[go: up one dir, main page]

WO1998039411A9 - Lignees cellulaires de complementation de la region e1 d'un adenovirus - Google Patents

Lignees cellulaires de complementation de la region e1 d'un adenovirus

Info

Publication number
WO1998039411A9
WO1998039411A9 PCT/US1998/003473 US9803473W WO9839411A9 WO 1998039411 A9 WO1998039411 A9 WO 1998039411A9 US 9803473 W US9803473 W US 9803473W WO 9839411 A9 WO9839411 A9 WO 9839411A9
Authority
WO
WIPO (PCT)
Prior art keywords
deleted
adenovirus
cell
recombinant
mammalian cell
Prior art date
Application number
PCT/US1998/003473
Other languages
English (en)
Other versions
WO1998039411A1 (fr
Filing date
Publication date
Application filed filed Critical
Priority to EP98908661A priority Critical patent/EP0973866A4/fr
Priority to JP10538574A priority patent/JP2000509614A/ja
Priority to CA002283253A priority patent/CA2283253A1/fr
Publication of WO1998039411A1 publication Critical patent/WO1998039411A1/fr
Publication of WO1998039411A9 publication Critical patent/WO1998039411A9/fr

Links

Definitions

  • This invention relates to novel cells and methods for use in propagating El- deleted adenoviruses.
  • adenoviral vectors used in gene therapy applications were designed to have deletions in the El region of the adenovirus 5 (Ad5) genome.
  • the El region, not including region IX, consists of 9% of the left end of Ad5 (1.2 - 9.8 map units), and is subdivided into two regions, E1A and E1B, each one coding for several proteins.
  • E1A/E1B is required for virus replication and for expression of all other Ad5 proteins (E2-E4, Late Proteins; Ginsberg, H.S. The Adenoviruses. Plenum Press, New York. p.46-67(1984).
  • El deficient adenoviral vectors are propagated in an Ad5 helper cell line called 293 (Graham, F.L. and Smiley, J, J. Gen. Virol. 36, p.54-72 (1977).
  • 293 cells were derived by transforming human embryonic kidney cells with sheared fragments of Ad5 DNA. Genomic analysis revealed that 293 cells contain four to five copies per cell of the left 12% of the viral genome (including the entire El region) and approximately one copy per cell of 9% of the right end, the E4 region (Aiello,L.,et al, Virology 94, p.460-469 (1979).
  • RCA in 293 cells can present severe ramifications for the safety of human gene therapy trials (Lochmuller, H., et al., Human Gene Therapy 5, p. 1485-1491 (1994).
  • recombination in 293 cells can also cause deletions and rearrangements that affect transgene expression, thereby decreasing the titer of functional adenovirus particles.
  • This invention encompasses a series of helper cell lines for the complementation, amplification, and controlled attenuation of El -deleted adenovirus. These cell lines are advantageous because they can complement adenovirus El gene deletions without production of replication competent adenovirus (RCA).
  • a preferred embodiment is an A549E1 cell line that contains only the Ad5 El DNA sequences sufficient for complementation of El -deleted adenoviral vectors without sequences that overlap with the adenovirus vector.
  • the El DNA sequences comprise El A and E1B genes.
  • the present invention embodies methods for selectively propagating mini-adenovirus without generating RCA, by transfecting an A549E1 cell line with DNA sequences that encode a polypeptide sufficient for packaging attenuation of El -deleted helper virus.
  • the polypeptide comprises Cre recombinase.
  • the polypeptide comprises TetR-KRAB.
  • Figure 1 is a diagram indicating the structure of adenovirus sequences in a typical El- deleted Ad helper virus (top line), in 293 cells (ref.5), and in other El-containing cell lines, including 911 cells (ref.8) and A549E1-68 cells (this invention); and how recombination between homologous adenovirus sequences occurs to generate a replication-competent adenovirus (RCA).
  • Figure 2 is a diagram of the CMV-E1 mammalian expression vector.
  • Figure 3 is a Southern blot analysis of G418 r A549E1 clones.
  • Figure 4A is a Western blot analysis of El A protein expression in A549 cells, 293 Cells, and A549E 1-68.
  • Figure 4B is the metabolic 35 S labeling and immunoprecipitation of ElB proteins in
  • Figure 5 is a representation of the El -deleted adenovirus vector, Ad5-CA-GFP.
  • Figure 6 is an agarose gel analysis of 40 PCR reactions using ElA-specific primers for detection of RCA.
  • Figure 7 is a diagram of a system for the attenuation of helper virus with a loxP -modified packaging signal.
  • Figure 8 is a diagram of the pCMV-Cre-Puro vector.
  • Figure 9 is a diagram of the pBS/loxP-stop/MCLpA vector.
  • Figure 10 is a bar graph depicting luciferase expression in both control cells (A549E1-
  • This invention provides cell lines that can complement El -deleted adenovirus without the disadvantage of undesirable recombination and RCA. These cell lines are obtained by cloning and expressing in the A549 cell line only those sequences that are required for El complementation and excluding from the cell line all other Ad5 sequences that have homology to the vector and could cause recombination to produce RCA.
  • FIG. 1 shows the structure of adenovirus sequences in 293 cells versus other El -containing cell lines (including A549E1 cells), and how recombination between homologous adenovirus sequences occurs to generate a replication-competent adenovirus (RCA).
  • RCA replication-competent adenovirus
  • A549E1-68 contains no sequence overlap with sequences present in the El -deleted Ad helper virus and thus, recombination to produce RCA is not possible (FIG. 1). Characterization of this A549E1 cell line demonstrated the production of El A and ElB proteins, high infectivity with adenovirus vectors, complementation of El- deleted adenovirus to produce high-titer virus stocks, as well as, the lack of production of replication-competent adenovirus (RCA).
  • This invention provides a novel El -deleted helper virus whose packaging signal is flanked by loxP sites, and when this helper virus is propagated in an A549E1 cell line expressing
  • Cre the packaging signal is deleted by excision, thus attenuating helper virus packaging and enriching for packaging of mini-adenovirus (Ad5 virus which is devoid of all viral protein-coding sequences).
  • Ad5 virus which is devoid of all viral protein-coding sequences.
  • 293-Cre cells have been generated for this purpose (Parks, R. , et al., P.N.A.S. 93, p.13565-13570 (1996), however, A549E1-
  • Cre cells have an advantage in that they would perform this task in an RCA-free environment.
  • a further embodiment of the present invention includes an A549-E1 complementing cell line which expresses the TetR-KRAB fusion protein, which would be used to amplify, and control the packaging efficiency of an El -deleted helper virus whose packaging signal has been modified to contain multiple tetracycline operator (tetO) sites.
  • tetO tetracycline operator
  • Packaging of the helper virus can be restored by growing the cells and virus in the presence of tetracycline, which binds to the tet-KRAB repressor causing its dissociation from the tetO/packaging signal and a reversal of packaging repression.
  • tetracycline which binds to the tet-KRAB repressor causing its dissociation from the tetO/packaging signal and a reversal of packaging repression.
  • a contiguous 2194 bp Xbal to Afl II (Ad5 base pairs 1343-3537) was cloned from pBRXad5XhoIClinto the same vector.
  • the resultant 3075 bp El fragment (in pSL301) contains the TATA box and RNA cap site for ElA, ElA coding sequence, complete ElB promoter, and ElB coding sequence, including the stop codon for ElB p55 protein, but not including region IX.
  • This CMV-El expression plasmid (FIG. 2), was transfected using Lipofectamine (Gibco/BRL) into A549 human lung carcinoma cells (ATCC CRL 185) and G418 R colonies were isolated. Single-cell clones were screened for functional E1A/E1B expression.
  • An El -deleted adenovirus containing a green florescence protein (GFP) expression cassette, Ad5 CA-GFP was used to infect the A549-E1 clones. Three days post-infection, clones were screened for production of El -complemented Ad5 CA-GFP adenovirus by visual examination for cytopathic effect (CPE).
  • CPE cytopathic effect
  • A549E1-68 displayed 100% CPE in 3 days, similar to that observed for 293 cells.
  • the clear area in the center of the plaque is evidence of CPE caused by El -complemented virus amplification.
  • This clone also showed high infectivity, in that virtually 100% of the cells fluoresced green 24 hours post-infection.
  • the high infection rate and rapid generation of CPE induced in this cell line is strong evidence that functional E1A/E1B proteins are being produced that are capable of promoting replication and amplification of the El- deleted Ad5-CA-GFP virus.
  • the A459E1 cell was deposited at the American Type Tissue Culture Collection (ATCC) under the Budapest Treaty on January 15, 1998 as ATCC Designation CRL-12458 (viability confirmed January 20, 1998).
  • FIG. 3 shows a Southern blot using an El sequence-specific DNA probe. This assay demonstrated the presence of the CMV-El transgene in A549E1-68 (Lane 4), and a subclone of A549E1-68 (El-68.3), but not in the parental A549 cell line (Lane 2). Sequences hybridizing with the El -specific probe were also observed in 293 cells as expected since they complement El -deleted adenovirus (Lane 3). The morphology of the El-transfected cells was significantly different from the parental A549 cell line.
  • A549 cells at sub-confluent density grow as distinct single cells with an elongated, fibroblast- like morphology, whereas the El cell line A549E1-68 grows as colonies of cells with a more cuboidal morphology.
  • A549E1-68 was also compared with 293 cells for production of El -deleted adenovirus (Ad5 CA-GFP) by plaque assay and found to produce an equivalent titer of complemented virus (7 x 10 9 pfu for A549E1-68 vs. 9 x 10 9 pfu for 293).
  • FIG. 4 A shows a Western blot analysis using an ElA specific antibody (M73, Oncogene Science). This antibody detected two ElA-specific bands with apparent molecular weights of 46kd and 42kd in the A549E1-68 cell line (lane 3), corresponding to products expected from ElA 13S and 12S mRNAs (Ginsberg, 1984), and identical in size to those observed in 293 cells (lane 2). These ElA-specific bands were not detected in parental A549 cells (lane 1).
  • FIG. 4B shows the immunoprecipitation of metabolically-radiolabeled proteins by a monoclonal antibody specific for ElB p55.
  • A549E1-68 produced an immunoreactive band of approximately 55 kd (lane 3) that was not detected in parental A549 cells. This 55 kd, ElB-specific band, as well as secondary background bands, were observed in 293 cells also (lane 2). Extra “background” bands found in both experimental and control lanes have been observed by other authors and are attributed to co-immunoprecipitation of a variety of proteins including, cyclins, p53, and Rb. It is clear that A549E1-68 not only expresses ElA and ElB, but that they are functional, since this cell line can complement for production of high titer, El -deleted, recombinant adenovirus.
  • Example 3 El-deleted adenovirus produced in A549E1 cells is RCA-free
  • Ad5 helper cell line can complement without production of RCA
  • a series of PCR RCA assays were performed following amplification in A549E1 cells of the El-deleted Ad5-CA-GFP adenovirus vector.
  • the Ad5-CA-GFP vector is illustrated in FIG. 5. It contains a transcriptional control element consisting of the CMV
  • Ad5-CA-GFP virus was serially propagated through 20 passages on A549E1-68 cells. Following serial propagation and virus amplification, Ad5-CA-GFP virus DNA was isolated by freeze-thaw lysis, and PCR was performed using primers specific for either the El A region or the E2B region. Amplification of an 880 bp E2B product serves as a PCR positive control, while the presence of a 1086 bp ElA-specific product is evidence that an El (+) replication-competent adenovirus (RCA) has been produced during amplification of the El (-) Ad5-CA-GFP.
  • RCA replication-competent adenovirus
  • Ad5-CA- GFP virus DNA (equivalent to 1 x 10 10 virus particles), obtained from amplification in A549E1 cells, was divided into 40 PCR reactions and tested for RCA using the ElA primers (FIG. 6). For both top and bottom panels of FIG.
  • lane 1 contains 1 kb DNA markers
  • lane 2 contains wild type Ad5 virus DNA
  • lane 3 consists of PCR of Ad5-CA- GFP virus DNA (E1-) isolated from 20+ passages on A549E1-68 cells using ElA and E2B specific primers (positive control)
  • lanes 4-20 consist of PCR of Ad5-CA-GFP virus DNA (E1-) isolated from 20+ passages on A549E1-68 cells, using ElA-specific primers only. No 1086 bp El region specific PCR fragments were detected in any of the reactions indicating that no RCA was present in the virus prep.
  • a second, CPE-based RCA assay was performed by amplifying El -deleted adenovirus (Ad5 -CA-GFP) on A549E1-68 cells and testing the amplified virus by passaging, on normal A549 cells (don't make El) for production of El -containing RCA. Plaque formation (CPE) on a monolayer of normal A549 cells would provide evidence for the production of wild-type (El +) virus during amplification on the El helper cell line, A549E1-68. 2 x 10 10 10 El (-) virus particles (amplified using A549E1-68) were used to infect each of five 150mm plates of normal A549 cells (1 x 10 11 particles total).
  • a 2nd generation El -complementing cell line was generated using the A549E1- 68.3 clonal line for transfection with Cre recombinase.
  • This cell line will both complement El -deleted adenovirus vectors and mediate the excision of sequences surrounded by loxP sites.
  • Our primary use for this cell line is to further attenuate packaging of an Ad5 helper virus, whose packaging signal is flanked by two loxP sites (FIG. 7), in order to enrich for packaging of the desired El -deficient, mini-adenovirus vector.
  • 293 cells expressing the Cre recombinase were generated for a similar purpose by Parks et al. (P.N.A.S.
  • the A549E1-Cre cell line described in this invention will not only attenuate helper virus packaging in a similar fashion, it also has the advantage that any adenovirus produced will be free of deleterious RCA.
  • a Cre expression vector was constructed as a first step towards the production of the A549E1-Cre cell line.
  • a 1440 bp SV40 promoter-puromycin cassette (for selection in Neo R A549E1 cells) was cloned into a unique EcoRI site of the CMV-Cre vector (pBS185, Gibco/BRL) to generate pCMV-Cre-Puro (FIG. 8).
  • the pCMV-Cre- Puro vector was transfected by electroporation into A549E1-68 cells, and puromycin R (“puro R ”) clones were isolated. These puro R clones were then screened for expression of functional Cre recombinase.
  • the plasmid pBS/loxP-stop/MCLpA contains a lacZ cassette that is non-functional due to the presence of a stop codon (FIG. 9). This stop codon is surrounded by loxP sites, such that the propagation of this vector in a cell line producing Cre would excise the stop signal and activate the lacZ gene.
  • the pBS/loxP- stop/MCLpA vector was transiently transfected into each of the A549E1-Cre clones, and after 24 hours, the transfected cells were fixed and stained with X-Gal. LacZ expression of parental A549E1-68 cells (no Cre) was compared to lacZ expression in seven different puro r A549E1-Cre clones.
  • lacZ due to expression of Cre was observed as blue cells, at a frequency ranging from 1% to 50% in 20/26 puro R clones. This range of LacZ-expressing cells is most likely a reflection of the transient transfection efficiency of the different puro R clones with the pBS/loxPstop-MCLpA vector, although it could also reflect variations in Cre recombinase expression in different cell lines.
  • Western blot analysis using an anti-Cre antibody (Pharmingen) confirmed the presence of the 35 kd Cre protein in these cell lines.
  • KRAB Kruppel-associated box
  • the TetR-KRAB repressor binds to tetO sequences present in a transcriptional control region and represses transcription of genes placed as far as 3 kb downstream.
  • the present invention describes a system for tetracycline-controlled inhibition of helper virus packaging, comprising multiple tetO sequence in the helper virus packaging signal sequence, and an El helper cell line that constitutively expresses the TetR-KRAB protein.
  • the helper virus is still capable of replicating and providing all the necessary proteins, in trans, required for replication of the miniAd vector, however, its packaging is attenuated due to binding of the TetR-KRAB protein to the tetO sites in the packaging signal.
  • the overall goal is to hinder or repress helper virus packaging, thus enriching for vector virus packaging.
  • This packaging repression is reversible, since in the presence of tetracycline, the TetR-KRAB repressor dissociates from the tetO sequences, and packaging is restored. Details of this tetO-controlled helper virus were presented in an earlier patent application (Serial No. 08/658,961, filed May 31, 1996).
  • the TetR-KRAB expressing cell line was derived using the A549E1-68 helper cell line described in Example 2.
  • A549E1-68 cells were transfected with a TetR-KRAB gene under control of the CMV promoter (see Deuschle et al., Mol. Cell. Biol. 15 p. 1907-1914 (1995).
  • the TetR-KRAB vector also contains a hygromycin resistance gene for selection in mammalian cells.
  • a test vector see Deuschle, et al., Mol. and Cell. Biol.
  • Hygromycin-resistant A549E1 -TetR-KRAB clones were transfected with pTetO-CMV-L by electroporation and each clone was split into two wells of a 6-well plate. 24 hours post-transfection, cells from one duplicate well were refed with medium containing tetracycline, and the other duplicate well in medium without tetracycline. After another 24 hours, cells were lysed and assayed for luciferase expression using a Promega Luciferase Assay Kit.
  • Two hygro R A549E1 clones (TKE-9 and TKE-12) demonstrated a 4 to 6 fold repression of luciferase reporter activity when grown in the absence of tetracycline versus cells grown in media containing Tet, indicating expression of the TetR-KRAB repressor protein in the cells (FIG. 10).
  • These A549E1 -TetR-KRAB cell lines will be used to test attenuation of the TetO-controlled Ad helper virus.

Abstract

Cette invention se rapporte à une nouvelle série de lignées cellulaires auxiliaires destinées à la complémentation, à l'amplification et à l'atténuation régulée d'adénovirus à délétion en E1. Ces lignées cellulaires présentent l'avantage de pouvoir compléter les délétions de gène dans la région E1 d'un adénovirus sans produire d'adénovirus apte à la réplication (RCA replication-competent adenovirus), ce qui les rend plus sures pour une production en masse de population d'adénovirus destinés à des essais en thérapie génique humaine. Une lignée cellulaire A549E1, qui est une réalisation préférée de cette invention, ne contient que les séquences d'ADN de la région E1 de l'adénovirus 5, suffisantes pour la complémentation de vecteurs adénoviraux à délétion en E1 sans séquence de recouvrement avec le vecteur d'adénovirus. Cette invention se rapporte en outre à des procédés de production de lignées cellulaires de complémentation A549-E1 de seconde génération qui, non seulement produisent E1, mais également des protéines nécessaires à une manipulation ultérieure des vecteurs adénoviraux. Une réalisation préférée est une lignée cellulaire A549E1 possédant des séquences d'ADN qui codent un polypeptide capable de conditionner l'atténuation du virus auxiliaire à délétion en E1, dans le but de valoriser le conditionnement de mini-adénovirus.
PCT/US1998/003473 1997-03-04 1998-02-23 Lignees cellulaires de complementation de la region e1 d'un adenovirus WO1998039411A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98908661A EP0973866A4 (fr) 1997-03-04 1998-02-23 Lignees cellulaires de complementation de la region e1 d'un adenovirus
JP10538574A JP2000509614A (ja) 1997-03-04 1998-02-23 アデノウイルスe1−相補性細胞系
CA002283253A CA2283253A1 (fr) 1997-03-04 1998-02-23 Lignees cellulaires de complementation de la region e1 d'un adenovirus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81003997A 1997-03-04 1997-03-04
US08/810,039 1997-03-04

Publications (2)

Publication Number Publication Date
WO1998039411A1 WO1998039411A1 (fr) 1998-09-11
WO1998039411A9 true WO1998039411A9 (fr) 1999-02-25

Family

ID=25202818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/003473 WO1998039411A1 (fr) 1997-03-04 1998-02-23 Lignees cellulaires de complementation de la region e1 d'un adenovirus

Country Status (4)

Country Link
EP (1) EP0973866A4 (fr)
JP (1) JP2000509614A (fr)
CA (1) CA2283253A1 (fr)
WO (1) WO1998039411A1 (fr)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855544B1 (en) 1999-04-15 2005-02-15 Crucell Holland B.V. Recombinant protein production in a human cell
US7297680B2 (en) 1999-04-15 2007-11-20 Crucell Holland B.V. Compositions of erythropoietin isoforms comprising Lewis-X structures and high sialic acid content
US8236561B2 (en) 1999-04-15 2012-08-07 Crucell Holland B.V. Efficient production of IgA in recombinant mammalian cells
US7604960B2 (en) 1999-04-15 2009-10-20 Crucell Holland B.V. Transient protein expression methods
US7527961B2 (en) 1999-11-26 2009-05-05 Crucell Holland B.V. Production of vaccines
US7192759B1 (en) 1999-11-26 2007-03-20 Crucell Holland B.V. Production of vaccines
US7521220B2 (en) 1999-11-26 2009-04-21 Crucell Holland B.V. Production of vaccines
ES2297028T3 (es) 2001-12-07 2008-05-01 Crucell Holland B.V. Produccion de virus, aislados virales y vacunas.
DK1572994T3 (da) 2002-12-20 2007-05-29 Chromagenics Bv Midler og fremgangsmåder til fremstilling af en protein gennem chromatinåbnere, som kan göre chromatin mere tilgængeligt for transkriptionsfaktorer
AU2004236440B2 (en) 2003-05-09 2008-10-09 Crucell Holland B.V. Cultures of E1-immortalized cells and processes for culturing the same to increase product yields therefrom
WO2005080556A2 (fr) 2004-02-23 2005-09-01 Crucell Holland B.V. Procedes de purification de virus
JP4811765B2 (ja) * 2004-06-22 2011-11-09 学校法人東海大学 外来遺伝子の誘導発現の制御が可能な発現ベクター
US20060195935A1 (en) 2004-11-08 2006-08-31 Chromagenics B.V. Selection of host cells expressing protein at high levels
NZ553700A (en) 2004-11-08 2010-09-30 Chromagenics Bv Selection of host cells expressing protein at high levels using a selectable marker with a non-optimal start codon
US8999667B2 (en) 2004-11-08 2015-04-07 Chromagenics B.V. Selection of host cells expressing protein at high levels
US8039230B2 (en) 2004-11-08 2011-10-18 Chromagenics B.V. Selection of host cells expressing protein at high levels
MX2007004595A (es) 2004-11-08 2007-08-15 Chromagenics Bv Seleccion de celulas hospederas que expresan proteinas en altas concentraciones.
ES2317517T5 (es) 2005-04-11 2016-01-21 Crucell Holland B.V. Purificación de virus usando ultrafiltración
EP2350268B1 (fr) 2008-11-03 2014-12-24 Crucell Holland B.V. Procédé pour la production de vecteurs adénoviraux
WO2011045381A1 (fr) 2009-10-15 2011-04-21 Crucell Holland B.V. Procédé de purification d'adénovirus à partir de cultures à haute densité cellulaire
EP2488636B1 (fr) 2009-10-15 2014-03-12 Crucell Holland B.V. Procédé pour la purification d'adénovirus à partir de cultures à forte densité cellulaire
BR112012019023B1 (pt) 2010-02-15 2021-12-21 Janssen Vaccines & Prevention B.V. Método para produzir adenovírus recombinante sorotipo 26 (rad26), e, uso de um biorreator
US8932607B2 (en) 2012-03-12 2015-01-13 Crucell Holland B.V. Batches of recombinant adenovirus with altered terminal ends
CN104379733B (zh) 2012-03-12 2016-01-20 克鲁塞尔荷兰公司 具改变末端的重组腺病毒群
WO2013139911A1 (fr) 2012-03-22 2013-09-26 Crucell Holland B.V. Vaccin contre le vrs
US9119813B2 (en) 2012-03-22 2015-09-01 Crucell Holland B.V. Vaccine against RSV
SG11201508567XA (en) 2013-04-25 2015-11-27 Crucell Holland Bv Stabilized soluble prefusion rsv f polypeptides
WO2014202570A1 (fr) 2013-06-17 2014-12-24 Crucell Holland B.V. Polypeptides f solubles et stabilisés du vrs en conformation pré-fusion
ES2697903T3 (es) 2014-11-04 2019-01-29 Janssen Vaccines & Prevention Bv Vacunas terapéuticas contra el VPH16
AU2016249798B2 (en) 2015-04-14 2022-05-26 Janssen Vaccines And Prevention B.V. Recombinant adenovirus expressing two transgenes with a bidirectional promoter
EP3319634B1 (fr) 2015-07-07 2019-08-21 Janssen Vaccines & Prevention B.V. Polypeptides rsv f de pré-fusion solubles stabilisés
KR102638978B1 (ko) 2015-07-07 2024-02-22 얀센 백신스 앤드 프리벤션 비.브이. Rsv에 대한 백신
KR20180042295A (ko) 2015-08-20 2018-04-25 얀센 백신스 앤드 프리벤션 비.브이. 치료용 hpv18 백신
US11155583B2 (en) 2016-04-05 2021-10-26 Janssen Vaccines & Prevention B.V. Stabilized soluble pre-fusion RSV F proteins
CA3018139A1 (fr) 2016-04-05 2017-10-12 Janssen Vaccines & Prevention B.V. Vaccin contre le rsv
JP7053491B2 (ja) 2016-05-02 2022-04-12 ヤンセン ファッシンズ アンド プリベンション ベーフェー 治療用hpvワクチン組み合わせ
US10953087B2 (en) 2016-05-30 2021-03-23 Janssen Vaccines & Prevention B.V. Stabilized pre-fusion RSV F proteins
AU2017283118B2 (en) 2016-06-20 2019-02-07 Janssen Vaccines & Prevention B.V. Potent and balanced bidirectional promoter
EP3484506A1 (fr) 2016-07-14 2019-05-22 Janssen Vaccines & Prevention B.V. Vaccins contre le hpv
JP6721797B2 (ja) 2017-02-09 2020-07-15 ヤンセン ファッシンズ アンド プリベンション ベーフェーJanssen Vaccines & Prevention B.V. 異種遺伝子発現のための強力で短いプロモーター
KR102122117B1 (ko) * 2017-04-21 2020-06-11 (주)지뉴인텍 비복제 아데노 바이러스 생산 세포주 및 이의 제조방법
US11229692B2 (en) 2017-05-17 2022-01-25 Janssen Vaccines & Prevention B.V. Methods and compositions for inducing protective immunity against RSV infection
WO2019053109A1 (fr) 2017-09-15 2019-03-21 Janssen Vaccines & Prevention B.V. Procédé d'induction sûre de l'immunité contre le vrs
AU2018359492B2 (en) 2017-10-31 2023-12-14 Janssen Vaccines & Prevention B.V. Adenovirus and uses thereof
JP7366014B2 (ja) 2017-10-31 2023-10-20 ヤンセン ファッシンズ アンド プリベンション ベーフェー アデノウイルス及びその用途
JP7285833B2 (ja) 2017-10-31 2023-06-02 ヤンセン ファッシンズ アンド プリベンション ベーフェー アデノウイルス及びその用途
AU2018359494A1 (en) 2017-10-31 2020-04-23 Janssen Vaccines & Prevention B.V. Adenovirus vectors and uses thereof
WO2020099383A1 (fr) 2018-11-13 2020-05-22 Janssen Vaccines & Prevention B.V. Protéines f du vrs sous forme pré-fusion stabilisées
TWI852977B (zh) 2019-01-10 2024-08-21 美商健生生物科技公司 前列腺新抗原及其用途
WO2020229579A1 (fr) 2019-05-15 2020-11-19 Janssen Vaccines & Prevention B.V. Traitement prophylactique d'une infection par le virus respiratoire syncytial avec un vaccin à base d'adénovirus
BR112021022087A2 (pt) 2019-05-15 2021-12-28 Janssen Vaccines & Prevention Bv Coadministração de vacina sazonal contra influenza e vacina contra vírus respiratório sincicial à base de adenovírus
AU2020358474A1 (en) 2019-10-03 2022-04-07 Batavia Biosciences B.V. Adenovirus vectors and uses thereof
PE20221182A1 (es) 2019-11-18 2022-08-05 Janssen Biotech Inc Vacunas basadas en calr y jak2 mutantes y sus usos
TW202144389A (zh) 2020-02-14 2021-12-01 美商健生生物科技公司 在多發性骨髓瘤中表現之新抗原及其用途
TW202144388A (zh) 2020-02-14 2021-12-01 美商健生生物科技公司 在卵巢癌中表現之新抗原及其用途
JP2023521194A (ja) 2020-04-13 2023-05-23 ヤンセン バイオテツク,インコーポレーテツド Psma及びsteap1ワクチン並びにそれらの使用
WO2022009052A2 (fr) 2020-07-06 2022-01-13 Janssen Biotech, Inc. Néo-antigènes prostatiques et leurs utilisations
EP4175721A1 (fr) 2020-07-06 2023-05-10 Janssen Biotech, Inc. Néo-antigènes prostatiques et leurs utilisations
WO2022009051A1 (fr) 2020-07-06 2022-01-13 Janssen Biotech, Inc. Procédé de détermination de la réactivité à un traitement du cancer de la prostate
WO2025158316A1 (fr) 2024-01-26 2025-07-31 Janssen Biotech, Inc. Néo-antigènes ovariens et leur utilisation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919676A (en) * 1993-06-24 1999-07-06 Advec, Inc. Adenoviral vector system comprising Cre-loxP recombination
EP1548118A2 (fr) * 1994-06-10 2005-06-29 Genvec, Inc. Système de vecteurs adenoviraux complémentaires et lignées cellulaires correspondantes
IL116816A (en) * 1995-01-20 2003-05-29 Rhone Poulenc Rorer Sa Cell for the production of a defective recombinant adenovirus or an adeno-associated virus and the various uses thereof
ATE445705T1 (de) 1995-06-15 2009-10-15 Crucell Holland Bv Verpackungssysteme für humane rekombinante adenoviren zur gentherapie
US5891690A (en) * 1996-04-26 1999-04-06 Massie; Bernard Adenovirus E1-complementing cell lines

Similar Documents

Publication Publication Date Title
WO1998039411A9 (fr) Lignees cellulaires de complementation de la region e1 d'un adenovirus
EP0973866A1 (fr) Lignees cellulaires de complementation de la region e1 d'un adenovirus
Massie et al. Inducible overexpression of a toxic protein by an adenovirus vector with a tetracycline-regulatable expression cassette
JP3492700B2 (ja) 遺伝子治療のためのアデノウィルスベクター
Zhang et al. Role for the adenovirus IVa2 protein in packaging of viral DNA
US6228646B1 (en) Helper-free, totally defective adenovirus for gene therapy
Holterman et al. Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5
US6365394B1 (en) Cell lines and constructs useful in production of E1-deleted adenoviruses in absence of replication competent adenovirus
Catalucci et al. An adenovirus type 5 (Ad5) amplicon-based packaging cell line for production of high-capacity helper-independent ΔE1-E2-E3-E4 Ad5 vectors
AU752284B2 (en) Methods for pseudoadenoviral vector production
US20010046965A1 (en) Adenovirus E1-complementing cell lines
Wang et al. Episomal segregation of the adenovirus enhancer sequence by conditional genome rearrangement abrogates late viral gene expression
Bernt et al. A new type of adenovirus vector that utilizes homologous recombination to achieve tumor-specific replication
Gall et al. Rescue and production of vaccine and therapeutic adenovirus vectors expressing inhibitory transgenes
Murakami et al. An adenoviral vector expressing human adenovirus 5 and 3 fiber proteins for targeting heterogeneous cell populations
JP2004517610A (ja) 自己再編成性dnaベクター
McVoy et al. Tetracycline-mediated regulation of gene expression within the human cytomegalovirus genome
EP1127149B1 (fr) Cellules pour produire des vecteurs adenoviraux dependant de virus auxiliaires, et procede de preparation et d'utilisation de ces cellules
Howe et al. Matching complementing functions of transformed cells with stable expression of selected viral genes for production of E1-deleted adenovirus vectors
Fang et al. Diminishing adenovirus gene expression and viral replication by promoter replacement
EP1083229A1 (fr) Vecteurs adénovirales modifiés pour la thérapie génique
WO2001020014A1 (fr) Vecteurs adenoviraux modifies a utiliser en therapie genique
EP1083228A1 (fr) Vecteurs adénovirales modifiés pour la thérapie génique
Miskill Use of the PIX Promoter for Gene Therapy Applications