[go: up one dir, main page]

WO1998033228A2 - Filtre de mode a cavite et isolant a gradient eleve - Google Patents

Filtre de mode a cavite et isolant a gradient eleve Download PDF

Info

Publication number
WO1998033228A2
WO1998033228A2 PCT/US1998/000798 US9800798W WO9833228A2 WO 1998033228 A2 WO1998033228 A2 WO 1998033228A2 US 9800798 W US9800798 W US 9800798W WO 9833228 A2 WO9833228 A2 WO 9833228A2
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
cavity
hgi
impedance
improvement
Prior art date
Application number
PCT/US1998/000798
Other languages
English (en)
Other versions
WO1998033228A3 (fr
Inventor
Georges James Caporaso
Stephen E. Sampayan
Clifford C. Shang
Glen Alan Westenskow
Original Assignee
United States Department Of Energy
Houck, Timothy, Lee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Department Of Energy, Houck, Timothy, Lee filed Critical United States Department Of Energy
Priority to AU61324/98A priority Critical patent/AU6132498A/en
Publication of WO1998033228A2 publication Critical patent/WO1998033228A2/fr
Publication of WO1998033228A3 publication Critical patent/WO1998033228A3/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes

Definitions

  • the present invention relates in general to high-power devices and,
  • the invention relates especially to induction accelerators and more
  • Induction accelerators are a unique source for high-current, high-
  • Induction accelerators are used to generate a high brightness, charged particle beams. Induction accelerators are used to generate a high brightness, charged particle beams. Induction accelerators are used to generate a high resolution image, charged particle beams. Induction accelerators are used to generate a high resolution image, charged particle beams. Induction accelerators are used to generate a high resolution image, charged particle beams. Induction accelerators are used to generate a high resolution image, charged particle beams. Induction accelerators are used to
  • microwave sources such as free electron lasers and relativistic klystrons
  • X-ray sources for radiographic
  • Induction accelerators are also expensive, and the higher energy induction
  • a typical induction accelerator includes serially arranged induction cells that each have a conductor shell around a
  • the accelertor gap portion of the conductor shell at what is referred to as the accelertor gap.
  • conductive structure is used to contain and support the ferromagnetic material. Only a part of the conductive structure functions as the actual
  • the evacuated beam pipe allows an unimpeded propagation of the charged particle beam.
  • the regions surrounding the ferrite cores are typically operated at high
  • the oil to surround the ferrite.
  • the oil acts like a self-healing insulator and enhances the resistance to electrical breakdown over the accelerator gaps.
  • the dielectric fluid and the vacuum needed within the evacuated pipe are
  • alumina insulator typically separated at the accelerating gap by an alumina insulator.
  • electromagnetic modes and/or frequencies of oscillation e.g., resonance.
  • Such energy can excite various electromagnetic modes and/or frequencies
  • BBU generally start as small effects at the beginning of the beam, but may be amplified in succeeding portions of the accelerator to reach significantly
  • transverse interaction impedance, Z ⁇ of the cavity i.e., the impedance normal to the direction of propagation of the
  • an object of the present invention is to provide a more
  • Another object of the present invention is to provide an improved
  • a further object of the present invention is to provide a more compact induction module.
  • Another object of the present invention is to enable the design of an
  • induction accelerator having a beam pipe of reduced diameter.
  • Another object of the present invention is to provide an induction
  • module having an accelerating gap insulator having an improved vacuum surface flashover capability, especially in the presence of a cathode and an electron beam.
  • a further object of the present invention is to provide an accelerating gap insulator having lower field stress on the vacuum surfaces.
  • Yet another object of the present invention is to provide an
  • a still further object of the present invention is to provide a gap
  • Still another object is of the present invention is to provide a gap
  • Still another object is to control beam-structure interaction
  • HGI laminated high gradient insulator
  • insulator is a hollow cylinder composed of multiple thin annular layers of dielectric with a thin annular conductive layer between each.
  • the maximum insulator characteristic, and especially resistance to surface flashover, is
  • the HGI HGI
  • FIG. 1 is a schematic partial cross-sectional view (taken along the
  • induction cell having a high gradient insulator disposed in the acceleration
  • FIG. 2 is a schematic of an experimental test cavity which represents a simplified induction module which experimentally illustrated the operation
  • Fig. 3A and 3B are plots of the transverse impedance versus
  • Fig. 4A, B and 4C are a plots of the transverse impedance versus
  • Fig. 4D is a schematic drawing of the a portion of the module design
  • Fig. 5 is a partially cut away exploded assembly view of a hollow
  • cylindrical HGI made of a fused stack of metalized flat annular dielectric rings suitable for use in the accelerator gap;
  • Figs. 6A and 6B illustrate an alternate non laminate structure for an
  • Figs. 7A, 7B and 7C illustrate alternative gap designs and gap
  • FIG. 10 shows a preferred embodiment of an induction module or induction cell 10 according to the present invention, is illustrated.
  • the induction cell 10 is symmetrical with respect to the longitudinal centerline 12. Only the half of
  • the induction cell 10 has a supporting cylindrical conductive shell formed by a hollow cylinder 14 forming the outer edge of the induction cell,
  • annular end plates 16 and 18 and interior annular magnet housing
  • magnet housing members 20 and 22 have similar annular channels in which
  • An annular accelerator gap 26 in the wall of the beam pipe is
  • a HGI 28 is disposed across the gap 26.
  • the HGI 28 incorporates larger
  • the conductors 30 and 32 have a 180 degree bend terminating in an electrical slip connection that rides on the magnet housing
  • the illustrated embodiment are disposed within the supporting conductive shell.
  • the induction cores are maintained away from the supporting
  • dielectric insulating fluid e.g., oil
  • An annular microwave absorber 40 is disposed behind
  • the insulators were comprised of
  • Fig. 3A illustrates the impedance
  • the 350 MHz resonance is not effected by the structure of the
  • test structure shows a
  • HGI into the test accelerator cell benefits the operation of the accelerator cell.
  • the Poisson simulation was used to determine electric field stresses
  • the gap 26 the highest field is 120kV/cm.
  • the use of the improved high voltage holdoff of the HGI should allow the use of a shorter accelerating gap or, alternatively, a higher voltage gradient
  • Figs. 7A-7C illustrate three prior art accelerator gap designs that may
  • the gap in each design is curved or angled to offset the gap insulator from a straight line
  • the HGI could be substituted for each of these HGI
  • insulators and could include the curved vacuum facing surfaces utilized in
  • Figs. 7B and 7C This should allow each of the design to be more compact while providing equivalent high voltage holdoff and the frequency-selective transverse impedance provided by the HGI.
  • HGI could be
  • the HGI may be fabricated to allow the surface of the insulator to be
  • the partially cut-away exploded assembly view of the HGI of Fig. 5 illustrates an HGI used to fill an accelerator gap 26.
  • An HGI 28 preferably comprises a fused stack of insulator layers, represented in part by layers
  • the fused stack of insulator layers 100, 102, 104 can be fabricated
  • longitudinal length may be constructed.
  • insulator layers 100, 102, 104 The structure is equivalent to a capacitive
  • the conductive layers may be any suitable material from the cathode to the anode.
  • the conductive layers may be any suitable material from the cathode to the anode.
  • the conductive layers may be any suitable material from the cathode to the anode.
  • the conductive layers are used during fabrication to hard seal
  • bonding, brazing and soldering techniques may be used.
  • the reverse should also be possible, e.g., fabricating flat metal conductor rings with oxides or other dielectric materials on their mating surfaces, and then
  • each layer may be configured to:
  • Each conductive layer may alternatively comprise a multi-layer nanostructure foil
  • the maximum insulator characteristic, and especially resistance to surface flashover, is achieved when the applied electric field traverses
  • the electrical equivalent is a pi-filter with parallel capacitor inputs and outputs and a series
  • Fig. 6A and 6B illustrate an alternative embodiment of an HGI 28a which does not employ a laminated structure.
  • the metal rings of the HGI 28a do not extend all the way through.
  • the vacuum integrity HGI 28a would be easier to maintain, but electrical currents through the walls would not be supported.
  • the depth of penetration of rings 122 and 124 into the dielectric wall 120, and/or their extension from the surface may be adjusted
  • Such rings preferably have a spacing period of 100- 1000 nm, and so the width of each conductor on the surface needs to be
  • the depth of penetration needs to be no more than 1000 nm
  • the conductive layers are used during fabrication to hard seal
  • each conductive layer may comprise a eutectic two-part alloy with corresponding constituents that
  • conductive layer may alternatively comprise a multi-layer nanostructure foil

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

Une structure isolante stratifiée à gradient élevé (HGI) constitue un isolant perfectionné de l'espace d'accélération dans les cavités à induction des accélérateurs de faisceaux électroniques de puissance élevée ou les cavités d'amplification d'appareils à micro-ondes. La structure HGI conçue pour jouer le rôle d'isolant dudit espace est un cylindre creux composé de multiples couches fines annulaires en matière diélectrique séparées deux à deux par une fine couche conductrice annulaire. On obtient la caractéristique d'isolation maximale, et en particulier la résistance aux décharges superficielles, lorsque le champ électrique appliqué traverse perpendiculairement la structure stratifiée. On a montré que les isolants HGI ont une aptitude de résistance aux décharges superficielles dans le vide bien plus grande que celle des isolants réalisés à partir d'une matière diélectrique uniforme (d'un facteur de 1,5 à 4). Lorsqu'il est disposé dans une cavité d'accélération ou d'amplification, l'isolant HGI produit également une impédance transversale liée à l'interaction faisceau-cavité et fonction de la fréquence, qui peut être utilisée pour empêcher la génération d'oscillations indésirables dans la cavité d'amplification ou, de préférence pour stimuler la génération d'oscillations ou modes souhaités dans la cavité d'amplification. En outre, l'isolant HGI peut être de performance bipolaire puisque sa tension de claquage et ses caractéristiques d'impédance sont identiques quel que soit le sens de propagation d'un faisceau électronique dans le tube à faisceau électronique.
PCT/US1998/000798 1997-01-14 1998-01-14 Filtre de mode a cavite et isolant a gradient eleve WO1998033228A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU61324/98A AU6132498A (en) 1997-01-14 1998-01-14 High-gradient insulator cavity mode filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3546397P 1997-01-14 1997-01-14
US60/035,463 1997-01-14

Publications (2)

Publication Number Publication Date
WO1998033228A2 true WO1998033228A2 (fr) 1998-07-30
WO1998033228A3 WO1998033228A3 (fr) 1998-09-11

Family

ID=21882832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/000798 WO1998033228A2 (fr) 1997-01-14 1998-01-14 Filtre de mode a cavite et isolant a gradient eleve

Country Status (2)

Country Link
AU (1) AU6132498A (fr)
WO (1) WO1998033228A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109969A3 (fr) * 2004-05-06 2006-04-20 Univ California Source de rayons x compacte et panneau
WO2010019616A3 (fr) * 2008-08-13 2010-04-15 Lawrence Livermore National Security, Llc Isolateur sous vide multicouche à gradient élevé
WO2010083915A1 (fr) 2009-01-20 2010-07-29 Siemens Aktiengesellschaft Tube à faisceau ainsi qu'accélérateur de particules doté d'un tube à faisceau
WO2011042251A1 (fr) * 2009-10-06 2011-04-14 Siemens Aktiengesellschaft Cavité résonante hf et accélérateur
WO2011104079A1 (fr) * 2010-02-24 2011-09-01 Siemens Aktiengesellschaft Cavité résonnante hf et accélérateur
US8709572B2 (en) * 2012-03-23 2014-04-29 Lawrence Livermore National Security, Llc. Fabrication of high gradient insulators by stack compression
CN107315137A (zh) * 2017-08-14 2017-11-03 中国工程物理研究院流体物理研究所 绝缘微堆测试装置
US12191052B2 (en) 2019-09-26 2025-01-07 Rafael Advanced Defense Systems Ltd. Dielectric high gradient insulator and method of manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489943A (en) * 1966-11-14 1970-01-13 Ion Physics Corp System for generating intense pulses of microwave power using traveling wave acceleration means

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109969A3 (fr) * 2004-05-06 2006-04-20 Univ California Source de rayons x compacte et panneau
WO2010019616A3 (fr) * 2008-08-13 2010-04-15 Lawrence Livermore National Security, Llc Isolateur sous vide multicouche à gradient élevé
WO2010083915A1 (fr) 2009-01-20 2010-07-29 Siemens Aktiengesellschaft Tube à faisceau ainsi qu'accélérateur de particules doté d'un tube à faisceau
US9351390B2 (en) 2009-01-20 2016-05-24 Siemens Aktiengesellschaft Radiant tube and particle accelerator having a radiant tube
JP2013506970A (ja) * 2009-10-06 2013-02-28 シーメンス アクティエンゲゼルシャフト Hf共振器空洞および加速器
RU2583048C2 (ru) * 2009-10-06 2016-05-10 Сименс Акциенгезелльшафт Высокочастотный объемный резонатор и ускоритель
WO2011042251A1 (fr) * 2009-10-06 2011-04-14 Siemens Aktiengesellschaft Cavité résonante hf et accélérateur
CN102771196A (zh) * 2010-02-24 2012-11-07 西门子公司 高频谐振器腔和加速器
WO2011104079A1 (fr) * 2010-02-24 2011-09-01 Siemens Aktiengesellschaft Cavité résonnante hf et accélérateur
US9131594B2 (en) 2010-02-24 2015-09-08 Siemens Aktiengesellschaft RF resonator cavity and accelerator
RU2589739C2 (ru) * 2010-02-24 2016-07-10 Сименс Акциенгезелльшафт Вч объемный резонатор и ускоритель
US8709572B2 (en) * 2012-03-23 2014-04-29 Lawrence Livermore National Security, Llc. Fabrication of high gradient insulators by stack compression
CN107315137A (zh) * 2017-08-14 2017-11-03 中国工程物理研究院流体物理研究所 绝缘微堆测试装置
US12191052B2 (en) 2019-09-26 2025-01-07 Rafael Advanced Defense Systems Ltd. Dielectric high gradient insulator and method of manufacture

Also Published As

Publication number Publication date
WO1998033228A3 (fr) 1998-09-11
AU6132498A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
US6331194B1 (en) Process for manufacturing hollow fused-silica insulator cylinder
KR102018014B1 (ko) 전자 결합 변압기
Korolyov et al. Multiple-beam klystron amplifiers: Performance parameters and development trends
US2985791A (en) Periodically focused severed traveling-wave tube
CA2550552A1 (fr) Accelerateur compact
US4751429A (en) High power microwave generator
WO1998033228A2 (fr) Filtre de mode a cavite et isolant a gradient eleve
US6664734B1 (en) Traveling-wave tube with a slow-wave circuit on a photonic band gap crystal structures
US20050023984A1 (en) Multibeam klystron
Chodorow et al. The design of high-power traveling-wave tubes
RU2084042C1 (ru) Клистрод
US4912366A (en) Coaxial traveling wave tube amplifier
US4712074A (en) Vacuum chamber for containing particle beams
RU2342733C1 (ru) Устройство для генерирования электрических импульсов напряжения
US2800603A (en) Traveling wave electron discharge devices
EP0256135A1 (fr) Laser a gaz a haute frequence d'excitation
US5280216A (en) Mode converter and power splitter for microwave tubes
Tsarev et al. 3-D evaluation of energy extraction in multitube double-gap resonator installed downstream of a multibeam klystron
US2721953A (en) Electron discharge device
KR101342526B1 (ko) 캐스케이드 전압 증폭기와 복수의 캐스케이드형 전자관 스테이지 활성화 방법
US3436588A (en) Electrostatically focused klystron having cavities with common wall structures and reentrant focusing lens housings
US5521551A (en) Method for suppressing second and higher harmonic power generation in klystrons
RU2449467C1 (ru) Сверхмощное свч устройство
Houck et al. Stacked insulator induction accelerator gaps
JP3096273B2 (ja) 進行波管

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998532038

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA