WO1998033228A2 - Filtre de mode a cavite et isolant a gradient eleve - Google Patents
Filtre de mode a cavite et isolant a gradient eleve Download PDFInfo
- Publication number
- WO1998033228A2 WO1998033228A2 PCT/US1998/000798 US9800798W WO9833228A2 WO 1998033228 A2 WO1998033228 A2 WO 1998033228A2 US 9800798 W US9800798 W US 9800798W WO 9833228 A2 WO9833228 A2 WO 9833228A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulator
- cavity
- hgi
- impedance
- improvement
- Prior art date
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 63
- 230000006698 induction Effects 0.000 claims abstract description 37
- 230000010355 oscillation Effects 0.000 claims abstract description 15
- 239000003989 dielectric material Substances 0.000 claims abstract description 14
- 230000001133 acceleration Effects 0.000 claims abstract description 6
- 230000003321 amplification Effects 0.000 claims abstract description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 6
- 239000004020 conductor Substances 0.000 claims description 25
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 230000001902 propagating effect Effects 0.000 claims description 3
- 230000005684 electric field Effects 0.000 abstract description 10
- 230000003993 interaction Effects 0.000 abstract description 9
- 230000015556 catabolic process Effects 0.000 abstract description 7
- 230000001976 improved effect Effects 0.000 abstract description 4
- 238000013461 design Methods 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008093 supporting effect Effects 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 239000003302 ferromagnetic material Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000001453 impedance spectrum Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910000697 metglas Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/22—Details of linear accelerators, e.g. drift tubes
Definitions
- the present invention relates in general to high-power devices and,
- the invention relates especially to induction accelerators and more
- Induction accelerators are a unique source for high-current, high-
- Induction accelerators are used to generate a high brightness, charged particle beams. Induction accelerators are used to generate a high brightness, charged particle beams. Induction accelerators are used to generate a high resolution image, charged particle beams. Induction accelerators are used to generate a high resolution image, charged particle beams. Induction accelerators are used to generate a high resolution image, charged particle beams. Induction accelerators are used to generate a high resolution image, charged particle beams. Induction accelerators are used to
- microwave sources such as free electron lasers and relativistic klystrons
- X-ray sources for radiographic
- Induction accelerators are also expensive, and the higher energy induction
- a typical induction accelerator includes serially arranged induction cells that each have a conductor shell around a
- the accelertor gap portion of the conductor shell at what is referred to as the accelertor gap.
- conductive structure is used to contain and support the ferromagnetic material. Only a part of the conductive structure functions as the actual
- the evacuated beam pipe allows an unimpeded propagation of the charged particle beam.
- the regions surrounding the ferrite cores are typically operated at high
- the oil to surround the ferrite.
- the oil acts like a self-healing insulator and enhances the resistance to electrical breakdown over the accelerator gaps.
- the dielectric fluid and the vacuum needed within the evacuated pipe are
- alumina insulator typically separated at the accelerating gap by an alumina insulator.
- electromagnetic modes and/or frequencies of oscillation e.g., resonance.
- Such energy can excite various electromagnetic modes and/or frequencies
- BBU generally start as small effects at the beginning of the beam, but may be amplified in succeeding portions of the accelerator to reach significantly
- transverse interaction impedance, Z ⁇ of the cavity i.e., the impedance normal to the direction of propagation of the
- an object of the present invention is to provide a more
- Another object of the present invention is to provide an improved
- a further object of the present invention is to provide a more compact induction module.
- Another object of the present invention is to enable the design of an
- induction accelerator having a beam pipe of reduced diameter.
- Another object of the present invention is to provide an induction
- module having an accelerating gap insulator having an improved vacuum surface flashover capability, especially in the presence of a cathode and an electron beam.
- a further object of the present invention is to provide an accelerating gap insulator having lower field stress on the vacuum surfaces.
- Yet another object of the present invention is to provide an
- a still further object of the present invention is to provide a gap
- Still another object is of the present invention is to provide a gap
- Still another object is to control beam-structure interaction
- HGI laminated high gradient insulator
- insulator is a hollow cylinder composed of multiple thin annular layers of dielectric with a thin annular conductive layer between each.
- the maximum insulator characteristic, and especially resistance to surface flashover, is
- the HGI HGI
- FIG. 1 is a schematic partial cross-sectional view (taken along the
- induction cell having a high gradient insulator disposed in the acceleration
- FIG. 2 is a schematic of an experimental test cavity which represents a simplified induction module which experimentally illustrated the operation
- Fig. 3A and 3B are plots of the transverse impedance versus
- Fig. 4A, B and 4C are a plots of the transverse impedance versus
- Fig. 4D is a schematic drawing of the a portion of the module design
- Fig. 5 is a partially cut away exploded assembly view of a hollow
- cylindrical HGI made of a fused stack of metalized flat annular dielectric rings suitable for use in the accelerator gap;
- Figs. 6A and 6B illustrate an alternate non laminate structure for an
- Figs. 7A, 7B and 7C illustrate alternative gap designs and gap
- FIG. 10 shows a preferred embodiment of an induction module or induction cell 10 according to the present invention, is illustrated.
- the induction cell 10 is symmetrical with respect to the longitudinal centerline 12. Only the half of
- the induction cell 10 has a supporting cylindrical conductive shell formed by a hollow cylinder 14 forming the outer edge of the induction cell,
- annular end plates 16 and 18 and interior annular magnet housing
- magnet housing members 20 and 22 have similar annular channels in which
- An annular accelerator gap 26 in the wall of the beam pipe is
- a HGI 28 is disposed across the gap 26.
- the HGI 28 incorporates larger
- the conductors 30 and 32 have a 180 degree bend terminating in an electrical slip connection that rides on the magnet housing
- the illustrated embodiment are disposed within the supporting conductive shell.
- the induction cores are maintained away from the supporting
- dielectric insulating fluid e.g., oil
- An annular microwave absorber 40 is disposed behind
- the insulators were comprised of
- Fig. 3A illustrates the impedance
- the 350 MHz resonance is not effected by the structure of the
- test structure shows a
- HGI into the test accelerator cell benefits the operation of the accelerator cell.
- the Poisson simulation was used to determine electric field stresses
- the gap 26 the highest field is 120kV/cm.
- the use of the improved high voltage holdoff of the HGI should allow the use of a shorter accelerating gap or, alternatively, a higher voltage gradient
- Figs. 7A-7C illustrate three prior art accelerator gap designs that may
- the gap in each design is curved or angled to offset the gap insulator from a straight line
- the HGI could be substituted for each of these HGI
- insulators and could include the curved vacuum facing surfaces utilized in
- Figs. 7B and 7C This should allow each of the design to be more compact while providing equivalent high voltage holdoff and the frequency-selective transverse impedance provided by the HGI.
- HGI could be
- the HGI may be fabricated to allow the surface of the insulator to be
- the partially cut-away exploded assembly view of the HGI of Fig. 5 illustrates an HGI used to fill an accelerator gap 26.
- An HGI 28 preferably comprises a fused stack of insulator layers, represented in part by layers
- the fused stack of insulator layers 100, 102, 104 can be fabricated
- longitudinal length may be constructed.
- insulator layers 100, 102, 104 The structure is equivalent to a capacitive
- the conductive layers may be any suitable material from the cathode to the anode.
- the conductive layers may be any suitable material from the cathode to the anode.
- the conductive layers may be any suitable material from the cathode to the anode.
- the conductive layers are used during fabrication to hard seal
- bonding, brazing and soldering techniques may be used.
- the reverse should also be possible, e.g., fabricating flat metal conductor rings with oxides or other dielectric materials on their mating surfaces, and then
- each layer may be configured to:
- Each conductive layer may alternatively comprise a multi-layer nanostructure foil
- the maximum insulator characteristic, and especially resistance to surface flashover, is achieved when the applied electric field traverses
- the electrical equivalent is a pi-filter with parallel capacitor inputs and outputs and a series
- Fig. 6A and 6B illustrate an alternative embodiment of an HGI 28a which does not employ a laminated structure.
- the metal rings of the HGI 28a do not extend all the way through.
- the vacuum integrity HGI 28a would be easier to maintain, but electrical currents through the walls would not be supported.
- the depth of penetration of rings 122 and 124 into the dielectric wall 120, and/or their extension from the surface may be adjusted
- Such rings preferably have a spacing period of 100- 1000 nm, and so the width of each conductor on the surface needs to be
- the depth of penetration needs to be no more than 1000 nm
- the conductive layers are used during fabrication to hard seal
- each conductive layer may comprise a eutectic two-part alloy with corresponding constituents that
- conductive layer may alternatively comprise a multi-layer nanostructure foil
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU61324/98A AU6132498A (en) | 1997-01-14 | 1998-01-14 | High-gradient insulator cavity mode filter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3546397P | 1997-01-14 | 1997-01-14 | |
US60/035,463 | 1997-01-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1998033228A2 true WO1998033228A2 (fr) | 1998-07-30 |
WO1998033228A3 WO1998033228A3 (fr) | 1998-09-11 |
Family
ID=21882832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/000798 WO1998033228A2 (fr) | 1997-01-14 | 1998-01-14 | Filtre de mode a cavite et isolant a gradient eleve |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU6132498A (fr) |
WO (1) | WO1998033228A2 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005109969A3 (fr) * | 2004-05-06 | 2006-04-20 | Univ California | Source de rayons x compacte et panneau |
WO2010019616A3 (fr) * | 2008-08-13 | 2010-04-15 | Lawrence Livermore National Security, Llc | Isolateur sous vide multicouche à gradient élevé |
WO2010083915A1 (fr) | 2009-01-20 | 2010-07-29 | Siemens Aktiengesellschaft | Tube à faisceau ainsi qu'accélérateur de particules doté d'un tube à faisceau |
WO2011042251A1 (fr) * | 2009-10-06 | 2011-04-14 | Siemens Aktiengesellschaft | Cavité résonante hf et accélérateur |
WO2011104079A1 (fr) * | 2010-02-24 | 2011-09-01 | Siemens Aktiengesellschaft | Cavité résonnante hf et accélérateur |
US8709572B2 (en) * | 2012-03-23 | 2014-04-29 | Lawrence Livermore National Security, Llc. | Fabrication of high gradient insulators by stack compression |
CN107315137A (zh) * | 2017-08-14 | 2017-11-03 | 中国工程物理研究院流体物理研究所 | 绝缘微堆测试装置 |
US12191052B2 (en) | 2019-09-26 | 2025-01-07 | Rafael Advanced Defense Systems Ltd. | Dielectric high gradient insulator and method of manufacture |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3489943A (en) * | 1966-11-14 | 1970-01-13 | Ion Physics Corp | System for generating intense pulses of microwave power using traveling wave acceleration means |
-
1998
- 1998-01-14 AU AU61324/98A patent/AU6132498A/en not_active Abandoned
- 1998-01-14 WO PCT/US1998/000798 patent/WO1998033228A2/fr active Application Filing
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005109969A3 (fr) * | 2004-05-06 | 2006-04-20 | Univ California | Source de rayons x compacte et panneau |
WO2010019616A3 (fr) * | 2008-08-13 | 2010-04-15 | Lawrence Livermore National Security, Llc | Isolateur sous vide multicouche à gradient élevé |
WO2010083915A1 (fr) | 2009-01-20 | 2010-07-29 | Siemens Aktiengesellschaft | Tube à faisceau ainsi qu'accélérateur de particules doté d'un tube à faisceau |
US9351390B2 (en) | 2009-01-20 | 2016-05-24 | Siemens Aktiengesellschaft | Radiant tube and particle accelerator having a radiant tube |
JP2013506970A (ja) * | 2009-10-06 | 2013-02-28 | シーメンス アクティエンゲゼルシャフト | Hf共振器空洞および加速器 |
RU2583048C2 (ru) * | 2009-10-06 | 2016-05-10 | Сименс Акциенгезелльшафт | Высокочастотный объемный резонатор и ускоритель |
WO2011042251A1 (fr) * | 2009-10-06 | 2011-04-14 | Siemens Aktiengesellschaft | Cavité résonante hf et accélérateur |
CN102771196A (zh) * | 2010-02-24 | 2012-11-07 | 西门子公司 | 高频谐振器腔和加速器 |
WO2011104079A1 (fr) * | 2010-02-24 | 2011-09-01 | Siemens Aktiengesellschaft | Cavité résonnante hf et accélérateur |
US9131594B2 (en) | 2010-02-24 | 2015-09-08 | Siemens Aktiengesellschaft | RF resonator cavity and accelerator |
RU2589739C2 (ru) * | 2010-02-24 | 2016-07-10 | Сименс Акциенгезелльшафт | Вч объемный резонатор и ускоритель |
US8709572B2 (en) * | 2012-03-23 | 2014-04-29 | Lawrence Livermore National Security, Llc. | Fabrication of high gradient insulators by stack compression |
CN107315137A (zh) * | 2017-08-14 | 2017-11-03 | 中国工程物理研究院流体物理研究所 | 绝缘微堆测试装置 |
US12191052B2 (en) | 2019-09-26 | 2025-01-07 | Rafael Advanced Defense Systems Ltd. | Dielectric high gradient insulator and method of manufacture |
Also Published As
Publication number | Publication date |
---|---|
WO1998033228A3 (fr) | 1998-09-11 |
AU6132498A (en) | 1998-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6331194B1 (en) | Process for manufacturing hollow fused-silica insulator cylinder | |
KR102018014B1 (ko) | 전자 결합 변압기 | |
Korolyov et al. | Multiple-beam klystron amplifiers: Performance parameters and development trends | |
US2985791A (en) | Periodically focused severed traveling-wave tube | |
CA2550552A1 (fr) | Accelerateur compact | |
US4751429A (en) | High power microwave generator | |
WO1998033228A2 (fr) | Filtre de mode a cavite et isolant a gradient eleve | |
US6664734B1 (en) | Traveling-wave tube with a slow-wave circuit on a photonic band gap crystal structures | |
US20050023984A1 (en) | Multibeam klystron | |
Chodorow et al. | The design of high-power traveling-wave tubes | |
RU2084042C1 (ru) | Клистрод | |
US4912366A (en) | Coaxial traveling wave tube amplifier | |
US4712074A (en) | Vacuum chamber for containing particle beams | |
RU2342733C1 (ru) | Устройство для генерирования электрических импульсов напряжения | |
US2800603A (en) | Traveling wave electron discharge devices | |
EP0256135A1 (fr) | Laser a gaz a haute frequence d'excitation | |
US5280216A (en) | Mode converter and power splitter for microwave tubes | |
Tsarev et al. | 3-D evaluation of energy extraction in multitube double-gap resonator installed downstream of a multibeam klystron | |
US2721953A (en) | Electron discharge device | |
KR101342526B1 (ko) | 캐스케이드 전압 증폭기와 복수의 캐스케이드형 전자관 스테이지 활성화 방법 | |
US3436588A (en) | Electrostatically focused klystron having cavities with common wall structures and reentrant focusing lens housings | |
US5521551A (en) | Method for suppressing second and higher harmonic power generation in klystrons | |
RU2449467C1 (ru) | Сверхмощное свч устройство | |
Houck et al. | Stacked insulator induction accelerator gaps | |
JP3096273B2 (ja) | 進行波管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998532038 Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |