永久運動のエネルギを取り出せることを実証する。
1 . 前部エネルギ供給手段 Bと後部エネルギ供給手段 Cとの起動前
水流は、 硬質 P V C管内を通らず、 硬質 P V C管の入口で淀んで硬 質 P V C管の外側にそれ、 特に、 水面での水の流れが乱れる。
2 . 前部エネルギ供給手段 Bと後部エネルギ供給手段 Cとを起動すると 、 水流が硬質 P V C管内を通り始め、 やがて硬質 P V C管の内外の流速が一致し 、 硬質 P V C管の入口での水流の乱れが無く なる。
3 . 硬質 P V C管の内外の流速が一致した状態で、 前部エネルギ供給手 段 Bと後部エネルギ供給手段 Cとが水流に供給している圧力は、 その時の乇一タ の電圧、 電流に基づいて前部エネルギ供給手段 Bと後部エネルギ供給手段 Cとが 発生する圧力を別個に測定した結果と、 「流体の新しい運動法則」 の第 1法則の I ) 、 2 ) 、 3 ) と、 第 2法則の 1 ) 、 2 ) と、 第 3法則の 1 ) 、 2 ) 、 3 ) 、
4 ) と、 第 4法則の 1 ) とから、
① 流入口 S , の流速 Vの動圧である流入流量維持運動エネルギ E FA I [V2
/ ( 2 X 9. 8 ) ] と、
② 前部エネルギ供給手段 Bの硬質 P V C管内の抵抗を打ち消す抵抗打消し圧 力差 Ρ,, [ { ( V , ) 2 / ( 2 X 9. 8 ) } x係数 ( 0. 〜 0. 3 ) ] と、
③ 円錐圧力管 A内を所定流量 (勾配水路の流速 X硬質 P V C管の流入〇 S , の断面積) の水流が流れた場合に最小断面積部分 S 3 における流速が V 3 の場合 の抵抗打消し圧力差 P D [ { ( V ;! ) 2 / ( 2 X 9. 8 ) } X係数 ( 0. 1〜(! . 3 ) ] と、
④ 流出口 S 6 の流速 Vの動圧である流出流量維持運動エネルギ Ε『 Λ。 [V 2 ( 2 X 9. 8 ) ] と、
⑤ 請求項 1 の重力動圧補充圧力 P GHVA [流速 Vの動圧 { V 2 / ( 2 X 9. 8 ) } ] と、
⑥ 後部エネルギ供給手段 Cの硬質 P V C管内の抵抗を打ち消す抵抗打消し圧 力差 Pt) [ { ( V 5 ) 2 ノ ( 2 X 9. 8 ) } X係数 ( 0. 1〜 0. 3 ) ] との和 に一致する。
そして、 最小断面積部分 S 3 における流速 V 3 の動圧は、 前記①〜⑥の動圧の 和の 3倍程度になる。
尚、 ①は、 流速増加時には、 最小断面積部分 S 3 の上流側と下流側とに重力全 圧エネルギ E c; uを発生させるために必要であるが、 流速の安定時と減少時には、 下流側の重力全圧エネルギ E GHを維持できればよいので不要になると推定される
4. この場合、 従来の流体力学のベルヌ—ィの運動方程式が大気圧下の 水流に適用できれば、 前記の②の抵抗打消し圧力差 P n と、 ③の抵抗打消し圧力 差 Ρ。 と、 ⑥の抵抗打消し圧力差 Ρ,) とだけで硬質 P V C管の内外の流速が一致 する害であるので、 上記 3の事実は、 ベルヌーィの運動方程式は、 大気圧下の水 流には適用できないことを示す。
5. 「流体の新しい運動法則」 の適用 そして、 この場合、 「流体の新しい運動法則」 によると、 前部エネ ルギ供給手段 Bの硬質 P V C管内と、 円錐圧力管 Aの最小断面積部分 S 3 から上 流側の部分内とにおいて、 ②と③との抵抗打消し圧力差 が抵抗を打ち消し、 ①の流入流量維持運動エネルギ E κΛ, が、 所定流量 (硬質 Ρ V C管の断面積 X流 速 V) の重力全圧エネルギ Er,Hを発生し、 円錐圧力管 Αの最小断面積部分 S 3 か ら下流側の部分内と、 後部エネルギ供給手段 Cの硬質 P V C管内とで、 ③と⑥の 抵抗打消し圧力差 Ρ,, が抵抗を打ち消し、 ⑤の重力動圧補充圧力 P C M V Aが、 流出 口から円錐圧力管 A内に遡れない重力動圧 P(; ll v の代わりを勤め、 ④の流出流量 維持運動エネルギ E,.. A。 が円錐圧力管 Αの最小断面積部分 S から下流側の部分 内の所定流量 (硬質 P V C管の断面積 X流速 V ) の重力全圧エネルギ EG,,を発生 する。
6. 上記 5により、 前部エネルギ供給手段 Bの硬質 P V C管の流入口の 上流側の水流に自然に存在する重力全圧エネルギ E G,,と、 前部エネルギ供給手段 Bの硬質 P V C管内と円錐圧力管 Aの最小断面積部分 S 3 から上流側の部分内と に発生した重力全圧エネルギ Er;Hと、 円錐圧力管 Aの最小断面積部分 S 3 から下 流側の部分内と後部エネルギ供給手段 Cの硬質 P V C管内とに発生した重力全圧 エネルギ E (; Hと、 円錐圧力管 Aの流出口の下流側の水流に自然に存在する重力全 圧エネルギ Ε (;„との間の第 4法則の複合共存融合作用に基づいて水流が維持され ている。
7. そして、 円錐圧力管 Aの最小断面積部分 S 3 の上流側と下流側との 重力全圧エネルギ Ec„の圧力エネルギ源の重力全圧 が别系統であり、 円錐圧 力管 Aの最小断面積部分 S 3 の流速 V3 の動圧は、 前記①〜⑥の動圧の和の 3倍 程度であるので、 請求項 1 に記載のようにして円錐圧力管 Aの最小断面積部分 S
3 に負荷率の如何に係わらず通過する水流の流量が等しい袖流水車を設置すれば 、 軸流水車の負荷率を 0〜 1 0 0 %に変動させても、 軸流水車内の重力静圧 Pf;,, . は変化せず水流の流量も変化しないので、 エネルギを取り出して使用でき、 こ の取り出したエネルギの一部で前記①〜⑥の人為エネルギを賄う第 3種永久運動 が実現する。
[ 2 ] 発明の内容 2 k
( 1 ) 請求項 1 に記載の本願第 1 発明の流動流体の重力全圧エネルギの使用方 法を説明する。
1 ) 第 3種永久運動のエネルギ源と、 エネルギ保存則による永久運動否定 理由の無関係化
空気や水等の流動流体が流入口に流入し流出口から流出する圧力管を 風の中や水流中に設置し、 或いは、 大気中や地上や水上や水中を移動する移動体 に設置し、 圧力管の外部に存在する空気や水等の流動流体の重力全圧 P c ,,を圧力 管の流人口と流出口との双方に作用させることにより、
圧力管外に存在する流動流体の重力全圧 P G ,,に、 下記 2 ) 以下に記載の条件に より、 圧力管内の流体に対する 「流体の新しい運動法則」 の第 3法則の重力全圧 供給作用を行わせ、 この重力全圧供給作用により、 自然力である重力全圧 P (;, ,を 、 圧力管内の流体の圧力エネルギ源と して作用させることができ、 下記 2 ) 以下 に記載の小さな人為エネルギの供給により大きな重力全圧 P (; Hを発生できるので
、 エネルギ保存則による永久運動否定理由が無関係化し、 第 3種永久運動を構成 できる。
即ち、 第 3種永久運動のエネルギ源は、 下記 2 ) 以下に記載の条件により、 第 3法則に基づいて、 圧力管外に存在する流動流体の重力全圧 P (;„の重力全圧供給 作用により、 水車または風車の上流側と下流側との双方の圧力管内の流体に、 別 個の重力全圧 P G ,,を圧力エネルギ源と して発生する 2系統の重力全圧エネルギ E "である。
そして、 圧力エネルギ源が異なる 2系統の重力全圧エネルギ E (;„がエネルギの 消費位置である水車または風車の上流側と下流側との双方に存在することが、 自 然界に存在する水流、 風、 台風、 龍卷等の自然永久運動機構と同じ形になって、 エネルギを取り出せる第 3種永久運動を実現する。
2 ) 第 3種永久運動のエネルギ取り出し手段
圧力管内に負荷率の如何に係わらず通過流量を一定に維持する水車ま たは風車を設置することにより、
水車または風車の負荷率が 0〜 1 0 0 %の範囲で変化しても、 圧力管内を通過 する流動流体の流量が一定量に維持され、 圧力管内外各部の流動流体に発生する 第 3法則の共存融合作用に、 第 4法則の複合共存融合作用が成立する。
3 ) 自然界に存在する自然永久運動機構の模倣
第 1、 第 2法則に基づいて、 水車または風車の前後に圧力管の断面積 が流人口側と流出口側との双方から水車または風車に向かって円周方向に偏向し ながら縮小する部分を設けて、 圧力管内を流動流体が流れれば水車または風車近 傍の重力静圧 Pens が低下し、 圧力管外の流入口近傍の流動流体の (第 2重力全 圧 P GH) = ( 3次元方向の重力静圧 P GS +流れに沿って作用する重力動圧 P「,H v ) が流入口から水車または風車まで流れに沿って作用し、 圧力管外の流動流体 の 3次元方向の重力静圧 P(;Hが流出口から水車または風車まで流れに遡って作用 して、 水車または風車の上流側と下流側の圧力管内で重力全圧 PCIIの圧力エネル ギ源が異なるようにすることにより、
圧力管内の流体に作用する重力全圧 P CHを、 第 3法則の共存融合作用と第 4法 則の複合共存融合作用とに基づき、 自然界に存在する水流、 風、 台風、 龍巻等の エネルギを取り出せる自然永久運動における重力全圧 P G,,と同じ状態にして、 水 車または風車を駆動した場合にエネルギが取り出せるようにして、 前記 1 ) の記 載の後半部を達成している。
4 ) 既存の自然法則の永久運動否定理由の無関係化
第 1、 第 2法則に基づいて、 流出口と水車または風車間に流出口から 遡つて作用できない圧力管外の流動流体の重力動圧 P GHV に代わつて水車または 風車の下流側の圧力管内で作用するように重力動圧補充圧力 P ;„VAを圧力管内に 人為的に供給して、 水車または風車の下流側の圧力管内に (第 3重力全圧 Pc„) = (圧力管内の流れに遡って流出口から作用する 3次元方向の重力静圧 P(:s + 人為的に供給する重力動圧補充圧力 PcHVA) を存在させることにより、
エネルギは遡れないという熱力学第 2法則の永久運動否定理由を無関係にして 、 前記 1 ) 〜 3 ) の記載を達成し、 第 3種永久運動を可能にしている。
尚、 エン トロピー増加則による永久運動否定理由は、 前述の 「流体の新しい運 動法則」 の第 2法則の説明の項で無関係化している。
5 ) 第 1、 第 2法則に基づく小さな人為エネルギの供給
第 1、 第 2法則に基づいて、 (所定流量 =圧力管外の流速 X流入口の 断面積) 以下の流動流体が圧力管全長を通過する際に受ける抵抗を打ち消す抵抗 打消し圧力差 P D 、
水車または風車の上流側の圧力管内に前記第 2重力全圧 P(;llが存在し、 前記抵 抗打消し圧力差 P D により前記所定流量以下の流動流体に対する抵抗が無いとい う条件で、 水車または風車の上流側の圧力管内における流動流体の前記所定流量 以下を維持する流入流量維持運動エネルギ EFA, 、
水車または風車の下流側の圧力管内に前記第 3重力全圧 P(;Hが存在し、 前記抵 抗打消し圧力差 Pn により前記所定流量以下の流動流体に対する抵抗が無いとい う条件で、 水車または風車の下流側の圧力管内における流動流体の前記所定流量 以下を維持する流出流量維持運動エネルギ Ε ,.Λ。 等を圧力管内に人為的に供給す ることとにより、
抵抗打消し圧力差 P D と流入流量維持運動エネルギ Ε ΚΛ, と流出流量維持運動 エネルギ ΕκΑ。 とが、 圧力管内の流体に対する、 第 3法則の 1次元方向の力によ る流量維持作用を分担する。
この場合、 流体の新しい運動法則の説明に記載したように、 圧力管内各部を共 通の所定流量の流体が通過するので、 所定流量の流体に供給されるエネルギは、 圧力管内のどの位置に供給しても、 供給するエネルギ =供給する圧力 X所定流量 が同じになり、 且つ、 作用すべき位置まで伝わって作用すべき作用をする。
6 ) 第 3、 第 4法則の成立
前記 4 ) と 5 ) の存在により、 前記所定流量以下の流動流体が、 前記 抗打消し圧力差 、 前記流入流量維持運動エネルギ ΕκΑ Ι 、 前記流出流量維持 運動エネルギ E FA。 、 前記重力動圧捕充圧力 PcIIVA、 風や水流あるいは前記移動 体の移動等によつて圧力管の流入口に流入し圧力管の流出口から流出して流れ去 り、 第 3法則の共存融合作用と、 第 4法則の複合共存融合作用とが成立する。
7 ) 第 3、 第 4法則の作用と、 第 5法則の成立
前記 4 ) 〜6 ) の存在により、 第 3、 第 4法則に基づいて、 圧力管の 流入口の上流側の流体と、 水車または風車の上流側の圧力管内の流体と、 水車ま たは風車の下流側の圧力管内の流体と、 圧力管の流出口の下流側の流体とが、 流 量が前記所定流量以下の範囲内でエネルギ保存則によって作用 ·反作用が無い状 態で圧力管内の各部分の共通最大流量に安定し、
圧力管の流入口の上流側に自然に存在する第 1重力全圧 P G„と、 流入口と水車 または風車間の前記第 2重力全圧 P(;t,と、 水車または風車と流出口間の前記第 3 重力全圧 PGHと、 圧力管の流出口の下流側に自然に存在する第 4重力全圧 PGI1と が別系統で等しく なり、
圧力管の流入口の上流側と流出口の下流側とに、 第 1重力全圧エネルギ E (;„ == 第 1重力全圧 P CH X流量と、 第 4重力全圧エネルギ E F;„ =第 4重力全圧 P C„ X流 量とが別系統の重力全圧 P(;llを圧力エネルギ源として自然に存在し、 流人口と水 車または風車間の第 2重力全圧エネルギ EG„==第 2重力全圧 Pc„x流量と、 水車 または風車と流出口間の第 3重力全圧エネルギ 3重力全圧 PG II X流量と が別系統の重力全圧 Pc,iを圧力エネルギ源として人為的に発生し、 第 5法則の自 然永久運動機構が構成される。
8 ) 第 3、 第 4、 第 5法則の作用
第 3、 第 4、 第 5法則に基づいて、 水車または風車の下流側の圧力管 内で、 前記第 3重力全圧エネルギ E GHが、 抵抗が無い状態で運動エネルギに変換 して圧力管内の前記流量を維持すると共に水車または風車近傍の重力静圧 P GHS を低下させ、
水車または風車の上流側の圧力管内で、 前記第 2重力全圧エネルギ E (;„が、 前 記の下流側の前記流量の維持と重力静圧 Pc;IIS の低下とにより抵抗が無い状態で 運動エネルギに変換し水車または風車を駆動して出力を出し、 前記出力の一部で 前記の人為的に供給するエネルギを賄うという、 自然界に存在する水流、 風、 台 風、 龍巻等の自然永久運動機構を模倣した第 3種永久運動の基本型を実現するこ とができる。
( 2 ) 請求項 2に記載の本願第 2発明の流動流体の重力全圧エネルギの使用方 法を説明する。
請求項 1 に記載の本願第 1発明において、 空気や水等の流動流体が流入 口に流入し流出口から流出する圧力管を大気中や水中に設置し、 或いは、 大気中 や地上や水上や水中を移動する移動体に設置し、 この圧力管を、 外部に存在する 流体の重力全圧 P GHを受け入れる開口部とこの開口部の両端で向かい合った流出 [コと流入口とを少なく とも一箇所に設けた流出 · 流入循環圧力管とすることによ 、
前記流出 · 流入循環圧力管内の所定流量以下の流動流体を、 外部に存在する流 体の重力全圧 Ρ Ηを前記開口部で受け入れながら前記流出口から流出させ前記開 口部を通過させ前記流入口に流入させて前記流出 · 流入循環圧力管内を循環させ る第 3種永久運動の発展型を実現することができる。
基本型の場合には、 使用場所が水流や風がある場所に限られるが、 発展型の場 合には、 使用場所に水流や風が不要である。
そして、 開口部とこの開口部の両端で向かい合った流出口と流入口とを 2箇所 以上設けた場合には、 両端に開口部を有して分離している流出 · 流入圧力管毎に 、 抵抗打消し圧力差 と、 流量維持運動エネルギ E κΛとを供給する必要がある
( 3 ) 請求項 3 に記載の本願第 3発明の流動流体の重力全圧エネルギの使用方 法を説明する。
請求項 1 または 2 に記載の流動流体の重力全圧エネルギの使用方法にお いて、 抵抗打消し圧力差 Ρ , 、 重力動圧補充圧力 P(:,,VA、 流入流量維持運動エネ ルギ Enfl l 、 流出流量維持運動エネルギ ΕΠΗ() 等を水車または風車の上流側に人 為的に供給する。
人為エネルギの供給位置が 1箇所であるので、 構造が簡単になる。
( 4 ) 請求項 4 に記載の本願第 4発明の流動流体の重力全圧エネルギの使用方 法を説明する。
請求項 1 または 2 に記載の流動流体の重力全圧エネルギの使用方法にお いて、 抵抗打消し圧力差 、 重力動圧補充圧力 Pc,,VA、 流入流量維持運動エネ ルギ E GH 1 、 流出流量維持運動エネルギ Ecll0 等を水車または風車の下流側に人 為的に供給する。
人為エネルギの供給位置が 1 箇所であるので、 構造が簡単になる。
( 5 ) 請求項 5 に記載の本願第 5発明の流動流体の重力全圧エネルギの使用方 法を説明する。
讃求項 1 または 2 に記載の流動流体の重力全圧エネルギの使用方法にお いて、 抵抗打消し圧力差 P。 、 重力動圧補充圧力 PCVA、 流入流量維持運動エネ ルギ EGH, 、 流出流量維持運動エネルギ EG0 等を水車または風車の上流側と下 流側とに分けて人為的に供給する。
人為エネルギの供給位置が 2箇所になり構造が複雑になるが、 夫々のエネルギ 供給手段を小型化できる。
( 6 ) 請求項 6 に記載の本願第 6発明の流動流体の重力全圧エネルギの使用方 法を説明する。
請求項 1、 2、 3、 4又は 5 に記載の流動流体の重力全圧エネルギの使 兩方法において、 断面積が流入口側から水車または風車に向かつて円周方向に偏 向しながら縮小する部分の流動流体の出口の断面積を、 断面積が流出口側から水 車または風車に向かって円周方向に偏向しながら縮小する部分の流動流体の入口 の断面積より も大き くすることにより、 流入口と水車または風車間の流動流体の 第 2重力全圧エネルギ EGHによる水車または風車の入口における流動流体の入口 重力静圧 PG,1S Iを、 水車または風車と流出口間の流動流体の第 3重力全圧ェネル ギ EGHによる水車または風車の出口における出口重力静圧 PGHS0より も高く し、 これらの間の静圧差を、 抵抗打消し圧力差 Ρ。 、 重力動圧補充圧力 PGHVA、 流入 流量維持運動エネルギ EG„, 、 流出流量維持運動エネルギ EG,I0 等の一部と して 使用する。
エネルギ供給手段の出力が小さ く なるので、 エネルギ供給手段を小型化でき、 エネルギ供給手段を駆動する際に発生する電力損失を小さ く できる。
( 7 ) 請求項 7 に記載の本願第 7発明の流動流体の重力全圧エネルギの使用方 法を説明する。
請求項 1、 2、 3、 4、 5又は 6 に記載の流動流体の重力全圧エネルギ の使用方法において、 抵抗打消し圧力差 Pn 、 重力動圧補充圧力 Ρ^,νΑ、 流入流 量維持運動エネルギ EG,,, 、 流出流量維持運動エネルギ E(;ll。 等を変化させるこ とにより、 流量を変化して、 水車または風車の出力を変化させる。
出力を変化させることができ、 基本型の場合に、 圧力管外の水速や風速の変動 に対応できる。
( 8 ) 請求項 8 に記載の本願第 8発明の流動流体の重力全圧エネルギの使用方 法を説明する。
請求項 7に記載の流動流体の重力全圧エネルギの使用方法において、 流 量を增減させる場合に、 断面積が流入口側と流出口側との双方から水車または風 車に向かって円周方向に偏向しながら縮小する部分の断面積を増減することによ り、 水車または風車に流人する流動流体の流速を一定に維持し、 水車または風車 の回転数を一定に維持しながら出力を増減する。
水車または風車の回転数を一定に維持しながら出力を増減することができる。 ( 9 ) 請求項 9に記載の本願第 9発明の流動流体の重力全圧エネルギの使用装 置を説明する。
風の中や水流中に設置されて、 或いは、 大気中や地上や水上や水中を移 動する移動体に設置されて、 外部に存在する空気や水等の流動流体の重力全圧 P を流入口と流出口との双方から受入れながら流動流体が内部を通過する圧力管 と、
圧力管内に設けられた負荷率の如何に係わらず通過流量を一定に維持する水車 または風車と、
水車または風車の前後に設けられ圧力管の断面積を流入口側と流出口側との双 方から水車または風車に向かって円周方向に偏向しながら縮小する前部ガイ ドべ ーン部および後部ガイ ドベーン部と、
流入口と水車または風車間に設けられて、 (所定流量 =圧力管外の流速 X流入 口の断面積) 以下の流動流体が圧力管全長を通過する際に受ける抵抗を打ち消す 抵抗打消し圧力差 Ρ ,) 、 流出口と水車または風車間に流出口から遡って作用でき ない圧力管外の流動流体の重力動圧 Pr,HV に代わつて水車または風車の下流側の 圧力管内で作用する重力動圧補充圧力 PGHVA、 水車または風車の上流側の圧力管 内に (第 2重力全圧 Pc„) = ( 3次元方向の重力静圧 Pcs +流れに沿って作用 する重力動圧 P GHV ) が存在する条件で水車または風車の上流側の圧力管内の流 動流体の前記所定流量以下を維持する流入流量維持運動エネルギ EFA I 、 水車ま たは風車の下流側の圧力管内に (第 3重力全圧 PGH) = (圧力管内の流れに遡つ て流出口から作用する 3次元方向の重力静圧 PGHS +人為的に供給する重力動圧 補充圧力 P(;HVA) が存在する条件で水車または風車の下流側の圧力管内の流動流 体の前記所定流量以下を維持する流出流量維持運動エネルギ Ε κΛ。 等を供給する 前部エネルギ供給手段と、
水車または風車の出力の一部を前記前部エネルギ供給手段に供給するエネルギ 伝達供給手段とを有することにより、
請求項 1 または 3 に記載の本願第 1 、 第 3発明の流動流体の重力全圧エネルギ の使用方法を実施できる。
( 1 0 ) 請求項 1 0に記載の本願第 1 0発明の流動流体の重力全圧エネルギの 使用装置を説明する。
請求項 9に記載の流動流体の重力全圧エネルギの使用装置において、 外部に存在する流体の重力全圧 P CMを流入口と流出口との双方から受入れながら 流動流体が内部を通過する圧力管を、 大気中や水中に設置されて、 或いは、 大気 中や地上や水上や水中を移動する移動体に設置されて、 外部に存在する流体の重 力全圧 P を受け入れる開口部とこの開口部の両端で向かい合った流出口と流入 口とを少なく とも一箇所に設けた流出 · 流入循環圧力管とすることにより、 請求項 2に記載の本願第 2発明の流動流体の重力全圧エネルギの使用方法を実 施できる。
( 1 1 ) 請求項 1 1 に記載の本願第 1 1発明の流動流体の重力全圧エネルギの 使用装置を説明する。
請求項 9又は 1 0 に記載の流動流体の重力全圧エネルギの使用装置に おいて、 水車または風車の下流側の圧力管内に設けられた後部エネルギ供給手段 が、 抵抗打消し圧力差 P D 、 重力動圧補充圧力 P (; H V A、 流入流量維持運動エネル ギE F·-Λ I 、 流出流量維持運動エネルギ E ^„ 等を供給することにより、
請求項 4 に記載の本願第 4発明の流動流体の重力全圧エネルギの使用方法を実 施できる。
( 1 2 ) 請求項 1 2に記載の本願第 1 2発明の流動流体の重力全圧エネルギの 使用装置を説明する。
請求項 9又は 1 0 に記載の流動流体の重力全圧エネルギの使用装置に おいて、 水車または風車の上流側の圧力管内に設けられた前部エネルギ供給手段 と、 水車または風車の下流側の圧力管内に設けられた後部エネルギ供給手段とが 、 抵抗打消し圧力差 Ρ ,) 、 重力動圧補充圧力 Ρ (:Ν Λ、 流入流量維持運動エネルギ Ε Λ, 、 流出流量維持運動エネルギ E F A。 等を分担して供給する。
請求項 5に記載の本願第 5発明の流動流体の重力全圧エネルギの使用方法を実 施できる。
( 1 3 ) 請求項 1 3に記載の本願第 1 3発明の流動流体の重力全圧エネルギの 使用装置を説明する。
請求項 9、 1 0、 1 1又は 1 2に記載の流動流体の重力全圧エネルギ の使用装置において、 前部ガイ ドベーン部の出口の断面積を後部ガイ ドベーン部 の入口の断面積より大きくする。
請求項 6に記載の本願第 6発明の流動流体の重力全圧エネルギの使用方法を実 施できる。
( 1 4 ) 請求項 1 4に記載の本願第 1 4発明の流動流体の重力全圧エネルギの 使用装置を説明する。
請求項 9、 1 0、 1 1、 1 2又は 1 3に記載の流動流体の重力全圧ェ ネルギの使用装置において、 前部ガイ ドべ—ン部および後部ガイ ドべ—ン部の断 面積を可変にする。
請求項 8に記載の本願第 8発明の流動流体の重力全圧エネルギの使用方法を実 施できる。 HI 面 の 簡 単 な 説 明
図 1 は、 本発明の第 3種永久運動の基本型の構成を示す断面図である。
図 2は、 本発明の第 3種永久運動の基本型における流体の新しい運動法則の抵 抗打消し圧力差 P R) の流量維持作用と、 重力全圧 P FI„の重力全圧供給作用との動 作を示す図である。
図 3は、 本発明の第 3種永久運動の発展型の構成を示す断面図である。
図 4は、 本発明の第 3種永久運動の発展型における流体の新しい運動法則の抵 抗打消し圧力差 Ρ。 の流量維持作用と、 重力全圧 P G„の重力全圧供給作用との動 作を示す図である。
図 5は、 本発明の第 3種永久運動の基本型をもぐりォリフィスに設置した場合 の模式図である。
図 6は、 本発明の第 3種永久運動の基本型を 2つの水路に跨がって設置した場 合の模式図である。
図 7は、 本発明の第 3種永久運動の基本型を人為循環水路に設置した場合の模 式図である。
図 8は、 実証試験装置の構成を示す断面図である。
図 9は、 実証試験の勾配水路への設置方法を示す図である。 発 明 を 実 施 す る た め の 最 良 の 形 態
本発明の流動流体の重力全圧エネルギの使用方法とその装置は、 流動流体が水 でも空気でも構造 ·原理は同じなので、 水の場合の基本型と発展型とを説明し、 最後に特殊形態を追加する。
尚、 流動流体が空気の場合、 従来の流体力学の理論では流速がマッハ 1 に近づ く と圧縮が問題になるが、 流体の新しい運動法則に基づく第 3種永久運動では、 第 4法則の複合共存融合作用により、 上流側と下流側間に作用 ·反作用が無くな るので、 圧縮は問題にならない。 そして、 発展型の場合には、 循環圧力管内の流 速を 2 5 s e c程度にすれば、 風車駆動流速 V T を 2 5 0 m Z s e c程度に することが可能で、 水の場合より小型で大きな出力が得られる。
[ I ] 第 1の実施の形態:水の場合の基本型
本実施の形態を図 1、 図 2に基づいて説明する。
( 1 ) 用途
本実施の形態は、 潮流、 河川、 水路等において、 水面下の流れの速い位 置に脬から釣り下げて使用するものである。
応用例としては、 水上船舶や水中船舶に取り付けて使用できる。 特に、 水中船 舶に取り付けると、 重力全圧 P G Hが大きくなるので、 大きな出力が得られる。
( 2 ) 構造
図 1 に示す圧力管 1 を脖 (図示せず) から釣り下げて、 圧力管 1の中心 袖を略水平にして、 水深 H ( m ) = 4 m、 流速 V ( m / s e c ) = 2 m / s e c の位置に設置する。 図 1 において、 圧力管 1 は、 中央部に設けられた軸流水車 6と、 流入□ 2と、 流出口 3と、 流入口 2と流出口 3との双方から圧力管 1の断面積を円周方向に偏 向しながら縮小するようにする流入部 9、 前部ガイ ドベーン部 5、 流出部 1 0、 後部ガイ ドベーン部 7を有する。 前部ガイ ドべ一ン部 5と後部ガイ ドべ一ン部 7 とは、 ガイ ドべ一ンの偏向角の調整機能を有する。
前部エネルギ供給手段 4は軸流ポンプであり、 本実施の形態では、 流入部 9と 前部ガイ ドべーン部 5との間に設けられる。
後部エネルギ供給手段 8は軸流ポンプであり、 本実施の形態では、 流出部 1 0 と後部ガイ ドべ一ン部 7 との間に設けられる。
9 aは、 円筒形の通路を作り断面積を変化させるための前部円錐部、 1 0 aは 、 円筒形の通路を作り断面積を変化させるための後部円錐部、 1 1 は、 水車 6に 接続する発電機である。 又、 水流を乱さないように、 圧力管 1 に外套管を付けて 外形を円筒形にする。
尚、 本実施の形態では、 図 1 に示すように、 前部ガイ ドべ—ン部 5 と後部ガイ ドべ一ン部 7 とを円筒形にしているが、 円筒形では縮小率に限界があるので、 内 外両側面の何れか一方または双方を円錐面にして縮小率を大きくすることができ る。
( 3 ) 3次元方向の重力全圧 と 1次元方向の抵抗打消し圧力差 Pn の動作 の説明
図 2において、 保存力でない 1次元方向の抵抗打消し圧力差 Pn は、 圧 力管内全長に分布し、 その勾配によって、 所定流量の水流に対して、 圧力管内各 部の抵抗を打ち消して消費される。
水車 6の上流側と下流側とに流入流量維持運動エネルギ E,.A I と流出流量維持 運動エネルギ EFA。 とが供給されている。
水車 6の出口の上流側には、 流入□ 2外の水流の第 2重力全圧 PG„ =重カ静圧
P G s +重力動圧 P GHV が存在し、 水車 6の出口の下流側には、 流出□ 3外の水 流の重力全圧 Pen =重力静圧 Pes +重力動圧 P GHV の重力静圧 P GHS が、 流出 口 3から水車 6の出口まで作用し、 更に、 水車 6の上流側から供給された重力全 圧補充圧力 P G,ivaが、 水車 6の出口の下流側に作用して、 第 3重力全圧 P (:„ =重 3 "5
カ静圧 Pc,ls +重力全圧補充圧力 pt;IIVAが存在する。
抵抗打消し圧力差 P D が、 所定流量の水流に対して圧力管内各部の抵抗を打ち 消しているので、 水車 6の出口の上流側では、 流入流量維持運動エネルギ E ,,A, と第 2重力全圧 PGHとの共存融合作用によって第 2重力全圧エネルギ E G„が発生 して所定流量が維持される。 水車 6の下流側では、 流出流量維持運動エネルギ E Λ。 と第 3重力全圧 Ρ(;„との共存融合作用によって第 3重力全圧エネルギ EfiHが 発生して所定流量が維持される。
第 2重力全圧エネルギ E G„と第 3重力全圧エネルギ ΕΓ,„とは、 別系統の重力全 圧 PG„を圧力エネルギ源としており、 流入口 2の上流側と流出口 3の下流側とに は、 別系統の重力全圧 P(;Hを圧力エネルギ源として自然に存在する第 1、 第 4重 力全圧エネルギ Ε (があるので、 流入口 2の上流側から流出口 3の下流側まで複 合共存融合作用が成立し、 流入口 2を境界面とする上流側と下流側間と、 水車 6 の出口を境界面とする上流側と下流側間と、 流出□ 3を境界面とする上流側と下 流側間とには、 所定流量の水流に対する作用 ·反作用が無く なる。
従って、 流出□ 3の下流側を流れる所定流量の水流に伴って水車 6の出口と流 出口 3間の所定流量の水流が流出□ 3から流出し、 この水流に伴って、 流入口 2 と水車 6の出口間の水流が水車 6を駆動して水車 6の出口から流出し、 この水流 に伴って、 流入口 2の上流側の水流が流入口 2に流入する。
水車 6においては、 第 2重力全圧エネルギ Ε (;„が運動エネルギに変換して所定 流量の水流を円周方向に偏向して水車駆動流速 V.,. で水車 6に流入させる。 水車 6は、 負荷率の如何に係わらず通過流量を一定に維持する水車、 即ち、 軸流水車 であるので、 水車駆動流速 VT は、 水車 6を駆動するために水車 6内を円周方向 に回転する円周方向回転成分 VTDと、 水車 6から流出する流出方向成分 VT0とに 分かれ、 水車 6の出口の上流側では、 円周方向回転成分 VTDと流出方向成分 ν·,·0 とが所定流量の水流を維持し、 流出方向成分 VT0が所定流量の水流を作用 ·反作 用が無い状態で水車 6の出口から流出させる。
従って、 水車 6の負荷率が 0〜 1 0 0 %の範囲で、 円周方向回転成分 VTDの運 動エネルギを水車 6の駆動エネルギとして使用することができる。 但し、 負荷率 が 1 0 0 %の場合に水車 6が標準回転数で回転するとすれば、 負荷率が下がると 、 水車 6の回転数が増大する。
( 4 ) 設計事項
1 ) 流入□ 2、 流出口 3の直径と所定流量
1 . 流入口 2、 流出□ 3の直径
4 mとする。
2. 所定流量
所定流量 = 22 3. 1 4 X 2 = 2 5. 1 m 3 / s e c
2 ) 利用できる重力全圧エネルギ E(;H
利用できる重力全圧エネルギ Ε(,„は、
重力全圧エネルギ Ec„ =重力全圧 PGHx所定流量 = 9. 8 X ( 1 0. 3 3 + 4 ) X 2 5. 1 ( k W) = 3 5 2 4. 9 k Wである。
3 ) 水車 6 に流入する水車駆動流速 VT
重力全圧エネルギ EG„を総て水車駆動流速 V.,. の運動エネルギに変換 すると、
水車駆動流速 V.,' = { 2 9. 8 X ( 1 0. 3 3 + 4 ) } 1 /2 = 1 6. 8 m/ s e cである。
4 ) 前部ガイ ドべ一ン部 5 と後部ガイ ドべ—ン部 7 との水車 6 に対向する 最小断面積部分の断面積 S 、 S RCT と縮小率
1 - 8fT tSQ ¾ S F C Τ 、 S HOT
断面積 S FCT . S HOT = 2 5 . 1 + 1 6 8 = 1 . 5 m
2 · 縮小率
縮小率 = 1 . 5 ÷ ( 2 2 X 3 . 1 4 ) = 1 / 8 . 4
5 ) 前部エネルギ供給手段 4の消費エネルギ
前部エネルギ供給手段 4 は、 下記の 1 . 抵抗打消し圧力差 Pn と、 2 . 重力全圧補充圧力 PC1IVAと、 3 . 流入流量維持運動エネルギ Ε κΛ, に相当する エネルギを供給する。
この場合、 流体の新しい運動法則の説明に記載したように、 压カ管内各部を共 通の所定流量の流体が通過するので、 所定流量の流体に圧力と して供給されるェ ネルギ量は、 圧力管内のどの位置に供給しても、 供給するエネルギ ==供給する圧 力 x所定流量が同じになり、 且つ、 作用すべき位置まで伝わって作用すべき作用 をする。
尚、 本実施の形態では、 前部エネルギ供給手段 4 と、 後部エネルギ供給手段 8 とを設けたが、 上記の理由により、 何れか一方のみにし、 この一方から必要な人 為エネルギを総て供給しても良い。
1. 抵抗打消し圧力差 P D
抵抗打消し圧力差 P D は、 (所定流量-圧力管 1外の流速 X流入口 2の断面積) の流動流体が圧力管 1全長を通過する際に受ける抵抗を打ち消す圧 力差であり、 従来から使用されている実験式 : 抵抗打消し圧力差 P D =動圧差 X 係数から求める。
抵抗打消し圧力差 P D =水車駆動流速 V T の動圧 X係数 [ 0 . 0 5 (流入ロ 2 から水車 6の出口まで) + 0 . 2 (水車 6の出口から流出ロ 3 まで) ] = 1 4 . 3 3 X 0 . 2 5 = 3 . 5 8 m (水柱)
抵抗打消し圧力差 Ρ。 を発生させるに必要な前部エネルギ供給手段 4の出力 = 9 . 8 X 3 . 5 8 X 2 5 . 1 = 8 8 0 . 6 k W
2. 重力全圧補充圧力 P C M V A
重力全圧補充圧力 P C,I VAは、 流出口 3 と水車 6間に流出口 3から遡 つて作用できない圧力管 1 外の水流の重力動圧 Ρ ΰ1Ι Ν に代わって水車 6の下流側 の圧力管 1 内で作用するように圧力管 1 内に人為的に供給する人為エネルギであ り、
重力全圧補充圧力 P G 1I V Aを発生させるに必要な前部エネルギ供給手段 4の出力 = 2 2 ÷ 2 X 2 5 . 1 = 5 0 . 2 k W
3 . 流入流量維持運動エネルギ E KA ,
流入流量維持運動エネルギ Ε ΚΑ, は、 流入口 2での水流の運動エネ ルギに相当し、 流量を増加する際には、 第 3法則の共存融合作用により重力全圧 エネルギ E G t,を発生させる必要があるので、 後述の流出流量維持運動エネルギ Ε ΛΟ と共に必要なエネルギである。
しかし、 流入流量維持運動エネルギ Ε は、 流量の安定時と減少時には、 後 述の流出流量維持運動エネルギ ΕκΛ。 が第 3法則の共存融合作用により重力全圧 エネルギ E G I1を発生させ、 発生した重力全圧エネルギ E「,„が、 水車近傍の重力静 圧 P G II S を低下させるので、 流入流量維持運動エネルギ E Α Ι は不要になる。 流入流量維持運動エネルギ E A , = 2 2 ÷ 2 X 2 5 . 1 = 5 0 . 2 k W
4. 前部エネルギ供給手段 4の供給エネルギ
前部エネルギ供給手段 4の供給エネルギ =抵抗打消し圧力差 P„ のエネルギ + 重力全圧補充圧力 P G H V Aのエネルギ +流入流量維持運動エネルギ E F A , - 8 8 0 . 6 + 5 0 . 2 + 5 0 . 2 = 9 8 1 k W
5. 前部エネルギ供給手段 4の消費エネルギ
前部エネルギ供給手段 4の消費エネルギ =前部エネルギ供給手段 4の供給エネ ルギ ÷前部エネルギ供給手段 4の電力効率 = 9 8 1 k W÷ ( 0 . 9 5 0. 8 ) = 1 2 9 0 k W
6 ) 後部エネルギ供給手段 8の消費エネルギ
後部エネルギ供給手段 8 は、 下記の 1 . 流出流量維持運動エネルギ E AO に必要なエネルギを供給する。
1 . 流出流量維持運動エネルギ ΕκΛ
流出流量維持運動エネルギ Ε ΚΑ。 は、 流出口 3での水流の運動エネ ルギに相当し、 流量を増加する際には、 第 3法則の共存融合作用により重力全圧 エネルギ E G Ηを発生させる必要があるので、 前述の流人流量維持運動エネルギ Ε と共に必要なエネルギである。
そして、 流出流量維持運動エネルギ E PAD は、 流量の安定時と減少時にも、 第 3法則の共存融合作用により重力全圧エネルギ E CMを発生させるために必要であ るが、 水車 6の下流側の圧力管 1 内に発生した重力全圧エネルギ E GHが、 水車近 傍の重力静圧 P GHS を低下させるので、 前述の流入流量維持運動エネルギ E , は、 流量増加時以外は不要になる。
流出流量維持運動エネルギ Ε ,,Α。 = 2 2 ÷ 2 X 2 5 . 1 = 5 0 . 2 k W
2. 後部エネルギ供給手段 8の供給エネルギ
後部エネルギ供給手段 8の供給エネルギ =流出流量維持運動エネルギ E H A。 =
5 0 . 2 kW
3 . 後部エネルギ供給手段 8の消費エネルギ 後部エネルギ供給手段 8の消費エネルギ =後部エネルギ供給手段 8の供給エネ ルギ +後部エネルギ供給手段 8の電力効率 = 5 0. 2 k W÷ ( 0. 9 5 X 0. 8 ) = 6 6. 1 kW
7 ) 水車出力
水車出力 ( kW) =所定流量 X { 9. 8 X ( 1 0. 3 3 + H) } X水車効率一 後部エネルギ供給手段の消費エネルギ-後部エネルギ供給手段の消費エネルギ = 2 5. 1 { 9. 8 X ( 1 0. 3 3 + 4 ) } X 0. 9 — 1 2 9 0 — 6 6. 1 = 3 1 7 2 - 1 3 5 6 = 1 8 1 2 kW
尚、 出力の一部で、 請求項 2、 1 0 に記載のようにして、 流出口 3から流出し た水流を流入口 2 に循環させたものが、 本発明の第 3種永久運動の発展型である
8 ) 負荷の変動や水流の流速の変動に対する制御方法
1 . 負荷の変動に対しては、
① 変速歯車を使用して水車 6で駆動される発電機 1 1 の回転数を一定に維持 する。
② 負荷の増減に合わせて、 前部エネルギ供給手段 4 と後部エネルギ供給手段 8 との出力を増減し、 圧力管 1 内の流量を増減し、 水車 6の回転数を一定に維持 しながら、 出力を増減する。
2. 水流の流速の変動に対しては、
流速の増減に合わせて、 前部エネルギ供給手段 4 と後部エネルギ供給手段 8 と の出力を増減し、 前部ガイ ドべ一ン部 5 と後部ガイ ドべ一ン部 7 との円周方向へ の偏向角を流速の増減に合わせて減増させ、 水車 6の回転数を一定に維持する。
[ Π ] 第 2の実施の形態 : 水の場合の発展型
本実施の形態を図 3、 図 4 に基づいて説明する。
( 1 ) 用途
第 3種永久運動の発展型は、 圧力管を大気中や水中に設置し、 或いは、 大気中や地上や水上や水中を移動する移動体に設置して使用できるので、 従来の 水車、 風車、 内燃機関、 外燃機関等の殆ど総てのエネルギ源に代わって使用でき る。
本実施の形態は、 自動車のガソ リ ンエンジンの代わりに、 自動車のボンネッ ト 内に設置できるように構成する。
( 2 ) 構造
図 3 において、 1 は、 図 1 に示す第 1 の実施の形態の圧力管 1 と同じ構 造の圧力管である。
圧力管 1 の流入口 2 と流出ロ 3 とに開口部 1 3、 1 3を設ける。 開口部 1 3、 1 3の外側には、 循環圧力管 1 2 aの流入口 2 a と流出口 3 a とが対向し、 全体 で、 外部に存在する流体の重力全圧 1^;„を受け入れる開口部 1 3、 1 3 とこの開 口部 1 3、 1 3の両端で向かい合つた流出□ 3、 3 a と流入口 2、 2 a とを設け た流出 · 流入循環圧力管 1 2 となっている。 循環圧力管 1 2 a内には外部エネル ギ供給手段 1 4を設ける。 循環圧力管 1 2 aの湾曲部には、 流量を偏らせないよ うに、 セノ、°レ一タ 1 5、 1 5を設ける。
尚、 開口部 1 3、 1 3 は、 圧力管 1 の流人口 2 と流出口 3 とに、 圧力管 1外に 存在する流動流体の重力全圧 P (; Hを作用させれば良いので、 何れか一方のみでも 良い。 その場合は、 外部エネルギ供給手段 1 4の作用を、 圧力管 1 内のエネルギ 供給手段に分担させる。
( 3 ) 3次元方向の重力全圧 と 1 次元方向の抵抗打消し圧力差 P ! の分布 の説明
図 4 において、 図 2の第 1 の実施の形態の場合と異なるのは、 図 2の場 合は、 流入口 2の上流側と流出□ 3の下流側とが、 大気圧下の水流と して流れて いたが、 図 4 に場合は、 流出 ,流入循環圧力管 1 2内の所定流量の流動流体を、 外部に存在する流体の重力全圧 P c ,,を開口部 1 3、 1 3で受け入れながら流出口 3、 3 aから流出させ開口部 I 3、 1 3を通過させ流人口 2 a、 2 に流入させて 流出 · 流入循環圧力管 1 2内を循環させることであり、 他は、 図 2の第 1 の実施 の形態の場合と同じなので説明を省略する。
( 4 ) 設計事項
1 ) 圧力管 1 と循環圧力管 1 2 aの流入口と流出口の直径と、 所定流量 1 . 流入口、 流出口の直径 0. 1 5 mとする。
この直径で流出 ♦ 流入循環圧力管 1 2の全長が 2 m程度になるので、 ボンネッ ト内に 6台並べて設置する。
2. 所定流量
循環圧力管 1 2 a内の流速を 2 mZ s e c とする。
所定流量 = 0. 1 52 0. 7 8 5 X 2 = 0. 0 3 5 m3 / s e c
2 ) 利用できる重力全圧エネルギ
Figure imgf000043_0001
利用できる重力全圧エネルギ E (;, ,は、
重力全圧エネルギ Ec , =重力全圧 P(;H x所定流量 = 9. 8 X 1 0. 3 3 0. 0 3 5 ( kW) = 3. 5 kWである。
3 ) 水車 6 に流入する水車駆動流速 VT
重力全圧エネルギ E G,Fを総て水車駆動流速 V T の運動エネルギに変換 すると、
水車駆動流速 VT = { 2 9. 8 1 0. 3 3 } 1/2 = 1 4. 2 m/ s e cで ある。
4 ) 前部ガイ ドベーン部 5 と後部ガイ ドベーン部 7 との水車 6 に対向する 最小断面積部分の断面積 S T 、 S BGT と縮小率
1 . 断 if] O P(;T 、 S BGT
断面積 S FG丁 、 S BGT = 0. 0 3 5 + 1 4. 2 = 2 4. 6 c m2
2. 縮小率
縮小率 = 2 4. 6 ÷ ( 1 52 X 0. 7 8 5 ) = 1 / 7. 1 8
発展型の場合には、 縮小率は、 1 / 5以下でないと、 出力が小さ く なる。
5 ) 前部エネルギ供給手段 4の消費エネルギ
前部エネルギ供給手段 4 は、 下記の 1. 抵抗打消し圧力差 Pn と、 2 . 重力全圧補充圧力 PGVAと、 3. 流入流量維持運動エネルギ E r.A I に相当する エネルギを供給する。
この場合、 流体の新しい運動法則の説明に記載したように、 圧力管内各部を共 通の所定流量の流体が通過するので、 所定流量の流体に供給されるエネルギ量は 、 圧力管内のどの位置に供給しても、 供給するエネルギ =供給する圧力 X所定流 2
量が同じになり、 且つ、 作用すべき位置まで伝わって作用すべき作用をする。 尚、 本実施の形態では、 前部エネルギ供給手段 4 と、 後部エネルギ供給手段 8 とを設けたが、 上記の理由により、 何れか一方のみにし、 この一方から必要な人 為エネルギを一括して供給しても良い。
1 . 抵抗打消し圧力差 P D
抵抗打消し圧力差 は、 (所定流量-圧力管 1外の流速 X流入口
2の断面積) の流動流体が圧力管 1 全長を通過する際に受ける抵抗を打ち消す圧 力差であり、 従来から使用されている実験式 : 抵抗打消し圧力差 Ρ ,) -動圧差 X 係数から求める。
抵抗打消し圧力差 Ρ ,, =水車駆動流速 V T の動圧 X係数 [ 0 . 0 5 (流入口 2 から水車 6の出口まで) + 0 . 2 (水車 6の出口から流出ロ 3 まで) ] = 1 0 . 3 3 X 0 . 2 5 = 2 . 5 8 m (水柱)
抵抗打消し圧力差 を発生させるに必要な前部エネルギ供給手段 4の出力- 9 . 8 X 2 . 5 8 X 0 . 0 3 5 = 0 . 8 8 k W
2 . 重力全圧補充圧力 P GHVA
重力全圧補充圧力 P C II V ま、 流出□ 3 と水車 6間に流出□ 3から遡 つて作用できない圧力管 1 外の水流の重力動圧 P GMV に代わって水車 6の下流側 の圧力管 1 内で作用するように圧力管 1 内に人為的に供給する人為エネルギであ り ヽ
重力全圧補充圧力 P G,I V Aを発生させるに必要な前部エネルギ供給手段 4の出力 = 2 2 ÷ 2 X 0 . 0 3 5 = 0 . 0 7 kW
3. 流入流量維持運動エネルギ E KA ,
流入流量維持運動エネルギ Ε ,..Λ Ι は、 流入流量維持運動エネルギ Ε
,.· Λ, に相当し、 流量を増加する際には、 第 3法則の共存融合作用により重力全圧 エネルギ E G,,を発生させる必要があるので、 後述の流出流量維持運動エネルギ E ΚΛΟ と共に必要なエネルギである。
しかし、 流入流量維持運動エネルギ Ε ΡΛ Ι は、 流量の安定時と減少時には、 後 述の流出流量維持運動エネルギ Ε κΛ。 が第 3法則の共存融合作用により重力全圧 エネルギ EG„を発生させ、 発生した重力全圧エネルギ E cHが、 水車近傍の重力静 圧 P(;HS を低下させるので、 流入流量維持運動エネルギ E κΛ, は不要になる。 流入流量維持運動エネルギ Ε κΛ Ι = 22 ÷ 2 X 0. 0 3 5 = 0. 0 7 kW
4. 前部エネルギ供給手段 4の消費エネルギ
前部エネルギ供給手段 4の消費エネルギ =前部エネルギ供給手段 4の供給エネ ルギ ÷前部エネルギ供給手段 4の電力効率- し 0 2 k W÷ ( 0. 9 5 X 0. 8 ) = 1. 3 4 kW
6 ) 後部エネルギ供給手段 8の消費エネルギ
後部エネルギ供給手段 8 は、 下記の 1 . 流出流量維持運動エネルギ E ΛΟ に必要なエネルギを供給する。
1. 流出流量維持運動エネルギ Ε κΛ
流出流量維持運動エネルギ Ε Λ。 は、 流出流量維持運動エネルギ Ε
ΚΛΟ に相当し、 流量を増加する際には、 第 3法則の共存融合作用により重力全圧 エネルギ を発生させる必要があるので、 前述の流入流量維持運動エネルギ E Λ , と共に必要なエネルギである。
そして、 流出流量維持運動エネルギ Ε ΡΛ。 は、 流量の安定時と減少時にも、 第 3法則の共存融合作用により重力全圧エネルギ EGf,を発生させるために必要であ るが、 発生した重力全圧エネルギ E GHが、 水車近傍の重力静圧 Pr,HS を低下させ るので、 前述の流入流量維持運動エネルギ E f A I は不要になる。
流出流量維持運動エネルギ E f A。 = 2 2 ÷ 2 X 0. 0 3 5 = 0. 0 7 k W
2. 後部エネルギ供給手段 8の消費エネルギ
後部エネルギ供給手段 8の消費エネルギ =後部エネルギ供給手段 8の供給エネ ルギ ÷後部エネルギ供給手段 8の電力効率 = 0. 0 7 k W÷ ( 0. 9 5 X 0. 8 ) = 0. 0 9 k W
7 ) 外部エネルギ供給手段 1 4の消費エネルギ
外部エネルギ供給手段 1 4 は、 下記の外部流量維持運動エネルギ E O -
Λ と、 外部抵抗打消し圧力差 P D。に必要なエネルギを供給する。
外部抵抗打消し圧力差 Ρ。。は循環圧力管 1 2 aの構造から、 外部流量維持運動 エネルギ Ε。-λ に等しいとする。
外部流量維持運動エネルギ E。 = 2 2 ÷ 2 X 0 . 0 3 5 = 0 . 0 7 k W 外部抵抗打消し圧力差 Ρ。。= 2 2 + 2 X 0. 0 3 5 = 0. 0 7 kW 1. 外部エネルギ供給手段 1 4 の消費エネルギ
外部エネルギ供給手段 1 4の消費エネルギ =外部エネルギ供給手段 1 4の供給エネルギ 外部エネルギ供給手段 1 4の電力効率- 0. 1 4 k W÷ ( 0. 9 5 X 0. 8 ) = 0. 1 8 kW
8 ) 水車出力
水車出力 ( k W) =所定流量 X { 9. 8 X 1 0. 3 3 } X水車効率—全部エネ ルギ供給手段の消費エネルギー後部エネルギ供給手段の消費エネルギー外部エネ ルギ供給手段の消費エネルギ = 0. 0 3 5 X 9. 8 X 1 0. 3 3 x 0. 9 - 1. 3 4 - 0. 0 9 - 0. 1 8 = 3. 1 9 - 1. 6 1 = 1. 5 8 k W
水車出力は、 1 · 5 8 k Wになる。
6台並列に設置すると、 約 9. 5 k W =約 1 3 IPになる。
9 ) 負荷の変動変動に対する制御方法
1. 負荷の変動に対しては、
① 変速歯車を使用して水車 6で駆動される発電機 1 〗 の回転数を一定に維持 する。
② 負荷の増減に合わせて、 前部エネルギ供給手段 4 と後部エネルギ供給手段 8 と外部エネルギ供給手段 1 4の出力を増減し、 圧力管 1 内の流量を増減し、 水 車 6の回転数を一定に維持しながら、 出力を増減する。
[1Π] 基本型の特殊用途の実施の形態
基本型は、 圧力管 1 の流出口 3からの流出速度を、 圧力管 I の流出口 3外 の大気圧下の流動流体の流速に合わせれば安定して動作するので、 図 5〜図 7 に 示す特殊用途に使用できる。
( 1 ) もぐりオリ フィスでの使用
図 5 に示すようになり、 図 5の H , を人為エネルギの一部と して使用で きる。
( 2 ) 水面間に落差がある 2つの水流に跨がって使用
図 6 に示すようになり、 図 6の H , を人為エネルギの一部と して使用で 5
きる。
( 3 ) 人為的に構成した勾配水路での使用
図 7 に示すようになり、 水流循環手段 1 8のエネルギで勾配水路 1 7を 構成し、 基本型の圧力管 1 を勾配水路 1 7内に設置する。 勾配水路 1 7 の断面積 と圧力管 1 の断面積を等しく したものが、 発展型である。 産 業 上 の 利 用 可 能 性
[ I ] 本発明の第 3種永久運動の基本型
本発明の基本型は、 ( 1 ) 潮流、 海流、 河川、 水路等の水流、 ( 2 ) 風の 中、 ( 3 ) 水上または水中の移動体、 ( 4 ) 大気中の移動体、 ( 5 ) 落差を利用 する、 図 5 に示すもぐりオ リ フィス、 図 6 に示す水面間に落差がある 2つの水路 、 ( 6 ) 図 7 に示す人為循環水路等に使用できる。
そして、 完全なク リーンエネルギであり、 エネルギ問題の解決、 自然環境の改 善、 生活環境の改善等の効果が大きい。
[ II ] 本発明の第 3種永久運動の発展型
本発明の発展型は、 従来の水車、 風車、 内燃機関、 外燃機関等の殆ど総て の用途に適用できる。
例えば、 本発明の発展型は、
( 1 ) 原子力発電等を含む各種の発電所に代わって、 電力需要を総て賄う こお ができる。
( 2 ) 自動車のエンジン等に代わる等、 石油の燃料と しての用途を無く し、 大 気汚染、 地球温暖化等を防止できる。
( 3 ) 人類の悠久の平和と繁栄
1 . 本発明の第 3種永久運動を構成する新しい自然法則である 「流体の新 しい連動法則」 の作用方向次元か異なる 2つの力の共存融合作用は、 宇宙全体の 永久運動を構成しており、 共存融合の概念は、 人類の悠久の平和と繁栄に必要な 哲学である。
2 . 第 3種永久運動でエネルギを確保し、 このエネルギで資源をリサイ ク ルし、 自然環境、 生活環境を整え、 未来に対する行き詰ま り感と無力感とを取り k 6 l 除き、 地球の悠久の平和と繁栄を確立できる

Claims

請 求 の 範 囲
1. 空気や水等の流動流体が流入口に流入し流出口から流出する圧力管を風の中 や水流中に設置し、 或いは、 大気中や地上や水上や水中を移動する移動体に設置 し、 圧力管の外部に存在する空気や水等の流動流体の重力全圧 P G„を圧力管の流 入口と流出口との双方に作用させることと、
圧力管内に負荷率の如何に係わらず通過流量を一定に維持する水車または風車 を設置することと、
水車または風車の前後に圧力管の断面積が流入口側と流出口側との双方から水 車または風車に向かって円周方向に偏向しながら縮小する部分を設けることによ り、 圧力管内を流動流体が流れれば水車または風車近傍の重力静圧 P CS が低下 し、 圧力管外の流入口近傍の流動流体の (第 2重力全圧 Pfi„) = ( 3次元方向の 重力静圧 P GHS +流れに沿って作用する重力動圧 P GMV ) が流入口から水車また は風車まで流れに沿って作用し、 圧力管外の流動流体の 3次元方向の重力静圧 P CHが流出口から水車または風車まで流れに遡って作用して、 水車または風車の上 流側と下流側の圧力管内で重力全圧 P GHの圧力エネルギ源が異なるようにするこ とと、
流出口と水車または風車間に流出口から遡って作用できない圧力管外の流動流 体の重力動圧 P G II V に代わつて水車または風車の下流側の圧力管内で作用するよ うに重力動圧補充圧力?^ を圧力管内に人為的に供給して、 水車または風車の 下流側の圧力管内に (第 3重力全圧 Pc;,,) = (圧力管内の流れに遡って流出口か ら作用する 3次元方向の重力静圧 P、;„s +人為的に供給する重力動圧補充圧力 P
CHVA) を存在させることと、
(所定流量 =圧力管外の流速 X流入口の断面積) 以下の流動流体が圧力管全長 を通過する際に受ける抵抗を打ち消す抵抗打消し圧力差 P D 、
水車または風車の上流側の圧力管内に前記第 2重力全圧 が存在し、 前記抵 抗打消し圧力差 P D により前記所定流量以下の流動流体に対する抵抗が無いとい う条件で、 水車または風車の上流側の圧力管内における流動流体の前記所定流量 以下を維持する流入流量維持運動エネルギ ΕκΑ Ι
水車または風車の下流側の圧力管内に前記第 3重力全圧 Pr;„が存在し、 前記抵 抗打消し圧力差 p f, により前記所定流量以下の流動流体に対する抵抗が無いとい う条件で、 水車または風車の下流側の圧力管内における流動流体の前記所定流量 以下を維持する流出流量維持運動エネルギ Ε Α。 等を圧力管内に人為的に供給す ることとにより、
前記所定流量以下の流動流体が、 前記抗打消し圧力差 Ρい 、 前記流入流量維持 運動エネルギ ΕΡΛ Ι 、 前記流出流量維持運動エネルギ E rA。 、 前記重力動圧補充 圧力 P GMVA、 風や水流あるいは前記移動体の移動等によつて圧力管の流入口に流 人し圧力管の流出口から流出して流れ去り、
圧力管の流入口の上流側の流体と、 水車または風車の上流側の圧力管内の流体 と、 水車または風車の下流側の圧力管内の流体と、 圧力管の流出口の下流側の流 体とが、 流量が前記所定流量以下の範囲内でエネルギ保存則によって作用 ·反作 用が無い状態で圧力管の各部分の最大共通流維持流量に安定し、
圧力管の流入口の上流側に自然に存在する第 1重力全圧 P «Hと、 流人口と水車 または風車間の前記第 2重力全圧 P G„と、 水車または風車と流出口間の前記第 3 重力全圧 P G„と、 圧力管の流出口の下流側に自然に存在する第 4重力全圧 P G Hと が别系統で等しくなり、
圧力管の流入口の上流側と流出口の下流側とに、 第 1重力全圧エネルギ E G,, == 第 1重力全圧 P CH X流量と、 第 4重力全圧エネルギ E C1, =第 4重力全圧 P CH X流 量とが别系統の重力全圧 P CHを圧力エネルギ源として自然に存在し、 流入口と水 車または風車間の第 2重力全圧エネルギ E(;„ =第 2重力全圧 PGH X流量と、 水車 または風車と流出口間の第 3重力全圧エネルギ E GH-第 3重力全圧 P GT, X流量と が別系統の重力全圧 P CHを圧力エネルギ源として人為的に発生し、
水車または風車の下流側の圧力管内で、 前記第 3重力全圧エネルギ が、 抵 抗が無い状態で運動エネルギに変換して圧力管内の前記流量を維持すると共に水 車または風車近傍の重力静圧 P«HS を低下させ、 水車または風車の上流側の圧力 管内で、 前記第 2重力全圧エネルギ E ,が、 前記の下流側の前記流量の維持と重 カ静圧 P HS の低下とにより抵抗が無い状態で運動エネルギに変換し水車または 風車を駆動して出力を出し、 前記出力の一部で前記の人為的に供給するエネルギ を賄うという第 3種永久運動を実現することを特徴とする流動流体の重力全圧ェ ネルギの使用方法。
2 . 請求項 1 に記載の流動流体の重力全圧エネルギの使用方法において、 空気や 水等の流動流体が流入口に流入し流出口から流出する圧力管を大気中や水中に設 置し、 或いは、 大気中や地上や水上や水中を移動する移動体に設置し、 この圧力 管を、 外部に存在する流体の重力全圧 P G Hを受け入れる開口部とこの開口部の両 端で向かい合った流出口と流入口とを少なく とも一箇所に設けた流出 ·流入循環 圧力管とすることにより、 前記流出 ·流入循環圧力管内の所定流量以下の流動流 体を、 外部に存在する流体の重力全圧 Ρ ΰ Ηを前記開口部で受け入れながら前記流 出口から流出させ前記開口部を通過させ前記流入口に流入させて前記流出 ·流入 循環圧力管内を循環させることを特徴とする流動流体の重力全圧エネルギの使用 方法。
3. 請求項 1 または 2に記載の流動流体の重力全圧エネルギの使用方法において 、 抵抗打消し圧力差 、 重力動圧補充圧力 Ρ Η Ν Λ、 流入流量維持運動エネルギ E CH. 、 流出流量維持運動エネルギ E G H。 等を水車または風車の上流側に人為的 に供給することを特徴とする流動流体の重力全圧エネルギの使用方法。
4. 請求項 1 または 2に記載の流動流体の重力全圧エネルギの使用方法において 、 抵抗打消し圧力差 、 重力動圧補充圧力 P (;VA、 流入流量維持運動エネルギ Eo„, 、 流出流量維持運動エネルギ ΕϋΗ。 等を水車または風車の下流側に人為的 に供給することを特徴とする流動流体の重力全圧エネルギの使用方法。
5. 請求項 1または 2に記載の流動流体の重力全圧エネルギの使用方法において 、 抵抗打消し圧力差 Ρ ,, 、 重力動圧補充圧力 P CVA、 流入流量維持運動エネルギ E CH, 、 流出流量維持運動エネルギ E G„„ 等を水車または風車の上流側と下流側 とに分けて人為的に供給することを特徴とする流動流体の重力全圧エネルギの使 用方法。
6 . 請求項 1、 2、 3、 4又は 5に記載の流動流体の重力全圧エネルギの使用方 法において、 断面積が流入口側から水車または風車に向かって円周方向に偏向し ながら縮小する部分の流動流体の出口の断面積を、 断面積が流出口側から水車ま たは風車に向かって円周方向に偏向しながら縮小する部分の流動流体の人口の断 面積よりも大きくすることにより、 流入口と水車または風車間の流動流体の第 2 重力全圧エネルギ Eg„による水車または風車の入口における流動流体の入口重力 静圧 P (;„S Lを、 水車または風車と流出口間の流動流体の第 3重力全圧エネルギ E
Γ,Μによる水車または風車の出口における出口重力静圧 P GHSOよりも高く し、 これ らの間の静圧差を、 抵抗打消し圧力差 Ρ,) 、 重力動圧補充圧力 Ρ0ΗνΛ、 流入流量 維持運動エネルギ E GFL L 、 流出流量維持運動エネルギ E G H。 等の一部として使用 することを特徴とする流動流体の重力全圧エネルギの使用方法。
7. 請求項 1、 2、 3、 4、 5又は 6に記載の流動流体の重力全圧エネルギの使 用方法において、 抵抗打消し圧力差 Ρ,) 、 重力動圧補充圧力 ΡΰνΛ、 流入流量維 持運動エネルギ Ε ,,, 、 流出流量維持運動エネルギ E GMO 等を変化させることに より、 流量を変化して、 水車または風車の出力を変化させることを特徴とする流 動流体の重力全圧エネルギの使用方法。
8. 請求項 7に記載の流動流体の重力全圧エネルギの使用方法において、 流量を 増減させる場合に、 断面積が流入口側と流出口側との双方から水車または風車に 向かって円周方向に偏向しながら縮小する部分の断面積を增減することにより、 水車または風車に流入する流動流体の流速を一定に維持し、 水車または風車の回 転数を一定に維持しながら出力を増減することを特徴とする流動流体の重力全圧 エネルギの使用方法。
9. 風の中や水流中に設置されて、 或いは、 大気中や地上や水上や水中を移動す る移動体に設置されて、 外部に存在する空気や水等の流動流体の重力全圧 P G Hを 流入口と流出口との双方から受入れながら流動流体が内部を通過する圧力管と、 圧力管内に設けられた負荷率の如何に係わらず通過流量を一定に維持する水車 または風車と、
水車または風車の前後に設けられ圧力管の断面積を流入口側と流出口側との双 方から水車または風車に向かって円周方向に偏向しながら縮小する前部ガイ ドべ —ン部および後部ガイ ドべ一ン部と、
流入口と水車または風車間に設けられて、 (所定流量-圧力管外の流速 X流入 口の断面積) 以下の流動流体が圧力管全長を通過する際に受ける抵抗を打ち消す 抵抗打消し圧力差 Ρπ 、 流出 Πと水車または風車間に流出口から遡って作用でき l ない圧力管外の流動流体の重力動圧 PG,iv に代わって水車または風車の下流側の 圧力管内で作用する重力動圧補充圧力 PGHVA、 水車または風車の上流側の圧力管 内に (第 2重力全圧 Pr;ll)
Figure imgf000053_0001
+流れに沿って作用 する重力動圧 P^v ) が存在する条件で水車または風車の上流側の圧力管内の流 5 動流体の前記所定流量以下を維持する流入流量維持運動エネルギ E FAi 、 水車ま たは風車の下流側の圧力管内に (第 3重力全圧 PG„) = (圧力管内の流れに遡つ て流出口から作用する 3次元方向の重力静圧 PGHS +人為的に供給する重力動圧 補充圧力 P(;IIVA) が存在する条件で水車または風車の下流側の圧力管内の流動流 体の前記所定流量以下を維持する流出流量維持運動エネルギ EPA。 等を供給する0 前部エネルギ供給手段と、
水車または風車の出力の一部を前記前部エネルギ供給手段に供給するエネルギ 伝達供給手段とを有することを特徴とする流動流体の重力全圧エネルギの使用装 置。
1 0. 請求項 9に記載の流動流体の重力全圧エネルギの使用装置において、 外部5 に存在する流体の重力全圧 PG„を流入口と流出口との双方から受入れながら流動 流体が内部を通過する圧力管は、 大気中や水中に設置されて、 或いは、 大気中や 地上や水上や水中を移動する移動体に設置されて、 外部に存在する流体の重力全 圧 p ; l!を受け入れる開口部とこの開口部の両端で向かい合った流出口と流入口と を少なく とも一箇所に設けた流出 ·流入循環圧力管であることを特徴とする流動0 流体の重力全圧エネルギの使用装置。
1 1 . 請求項 9又は 1 0に記載の流動流体の重力全圧エネルギの使用装置におい て、 水車または風車の下流側の圧力管内に設けられた後部エネルギ供給手段が、 抵抗打消し圧力差 Ρ。 、 重力動圧補充圧力 Pc„VA、 流入流量維持運動エネルギ E
,Λ , 、 流出流量維持運動エネルギ Ε Α。 等を供給することを特徴とする流動流体5 の重力全圧エネルギの使用装置。
1 2. 請求項 9又は 1 0に記載の流動流体の重力全圧エネルギの使用装置におい て、 水車または風車の上流側の圧力管内に設けられた前部エネルギ供給手段と、 水車または風車の下流側の圧力管内に設けられた後部エネルギ供給手段とが、 抵 抗打消し圧力差 Ρ。 、 重力動圧補充圧力 PCHVA、 流入流量維持運動エネルギ E f A , 、 流出流量維持運動エネルギ Ε Ρ Λ。 等を分担して供給することを特徴とする流 動流体の重力全圧エネルギの使用装置。
1 3 . 請求項 9、 1 0、 1 1又は 1 2に記載の流動流体の重力全圧エネルギの使 用装置において、 前部ガイ ドべ—ン部の出口の断面積が後部ガイ ドベーン部の入 口の断面積より大きなことを特徴とする流動流体の重力全圧エネルギの使用装置
I 4 . 請求項 9、 1 0、 1 1、 1 2又は 1 3に記載の流動流体の重力全圧ェネル ギの使用装置において、 前部ガイ ドべ一ン部および後部ガイ ドべ一ン部の断面積 が可変であることを特徴とする流動流体の重力全圧エネルギの使用装置。
PCT/JP1997/000007 1997-01-06 1997-01-06 Procede pour utiliser la totalite de l'energie gravitationnelle d'un fluide en ecoulement, et appareil correspondant WO1998030799A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1997/000007 WO1998030799A2 (fr) 1997-01-06 1997-01-06 Procede pour utiliser la totalite de l'energie gravitationnelle d'un fluide en ecoulement, et appareil correspondant
AU12106/97A AU1210697A (en) 1997-01-06 1997-01-06 Method for using total gravitational energy of flowing fluid and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000007 WO1998030799A2 (fr) 1997-01-06 1997-01-06 Procede pour utiliser la totalite de l'energie gravitationnelle d'un fluide en ecoulement, et appareil correspondant

Publications (1)

Publication Number Publication Date
WO1998030799A2 true WO1998030799A2 (fr) 1998-07-16

Family

ID=14179909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000007 WO1998030799A2 (fr) 1997-01-06 1997-01-06 Procede pour utiliser la totalite de l'energie gravitationnelle d'un fluide en ecoulement, et appareil correspondant

Country Status (2)

Country Link
AU (1) AU1210697A (ja)
WO (1) WO1998030799A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070710A1 (en) * 1999-05-13 2000-11-23 K-Cera Inc. Helical antenna manufacturing apparatus and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070710A1 (en) * 1999-05-13 2000-11-23 K-Cera Inc. Helical antenna manufacturing apparatus and method thereof
US6788271B1 (en) 1999-05-13 2004-09-07 K-Cera, Inc. Helical antenna manufacturing apparatus and method thereof

Also Published As

Publication number Publication date
AU1210697A (en) 1998-08-03

Similar Documents

Publication Publication Date Title
AU2008307077B2 (en) Turbine assembly
US20160079829A1 (en) Accelerated fluid machine
US20110109089A1 (en) Free-flow hydro-powered turbine system
Pelz Upper limit for hydropower in an open-channel flow
Husain et al. Basic fluid mechanics and hydraulic machines
US10221828B2 (en) Hydroelectric power generation device for pipeline
KR101849765B1 (ko) 터빈 장치
Abbas et al. Optimization of Kaplan hydroturbine at very low head with rim-driven generator
Sule et al. Performance of undershot water wheel with bowl-shaped blades model
WO1998030799A2 (fr) Procede pour utiliser la totalite de l'energie gravitationnelle d'un fluide en ecoulement, et appareil correspondant
CA2489946C (en) Water flow turbine
KR101256823B1 (ko) 소수력 발전장치
Hetyei et al. Counter-rotating dual rotor wind turbine layout optimisation
DE102007013398A1 (de) Erdrotationskraftwerk
Kanner Design, analysis, hybrid testing and orientation control of a floating platform with counter-rotating vertical-axis wind turbines
Suarda et al. Semi twisted curve blade vortex turbine performance at runner rotation speed variation using CFD simulation
Abbas et al. Optimization of Kaplan Hydro-Turbine at Very Low Head With Rim-Driven Generator
WO2017088008A1 (en) Apparatus and methods for energy conversion
Zhang et al. System design and optimization study of axial flow turbine applied in an overtopping wave energy convertor
WO1997002430A1 (fr) Procede et dispositif permettant d'utiliser la totalite de l'energie de pression gravitationnelle d'un fluide en ecoulement
AU2019290039A1 (en) Mechanical engine for generating energy by means of water movement
Yadav Tidal Power Optimization Using Two Bladder System
Masud et al. Effect of blade inclination angle on the efficiency of hydrokinetic turbine in an undershoot zero head system
Dimitrov et al. Modelling and Simulation of the Transient Performance of a Direct Operated Pressure Relief Valve
Masud et al. Performance prediction of zero head turbine at different water levels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AU BB BG BR CA CN CZ EE FI GE HU IS JP KG KR LK LR LT LV MD MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998535136

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase