WO1998039147A1 - Granulateur destine a couper des granules sous l'eau, couteau utilise par ce granulateur et procede de coupe de granules sous l'eau mettant en oeuvre ce couteau - Google Patents
Granulateur destine a couper des granules sous l'eau, couteau utilise par ce granulateur et procede de coupe de granules sous l'eau mettant en oeuvre ce couteau Download PDFInfo
- Publication number
- WO1998039147A1 WO1998039147A1 PCT/JP1998/000856 JP9800856W WO9839147A1 WO 1998039147 A1 WO1998039147 A1 WO 1998039147A1 JP 9800856 W JP9800856 W JP 9800856W WO 9839147 A1 WO9839147 A1 WO 9839147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- knife
- cut
- die
- cutting
- rear surface
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
- B29B9/065—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/0006—Cutting members therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/0006—Cutting members therefor
- B26D2001/0053—Cutting members therefor having a special cutting edge section or blade section
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
Definitions
- the present invention relates to an underwater cut granulation apparatus used for producing a resin pellet, a knife used in the apparatus, and preferably to an underwater cut granulation method using the knife.
- This type of underwater cut granulator generally includes a die plate having a large number of die holes, a water chamber formed to surround a cut surface of the die plate, and a knife rotatably housed in the water chamber.
- a water supply device for circulating and supplying cooling water is connected to the water chamber.
- a resin supply device such as a gear pump is connected to the die, and molten resin from a resin kneader or the like is supplied under pressure into the water chamber.
- the molten resin extruded from the die into the water chamber is extruded into the water chamber, and at the same time, the skin is cooled and cut into small pieces by a knife, and is cooled and hardened in the water chamber to be pelletized.
- knives used in such underwater cut granulators are, for example, almost triangular in cross section as shown by phantom lines in FIG. 1 or almost trapezoidal in cross section as shown in FIG.
- the rear surface (rear surface) in the rotation direction has a shape cut off perpendicular to the cross section of the die.
- the high rotational resistance of the knife means that the velocity of the water flow in the turning direction (different from the water circulation flow by the water supply device) that runs along the cut surface of the die with the rotation of the knife increases. It leads to doing.
- Pellets having such shape defects not only reduce the commercial value due to poor appearance, but also cause the hopper to be caught during extrusion or injection molding, thereby lowering the yield of the underwater cut-granulation apparatus. This may also result in lower operating efficiency.
- the present invention has been made in view of the above circumstances and aims to reduce turbulence and cavitation by reducing the rotational resistance of a knife against water, and to minimize the occurrence of a turbulent portion that is swirled by the knife.
- An object of the present invention is to make it possible to prevent the occurrence of shape defects even with a high MFR resin material.
- the cut-off knife has a thin length dimension h along its rotation axis, thereby reducing the rotational resistance to water.
- “to make the length dimension h thin” specifically means that the maximum distance from the knife cut surface to the inner surface (the surface on the die side) is A, and the maximum thickness of the knife is C. It can be realized by setting C ⁇ l.2A.
- the size A of this kind of knife is set to 4 to 6 mm in order to avoid interference with the molten resin constantly extruded from the die hole, so the maximum thickness C of the knife is 4.8 to 7 It should be set to 2 mm or less.
- the rotational resistance to water is small. As a result, the water flow in the swirling direction generated along the die with the rotation of the knife can be reduced.
- the material is a high MFR material or the like, it is possible to perform granulation while minimizing the occurrence of shape defects in the pellets, and it is possible to prevent various conventional defects caused by the shape defects.
- the turbulence generated behind the knife in the rotation direction can be suppressed to a small extent, which leads to suppression of cavitation and, consequently, cuts the consumption of cutting power and increases the driving efficiency.
- another method to reduce the rotational resistance of the knife against water is to form a chevron-shaped guiding surface on the surface opposite to the die. At this time, it is preferable to form a valley-shaped guiding surface on the surface facing the die so as to correspond to the mountain-shaped guiding surface.
- This chevron-shaped guiding surface is a surface that has a portion inclined in the direction away from the die at the front in the rotational direction and a portion inclined in the direction approaching the die at the rear in the rotational direction on the side opposite to the die. Means that Therefore, the water flow generated along this mountain-shaped guide surface is drawn to the die side behind the knife.
- the valley-shaped guiding surface has a portion inclined in a direction away from the die in a rotational direction front portion on a side facing the die, and a portion inclined in a direction approaching the die in a rotational direction rear portion. Means plane. Therefore, the water flow generated along the valley-side guiding surface inside the knife will be similarly pressed to the die side.
- the position of the above-mentioned mountain-shaped guide surface or valley-shaped guide surface with respect to the knife is not limited. It is preferable to form it.
- the mountain-shaped guide surface and the valley-shaped guide surface may be formed as a curved surface formed by joining multiple flat surfaces.However, forming a smoothly continuous curved surface means reducing the rotational resistance of the knife against water. Is preferred. In addition, it is more preferable that the curved surface be formed into a streamlined cross-sectional shape along the rotating direction of the knife. Note that a combination of a flat surface and a curved surface is also possible. Furthermore, if both the configuration in which the length of the knife is made thinner and the configuration in which the knife is provided with a mountain-shaped guiding surface or a valley-shaped guiding surface are adopted, the effect obtained by their synergistic action is more reliable and favorable. Becomes
- the knife according to the present invention includes a cutter surface facing the cut surface of the die plate, and a front surface in the rotational direction of one side in a state of being inclined rearward in the rotational direction and opposite to the cut surface.
- a rear surface extending substantially rearward in the rotational direction from the rear edge of the front surface, a rear surface following the rear edge of the rear surface, and An inner surface having an inclined portion rising from the rear edge in the rotation direction of one surface of the power cutter in an inclined state and having a rear edge in the rotation direction continuing to the rear surface.
- the present invention provides a knife having the above-described shape, wherein the rear surface is formed to be inclined toward the cutting surface toward the rear in the rotational direction, the transition angle from the front surface to the rear surface is B °, and the transition angle from the rear surface to the rear surface is When D ° is set, it is set so that 150 ° ⁇ (B + D) / 2 ⁇ 180 °.
- the knife of the present invention is such that when the maximum distance from the entire cutting surface to the inner surface is A and the maximum thickness of the knife is C, C ⁇ l.2A. Is set.
- the turbulence of the water flow behind the knife in the rotation direction is more reliably prevented, and the increase in the water flow portion at the same speed is more effectively achieved. Is suppressed.
- the present invention provides a part corresponding to the central part of the die plate on which the molten resin is not extruded on the rotation direction center side, and a part wider than the other part having the power function. It is recommended to provide.
- the formation of the wide portion increases the contact area of the cutter surface with the cut surface, and reduces the force per unit area acting on the cutter surface, thereby cutting the knife cutter surface and the die plate. Wear of the surface can be delayed as much as possible.
- the ridgeline clearly appears on the back surface of the knife between the front and rear surfaces. It may be formed in a curved surface shape on the side opposite to the cutting surface so as not to be disturbed, or it may be formed in a plane shape intersecting the front surface and the rear surface via a ridge line.
- L and H defined as follows are set so as to maintain the relationship of L ⁇ 4 L, even if the resin has a high MFR, The experiments described below proved that the defective shape of the pellet can be eliminated as much as possible.
- L Length in the rotational direction of the water stream at the same speed, which is formed at the rear side of the knife in the rotation direction and travels near the template at substantially the same speed as the knife.
- the rotation of the driving means of the power cutter should always be such that the relationship L ⁇ 4H holds. If the speed is set, the defective shape of the pellet can be solved without any problems. However, if the relationship of L ⁇ 4H is established when the extrusion speed of the molten resin and the rotation speed of the knife are extremely low, the production of pellets will drop significantly, and it is not appropriate for actual operation.
- the above-described knife of the present invention is used to granulate while maintaining the relationship of L ⁇ 4H even in the case of normal operation in which the knife is rotated at a high speed (10 to 2 OmZs). .
- the knife of the present invention even when the driving means of the cutter is rotated at 10 to 2 OmZs required for the normal operation, the relationship of L ⁇ 4H can be maintained and the defective shape of the pellet can be eliminated. Also, the occurrence of cavitation can be effectively prevented.
- Fig. 1 is a side view of the knife of the first embodiment as viewed from the outside in the rotational direction (a view as viewed from the direction of the line B-B in Fig. 3), showing a state of cutting the molten resin extruded from the die. I have.
- FIG. 2 is an enlarged sectional view of the knife of the first embodiment.
- FIG. 3 is a view of a power cutter equipped with the knife of the first embodiment as viewed from a cut surface side.
- FIG. 4 is an enlarged sectional view of the knife of the second embodiment.
- FIG. 5 is an enlarged sectional view of the knife of the third embodiment.
- FIG. 6 is an enlarged sectional view of the knife of the fourth embodiment.
- FIG. 7 is a view of the knife of the fifth embodiment as viewed from the cut surface side.
- FIG. 8 is a diagram viewed from the line C-C of FIG.
- FIG. 9 is a side cross-sectional view of an underwater cut granulator that can use the knife of the present invention.
- FIG. 10 is a pressure distribution diagram of a conventional trapezoidal knife by FEM analysis.
- FIG. 11 is a pressure distribution diagram of the knife of the present invention by FEM analysis.
- FIG. 12 is a velocity distribution diagram of a conventional trapezoidal knife by FEM analysis.
- FIG. 13 is a velocity distribution diagram of the knife of the present invention by FEM analysis.
- Fig. 14 (a) is an enlarged cross-sectional view showing an ideal cutting state, and (b) is (C) is a side view of the pellet in that case.
- Fig. 15 (a) is an enlarged cross-sectional view showing an inappropriate cutting state, (b) is a plan view of the pellet in that case, and (c) is a side view of the pellet in that case.
- FIG. 16 is a cross-sectional view of the knife to show the definitions of the transition angles B and D, the maximum thickness C and the maximum distance A.
- FIG. 17 is a cross-sectional view of the knife to show the definitions of the transition angles B and D, the maximum thickness C and the maximum distance A.
- FIG. 18 is a diagram showing the cross-sectional shapes of knives Nos. 1 to 8 for which a numerical experiment was performed by FEM analysis.
- Fig. 19 is a distribution diagram of the same speed water flow of the knives Nos. 1 and 2.
- FIG. 20 is a distribution diagram of the same-speed water flow portions of the knives Nos. 3 and 4.
- Fig. 21 is a distribution diagram of the same speed water flow of the knives Nos. 5 and 6.
- Fig. 22 is a distribution diagram of the same speed water flow of the knives Nos. 7 and 8.
- FIG. 23 shows the shape and mechanical characteristics of the most standard trapezoidal knife.
- FIG. 24 is a diagram showing the shape and mechanical characteristics of the knife of the present invention.
- FIG. 9 is a side sectional view of an underwater cut granulator 20 in which the knife 7 of the present invention can be used.
- the granulating apparatus 20 includes a die plate (die) 2 having a large number of die holes 2 a, a water chamber 1 formed so as to surround a cut surface 2 of the die plate 2, and a rotating inside the water chamber 1.
- the power tool 3 includes a freely stored power cutter 3 and driving means 21 for driving the power cutter 3 to rotate.
- Die plate 2 forms one side wall of water chamber 1 (the right side wall in Fig. 9). Water room 1 is closed. The lower part of the water chamber 1 is formed with a water supply port 22 to which a water supply device (not shown) is connected, and the upper part of the water chamber 1 is a drainage port for discharging the water inside with the pellets 5 to the outside. 23 are provided.
- One end of the water chamber 1 is connected to a chamber 24 of an extruder including a twin-screw kneader or a gear pump. Therefore, the molten resin 4 extruded from the die hole 2 a of the die plate 2 into the water chamber 1 is simultaneously extruded into the water chamber 1, and at the same time, the skin is cooled and cut into small pieces by a knife 7 described later. It is cooled and hardened in chamber 1 and pelletized into pellet 5.
- the other end of the water chamber 1 is connected to a bearing case 25 to which the driving means 21 composed of an electric motor or the like is connected.
- a rotating shaft 27 is inserted into the bearing case 25 via a bearing 26 so as to be freely retractable and rotatable, and the tip of the rotating shaft 27 projects into the water chamber 1.
- the driving means 21 is connected to a setting means 28 comprising a microcomputer or a microcomputer for setting the number of revolutions of the driving means 21.
- the knife 3 is composed of a disk-shaped knife holder 32 whose center is fixed to a rotating shaft 27, and a plurality of knives 7 radially attached to the knife holder 132. .
- FIG. 1 to 3 show a first embodiment of a knife 7 used for the cutter 3 of the underwater cut-granulation apparatus 20 according to the present invention.
- a conventional knife 30 having a triangular cross section has a high vertical surface formed on the rear side in the rotational direction
- the knife 7 of the present invention has a die 2
- the surface (outer surface) 7a which is opposite to the surface facing inward, is formed so as to be curved in the vicinity of the middle part in the rotation direction, and to have a downward slope approaching the die plate 2 side in the rotation direction. I have.
- the second half of the surface (inner surface) 7 b on the die 2 side in the rotation direction is a plane substantially parallel to the cut surface 2 b of the die 2. Is formed.
- the knife 7 of the first embodiment is positioned in the direction of the rotation axis (the left and right sides in FIG. 9).
- the length h of the conventional knife 30 is considerably thinner than the length H of the conventional knife 30 having a triangular cross section.
- the thickness of the knife 7 itself is considerably reduced.
- the knife 7 has a low rotational resistance to water, and even if the knife 7 is rotated at a high speed, the water flow in the swirling direction along the front of the die 2 is not so high. Further, the effect of suppressing the generation of turbulence on the rear side in the rotation direction of the knife 7 can be obtained.
- the force-contact surface provided on the outer surface 7a of the knife 7 forms a mountain-shaped guide surface 9 for drawing the water flow toward the die 2 behind the knife 7.
- This mountain-shaped guiding surface 9 has a portion 35 on the outer surface 7 a on the opposite side to the die 2, which is inclined forward in the rotation direction and away from the die 2, and approaches the die 2 on the rear side in the rotation direction. It has a part 37 which is inclined in the direction.
- the knife 7 has a cutter surface 34 in contact with the cutting surface 2 b of the die plate 2, and a front edge in the rotation direction of the cutter surface 34 in a state in which the cutter surface 34 is inclined rearward in the rotation direction toward the cutting surface 2 b.
- a rear surface 36 extending substantially rearward in the rotational direction from the rear edge of the front surface 35; a rear surface 37 following the rear edge of the rear surface 36;
- the inner surface 39 has a flat portion 40 on the rear side of the inclined portion 38, and the rear surface 37 is formed so as to be inclined toward the cutting surface 2b toward the rear in the rotational direction. I have.
- the front surface 35 and the rear surface 37 are formed in a flat shape, and the rear surface 36 is on the side opposite to the cutting surface 2 b so that the ridgeline does not clearly appear between the front surface 35 and the rear surface 37. It is formed in the shape of a curved surface that swells. Further, the intersection between the rear surface 27 and the inner surface 39 is formed in the knife E.
- the mountain-shaped guiding surface 9 is formed by the continuous front surface 35, rear surface 36, and rear surface 37.
- the inclination angle S of the front surface 35 with respect to the cutter surface 34 is usually set to about 30 ° to 60 ° in order to continuously perform cutting with less blade spillage.
- the maximum distance A is set to approximately 4 to 6 mm to avoid interference with the molten resin 4 that is continuously extruded.
- the cross-sectional shape is formed constant in the front length of the cutting blade portion of the knife 7.
- FIG. 4 shows a knife 7 used in the second embodiment of the present invention.
- the outer surface 7a of the knife 7 is formed with a chevron guide surface 9 but also the inner surface 7 is formed.
- the valley-shaped guiding surface 10 is also formed on b.
- the valley-shaped guiding surface 10 is obtained by bending the inner surface 7b inward in a direction approaching the die 2 on the rear side in the rotation direction of the knife 7, and then the tail direction is along the trailing direction of the chevron guiding surface 9. Is formed.
- the water flow along the inner surface 7b of the knife 7 is deflected by physical contact as it approaches the rear side in the rotation direction of the knife 7, and as a result, is pressed against the die 2 at the rear side in the rotation direction of the knife 7. Will be able to Therefore, the water flow inside the knife 7 is also smoothly separated to the rear in the rotation direction of the knife 7, and turbulence and cavitation can be suppressed.
- the cross-sectional shape of the knife 7 becomes streamlined as a whole surrounded by a curve. Another advantage is that the resistance along the direction of rotation to water is extremely small. In particular, it is preferable to form a smooth curved surface at the ridge portion at the front end in the rotation direction on the outer surface 7a.
- FIG. 4 shows a knife 14 of a comparative example in which the length dimension in the direction of the rotation axis is set to be the same as the length dimension H of the knife 30 having a triangular cross section in FIG. Since the knife 14 of this comparative example is provided with a chevron-shaped guiding surface 9 with respect to the outer surface 7a, the water flow along the outer surface 7a is similar to the first and second embodiments. The effect of directing to die 2 side is obtained.
- the cross-sectional shape as a whole is similar to the wing cross-section, and a chevron-shaped guiding surface 9 which is warped upward is also formed at the rear of the inner surface 7b.
- a chevron-shaped guiding surface 9 which is warped upward is also formed at the rear of the inner surface 7b.
- the formation of the curved guiding surface 9 at the rear of the inner surface 7b of the knife as described above is achieved by forming the guiding surface 9 inclined toward the die 2 side at the rear of the outer surface 7a of the knife to flow the water flow through the die 2. This is contrary to the spirit of the present invention.
- the rear surface of the inner surface 7b of the knife is formed as a flat surface (the flat portion 40 in FIG. 2), for example, as shown in FIGS. 11 and 18, the flat surface of the inner surface 7 of the knife is It may be inclined to the side away from 2.
- FIG. 5 shows a knife 7 of the third embodiment.
- the mountain-shaped guiding surface 9 and the valley-shaped guiding surface 10 are formed as a bent surface obtained by joining a plurality of flat surfaces. That is, the knife 7 in this case is formed in a plane shape in which the back surface 36 intersects the front surface 35 and the rear surface 37 via the ridge line.
- a valley-shaped guide surface 10 is formed auxiliary to the outer surface 7a behind the mountain-shaped guide surface 9 in the rotation direction. It is also possible to form a mountain-shaped guiding surface 9 on the rear side in the rotation direction from the valley-shaped guiding surface 10 with respect to 7b.
- the valley-shaped guiding surface 10 of the outer surface 7a and the mountain-shaped guiding surface of the inner surface 7b are provided as auxiliary.
- the surface 9 does not absorb or inhibit the original action of the mountain-shaped guiding surface 9 of the outer surface 7a and the valley-shaped guiding surface 10 of the inner surface 7b.
- the flow velocity is about 0.67 times that of the conventional knife 30 having a triangular cross section. Therefore, in the knife 7 of the present invention, the pellet resistance, that is, the force applied to the pellet, is about 0.43 times on average, and from these results, the occurrence of shape defects in the pellet is reduced. It was found that it could be prevented as much as possible.
- the conventional knife 30 contained pellets with shape defects at a considerable ratio.
- FIG. 10 shows the pressure distribution of the trapezoidal knife 31
- FIG. 11 shows the pressure distribution of the knife 7 of the present invention.
- the unit of the pressure value shown in each region is kg Z cm 2 .
- the knife 31 of the present invention since the front surface 35 is continuous with the back surface 36 so that no ridgeline appears, the above-described separation occurs. As a result, the low-pressure region is in a semicircular shape above the knife 7 and does not extend behind the rear surface 37.
- FIG. 12 shows the velocity distribution of the trapezoidal knife 31
- FIG. 13 shows the velocity distribution of the knife 7 of the present invention.
- U indicates the average velocity of the water flow. Therefore, the velocity of each area is indicated by how many times the average velocity U.
- the first requirement is a criterion for determining the shape defect of the pellet 5.
- the maximum representative length of the abnormal pellets in this case is assumed to be X '.
- the length X 'in the elongation direction is the largest, so this is set as the maximum representative length.
- the extrusion length H of the molten resin 4 defined as follows is adopted. The reason is that the larger the next extrusion length H is, the more the molten resin 4 is deformed and the shape of the pellet 5 is likely to be defective, and conversely, the smaller the extrusion length H is, the more deformed the molten resin 4 is This is because it is considered that the shape defect of the pellet 5 is less likely to occur without the above.
- the extrusion length H can be calculated by the following equation (3).
- the granulation test was actually repeated with various changes in the cross-sectional shape of the knife 7 of the present invention, and the relationship between the length L of the water stream portion 41 at the same speed and the above H was investigated. ] was obtained.
- the MFR of the molten resin 4 was set to 80.
- the length L of the water stream portion 41 at the same speed is within 4 times the above H, there is no impossibility (X) and the shape defect of the pellet 5 may not be affected so much. found.
- the length L of the water stream portion 41 at the same speed is within twice the length H, the result is good even when the knife speed is 2 O mZ s, and the shape defect of the pellet 5 is almost eliminated. No longer occurs.
- the rotational speed of the driving means 21 of the cutter 3 is set so that the relationship of L ⁇ 4H is always satisfied, the defective shape of the pellet 5 can be solved. Also, if the rotation speed of the driving means 21 of the cutter 3 is set so that the relationship of L ⁇ 2H is always established, the shape of the pellet 5 can be maintained extremely well. Can be.
- Figures 16 and 17 show how to measure the cross-sectional dimensions of the knife used in this numerical experiment.
- Figure 16 shows a conventional trapezoidal knife in which the rear surface 36 crosses both the front surface 35 and the rear surface 37, and the rear surface 37 is perpendicular to the die 2.
- 3 shows 1.
- the points where peeling is likely to occur on the outer surface of the knife 31 are the intersection Q between the rear surface 36 and the front surface 35 and the intersection R between the rear surface 36 and the rear surface 37. It was decided to investigate the effect of the average value of the intersection angles B and D on the length L of the constant velocity water flow part 41.
- FIG. 17 shows the knife 7 of the present invention in which the rear surface 37 is inclined and the rear surface 36 is curved so as to be smoothly continuous with both the front surface 35 and the rear surface 37. Is shown.
- the back 3 6 since the smoothly continuous to either of the front 35 and a rear face 3 7, it shifts the angle B and D was to evaluate the 1 8 0 0 none.
- the inclination angle 0 of the front surface 35 was set to a constant value of 45 °.
- Figure 18 shows the cross-sectional shapes of the knives Nos. 1 to 8 used in this FEM analysis.
- Fig. 19 to Fig. 22 show the distribution of the constant velocity water flow part 41 of the knife of each of Nos. 1 to 8 by FEM analysis. This table summarizes the length of the knife's water stream part 41.
- the molten resin The MFR used was 80 and the extrusion length H per unit time was set to 2 mm.
- the shape of the pellet 5 is good ( ⁇ ).
- the knife must be set so that the length L of the same-speed water flow part 41 is 4H or less. Can be rotated.
- the knife shape should be 150 D ⁇ (B + D) no2 ⁇ 180 ° and C / A ⁇ 1.2.
- FIG. 23 and FIG. 24 show the shapes and mechanical characteristics of the conventional trapezoidal knife 31 most commonly used and the knife 7 of the present invention in comparison.
- a portion 44 wider than the other portion 43 having a cutter function is provided at a portion corresponding to the central portion in the rotation direction of the die plate 2 from which the molten resin 4 is not extruded. Is provided.
- the load is effectively assigned to the root side of the knife 7. Accordingly, as shown in the stress curve of FIG. 24, the stress acting on the entire surface 34 of the knife 7 can be reduced as a whole, and as shown in the distortion curve of FIG. It can be kept small.
- FIGS. 25 to 29 show various changes in the MFR under the same conditions using the trapezoidal knife 31 (STAND) of FIG. 23 and the knife 7 (NEW) of the present invention of FIG. 24. It is an enlarged view of the pellet 5 when each is granulated.
- the trapezoidal knife 31 shown in FIG. 23 and the knife 7 of the present invention shown in FIG. 24 were rotated at various rotation speeds in the water chamber 1 to investigate the occurrence of cavitation.
- the trapezoidal knife 31 shown in Fig. 23 at a knife speed of 13.3 m / s, air bubbles were already generated due to cavitation, and up to 10.9 OmZ s, the inside of the water chamber 1 became completely white. It was full of air bubbles.
- the present invention is not limited to the above embodiments, and the details of the knife shape, the number of the knives 7 attached to the cutter 3, the detailed configuration of the underwater cutting granulator, and the like can be appropriately changed.
- a high MFR material as the molten resin 4 is not limited, and the material is not particularly limited.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Description
明 細 書 水中カット造粒装置とその装置に使用するナイフ、 並びに、 そのナイフを 用いた水中カツト造粒方法
【技術分野】
本発明は、 樹脂製のペレツトを製造するために用いられる水中カツト造粒 装置とその装置に使用するナイフ、 並びに、 好ましくはそのナイフを用いた 水中カツト造粒方法に関するものである。
【背景技術】
この種の水中カット造粒装置は、 一般に、 多数のダイ孔を有するダイプ レートと、 このダイプレートの切断面を取り囲むように形成された水室と、 この水室内に回転自在に収納されたナイフホルダーと、 このナイフホルダー を一定方向に回転駆動させる駆動手段と、 ナイフホルダーに取り付けられた 複数本のナイフと、 を備えている。
そして、 水室には冷却水を循環供給するための給水装置が接続されている。 また、 ダイには、 ギヤポンプ等の樹脂供給装置が接続され、 樹脂混練機等か らの溶融樹脂が水室内へ加圧供給されるようになっている。
従って、 ダイから水室内へ押し出される溶融樹脂は、 水室内に押し出され ると同時に表皮が冷却されてナイフによって細かく切断され、 水室内で冷却 硬化してペレツ卜に造粒されることになる。
従来、 かかる水中カット造粒装置に使用されるナイフは、 例えば、 図 1に 仮想線で示すような断面ほぼ三角形状のものや、 図 1 6に示すような断面ほ ぼ台形状のものが殆どで、 この場合、 回転方向後側の面 (後面) がダイの切 断面に対して垂直に切り落とされた形状になっている。
このように、 ナイフの回転方向後方側 (後面) が切断面に対して垂直であ ると、 ナイフが高速で回転するとその後方に乱流を起こしてキヤビテ一ショ ンに至る割合が高くなる。 従って、 この乱流自体やキヤビテーシヨンによる 気泡の巻き込み等により、 ナイフの回転抵抗が大きくなつてカッターの回転
駆動力の大半がこの抵抗のために消費され、 駆動効率が低下する原因となつ ていた。
また、 ナイフの回転抵抗が大きいということは、 ナイフの回転に伴ってダ ィの切断面に沿って走る旋回方向の水流 (給水装置による水の循環流とは別 のもの) の流速が高速化することに繋がる。
そのため、 溶融樹脂としてメルトフローレート (M F R ) が 1 0を超える ような低粘度の高 M F R材料の場合には、 ナイフの後方について回る高速水 流によって、 切断後のペレット形状に曲がり、 変形、 潰れ、 ヒゲ付き等の欠 陥が生じることになつていた (特に、 M F R > 3 0となれば顕著) 。
そして、 このように形状欠陥を有するペレットは、 外観不良によって商品 価値が低下するだけでなく、 押出あるいは射出成形時にホッパ部での引っ掛 かり等を起こし、 水中カツト造粒装置の歩留りの低下や稼働効率の低下にも 派生することがある。
本発明は、 上記のような事情に鑑み、 水に対するナイフの回転抵抗を減ら して乱流やキヤビテ一ションの抑制を図るとともに、 ナイフに連れて回られ る乱流部分の発生を可及的に小さくすることにより、 高 M F Rの樹脂材料で あっても形状欠陥の発生を防止できるようにすることを目的とする。
【発明の開示】
本発明では、 上記目的を達成するために、 次の技術的手段を講じた。 すなわち、 本発明に係る水中カット造粒装置では、 カツ夕一のナイフは、 その回転軸心に沿った丈寸法 hを薄く形成することによって、 水に対する回 転抵抗を減らすようにしている。
この場合の 「丈寸法 hを薄く形成する」 とは、 具体的には、 ナイフのカツ 夕一面から内面 (ダイ側の面) までの最大距離を A、 当該ナイフの最大厚さ を Cとしたとき、 C≤ l . 2 Aに設定することで実現することができる。 この種のナイフの寸法 Aは、 ダイ孔から常時押し出されてくる溶融樹脂と の干渉を避けるべく、 4〜 6 mmに設定されているので、 ナイフの最大厚さ Cは、 4 . 8〜 7 . 2 mm以下に設定しておけばよいことになる。
上記の本発明によれば、 丈寸法 hが小さいため水に対する回転抵抗が小さ
くできるので、 ナイフの回転に伴ってダイに沿って生じる旋回方向の水流も 低速化することができる。
そのため、 高 M F R材料等であっても、 ペレットの形状欠陥の発生を可及 的に抑えた造粒が可能になり、 この形状欠陥を原因とした従来の各種の欠点 を防止できる。
また、 ナイフの回転方向後方側に生じる乱流を小さく抑えることもできる ので、 キヤビテ一シヨンの抑制にも繋がり、 もってカツ夕一駆動力の消費を 抑えてその駆動効率を高めることが可能になる。 更に、 キヤビテ一シヨンに よって発生する多数の気泡がダイプレートを叩くことにより、 同プレートの 切断面が早期に損傷することも防止することができる。
一方、 水に対するナイフの回転抵抗を減らす他の方法としては、 ダイとは 反対側の面に山型誘導面を形成させる方法がある。 このとき、 山型誘導面に 対応させるように、 ダイへ向く面にも谷型誘導面を形成させるのが好適であ る。
この山型誘導面とは、 ダイと反対側において、 回転方向前部にダイから離 れる方向に傾斜した部分を備え、 かつ、 回転方向後部にダイに近づく方向に 傾斜した部分を備えている面のことを意味する。 従って、 この山型誘導面に 沿って発生した水流は、 ナイフの後方においてダイ側へ引き寄せられること になる。
また、 谷型誘導面とは、 ダイに対面する側において、 回転方向前部にダイ から離れる方向に傾斜した部分を備え、 かつ、 回転方向後部にダイに近づく 方向に傾斜した部分を備えている面のことを意味する。 従って、 ナイフの内 側で谷側誘導面に沿って発生した水流は、 同じようにダイ側へ押し付けられ ることになる。
このように、 山型誘導面や谷型誘導面に沿う水流は、 いずれにしてもダイ へ向かうものとされるので、 ナイフの回転方向後方側における水の分離が円 滑になり、 乱流やキヤビテ一ションの発生が抑えられることになる。
そのため、 力ッ夕一駆動力の消費を抑えてその駆動効率を高められること はもとより、 ナイフの回転に伴う旋回方向水流を低速化して、 高 M F R材料
等を用いる場合の形状欠陥を防止できる利点もある。
このようにナイフの回転方向後方側の水流をダイ側へ向けると、 ナイフに 作用するダウンフォース (d o w n f o r c e ) が低下するため、 ダイの 切断面へのナイフの押圧力が低減して両者共に磨耗を抑えられ、 寿命が長く なるという副次的効果が得られる。
上記の山型誘導面や谷型誘導面は、 ナイフに対する形成位置が限定される ものではないが、 上記したように水流をダイ側へ向けるという作用を効率よ く得るためには回転方向後方寄りに形成するのが好適である。
この山型誘導面や谷型誘導面は、 複数の平坦面を継ぎ合わせたような折曲 面としてもよいが、 滑らかに連続した曲面として形成するのが、 水に対する ナイフの回転抵抗を減らす意味で好適である。 また、 このような曲面にする ことで、 ナイフの回転方向に沿った断面形状を流線形に形成すれば、 一層好 適である。 なお、 平坦面と曲面との組み合わせにすることも可能である。 更に、 ナイフの丈寸法を薄くする構成とナイフに山型誘導面や谷型誘導面 を設ける構成との双方を採用すれば、 それらの相乗作用によって得られる効 果は一層確実で且つ良好なものとなる。
本発明が対象とするナイフは、 より具体的には、 ダイプレートの切断面に 対面するカッター面と、 回転方向後方に向かって反切断面側に傾斜した状態 で力ッ夕一面の回転方向前縁から立ち上がつている前面と、 この前面の後端 縁から実質的に回転方向後方に延びる背面と、 この背面の後端縁に続く後面 と、 回転方向後方に向かって反切断面側に傾斜した状態で力ッタ一面の回転 方向後縁から立ち上がる傾斜部分を有しかつ回転方向後端縁が後面に続く内 面と、 を備えたものである。
そして、 本発明は、 上記の形状のナイフにおいて、 後面が回転方向後方に 向かって切断面側に傾斜して形成され、 前面から背面への移行角度を B ° 、 背面から後面への移行角度を D ° としたとき、 1 5 0 ° ≤ ( B + D ) / 2≤ 1 8 0 ° となるように設定したものである。
また、 より好ましくは、 本発明のナイフは、 カツ夕一面から内面までの最 大距離を A、 ナイフの最大厚さを Cとしたとき、 C≤ l . 2 Aとなるように
設定されている。
この場合、 後述する F E M解析実験で明らかになるように、 1 0〜 2 0 m / sといった通常の回転速度でナイフを回転させた場合でも、 ナイフの回転 方向後方においてナイフとともにダイプレ一ト付近を走行する同速水流部分 が極めて短くなり、 その水流部分が溶融樹脂をなぎ倒すことに伴うペレツト の形状不良を未然に防止することができる。
上記の本発明において、 後面と内面の交線部分をナイフエッジに形成する ことにより、 ナイフの回転方向後方における水流の乱れがより確実に防止さ れ、 同速水流部分の増大がより効果的に抑制される。
また、 本発明は、 カツ夕一面における、 溶融樹脂が押し出されないダイプ レー卜の回転方向中心側の部分に対応する部分に、 力ッ夕一機能を有する他 の部分よりも幅の広い部分を設けることを推奨する。
この場合、 幅の広い部分を形成したことによって切断面に対するカッター 面の接触面積が増大し、 カッター面に作用する単位面積当たりの力が低減す るので、 ナイフのカッター面及びダイプレ一卜の切断面の磨耗を可及的に遅 らせることができる。
なお、 角度 B ° と角度 D ° の関係と、 最大距離 Aと最大厚さ Cとの関係を 上記の関係にする限り、 ナイフの背面は、 前面及び後面との間で稜線が明瞭 には現れないように反切断面側に湾曲面状に形成することもできるし、 また、 前面及び後面との間で稜線を介して交差する平面状に形成することもできる。 一方、 この種の水中カット造粒装置によって操業する場合、 次のように定 義される L及び Hを、 L≤4 Lの関係を保つように設定すれば、 高 M F Rの 樹脂であってもペレツトの形状不良を可及的に解消できることが後述の実験 によって実証された。
L : ナイフの回転方向後側に形成されかつ同ナイフと実質的に同じ速さで ダイプレー卜付近を走行する同速水流部分の回転方向長さ
H : ナイフで切断された後に次のナイフで切断が行われるまでの間にダイ プレー卜から押し出される溶融樹脂の押出長さ
従って、 常に L≤ 4 Hの関係が成立するように力ッタ一の駆動手段の回転
速度を設定しておけば、 ペレツ卜の形状不良は取り合えず解消できる。 しかるに、 溶融樹脂の押出速度とナイフの回転速度が著しく低い状態で L ≤4 Hの関係を成立させるのでは、 ペレツ卜の生産量が大きく落ちてしまつ て実操業には余り適切ではない。
そこで、 上記した本発明のナイフを使用し、 高速度 ( 1 0〜2 O mZ s ) で回転させる通常運転の場合にも、 L≤ 4 Hの関係を保持しながら造粒する ことが望まれる。 本発明のナイフによれば、 かかる通常運転に必要な 1 0〜 2 O mZ sでカッターの駆動手段を回転させても、 L≤4 Hの関係を保持し てペレツトの形状不良を解消できるとともに、 キヤビテ一ションの発生も有 効に防止することができる。
【図面の簡単な説明】
図 1は、 第一実施形態のナイフの回転方向外側から見た側面図 (図 3の B 一 B線方向から見た図) であり、 ダイから押し出された溶融樹脂を切断する 様子を示している。
図 2は、 第一実施形態のナイフの拡大断面図である。
図 3は、 第一実施形態のナイフを装着した力ッターを切断面側から見た図 である。
図 4は、 第二実施形態のナイフの拡大断面図である。
図 5は、 第三実施形態のナイフの拡大断面図である。
図 6は、 第四実施形態のナイフの拡大断面図である。
図 7は、 第五実施形態のナイフの切断面側から見た図である。
図 8は、 図 7の C一 C線方向から見た図である。
図 9は、 本発明のナイフを使用できる水中カツト造粒装置の側面断面図で ある。
図 1 0は、 F E M解析による従来の台形型のナイフの圧力分布図である。 図 1 1は、 F E M解析による本発明のナイフの圧力分布図である。
図 1 2は、 F E M解析による従来の台形型のナイフの速度分布図である。 図 1 3は、 F E M解析による本発明のナイフの速度分布図である。
図 1 4 ( a ) は理想の切断状態を示す拡大断面図、 (b ) はその場合のぺ
レットの平面図、 (c) はその場合のペレットの側面図である。
図 1 5 (a) は不適切な切断状態を示す拡大断面図、 (b) はその場合の ペレットの平面図、 (c) はその場合のペレットの側面図である。
図 1 6は、 移行角度 B及び Dと、 最大厚さ C及び最大距離 Aの定義を示す ためのナイフの断面図である。
図 1 7は、 移行角度 B及び Dと、 最大厚さ C及び最大距離 Aの定義を示す ためのナイフの断面図である。
図 1 8は、 F EM解析による数値実験を行った各番号 1〜 8のナイフの断 面形状を示す図である。
図 1 9は、 番号 1と 2のナイフの同速水流部分の分布図である。
図 2 0は、 番号 3と 4のナイフの同速水流部分の分布図である。
図 2 1は、 番号 5と 6のナイフの同速水流部分の分布図である。
図 2 2は、 番号 7と 8のナイフの同速水流部分の分布図である。
図 2 3は、 最も標準的な台形型ナイフの形状と力学特性を表す図である。 図 24は、 本発明のナイフの形状と力学特性を表す図である。
図 2 5は、 MF R= 3 0の場合のペレットの拡大図である。
図 2 6は、 MF R= 60の塲合のペレットの拡大図である。
図 2 7は、 MF R = 8 5の場合のペレットの拡大図である。
図 2 8は、 MFR= 1 1 5の場合のペレツ卜の拡大図である。
図 2 9は、 MF R= 1 5 5の場合のペレツ卜の拡大図である。
【発明を実施するための最良の形態】
以下、 図面に基づいて本発明の実施の形態を説明する。
図 9は、 本発明のナイフ 7を使用できる水中カツト造粒装置 2 0の側面断 面図である。
この造粒装置 20は、 多数のダイ孔 2 aを有するダイプレート (ダイ) 2 と、 このダイプレート 2の切断面 2 を取り囲むように形成された水室 1と、 この水室 1内に回転自在に収納された力ッタ一 3と、 この力ッター 3を回転 駆動させる駆動手段 2 1とを備えている。
ダイプレート 2は水室 1の一方の側壁 (図 9の右側壁) を形成するように
同水室 1を閉鎖している。 水室 1の下部には、 図示しない給水装置が接続さ れる給水口 2 2が形成され、 水室 1の上部には、 内部の水をペレット 5とと もに外部に排出するための排水口 2 3が設けられている。
水室 1の一端には、 二軸混練機又はギアポンプ等からなる押出機のチャン バー 2 4が接続されている。 従って、 ダイプレート 2のダイ孔 2 aから水室 1内へ押し出された溶融樹脂 4は、 水室 1内に押し出されると同時に表皮が 冷却されて後述のナイフ 7によって細かく切断され、 その後、 水室 1内で冷 却硬化してペレツト 5に造粒される。
水室 1の他端には、 電動モー夕一等よりなる前記駆動手段 2 1が接続され た軸受けケース 2 5が接続されている。 軸受けケース 2 5には、 ベアリング 2 6を介して回転軸 2 7が出没自在でかつ回転自在に挿通されており、 この 回転軸 2 7の先端部は前記水室 1内に突出している。 駆動手段 2 1には、 こ の駆動手段 2 1の回転数を設定するマイコン又はプロコンよりなる設定手段 2 8が接続されている。
回転軸 2 7の先端には前記カツ夕一 3が固定されている。 このカツ夕一 3 は、 中心部が回転軸 2 7に固定された円盤状のナイフホルダー 3 2と、 この ナイフホルダ一 3 2に放射状に取り付けられた複数枚のナイフ 7とから構成 されている。
図 1〜図 3は、 本発明に係る水中カツト造粒装置 2 0のカッター 3に使用 されるナイフ 7の第一実施形態を示している。
図 1に二点鎖線で示すように、 断面三角形状のタイプの従来のナイフ 3 0 では回転方向後方側に高い垂直面が形成されているのに対し、 本発明のナイ フ 7は、 ダイ 2へ向く面とは反対向きの面 (外面) 7 aが、 その回転方向の 中間部付近で山なりにカーブされ、 回転方向後方側ではダイプレート 2側へ 近づく下り傾斜となるように形成されている。
なお、 図 2に示すように、 第一実施形態のナイフ 7では、 ダイ 2側の面 (内面) 7 bの回転方向後半部は、 ダイ 2の切断面 2 bに対してほぼ平行な 平面状に形成されている。
従って、 この第一実施形態のナイフ 7は、 回転軸心方向 (図 9の左右方
向) の丈寸法 hが、 断面三角形状のタイプの従来のナイフ 3 0の丈寸法 Hに 比べてかなり薄くなつている。 また、 ナイフ 7の肉厚自体もかなり薄くなつ ている。
従って、 このナイフ 7は、 水に対する回転抵抗が小さくなり、 ナイフ 7を 高速回転させても、 ダイ 2の正面に沿って生じる旋回方向の水流はそれほど 高速のものとはならない。 また、 ナイフ 7の回転方向後方側において乱流の 発生を抑える効果も得られる。
上記のようにナイフ 7の外面 7 aに設けられた力一ブ面は、 水流をナイフ 7の後方においてダイ 2側へ引き寄せるための山型誘導面 9を形成する。 こ の山型誘導面 9は、 ダイ 2と反対側の外面 7 aにおいて、 回転方向前側にダ ィ 2から離れる方向に傾斜した部分 3 5を備え、 かつ、 回転方向後側にダイ 2に近づく方向に傾斜した部分 3 7を備えている。
従って、 ナイフ 7の外面 7 aに沿う水流は、 山型誘導面 9を乗り越すと同 時に後側の斜面に沿ってダイ 2側へ引き寄せられ、 その結果、 この水流は、 ナイフ 7の回転方向後方側から円滑に分離し、 乱流やキヤビテ一ションの発 生が抑えられる。
このように、 ナイフ 7の高速回転によっても、 ダイ 2の正面に沿って生じ る旋回方向の水流は高速化せず、 乱流も生じ難くなつてキヤビテーションに 至り難くなるため、 カッター駆動力の消費が抑えられて駆動効率を高くでき る。 また、 高 M F R材料等を用いた場合でも形状欠陥の発生を防止できると いう、 種々の利点を得るに至る。
以下、 本実施形態のナイフ 7の断面形状をより具体的に説明する。
すなわち、 このナイフ 7は、 ダイプレート 2の切断面 2 bに接するカツ ター面 3 4と、 回転方向後方に向かって反切断面 2 b側に傾斜した状態で カッター面 3 4の回転方向前縁から立ち上がつている前面 3 5と、 この前面 3 5の後端縁から実質的に回転方向後方に延びる背面 3 6と、 この背面 3 6 の後端縁に続く後面 3 7と、 回転方向後方に向かって反切断面 2 b側に傾斜 した状態でカッター面 3 4の回転方向後縁から立ち上がる傾斜部分 3 8を有 しかつ回転方向後端縁が後面 3 7に続く内面 3 9と、 を備えている。
このうち、 内面 3 9は、 前記傾斜部分 3 8の後方側に平面部分 4 0を備え ており、 後面 3 7は、 回転方向後方に向かって切断面 2 b側に傾斜するよう に形成されている。 また、 前面 3 5と後面 3 7は平面状に形成されており、 背面 3 6は、 これら前面 3 5及び後面 3 7との間で稜線が明瞭には現れない ように反切断面 2 b側に膨らんだ湾曲面状に形成されている。 更に、 後面 2 7と内面 3 9の交線部分はナイフェツジ Eに形成されている。
従って、 本実施形態では、 連続した前面 3 5、 背面 3 6及び後面 3 7に よって前記山型誘導面 9が形成されていることになる。
そして、 本実施例のナイフ 7では、 後述する実験からの見地に基づいて、 それぞれ下のように定義される各パラメ一夕 A〜Dに関して、 各式 ( 1 ) 及 び (2) が成立するようにその断面形状が設定されている。
( 1 ) 1 5 0 ° ≤ (B + D) /2≤ 1 8 0 °
B :前面から背面への移行角度
D :背面から後面への移行角度
( 2 ) C≤ 1. 2 A
A : カツ夕一面から内面までの最大距離
C :ナイフの最大厚さ
なお、 前面 3 5のカッター面 3 4に対する傾斜角度 Sは、 刃こぼれの少な い切断を継続的に行うため、 通常は、 約 3 0 ° 〜 6 0 ° に設定される。 また、 最大距離 Aは連続して押し出される溶融樹脂 4との千渉を避けるべく、 概ね 4〜 6 mm程度に設定される。
この場合、 後述する数値実験で明らかになるように、 10〜20mZsと いった実操業時の回転速度でナイフ 7を回転させた場合でも、 ナイフ 7の回 転方向後方においてナイフ 7とともにダイプレー卜 2付近を走行する同速水 流部分 4 1が極めて短くなり、 これによつて、 その水流部分が溶融樹脂 4を なぎ倒すことに伴うペレツト 5の形状不良を未然に防止できる。
なお、 本実施形態では、 ナイフ 7の切断刃部分の前長において断面形状は 一定に形成されている。 もっとも、 上記式 (1) 及び (2) の関係を満たす 範囲において、 切断刃部分の断面形状を長手方向で変化させることは可能で
ある。
図 4は、 本発明の第二実施形態で用いるナイフ 7を示したもので、 この第 二実施形態では、 ナイフ 7の外面 7 aに山形誘導面 9が形成されているだけ でなく、 内面 7 bにも谷型誘導面 1 0が形成されたものである。
この谷型誘導面 1 0は、 上記内面 7 bをナイフ 7の回転方向後方側におい てダイ 2に近づく方向へ内曲げしたもので、 その後尾方向は前記山形誘導面 9の後尾方向に沿うように形成されている。
従って、 ナイフ 7の内面 7 bに沿った水流は、 ナイフ 7の回転方向後方側 へ近づくにつれて物理的な接触による変向作用を受け、 その結果、 ナイフ 7 の回転方向後部においてダイ 2側へ押し付けられるようになる。 そのため、 ナイフ 7の内側の水流もナイフ 7の回転方向後方へ円滑に分離し、 乱流や キヤビテーシヨンの発生を抑えられる。
また、 このように山型誘導面 9と谷型誘導面 1 0との双方を設けると、 ナ ィフ 7の回転方向後方側から分離する各々の水流に対し、 それらが合流する ときの水勢が加勢されることになり、 上記効果は相乗的に高くなる利点があ る。 従って、 この第二実施形態では少なくとも第一実施形態の場合を超越し た効果を得ることができる。
なお、 第一実施形態でもそうであるが、 この第二実施形態では特に、 ナイ フ 7の回転方向後方側の水流がダイ 2へ向かう作用が強いため、 ナイフ 7に 対するダイ 2側へのダウンフォースが低減される。 そのため、 ダイ 2の切断 面 2 bに対するナイフ 7の押圧作用が低減し、 両部材の磨耗をともに抑えら れるという副次的効果が得られる。
更に、 この第二実施形態では、 山型誘導面 9や谷型誘導面 1 0を共に曲面 によって形成してあるため、 ナイフ 7の断面形状として、 その全体が曲線で 囲まれた流線形となり、 水に対して回転方向に沿った抵抗が極めて小さくな るという利点もある。 特に、 外面 7 aにおける回転方向前端部の山なり部分 では、 滑らかな曲面とするのが好適である。
ところで、 図 4には、 回転軸心方向の丈寸法が図 1の三角断面のナイフ 3 0の丈寸法 Hと同じに設定された比較例のナイフ 1 4を示してある。
この比較例のナイフ 1 4には、 外面 7 aに対して山型誘導面 9が設けられ ているため、 上記第一及び第二実施形態の場合と同様に、 外面 7 aに沿った 水流をダイ 2側へ向ける作用が得られる。
しかし、 この比較例のナイフ 1 4では、 その全体としての断面形状が翼断 面に似たものとなっており、 その内面 7 bの後部にも上方へ反り上がった山 形誘導面 9が形成されている。 このため、 ナイフ 1 4の内面 7 bに沿った水 流は、 当該内面 7 bの反り上がった山形誘導面 9によってダイ 2から離れる 方向へ向けられてしまうことになる。
このことは、 外面 7 a側の山形誘導面 9によって、 折角、 水流がダイ 2側 へ指向しょうとしているのに、 その指向生が内面 7 b側の山形誘導面 9に誘 導される水流によって相殺される恐れがあることを意味する。 従って、 ナイ フ 1 4の回転方向後側においてキヤビテーションの発生をある程度抑えるこ とができても、 その効果は図 1の本発明のナイフ 7よりも劣るものと考えら れる。
このように、 ナイフの内面 7 b後部に反り返った山形誘導面 9を形成する ことは、 ナイフの外面 7 a後部にダイ 2側へ近づく方向に傾斜した誘導面 9 を形成して水流をダイ 2側へ導く本発明の趣旨に反することになる。
もっとも、 ナイフの内面 7 b後部は平坦面 (図 2の平面部分 4 0 ) に形成 されておれば、 例えば、 図 1 1や図 1 8に示すように、 ナイフの内面 7 の 平坦面がダイ 2から離れる側へ若千傾斜していてもよい。
図 5は、 第三実施形態のナイフ 7を示している。 このナイフ 7は、 上記山 型誘導面 9や谷型誘導面 1 0を複数の平坦面を継ぎ合わせたような折曲面と している。 すなわち、 この場合のナイフ 7は、 背面 3 6が前面 3 5及び後面 3 7との間で稜線を介して交差する平面状に形成されている。
また、 図 6に示す第四実施形態のナイフ 7のように、 外面 7 aに対して山 型誘導面 9よりも回転方向後方側に補助的に谷型誘導面 1 0を形成させたり、 内面 7 bに対して谷型誘導面 1 0よりも回転方向後方側に補助的に山型誘導 面 9を形成させたりすることも可能である。
このようにするのは、 カッター 3の能力 (大きさや適用回転数等) や運転
条件等ごとに、 水流を最も効果的に低速化させるための調節を行うことが目 的であるので、 補助的に設けた外面 7 aの谷型誘導面 1 0や内面 7 bの山型 誘導面 9が、 外面 7 aの山型誘導面 9や内面 7 bの谷型誘導面 1 0の本来の 作用を吸収又は阻害するものでないことは言うまでもない。
ナイフ 7の丈寸法 hを小さくするための手段としては、 図 7及び図 8に示 すように回転方向の長さを幅狭にカツトした構成とすることも可能である。 これであれば、 従来のナイフ 3 0に対して簡単な追加加工を施すだけで、 本 発明を実施できる利点がある。
〔実験例 1:)
図 1に実線で示した本発明のナイフ 7を使用した場合と、 図 1に仮想線で 示した断面三角形状のタイプの従来のナイフ 3 0を使用した場合とを対比す ベく、 M F R 7 0及び M F R 1 0 0の高 M F R材料を用いた造粒テス卜 を行った。
この実験例 1では、 水室 1内でのキヤビテーシヨンの発生状況は、 同一判 定者による目視判定とした。 その結果、 従来のナイフ 3 0では、 ナイフ最外 周部の周速が 1 O mZ sを超えたあたりから気泡の発生が認められ、 周速が 2 0 / sに達するころでは水室 1内が真っ白になるほどの無数の気泡が発 生した。
これに対して、 本発明のナイフ 7では、 周速が 2 O mZ sに達した時点で も、 気泡は殆ど認められなかった。
一方、 高 M F R材料の形状欠陥を防止できるか否かについては、 ダイ 2の 正面付近に生じた水流の流速等を C A Eによる解析によって予測すると共に, 実際に得られたペレットを観察することによって行った。 その結果、 レノル ズ数及びペレツト抗力の予測値は次の表のようになった。
(次 頁)
4
〔表 1〕
7では、 従来の三角断面のナイフ 3 0に比べて流速が約 0 . 6 7倍となるこ とが判る。 従って、 本発明のナイフ 7ではペレット抗カ、 即ち、 ペレットに 負荷する力としてみたときに、 平均約 0 . 4 3倍となっており、 これらの結 果から、 ペレツ卜における形状欠陥の発生を可及的に防止できることが判明 した。
また、 実際の造粒によって得られたペレットも、 本発明のナイフ 7では、 M F R = 7 4の場合及び M F R = 1 0 5の場合も形状欠陥の少ない正常なも のの占める割合が非常に高いものであつたのに対して、 従来のナイフ 3 0で は、 M F R = 7 4及び M F R = 9 5のいずれの場合も相当な割合で形状欠陥 を伴ったペレツ卜が含まれていた。
〔実験例 2〕
次に、 本発明のナイフ 7が従来のナイフのうちいわゆる台形断面タイプの ナイフ 3 1に対してもより優位性があるかどうかを検証すべく、 F E M解析 による数値実験を行った。 この解析は、 一定速度の水流中にナイフを静止さ せた場合のナイフ周囲の水の圧力と速度を、 多数の要素に分割して F E Mに よって算出したもので、 その結果を図 1 0〜図 1 3に示す。
このうち、 図 1 0は台形ナイフ 3 1の圧力分布を示し、 図 1 1は本発明の ナイフ 7の圧力分布を示している。 また、 これらの図において、 それぞれの 領域に示されている圧力数値の単位は k g Z c m2 である。
図 1 0から明らかなように、 従来の台形ナイフ 3 1では、 前面 3 5と背面 3 6との稜線部分において大きな圧力低下が発生し、 この部分で水流に剥離
が発生している。 この剥離の影響は後方まで延び、 ナイフ 3 1の後方へ大き く低圧領域を発生させている。
これに対して、 図 1 1から明らかなように、 本発明のナイフ 3 1では、 前 面 3 5が背面 3 6に対して稜線が現れないように連続しているので、 上記の 剥離は生じておらず、 このため、 低圧領域はナイフ 7の上方で半円形に収 まっており、 後面 3 7の後方へは延びていない。
次に、 図 1 2は台形ナイフ 3 1の速度分布を示し、 図 1 3は本発明のナイ フ 7の速度分布を示している。 また、 これらの図において、 Uは水流の平均 流速を示している。 従って、 それぞれの領域の速度はその平均流速 Uの何倍 であるかによって示している。
図 1 2から明らかなように、 従来の台形ナイフ 3 1では、 上記剥離に伴う 乱流の発生の影響で、 ナイフ 3 1の回転方向後方に発生するナイフ 3 1とほ ぼ同じ速度の部分 (速度が 0〜 0 . 1 6 Uの領域:以下、 同速水流部分とい う) 4 1がかなり長くなつている。 従って、 従来のナイフ 3 1の場合、 この 長い同速水流部分 4 1によって常時押し出されてくる溶融樹脂 4がなぎ倒さ れる機会が多く、 これによつてペレツト 5の形状不良が発生する確率が高く なっているものと考えられる。
これに対して、 図 1 3に示すように、 本発明のナイフ 7では、 上記剥離が なくナイフ 7の後方で殆ど乱流が生じていないため、 ナイフ 4とともにダイ プレート付近を走行する同速水流部分 4 1が極めて短くなつている。 従って、 この場合には、 同速水流部分 4 1によって常時押し出されてくる溶融樹脂 4 がなぎ倒される機会が殆どなくなり、 ペレットの形状不良が発生する確率が 低下するものと考えられる。
〔同速水流部分の許容長さの決定〕
上記のように、 同速水流部分 4 1が小さくなればペレツトの形状不良を解 消できることが分かっても、 次に、 その部分 4 1がどの程度の長さまで許容 されるのかが明らかにする必要がある。 そこで、 ペレット 5の形状不良が解 消ないし希望通りに低下できる同速水流部分 4 1の許容長さを決定すベく、 さらに実験を継続することにした。
しかし、 この場合、 まず第一に必要になるのはペレット 5の形状不良の判 定基準である。
そこで、 まず、 図 14に示すように、 水流で全く乱されないで押し出され てきた溶融樹脂 5がナイフ 7で切断される理想状態を想定し、 この場合の理 想ペレツ卜の最大代表長さを Xと仮定する。 なお、 図 14では、 押し出し長 さ Yが幅 よりも小さいので、 幅 Xを最大代表長さにしている。
次に、 水流で押し倒された溶融樹脂 5がナイフ 7で切断される不良状態を 想定し、 この場合の異常ペレットの最大代表長さを X' と仮定する。 なお、 図 1 5では、 伸び方向の長さ X' が最も大きいのでこれを最大代表長さにし ている。
そして、 実際に造粒して得られたペレツ卜 5を 1 0 0粒抽出してそれらの 最大代表長さ X' を測定して X' ZXの平均値を算出し、 この平均値の変動 によって次のように評価することにした。
極めて良好 (◎) X' /X= 1. 0 0〜: L . 1 5
良好 (〇) X' /X= 1. 1 5〜: L . 30
可 (△) X' /X= 1. 30〜: 1. 45
不可 (X) X' /X= 1. 4 5〜
次に、 同速水流部分 4 1の長さと相対的に対比すべき長さの基準として、 次のように定義される溶融樹脂 4の押出長さ Hを採用することにした。 その 理由は、 次の押出長さ Hが大きければ大きいほど溶融樹脂 4が変形してぺ レット 5の形状不良が発生しやすく、 逆に、 押出長さ Hが小さければ小さい ほど溶融樹脂 4が変形せずにペレツト 5の形状不良が発生し難くなると考え られるからである。
H : ナイフで切断された後に次のナイフで切断が行われるまでの間にダイ プレートから押し出される溶融樹脂の押出長さ
なお、 この押出長さ Hは、 次の式 (3) で算出することができる。
(3) H= (QX 1000/3600) X (60/nN) / ( ττ d V4 ) X10
Q : ダイ孔 1つ当たりの樹脂流量 (k gZh r )
p :樹脂材料の密度 (g/cm3 )
n : ナイフの数 (枚)
N : ナイフの回転数 ( r p m)
d : ダイ孔の直径 (c m)
そして、 本発明のナイフ 7の断面形状を種々に変化させて実際に造粒試験 を繰り返し、 同速水流部分 4 1の長さ Lと上記 Hとの関係を調査したところ, 次の 〔表 2〕 の結果を得た。 なお、 この造粒試験では、 溶融樹脂 4の M F R は 8 0に設定した。
〔表 2〕
〇 良好
Δ 可
X 不可
この 〔表 2〕 から判るように、 同速水流部分 4 1の長さ Lが上記 Hの 4倍 以内であれば、 不可 (X ) はなくペレット 5の形状不良にさほど影響がなく なることが判明した。 また、 好ましくは、 同速水流部分 4 1の長さ Lが上記 Hの 2倍以内であれば、 ナイフ速度が 2 O mZ sの場合でも結果が良好にな り、 ペレット 5の形状不良が殆ど発生しなくなる。
従って、 常に L≤4 Hの関係が成立するようにカツ夕一 3の駆動手段 2 1 の回転速度を設定しておけば、 ペレツト 5の形状不良は取り合えず解消でき る。 また、 常に L≤2 Hの関係が成立するようにカツ夕一 3の駆動手段 2 1 の回転速度を設定しておけば、 ペレツ ト 5の形状を極めて良好に維持するこ
とができる。
〔実験例 3〕
次に、 ナイフの断面形状が同速水流部分 4 1の長さ Lに与える影響をより 詳しく調査すべく、 ナイフの断面形状を種々に変化させて、 前記した F E M 解析による数値実験を行った。
図 1 6及び図 1 7はこの数値実験で採用したナイフの断面寸法の採り方を 示している。 このうち、 図 1 6は、 背面 3 6が前面 3 5及び後面 3 7のいず れに対しても交差しており、 かつ、 後面 3 7がダイ 2に対して垂直な従来の 台形型ナイフ 3 1を示している。
この場合、 ナイフ 3 1の外面で剥離が起きそうな点は、 背面 3 6と前面 3 5との交点 Qと、 背面 3 6と後面 3 7の交点 Rであるから、 これらの点にお ける交差角度 B及び Dの平均値が同速水流部分 4 1の長さ Lに与える影響を 調査することにした。
また、 前記したように、 ナイフ 7の最大厚さ Cが大きい場合もナイフ 3 1 の後方で乱流が発生しうるから、 この最大厚さ Cと内面 3 9の最大距離 Aと の比が同速水流部分 4 1の長さ Lに与える影響も調査することにした。
一方、 図 1 7は、 後面 3 7が傾斜しており、 背面 3 6が前面 3 5及び後面 3 7のいずれに対しても滑らかに連続するように湾曲している本発明のナイ フ 7を示している。 そして、 この場合、 背面 3 6が前面 3 5及び後面 3 7の いずれに対しても滑らかに連続しているので、 移行角度 Bと Dはいずれも 1 8 0 0 と評価することにした。
なお、 この数値実験では、 前面 3 5の傾斜角度 0は、 4 5 ° の一定値に設 定した。 また、 溶融樹脂 4の M F Rは 8 0で、 その単位時間当たりの押出長 さ Hは 2 . 5 mmと仮定した。 従って、 この実験では、 L≤4 X 2 . 5 mm = 1 O mmとなり、 同速水流部分 4 1の長さ Lが 1 0 mm以下の場合が合格 値となる。
図 1 8はこの F E M解析で採用した各番号 1〜 8のナイフの断面形状を示 している。 また、 図 1 9〜図 2 2は、 F E M解析による各番号 1〜 8のナイ フの同速水流部分 4 1の分布状態を示しており、 〔表 3〕 は各番号 1〜 8の
ナイフの同速水流部分 41の長さを表に纏めたものである
〔表 3〕
この 〔表 3〕 から判るように、 V=2 OmZsのときでも同速水流部分 4 1の長さ Lを 1 Omm以下にできたのは、 番号 3〜 4のナイフだけであった。 また、 番号 5のナイフの結果が良好であることから判るように、 ナイフの背 面が平坦な場合でも、 (B + C) /2と C/Aを適切な値に設定しておけば、 同速水流部分 41の長さ Lを短くできる。
次に、 上記の各番号 1〜 8のナイフを試験用の水中カツト造粒装置に装着 して実際にペレツト 5を作成し、 その形状を前記した評価基準に基づいて評 価した。 これを纏めたものが次の 〔表 4〕 である。
なお、 この試験練りでは、 上記数値解析のときの仮定と同様に、 溶融樹脂
は MFRが 80のものを使用し、 その単位時間当たりの押出長さ Hは 2 mmに設定した。
〔表 4〕
〇 良好
△ 可
X 不可
前記 〔表 3〕 及び 〔表 4〕 から明らかなように、 ペレット 5の形状が良好 (〇) 以上の評価を得るには、 同速水流部分 41の長さ Lが 4H以下になる ようにナイフを回転させればよい。
また、 ナイフの回転速度が 10〜2 Om/sの高速の場合に同速水流部分 41の長さ Lを 4 H以下にするには、 ナイフの形状を 150 D ≤ (B + D) ノ2≤ 180 ° でかつ C/A≤ 1. 2に設定しておけばよい。
〔実験例 4〕
図 23及び図 24は、 最も標準的に用いられている従来の台形型ナイフ 3 1と本発明のナイフ 7との形状及び力学特性を対比的に表したものである。
このうち、 図 2 3の台形型ナイフ 3 1では、 (B + D) ノ 2 = 1 1 0 ° でか つ CZA= 1. 4に設定されている。
他方、 図 24の本発明のナイフ Ίでは、 (B +D) ZS l S C でかつ 0. 9に設定されている。
なお、 図 24のナイフ 7では、 溶融樹脂 4が押し出されないダイプレート 2の回転方向中心側の部分に対応する部分に、 カッター機能を有する他の部 分 4 3よりも幅の広い部分 44が設けられている。
このため、 図 24の荷重曲線から明らかなように、 荷重がナイフ 7の根元 側で有効に受け持たれる。 従って、 図 24の応力曲線に示すように、 ナイフ 7の力ッ夕一面 34に作用する応力を全体的に低減できるとともに、 図 24 の歪み曲線に示すように、 ナイフ 7先端側の最大歪みも小さく抑えることが できる。
図 2 5〜図 2 9は、 同じ条件の下で図 2 3の台形型ナイフ 3 1 (S TAN D) と図 24の本発明のナイフ 7 (NEW) によって、 MF Rを種々に変化 させてそれぞれ造粒した場合のペレツト 5の拡大図である。
図 2 5に示すように、 MFR= 3 0の場合はいずれにもペレツト 5の形状 不良はそれほど認められない。 しかし、 図 2 3の台形型ナイフ 3 1では、 M F R = 6 0〜 8 5でもいびつなペレツト 5 Aが多く混じり始め、 MF R = 1 1 5 (図 2 8) に至っては相当数のペレット 5 Aが形状不良に陥っているこ とが判る。
これに対して、 図 24の本発明のナイフ 7では、 MFR= 1 1 5 (図 2 8) の場合や MF R== 1 5 5の場合でもペレット 5が形状不良が最小限に抑 えられている。
なお、 図 2 3の台形型ナイフ 3 1と図 24の本発明のナイフ 7とを水室 1 内で種々の回転数の下で回転させ、 キヤビテーションの発生状況を調査して みたところ、 図 2 3の台形型ナイフ 3 1では、 ナイフ速度が 1 3. 3 m/ s で既にキヤビテーシヨンにより気胞の発生が見られ、 1 9. OmZ sに至つ ては水室 1内が真っ白になるほど気胞だらけになった。
これに対して、 図 24の本発明のナイフ 7では、 ナイフ速度が 1 3. 3〜
1 9. Omノ sの範囲では気胞は全く発生せず、 1 9. OmZsの下でも静 水と同じ程度の透明度が達成されることが確認された。
ところで、 本発明は上記各実施形態に限定されるものではなく、 ナイフ形 状の細部、 カッター 3に対するナイフ 7の取り付け数、 水中カット造粒装置 としての細部構成等は適宜変更可能である。
また、 溶融樹脂 4として、 高 MFR材料を用いることが限定されるもので はなく、 その材質も特に限定されるものではない。
Claims
1. ダイ (2) から水室 ( 1 ) 内へ押し出される溶融樹脂 (4) を当該ダイ ( 2) にナイフ (7) を対向させた状態で回転させるカツ夕一 (3) により切 断して造粒する水中カツト造粒装置において、
上記カッター (3) のナイフ (7) は、 ダイ (2) 正面に向かって生じる 旋回方向の水流を低速化するために回転軸心方向の丈寸法 (h) が薄く形成 されていることを特徴とする水中カツ卜造粒装置。
2. ダイ (2) から水室 ( 1 ) 内へ押し出される溶融樹脂 (4) を当該ダイ ( 2) にナイフ (7) を対向させた状態で回転させるカッター (3) により切 断して造粒する水中カツ卜造粒装置において、
上記カツ夕一 (3) のナイフ (7) には、 ダイ (2) へ向く面とは反対向 きの面 (7 a) に水流をダイ (2) へ向けて引き込む方向へ導く山型誘導面 (9) が形成されていることを特徴とする水中カツト造粒装置。
3. 請求項 2に記載の水中カット造粒装置において、
前記ナイフ (7) には、 ダイ (2) へ向く面 (7 b) に水流をダイ (2) へ押し付ける方向へ導く谷型誘導面 ( 1 0) が形成されている。
4. 請求項 2又は 3に記載の水中カツト造粒装置において、
前記ナイフ (7) は、 ダイ (2) 正面に沿って生じる旋回方向の水流を低 速化するために回転軸心方向の丈寸法 (h) が薄く形成されている。
5. 請求項 1〜4のいずれかに記載の水中カツト造粒装置において、
前記ナイフ (7) の断面形状は回転方向に沿った流線形に形成されている (
6. ダイプレート (2) の切断面 (2 b) に対面するカツ夕一面 (34) と、 回転方向後方に向かって反切断面 (2 b) 側に傾斜した状態で前記カツ 夕一面 (34) の回転方向前縁から立ち上がつている前面 (3 5) と、
この前面 (3 5) の後端縁から実質的に回転方向後方に延びる背面 (3 6) と、
この背面 (3 6) の後端縁に続く後面 (3 7) と、
回転方向後方に向かって反切断面 (2 b) 側に傾斜した状態で前記カツ
夕一面 (34) の回転方向後縁から立ち上がる傾斜部分 (3 8) を有しかつ 回転方向後端縁が前記後面 (3 7) に続く内面 (3 9) と、
を備えている水中カツト造粒装置に使用するナイフにおいて、
前記後面 (3 7) は回転方向後方に向かって切断面 (2 b) 側に傾斜して 形成され、
前記前面 (3 5) から前記背面 (36) への移行角度を B° 、 前記背面 (3 6) から前記後面 (3 7) への移行角度を D° としたとき、
1 5 0 ° ≤ (B + D) ノ 2≤ 1 80 ° となるように設定されていることを 特徴とする水中カツト造粒装置に使用するナイフ。
7. 請求項 6に記載のナイフにおいて、
前記カツ夕一面 (34) から前記内面 (3 9) までの最大距離を A、 前記 ナイフ (7) の最大厚さを Cとしたとき、 C≤ l . 2Aに設定されている。
8. 請求項 6又は 7に記載のナイフにおいて、
前記後面 (3 7) と前記内面 (39) との交線部分がナイフエッジ (E) に形成されている。
9. 請求項 6〜 8のいずれかに記載のナイフにおいて、
前記カッター面 (34) は、 溶融樹脂 (4) が押し出されない前記ダイプ レート (2) の切断面 (2 b) の回転方向中心側の部分に対応する部分に、 カツ夕一機能を有する他の部分 (43) よりも幅の広い部分 (44) を備え ている。
10. 請求項 6〜 9のいずれかに記載のナイフにおいて、
前記背面 (3 6) は、 前記前面 (3 5) 及び後面 (3 7) との間で稜線が 明瞭には現れないように反切断面 (2 b) 側に膨らんだ湾曲面状に形成され ている。
11. 請求項 6〜 9のいずれかに記載のナイフにおいて、
前記背面 (3 6) は、 前記前面 (3 5) 及び後面 (3 7) との間で稜線を 介して交差する平面状に形成されている。
12. ダイプレート (2) から水室 ( 1) 内に押し出されてきた溶融樹脂 (4) を、 同プレート (2) の切断面 (2 b) に対面して回転するナイフ (7) に
よって切断し、 その切断片を前記水室 ( 1) 内で冷却させてペレット (5) を得るようにした水中カツト造粒方法において、
前記ナイフ (7) の回転方向後側に形成されかつ同ナイフ (7) と実質的 に同じ速さで前記ダイプレート (2) 付近を走行する同速水流部分 (4 1) の回転方向長さを L、
前記ナイフ (7) で切断された後に次のナイフ (7) で切断が行われるま での間に前記ダイプレート (2) から押し出される前記溶融樹脂 (4) の押 出長さを Hとしたとき、
L≤4Hとなるように前記ナイフ (7) の回転速度を設定しながら前記溶 融樹脂 (4) の切断を行うことを特徴とする水中カット造粒方法。
13. 請求項 1 2に記載の水中カット造粒方法において、
前記ナイフ (7) は、
ダイプレート (2) の切断面 (2 b) に対面するカッター面 (34) と、 回転方向後方に向かって反切断面 (2 b) 側に傾斜した状態で前記カツ ター面 (34) の回転方向前縁から立ち上がつている前面 (3 5) と、 この前面 (3 5) の後端縁から実質的に回転方向後方に延びる背面 (3
6) と、
この背面 (36) の後端縁に続く後面 (3 7) と、
回転方向後方に向かって反切断面 (2 b) 側に傾斜した状態で前記カツ 夕一面 (34) の回転方向後縁から立ち上がる傾斜部分 (3 8) を有しかつ 回転方向後端縁が前記後面 (3 7) に続く内面 (3 9) と、
を備えており、
前記後面 (3 7) は回転方向後方に向かって切断面 (2 b) 側に傾斜して 形成され、
前記前面 (3 5) から前記背面 (3 6) への移行角度を B° 、 前記背面 (3 6) から前記後面 (3 7) への移行角度を D° としたとき、
1 5 0 ° ≤ (B + D) Z2≤ 1 80 ° となるように設定されている。
14. 請求項 1 3に記載の水中カット造粒方法において、
前記ナイフ (7) は、 前記カツ夕一面 (34) から前記内面 (3 9) まで
の最大距離を A、 前記ナイフ ( 7) の最大厚さを Cとしたとき、 C≤ l . 2 Aに設定されている。
15. 請求項 1 3又は 1 4に記載の水中力ット造粒方法において、
前記後面 (3 7) と前記内面 (39) との交線部分がナイフエッジ (E) に形成されている。 ·
16. 請求項 1 3〜 1 5のいずれかに記載の水中力ット造粒方法において、
前記カッター面 (34) は、 溶融樹脂 (4) が押し出されない前記ダイプ レート (2) の切断面 (2 b) の回転方向中心側の部分に対応する部分に、 カツ夕一機能を有する他の部分 (43) よりも幅の広い部分 (44) を備え ている。
17. 請求項 1 3〜 1 6のいずれかに記載の水中力ット造粒方法において、
前記背面 (36) は、 前記前面 (3 5) 及び後面 (3 7) との間で稜線が 明瞭には現れないように反切断面 (2 b) 側に膨らんだ湾曲面状に形成され ている。
18. 請求項 1 3〜 1 6のいずれかに記載の水中カツト造粒方法において、
前記背面 (36) は、 前記前面 (3 5) 及び後面 (3 7) との間で稜線を 介して交差する平面状に形成されている。
19. 多数のダイ孔 (2 a) を有するダイプレート (2) と、 このダイプレート (2) の切断面 (2 b) を取り囲むように形成された水室 ( 1) と、 この水 室 ( 1) 内に回転自在に収納されたナイフホルダー (32) と、 このナイフ ホルダー (32) を一定方向に回転駆動させる駆動手段 (2 1) と、 前記ナ ィフホルダー (3 2) に取り付けられた複数本のナイフ (7) と、 を備えて いる水中力ット造粒装置において、
前記ナイフ (7) の回転方向後側に形成されかつ同ナイフ (7) と実質的 に同じ速さで前記ダイプレート (2) 付近を走行する同速水流部分 (4 1) の回転方向長さを L、
前記ナイフ (7) で切断された後に次のナイフ (7) で切断が行われるま での間に前記ダイプレート (2) から押し出される前記溶融樹脂 (4) の押 出長さを Hとしたとき、
L≤4Hとなるように前記駆動手段 (21) による前記ナイフ (7) の回 転速度を設定する設定手段 (28) を備えていることを特徴とする水中カツ 卜造粒装置。
20. 請求項 19に記載の水中カット造粒装置において、
前記ナイフ (7) は、
ダイプレート (2) の切断面に対面するカツ夕一面 (34) と、 回転方向後方に向かって反切断面 (2 b) 側に傾斜した状態で前記カツ 夕一面 (34) の回転方向前縁から立ち上がつている前面 (35) と、
この前面 (35) の後端縁から実質的に回転方向後方に延びる背面 (3
6) と、
この背面 (36) の後端縁に続く後面 (37) と、
回転方向後方に向かって反切断面 (2 b) 側に傾斜した状態で前記カツ 夕一面 (34) の回転方向後縁から立ち上がる傾斜部分 (38) を有しかつ ' 回転方向後端縁が前記後面 (37) に続く内面 (39) と、
を備えており、
前記後面 (37) は回転方向後方に向かって切断面 (2 b) 側に傾斜して 形成され、
前記前面 (35) から前記背面 (36) への移行角度を B° 、 前記背面 (36) から後面 (37) への移行角度を D° としたとき、
Ι δ ίΚ ^ ίΒ + ϋΐί ΖΖ^ Ι δ θα となるように設定されている。
21. 請求項 20に記載の水中カット造粒装置において、
前記ナイフ (7) は、 前記カッター面 (34) から前記内面 (39) まで の最大距離を Α、 前記ナイフ (7) の最大厚さを Cとしたとき、 C≤ l. 2 Aに設定されている。
22. 請求項 20又は 2 1に記載の水中カツト造粒装置において、
前記後面 (37) と前記内面 (39) との交線部分がナイフエッジ (E) に形成されている。
23. 請求項 20〜22のいずれかに記載の水中カツト造粒装置において、 前記カツ夕一面 (34) は、 溶融樹脂 (4) が押し出されない前記ダイプ
レート (2) の切断面 (2 b) の回転方向中心側の部分に対応する部分に、 カツ夕一機能を有する他の部分 (43) よりも幅の広い部分 (44) を備え ている。
24. 請求項 20〜23のいずれかに記載の水中カツト造粒装置において、 前記背面 (36) は、 前記前面 (3 5) 及び後面 (3 7) との間で稜線が 明瞭には現れないように反切断面 (2 b) 側に膨らんだ湾曲面状に形成され ている。
25. 請求項 20〜23のいずれかに記載の水中カツト造粒装置において、 前記背面 (3 6) は、 前記前面 (3 5) 及び後面 (3 7) との間で稜線を 介して交差する平面状に形成されている。
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP98905727A EP0914915B1 (en) | 1997-03-04 | 1998-03-02 | Underwater cutting pelletizer, knife used for the same pelletizer, and underwater cutting pelletization method using the same knife |
| DE69840402T DE69840402D1 (de) | 1997-03-04 | 1998-03-02 | Unterwasser-schneidgranulator, messer für diesen granulator und dieses messer benutzendes unterwasser-schneidgranulierungsverfahren |
| US09/179,894 US6174475B1 (en) | 1997-03-04 | 1998-10-28 | Underwater cutting granulating device, knife used in this device, and underwater cutting granulating method using this knife |
| US09/694,490 US6537050B1 (en) | 1998-03-02 | 2000-10-24 | Underwater cutting granulating device |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6743297 | 1997-03-04 | ||
| JP9/67432 | 1997-03-04 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/179,894 Continuation US6174475B1 (en) | 1997-03-04 | 1998-10-28 | Underwater cutting granulating device, knife used in this device, and underwater cutting granulating method using this knife |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1998039147A1 true WO1998039147A1 (fr) | 1998-09-11 |
Family
ID=13344757
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP1998/000856 WO1998039147A1 (fr) | 1997-03-04 | 1998-03-02 | Granulateur destine a couper des granules sous l'eau, couteau utilise par ce granulateur et procede de coupe de granules sous l'eau mettant en oeuvre ce couteau |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US6174475B1 (ja) |
| EP (1) | EP0914915B1 (ja) |
| JP (1) | JP2905472B2 (ja) |
| DE (1) | DE69840402D1 (ja) |
| WO (1) | WO1998039147A1 (ja) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3365735B2 (ja) | 1998-01-14 | 2003-01-14 | 株式会社神戸製鋼所 | 水中カット造粒装置 |
| AT410072B (de) * | 2001-06-08 | 2003-01-27 | Erema | Verfahren und vorrichtung zur einstellung einer vorspannung der messer einer granuliervorrichtung |
| US6848639B2 (en) * | 2002-02-12 | 2005-02-01 | Borsig Gmbh | Low turbulent flow high speed cutter knife |
| US7318719B2 (en) | 2004-04-01 | 2008-01-15 | Gala Industries, Inc. | Steep angle cutter hub and blade assembly |
| US7267540B2 (en) * | 2006-01-26 | 2007-09-11 | Gala Industries, Inc. | Steep angle cutter hub with blunt edge blades |
| JP2008238751A (ja) * | 2007-03-28 | 2008-10-09 | Fujifilm Corp | ペレット集合体の製造方法 |
| DE102009032993A1 (de) | 2009-07-14 | 2011-01-20 | Automatik Plastics Machinery Gmbh | Vorrichtung und Verfahren zum Granulieren von Kunststoffmaterial |
| JP5552308B2 (ja) * | 2009-12-16 | 2014-07-16 | 積水化成品工業株式会社 | 熱可塑性樹脂粒子の製造装置および製造方法 |
| JP5564010B2 (ja) * | 2011-05-30 | 2014-07-30 | 株式会社日本製鋼所 | ペレット製造装置のカッタ刃およびペレット製造装置 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6073811A (ja) * | 1983-07-06 | 1985-04-26 | アトケム | 熱塑性材の線の切断用刃身 |
| JPS61105114U (ja) * | 1984-12-15 | 1986-07-04 | ||
| JPH03261512A (ja) * | 1990-03-09 | 1991-11-21 | Kobe Steel Ltd | 水中カット装置 |
| JPH0740112U (ja) * | 1993-12-27 | 1995-07-18 | 株式会社神戸製鋼所 | ペレタイザ |
| JPH0957745A (ja) * | 1995-08-29 | 1997-03-04 | Kobe Steel Ltd | ペレタイザ |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR919261A (fr) * | 1945-12-21 | 1947-03-04 | Du Pont | Procédé de fabrication de matières à mouler à l'état divisé et produit en résultant |
| US3670467A (en) * | 1970-04-27 | 1972-06-20 | Robert H Walker | Method and apparatus for manufacturing tumbling media |
| GB1350012A (en) * | 1970-12-28 | 1974-04-18 | Barmag Barmer Maschf | Extrusion die for granulators |
| US4123207A (en) * | 1976-03-29 | 1978-10-31 | Gala Industries, Inc. | Underwater pelletizer and heat exchanger die plate |
| US4179255A (en) * | 1978-03-13 | 1979-12-18 | E. I. Du Pont De Nemours And Company | Melt cutter apparatus |
| DE3532937A1 (de) * | 1985-09-14 | 1987-04-02 | Werner & Pfleiderer | Lochplatte fuer die unterwassergranulierung von kunststoffstraengen |
| US5052911A (en) * | 1989-04-27 | 1991-10-01 | Mikeska Olvin J | Underwater pelletizer blade |
| FR2659250A1 (fr) * | 1990-03-09 | 1991-09-13 | Appryl Snc | Couteau pour equiper une tete de coupe d'une granulatrice et granulatrice. |
| DE4425004A1 (de) * | 1994-07-15 | 1996-01-18 | Werner & Pfleiderer | Verfahren zur Herstellung einer Düsenplatte mit zwischen Grundkörper und Schneidkörper eingelagerter Zwischenschicht |
| EP0735077B1 (de) * | 1995-03-27 | 1998-07-29 | BASF Aktiengesellschaft | Verfahren zur Herstellung von Thermoplasten |
| WO1996033853A1 (en) * | 1995-04-28 | 1996-10-31 | Shell Oil Company | Underwater pelletizer |
| US5611983A (en) * | 1995-04-28 | 1997-03-18 | Shell Oil Company | Process for pelletizing polymer |
| US5698150A (en) * | 1995-06-07 | 1997-12-16 | Acushnet Company | Method for injection molding balata golf ball covers |
| JP2989122B2 (ja) * | 1995-06-13 | 1999-12-13 | 株式会社日本製鋼所 | 合成樹脂の押出造粒方法およびその装置 |
-
1998
- 1998-02-27 JP JP10047995A patent/JP2905472B2/ja not_active Expired - Lifetime
- 1998-03-02 EP EP98905727A patent/EP0914915B1/en not_active Expired - Lifetime
- 1998-03-02 WO PCT/JP1998/000856 patent/WO1998039147A1/ja active Application Filing
- 1998-03-02 DE DE69840402T patent/DE69840402D1/de not_active Expired - Lifetime
- 1998-10-28 US US09/179,894 patent/US6174475B1/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6073811A (ja) * | 1983-07-06 | 1985-04-26 | アトケム | 熱塑性材の線の切断用刃身 |
| JPS61105114U (ja) * | 1984-12-15 | 1986-07-04 | ||
| JPH03261512A (ja) * | 1990-03-09 | 1991-11-21 | Kobe Steel Ltd | 水中カット装置 |
| JPH0740112U (ja) * | 1993-12-27 | 1995-07-18 | 株式会社神戸製鋼所 | ペレタイザ |
| JPH0957745A (ja) * | 1995-08-29 | 1997-03-04 | Kobe Steel Ltd | ペレタイザ |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP0914915A4 * |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0914915A4 (en) | 2002-01-02 |
| EP0914915A1 (en) | 1999-05-12 |
| US6174475B1 (en) | 2001-01-16 |
| JPH10305425A (ja) | 1998-11-17 |
| JP2905472B2 (ja) | 1999-06-14 |
| DE69840402D1 (de) | 2009-02-12 |
| EP0914915B1 (en) | 2008-12-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101445060B1 (ko) | 평편 말단 절삭구를 구비한 급경사 커터 허브 | |
| JP5564010B2 (ja) | ペレット製造装置のカッタ刃およびペレット製造装置 | |
| KR101744273B1 (ko) | 플라스틱 재료의 처리를 위한 장치 | |
| KR101706912B1 (ko) | 플라스틱 재료의 처리를 위한 장치 | |
| WO1998039147A1 (fr) | Granulateur destine a couper des granules sous l'eau, couteau utilise par ce granulateur et procede de coupe de granules sous l'eau mettant en oeuvre ce couteau | |
| EP1582327B1 (en) | Cutter hub and blade assembly for underwater pelletizer | |
| US6537050B1 (en) | Underwater cutting granulating device | |
| JPS6356845B2 (ja) | ||
| JPS6073811A (ja) | 熱塑性材の線の切断用刃身 | |
| US5052911A (en) | Underwater pelletizer blade | |
| JP4008027B2 (ja) | 水中造粒装置 | |
| CN210389752U (zh) | 一种塑料粒子连续切割装置 | |
| EP1334813B1 (en) | Low turbulent flow high speed cutter knife | |
| CN211807172U (zh) | 半导电屏蔽材料挤出加工设备 | |
| JP3365735B2 (ja) | 水中カット造粒装置 | |
| JP2002307378A (ja) | 樹脂造粒機用カッタナイフ | |
| JP2003039427A (ja) | ペレタイザ用ナイフとこれを用いたペレタイザ | |
| CN215203387U (zh) | 一种新型塑料膜回收造粒机送料机筒 | |
| JPH10151622A (ja) | ポリマーペレットの製造方法 | |
| JPH07112697B2 (ja) | 熱可塑性樹脂球状粒子の製造法 | |
| JP6116600B2 (ja) | ペレット造粒装置用のカッター刃の取付方法 | |
| JP2912855B2 (ja) | ペレタイザとこれに使用するナイフ | |
| CN222972722U (zh) | 用于环保粉末涂料的挤出机防卡料送料装置 | |
| CN214982368U (zh) | 一种seps石墨聚苯乙烯颗粒生产用高性能切粒机构 | |
| CN210389753U (zh) | 一种具有冷却系统的塑料粒子切割装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1998905727 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 09179894 Country of ref document: US |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWP | Wipo information: published in national office |
Ref document number: 1998905727 Country of ref document: EP |