[go: up one dir, main page]

WO1999066610A1 - Commande d'inclinaison de gain comprenant des attenuateurs a niveau intermediaire dans des amplificateurs a fibre dopee a l'erbium - Google Patents

Commande d'inclinaison de gain comprenant des attenuateurs a niveau intermediaire dans des amplificateurs a fibre dopee a l'erbium Download PDF

Info

Publication number
WO1999066610A1
WO1999066610A1 PCT/US1999/013812 US9913812W WO9966610A1 WO 1999066610 A1 WO1999066610 A1 WO 1999066610A1 US 9913812 W US9913812 W US 9913812W WO 9966610 A1 WO9966610 A1 WO 9966610A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
optical
tilt
attenuator
erbium
Prior art date
Application number
PCT/US1999/013812
Other languages
English (en)
Inventor
Atul Kumar Srivastava
James William Sulhof
Yan Sun
Charles L. Wolf
Jianhui Zhou
John Lehrer Zyskind
Original Assignee
Lucent Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc. filed Critical Lucent Technologies Inc.
Priority to JP2000555339A priority Critical patent/JP2002518855A/ja
Priority to EP99930403A priority patent/EP1005707A1/fr
Priority to AU46951/99A priority patent/AU4695199A/en
Publication of WO1999066610A1 publication Critical patent/WO1999066610A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02216Power control, e.g. to keep the total optical power constant by gain equalization
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/2941Signal power control in a multiwavelength system, e.g. gain equalisation using an equalising unit, e.g. a filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/003Devices including multiple stages, e.g., multi-stage optical amplifiers or dispersion compensators

Definitions

  • the present invention relates generally to the field of optical communications and in particular to an erbium-doped fiber amplifier having gain tilt control with mid-stage attenuators.
  • WDM wavelength-division-multiplexed
  • Chraplyvy "Transmission of 32-WDM 10-Gb/s Channels Over 640 Km using Broad Band, Gain-Flattened Erbium-Doped Silica Fiber Amplifiers, " IEEE Photon. Tech. Lett., Vol. 9, No. 12, pp. 1652-1654, December 1997; A.K. Srivastava, Y. Sun, J.L. Zyskind, J.W. Sulhoff, C. Wolf, J.B. Judkins, J. Zhou, M. Zirngibl, R.P. Espindola, A.M. Vengsarkar, Y.P. Li, and A.R.
  • Chraplyvy "Error Free Transmission of 64 WDM 10-Gb/s Channels Over 520 Km of TRUEWAVE Fiber", NEED PUBLICATION DATE; and A.K. Srivastava, Y.Sun, J.W. Sulhoff, C. Wolf, M. Zirngibl, R. Monnard, A.R. Chraplyvy, A.A. Abramov, R.P. Espindola, T.A. Strasser, J.R. Pedrazzini, A. M. Vengarkar, J.L. Zyskind, J. Zhou, D.A. Ferrand, P.F. Wysocki, J.B. Judkins and Y.P.
  • rare earth-doped optical fiber amplifiers are used to amplify optical signals used in communications systems and networks. These rare earth-doped optical fiber amplifiers are found to be cost effective, exhibit low-noise, provide relatively large bandwidth which is not polarization dependent, display substantially reduced crosstalk, and present low insertion losses at relevant operating wavelengths. As a result of their favorable characteristics, rare earth-doped optical fiber amplifiers, e.g., erbium-doped fiber amplifiers (EDFAs), are replacing current optoelectronic regenerators in many optical lightwave communications systems and in particular, wavelength- division-multiplexed (WDM) optical communications systems and networks.
  • WDM wavelength- division-multiplexed
  • optical amplifiers having wide bandwidths are required. Accordingly, the gain of the amplifiers should be uniform over the entire WDM bandwidth so that the channels may be transmitted without impairment.
  • gain equalization filters such as long period gratings (See, e.g., A.M. Vengsarkar, P.J. Jemaire, J.B. Judkins, V. Bhatia, T. Amsterdam, and J.E. Snipe, "Long-Period Fiber Gratings as Band-Rejection Filters", J.Lightwave Tech., Vol. 14, No. 1, pp. 58-65, January, 1996).
  • the system power "flatness" may be affected by a number of factors such as spectral loss in the transmission or dispersion compensation fiber, spectral loss in passive components, variation in input signal power spectrum and Raman effect in the fiber (See, e.g., A.R. Chraplyvy and P.S. Henry, "Optical Power Limits In Multi-Channel Wavelength-Division-Multiplexed Systems Due to Stimulated Raman Scattering", Electron. Lett., Vol. 20, No.2, pp 58-59, January 1984).
  • the deviation from the "ideal flatness" for wide band optical amplifier may be approximated to a linear tilt in the signal power spectrum. Consequently, methods and apparatus for controlling the tilt are desired to produce wide band optical amplifiers having desirable operating characteristics.
  • the mid-stage attenuator mitigates channel power spectral tilt.
  • an average inversion level of erbium-doped fiber can be adjusted, which further affects the gain tilt in the EDFA gain spectrum.
  • Fig. 1(a) is a schematic of a two stage optical amplifier with a mid-stage variable optical attenuator according to the present invention
  • Fig. 1(b) is a plot of the gain vs. wavelength of the optical amplifier of
  • Fig. 2 is a schematic of an experimental setup for gain tilt control according to the present invention
  • Fig. 3(a) is a plot of input power spectrum of 18 WDM channels with both +4dB and -2dB tilt;
  • Fig. 3(b) is a plot of tilt corrected output spectra after amplification by amplifier according to the present invention
  • Fig. 4 is a plot showing necessary attenuator loss to obtain a flat output spectrum for different signal tilts in the range of -4dB to 4dB;
  • Fig. 5 is a plot showing necessary attenuator loss at constant gain operation for different signal tilts in the range of-4dB to 4dB.
  • Fig. 1(a) illustrates the basic principle of our optical amplifier and inventive method.
  • the amplifier shown there 100 is divided primarily into two stages and comprises optical isolators (01) 101, sections of erbium-doped optical fiber (EDF) 103, wavelength selective couplers (WSC) 105, gain equalization filter (GEF) 107, variable attenuator (VA) 109 and 980nm and 1480nm optical pumps 111 and 113, respectively.
  • the amplifier exhibits broadband, large dynamic range, high power characteristics desirable for wavelength division multiplexed transmission of optical signals.
  • optical signals enter the optical amplifier 100 through input port 110 and exit from output port 120, with the output port 120 being "downstream" of the input port 110.
  • Optical isolators 101, attenuators 109, GEFs 107, and WSCs 105, are generally known in the art, some of which are commercially available. Furthermore, those skilled in the art know that it is conventional, but optional, to place optical isolators respectively upstream and downstream of an EDFA.
  • Fig. 1(b) shows a plot of gain vs. wavelength for the optical amplifier of Fig. 1(a). As is shown, the amplifier exhibits uniform gain characteristics over 35nm of bandwidth (1526nm-1561nm). The gain spectrum may be kept flat for a range of input power levels by adjusting the variable attenuator 109. With an input power of -4dBm and the attenuator set to a minimum, the gain is 24dB with 12dB of gain compression with a noise figure of approximately 5dB.
  • FIG. 2 An experimental setup for gain tilt control according to the present invention is shown schematically in Fig. 2. As is shown, two optical amplifiers are used therein. Specifically, a first erbium-doped fiber amplifier 210 is used to prepare an input signal spectrum with simulated power tilt for a second erbium- doped fiber amplifier 220. A waveguide grating router 230, was used to multiplex 18 WDM signals ( ⁇ i - ⁇ ig) that originated from external lasers (not shown). For our demonstrative purposes, the signal channels ranged from 1531.4 to 1558.6nm with 200GHz channel separation resulting in a total bandwidth of approximately 27nm.
  • the signal power of the channels was then sent through an attenuator/power meter 240 which controlled the input power to the first (preparation) amplifier 210 which is constructed like amplifier 100 shown in Fig. 1.
  • the attenuator 109 within a mid-stage of amplifier 100 may be tuned to obtain a total power tilt between -4dB and 4dB between the shortest and longest wavelength channels.
  • the signal power spectral tilt input to the second (test) amplifier 220 was monitored by an optical spectrum analyzer 260 and a second attenuator/power meter 250 was used to adjust the total input power entering the test amplifier 220.
  • positive tilt is the power tilt with low power in the short wavelength side and high power in the long wavelength side. Accordingly, negative tilt is the reverse situation.
  • the input spectrum of the 18 WDM channels with both +4dB and -2dB tilt is shown in Fig. 3(a). With a suitable adjustment of the mid-stage variable optical attenuator in the test amplifier 220, the power spectrum tilt can be compensated. Shown in Fig. 3(b) are the tilt corrected output spectra after the test amplifier 220 for both 4dB and -2dB tilt in the input spectrum. As shown in that Figure, the tilt in the input spectrum can be completely mitigated by changing the mid-stage attenuator loss in both cases.
  • the attenuator loss needed to obtain the flat output spectrum for different input signal tilts in the range of -4dB to +4dB when the total input power is fixed at 0.4dBm is shown in Fig. 4.
  • the attenuator was set to 4.5dB to produce a flat output spectrum for a flat input spectrum.
  • the compensation can be completed by adjusting the attenuator between 0 and 17 dB.
  • a penalty results however, in that the output power decreases when attenuator loss is increased.
  • the minimum loss in the attenuator is not sufficient to flatten the output power spectrum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

On réalise une commande d'inclinaison de gain dans des amplificateurs à fibre dopée à l'erbium en réglant l'atténuation d'atténuateurs variables de niveau intermédiaire situés entre plusieurs niveaux de l'amplificateur à fibre dopée à l'erbium. On compense une inclinaison de puissance positive dans des signaux d'entrée en augmentant une perte d'atténuation, tandis qu'on compense une inclinaison de puissance négative en réduisant la perte d'atténuation.
PCT/US1999/013812 1998-06-19 1999-06-18 Commande d'inclinaison de gain comprenant des attenuateurs a niveau intermediaire dans des amplificateurs a fibre dopee a l'erbium WO1999066610A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000555339A JP2002518855A (ja) 1998-06-19 1999-06-18 エルビウムドープドファイバ増幅器の利得傾斜を中間段減衰器を用いて制御するための方法
EP99930403A EP1005707A1 (fr) 1998-06-19 1999-06-18 Commande d'inclinaison de gain comprenant des attenuateurs a niveau intermediaire dans des amplificateurs a fibre dopee a l'erbium
AU46951/99A AU4695199A (en) 1998-06-19 1999-06-18 Gain tilt control with mid-stage attenuators in erbium-doped fiber amplifiers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8996798P 1998-06-19 1998-06-19
US60/089,967 1998-06-19

Publications (1)

Publication Number Publication Date
WO1999066610A1 true WO1999066610A1 (fr) 1999-12-23

Family

ID=22220439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/013812 WO1999066610A1 (fr) 1998-06-19 1999-06-18 Commande d'inclinaison de gain comprenant des attenuateurs a niveau intermediaire dans des amplificateurs a fibre dopee a l'erbium

Country Status (5)

Country Link
EP (1) EP1005707A1 (fr)
JP (1) JP2002518855A (fr)
CN (1) CN1310872A (fr)
AU (1) AU4695199A (fr)
WO (1) WO1999066610A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032533A3 (fr) * 2001-10-09 2003-10-16 Marconi Uk Intellectual Prop Commande d'amplificateur optique dans des systemes de communication wdm

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619812B2 (en) * 2004-08-11 2009-11-17 Siemens Aktiengesellschaft Method and arrangement for the rapid adjustment of the tilt of optical WDM signals
CN105826800B (zh) * 2016-04-21 2020-06-16 宁波大学 一种全光纤化宽带平坦中红外超连续谱光源

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248455A (ja) * 1995-03-09 1996-09-27 Fujitsu Ltd 波長多重用光増幅器
WO1997050157A1 (fr) * 1996-06-26 1997-12-31 Northern Telecom Limited Modules d'amplificateurs optiques
EP0859480A2 (fr) * 1997-02-14 1998-08-19 Lucent Technologies Inc. Amplificateur optique à bande large à gain uniforme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248455A (ja) * 1995-03-09 1996-09-27 Fujitsu Ltd 波長多重用光増幅器
WO1997050157A1 (fr) * 1996-06-26 1997-12-31 Northern Telecom Limited Modules d'amplificateurs optiques
EP0859480A2 (fr) * 1997-02-14 1998-08-19 Lucent Technologies Inc. Amplificateur optique à bande large à gain uniforme

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 097, no. 001 31 January 1997 (1997-01-31) *
SRIVASTAVA A K ET AL: "ERROR FREE TRANSMISSION OF 64 WDM 10 GB/S CHANNELS OVER 520 KM OF TRUEWAVE FIBER", EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, ECOC'98, vol. 1, 20 September 1998 (1998-09-20) - 24 September 1998 (1998-09-24), MADRID, SPAIN, pages 265 - 266, XP002116123 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032533A3 (fr) * 2001-10-09 2003-10-16 Marconi Uk Intellectual Prop Commande d'amplificateur optique dans des systemes de communication wdm

Also Published As

Publication number Publication date
EP1005707A1 (fr) 2000-06-07
CN1310872A (zh) 2001-08-29
JP2002518855A (ja) 2002-06-25
AU4695199A (en) 2000-01-05

Similar Documents

Publication Publication Date Title
EP0463771B1 (fr) Amplificateur optique à étages multiples
Sun et al. 80 nm ultra-wideband erbium-doped silica fibre amplifier
EP0883218A1 (fr) Amplificateur optique à large bande
EP1030414A1 (fr) Article comprenant un amplificateur à fibre optique en bande L
JPH09244079A (ja) 利得等化器及び光伝送システム
EP1278315B1 (fr) Egalisation de gain dans un système de transmission optique
US7072100B2 (en) Optical amplifier and gain tilt compensation method
US20020191277A1 (en) Method and apparatus for amplifying an optical signal
US6556346B1 (en) Optical amplifying unit and optical transmission system
Sun et al. Ultra wide band erbium-doped silica fiber amplifier with 80 nm of bandwidth
US6563629B2 (en) Method and apparatus for full C-band amplifier with high dynamic gain range
EP0989693A1 (fr) Système d'amplification optique comprenant une fibre codopée Erbium-Ytterbium
US8064130B2 (en) Optical amplifier
CN117013347A (zh) 全频带大功率光学放大器
WO1999066610A1 (fr) Commande d'inclinaison de gain comprenant des attenuateurs a niveau intermediaire dans des amplificateurs a fibre dopee a l'erbium
JP4484565B2 (ja) チルト補償機能を有する多段光増幅器
US20110299153A1 (en) Article comprising a multichannel optical amplified transmission system with functional upgrade capabilities and universal modules
WO2003029861A1 (fr) Systeme destine a ameliorer le rapport signal optique sur bruit
JP2001144352A (ja) 光増幅器
JP4145684B2 (ja) 光増幅モジュール、光増幅器、光通信システム及び白色光源
CA2282941A1 (fr) Unite d'amplification optique et reseau de transmission optique
US7236700B1 (en) Scalable and exchangeable erbium doped fiber amplifier for DWDM
Rapp Reconfigurable gain-flattened erbium-doped fiber amplifiers with variable gain at improved noise characteristics
JP4568247B2 (ja) 光増幅モジュール及びそれを含む光増幅器
EP3582412A1 (fr) Amplificateurs complémentaires à fibre optique avec égalisation du gain intégrée

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800964.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999930403

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 555339

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999930403

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 09485877

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 1999930403

Country of ref document: EP