[go: up one dir, main page]

WO1999045537A1 - Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same - Google Patents

Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same Download PDF

Info

Publication number
WO1999045537A1
WO1999045537A1 PCT/JP1998/000886 JP9800886W WO9945537A1 WO 1999045537 A1 WO1999045537 A1 WO 1999045537A1 JP 9800886 W JP9800886 W JP 9800886W WO 9945537 A1 WO9945537 A1 WO 9945537A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
substrate
recording medium
magnetic recording
plasma
Prior art date
Application number
PCT/JP1998/000886
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Honda
Yuuichi Kokaku
Mitsuhiro Shoda
Toshinori Ono
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1998/000886 priority Critical patent/WO1999045537A1/en
Priority to PCT/JP1998/004038 priority patent/WO1999045536A1/en
Publication of WO1999045537A1 publication Critical patent/WO1999045537A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers

Definitions

  • Magnetic recording medium method of manufacturing the same, and magnetic storage device using the same
  • the present invention relates to a magnetic storage device such as a magnetic disk device, and more particularly to a magnetic recording medium used for a head disk assembly (HDA) of a magnetic storage device and a method of manufacturing the same.
  • the present invention relates to an inexpensive and high-quality magnetic recording medium capable of high-density recording, a manufacturing method thereof, and an HDD using the magnetic recording medium.
  • a magnetic disk drive mainly includes a magnetic disk 1 and a magnetic head 2 that levitates above the magnetic disk 1 and performs recording and reproduction, as shown in FIG. 12, and also rotates the magnetic disk 1 Rotating mechanism 3, Magnetic head 2 Positioning head on rotating magnetic disk 1, Head positioning mechanism (servo mechanism) 4, RZW signal circuit 5 for recording and reproducing from magnetic disk using magnetic head Consists of
  • the floating gap between the magnetic disk 1 and the magnetic head 2 has become less than 0.05 m with the increase in recording density. It is desired to guarantee the sliding reliability at the time of contact.
  • the magnetic recording medium is composed of a substrate and a layered structure such as a magnetic film and a protective film formed on the substrate.Fine abrasive grains are applied to the surface of the substrate to prevent the magnetic head and the magnetic disk from attracting.
  • the method of forming fine grooves by circumferential or non-directional polishing called texture by the used machining method has been generally adopted.
  • Other methods include a so-called deposition texture in which fine projections are formed on the surface of a substrate or a magnetic film by sputtering, and a method in which a surface is coated with teflon particles after forming a protective film, and then a DRY etch is performed.
  • etching texture method for forming irregularities on the surface of the protective film by etching with a polishing method. Examples of these methods are disclosed in Japanese Patent Application Laid-Open Nos. Sho 61-19695 and Sho 61-2. 0 2 3 2 4 and Japanese Patent Application Laid-Open No. 58-53 0 26.
  • the purpose is to prevent adhesion between the magnetic head and the magnetic disk and to ensure reliability by contact start / stop (hereinafter referred to as CS / S). Requires a certain height. Therefore, the flying height of the magnetic head cannot be reduced below the height of the unevenness, and the low flying height of the magnetic head required to achieve the high recording density required at present is required. There was a problem that I could not do it.
  • the flying characteristics of the conventional magnetic head depend on the height at which the contact between the magnetic head and the magnetic recording medium starts (hereinafter referred to as H to), the protective film thickness on the magnetic film, and the lubricating film thickness. Defined. As a result, conventionally, the limit of H to was about 2 O rnn.
  • the height of the hill and the film thickness of the etched surface for etching the protective film cannot be absolutely reduced in terms of adhesion and strength, and the roughness of the substrate cannot be reduced. Since the hills are transferred to the surface of the protective film and appear, the height of the hills is limited to about 10 nm, and the remaining film thickness needs to be about 10 nm or about 15 nm, making it difficult to improve the flying characteristics. Regarding the uniformity of the hills, secondary and tertiary agglomeration cannot be avoided because the fine particles are applied and masked. This will inevitably cause thermal aspiration (TA) due to contact between the magnetic head and the large hills.
  • TA thermal aspiration
  • An object of the present invention is to solve the problems of the prior art, and to achieve extremely low levitation, high sliding resistance, high TPI and high TPI due to the disappearance of magnetic anisotropy, and reliability with low noise.
  • Another object of the present invention is to provide a magnetic recording medium and a magnetic storage device having high performance. For this purpose, as described above, it is essential to supply a process capable of making the surface of the magnetic disk uneven and uniform in the disk surface and selecting an arbitrary surface roughness.
  • the basic concept for obtaining a uniform surface is that the height of the concaves and convexes can be controlled uniformly in the plane, and the number of irregularities and the pitch of the irregularities are controlled.
  • the above-mentioned problems of the prior art are solved based on controllability, non-directionality such as machining, improvement of mechanical properties of the surface by processing only the surface, and the present invention. It achieves its purpose.
  • the position of the average center line of the surface roughness after processing is lower than the position of the line. In other words, it was found that under the conditions that would cause etching, the surface would not be uniform in height of the projections, but only roughened. Thus, by selecting the processing conditions, the present inventors did not change the average center line of the surface roughness of the substrate even after plasma processing, as shown in the lower part of Fig. 1, and changed the surface shape minutely. I found something that could be done. This can be achieved by treating the main constituent elements on the surface of the substrate without erosion by ions or radicals in the plasma.
  • the present inventors as shown in FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, and FIG.
  • the height depends on the processing time and the energy of the plasma to be processed. Tsuchi was found to be dependent on the type of gas being processed and the pressure of the gas. Therefore, it is found that the magnetic recording medium required for the present invention can be obtained by appropriately selecting the processing conditions such as the processing time, the energy of the plasma to be processed, the gas type and the gas pressure, and performing the plasma processing. Was.
  • the hardness and Young's modulus of the surface treated by the present invention were measured with a thin film hardness tester manufactured by Nanoindenter, and as shown in Fig. 9, the hardness and Young's modulus were clearly improved as compared to before the treatment. Therefore, the effect of reducing the impact at the time of contact between the magnetic disk and the magnetic head can be greatly expected. Therefore, improvement of scratch resistance and crash resistance can be expected.
  • FIG. 1 is a diagram showing a roughness curve in the etching mode and the process of the present invention.
  • FIG. 2 is a diagram showing the relationship between plasma power and surface roughness.
  • FIG. 3 is a diagram showing the relationship between the plasma power and the pitch of the minute projections.
  • FIG. 4 is a diagram showing the relationship between plasma processing time and surface roughness.
  • FIG. 5 is a diagram showing the relationship between the plasma processing time and the pitch of the minute projections.
  • FIG. 6 is a diagram showing the relationship between the processing gas pressure and the surface roughness.
  • FIG. 7 is a diagram showing the relationship between the processing gas pressure and the pitch of the fine projections.
  • FIG. 8 is a diagram showing the relationship of surface roughness.
  • FIG. 9 is a diagram showing hardness and Young's modulus before and after the treatment of the present invention.
  • FIG. 10 is a diagram showing a manufacturing flowchart of this embodiment and a conventional example.
  • FIG. 11 is a diagram showing AFM images of the substrate surface of the present embodiment and the conventional example.
  • FIG. 12 is a schematic diagram of a magnetic disk drive.
  • FIG. 13 is a diagram showing processing conditions of the present example and a comparative example.
  • FIG. 14 is a diagram showing evaluation results for the present example and the comparative example.
  • FIG. 15 is a schematic view showing a magnetic recording medium according to this embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • a Ni-P plating on aluminum followed by a machined flat surface, and a chemically strengthened glass substrate.
  • the substrate size is 3.5 inches for the aluminum / Ni-P substrate and 2.5 inches for the glass substrate.
  • FIG. 10 is a flowchart comparing the manufacturing process of the present invention with the manufacturing process of the prior art.
  • the center line average roughness (R a) Is preferably 0.15 nm or more and lOnm or less, and the center line peak height (Rp) is preferably 0.3 or more and 20 ⁇ m or less.
  • the ultimate pressure of the vacuum exhaust was set to IE-4 Pa or less.
  • the processing of the substrate surface is not limited to the processing method of the present embodiment, but includes a plasma etching method, a reactive ion etching method, a reactive ion beam etching method, a chemical assist ion beam etching method, an ion beam etching method, and a sputtering etching method.
  • Method or an induced plasma method such as ERC or ICP can be used.
  • a magnetic recording medium 1 was obtained by sequentially forming a base film 12, a magnetic film 13 and a protective film 14 on the substrate 11 of this example by a sputtering apparatus.
  • the underlayer 12 is sputtered to 30 nm in an Ar gas atmosphere using a Cr target, and the magnetic film 13 is sputtered in an Ar gas atmosphere using a CoCrPt target.
  • the sputter was set to 25 nm.
  • the protective film 14 was sputtered in an Ar gas atmosphere using a graphite target to a thickness of 15 nm.
  • the surface of the magnetic recording medium was rubbed and dust was removed while rotating the substrate with a tape with abrasive grains to clean the surface. Thereafter, a fluorine-based lubricant was applied by DiP to a thickness of 15 A, and cured at 80 ° C. in a clean oven to form a lubricant film 15.
  • the magnetic recording media of Examples 1 to 10 were evaluated as described below, and the results are shown in FIG.
  • the evaluation methods include tangential force, CSS resistance, frequency of scratches caused by random seek, levitation of magnetic head (H to), T.A frequency of occurrence, and magnetostatic properties (Hc, S *, B rt ) And magnetic anisotropy. From FIG. 14, it is clear that this example is superior in any of the evaluation results as compared with the comparative example, and it can be seen that the object of the present invention is sufficiently satisfied.
  • any other manufacturing method can be used as long as it is a surface treatment method using a plasma in a vacuum, and the latitude in equipment is increased.
  • the present invention there is no need for the conventional substrate processing, cleaning process and DEPO-TEX formation at the time of film formation, etching by applying particles after forming the protective film, and the cleaning process. You can check. In addition, it has an excellent cost performance.
  • the surface condition was measured using an AFM (Atomic Force Microscope) to cover an area of 10 ⁇ m 2 . It was measured. The result is shown in Fig. 11 as an image of unevenness. As can be seen from the figure, it is clear that the substrate surface has been subjected to a uniform surface treatment and has extremely fine irregularities due to the treatment in this embodiment.
  • the underlying film, magnetic film, protective film, and lubricating film of the magnetic recording medium are not limited to those of the present embodiment, but include a two-layer underlying film, an alloy underlying film, a Co-based magnetic film, It is also possible to use any combination of a protective film for the layer, reactive sputtered carbon (carbon film containing H2, N2, etc.), and PCVD carbon film. In particular, the combination with a high-strength H 2, N 2 -containing carbon protective film results in even better results.
  • the CSS zone is LZT
  • the data surface can be processed with the processing method of the present invention to achieve a very low flying height and easy high recording density surface. It is clear that high-density recording media with high performance can be produced. Further, by subjecting the substrate to the surface treatment of the present invention, the in-plane magnetic anisotropy of the magnetic layer disappears, and a magnetic recording medium having isotropic magnetic characteristics is obtained.
  • the magnetic recording medium has high reliability and high TPI due to disappearance of magnetic anisotropy and low noise.
  • the present invention it is possible to realize a magnetic disk medium capable of achieving extremely low flying height and to supply a sufficiently clean substrate without using an unstable and special cleaning technique such as machining.
  • a cheaper and higher quality magnetic recording medium can be obtained. Therefore, not only can the reliability of the HDD be ensured, but also a system such as a high-density HDD with a high recording density and a high capacity can be supplied.
  • the total amount of investment in manufacturing equipment itself is reduced by eliminating the process of machining such as machining in the manufacturing process, and the manufacturing yield power is significantly increased, so that the cost of magnetic disks is reduced.
  • the cost of HDDs can be greatly reduced.
  • the in-plane magnetic anisotropy of the magnetic layer disappears, and a magnetic recording medium having isotropic magnetic characteristics is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

A process for plasma-treating the surface of the substrate of a magnetic recording medium to have a uniform and arbitrary surface roughness over the whole surface without allowing ions or radicals in the plasma to erode main elements constituting the surface. This process can provide the advantages of prevention of adhesion of the magnetic head to the magnetic recording medium, adhesion to a magnetic high reliability, low flying height, high TPI thanks to isotropy of magnetic characteristics, and low noise. Further, it can provide a magnetic storage apparatus having a high recording density and a high reliability.

Description

明 細  Details
磁気記録媒体とその製造方法並びにこれを用 、た磁気記憶装置 技術分野 Magnetic recording medium, method of manufacturing the same, and magnetic storage device using the same
本発明は、磁気ディスク装置等の磁気記憶装置に関し、さらに磁気記憶 装置のへッド '·ディスク ·アッセンプリ( H D A )に使用される磁気記録媒体 とその製造方法に関する。 特に高密度記録を可能とした安価で高品質の 磁気記録媒体とその製造方法及びこの磁気記録媒体を用いた H D Dに関 するものである. 背景技術  The present invention relates to a magnetic storage device such as a magnetic disk device, and more particularly to a magnetic recording medium used for a head disk assembly (HDA) of a magnetic storage device and a method of manufacturing the same. In particular, the present invention relates to an inexpensive and high-quality magnetic recording medium capable of high-density recording, a manufacturing method thereof, and an HDD using the magnetic recording medium.
近年、 情報量の増加、 伝達速度の高速化に伴いコンピュータ一の外部 記憶装置として使用される磁気記憶装置の高密度化、 高速化の重要度は ますます高まりを見せている。  In recent years, as the amount of information has increased and the transmission speed has increased, the importance of higher density and higher speed of magnetic storage devices used as external storage devices in computers has been increasing.
一般的に磁気ディスク装置は第 1 2図に示すように磁気ディスク 1と 磁気ディスク 1上を浮上して記録再生を行う磁気へッ ド 2を主構成要素 とし、 その他、 磁気ディスク 1を回転させる回転機構 3、 磁気へッ ド 2 を回転する磁気ディスク 1上に位置決めするへッド位置決め機構 (サ一ボ 機構) 4、 磁気ディスクから磁気へッ ドにより記録再生を行うための R Z W信号回路 5から構成される。 ここで磁気ディスク 1と磁気へッ ド 2の 浮上間隙は、 高密度記録化に伴い 0 . 0 5 m以下となってきており、 この小さい間隙を確保したまま、 磁気へッ ドと磁気ディスクの接触時の 摺動信頼性を保証することが望まれている。  In general, a magnetic disk drive mainly includes a magnetic disk 1 and a magnetic head 2 that levitates above the magnetic disk 1 and performs recording and reproduction, as shown in FIG. 12, and also rotates the magnetic disk 1 Rotating mechanism 3, Magnetic head 2 Positioning head on rotating magnetic disk 1, Head positioning mechanism (servo mechanism) 4, RZW signal circuit 5 for recording and reproducing from magnetic disk using magnetic head Consists of Here, the floating gap between the magnetic disk 1 and the magnetic head 2 has become less than 0.05 m with the increase in recording density. It is desired to guarantee the sliding reliability at the time of contact.
これらの対策のため従来より、 磁気記録媒体の構成及びその製造方法 に関しては、 その目的に応じてさまざまな提案がなされてきた。 磁気記 録媒体は基板と基板上に形成された磁性膜、 保護膜等の層構造から成り、 磁気へッ ドと磁気ディスクの吸着を防止するために、 基板の表面には微 細砥粒を用いた機械加工法によるテクスチャーと呼ばれる周方向もしく は無方向研磨による微細な溝を形成する方法が一般的に採られてきた。 また、 その他の方法としては、 基板もしくは磁性膜表面にスパッタリン グにより微細な突起を形成する所謂デポテクスチャーと呼ばれる方法、 また、 保護膜形成後テフ口ン粒子などを塗布した後表面を D R Yエツチ ング法によりエツチングして保護膜表面に凹凸を形成する所謂ェッチン グテクスチャ—法などがある. これらの例としては、 特開昭 6 0— 1 1 9 6 3 5、 特開昭 6 1— 2 0 2 3 2 4、 特開昭 5 8— 5 3 0 2 6などが める。 Conventionally, a configuration of a magnetic recording medium and a method of manufacturing the same have been proposed for these measures. Various proposals have been made for the purpose. The magnetic recording medium is composed of a substrate and a layered structure such as a magnetic film and a protective film formed on the substrate.Fine abrasive grains are applied to the surface of the substrate to prevent the magnetic head and the magnetic disk from attracting. The method of forming fine grooves by circumferential or non-directional polishing called texture by the used machining method has been generally adopted. Other methods include a so-called deposition texture in which fine projections are formed on the surface of a substrate or a magnetic film by sputtering, and a method in which a surface is coated with teflon particles after forming a protective film, and then a DRY etch is performed. There is a so-called etching texture method for forming irregularities on the surface of the protective film by etching with a polishing method. Examples of these methods are disclosed in Japanese Patent Application Laid-Open Nos. Sho 61-19695 and Sho 61-2. 0 2 3 2 4 and Japanese Patent Application Laid-Open No. 58-53 0 26.
いずれの方法においても、 その目的は磁気へッ ドと磁気ディスクとの 粘着防止とコンタク トスタートストップ (以下 C S / Sと呼ぶ) による耐 信頼性確保であるため、 この目的を達成するために凹凸にはある程度以 上の高さが必要である。 そのため、 磁気へッ ドの浮上量はこの凹凸の高 さ以下にすることは出来ず、 現在要求されている程度の高記録密度を達 成するために必要な磁気へッ ドの低浮上化ができないという問題があつ た。 つまり、 従来の磁気へッ ドの浮上特性は、 磁気へッ ドと磁気記録媒 体との接触が開始する高さ (以下 H t oと呼ぶ) と磁性膜上の保護膜厚、 潤滑膜厚で定義される。 この結果、 従来は、 H t oとして約 2 O rnn前後 が限界であった。 これは、 磁気記録媒体の表面粗さをある一定値以下に することが難しく且つ基板を加工した際に起こるバリの発生により、 中 心線平均粗さ (R a ) は小さくできても中心線ピーク高さ (R p ) 、 最 大ピーク高さ (R m a x ) は異常に高い値が出るなど基板全体の表面の 形状の均一性に関しては制御できていないためである。 この現象はデポ テクスチャー、 エッチングテクスチャ一においても同様であり、 デポテ クスチヤ一の場合には、 スパッタリングにより形成するため突起物が異 常成長する可能性が大きく且つ大きさをそろえることが難しい。 エッチ ングテクスチャ一の場合には、 保護膜をェッチングするため丘となる部 分の高さとエッチングされた面の膜厚は粘着と強度の点から一概に小さ くすることはできず且つ基板の粗さも保護膜表面まで転写されて現れる ことから丘の高さは 1 0 n m程度が限界であり、 残膜厚は 1 0力、ら 1 5 n m程度を要することになり浮上特性の改善は難しい。 また丘の均一性に関 しても、 微細粒子を塗布してマスキングするため 2次 3次の凝集はさけ られず、 まちまちになるとともに大きな丘が形成される可能性が高い。 これにより磁気へッ ドと大きな丘の接触によるサ一マルアスピリティ (以下 T. Aと呼ぶ) の発生が避けられなくなる。 In either method, the purpose is to prevent adhesion between the magnetic head and the magnetic disk and to ensure reliability by contact start / stop (hereinafter referred to as CS / S). Requires a certain height. Therefore, the flying height of the magnetic head cannot be reduced below the height of the unevenness, and the low flying height of the magnetic head required to achieve the high recording density required at present is required. There was a problem that I could not do it. In other words, the flying characteristics of the conventional magnetic head depend on the height at which the contact between the magnetic head and the magnetic recording medium starts (hereinafter referred to as H to), the protective film thickness on the magnetic film, and the lubricating film thickness. Defined. As a result, conventionally, the limit of H to was about 2 O rnn. This is because it is difficult to reduce the surface roughness of the magnetic recording medium to a certain value or less, and the burrs that occur when processing the substrate cause the center line average roughness (R a) to be small even if the center line average roughness (R a) can be reduced. The reason is that the peak height (R p) and the maximum peak height (R max) have abnormally high values, and the uniformity of the surface shape of the entire substrate cannot be controlled. This phenomenon is The same applies to the texture and the etching texture. In the case of the depot texture, since the projections are formed by sputtering, there is a high possibility that the projections will grow abnormally, and it is difficult to make the sizes uniform. In the case of the etching texture, the height of the hill and the film thickness of the etched surface for etching the protective film cannot be absolutely reduced in terms of adhesion and strength, and the roughness of the substrate cannot be reduced. Since the hills are transferred to the surface of the protective film and appear, the height of the hills is limited to about 10 nm, and the remaining film thickness needs to be about 10 nm or about 15 nm, making it difficult to improve the flying characteristics. Regarding the uniformity of the hills, secondary and tertiary agglomeration cannot be avoided because the fine particles are applied and masked. This will inevitably cause thermal aspiration (TA) due to contact between the magnetic head and the large hills.
以上述べたように、 従来技術においては、 基板表面の形状の全面にわ たる均一性に関して考慮されていないため、 近年ますます要求されてい る、 磁気へッ ドと磁気ディスクとの粘着防止と耐信頼性を確保するとと もに磁気へッドの低浮上化を図つて高記録密度を達成することが難しい。 発明の開示  As described above, in the prior art, since consideration has not been given to the uniformity of the entire surface of the substrate, the anti-adhesion between the magnetic head and the magnetic disk, which has been increasingly required in recent years, has been improved. It is difficult to achieve high recording density by ensuring the reliability and lowering the flying height of the magnetic head. Disclosure of the invention
本発明の目的は、 従来技術の問題点を解決すると共に極低浮上化と 耐摺動性、 耐 T . Aの両立及び磁気異方性の消失による高 T P I化、 低 ノィズ化のなされた信頼性の高い磁気記録媒体及び磁気記憶装置の提供 にある。 この為には先にも述べたように、 磁気ディスク表面の凹凸を円 板面内に於て均一等方等質にし、 且つ任意の表面粗さを選択できるプロ セスの供給が必須である。  An object of the present invention is to solve the problems of the prior art, and to achieve extremely low levitation, high sliding resistance, high TPI and high TPI due to the disappearance of magnetic anisotropy, and reliability with low noise. Another object of the present invention is to provide a magnetic recording medium and a magnetic storage device having high performance. For this purpose, as described above, it is essential to supply a process capable of making the surface of the magnetic disk uneven and uniform in the disk surface and selecting an arbitrary surface roughness.
本発明においては、 均一な表面を得るための基本的な考え方として凹 凸の高さを面内で均一に制御できること、 凹凸の数、 凹凸のピッチを制 御できること、 機械加工のように方向性を持たないこと、 表面のみを処 理でき表面の機械的性質を向上させること等を基本として、 上述の従来 技術の問題点を解決し、 且つ本発明の目的を達するものである。 In the present invention, the basic concept for obtaining a uniform surface is that the height of the concaves and convexes can be controlled uniformly in the plane, and the number of irregularities and the pitch of the irregularities are controlled. The above-mentioned problems of the prior art are solved based on controllability, non-directionality such as machining, improvement of mechanical properties of the surface by processing only the surface, and the present invention. It achieves its purpose.
スパッタリングによる媒体の形成方法においては、 基板の表面粗さを そのままトレースすることが基本的な現象であることから、 非磁性基板 表面を処理することを検討した。  In the method of forming a medium by sputtering, tracing the surface roughness of the substrate as it is is a basic phenomenon.
処理方法においては、 大きく 2つの方法がある。 一つはゥエツ トによ る化学的な処理方法、 もう一つは真空とプラズマを用いるドライな方法 である。 ウエッ トな方法では、 エッチング、 メツキなどによる方法が主 であるため制御が難しいことと安定性が無く基板の汚れ、 処理後の洗浄 が必要になるなどの影響が大きい。 ドライな方法による表面形状を形成 する方法としては、 プラズマを用いた物理的な方法によるものが制御し 易く、 且つ任意のプロセス構築にはよいと考えた。 そこで平行平板 R F エツチング装置にて A rガスを用いて基板の表面処理を行ったところ、 基板表面が削られるため、 第 1図の上側に示す様に処理前の基板の表面 粗さの平均中心線の位置より処理後の表面粗さの平均中心線の位置が低 くなる。 つまり、 エッチングしてしまう条件では粗れるだけで凸部高さ の均一な表面にできないことがわかった。 そこで本発明者らは処理条件 を選定することにより、 第 1図の下側に示す様にプラズマによる処理後 も基板の表面粗さの平均中心線が変化せず、 表面の形状を微細に変化さ せることができることを見いだした。 これは、 プラズマ中のイオン若し くはラジカルによつて基板の表面の主構成元素を浸食することなく処理 することにより達成できる。  There are roughly two processing methods. One is a chemical treatment method using a jet, and the other is a dry method using vacuum and plasma. In wet methods, methods such as etching and plating are the main methods, so control is difficult, there is no stability, and there are significant effects such as contamination of the substrate and necessity of cleaning after processing. As a method of forming the surface shape by a dry method, a physical method using plasma was considered to be easy to control and suitable for arbitrary process construction. Therefore, when the substrate surface was treated with Ar gas using a parallel plate RF etching device, the surface of the substrate was shaved. As shown in the upper part of Fig. 1, the average center of the surface roughness of the substrate before the treatment was obtained. The position of the average center line of the surface roughness after processing is lower than the position of the line. In other words, it was found that under the conditions that would cause etching, the surface would not be uniform in height of the projections, but only roughened. Thus, by selecting the processing conditions, the present inventors did not change the average center line of the surface roughness of the substrate even after plasma processing, as shown in the lower part of Fig. 1, and changed the surface shape minutely. I found something that could be done. This can be achieved by treating the main constituent elements on the surface of the substrate without erosion by ions or radicals in the plasma.
さらに、 本発明者らは、 第 2図、 第 3図、 第 4図、 第 5図、 第 6図、 第 7図及び第 8図に示すように、 プラズマ処理後の基板表面の凸部の高 さは処理時間、 処理するプラズマのエネルギーに依存し、 且つ凸部のピ ツチは処理するガス種及びガスの圧力に依存することを見いだした。 従 つて、 処理時間、 処理するプラズマのエネルギー、 ガス種及びガスの圧 力等の処理条件を適切に選定してプラズマ処理を行うことにより本発明 に要求される磁気記録媒体が得られることがわかった。 Further, the present inventors, as shown in FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, and FIG. The height depends on the processing time and the energy of the plasma to be processed. Tsuchi was found to be dependent on the type of gas being processed and the pressure of the gas. Therefore, it is found that the magnetic recording medium required for the present invention can be obtained by appropriately selecting the processing conditions such as the processing time, the energy of the plasma to be processed, the gas type and the gas pressure, and performing the plasma processing. Was.
これより従来技術では得られなかったピッチの微細化が可能であり、 非常に微細な凹凸を再現良く制御できる。  This makes it possible to make the pitch finer than was possible with the prior art, and to control very fine irregularities with good reproducibility.
更に、 本発明にて処理した表面の硬度、 ヤング率をナノインデンタ社 の薄膜硬度測定器にて測定した結果、 第 9図に示すように処理前に比べ 明らかに硬度、 ヤング率が向上していることから、 磁気ディスクと磁気 へッ ドの接触時の衝撃を緩和する効果が大いに期待できる。 従って耐ス クラッチ、 クラッシュ性の向上が見込める。 図面の簡単な説明  Furthermore, the hardness and Young's modulus of the surface treated by the present invention were measured with a thin film hardness tester manufactured by Nanoindenter, and as shown in Fig. 9, the hardness and Young's modulus were clearly improved as compared to before the treatment. Therefore, the effect of reducing the impact at the time of contact between the magnetic disk and the magnetic head can be greatly expected. Therefore, improvement of scratch resistance and crash resistance can be expected. BRIEF DESCRIPTION OF THE FIGURES
第 1図はエッチン^モ-ドと本発明の処理での粗さ曲線を表す図である。 第 2図はプラズマパワーと表面粗さの関係を示す図である。  FIG. 1 is a diagram showing a roughness curve in the etching mode and the process of the present invention. FIG. 2 is a diagram showing the relationship between plasma power and surface roughness.
第 3図はプラズマパワーと微小突起のピッチの関係を示す図である。 第 4図はプラズマ処理時間と表面粗さの関係を示す図である。  FIG. 3 is a diagram showing the relationship between the plasma power and the pitch of the minute projections. FIG. 4 is a diagram showing the relationship between plasma processing time and surface roughness.
第 5図はブラズマ処理時間と微小突起のピッチの関係を示す図である。 第 6図は処理ガス圧力と表面粗さの関係を示す図である。  FIG. 5 is a diagram showing the relationship between the plasma processing time and the pitch of the minute projections. FIG. 6 is a diagram showing the relationship between the processing gas pressure and the surface roughness.
第 7図は処理ガス圧力と微小突起のピッチの関係を示す図である。 第 8図は表面粗さの関係を示す図である。  FIG. 7 is a diagram showing the relationship between the processing gas pressure and the pitch of the fine projections. FIG. 8 is a diagram showing the relationship of surface roughness.
第 9図は本発明の処理前と後の硬度及びヤング率を示す図である。 第 1 0図は本実施例と従来例の製造フローチヤ一トを示す図である。 第 1 1図は本実施例と従来例の基板表面の A F M像を示す図である。 第 1 2図は磁気ディスク装置の概略図である。  FIG. 9 is a diagram showing hardness and Young's modulus before and after the treatment of the present invention. FIG. 10 is a diagram showing a manufacturing flowchart of this embodiment and a conventional example. FIG. 11 is a diagram showing AFM images of the substrate surface of the present embodiment and the conventional example. FIG. 12 is a schematic diagram of a magnetic disk drive.
第 1 3図は本実施例と比較例の処理条件を示す図である。 第 1 4図は本実施例と比較例に対する評価結果を示す図である。 FIG. 13 is a diagram showing processing conditions of the present example and a comparative example. FIG. 14 is a diagram showing evaluation results for the present example and the comparative example.
第 1 5図は本実施例における磁気記録媒体を示す概略図である。 発明を実施するための最良の形態  FIG. 15 is a schematic view showing a magnetic recording medium according to this embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面を用いて具体的に説明する。  Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
まず、 基板としては、 アルミニウムに N i— Pメツキを施した後機械 加工により平面とした基板と、 化学強化されたガラス基板の 2種類を用 意した。 基板サイズは、 アルミ/ N i— P基板は 3 . 5インチ、 ガラス 基板は 2 . 5インチである。  First, we prepared two types of substrates: a Ni-P plating on aluminum, followed by a machined flat surface, and a chemically strengthened glass substrate. The substrate size is 3.5 inches for the aluminum / Ni-P substrate and 2.5 inches for the glass substrate.
基板を純水にて洗浄した後、 プラズマ中のイオン若しくはラジカルに よって基板の表面の主構成元素を浸食することなく基板表面を処理する ために、 第 1 3図に示す処理条件により処理を行った。 この結果、 同図 に示す機械的性質及び表面状態を有する実施例 N o . 1〜 1 0の基板を作 成した。 比較例として、 第 1 3図の比較例 1〜4に示すように従来技術 である機械加工によるテクスチャ一を形成した基板 (アルミ ZN i 一 P 基板) と無処理のガラス基板を用意して、 その基板の機械的性質及び表 面状態を調べた。 比較例である基板についても、 再洗浄以降の処理プロ セスは同様とした。 第 1 0図に本発明の製造行程と従来技術の製造工程 とを比較してフローチャートとして示した。  After cleaning the substrate with pure water, treatment is performed under the processing conditions shown in Fig. 13 to treat the substrate surface without eroding the main constituent elements on the substrate surface by ions or radicals in the plasma. Was. As a result, the substrates of Examples Nos. 1 to 10 having the mechanical properties and surface states shown in FIG. As a comparative example, as shown in Comparative Examples 1 to 4 in FIG. 13, a substrate (aluminum ZN i-P substrate) on which a texture was formed by a conventional technique and an untreated glass substrate were prepared. The mechanical properties and surface condition of the substrate were examined. The processing steps after the re-cleaning were the same for the substrate as the comparative example. FIG. 10 is a flowchart comparing the manufacturing process of the present invention with the manufacturing process of the prior art.
第 1 3図から本実施例の基板の機械的性質である硬度及びヤング率は 比較例よりも向上しており、 本実施例では表面改質が行われている事が わかる。 ここで、 本発明の処理をしていない比較例の硬度及びヤング率 に比べて本実施例では両性質とも 1 0 %以上向上している。  From FIG. 13, it can be seen that the mechanical properties of the substrate of this example, the hardness and Young's modulus, are higher than those of the comparative example, and that the surface modification is performed in this example. Here, both properties are improved by 10% or more in this example as compared with the hardness and Young's modulus of the comparative example not treated in the present invention.
また、 本実施例ではいづれも基板の表面に形成される突起の数が I X 10 8個/ mm2以上 (7 x 109個/ mm2以下) に微細化できる。 Further, it refinement to the number of projections is also formed on the surface of the substrate Izure In this embodiment IX 10 8 pieces / mm 2 or more (7 x 10 9 cells / mm 2 or less).
ここで、 本発明の目的を達成するためには、 中心線平均粗さ (R a ) は 0.15nm 以上 lOnm以下、 中心線ピーク高さ (Rp) は 0.3以上 20η m以下とすることが好ましい。 Here, in order to achieve the object of the present invention, the center line average roughness (R a) Is preferably 0.15 nm or more and lOnm or less, and the center line peak height (Rp) is preferably 0.3 or more and 20 ηm or less.
第 13図に示すように本実施例ではそれぞれの処理方式により処理条 件は異なっているが、 真空排気の到達圧力に関しては、 全て IE— 4P a 以下とした。  As shown in FIG. 13, in this embodiment, although the processing conditions differ depending on the processing method, the ultimate pressure of the vacuum exhaust was set to IE-4 Pa or less.
また、 基板の表面の処理は、 本実施例の処理方式に限られず、 プラズ マエツチング方法、 反応性ィオンエツチング法、 反応性ィオンビームェ ツチング法、 ケミカルアシストイオンビームエッチング法、 イオンビー ムエッチング法、 スパッ夕エッチング法または ERC、 I CPなどの誘 導プラズマ法を用いることができる。  In addition, the processing of the substrate surface is not limited to the processing method of the present embodiment, but includes a plasma etching method, a reactive ion etching method, a reactive ion beam etching method, a chemical assist ion beam etching method, an ion beam etching method, and a sputtering etching method. Method or an induced plasma method such as ERC or ICP can be used.
次に、 第 15図に示すように、 スパッタリング装置にて、 本実施例の 基板 1 1上に下地膜 12、 磁性膜 1 3及び保護膜 14を順次形成し磁気 記録媒体 1とした。  Next, as shown in FIG. 15, a magnetic recording medium 1 was obtained by sequentially forming a base film 12, a magnetic film 13 and a protective film 14 on the substrate 11 of this example by a sputtering apparatus.
下地膜 12は、 C rターゲッ トを用いて A rガス雰囲気中にてスパッ 夕し 30 nmとし、 磁性膜 13は C o C r P t夕一ゲッ トを用いて A r ガス雰囲気中にてスパッ夕し 25 nmとした。 保護膜 14は、 グラファ ィ ト夕一ゲッ トを用いて A rガス雰囲気中にてスパッ夕し 15 nmの厚 みとした。 成膜後は、 表面をクリーニングするため砥粒付きのテープに より基板を回転しながら、 磁気記録媒体表面をこすり塵埃の除去を行つ た。 この後、 フッ素系の潤滑剤を 1 5 Aの厚みになるよう D i P塗布し クリーンオーブンにて 80° Cキュアを行って潤滑膜 15を形成した。 この実施例 No. 1〜10の磁気記録媒体について、 以下に示す評価を 行い、 その結果を第 14図に示した。  The underlayer 12 is sputtered to 30 nm in an Ar gas atmosphere using a Cr target, and the magnetic film 13 is sputtered in an Ar gas atmosphere using a CoCrPt target. The sputter was set to 25 nm. The protective film 14 was sputtered in an Ar gas atmosphere using a graphite target to a thickness of 15 nm. After film formation, the surface of the magnetic recording medium was rubbed and dust was removed while rotating the substrate with a tape with abrasive grains to clean the surface. Thereafter, a fluorine-based lubricant was applied by DiP to a thickness of 15 A, and cured at 80 ° C. in a clean oven to form a lubricant film 15. The magnetic recording media of Examples 1 to 10 were evaluated as described below, and the results are shown in FIG.
評価方法としては、 接線力、 C S S耐カ、 ランダムシークによるスク ラッチの発生頻度、 磁気へッ ドの浮上性 (H t o) 、 T. A発生頻度、 静磁気特性 (Hc、 S*、 B r t ) 及び磁気異方性である。 第 14図より比較例に比べ、 明らかに本実施例はいずれの評価結果に おいても優れていることは明白であり、 本発明の目的を十分に満足する ものであることが解る。 The evaluation methods include tangential force, CSS resistance, frequency of scratches caused by random seek, levitation of magnetic head (H to), T.A frequency of occurrence, and magnetostatic properties (Hc, S *, B rt ) And magnetic anisotropy. From FIG. 14, it is clear that this example is superior in any of the evaluation results as compared with the comparative example, and it can be seen that the object of the present invention is sufficiently satisfied.
そして本実施例の他に、 製造方法としては、 真空中でプラズマを使用 する方式の表面処理方法であればいずれも使用が可能であり、 設備的に は選択の裕度が広がる。  In addition to this embodiment, any other manufacturing method can be used as long as it is a surface treatment method using a plasma in a vacuum, and the latitude in equipment is increased.
また、 本発明によれば、 従来技術の基板加工、 洗浄工程および成膜時 の DEPO— TEX形成、 保護膜形成後の粒子塗布によるエツチング、 洗浄工程などの必要が無く、 処理工程毎に状態が確認できる。 さらにコ ストパフォーマンスに優れた効果がある。  Further, according to the present invention, there is no need for the conventional substrate processing, cleaning process and DEPO-TEX formation at the time of film formation, etching by applying particles after forming the protective film, and the cleaning process. You can check. In addition, it has an excellent cost performance.
さらに、 本実施例 (No. 5) の基板と比較例 (No. 2) の基板につ いて、 その表面状態を AFM (アトミック .フォース ·マイクロスコピ -) を用いて 1 0ミクロン2のエリアを測定した。 その結果を凹凸のィメ ージ像として第 1 1図に示した。 同図からも解るように、 明らかに本実 施例における処理をしたことにより、 その基板表面は均一な表面処理が され、 極微細な凹凸を持っていることが解る。 Further, with respect to the substrate of the present example (No. 5) and the substrate of the comparative example (No. 2), the surface condition was measured using an AFM (Atomic Force Microscope) to cover an area of 10 μm 2 . It was measured. The result is shown in Fig. 11 as an image of unevenness. As can be seen from the figure, it is clear that the substrate surface has been subjected to a uniform surface treatment and has extremely fine irregularities due to the treatment in this embodiment.
また、 磁気記録媒体の下地膜、 磁性膜、 保護膜、 潤滑膜は本実施例に 限定されることはなく、 2層の下地膜、 合金の下地膜、 C o系合金の磁 性膜、 2層の保護膜、 リアクティブスパッ夕カーボン (H2, N2等の 入った力一ボン膜) 、 P CVD力一ボン膜等いずれを組み合わせて使用 することも可能である。 特に膜の強度の高い H 2、 N 2入りの力一ボン 保護膜との組み合わせは更によ 、結果となる。  The underlying film, magnetic film, protective film, and lubricating film of the magnetic recording medium are not limited to those of the present embodiment, but include a two-layer underlying film, an alloy underlying film, a Co-based magnetic film, It is also possible to use any combination of a protective film for the layer, reactive sputtered carbon (carbon film containing H2, N2, etc.), and PCVD carbon film. In particular, the combination with a high-strength H 2, N 2 -containing carbon protective film results in even better results.
また、 L ZT (レーザ一ゾーンテクスチャ一) との組みあわせとすれ ば、 C S Sゾーンは L ZTでデータ面は本発明の処理方法で極低浮上の 容易な高記録密度面が可能となり、 より信頼性の高い高記録密度媒体が 作成できることは明らかである。 また、 基板に本発明の表面処理を施したことにより磁性層の面内磁気 異方性が消失し等方性磁気特性を有する磁気記録媒体となる。 In addition, when combined with LZT (laser zone texture), the CSS zone is LZT, and the data surface can be processed with the processing method of the present invention to achieve a very low flying height and easy high recording density surface. It is clear that high-density recording media with high performance can be produced. Further, by subjecting the substrate to the surface treatment of the present invention, the in-plane magnetic anisotropy of the magnetic layer disappears, and a magnetic recording medium having isotropic magnetic characteristics is obtained.
このため、 磁気異方性の消失による高 T P I化、 低ノイズ化のなされ た信頼性の高 、磁気記録媒体となる。 産業上の利用可能性  For this reason, the magnetic recording medium has high reliability and high TPI due to disappearance of magnetic anisotropy and low noise. Industrial applicability
本発明によれば、 極低浮上化に対応した磁気ディスク媒体が実現でき ると共に機械加工のような不安定で且つ特殊な洗浄技術を使用せずとも 十分に清浄な基板の供給ができ、 これによりさらに安価で高品質な磁気 記録媒体が得られることになる。 従って H D Dの信頼性が確保できるば かりでなく、 高記録密度の高容量の H D D、 如いてはシステムが供給で きることになる。  According to the present invention, it is possible to realize a magnetic disk medium capable of achieving extremely low flying height and to supply a sufficiently clean substrate without using an unstable and special cleaning technique such as machining. Thus, a cheaper and higher quality magnetic recording medium can be obtained. Therefore, not only can the reliability of the HDD be ensured, but also a system such as a high-density HDD with a high recording density and a high capacity can be supplied.
さらに本発明によれば製造工程に機械加工のようなゥエツトの行程が 無くなることで、 製造装置の投資額の総額自体が減少し、 且つ製造歩留 まり力 大幅に上がることから磁気ディスクの原価低減、 H D Dのコス トダウンも大幅に見込めることになる。  Further, according to the present invention, the total amount of investment in manufacturing equipment itself is reduced by eliminating the process of machining such as machining in the manufacturing process, and the manufacturing yield power is significantly increased, so that the cost of magnetic disks is reduced. In addition, the cost of HDDs can be greatly reduced.
また、 基板に本発明の表面処理を施したことにより磁性層の面内磁気 異方性が消失し等方性磁気特性を有する磁気記録媒体となる。  Further, by subjecting the substrate to the surface treatment of the present invention, the in-plane magnetic anisotropy of the magnetic layer disappears, and a magnetic recording medium having isotropic magnetic characteristics is obtained.
このため、 極低浮上化と耐摺動性、 耐 T . Aの両立及び磁気異方性の 消失による高 T P I化、 低ノイズ化のなされた信頼性の高い磁気記録媒 体及び磁気記憶装置が提供できる。  For this reason, a highly reliable magnetic recording medium and magnetic storage device with extremely low flying height, high sliding resistance, high T.A. compatibility, high TPI by eliminating magnetic anisotropy, and low noise have been developed. Can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 非磁性基板上に下地膜、 磁性膜、 保護膜及び潤滑膜を有する磁気 記録媒体において、 前記基板の表面には、 プラズマを用いて該プラズマ 中のイオン若しくはラジカルによつて該基板の表面の主構成元素を浸食 することなく処理して微小な突起が形成されていることを特徴とする磁 気記録媒体。 1. In a magnetic recording medium having a base film, a magnetic film, a protective film, and a lubricating film on a non-magnetic substrate, the surface of the substrate is treated with ions or radicals in the plasma using plasma. A magnetic recording medium characterized in that minute projections are formed by treating the main constituent elements of the present invention without erosion.
2 . 前記基板の表面は、 中心線平均粗さ ( R a ) 力く 0. 15 n m 以上 10 n m以下、 中心線ピーク高さ (R p ) 力 0. 3以上 20 n m以下であり、 前記突 起の数が I X 108個/ m m2以上であり、 等方性磁気特性を有することを特 徴とする請求項 1記載の磁気記録媒体。 2. The surface of the substrate has a center line average roughness (R a) force of 0.15 nm or more and 10 nm or less, a center line peak height (R p) force of 0.3 or more and 20 nm or less. raising the number is not less IX 10 8 pieces / mm 2 or more, a magnetic recording medium according to claim 1, feature in that it has isotropic magnetic properties.
3 . 非磁性基板の表面に、 プラズマを用い且つ該プラズマ中のイオン 若しくはラジカルによつて該基板の表面の主構成元素を浸食することな く処理して微少な突起を形成し、  3. Forming fine projections on the surface of the non-magnetic substrate by using plasma and treating the main constituent elements on the surface of the substrate without erosion by ions or radicals in the plasma;
該基板上に下地膜、 磁性膜、 保護膜をスパッタリングにより順次形成し、 さらに潤滑膜を形成することを特徴とする磁気記録媒体の製造方法。 A method for manufacturing a magnetic recording medium, comprising sequentially forming a base film, a magnetic film, and a protective film on the substrate by sputtering, and further forming a lubricating film.
4 . 前記基板の表面の硬度及びャング率が共に処理前の基板の表面の 硬度及びャング率に比し 1 0 %以上向上するよう前記基板の表面を処理 することを特徴とする請求項 3記載の磁気記録媒体の製造方法。 4. The surface of the substrate is treated so that both the hardness and the Young's modulus of the surface of the substrate are improved by 10% or more compared to the hardness and the Young's modulus of the surface of the substrate before the treatment. A method for manufacturing a magnetic recording medium.
5 . 前記基板の表面の粗さの平均中心線位置が処理前の表面の粗さの 平均中心線位置とほぼ等しいことを特徴とする請求項 3または 4記載の 磁気記録媒体の製造方法。 5. The method of manufacturing a magnetic recording medium according to claim 3, wherein an average centerline position of the surface roughness of the substrate is substantially equal to an average centerline position of the surface roughness before the processing.
6 , 前記基板の表面の処理は、 H2、 H e、 N、 0、 F、 N e、 A r、 K r、 X eの内少なくともいずれか一種以上のガスを用いることを特徴 とする請求項 3乃至 5記載の磁気記録媒体の製造方法。  6.The treatment of the surface of the substrate uses a gas of at least one of H2, He, N, 0, F, Ne, Ar, Kr, and Xe. 6. The method for producing a magnetic recording medium according to 3 to 5.
7 . 前記基板の表面の処理は、 プラズマエッチング方法、 反応性ィォ ンエッチング法、 反応性イオンビームエッチング法、 ケミカルアシスト イオンビームエッチング法、 イオンビームエッチング法、 スパッ夕エツ チング法または誘導プラズマ法のいずれか一の方法により行うことを特 徵とする請求項 3乃至 7記載の磁気記録媒体の製造方法。 7. The surface treatment of the substrate is performed by plasma etching, 4. The method according to claim 3, wherein the etching is performed by any one of an etching method, a reactive ion beam etching method, a chemical assist ion beam etching method, an ion beam etching method, a sputtering etching method, and an induction plasma method. 8. The method for producing a magnetic recording medium according to 7.
8 . 磁気記録媒体、 該磁気記録媒体を回転させる回転機構、 前記磁気 記録媒体上を浮上して記録再生を行う磁気へッ ド、 該磁気へッ ドを回転 する前記磁気記録媒体上に位置決めするへッ ド位置決め機構から構成さ れる磁気記憶装置において、 8. Magnetic recording medium, rotating mechanism for rotating the magnetic recording medium, magnetic head for performing recording and reproduction by floating on the magnetic recording medium, and positioning the magnetic head on the rotating magnetic recording medium In a magnetic storage device composed of a head positioning mechanism,
前記磁気記録媒体は、 非磁性基板上に下地膜、 磁性膜、 保護膜及び潤滑 膜から構成され、 前記基板の表面をプラズマを用いて該プラズマ中のィ オン若しくはラジカルによつて前記基板の表面の主構成元素を浸食する ことなく処理することにより微小な突起が該基板の表面に形成されると ともに、 等方性磁気特性を有することを特徴とする磁気記憶装置。 The magnetic recording medium is composed of a base film, a magnetic film, a protective film and a lubricating film on a non-magnetic substrate, and the surface of the substrate is exposed to plasma by using ions or radicals in the plasma. A magnetic storage device characterized in that fine projections are formed on the surface of the substrate by processing without erosion of the main constituent elements of the present invention, and that the magnetic storage apparatus has isotropic magnetic characteristics.
PCT/JP1998/000886 1998-03-04 1998-03-04 Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same WO1999045537A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1998/000886 WO1999045537A1 (en) 1998-03-04 1998-03-04 Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same
PCT/JP1998/004038 WO1999045536A1 (en) 1998-03-04 1998-09-09 Magnetic recording medium, method of production thereof, and magnetic storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/000886 WO1999045537A1 (en) 1998-03-04 1998-03-04 Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same

Publications (1)

Publication Number Publication Date
WO1999045537A1 true WO1999045537A1 (en) 1999-09-10

Family

ID=14207708

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1998/000886 WO1999045537A1 (en) 1998-03-04 1998-03-04 Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same
PCT/JP1998/004038 WO1999045536A1 (en) 1998-03-04 1998-09-09 Magnetic recording medium, method of production thereof, and magnetic storage

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004038 WO1999045536A1 (en) 1998-03-04 1998-09-09 Magnetic recording medium, method of production thereof, and magnetic storage

Country Status (1)

Country Link
WO (2) WO1999045537A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008007547A1 (en) * 2006-07-13 2009-12-10 コニカミノルタオプト株式会社 Glass substrate manufacturing method, magnetic disk manufacturing method, and magnetic disk

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982625A (en) * 1982-11-01 1984-05-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of substrate for magnetic disk
JPS62219224A (en) * 1986-03-19 1987-09-26 Fujitsu Ltd Magnetic recording medium and its manufacturing method
JPH0461625A (en) * 1990-06-27 1992-02-27 Victor Co Of Japan Ltd Magnetic disk consisting of glass
US5119258A (en) * 1990-02-06 1992-06-02 Hmt Technology Corporation Magnetic disc with low-friction glass substrate
US5322595A (en) * 1993-03-19 1994-06-21 Kabushiki Kaisha Kobe Seiko Sho Manufacture of carbon substrate for magnetic disk
US5366607A (en) * 1991-08-05 1994-11-22 Hmt Technology Corporation Sputtering target and assembly
EP0671728A2 (en) * 1994-03-04 1995-09-13 Shin-Etsu Chemical Co., Ltd. Improvement in magnetic recording medium
US5560977A (en) * 1993-06-18 1996-10-01 Kao Corporation Magnetic recording medium and manufacturing the same
JPH08315356A (en) * 1995-05-15 1996-11-29 Hitachi Ltd Concavo-convex forming method and magnetic recording medium manufacturing method
US5635037A (en) * 1993-08-02 1997-06-03 Industrial Technology Research Institute Method of texture by in-situ masking and etching for thin film magnetic recording medium
JPH09180179A (en) * 1995-12-22 1997-07-11 Mitsubishi Chem Corp Magnetic recording medium and method of manufacturing the same
US5650237A (en) * 1994-11-21 1997-07-22 Kao Corporation Magnetic recording medium having a metallic magnetic layer and an aluminum alloy underlayer
US5718811A (en) * 1996-02-28 1998-02-17 Seagate Technology, Inc. Sputter textured magnetic recording medium
US5733370A (en) * 1996-01-16 1998-03-31 Seagate Technology, Inc. Method of manufacturing a bicrystal cluster magnetic recording medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512113B2 (en) * 1988-11-07 1996-07-03 松下電器産業株式会社 Thin film magnetic disk
JPH07230620A (en) * 1994-02-16 1995-08-29 Mitsubishi Chem Corp Magnetic disk substrate and magnetic disk
JPH07244947A (en) * 1994-03-08 1995-09-19 Hitachi Ltd Magnetic disk device, magnetic disk, and method for manufacturing magnetic disk
JPH08147692A (en) * 1994-11-28 1996-06-07 Mitsubishi Chem Corp Method of manufacturing magnetic recording medium
JPH09138944A (en) * 1995-11-10 1997-05-27 Fujitsu Ltd Non-magnetic substrate, magnetic recording medium, magnetic recording device, and layer surface roughening method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982625A (en) * 1982-11-01 1984-05-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of substrate for magnetic disk
JPS62219224A (en) * 1986-03-19 1987-09-26 Fujitsu Ltd Magnetic recording medium and its manufacturing method
US5119258A (en) * 1990-02-06 1992-06-02 Hmt Technology Corporation Magnetic disc with low-friction glass substrate
JPH0461625A (en) * 1990-06-27 1992-02-27 Victor Co Of Japan Ltd Magnetic disk consisting of glass
US5366607A (en) * 1991-08-05 1994-11-22 Hmt Technology Corporation Sputtering target and assembly
US5322595A (en) * 1993-03-19 1994-06-21 Kabushiki Kaisha Kobe Seiko Sho Manufacture of carbon substrate for magnetic disk
US5560977A (en) * 1993-06-18 1996-10-01 Kao Corporation Magnetic recording medium and manufacturing the same
US5635037A (en) * 1993-08-02 1997-06-03 Industrial Technology Research Institute Method of texture by in-situ masking and etching for thin film magnetic recording medium
EP0671728A2 (en) * 1994-03-04 1995-09-13 Shin-Etsu Chemical Co., Ltd. Improvement in magnetic recording medium
US5650237A (en) * 1994-11-21 1997-07-22 Kao Corporation Magnetic recording medium having a metallic magnetic layer and an aluminum alloy underlayer
JPH08315356A (en) * 1995-05-15 1996-11-29 Hitachi Ltd Concavo-convex forming method and magnetic recording medium manufacturing method
JPH09180179A (en) * 1995-12-22 1997-07-11 Mitsubishi Chem Corp Magnetic recording medium and method of manufacturing the same
US5733370A (en) * 1996-01-16 1998-03-31 Seagate Technology, Inc. Method of manufacturing a bicrystal cluster magnetic recording medium
US5718811A (en) * 1996-02-28 1998-02-17 Seagate Technology, Inc. Sputter textured magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008007547A1 (en) * 2006-07-13 2009-12-10 コニカミノルタオプト株式会社 Glass substrate manufacturing method, magnetic disk manufacturing method, and magnetic disk
JP4631971B2 (en) * 2006-07-13 2011-02-16 コニカミノルタオプト株式会社 Glass substrate manufacturing method and magnetic disk manufacturing method
US8153284B2 (en) 2006-07-13 2012-04-10 Konica Minolta Opto, Inc. Method for fabricating a glass substrate, method for fabricating a magnetic disk, and magnetic disk

Also Published As

Publication number Publication date
WO1999045536A1 (en) 1999-09-10

Similar Documents

Publication Publication Date Title
JP4428835B2 (en) Magnetic recording medium and method for manufacturing the same
JP5360894B2 (en) Method for manufacturing magnetic recording medium
US6855232B2 (en) Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content
CN100411019C (en) Magnetic recording medium, manufacturing method thereof, and intermediate for magnetic recording medium
JP2002050031A (en) Multiple textured layer
JPH08102163A (en) Magnetic recording medium and magnetic disk device
JP2005135455A (en) Manufacturing method of magnetic recording medium
WO1988005953A1 (en) Improved protective layer for magnetic disk
JP5913846B2 (en) System and method for manufacturing media
US8767350B2 (en) Magnetic recording medium having recording regions and separating regions and methods of manufacturing the same
US8070967B2 (en) Method for manufacturing patterned magnetic recording medium
JP2008034034A (en) Magnetic recording medium manufacturing method, magnetic recording medium, and magnetic recording apparatus
JP4775806B2 (en) Method for manufacturing magnetic recording medium
US8303828B2 (en) Method for manufacturing magnetic recording medium and magnetic recording-reproducing apparatus
US6132813A (en) High density plasma surface modification for improving antiwetting properties
JP2005235356A (en) Manufacturing method of magnetic recording medium
US6821448B2 (en) Methods for producing thin film magnetic devices having increased orientation ratio
JP2008135138A (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording apparatus having magnetic recording medium
US8213118B2 (en) Magnetic recording medium, method for production thereof and magnetic recording and reproducing device
WO1999045537A1 (en) Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same
JP3657196B2 (en) Magnetic recording medium and magnetic disk device
JP5032758B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2006048860A (en) Magnetic recording medium and magnetic recording apparatus
JP2006155863A (en) Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing apparatus
JPH10283626A (en) Magnetic recording medium and production thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase