[go: up one dir, main page]

WO1999019335A1 - Nouveaux catalyseurs de polymerisation - Google Patents

Nouveaux catalyseurs de polymerisation Download PDF

Info

Publication number
WO1999019335A1
WO1999019335A1 PCT/GB1998/003027 GB9803027W WO9919335A1 WO 1999019335 A1 WO1999019335 A1 WO 1999019335A1 GB 9803027 W GB9803027 W GB 9803027W WO 9919335 A1 WO9919335 A1 WO 9919335A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
groups
catalyst
chromium
complex
Prior art date
Application number
PCT/GB1998/003027
Other languages
English (en)
Inventor
Vernon Charles Gibson
Claire Newton
Gregory Adam Solan
Original Assignee
Bp Chemicals Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bp Chemicals Limited filed Critical Bp Chemicals Limited
Priority to AU93594/98A priority Critical patent/AU9359498A/en
Publication of WO1999019335A1 publication Critical patent/WO1999019335A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • C07F11/005Compounds containing elements of Groups 6 or 16 of the Periodic Table compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/03Multinuclear procatalyst, i.e. containing two or more metals, being different or not

Definitions

  • the present invention relates to novel polymerisation catalysts based on organic transition metal complexes and to a polymerisation process using the catalysts.
  • the use of Ziegler-Natta catalysts for example, those catalysts produced by activating titanium halides with organometallic compounds such as triethylaluminium, is fundamental to many commercial processes for manufacturing polyolefins. Over the last twenty or thirty years, advances in the technology have led to the development of Ziegler-Natta catalysts which have such high activities that olefin polymers and copolymers containing very low concentrations of residual catalyst can be produced directly in commercial polymerisation processes.
  • the quantities of residual catalyst remaining in the produced polymer are so small as to render unnecessary their separation and removal for most commercial applications.
  • Such processes can be operated by polymerising the monomers in the gas phase, or in solution or in suspension in a liquid hydrocarbon diluent. Polymerisation of the monomers can be carried out in the gas phase (the "gas phase process"), for example by fluidising under polymerisation conditions a bed comprising the target polyolefin powder and particles of the desired catalyst using a fluidising gas stream comprising the gaseous monomer.
  • the (co)polymerisation is conducted by introducing the monomer into a solution or suspension of the catalyst in a liquid hydrocarbon diluent under conditions of temperature and pressure such that the produced polyolefin forms as a solution in the hydrocarbon diluent.
  • the temperature, pressure and choice of diluent are such that the produced polymer forms as a suspension in the liquid hydrocarbon diluent.
  • Commodity polyethylenes are commercially produced in a variety of different types and grades. Homopolymerisation of ethylene with transition metal based catalysts leads to the production of so-called "high density" grades of polyethylene. These polymers have relatively high stiffness and are useful for making articles where inherent rigidity is required. Copolymerisation of ethylene with higher 1-olefins (eg butene, hexene or octene) is employed commercially to provide a wide variety of copolymers differing in density and in other important physical properties. Particularly important copolymers made by copolymerising ethylene with higher 1- olefins using transition metal based catalysts are the copolymers having a density in the range of 0.91 to 0.93.
  • 1-olefins eg butene, hexene or octene
  • linear low density polyethylene are in many respects similar to the so called “low density” polyethylene produced by the high pressure free radical catalysed polymerisation of ethylene.
  • Such polymers and copolymers are used extensively in the manufacture of flexible blown film.
  • metallocene catalysts for example biscyclopentadienylzirconiumdichloride activated with alumoxane
  • metallocene catalysts of this type suffer from a number of disadvantages, for example, high sensitivity to impurities when used with commercially available monomers, diluents and process gas streams, the need to use large quantities of expensive alumoxanes to achieve high activity, and difficulties in putting the catalyst on to a suitable support.
  • An object of the present invention is to provide a novel catalyst suitable for polymerising olefins, and especially for polymerising ethylene alone or for copolymerising ethylene with higher 1-olefins.
  • a further object of the invention is to provide an improved process for the polymerisation of olefins, especially of ethylene alone or the copolymerisation of ethylene with higher 1-olefins to provide homopolymers and copolymers having controllable molecular weights.
  • polyolefins such as, for example, liquid polyolefins, resinous or tacky polyolefins, solid polyolefins suitable for making flexible film and solid polyolefins having high stiffness.
  • the present invention provides a polymerisation catalyst comprising (1) a complex chromium compound comprising the monomeric skeletal unit depicted in Formula W, or dimers of such units;
  • N 1 is a nitrogen atom
  • Q is a nitrogen atomN 2 or an oxygen atom O
  • R 20 and R 21 are organic groups
  • R 22 is hydrogen or an organic group
  • two or more of R 20 , R 21 R 22 and R 23 can optionally be linked to one another
  • the bonds between R 23 and N 1 or Q can be independently single or double bonds
  • k is the nominal negative charge on the bidentate ligand and is 1 or 2
  • n is the number of the defined bidentate ligands attached to the chromium atom and is 1 or 2
  • X is the oxidation state of the chromium and is 2 or 3
  • the chromium compound can optionally comprise one or more neutral molecules coordinated to the chromium, for example, solvent molecules.
  • neutral molecules are ethers, amines, nitriles and esters, for example, tetrahydrofuran, acetonitrile, formdimethylamide and methyl benzoate.
  • the complex chromium compound of Formula W can comprise, for example, the monomeric unit depicted in any one of Formulae A, B, C, D, E or F or dimers of such units:
  • R 2 , R 5 , R 8 , R 1 , R 14 and R 16 are organic groups comprising at least a saturated or unsaturated chain;
  • R 1 , R 3 , R 4 , R 6 , R 7 , R 11 , R 13 , and R 18 are organic groups;
  • R 9 , R 12 , R 15 and R 17 are independently hydrogen or organic groups;
  • two or more of the defined R groups are optionally linked to one another within the respective Formula A, B, C, D, E, or F;
  • N 1 and N 2 are nitrogen atoms;
  • O is an oxygen atom;
  • X is the oxidation state of the chromium; in Formulae A and C, X is 3; in Formula B, D, E and F, X is 2 or 3;
  • Z is a univalent atom or group;
  • p represents the number of atoms or groups of
  • One embodiment of the present invention provides a polymerisation catalyst comprising (1) a complex chromium compound comprising the monomeric unit depicted in Formula A, B or C or dimers of such units:
  • an activating quantity of an activator compound selected from organoaluminium compounds and hydrocarbylboron compounds selected from organoaluminium compounds and hydrocarbylboron compounds.
  • Formulae W, A, B, C, D, E and F defined above relate to the monomeric unit of the chromium complex catalyst of the present invention.
  • the present invention also provides catalysts comprising dimers of these units.
  • R groups R 1 to R 18 and R 20 to R 23 can be, for example, an organic group selected from aliphatic, alicyclic, aromatic, carbocyclic or heterocyclic systems.
  • the nitrogen atoms N 1 and N 2 can form, for example, part of hetero-organic ring systems or hetero-organic chains.
  • Such systems can comprise, for example, straight or branched chain units, and can contain suitable substituents or functional groups, for example halogen, nitrile, fluoroalkyl and nitro groups.
  • R 1 , R 3 , R 4 , R 6 , R 7 , R", R 13 , R 18 , R 20 , R 21 and R 22 can each consist of a monovalent organic group pendant from the defined nitrogen atom N 1 or N 2 , and can, if desired, be further bonded to one or more of the other defined R groups.
  • R 9 , R 12 , R 15 , R 17 and R 22 are independently hydrogen or organic groups and can, if desired, be further bonded to one or more of the other defined R groups.
  • R 1 , R 3 , R 4 , R 6 , R 7 , R 9 , R 11 , R 12 , R 13 , R 15 , R 17 , R 18 , R 20 , R 21 and R 22 can be independently selected from, for example, aliphatic groups, for example, methyl, ethyl, propyl, butyl, butenyl, hexyl, cyclohexyl, cyclohexenyl or octyl; or alkyaryl groups, for example, benzyl, phenylethyl or phenylpropyl; or aryl groups, for example, phenyl, naphthyl, 2,6- dimethylphenyl, 2,4-diethylphenyl, 2,6-diisopropyl or 4-chlorophenyl.
  • aliphatic groups for example, methyl, ethyl, propyl, butyl, butenyl, hexyl
  • R 23 , R 2 , R 5 , R 8 , R 10 , R 14 and R 16 are organic groups comprising at least a saturated or unsaturated chain linking N 1 with N 2 or O.
  • the group R 23 , R 2 , R 5 , R 8 , R 10 , R 14 and R 16 comprises a saturated chain
  • said chain comprises at least one carbon atom.
  • said saturated chain can have the formula (CR 30 R 31 ) n wherein each of the substituents R 30 and R 31 is independently hydrogen or an organic or inorganic substituent, and n is an integer from 1 to 10, preferably from 1 to 5, most preferably from 2 to 4.
  • R 23 , R 2 , R 5 , R 8 , R 10 , R 14 and R 16 comprise an unsaturated chain
  • said chain comprises at least two carbon atoms.
  • the unsaturated chain preferably comprises or forms part of an aromatic ring system or a system of conjugated double bonds.
  • the bridging groups R 23 , R 2 , R 5 , R 8 , R 10 , R 14 and R 16 can comprise, for example, hydrocarbyl or heterohydrocarbyl groups. They can comprise, for example, straight or branched chain aliphatic or cycloaliphatic, aromatic or heterocyclic groups.
  • Such groups can be derived from, for example, benzene, naphthalene, phenanthrene, cyclohexane, cyclohexene, cyclopentane, pyridine, pyrimidine, quinoline, isoquinoline, acenapthene, pyrazole, thiazole, furan, tetrahydrofuran and substituted derivatives of these types.
  • one or more of the organic groups R to R are further bonded to one or more other of these organic groups within the respective Formulae A, B, C, D, E, F or W, they form ring systems including one or more of the nitrogen atoms N 1 and N 2 .
  • Such ring systems may, if desired, comprise one or more hetero atoms in addition to the one or more defined nitrogen atoms. Examples of such hetero atoms are nitrogen, silicon, sulphur and oxygen.
  • the ring systems can include, for example, straight or branched chain hydrocarbon or heterohydrocarbyl units. Further ring systems can be fused thereto, for example, units derived from benzene, naphthalene, phenanthrene, cyclohexane, cyclohexene, cyclopentane, pyridine, pyrimidine, quinoline, isoquinoline, acenapthene, pyrazole, thiazole, furan, tetrahydrofuran and subststiuted derivatives thereof.
  • the ring systems can contain suitable substituents or functional groups, for example halogen, nitrile, fluoroalkyl and nitro groups.
  • Ligand B 13 Ligand B 14 - PyrroHde-imine Imine-amide
  • Formulae Al, A2 and A3 illustrate units of the Formula A type
  • Formulae Bl, B2, B3 and B4 illustrate Formula B type
  • Formula Cl illustrates a unit of the Formula C type. Illustrations of Formula D and E types are shown later in this specification.
  • one or more of the hydrogen atoms pendant from the carbon atoms of the organic groups can be replaced by other atoms or groups, for example, methyl, ethyl, propyl, butyl, octyl, decyl, phenyl, naphthyl, acetyl, carboxyl, pyridino; silyl, for example, trimethylsilyl, triethylsilyl: and suitable inorganic atoms or groups (eg halogen).
  • R 10 , R 11 , R 12 and R 13 are suitably selected from hydrogen, hydrocarbyl and heterohydrocarbyl. Preferably they are hydrogen or alkyl groups containing 1 to 6 carbon atoms.
  • the atom(s) or group(s) represented by Z in the units of Formula A and C are preferably selected from halide, sulphate, nitrate, thiolate, thiocarboxylate, BF 4 " , PF 6 " , hydride, hydrocarbyloxide, carboxylate, hydrocarbyl, substituted hydrocarbyl, and heterohydrocarbyl.
  • Examples of such atoms or groups are chloride, bromide, methyl , ethyl, propyl, butyl, octyl, decyl, phenyl, benzyl, methoxide, ethoxide, isopropoxide, tosylate, triflate, formate, acetate, phenoxide and benzoate.
  • the chromium compound complex units forming component (1) of the catalyst of the present invention may exist in the form of monomeric or dimeric forms.
  • the solid crystalline complexes generally exist in the dimeric state.
  • Complex B5 illustrated below is a complex chromium compound unit having a similar structure to that of Formula B2 above, but is substituted with isopropyl groups in the 2,6-positions on the phenyl substituents, and has two methyl groups on the group bridging the nitrogen atoms.
  • the solid form of Complex B5 is a crystalline dimer having the Formula B6 (shown below): Formula B6
  • the activator compound for the catalyst of the present invention is suitably selected from organoaluminium compounds and hydrocarbylboron compounds.
  • organoaluminium compounds include trialkyaluminium compounds, for example, trimethylaluminium, triethylaluminium, tributylaluminium, tri-n- octylaluminium, ethylaluminium dichloride, diethylaluminium chloride and alumoxanes. Dialkyl aluminium halides are particularly preferred.
  • Alumoxanes are well known in the art as typically the oligomeric compounds which can be prepared by the controlled addition of water to an alkylaluminium compound, for example t ⁇ methylaluminium. Such compounds can be linear, cyclic or mixtures thereof. Commercially available alumoxanes are generally believed to be mixtures of linear and cyclic compounds.
  • the cyclic alumoxanes can be represented by the formula [R ,33 AlO] s and the linear alumoxanes by the formula R 34 ( /r R > 35 A, lO) s wherein s is a number from about 2 to 50, and wherein R , R , and R represent hydrocarbyl groups, preferably d to C 6 alkyl groups, for example methyl, ethyl or butyl groups.
  • hydrocarbylboron compounds are dimethylphenylammoniumtetra(phenyl)borate, trityltetra(phenyl)borate, triphenylboron, dimethylphenylammonium tetra(pentafluorophenyl)borate, sodium tetrakis[(bis-3,5-trifluoromethyl)phenyl]borate, tris(pentafluorophenyl) boron H+(OEt2)[(bis-3,5-trifluoromethyl)phenyl]borate, and trityltetra(pentafluorophenyl)borate.
  • the quantity of activating compound selected from organoaluminium compounds and hydrocarbylboron compounds to be employed is easily determined by simple testing, for example, by the preparation of small test samples which can be used to polymerise small quantities of the monomer(s) and thus to determine the activity of the produced catalyst. It is generally found that, for the organoaluminium activators the quantity employed is sufficient to provide 1 to 20,000 atoms, preferably 1 to 2000 atoms of aluminium per chromium atom in the compound of Formula W, A, B, C, D, E or F.
  • the catalyst of the present invention can , if desired, be supported on a support material, for example, silica, alumina, or zirconia, or on a polymer or prepolymer, for example polyethylene or polystyrene.
  • a support material for example, silica, alumina, or zirconia
  • a polymer or prepolymer for example polyethylene or polystyrene.
  • Methods of preparation of supported catalysts are well known in the art.
  • the quantity of support material employed can vary widely, for example from 100,000 to 1 grams per gram of metal present in the defined chromium complex compound.
  • the present invention further provides a process for the polymerisation and copolymerisation of 1-olefins comprising contacting the monomeric olefin under polymerisation conditions with the catalyst of the present invention.
  • the polymerisation conditions can be, for example, solution phase, slurry phase or gas phase.
  • the catalyst can be used to polymerise ethylene under high pressure/high temperature process conditions wherein the polymeric material forms as a melt in supercritical ethylene.
  • the polymerisation is conducted under gas phase fluidised bed conditions.
  • Suitable monomers for use in the polymerisation process of the present invention are, for example, ethylene, propylene, butene, hexene, methyl methacrylate, methyl acrylate, butyl acrylate, acrylonitrile, vinyl acetate, and styrene (the monomers in this list which are not 1-olefins can be used as comonomers if desired).
  • the process can be, for example, homopolymerisation or copolymerisation of monomer selected from one or more of ethylene, propylene, 1-butene, 1 -hexene, 4-methylpentene-l and octene.
  • Preferred monomers for homopolymerisation processes are ethylene and propylene.
  • the catalyst is useful for copolymerising ethylene with other 1-olefins such as propylene, 1-butene, 1-hexene, 4-methylpentene-l, and octene.
  • Slurry phase polymerisation conditions or gas phase polymerisation conditions are particularly useful for the production of high, medium and low density grades of polyethylene.
  • the polymerisation conditions can be batch, continuous or semi-continuous.
  • the catalyst is generally fed to the polymerisation zone in the form of a particulate solid.
  • This solid can be, for example, an undiluted solid catalyst system formed from the chromium complex of the present invention and an activator, or can be the solid complex alone. In the latter situation, the activator can be fed to the polymerisation zone, for example as a solution, separately from or together with the solid complex.
  • the catalyst system or the transition metal complex component of the catalyst system employed in the slurry polymerisation and gas phase polymerisation is supported on a support material.
  • the catalyst system is supported on a support material prior to its introduction into the polymerisation zone.
  • Suitable support materials are, for example, silica, alumina, zirconia, talc, kieselguhr, or magnesia.
  • Impregnation of the support material can be carried out by conventional techniques, for example, by forming a solution or suspension of the catalyst components in a suitable diluent or solvent, and slurrying the support material therewith. The support material thus impregnated with catalyst can then be separated from the diluent for example, by filtration or evaporation techniques.
  • the solid particles of catalyst, or supported catalyst are fed to a polymerisation zone either as dry powder or as a slurry in the polymerisation diluent.
  • a polymerisation zone is fed to a polymerisation zone as a suspension in the polymerisation diluent.
  • the polymerisation zone can be, for example, an autoclave or similar reaction vessel, or a continuous loop reactor, e.g. of the type well-know in the manufacture of polyethylene by the Phillips Process.
  • the polymerisation process of the present invention is carried out under slurry conditions the polymerisation is preferably carried out at a temperature above 0°C, most preferably above 15°C.
  • the polymerisation temperature is preferably maintained below the temperature at which the polymer commences to soften or sinter in the presence of the polymerisation diluent. If the temperature is allowed to go above the latter temperature, fouling of the reactor can occur. Adjustment of the polymerisation within these defined temperature ranges can provide a useful means of controlling the average molecular weight of the produced polymer.
  • a further useful means of controlling the molecular weight is to conduct the polymerisation in the presence of hydrogen gas which acts as chain transfer agent. Generally, the higher the concentration of hydrogen employed, the lower the average molecular weight of the produced polymer.
  • hydrogen gas as a means of controlling the average molecular weight of the polymer or copolymer applies generally to the polymerisation process of the present invention.
  • hydrogen can be used to reduce the average molecular weight of polymers or copolymers prepared using gas phase, slurry phase or solution phase polymerisation conditions.
  • the quantity of hydrogen gas to be employed to give the desired average molecular weight can be determined by simple "trial and error" polymerisation tests.
  • Such methods generally involve agitating (eg by stirring, vibrating or fluidising) a bed of catalyst, or a bed of the target polymer (ie polymer having the same or similar physical properties to that which it is desired to make in the polymerisation process) containing a catalyst, and feeding thereto a stream of monomer at least partially in the gaseous phase, under conditions such that at least part of the monomer polymerises in contact with the catalyst in the bed.
  • the bed is generally cooled by the addition of cool gas (eg recycled gaseous monomer) and/or volatile liquid (eg a volatile inert hydrocarbon, or gaseous monomer which has been condensed to form a liquid).
  • the polymer produced in, and isolated from, gas phase processes forms directly a solid in the polymerisation zone and is free from, or substantially free from liquid.
  • any liquid is allowed to enter the polymerisation zone of a gas phase polymerisation process the quantity of liquid is small in relation to the quantity of polymer present in the polymerisation zone. This is in contrast to “solution phase” processes wherein the polymer is formed dissolved in a solvent, and “slurry phase” processes wherein the polymer forms as a suspension in a liquid diluent.
  • the gas phase process can be operated under batch, semi-batch, or so-called “continuous” conditions. It is preferred to operate under conditions such that monomer is continuously recycled to an agitated polymerisation zone containing polymerisation catalyst, make-up monomer being provided to replace polymerised monomer, and continuously or intermittently withdrawing produced polymer from the polymerisation zone at a rate comparable to the rate of formation of the polymer, fresh catalyst being added to the polymerisation zone to replace the catalyst withdrawn form the polymerisation zone with the produced polymer.
  • Gas phase fluidised bed polymerisation conditions are preferred in the polymerisation process of the present invention..
  • the process can be operated, for example, in a vertical cylindrical reactor equipped with a perforated distribution plate to support the bed and to distribute the incoming fluidising gas stream through the bed.
  • the fluidising gas circulating through the bed serves to remove the heat of polymerisation from the bed and to supply monomer for polymerisation in the bed.
  • the fluidising gas generally comprises the monomer(s) normally together with some inert gas (eg nitrogen) and optionally with hydrogen as molecular weight modifier.
  • the hot fluidising gas emerging from the top of the bed is led optionally through a velocity reduction zone (this can be a cylindrical portion of the reactor having a wider diameter) and, if desired, a cyclone and or filters to disentrain fine solid particles from the gas stream.
  • the hot gas is then led to a heat exchanger to remove at least part of the heat of polymerisation.
  • Catalyst is preferably fed continuously or at regular intervals to the bed.
  • the bed comprises fluidisable polymer which is preferably similar to the target polymer.
  • Polymer is produced continuously within the bed by the polymerisation of the monomer(s).
  • Preferably means are provided to discharge polymer from the bed continuously or at regular intervals to maintain the fluidised bed at the desired height.
  • the process is generally operated at relatively low pressure, for example, at 10 to 50 bars, and at temperatures for example, between 50 and 120 °C.
  • the temperature of the bed is maintained below the sintering temperature of the fluidised polymer to avoid problems of agglomeration.
  • the heat evolved by the exothermic polymerisation reaction is normally removed from the polymerisation zone (ie, the fluidised bed) by means of the fluidising gas stream as described above.
  • the hot reactor gas emerging from the top of the bed is led through one or more heat exchangers wherein the gas is cooled.
  • the cooled reactor gas, together with any make-up gas, is then recycled to the base of the bed.
  • the volatile liquid can condense out.
  • the volatile liquid is separated from the recycle gas and reintroduced separately into the bed.
  • the volatile liquid can be separated and sprayed into the bed.
  • the volatile liquid is recycled to the bed with the recycle gas.
  • the volatile liquid can be condensed from the fluidising gas stream emerging from the reactor and can be recycled to the bed with recycle gas, or can be separated from the recycle gas and sprayed back into the bed.
  • the catalyst, or one or more of the components employed to form the catalyst can, for example, be introduced into the polymerisation reaction zone in liquid form, for example, as a solution in an inert liquid diluent.
  • the transition metal component, or the activator component, or both of these components can be dissolved or slurried in a liquid diluent and fed to the polymerisation zone.
  • the liquid containing the component(s) is sprayed as fine droplets into the polymerisation zone.
  • the droplet diameter is preferably within the range 1 to 1000 microns.
  • EP-A-0593083 discloses a process for introducing a polymerisation catalyst into a gas phase polymerisation.
  • the methods disclosed in EP-A-0593083 can be suitably employed in the polymerisation process of the present invention if desired.
  • the present invention further provides a novel complex chromium compound having the Formula A, or a dimer thereof:
  • R is an organic group" comprising at least a saturated or unsaturated chain; R and R are organic groups; two or more of the defined R groups are optionally linked to one another; N and N are nitrogen atoms; X is the oxidation state of the chromium; Z is a univalent atom or group.
  • the present invention further provides a novel complex chromium compound having the Formula B, or a dimer thereof:
  • R 5 is an organic group comprising at least a saturated or unsaturated chain
  • R 4 and R 6 are organic groups
  • R 9 is hydrogen or an organic groups
  • two or more of the defined R groups are optionally linked to one another
  • N 1 and N 2 are nitrogen atoms
  • X is the oxidation state of the chromium and is 3
  • p represents the number of atoms or groups of Y present in the complex unit
  • n is 1 or 2
  • the present invention further provides a novel complex chromium compound having the Formula D, or a dimer thereof:
  • R 10 is an organic group comprising at least a saturated or unsaturated chain
  • the present invention further provides a novel complex chromium compound having the Formula E, or a dimer thereof:
  • R 14 is an organic group comprising at least a saturated or unsaturated chain;
  • R 13 is an organic group;
  • R 15 is hydrogen or an organic group; two or more of the defined R groups are optionally linked to one another;
  • N 1 is a nitrogen atom;
  • O is an oxygen atom;
  • X is the oxidation state of the chromium and is 2;
  • p represents the number of atoms or groups of Y present in the complex unit;
  • n is 1 or 2; and
  • the chromium compound in addition to the defined ligand or ligands, can optionally comprise one or more neutral molecules coordinated to the chromium, for example, solvent molecules.
  • neutral molecules are ethers, amines, nitriles and esters, for example, tetrahydrofuran, acetonitrile, formdimethylamide and methyl benzoate.
  • the atom(s) or group(s) represented by Z in the units of Formula A are preferably selected from halide, sulphate, nitrate, thiolate, thiocarboxylate, BF 4 " , PF 6 " , hydride, hydrocarbyloxide, carboxylate, hydrocarbyl, substituted hydrocarbyl, and heterohydrocarbyl.
  • Examples of such atoms or groups are chloride, bromide, methyl , ethyl, propyl, butyl, octyl, decyl, phenyl, benzyl, methoxide, ethoxide, isopropoxide, tosylate, triflate, formate, acetate, phenoxide and benzoate; and the atom(s) or group(s) represented by Y in the units of Formula B, D and E can be, if desired, selected from the same atoms of groups as the Z atoms or groups listed above.
  • Y can be derived from, for example a dicarboxylic acid, a diol, a hydrocarbyl diradical, or an inorganic dibasic acid (eg sulphate).
  • a dicarboxylic acid e.g., when the Y group has a valency of 2
  • Y can be derived from, for example a dicarboxylic acid, a diol, a hydrocarbyl diradical, or an inorganic dibasic acid (eg sulphate).
  • the present invention is illustrated in the following Examples which describe the preparation of chromium complex compounds, their activation with organmetallic activators to form polymerisation catalaysts and the use of these catalaysts to polymerise ethylene in accordance with the present invention.
  • a summary of the polymerisation tests is provided Tables 1 and 2.
  • the Formula A4 compound is a dimer comprising two units in accordance with the Formula A complex of the present invention.
  • 1.3 Polymerisation of ethylene using a catalyst prepared from the Formula A4 complex and DEAC A 1.8 M solution of diethylaluminium chloride (DEAC) in toluene (0.33 ml, 0.6 mmol) was added via syringe to a stirred suspension of the Formula A4 complex (26 mg, 0.06 mmol) in toluene (40 ml).
  • DEAC is commercially available from Aldrich.
  • the produced catalyst solution was degassed under reduced pressure and back-filled with an atmosphere of ethylene.
  • Tetrahydrofuran (THF) 40 ml was added to a mixture of the lithium salt of "Intermediate IB7(b)" (1.13 g, 2.7 mmol) and CrCl 3 .(THF) 3 (1.00 g, 2.7 mmol) in a Schlenk vessel. The mixture was stirred overnight at room temperature during which time the solution became olive green. The THF was removed under reduced pressure, then pentane (40 ml) was added and the solution sti ⁇ ed. Filtration of the lithium salts and drying of the filtrate overnight gave the complex of Formula A8 (1.16 g, 80%). Microanalysis, FAB Mass spectrum and single crystal X-ray diffraction confirm the structure of the complex. The single crystal X-ray diffraction study revealed the structure to be dimeric in the solid state (see Figure 1).
  • Activity is expressed as g mmol "1 h "1 bar “1 .
  • the chromium complex (“procatalyst”) was dissolved in toluene (40 ml) in a Schlenk tube and the co-catalyst diethylaluminium chloride ("DEAC", 1.8 molar in toluene or "DMAC”, 1.0 molar in toluene) was added.
  • the Schlenk tube was then purged with ethylene and the contents magnetically stirred and maintained under ethylene (1 bar) for the duration of the polymerization. After 0.5 to 1 hour the polymerization was terminated by the addition of aqueous hydrogen chloride.
  • the insoluble, solid, polyethylene was recovered by filtration, washed with methanol (50 ml) and dried (vacuum oven at 50 °C).
  • a 1 litre reactor was baked out under a nitrogen flow for at least 1 hour at >85°C.
  • the reactor was then cooled to 35°C.
  • Isobutane 500ml was then added and the reactor boxed in nitrogen and left for at least 1 hour.
  • Ethylene was introduced into the reactor until a pre-determined over-pressure was achieved.
  • the pre-formed catalyst solution in toluene was then injected under nitrogen.
  • the reactor pressure was maintained constant throughout the polymerization run by computer controlled addition of ethylene.
  • the polymerization time was 1 hour.
  • Upon termination of the polymerisation the reactor contents were isolated, washed with aqueous HCl, methanol and dried in a vacuum oven at 50°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

L'invention concerne un catalyseur de polymérisation comprenant (1) le composé de Formule (W), ou ses dimères; dans laquelle N représente azote, Q représente azote ou oxygène, X représente l'état d'oxydation de Cr et Y représente un atome ou un groupe ayant une valence de m, p représente zéro ou un entier de manière que p = (X - nk)/m, et (2) un composé activateur choisi parmi des composés organoaluminiques et hydrocarbylboriques. Le catalyseur peut être utilisé pour la polymérisation ou la copolymérisation des 1-oléfines. L'invention concerne également certains nouveaux complexes de chrome.
PCT/GB1998/003027 1997-10-11 1998-10-08 Nouveaux catalyseurs de polymerisation WO1999019335A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU93594/98A AU9359498A (en) 1997-10-11 1998-10-08 Novel polymerisation catalysts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9721559A GB9721559D0 (en) 1997-10-11 1997-10-11 Novel polymerisation catalysts
GB9721559.4 1997-10-11

Publications (1)

Publication Number Publication Date
WO1999019335A1 true WO1999019335A1 (fr) 1999-04-22

Family

ID=10820389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1998/003027 WO1999019335A1 (fr) 1997-10-11 1998-10-08 Nouveaux catalyseurs de polymerisation

Country Status (3)

Country Link
AU (1) AU9359498A (fr)
GB (1) GB9721559D0 (fr)
WO (1) WO1999019335A1 (fr)

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008595A3 (fr) * 1998-12-11 2000-11-29 Mitsui Chemicals, Inc. Catalyseur de polymérisation d'oléfines et procédé de polymérisation d'oléfines
WO2001012637A1 (fr) * 1999-08-13 2001-02-22 University Of Delaware Complexes de metaux de transition, comprenant des ligands de beta-diiminate et procedes de polymerisation d'olefines
WO2001070395A3 (fr) * 2000-03-22 2002-04-11 Borealis Tech Oy Catalyseurs
EP1170308A3 (fr) * 2000-07-04 2002-07-31 Mitsui Chemicals, Inc. Procédé de préparation d'un copolymère à base d'une oléfine non-polaire et d'une oléfine polaire, et le copolymère ainsi obtenu
EP0950667A3 (fr) * 1998-04-16 2003-02-05 Mitsui Chemicals, Inc. Catalyseur de polymérisation d'oléfine et procédé de polymérisation
WO2002050138A3 (fr) * 2000-12-20 2003-09-12 Bp Chem Int Ltd Nouveaux catalyseurs de polymerisation
EP1238989A3 (fr) * 2001-02-21 2004-01-02 Mitsui Chemicals, Inc. Catalyseur de polymérisation d'oléfine et procédé de préparation d'un polymère oléfinique avec ce catalyseur
EP0990664A4 (fr) * 1998-04-16 2004-08-18 Mitsui Chemicals Inc Catalyseur de polymerisation d'olefine et procede de polymerisation d'olefine
EP1489110A1 (fr) 2003-06-20 2004-12-22 Borealis Polymers Oy Procédé de préparation d'un catalyseur pour la polymérisation d' olefins
DE102004012106A1 (de) * 2004-03-12 2005-09-29 Forschungszentrum Karlsruhe Gmbh Verfahren zur Darstellung von Polyethylen und Katalysatorvorstufe
EP1767549A1 (fr) * 2005-09-20 2007-03-28 Ineos Europe Limited Catalyseurs de polymérisation
WO2007045415A1 (fr) 2005-10-21 2007-04-26 Borealis Technology Oy Composition
EP1795542A1 (fr) 2005-12-07 2007-06-13 Borealis Technology Oy Polymère
EP1803743A1 (fr) 2005-12-30 2007-07-04 Borealis Technology Oy Catalyseur particulé
US7341971B2 (en) 2001-12-19 2008-03-11 Borealis Technology Oy Production of olefin polymerization catalysts
JP2008510001A (ja) * 2004-08-18 2008-04-03 コーネル・リサーチ・ファンデーション・インコーポレイテッド β−ケトイミナト金属錯体を使用するアルケン重合
EP2053077A1 (fr) 2004-10-22 2009-04-29 Borealis Technology OY Procédé
US7531478B2 (en) 2001-12-19 2009-05-12 Borealis Technology Oy Production of supported olefin polymerisation catalysts
EP2058339A1 (fr) 2007-11-09 2009-05-13 Borealis Technology OY Copolymère de polyéthylène
EP2130860A1 (fr) 2008-06-06 2009-12-09 Borealis Technology Oy Polymère
EP2133389A1 (fr) 2008-06-12 2009-12-16 Borealis AG Composition de polypropylène
WO2010052264A1 (fr) 2008-11-07 2010-05-14 Borealis Ag Composition de catalyseur solide
EP2186832A1 (fr) 2008-11-10 2010-05-19 Borealis AG Procédé de préparation d'un système solide catalyseur de métallocène et son utilisation pour la polymérisation d'oléfines
EP2186831A1 (fr) 2008-11-10 2010-05-19 Borealis AG Procédé de préparation d'un catalyseur solide de polymérisation d'oléfines non supporté et utilisation pour la polymérisation d'oléfines
EP2204410A1 (fr) 2008-12-31 2010-07-07 Borealis AG Article recouvert d'une composition comportant un polyéthylène préparé avec un seul catalyseur de site
US7812094B2 (en) 2006-07-14 2010-10-12 Borealis Technology Oy Polymer blend
EP2275476A1 (fr) 2009-06-09 2011-01-19 Borealis AG Matériau automobile doté d'une excellente fluidité, d'une grande rigidité, d'une excellente ductilité et d'un CLTE faible
EP2308923A1 (fr) 2009-10-09 2011-04-13 Borealis AG Composite en fibres de verre de traitement amélioré
WO2011069888A1 (fr) 2009-12-07 2011-06-16 Borealis Ag Procédé de préparation d'un système catalytique solide non supporté à base de métallocène et son utilisation pour polymériser les oléfines
EP2338921A1 (fr) 2009-12-22 2011-06-29 Borealis AG Catalyseurs
EP2338920A1 (fr) 2009-12-22 2011-06-29 Borealis AG Catalyseurs
WO2011076443A1 (fr) 2009-12-22 2011-06-30 Borealis Ag Préparation de polypropylène en présence d'un catalyseur à un seul site
EP2385073A1 (fr) 2010-05-07 2011-11-09 Borealis AG Catalyseurs
WO2011138214A1 (fr) 2010-05-07 2011-11-10 Borealis Ag Préparation d'un système de catalyseur solide
WO2011138211A1 (fr) 2010-05-07 2011-11-10 Borealis Ag Procédé pour la préparation d'un système catalyseur métallocène solide et son utilisation pour la polymérisation d'oléfines
WO2011138212A1 (fr) 2010-05-07 2011-11-10 Borealis Ag Préparation d'un système de catalyseur solide
EP2415598A1 (fr) 2010-08-06 2012-02-08 Borealis AG Film multicouche
WO2012055932A1 (fr) 2010-10-28 2012-05-03 Borealis Ag Polymère à site unique
EP2495264A1 (fr) 2011-03-04 2012-09-05 Borealis AG Article automobile extérieur avec défaillance de peignabilité réduite
US8283418B2 (en) 2007-01-22 2012-10-09 Borealis Technology Oy Polypropylene composition with low surface energy
EP2554375A1 (fr) 2011-08-03 2013-02-06 Borealis AG Film
WO2013149915A1 (fr) 2012-04-04 2013-10-10 Borealis Ag Composition de polypropylène renforcée par des fibres à écoulement élevé
EP2722345A1 (fr) 2012-10-18 2014-04-23 Borealis AG Catalyseur
EP2722344A1 (fr) 2012-10-18 2014-04-23 Borealis AG Procédé de polymérisation
EP2722346A1 (fr) 2012-10-18 2014-04-23 Borealis AG Procédé de polymérisation et catalyseur
EP2829556A1 (fr) 2013-07-24 2015-01-28 Borealis AG Procédé
EP2829558A1 (fr) 2013-07-24 2015-01-28 Borealis AG Procédé
US20150148502A1 (en) * 2011-05-12 2015-05-28 Dow Global Technologies Llc Non-cyclopentadienyl-based chromium catalysts for olefin polymerization
WO2015133805A1 (fr) * 2014-03-05 2015-09-11 아주대학교산학협력단 Composé de chrome, système de catalyseur le comprenant, et procédé de terpolymérisation d'éthylène l'utilisant
EP2995631A1 (fr) 2014-09-12 2016-03-16 Borealis AG Procédé de production de copolymères greffés à un squelette de polyoléfine
WO2016135213A1 (fr) 2015-02-27 2016-09-01 Borealis Ag Structure de film stratifié à base uniquement de polyéthylène
US9637602B2 (en) 2013-12-18 2017-05-02 Borealis Ag BOPP film with improved stiffness/toughness balance
US9670347B2 (en) 2013-08-14 2017-06-06 Borealis Ag Propylene composition with improved impact resistance at low temperature
US9670293B2 (en) 2013-10-29 2017-06-06 Borealis Ag Solid single site catalysts with high polymerisation activity
US9708481B2 (en) 2013-10-24 2017-07-18 Borealis Ag Blow molded article based on bimodal random copolymer
US9751962B2 (en) 2013-11-22 2017-09-05 Borealis Ag Low emission propylene homopolymer with high melt flow
US9777142B2 (en) 2013-08-21 2017-10-03 Borealis Ag High flow polyolefin composition with high stiffness and toughness
US9802394B2 (en) 2013-10-11 2017-10-31 Borealis Ag Machine direction oriented film for labels
EP3241611A1 (fr) 2016-05-02 2017-11-08 Borealis AG Procédé d'alimentation d'un catalyseur de polymérisation
US9828698B2 (en) 2013-12-04 2017-11-28 Borealis Ag Phthalate-free PP homopolymers for meltblown fibers
WO2017207221A1 (fr) 2016-06-03 2017-12-07 Borealis Ag Structure multicouche
EP3261095A1 (fr) 2016-06-21 2017-12-27 Borealis AG Câble avec des propriétés électriques améliorées
EP3261093A1 (fr) 2016-06-21 2017-12-27 Borealis AG Câble doté de propriétés électriques avantageuses
WO2017220724A1 (fr) 2016-06-23 2017-12-28 Borealis Ag Procédé de désactivation d'un catalyseur
US9890275B2 (en) 2013-08-21 2018-02-13 Borealis Ag High flow polyolefin composition with high stiffness and toughness
WO2018091653A1 (fr) 2016-11-18 2018-05-24 Borealis Ag Catalyseur
US10030109B2 (en) 2014-02-14 2018-07-24 Borealis Ag Polypropylene composite
US10040930B2 (en) 2013-09-27 2018-08-07 Abu Dhabi Polymers Co. Ltd (Borouge) Llc. Polymer composition with high XS, high Tm suitable for BOPP processing
US10100185B2 (en) 2014-02-06 2018-10-16 Borealis Ag Soft copolymers with high impact strength
US10100186B2 (en) 2014-02-06 2018-10-16 Borealis Ag Soft and transparent impact copolymers
CN109265586A (zh) * 2018-08-29 2019-01-25 上海化工研究院有限公司 用于制备低缠结高分子量聚乙烯的fi催化剂及其制备方法和应用
CN109306029A (zh) * 2018-09-21 2019-02-05 上海化工研究院有限公司 制备超高分子量聚乙烯高端树脂用单活性中心催化剂及制法和应用
US10227427B2 (en) 2014-01-17 2019-03-12 Borealis Ag Process for preparing propylene/1-butene copolymers
WO2019122016A1 (fr) 2017-12-21 2019-06-27 Borealis Ag Procédé de préparation de catalyseur solide
US10450451B2 (en) 2014-05-20 2019-10-22 Borealis Ag Polypropylene composition for automotive interior applications
US10519259B2 (en) 2013-10-24 2019-12-31 Borealis Ag Low melting PP homopolymer with high content of regioerrors and high molecular weight
WO2020064190A1 (fr) 2018-09-26 2020-04-02 Borealis Ag Composition de copolymère de propylène présentant d'excellentes propriétés mécaniques et optiques
WO2020064314A1 (fr) 2018-09-26 2020-04-02 Borealis Ag Copolymère de propylène ayant d'excellentes propriétés optiques
WO2020064313A1 (fr) 2018-09-26 2020-04-02 Borealis Ag Copolymère statistique de propylène destiné à être utilisé dans des applications de film
WO2020104145A1 (fr) 2018-11-23 2020-05-28 Borealis Ag Composition de polypropylène présentant des propriétés optiques et une résistance au blanchiment améliorées
WO2020109452A1 (fr) 2018-11-30 2020-06-04 Borealis Ag Procédé de lavage
US10679768B2 (en) 2016-06-21 2020-06-09 Borealis Ag Cable and composition
EP3666804A1 (fr) 2018-12-14 2020-06-17 Borealis AG Composition de polypropylène ayant une combinaison favorable d'optique, de douceur et de faible étanchéité
EP3825357A1 (fr) 2019-11-25 2021-05-26 Borealis AG Composition de propylène pour moussage présentant des propriétés mécaniques améliorées
WO2022129409A1 (fr) 2020-12-18 2022-06-23 Borealis Ag Modification de terpolymère de polyéthylène
EP4019582A1 (fr) 2020-12-23 2022-06-29 Borealis AG Film de polyéthylène
WO2022148857A1 (fr) 2021-01-08 2022-07-14 Borealis Ag Composition
EP4036130A1 (fr) 2021-01-29 2022-08-03 Borealis AG Modification de copolymère de polyéthylène
EP4053194A1 (fr) 2021-03-03 2022-09-07 Borealis AG Film soufflé monocouche
EP4056599A1 (fr) 2021-03-09 2022-09-14 Borealis AG Composition de polyéthylène pour une couche de film
EP4056598A1 (fr) 2021-03-09 2022-09-14 Borealis AG Composition de polyéthylène pour une couche de film
WO2022189376A1 (fr) 2021-03-09 2022-09-15 Borealis Ag Composition de polyéthylène pour une couche de film
US11447580B2 (en) 2017-12-27 2022-09-20 Borealis Ag Ziegler-Natta catalyst and preparation thereof
US11535012B2 (en) 2015-12-15 2022-12-27 Borealis Ag Polyethylene based laminated film structure with barrier properties
US11613633B2 (en) 2016-06-21 2023-03-28 Borealis Ag Polymer composition for wire and cable applications with advantageous thermomechanical behaviour and electrical properties
EP4163332A1 (fr) 2021-10-10 2023-04-12 Borealis AG Composition de polyéthylène pour une couche de film
EP4166581A1 (fr) 2021-10-12 2023-04-19 Borealis AG Composition de propylène pour la production de mousse dotée d'un taux de fluidité à l'état fondu élevé
US11753486B2 (en) 2017-12-28 2023-09-12 Borealis Ag Catalyst and preparation thereof
WO2023198579A1 (fr) 2022-04-11 2023-10-19 Borealis Ag Film multicouche
EP4389776A1 (fr) 2022-12-20 2024-06-26 Borealis AG Procédé
EP4389783A1 (fr) 2022-12-20 2024-06-26 Borealis AG Procédé de transition de catalyseur
WO2024133046A1 (fr) 2022-12-23 2024-06-27 Borealis Ag Processus de production d'un copolymère de polypropylène
WO2024133044A1 (fr) 2022-12-23 2024-06-27 Borealis Ag Procédé de production d'un homo- ou d'un copolymère de polypropylène
WO2024133045A1 (fr) 2022-12-23 2024-06-27 Borealis Ag Procédé de production d'un homopolymère de polypropylène à haute fluidité
EP4417629A1 (fr) 2023-02-14 2024-08-21 Borealis AG Mélange de polyéthylène pour une couche de film
WO2025003435A1 (fr) 2023-06-30 2025-01-02 Borealis Ag Procédé
EP4538321A1 (fr) 2023-10-11 2025-04-16 Borealis AG Procédé pour augmenter l'efficacité de nucléation de matériaux de type drx

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274909A2 (fr) * 1987-01-02 1988-07-20 SUN COMPANY, INC. (R&M) Oxydation d'hydrocarbures catalysée par les complexes coordonnés de métaux activés par les azides ou les nitrures
WO1996024601A1 (fr) * 1995-02-10 1996-08-15 University College Dublin Complexes, leurs procedes de preparation et leur utilisation
WO1996028402A1 (fr) * 1995-03-14 1996-09-19 President And Fellows Of Harvard College Reactions stereoselectives d'ouverture de noyau
WO1997045434A1 (fr) * 1996-05-31 1997-12-04 Borealis A/S Nouveaux complexes de metaux de transition et leur procede de preparation
EP0874005A1 (fr) * 1997-04-25 1998-10-28 Mitsui Chemicals, Inc. Catalyseur pour la polymérisation des alpha-oléfines, composés de métals de transition, procédé pour la polymérisation des oléfines, ainsi que copolymères alpha-oléfine/diène conjugué

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274909A2 (fr) * 1987-01-02 1988-07-20 SUN COMPANY, INC. (R&M) Oxydation d'hydrocarbures catalysée par les complexes coordonnés de métaux activés par les azides ou les nitrures
WO1996024601A1 (fr) * 1995-02-10 1996-08-15 University College Dublin Complexes, leurs procedes de preparation et leur utilisation
WO1996028402A1 (fr) * 1995-03-14 1996-09-19 President And Fellows Of Harvard College Reactions stereoselectives d'ouverture de noyau
WO1997045434A1 (fr) * 1996-05-31 1997-12-04 Borealis A/S Nouveaux complexes de metaux de transition et leur procede de preparation
EP0874005A1 (fr) * 1997-04-25 1998-10-28 Mitsui Chemicals, Inc. Catalyseur pour la polymérisation des alpha-oléfines, composés de métals de transition, procédé pour la polymérisation des oléfines, ainsi que copolymères alpha-oléfine/diène conjugué

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BACHMANN, BERND ET AL: "Synthesis, structure, and magnetic properties of [CrCl(.mu.-Cl)(TMEDA)]2", Z. ANORG. ALLG. CHEM. (1995), 621(12), 2061-4 CODEN: ZAACAB;ISSN: 0044-2313, XP002089042 *
CHEMICAL ABSTRACTS, vol. 71, no. 26, 29 December 1969, Columbus, Ohio, US; abstract no. 125218, SUGIURA, SHOTARO ET AL: "Polyether between formaldehyde and ketene" XP002089043 *
DAVORAS, E. M. ET AL: "Comparative 1H NMR and UV-visible studies of polyene polymer epoxidations catalyzed by iron(III), manganese(III) and chromium(III) porphyrins", J. PORPHYRINS PHTHALOCYANINES (1998), 2(1), 53-60 CODEN: JPPHFZ;ISSN: 1088-4246, XP002089038 *
GIBSON, VERNON C. ET AL: "Chromium(III) complexes bearing N,N-chelate ligands as ethene polymerization catalysts", CHEM. COMMUN. (CAMBRIDGE) (1998), (16), 1651-1652 CODEN: CHCOFS;ISSN: 1359-7345, XP002089037 *
HABER, J. ET AL: "Oxidation of cyclohexane with hydrogen peroxide and chlorotetratolylporphyrinatochromium(III) as catalyst", J. MOL. CATAL. (1989), 55(1-3), 268-75 CODEN: JMCADS;ISSN: 0304-5102, XP002089041 *
HANSEN, C.B. ET AL: "Metalloporphyrins as catalysts in the decomposition of cyclohexyl hydroperoxide", CATAL. LETT. (1993), 20(3-4), 359-64 CODEN: CALEER;ISSN: 1011-372X, XP002089040 *
NAM, WONWOO ET AL: "Metal Complex-Catalyzed Epoxidation of Olefins by Dioxygen with Co-Oxidation of Aldehydes. A Mechanistic Study", INORG. CHEM. (1996), 35(4), 1045-9 CODEN: INOCAJ;ISSN: 0020-1669, XP002089039 *

Cited By (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2050769A3 (fr) * 1998-04-16 2011-08-03 Mitsui Chemicals, Inc. Catalyseur de polymérisation d'oléfine et procédé de polymérisation d'oléfine
US6593266B1 (en) 1998-04-16 2003-07-15 Mitsui Chemicals, Inc. Olefin polymerization catalyst and polymerization process
EP0990664A4 (fr) * 1998-04-16 2004-08-18 Mitsui Chemicals Inc Catalyseur de polymerisation d'olefine et procede de polymerisation d'olefine
EP0950667A3 (fr) * 1998-04-16 2003-02-05 Mitsui Chemicals, Inc. Catalyseur de polymérisation d'oléfine et procédé de polymérisation
US6451728B1 (en) 1998-12-11 2002-09-17 Mitsui Chemicals, Inc. Olefin polymerization catalyst and process for olefin polymerization
EP1008595A3 (fr) * 1998-12-11 2000-11-29 Mitsui Chemicals, Inc. Catalyseur de polymérisation d'oléfines et procédé de polymérisation d'oléfines
WO2001012637A1 (fr) * 1999-08-13 2001-02-22 University Of Delaware Complexes de metaux de transition, comprenant des ligands de beta-diiminate et procedes de polymerisation d'olefines
WO2001070395A3 (fr) * 2000-03-22 2002-04-11 Borealis Tech Oy Catalyseurs
US7312284B2 (en) 2000-07-04 2007-12-25 Mitsui Chemicals, Inc. Process for producing polar olefin copolymer and polar olefin copolymer obtained thereby
US7053159B2 (en) 2000-07-04 2006-05-30 Mitsui Chemicals, Inc. Process for producing polar olefin copolymer and polar olefin copolymer obtained thereby
EP1170308A3 (fr) * 2000-07-04 2002-07-31 Mitsui Chemicals, Inc. Procédé de préparation d'un copolymère à base d'une oléfine non-polaire et d'une oléfine polaire, et le copolymère ainsi obtenu
WO2002050138A3 (fr) * 2000-12-20 2003-09-12 Bp Chem Int Ltd Nouveaux catalyseurs de polymerisation
EP1238989A3 (fr) * 2001-02-21 2004-01-02 Mitsui Chemicals, Inc. Catalyseur de polymérisation d'oléfine et procédé de préparation d'un polymère oléfinique avec ce catalyseur
US6897176B2 (en) 2001-02-21 2005-05-24 Mitsui Chemicals, Inc. Olefin polymerization catalyst and process for producing olefin polymer with the catalyst
US7341971B2 (en) 2001-12-19 2008-03-11 Borealis Technology Oy Production of olefin polymerization catalysts
US7531478B2 (en) 2001-12-19 2009-05-12 Borealis Technology Oy Production of supported olefin polymerisation catalysts
US7718563B2 (en) 2001-12-19 2010-05-18 Borealis Technology Oy Production of olefin polymerization catalysts
US7592285B2 (en) 2003-06-20 2009-09-22 Borealis Technology Oy Method for preparing an olefin polymerization catalyst composition
EP1489110A1 (fr) 2003-06-20 2004-12-22 Borealis Polymers Oy Procédé de préparation d'un catalyseur pour la polymérisation d' olefins
DE102004012106A1 (de) * 2004-03-12 2005-09-29 Forschungszentrum Karlsruhe Gmbh Verfahren zur Darstellung von Polyethylen und Katalysatorvorstufe
JP2008510001A (ja) * 2004-08-18 2008-04-03 コーネル・リサーチ・ファンデーション・インコーポレイテッド β−ケトイミナト金属錯体を使用するアルケン重合
EP2053077A1 (fr) 2004-10-22 2009-04-29 Borealis Technology OY Procédé
EP1767549A1 (fr) * 2005-09-20 2007-03-28 Ineos Europe Limited Catalyseurs de polymérisation
JP2009508919A (ja) * 2005-09-20 2009-03-05 イネオス ユーロープ リミテッド 重合触媒
WO2007034149A3 (fr) * 2005-09-20 2007-09-27 Ineos Europe Ltd Catalyseurs de polymerisation
US7902308B2 (en) 2005-09-20 2011-03-08 Ineos Europe Limited Polymerisation catalysts
WO2007045415A1 (fr) 2005-10-21 2007-04-26 Borealis Technology Oy Composition
EP1795542A1 (fr) 2005-12-07 2007-06-13 Borealis Technology Oy Polymère
EP1803743A1 (fr) 2005-12-30 2007-07-04 Borealis Technology Oy Catalyseur particulé
US8399374B2 (en) 2005-12-30 2013-03-19 Borealis Technology Oy Catalyst particles
US7812094B2 (en) 2006-07-14 2010-10-12 Borealis Technology Oy Polymer blend
US8283418B2 (en) 2007-01-22 2012-10-09 Borealis Technology Oy Polypropylene composition with low surface energy
EP2058339A1 (fr) 2007-11-09 2009-05-13 Borealis Technology OY Copolymère de polyéthylène
EP2130860A1 (fr) 2008-06-06 2009-12-09 Borealis Technology Oy Polymère
EP2133389A1 (fr) 2008-06-12 2009-12-16 Borealis AG Composition de polypropylène
WO2010052264A1 (fr) 2008-11-07 2010-05-14 Borealis Ag Composition de catalyseur solide
US8420562B2 (en) 2008-11-10 2013-04-16 Borealis Ag Process for the preparation of an unsupported, solid metallocene catalyst system and its use in polymerization of olefins
EP2186831A1 (fr) 2008-11-10 2010-05-19 Borealis AG Procédé de préparation d'un catalyseur solide de polymérisation d'oléfines non supporté et utilisation pour la polymérisation d'oléfines
EP2186832A1 (fr) 2008-11-10 2010-05-19 Borealis AG Procédé de préparation d'un système solide catalyseur de métallocène et son utilisation pour la polymérisation d'oléfines
US8394733B2 (en) 2008-11-10 2013-03-12 Borealis Ag Process for the preparation of an unsupported, solid olefin polymerisation catalyst and use in polymerisation of olefins
US9353283B2 (en) 2008-12-31 2016-05-31 Borealis Ag Article coated with a composition comprising polyethylene prepared with a single site catalyst
EP2204410A1 (fr) 2008-12-31 2010-07-07 Borealis AG Article recouvert d'une composition comportant un polyéthylène préparé avec un seul catalyseur de site
EP2275476A1 (fr) 2009-06-09 2011-01-19 Borealis AG Matériau automobile doté d'une excellente fluidité, d'une grande rigidité, d'une excellente ductilité et d'un CLTE faible
EP2308923A1 (fr) 2009-10-09 2011-04-13 Borealis AG Composite en fibres de verre de traitement amélioré
WO2011042364A1 (fr) 2009-10-09 2011-04-14 Borealis Ag Composite de fibre de verre possédant une aptitude au traitement améliorée
US9382410B2 (en) 2009-10-09 2016-07-05 Borealis Ag Glass fiber composite of improved processability
WO2011069888A1 (fr) 2009-12-07 2011-06-16 Borealis Ag Procédé de préparation d'un système catalytique solide non supporté à base de métallocène et son utilisation pour polymériser les oléfines
EP2338920A1 (fr) 2009-12-22 2011-06-29 Borealis AG Catalyseurs
EP2338921A1 (fr) 2009-12-22 2011-06-29 Borealis AG Catalyseurs
WO2011076617A1 (fr) 2009-12-22 2011-06-30 Borealis Ag Synthèse de catalyseurs à site unique
WO2011076618A1 (fr) 2009-12-22 2011-06-30 Borealis Ag Préparation de catalyseurs à un seul site
WO2011076443A1 (fr) 2009-12-22 2011-06-30 Borealis Ag Préparation de polypropylène en présence d'un catalyseur à un seul site
EP2386581A1 (fr) 2010-05-07 2011-11-16 Borealis AG Préparation d'un système catalytique solide
WO2011138211A1 (fr) 2010-05-07 2011-11-10 Borealis Ag Procédé pour la préparation d'un système catalyseur métallocène solide et son utilisation pour la polymérisation d'oléfines
US8962509B2 (en) 2010-05-07 2015-02-24 Borealis Ag Preparation of a solid catalyst system
WO2011138214A1 (fr) 2010-05-07 2011-11-10 Borealis Ag Préparation d'un système de catalyseur solide
EP2386583A1 (fr) 2010-05-07 2011-11-16 Borealis AG Préparation d'un système catalytique solide
EP2386582A1 (fr) 2010-05-07 2011-11-16 Borealis AG Préparation d'un système catalytique solide
WO2011138209A1 (fr) 2010-05-07 2011-11-10 Borealis Ag Procédé de préparation d'un système catalyseur métallocène solide et son utilisation pour la polymérisation des oléfines
EP2385073A1 (fr) 2010-05-07 2011-11-09 Borealis AG Catalyseurs
WO2011138212A1 (fr) 2010-05-07 2011-11-10 Borealis Ag Préparation d'un système de catalyseur solide
EP2415598A1 (fr) 2010-08-06 2012-02-08 Borealis AG Film multicouche
WO2012016938A1 (fr) 2010-08-06 2012-02-09 Borealis Ag Film multicouche
US10053246B2 (en) 2010-08-06 2018-08-21 Borealis Ag Multilayer film
WO2012055932A1 (fr) 2010-10-28 2012-05-03 Borealis Ag Polymère à site unique
EP2495264A1 (fr) 2011-03-04 2012-09-05 Borealis AG Article automobile extérieur avec défaillance de peignabilité réduite
WO2012119921A1 (fr) 2011-03-04 2012-09-13 Borealis Ag Article extérieur pour automobile présentant des défauts de peintabilité réduits
US20150148502A1 (en) * 2011-05-12 2015-05-28 Dow Global Technologies Llc Non-cyclopentadienyl-based chromium catalysts for olefin polymerization
US9422375B2 (en) * 2011-05-12 2016-08-23 Dow Global Technologies Llc Non-cyclopentadienyl-based chromium catalysts for olefin polymerization
US9296836B2 (en) * 2011-05-12 2016-03-29 Dow Global Technologies Llc Non-cyclopentadienyl-based chromium catalysts for olefin polymerization
US20160053031A1 (en) * 2011-05-12 2016-02-25 Dow Global Technologies Llc Non-cyclopentadienyl-based chromium catalysts for olefin polymerization
EP2554375A1 (fr) 2011-08-03 2013-02-06 Borealis AG Film
WO2013017615A1 (fr) 2011-08-03 2013-02-07 Borealis Ag Film
WO2013149915A1 (fr) 2012-04-04 2013-10-10 Borealis Ag Composition de polypropylène renforcée par des fibres à écoulement élevé
US9650504B2 (en) 2012-04-04 2017-05-16 Borealis Ag High-flow fiber reinforced polypropylene composition
EP2722345A1 (fr) 2012-10-18 2014-04-23 Borealis AG Catalyseur
EP2722346A1 (fr) 2012-10-18 2014-04-23 Borealis AG Procédé de polymérisation et catalyseur
EP2722344A1 (fr) 2012-10-18 2014-04-23 Borealis AG Procédé de polymérisation
EP2829558A1 (fr) 2013-07-24 2015-01-28 Borealis AG Procédé
EP2829556A1 (fr) 2013-07-24 2015-01-28 Borealis AG Procédé
US9670347B2 (en) 2013-08-14 2017-06-06 Borealis Ag Propylene composition with improved impact resistance at low temperature
US9890275B2 (en) 2013-08-21 2018-02-13 Borealis Ag High flow polyolefin composition with high stiffness and toughness
US9777142B2 (en) 2013-08-21 2017-10-03 Borealis Ag High flow polyolefin composition with high stiffness and toughness
US10040930B2 (en) 2013-09-27 2018-08-07 Abu Dhabi Polymers Co. Ltd (Borouge) Llc. Polymer composition with high XS, high Tm suitable for BOPP processing
US9802394B2 (en) 2013-10-11 2017-10-31 Borealis Ag Machine direction oriented film for labels
US10519259B2 (en) 2013-10-24 2019-12-31 Borealis Ag Low melting PP homopolymer with high content of regioerrors and high molecular weight
US9708481B2 (en) 2013-10-24 2017-07-18 Borealis Ag Blow molded article based on bimodal random copolymer
US9670293B2 (en) 2013-10-29 2017-06-06 Borealis Ag Solid single site catalysts with high polymerisation activity
US9751962B2 (en) 2013-11-22 2017-09-05 Borealis Ag Low emission propylene homopolymer with high melt flow
US9828698B2 (en) 2013-12-04 2017-11-28 Borealis Ag Phthalate-free PP homopolymers for meltblown fibers
US9637602B2 (en) 2013-12-18 2017-05-02 Borealis Ag BOPP film with improved stiffness/toughness balance
US10227427B2 (en) 2014-01-17 2019-03-12 Borealis Ag Process for preparing propylene/1-butene copolymers
US10100185B2 (en) 2014-02-06 2018-10-16 Borealis Ag Soft copolymers with high impact strength
US10100186B2 (en) 2014-02-06 2018-10-16 Borealis Ag Soft and transparent impact copolymers
US10030109B2 (en) 2014-02-14 2018-07-24 Borealis Ag Polypropylene composite
WO2015133805A1 (fr) * 2014-03-05 2015-09-11 아주대학교산학협력단 Composé de chrome, système de catalyseur le comprenant, et procédé de terpolymérisation d'éthylène l'utilisant
US10442741B2 (en) 2014-03-05 2019-10-15 Ajou University Industry-Academic Cooperation Foundation Chromium compound, catalyst system including same, and method for trimerizing ethylene using the catalyst system
US10450451B2 (en) 2014-05-20 2019-10-22 Borealis Ag Polypropylene composition for automotive interior applications
EP2995631A1 (fr) 2014-09-12 2016-03-16 Borealis AG Procédé de production de copolymères greffés à un squelette de polyoléfine
WO2016038177A1 (fr) 2014-09-12 2016-03-17 Borealis Ag Procédé de production de copolymères greffés sur un squelette de polyoléfine
US10392460B2 (en) 2014-09-12 2019-08-27 Borealis Ag Process for producing graft copolymers on polyolefin backbone
WO2016135213A1 (fr) 2015-02-27 2016-09-01 Borealis Ag Structure de film stratifié à base uniquement de polyéthylène
US12330402B2 (en) 2015-12-15 2025-06-17 Borealis Ag Polyethylene based laminated film structure with barrier properties
US11535012B2 (en) 2015-12-15 2022-12-27 Borealis Ag Polyethylene based laminated film structure with barrier properties
US10946357B2 (en) 2016-05-02 2021-03-16 Borealis Ag Process for feeding a polymerisation catalyst
WO2017191054A1 (fr) 2016-05-02 2017-11-09 Borealis Ag Procédé d'alimentation de catalyseur de polymérisation
EP3241611A1 (fr) 2016-05-02 2017-11-08 Borealis AG Procédé d'alimentation d'un catalyseur de polymérisation
US11865818B2 (en) 2016-06-03 2024-01-09 Borealis Ag Multilayer structure
US11472166B2 (en) 2016-06-03 2022-10-18 Borealis Ag Multilayer structure
WO2017207221A1 (fr) 2016-06-03 2017-12-07 Borealis Ag Structure multicouche
EP3261095A1 (fr) 2016-06-21 2017-12-27 Borealis AG Câble avec des propriétés électriques améliorées
US10679768B2 (en) 2016-06-21 2020-06-09 Borealis Ag Cable and composition
WO2017220609A1 (fr) 2016-06-21 2017-12-28 Borealis Ag Câble avec propriétés électriques avantageuses
EP3261093A1 (fr) 2016-06-21 2017-12-27 Borealis AG Câble doté de propriétés électriques avantageuses
US11613633B2 (en) 2016-06-21 2023-03-28 Borealis Ag Polymer composition for wire and cable applications with advantageous thermomechanical behaviour and electrical properties
WO2017220613A1 (fr) 2016-06-21 2017-12-28 Borealis Ag Câble à propriétés électriques améliorées
US10886034B2 (en) 2016-06-21 2021-01-05 Borealis Ag Cable with advantageous electrical properties
US10679769B2 (en) 2016-06-21 2020-06-09 Borealis Ag Cable with improved electrical properties
WO2017220724A1 (fr) 2016-06-23 2017-12-28 Borealis Ag Procédé de désactivation d'un catalyseur
US10982019B2 (en) 2016-06-23 2021-04-20 Borealis Ag Process for catalyst deactivation
WO2018091653A1 (fr) 2016-11-18 2018-05-24 Borealis Ag Catalyseur
WO2019122016A1 (fr) 2017-12-21 2019-06-27 Borealis Ag Procédé de préparation de catalyseur solide
US11384170B2 (en) 2017-12-21 2022-07-12 Borealis Ag Process for the preparation of solid catalyst
US11447580B2 (en) 2017-12-27 2022-09-20 Borealis Ag Ziegler-Natta catalyst and preparation thereof
US12104001B2 (en) 2017-12-28 2024-10-01 Borealis Ag Catalyst and preparation thereof
US11753486B2 (en) 2017-12-28 2023-09-12 Borealis Ag Catalyst and preparation thereof
CN109265586B (zh) * 2018-08-29 2021-05-11 上海化工研究院有限公司 用于制备低缠结高分子量聚乙烯的fi催化剂及其制备方法和应用
CN109265586A (zh) * 2018-08-29 2019-01-25 上海化工研究院有限公司 用于制备低缠结高分子量聚乙烯的fi催化剂及其制备方法和应用
CN109306029B (zh) * 2018-09-21 2021-05-11 上海化工研究院有限公司 制备超高分子量聚乙烯高端树脂用单活性中心催化剂及制法和应用
CN109306029A (zh) * 2018-09-21 2019-02-05 上海化工研究院有限公司 制备超高分子量聚乙烯高端树脂用单活性中心催化剂及制法和应用
US11827777B2 (en) 2018-09-26 2023-11-28 Borealis Ag Propylene copolymer with excellent optical properties
WO2020064313A1 (fr) 2018-09-26 2020-04-02 Borealis Ag Copolymère statistique de propylène destiné à être utilisé dans des applications de film
US12404393B2 (en) 2018-09-26 2025-09-02 Borealis Ag Propylene copolymer composition with excellent optical and mechanical properties
WO2020064314A1 (fr) 2018-09-26 2020-04-02 Borealis Ag Copolymère de propylène ayant d'excellentes propriétés optiques
US12006426B2 (en) 2018-09-26 2024-06-11 Borealis Ag Propylene random copolymer for use in film applications
WO2020064190A1 (fr) 2018-09-26 2020-04-02 Borealis Ag Composition de copolymère de propylène présentant d'excellentes propriétés mécaniques et optiques
US12146046B2 (en) 2018-11-23 2024-11-19 Borealis Ag Polypropylene composition with improved optical properties and whitening resistance
WO2020104145A1 (fr) 2018-11-23 2020-05-28 Borealis Ag Composition de polypropylène présentant des propriétés optiques et une résistance au blanchiment améliorées
US12146019B2 (en) 2018-11-30 2024-11-19 Borealis Ag Washing process
WO2020109452A1 (fr) 2018-11-30 2020-06-04 Borealis Ag Procédé de lavage
EP3666804A1 (fr) 2018-12-14 2020-06-17 Borealis AG Composition de polypropylène ayant une combinaison favorable d'optique, de douceur et de faible étanchéité
WO2021104836A1 (fr) 2019-11-25 2021-06-03 Borealis Ag Composition de polypropylène pour la formation de mousse présentant des propriétés mécaniques améliorées
EP3825357A1 (fr) 2019-11-25 2021-05-26 Borealis AG Composition de propylène pour moussage présentant des propriétés mécaniques améliorées
WO2022129409A1 (fr) 2020-12-18 2022-06-23 Borealis Ag Modification de terpolymère de polyéthylène
EP4019582A1 (fr) 2020-12-23 2022-06-29 Borealis AG Film de polyéthylène
WO2022148857A1 (fr) 2021-01-08 2022-07-14 Borealis Ag Composition
WO2022162104A1 (fr) 2021-01-29 2022-08-04 Borealis Ag Modification de copolymère de polyéthylène
EP4036130A1 (fr) 2021-01-29 2022-08-03 Borealis AG Modification de copolymère de polyéthylène
WO2022184662A1 (fr) 2021-03-03 2022-09-09 Borealis Ag Film soufflé monocouche
EP4053194A1 (fr) 2021-03-03 2022-09-07 Borealis AG Film soufflé monocouche
WO2022189376A1 (fr) 2021-03-09 2022-09-15 Borealis Ag Composition de polyéthylène pour une couche de film
WO2022189374A1 (fr) 2021-03-09 2022-09-15 Borealis Ag Composition de polyéthylène pour une couche de film
WO2022189375A1 (fr) 2021-03-09 2022-09-15 Borealis Ag Composition de polyéthylène pour une couche de film
EP4056598A1 (fr) 2021-03-09 2022-09-14 Borealis AG Composition de polyéthylène pour une couche de film
EP4056599A1 (fr) 2021-03-09 2022-09-14 Borealis AG Composition de polyéthylène pour une couche de film
WO2023057478A1 (fr) 2021-10-10 2023-04-13 Borealis Ag Composition de polyéthylène pour une couche de film
EP4163332A1 (fr) 2021-10-10 2023-04-12 Borealis AG Composition de polyéthylène pour une couche de film
WO2023061906A1 (fr) 2021-10-12 2023-04-20 Borealis Ag Composition de propylène pour moussage avec un indice de fluidité élevé
EP4166581A1 (fr) 2021-10-12 2023-04-19 Borealis AG Composition de propylène pour la production de mousse dotée d'un taux de fluidité à l'état fondu élevé
WO2023198579A1 (fr) 2022-04-11 2023-10-19 Borealis Ag Film multicouche
EP4389783A1 (fr) 2022-12-20 2024-06-26 Borealis AG Procédé de transition de catalyseur
WO2024133340A1 (fr) 2022-12-20 2024-06-27 Borealis Ag Processus
EP4389776A1 (fr) 2022-12-20 2024-06-26 Borealis AG Procédé
WO2024133592A1 (fr) 2022-12-20 2024-06-27 Borealis Ag Processus de transition de catalyseur
WO2024133046A1 (fr) 2022-12-23 2024-06-27 Borealis Ag Processus de production d'un copolymère de polypropylène
WO2024133044A1 (fr) 2022-12-23 2024-06-27 Borealis Ag Procédé de production d'un homo- ou d'un copolymère de polypropylène
WO2024133045A1 (fr) 2022-12-23 2024-06-27 Borealis Ag Procédé de production d'un homopolymère de polypropylène à haute fluidité
EP4417629A1 (fr) 2023-02-14 2024-08-21 Borealis AG Mélange de polyéthylène pour une couche de film
WO2025003435A1 (fr) 2023-06-30 2025-01-02 Borealis Ag Procédé
EP4538321A1 (fr) 2023-10-11 2025-04-16 Borealis AG Procédé pour augmenter l'efficacité de nucléation de matériaux de type drx
WO2025078282A1 (fr) 2023-10-11 2025-04-17 Borealis Ag Moyen d'augmenter l'efficacité de nucléation de matériaux ssc

Also Published As

Publication number Publication date
GB9721559D0 (en) 1997-12-10
AU9359498A (en) 1999-05-03

Similar Documents

Publication Publication Date Title
WO1999019335A1 (fr) Nouveaux catalyseurs de polymerisation
KR100516336B1 (ko) 중합 촉매
US6683141B1 (en) Polymerization catalysts
US7358209B2 (en) Polymerisation catalysts
US6333292B1 (en) Catalysts for olefin polymerization
WO1998049208A1 (fr) Nouveaux composes et leur utilisation dans un procede de polymerisation
US7365139B2 (en) Polymerisation catalyst
CA2364583A1 (fr) Catalyseur de polymerisation pyridine-imine
JP2003517061A (ja) オレフィンの重合
US8067328B2 (en) Polymerisation and oligomerisation catalysts
US20030104929A1 (en) Polymerisation catalyst
EP1099714A1 (fr) Catalyseur de polymérisation
CA2361719A1 (fr) Complexes metalliques en tant que composant de catalyse destine a la polymerisation d'olefines
WO2002090365A1 (fr) Nouveaux catalyseurs de polymerisation
WO2000069869A1 (fr) Catalyseurs de polymerisation
US6492293B1 (en) Polymerisation catalyst
US6828398B2 (en) Polymerization catalyst
US20040087436A1 (en) Novel polymerisation catalysts
WO1999042492A1 (fr) Composant de catalyseur de polymerisation
MXPA00002263A (es) Catalizadores de polimerizacion
CZ2000673A3 (cs) Polymerační katalyzátory

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA