[go: up one dir, main page]

WO1998038138A1 - Ceramic composition, method for the production and use thereof - Google Patents

Ceramic composition, method for the production and use thereof Download PDF

Info

Publication number
WO1998038138A1
WO1998038138A1 PCT/DE1998/000524 DE9800524W WO9838138A1 WO 1998038138 A1 WO1998038138 A1 WO 1998038138A1 DE 9800524 W DE9800524 W DE 9800524W WO 9838138 A1 WO9838138 A1 WO 9838138A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
weight
oxides
composition according
oxidic
Prior art date
Application number
PCT/DE1998/000524
Other languages
German (de)
French (fr)
Inventor
Thomas Brinz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1998038138A1 publication Critical patent/WO1998038138A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Definitions

  • the invention relates to a glass-like protective layer consisting of a ceramic composition, in particular for protecting mixed oxide electrodes of gas sensors, according to claim 1, and a method for their production.
  • Ceramic, oxidic compositions have long been in use for the production of glass-ceramic layers and protective layers, in particular in the field of semiconductor technology, for protecting electronic components and for electrodes sensitive to temperature and chemical compounds, in particular electrodes of gas sensors.
  • Protective layers used to date mostly consisting of aluminum oxide and similar oxides, which are applied using thick film printing technology or laminated on as green bodies, have the disadvantage that that this ceramic composition must be sintered at temperatures above 1500 ° C. These temperatures often damage underlying temperature-sensitive layers and components. It is also known to use glass-ceramic materials based on borosilicate glasses, which can be sintered at temperatures of less than 1000 ° in a reducing atmosphere.
  • the ceramic, oxide composition based on the oxides of the elements Ca, Si, Ti and Al has the advantage that relatively low sintering temperatures are required during processing and that by using oxides, relatively chemically inert elements such as titanium and aluminum are chemically and temperature-stable protective layers can be produced.
  • the oxidic composition according to the invention is advantageously mechanically extremely stable.
  • this protective layer has very good adhesion to the substrate on which it is applied. Through the there is also no chemical stability with underlying layers, for example perovskites or doped mixed oxides etc.
  • the ceramic, oxidic composition consists of 25 to 35% by weight of CaO, 35 to 40% by weight of SiO 2 , 8 to 12% by weight of TiO 2 and 15 to 25% by weight of Al 2 0 3 based on the total weight of the oxides.
  • An extremely high mechanical and chemical stability of the ceramic oxide composition is achieved by this composition.
  • portions of glassy carbon are added to the oxides, so that even porous, very hard and chemically stable, but at the same time gas-permeable layers and compositions are obtained in a simple manner.
  • the oxides of the elements calcium, silicon, titanium and aluminum are mixed and melted together at a temperature of 1400 to 1800 ° C. and pulverized after cooling. Glassy carbon is then added to the powder mixture.
  • the oxidic ceramic powder mixture obtained in this way is advantageously used as a screen printing paste, as a result of which glass-like protective layers can be made available for a large number of different substrates.
  • the A screen printing paste according to the invention is applied to corresponding substrates, for example metallic or cermet conductor tracks or mixed oxide electrodes, in a simple manner by known processes.
  • this oxidic ceramic composition is used as a gas-permeable protective layer for electrodes, in particular metal and mixed oxide electrodes of gas sensors, which have to have a particularly high temperature and chemical resistance.
  • a ceramic, oxidic composition according to the invention consists of the following oxidic components:
  • 20 g CaC0 3 (corresponds to 11.12 g CaO), 16.52 g Si0 2 , 4 g Ti0 2 and 7.64 g A1 2 0 3 are used and also melted in a platinum crucible at 1600 ° C .
  • the cooled melt is broken out of the crucible and ground, for example, using a ball mill. It will 10% glass carbon added.
  • the thus obtained - glass powder is placed in a so-called thick oil (Siebdruckpasten- base solution) "The thick oil consists for example of about 75% by weight of butyl carbitol (Diethylenglycolmonobutyl- ether), about 18% by weight of polyvinyl butyral, 7% by weight.
  • the glass powder is mixed with the same weight of thick oil, printed on a sensor substrate and sintered. The sintering takes place at approx. 1150 ° C. and a very hard and porous layer is then obtained on, for example, a pre-fired mixed oxide electrode of a sensor. This also makes it possible to protect sensor materials that change or decompose at high processing temperatures of over 1200 ° C.
  • the glass layer according to the invention thus obtained is harder than window glass and steel needles.
  • the electrical conductivity is very low even at high temperatures. Adhesion to finished aluminum and zirconia substrates is very good.
  • the mechanical and chemical resistance is given after long operation in corrosive burner gases.
  • oxidic composition according to the invention is all common screen printing paste approaches and slip casting offsets.
  • Next Sensor materials can also be protected from all oxidic materials that are exposed to large thermal and chemical stresses, for example resistance ceramics, etc.
  • the protective layer according to the invention does not react with the sensor layer underneath.
  • the catalytic activity towards the sample gas is low, so there is no falsified sensor signal.
  • the protective layer has a low electrical conductivity, so that no electrical interference effects occur.
  • there are no strongly diffusing ions in the glass composition according to the invention which would lead to poisoning of the sensor material.
  • the oxidic ceramic composition according to the invention has a very high sulfate resistance, so that even engine exhaust gases do not react with the oxidic glass-ceramic protective layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Glass Compositions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

The invention relates to a ceramic oxidic compound consisting of Ca, Si, Ti and Al oxides. The invention further relates to a method for the production and use thereof as a glass-like gas permeable protective layer for electrodes, specially gas sensor mixed oxide electrodes.

Description

Keramische Zusammensetzung, Verfahren zu deren Herstellung sowie deren VerwendungCeramic composition, process for its production and its use
Stand der TechnikState of the art
Die Erfindung betrifft eine glasartige Schutzschicht bestehend aus einer keramischen Zusammensetzung, insbesondere zum Schutz von Mischoxidelektroden von Gassensoren, nach Anspruch 1, sowie ein Verfahren zu deren Herstellung.The invention relates to a glass-like protective layer consisting of a ceramic composition, in particular for protecting mixed oxide electrodes of gas sensors, according to claim 1, and a method for their production.
Keramische, oxidische Zusammensetzungen sind seit langem in Gebrauch zur Herstellung von glaskeramischen Lagen und Schutzschichten, insbesondere im Bereich der Halbleitertechnologie, zum Schütze elektronischer Bauelemente und für temperatur- und gegen chemische Verbindungen empfindliche Elektroden, insbesondere Elektroden von Gassensoren. Bislang verwendete Schutzschichten, meist bestehend aus Aluminiumoxid und ähnlichen Oxiden, die in Dickfilmdrucktechnik aufgebracht oder als Grünkörper auflaminiert werden, haben den Nachteil, daß diese Keramikzusammensetzung bei Temperaturen von über 1500 C gesintert werden muß. Diese Temperaturen beschädigen oft darunter liegende temperaturempfindliche Schichten und Bauelemente. Es ist ebenfalls bekannt, glaskeramische Materialien auf der Basis von Borosilicatgläsern zu verwenden, die bei Temperaturen von weniger als 1000 ° in reduzierender Atmosphäre gesintert werden können. Hierbei treten jedoch Probleme mangels chemischer Inertheit oder aufgrund von Ionendiffusion in darunterliegende sensitive Schichten auf. Ebenso ist es aus der EP 0 575 813 Bl bekannt glaskeramische Mehrschichtensubstrate auf der Basis von Aluminiumoxid, Borosilicat und Magnesiumverbindungen herzustellen, die daneben noch Natriumoxid, Kaliumoxid, Titan- und Zirkoniumdioxid aufweisen. Als weiterer Stabilisator wird Cordierit zugegeben. Diese Gläser weisen relativ niedrige Sintertemperaturen auf, sind aber nicht gegen sämtliche, beispielsweise in Abgasen von Verbrennungsmotoren vorkommenden Gase chemisch resistent.Ceramic, oxidic compositions have long been in use for the production of glass-ceramic layers and protective layers, in particular in the field of semiconductor technology, for protecting electronic components and for electrodes sensitive to temperature and chemical compounds, in particular electrodes of gas sensors. Protective layers used to date, mostly consisting of aluminum oxide and similar oxides, which are applied using thick film printing technology or laminated on as green bodies, have the disadvantage that that this ceramic composition must be sintered at temperatures above 1500 ° C. These temperatures often damage underlying temperature-sensitive layers and components. It is also known to use glass-ceramic materials based on borosilicate glasses, which can be sintered at temperatures of less than 1000 ° in a reducing atmosphere. However, problems arise here due to a lack of chemical inertness or due to ion diffusion into the underlying sensitive layers. It is also known from EP 0 575 813 B1 to produce glass-ceramic multilayer substrates based on aluminum oxide, borosilicate and magnesium compounds, which also contain sodium oxide, potassium oxide, titanium and zirconium dioxide. Cordierite is added as a further stabilizer. These glasses have relatively low sintering temperatures, but are not chemically resistant to all gases that occur, for example, in exhaust gases from internal combustion engines.
Vorteile der ErfindungAdvantages of the invention
Die keramische, oxidische Zusammensetzung auf der Basis der Oxide der Elemente Ca, Si, Ti und AI hat demgegenüber den Vorteil, daß relativ niedrige Sintertemperaturen bei der Verarbeitung erforderlich sind und daß durch die Verwendung von Oxiden relativ chemisch inerter Elemente wie Titan und Aluminium chemisch und temperaturstabile Schutzschichten hergestellt werden können. Darüberhinaus ist die erfindungsgemäße oxidische Zusammensetzung vorteilhafterweise mechanisch äußerst stabil. Des weiteren weist diese Schutzschicht eine sehr gute Haftung auf dem Substrat, auf welchem sie aufgebracht wird, auf. Durch die chemische Stabilität findet auch keine Reaktion mit darunterliegenden Schichten, beispielsweise Perowskiten oder dotierten Mischoxiden etc. statt.The ceramic, oxide composition based on the oxides of the elements Ca, Si, Ti and Al has the advantage that relatively low sintering temperatures are required during processing and that by using oxides, relatively chemically inert elements such as titanium and aluminum are chemically and temperature-stable protective layers can be produced. In addition, the oxidic composition according to the invention is advantageously mechanically extremely stable. Furthermore, this protective layer has very good adhesion to the substrate on which it is applied. Through the there is also no chemical stability with underlying layers, for example perovskites or doped mixed oxides etc.
Vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen keramischen oxidischen Zusammensetzung sind in den Unteransprüchen aufgeführt .Advantageous refinements and developments of the ceramic oxidic composition according to the invention are listed in the subclaims.
In bevorzugter Ausführung besteht die keramische, oxidische Zusammensetzung aus 25 bis 35 Gew% CaO, 35 bis 40 Gew% SiÜ2, 8 bis 12 Gew% Ti02 und 15 bis 25 Gew% Al203 bezogen auf die Gesamteinwaage der Oxide. Durch diese Zusammensetzung wird eine extrem hohe mechanische und chemische Stabilität der keramischen oxidischen Zusammensetzung erreicht.In a preferred embodiment, the ceramic, oxidic composition consists of 25 to 35% by weight of CaO, 35 to 40% by weight of SiO 2 , 8 to 12% by weight of TiO 2 and 15 to 25% by weight of Al 2 0 3 based on the total weight of the oxides. An extremely high mechanical and chemical stability of the ceramic oxide composition is achieved by this composition.
In einer besonders bevorzugten Ausführung werden den Oxiden noch Anteile von Glaskohlenstoff zugegeben, so daß auch poröse, sehr harte und chemisch stabile, jedoch gleichzeitig gasdurchlässige Schichten und Zusammensetzungen in einfacher Weise erthalten werden.In a particularly preferred embodiment, portions of glassy carbon are added to the oxides, so that even porous, very hard and chemically stable, but at the same time gas-permeable layers and compositions are obtained in a simple manner.
In einem vorteilhaften Verfahren werden die Oxide der Elemente Calcium, Silizium, Titan und Aluminium gemischt und bei einer Temperatur von 1400 bis 1800 °C zusammengeschmolzen, nach dem Abkühlen pulverisiert. Anschließend wird dem Pulvergemisch Glaskohlenstoff beigefügt .In an advantageous process, the oxides of the elements calcium, silicon, titanium and aluminum are mixed and melted together at a temperature of 1400 to 1800 ° C. and pulverized after cooling. Glassy carbon is then added to the powder mixture.
In vorteilhafter Weise wird das so erhaltene oxidische keramische Pulvergemisch als Siebdruckpaste verwendet, wodurch glasartige Schutzschichten für eine Vielzahl von verschiedenen Substraten zur Verfügung werden können. Der Auftrag einer erfindungsgemäßen Siebdruckpaste auf entsprechende Substrate, beispielsweise metallische oder Cermet Leiterbahnen oder Mischoxidelektroden erfolgt in einfacher Weise nach bekannten Verfahren.The oxidic ceramic powder mixture obtained in this way is advantageously used as a screen printing paste, as a result of which glass-like protective layers can be made available for a large number of different substrates. The A screen printing paste according to the invention is applied to corresponding substrates, for example metallic or cermet conductor tracks or mixed oxide electrodes, in a simple manner by known processes.
In einer besonders vorteilhaften Ausführung wird diese oxidische keramische Zusammensetzung als gasdurchlässige Schutzschicht für Elektroden, insbesondere Metall- und Mischoxidelektroden von Gassensoren eingesetzt, die eine besonders hohe Temperatur- und chemische Beständigkeit aufweisen müssen.In a particularly advantageous embodiment, this oxidic ceramic composition is used as a gas-permeable protective layer for electrodes, in particular metal and mixed oxide electrodes of gas sensors, which have to have a particularly high temperature and chemical resistance.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Eine erfindungsgemäße keramische, oxidische Zusammensetzung besteht aus den nachfolgenden oxidischen Bestandteilen:A ceramic, oxidic composition according to the invention consists of the following oxidic components:
28,5 Gew% CaO 42 Gew% Si0 10 Gew% Ti02 28.5% by weight CaO 42% by weight Si0 10% by weight Ti0 2
19,5 Gew% A1203 19.5% by weight A1 2 0 3
Diese Oxide werden innig gemischt und in einem Platintiegel bei 1600 °C geschmolzen.These oxides are mixed intimately and melted in a platinum crucible at 1600 ° C.
In einem weiteren speziellen Ausfuhrungsbeispiel werden 20 g CaC03 (entspricht 11,12 g CaO), 16,52 g Si02, 4 g Ti02 und 7,64 g A1203 eingesetzt und ebenfalls in einem Platintiegel bei 1600°C geschmolzen.In another special exemplary embodiment, 20 g CaC0 3 (corresponds to 11.12 g CaO), 16.52 g Si0 2 , 4 g Ti0 2 and 7.64 g A1 2 0 3 are used and also melted in a platinum crucible at 1600 ° C .
Die abgekühlte Schmelze wird aus dem Tiegel gebrochen und beispielsweise mittels einer Kugelmühle gemahlen. Es werden ca. 10 Gew% Glaskohlenstoff zugefügt. Das so erhaltene - Glaspulver wird in sogenanntes Dicköl (Siebdruckpasten- Basislösung) "eingebracht. Das Dicköl besteht beispielsweise aus ca. 75 Gew% Butylcarbitol (Diethylenglycolmonobutyl- ether) , ca. 18 Gew% Polyvinylbutyral , 7 Gew%The cooled melt is broken out of the crucible and ground, for example, using a ball mill. It will 10% glass carbon added. The thus obtained - glass powder is placed in a so-called thick oil (Siebdruckpasten- base solution) "The thick oil consists for example of about 75% by weight of butyl carbitol (Diethylenglycolmonobutyl- ether), about 18% by weight of polyvinyl butyral, 7% by weight.
Dibutylphthalat, verdünnt mit der gleichen Menge an 2- Propanol . Zur Pastenherstellung wird das Glaspulver mit der gleichen Gewichtsmenge Dicköl versetzt, auf ein Sensorsubstrat aufgedruckt und gesintert. Das Sintern erfolgt bei ca. 1150 °C und man erhält anschließend eine sehr harte und poröse Schicht auf beispielsweise einer vorgebrannten Mischoxidelektrode eines Sensors. Dies ermöglicht auch Sensormaterialien zu schützen, die sich bei hohen Verarbeitungstemperaturen von über 1200 °C verändern oder zersetzten.Dibutyl phthalate diluted with the same amount of 2-propanol. To make the paste, the glass powder is mixed with the same weight of thick oil, printed on a sensor substrate and sintered. The sintering takes place at approx. 1150 ° C. and a very hard and porous layer is then obtained on, for example, a pre-fired mixed oxide electrode of a sensor. This also makes it possible to protect sensor materials that change or decompose at high processing temperatures of over 1200 ° C.
Die so erhaltene erfindungsgemäße Glasschicht ist härter als Fensterglas und Stahlnadeln. Die elektrische Leitfähigkeit ist auch bei hohen Temperaturen sehr klein. Die Haftung auf Aluminium- und Zirkondioxid-Fertigsubstraten ist sehr gut. Die mechanische und chemische Beständigkeit ist nach längerem Betrieb in korrosiven Brennerabgasen gegeben. Die Sensoreigenschaften eines Kohlenwasserstoffsensors basierend auf einer Mischoxidelektrode aus Perowskit oder Äschynit, insbesondere die Meßempfindlichkeit des Sensors und seine Ansprechzeit, auf den die erfindungsgemäße Schutzschicht aufgebracht wurde, änderte sich über einen längeren Zeitraum nicht .The glass layer according to the invention thus obtained is harder than window glass and steel needles. The electrical conductivity is very low even at high temperatures. Adhesion to finished aluminum and zirconia substrates is very good. The mechanical and chemical resistance is given after long operation in corrosive burner gases. The sensor properties of a hydrocarbon sensor based on a mixed oxide electrode made of perovskite or aeschynite, in particular the measuring sensitivity of the sensor and its response time to which the protective layer according to the invention was applied, did not change over a longer period of time.
Weitere Möglichkeiten der Verarbeitung der erfindungsgemäßen keramischen, oxidischen Zusammensetzung sind alle gängigen Siebdruckpastenansätze und Schlickergußversätze. Neben Sensormaterialien können auch sämtliche oxidischen Materialien geschützt werden, die großen thermischen und chemischen Beanspruchungen ausgesetzt sind, beispielsweise Widerstandskeramiken etc. Die erfindungsgemäße Schutzschicht reagiert nicht mit der darunterliegenden Sensorschicht. Die katalytische Aktivität gegenüber dem Meßgas ist gering, es tritt daher auch kein verfälschtes Sensorsignal auf. Darüberhinaus besitzt die Schutzschicht eine geringe elektrische Leitfähigkeit, so daß keine elektrischen Störeffekte auftreten. Ebenfalls finden sich in der erfindungsgemäßen Glaszusammensetzung keine stark diffundierenden Ionen, die zu einer Vergiftung des Sensormaterials führen würden. Die erfindungsgemäße oxidische keramische Zusammensetzung weist eine sehr hohe Sulfatbeständigkeit auf, so daß auch Motorabgase mit der oxidischen glaskeramischen Schutzschicht nicht reagieren. Further possibilities for processing the ceramic, oxidic composition according to the invention are all common screen printing paste approaches and slip casting offsets. Next Sensor materials can also be protected from all oxidic materials that are exposed to large thermal and chemical stresses, for example resistance ceramics, etc. The protective layer according to the invention does not react with the sensor layer underneath. The catalytic activity towards the sample gas is low, so there is no falsified sensor signal. In addition, the protective layer has a low electrical conductivity, so that no electrical interference effects occur. Likewise, there are no strongly diffusing ions in the glass composition according to the invention which would lead to poisoning of the sensor material. The oxidic ceramic composition according to the invention has a very high sulfate resistance, so that even engine exhaust gases do not react with the oxidic glass-ceramic protective layer.

Claims

Ansprüche Expectations
1. Keramische, oxidische Zusammensetzung, dadurch gekennzeichnet, daß Oxide der Elemente Ca, Si, Ti und AI enthalten sind.1. Ceramic, oxidic composition, characterized in that oxides of the elements Ca, Si, Ti and Al are included.
2. Keramische, oxidische Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß 25 bis 35 Gew% CaO, 35 bis 402. Ceramic, oxidic composition according to claim 1, characterized in that 25 to 35 wt% CaO, 35 to 40
Gew% Si02, 8 bis 12 Gew% Ti02 und 15 bis 25 Gew% Al203 bezogen auf die Gesamteinwaage der Oxide enthalten sind.% By weight Si0 2 , 8 to 12% by weight Ti0 2 and 15 to 25% by weight Al 2 0 3 based on the total weight of the oxides are included.
3. Keramische, oxidische Zusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zusätzlich3. Ceramic, oxidic composition according to claim 1 or 2, characterized in that in addition
Glaskohlenstoff enthalten ist.Glassy carbon is included.
4. Verfahren zur Herstellung der keramischen, oxidischen Zusammensetzung nach Anspruch 1, 2, oder 3, dadurch gekennzeichnet, daß die Oxide der Elemente Ca, Si, Ti und AI gemischt werden, anschließend bei einer Temperatur von 1400 bis 1800 °C zusammengeschmolzen und nach dem Abkühlen pulverisiert werden.4. A process for producing the ceramic, oxidic composition according to claim 1, 2 or 3, characterized in that the oxides of the elements Ca, Si, Ti and Al are mixed, then melted together at a temperature of 1400 to 1800 ° C and after be pulverized on cooling.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß dem Pulvergemisch Glaskohlenstoff zugesetzt wird. 5. The method according to claim 4, characterized in that glass powder is added to the powder mixture.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß 5 bis 20 Gew% Glaskohlenstoff bezogen auf die Gesamteinwaage der Oxide zugesetzt wird.6. The method according to claim 5, characterized in that 5 to 20% by weight of glassy carbon is added based on the total weight of the oxides.
7. Verwendung der keramischen, oxidischen Zusammensetzung nach einem der Ansprüche 1 bis 3 als Siebdruckpaste.7. Use of the ceramic, oxidic composition according to one of claims 1 to 3 as a screen printing paste.
8. Verwendung der keramischen, oxidischen Zusammensetzung nach einem der Ansprüche 1 bis 3 als gasdurchlässige Schutzschicht für Elektroden, insbesondere Mischoxidelektroden von Gassensoren. 8. Use of the ceramic, oxidic composition according to one of claims 1 to 3 as a gas-permeable protective layer for electrodes, in particular mixed oxide electrodes of gas sensors.
PCT/DE1998/000524 1997-02-28 1998-02-21 Ceramic composition, method for the production and use thereof WO1998038138A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19708105.3 1997-02-28
DE1997108105 DE19708105C2 (en) 1997-02-28 1997-02-28 Ceramic composition, process for its production and its use

Publications (1)

Publication Number Publication Date
WO1998038138A1 true WO1998038138A1 (en) 1998-09-03

Family

ID=7821801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000524 WO1998038138A1 (en) 1997-02-28 1998-02-21 Ceramic composition, method for the production and use thereof

Country Status (2)

Country Link
DE (1) DE19708105C2 (en)
WO (1) WO1998038138A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693053B2 (en) * 2000-04-01 2004-02-17 Robert Bosch Gmbh Glass and glass powder mixture and use thereof for the production of a glass ceramic
US6699807B2 (en) * 2000-04-01 2004-03-02 Robert Bosch Gmbh Glass ceramic material, method for producing the same and spark plug containing such a glass ceramic material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126056A (en) * 2004-10-29 2006-05-18 Tdk Corp Carbon dioxide sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3151206A1 (en) * 1980-12-27 1982-07-08 Central Glass Co., Ltd., Ube, Yamaguchi Glazed ceramic support material
WO1995016646A1 (en) * 1993-12-18 1995-06-22 Robert Bosch Gmbh Method of producing one or more cavities in or under the coating of a substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3743260C2 (en) * 1987-12-19 1998-11-05 Deutz Ag Reciprocating engine, in particular internal combustion engine in series, which is at least partially air-cooled
DE4004102C1 (en) * 1989-02-17 1990-10-04 Porzellanfabrik Friesland Bentz Gmbh & Co Kg, 2930 Varel, De Ceramic material for mfg. refractory ware - comprises silicon di:oxide, aluminium oxide, iron (III) oxide, titanium di:oxide, magnesium oxide, calcium oxide, potassium oxide, etc.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3151206A1 (en) * 1980-12-27 1982-07-08 Central Glass Co., Ltd., Ube, Yamaguchi Glazed ceramic support material
WO1995016646A1 (en) * 1993-12-18 1995-06-22 Robert Bosch Gmbh Method of producing one or more cavities in or under the coating of a substrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. A. VILLEGAS ET AL: "Propiedades y caracterizacion estructural de vidrios del sistema CaO-TiO2-Al2O3-SiO2", BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO., vol. 34, no. 3, 1995, MADRID ES, pages 135 - 139, XP002068948 *
SHCHEPOCHKINA YU A: "ENAMEL FOR CAST IRON", GLASS AND CERAMICS, vol. 52, no. 3/04, 1 March 1995 (1995-03-01), pages 104, XP000542839 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693053B2 (en) * 2000-04-01 2004-02-17 Robert Bosch Gmbh Glass and glass powder mixture and use thereof for the production of a glass ceramic
US6699807B2 (en) * 2000-04-01 2004-03-02 Robert Bosch Gmbh Glass ceramic material, method for producing the same and spark plug containing such a glass ceramic material

Also Published As

Publication number Publication date
DE19708105A1 (en) 1998-09-03
DE19708105C2 (en) 2001-02-08

Similar Documents

Publication Publication Date Title
DE102007046900C5 (en) High-temperature sensor and a method for its production
Maeder* Review of Bi2O3 based glasses for electronics and related applications
CN100462317C (en) Electronic device having lead and cadmium free electronic overglaze applied thereto
DE10042590B4 (en) Glass for anodic bonding
EP0571412B1 (en) High temperature sensor made of metal of the platinum group
EP0506676B1 (en) Resistance probe for monitoring gas compositions, and process for its manufacture
DE102010043326B4 (en) Process for strength-enhancing ceramization of a floated crystallizable glass, ceramised float glass and use of the ceramised float glass
US3682840A (en) Electrical resistor containing lead ruthenate
DE4445359A1 (en) Sensor for the detection of flammable gases
DE3026200A1 (en) NON-LINEAR RESISTANCE AND METHOD FOR THE PRODUCTION THEREOF
WO2010089024A2 (en) Non-conducting zirconium dioxide
DE1220094B (en) Use of glass powder mixtures in the production of crystalline, heat-resistant coating and fusing compounds
EP1868962B1 (en) Ceramic glow plug
DE3886802T2 (en) Process for accelerated burnout of organic materials.
DE19708105C2 (en) Ceramic composition, process for its production and its use
EP0280819A2 (en) Electrical resistors, electrical resistors paste and method for making the same
EP1145255A2 (en) Heat conductor, especially for a sensor, and method for producing such a heat conductor
DE19542038A1 (en) catalyst
EP1554230A1 (en) Protective layer system for non-oxidic substrates containing si
EP0541937B1 (en) Process for high temperature sintering of a resistor material based on ruthenium oxide or compounds thereof
RU2081069C1 (en) Glass
WO2002016919A2 (en) Layered composite with an insulation layer
KR101431000B1 (en) Environment friendly dielectric glass composition with titanium dioxide and its synthetic method
DD152443A1 (en) RESISTANCE PASTE FOR THICK FILM TECHNOLOGY
DD222585A1 (en) CERAMIC MATERIAL OF NDK-TYPE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase