[go: up one dir, main page]

WO1999020567A1 - Appareil permettant de produire electriquement de l'eau desionisee - Google Patents

Appareil permettant de produire electriquement de l'eau desionisee Download PDF

Info

Publication number
WO1999020567A1
WO1999020567A1 PCT/JP1998/004763 JP9804763W WO9920567A1 WO 1999020567 A1 WO1999020567 A1 WO 1999020567A1 JP 9804763 W JP9804763 W JP 9804763W WO 9920567 A1 WO9920567 A1 WO 9920567A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange membrane
cation exchange
deionized water
anion exchange
contact
Prior art date
Application number
PCT/JP1998/004763
Other languages
English (en)
French (fr)
Inventor
Makio Tamura
Original Assignee
Organo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corporation filed Critical Organo Corporation
Priority to AU96451/98A priority Critical patent/AU9645198A/en
Priority to CA002275471A priority patent/CA2275471C/en
Priority to US09/331,256 priority patent/US6436264B1/en
Publication of WO1999020567A1 publication Critical patent/WO1999020567A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/50Stacks of the plate-and-frame type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/52Accessories; Auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4604Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to an electric deionized water producing apparatus used in various industries such as a semiconductor manufacturing industry, a pharmaceutical industry, a food industry, and the like, or a power plant, a research laboratory, and the like using deionized water.
  • a cation exchange membrane and an anion exchange membrane are basically arranged alternately with a spacer interposed therebetween, and a desalination chamber and a concentration chamber are formed by the spacer.
  • the liquid to be treated is desalted and concentrated by applying a direct current to the anion exchange membrane and the cation exchange membrane are not in contact with each other.
  • an electric deionized water production apparatus that has been put into practical use basically has a gap formed between a cation exchange membrane and an anion exchange membrane as an ion exchanger, for example, an anion exchange resin layer and a cation exchange layer.
  • a lamination or mixed ion-exchange resin layer of an exchange resin is filled to form a desalination chamber, and water to be treated is passed through the ion-exchange resin layer, and a direct current is applied through the both ion-exchange membranes to form a desalination chamber.
  • Deionized water is produced while electrically removing ions in the water to be treated from the concentrated water flowing outside the ion exchange membrane.
  • the anion exchange membrane and the cation exchange membrane are in direct contact with each other. Absent.
  • FIG. 5 shows a schematic cross-sectional view of the conventional typical electric deionized water producing apparatus.
  • the cation exchange membrane 101 and the anion exchange membrane 102 are arranged alternately at a distance from each other, and are placed in the space formed by the cation exchange membrane 101 and the anion exchange membrane 102. Every other one is filled with a mixed ion exchange resin 103 of a cation exchange resin and an anion exchange resin to form a desalination chamber 104.
  • Concentrated water flows through the portion not filled with the mixed ion exchange resin 103 formed by the anion exchange membrane 102 and the cation exchange membrane 101 located next to each of the desalting chambers 104 Enrichment room for storage.
  • the cation exchange membrane 101 and the anion exchange membrane 102 A deionized module 106 is formed with the mixed ion-exchange resin 103 (omitted in FIG. 6) filled therein.
  • a cation exchange membrane 101 is sealed on one side of the frame body 107 whose inside is hollowed out, and a mixed ion exchange resin 103 is filled in the hollowed out part of the frame body 107.
  • the anion exchange membrane 102 is sealed to the other part of the frame 107.
  • the ion-exchange membrane 102 is relatively soft, and when the mixed ion-exchange resin 103 is filled inside the frame 107 and both surfaces are sealed with the ion-exchange membrane, In order to prevent the membrane from curving and the packed layer of the mixed ion-exchange resin 103 from becoming uneven, it is common to install a plurality of ribs 108 vertically in the space of the frame 107. is there.
  • an inlet for treated water is provided above the frame 107, and an outlet for treated water is provided below the frame.
  • FIG. 5 shows a state in which a plurality of such deionization modules 106 are arranged side by side with spacers omitted in the figure between them, and the deionization modules 106 arranged side by side are shown in FIG.
  • a cathode 109 is provided on one end of the substrate 6, and an anode 110 is provided on the other end.
  • the space between the deionization modules 106 arranged side by side with the above-mentioned space is the enrichment chamber 105, and both sides of the enrichment chambers 105 at both ends are provided as necessary.
  • a partition membrane such as a cation exchange membrane, anion exchange membrane, or a simple non-ion-exchange membrane is provided, and both electrodes 109, 110 separated by the partition membrane 111 contact.
  • the portions to be formed are a cathode chamber 112 and an anode chamber 113, respectively.
  • deionized water is produced by such an electric deionized water producing apparatus, the following operation is performed. That is, a DC voltage is applied between the cathode 109 and the anode 110, the water to be treated flows in from the water inlet A, the concentrated water flows in from the concentrated water inlet B, and the electrode water inlet. Electrode water flows from C and D respectively. The water to be treated that has flowed in from the treated water inlet A flows down each desalting chamber 104 as indicated by the solid line arrow, and impurity ions are removed when passing through the packed bed of the mixed ion exchange resin 103. Deionized water is obtained from deionized water outlet a.
  • the concentrated water flowing in from the concentrated water inlet B flows down each enrichment chamber 105 as indicated by the dotted arrow, receives impurity ions moving through both ion exchange membranes, and concentrates the impurity ions. From the concentrated water outlet b as concentrated water, and the electrode water inlets C and D From the electrode water outlets c and d.
  • impurity ions in the water to be treated are electrically removed and concentrated in the concentrated water, so that deionized water can be continuously obtained without regenerating the charged ion exchange resin with a chemical solution at all. be able to.
  • Such a conventional electric deionized water producing apparatus is usually used by installing a reverse osmosis membrane apparatus and a water softening apparatus in a preceding stage, and supplies deionized water used in various industries very effectively.
  • the deionization module that forms the deionization chamber uses a frame with multiple ribs installed vertically in the space to ensure the filling and uniform filling of the ion exchanger to be filled, which limits the shape of the device. There were also problems such as being done.
  • an object of the present invention is to provide an electric deionization water producing apparatus which has a simple structure and is easy to manufacture while maintaining the conventional deionization efficiency, and has a high degree of freedom in the shape of the apparatus.
  • the present inventor has returned to the principle of deionization in the electric deionized water producing apparatus and made various studies, and as a result, obtained the following knowledge.
  • the ion exchanger that is, the ion exchange resin
  • the ion exchange membrane moves the ions adsorbed by the ion exchange resin to the concentration chamber, Since all ions in the concentration chamber are used for the purpose of not moving them to the desalination chamber, both the ion exchanger and the ion exchange membrane have different purposes, but the materials must be essentially the same.
  • the desalination chamber is configured to hold the flow path through which the water to be treated flows and to contact the force cation exchange membrane with the anion exchange membrane, the conventional electric deionization can be achieved.
  • the inventors have found that a device having the same deionization efficiency as that of the on-water production device, a simple structure and easy production, and a device having a high degree of freedom in device shape can be obtained, and the present invention has been completed.
  • the present invention provides an electric deionized water production apparatus in which a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode and a cathode, and a desalination chamber and a concentration chamber are alternately formed between both membranes.
  • the desalination chamber is formed by contacting the cation exchange membrane with the anion exchange membrane while maintaining a flow path through which water to be treated flows from one side of the desalination chamber to the other. It is intended to provide a deionized water production system.
  • FIG. 1 is a schematic cross-sectional view showing a part of a contact state between an anion exchange membrane and a cation exchange membrane in the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a part of another contact state of the anion exchange membrane and the cation exchange membrane in the present invention.
  • FIG. 3 shows an assembly diagram of a deionization module used in the electric deionized water producing apparatus of the present invention.
  • FIG. 4 shows a schematic cross-sectional view of the electric deionized water producing apparatus according to the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a conventional electric deionized water producing apparatus.
  • FIG. 6 shows an assembly diagram of a deionization module used in a conventional electric deionized water production device.
  • FIG. 7 is a schematic diagram showing an example using a spiral type deionization module in the present invention. ⁇
  • FIG. 8 is a schematic sectional view showing another example of a part of the contact state between the anion exchange membrane and the cation exchange membrane in the present invention.
  • FIG. 9 is a schematic sectional view showing still another example of a part of the contact state between the anion exchange membrane and the cation exchange membrane in the present invention.
  • the desalination chamber of the electric deionized water production apparatus is configured such that the cation exchange membrane and the anion exchange membrane are brought into contact with each other by holding a flow path through which the water to be treated flows from one of the desalination chambers to the other. It is not particularly limited as long as it is formed, and is formed without filling the ion exchanger.
  • a cation exchange membrane or an anion holding the flow path of the water to be treated examples include, for example, an ion-exchange membrane in which the vicinity of the surface is processed into a porous structure, and ions that form countless fibrous protrusions on the surface.
  • An exchange membrane, an ion exchange membrane having a nonwoven fabric surface, an ion exchange membrane forming a large number of protrusions, and the like are included.
  • These specific surface structures may be formed on the surface of both the cation exchange membrane and the anion exchange membrane on the desalination chamber side, or may be formed on the surface of one of the cation exchange membrane and the anion exchange membrane on the desalination chamber side. It may be formed on the surface.
  • the surface on the concentration side of the cation exchange membrane or the anion exchange membrane may or may not have the specific structure or the protrusion.
  • the shape of the projections is not particularly limited, and may be, for example, a substantially hemispherical, hemispherical, or conical projection; Shape, a conical shape, a linear shape, a spiral shape, an irregularly shaped projecting object, and the like.
  • the height of the projection is preferably in the range of about l to 3 mm.
  • the protrusion is preferably formed at 9 to 25 / cm 2.
  • the groove width is 1.0 to 1.5 times the cross-sectional width of the protrusion. It is preferable to be within the range.
  • the method of forming the surface of the porous structure, the surface of a nonwoven fabric, and the surface having countless fibrous projections is not particularly limited, and the porous structure or the projections or the like may be formed on the surface of a conventionally used ion exchange membrane.
  • a laminating method in which the ion-exchange membrane that forms the film is fixed with an adhesive or the like, and in the case of heat molding using a thermoplastic polymer, an integral forming method in which a porous structure or protrusion is formed during molding is exemplified.
  • the method for forming the same is not particularly limited.
  • a granular ion exchanger is mixed into the membrane, and There are a method of forming a film by projecting the surface of the ion exchange membrane using the shape of the ion exchanger, and a method of forming a film once by this method and then shaving off portions other than the ion exchanger.
  • a method of forming protrusions using a pre-formed surface of a resin resin or vinyl chloride resin net used for the support of the film a film formation by bulk polymerization
  • a method of forming irregularities when cutting out from a lump in the case of a heat molding method or paste method using a thermoplastic polymer, a method of forming irregularities during molding, and a method of shaving a part after forming an ion exchange membrane And so on.
  • the form of contact between the cation exchange membrane and the anion exchange membrane is not particularly limited.
  • the surfaces of the cation exchange membrane and the anion exchange membrane having the porous structure, the projections or the projections formed thereon are simply contacted with each other. You only need to make contact. As a result, voids are formed at the contact interface between the cation exchange membrane and the anion exchange membrane and near the surface, and the flow path through which the water to be treated flows is maintained.
  • the contact form is a flow path of the water to be treated in the desalting chamber formed by the contact between the cation exchange membrane and the ion-exchange membrane. It may be appropriately selected from the viewpoints of securing voids, deionization efficiency, and the like.
  • the protrusions and the grooves of the other film be in contact with each other. For example, if the shape of the protrusion is a hemisphere, as shown in FIG.
  • the protrusion 9 of the cation exchange membrane 11 is in the groove 7 of the anion exchange membrane 12 and the protrusion of the anion exchange membrane 12
  • the portion 8 may be brought into contact with the groove 6 of the cation exchange membrane 11 so as to face each other.
  • the contact between the tops of the projections 8 and 9 and the bottoms of the grooves 6 and 7 may be partial, but it is preferable that substantially all the tops of the projections contact the bottoms of the grooves. .
  • the projection 9 of the cation exchange membrane 11 may be brought into contact with the anion exchange membrane 12 as shown in FIG.
  • the porosity of the desalting chamber formed by contact between the cation exchange membrane and the anion exchange membrane is not particularly limited. In the case of an exchange membrane, it is preferably about 3 to 50% of the volume occupied by both ion exchange membranes. In the case of the ion exchange membrane having a large number of protrusions, the porosity of the desalting chamber is such that the cation exchange membrane 11 and the anion exchange membrane in FIGS. It means the ratio of the gap (blank portion) formed by 12 and, specifically, is preferably in the range of 30 to 80%.
  • the deionization module that forms the desalting chamber is an ion exchange module with a cation exchange membrane 11 having a large number of projections 9 formed on the surface on the side of the desalting chamber. And a membrane 12 (the surface projections of the anion exchange membrane 12 are not visible in the figure). Also, the deionization module may take various forms, for example, a spiral form.
  • the desalination chamber of the electric deionized water production apparatus of the present invention is formed by bringing a cation exchange membrane having a specific structure into contact with an anion exchange membrane, and the water in the desalination chamber is filled with water to be treated.
  • FIG. 4 is a schematic cross-sectional view of the electric deionized water production apparatus according to the embodiment of the present invention.
  • a deionization module formed by matingly contacting a cation exchange membrane 11 having a large number of substantially hemispherical projections and an anion exchange membrane 12 having a large number of substantially hemispherical projections.
  • the gaps formed by the cation exchange membrane 11 and the anion exchange membrane 12 are used as a desalting chamber 14.
  • a portion of the anion exchange membrane 12 and the cation exchange membrane 11 which is located adjacent to each of the desalting chambers 14 and does not have a projection is a concentration chamber 15 for flowing concentrated water.
  • Fig. 4 shows a state in which a plurality of deionization modules 16 are arranged side by side with a space therebetween (not shown), and a cathode 1 is provided at one end of the side-by-side deionization modules 16. 9 and the anode 20 at the other end.
  • the position sandwiching the spacer described above is the enrichment chamber 15, and a cation exchange membrane, anion exchange membrane, or a non-ion-exchange membrane is provided on both outer sides of the enrichment chambers 15 at both ends as necessary.
  • a partition membrane 21 such as a diaphragm is provided, and the portions where the two electrodes 19 and 20 are separated by the partition membrane 21 are referred to as a cathode chamber 22 and an anode chamber 23, respectively.
  • Deionized water is obtained from deionized water outlet a.
  • electrolysis of water occurs at the portion where the cation exchange membrane and the anion exchange membrane are in direct contact, and contributes to the regeneration of the ion exchange membrane that has adsorbed impurity ions by ion exchange.
  • Inflow from concentrated water inlet B The concentrated water flows down each concentration chamber 15 as indicated by the dotted arrow, receives impurity ions moving through both ion exchange membranes, and flows out of the concentrated water outlet b as concentrated water in which the impurity ions are concentrated.
  • the electrode water flowing from the electrode water inlets C and D is discharged from the electrode water outlets c and d.
  • the deionized water can be continuously obtained at the same deionization rate as in the conventional electric deionized water producing apparatus.
  • the electric deionized water producing apparatus 10 of the present embodiment has a simple structure and can be produced extremely easily.
  • the deionization module 16 is compact, the size of the apparatus can be reduced. Further, the ion exchanger and the filling operation thereof can be omitted.
  • a structure is simple and can manufacture very easily. Also, since the deionization module is compact, the equipment can be downsized. Further, the ion exchanger and the filling operation thereof can be omitted.
  • the deionization module 16 is formed into a spiral form, which is loaded into a cylindrical pressure-resistant container 40, and the pressure-resistant container side and the central side of the spiral are provided with electrodes 42, 4 If it is set to 4, an electric deionized water production device with improved pressure resistance performance can be obtained, and the degree of freedom in form is significantly increased as compared with the conventional electric deionized water production device.
  • FIG. 8 shows an example in which a cation exchange membrane porous structure 51 is formed on the surface of the cation exchange membrane 11. Further, on the surface of the anion exchange membrane 12, an anion exchange membrane porous structure 52 is formed.
  • the cation exchange membrane porous structure 51 and the anion exchange membrane porous structure 52 are porous and constitute a contact portion between the two exchange membranes 11 and 12, and are connected to a flow passage through which the water to be treated flows. Has become.
  • FIG. 9 shows an example in which the cation exchange membrane porous structure 51 is formed on the surface of the cation exchange membrane 11.
  • the porous cation exchange membrane 51 is in direct contact with the anion exchange membrane 12, and this is the channel through which the water to be treated flows.
  • the electric deionized water producing apparatus is used in various industries such as a semiconductor manufacturing industry, a pharmaceutical industry, a food industry, and the like using deionized water, a power plant, a research laboratory, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

明 細 書 電気式脱イオン水製造装置 [技術分野]
本発明は、 脱イオン水を用いる半導体製造工業、 製薬工業、 食品工業等の各種 の工業あるいは発電所、 研究所等で利用される電気式脱イオン水製造装置に関す るものである。
[背景技術]
従来の電気透析装置は、 基本的にはカチオン交換膜とァニオン交換膜をスぺ一 サーを挟んで交互に複数配置し、 このスぺーサ一により脱塩室と濃縮室を形成し たュニッ 卜へ直流電流を通電することにより被処理液の脱塩及び濃縮を行ってお り、 ァニオン交換膜とカチオン交換膜とは接触していない。 また、 従来から実用 化されている電気式脱イオン水製造装置は、 基本的にはカチオン交換膜とァニォ ン交換膜で形成される隙間に、 イオン交換体として、 例えば、 ァニオン交換樹脂 層とカチオン交換樹脂の積層あるいは混合イオン交換樹脂層を充填して脱塩室と し、 当該イオン交換樹脂層に被処理水を通過させるとともに、 前記両イオン交換 膜を介して直流電流を作用させて、 両イオン交換膜の外側に流れている濃縮水中 に被処理水中のイオンを電気的に排除しながら脱イオン水を製造するものであり、 ァニオン交換膜とカチオン交換膜とは直接的には接触していない。
図 5はその従来の典型的な電気式脱ィォン水製造装置の模式断面図を示す。 図 5に示すように、 カチオン交換膜 1 0 1及びァニオン交換膜 1 0 2を離間して交 互に配置し、 カチオン交換膜 1 0 1とァニオン交換膜 1 0 2で形成される空間内 に一つおきにカチオン交換樹脂とァニオン交換樹脂の混合イオン交換樹脂 1 0 3 を充填して脱塩室 1 0 4とする。 また、 脱塩室 1 0 4のそれぞれの隣に位置する ァニオン交換膜 1 0 2とカチオン交換膜 1 0 1で形成される混合イオン交換樹脂 1 0 3を充填していない部分は濃縮水を流すための濃縮室 1 0 5とする。
また、 図 6に示すように、 カチオン交換膜 1 0 1とァニオン交換膜 1 0 2と、 その内部に充填する混合イオン交換樹脂 1 0 3 (図 6では省略) とで脱イオンモ ジュール 1 0 6を形成する。
すなわち、 内部がく り抜かれた枠体 1 0 7の一方の側にカチオン交換膜 1 0 1 を封着し、 枠体 1 0 7のくり抜かれた部分に混合イオン交換樹脂 1 0 3を充填し、 次いで、 枠体 1 0 7の他方の部分にァニオン交換膜 1 0 2を封着する。 なお、 ァ 二オン交換膜 1 0 2は比較的軟らかいものであり、 枠体 1 0 7内部に混合イオン 交換樹脂 1 0 3を充填してその両面をイオン交換膜で封着した時、 イオン交換膜 が湾曲して混合イオン交換樹脂 1 0 3の充填層が不均一となるのを防止するため、 枠体 1 0 7の空間部に複数のリブ 1 0 8を縦設するのが一般的である。
また、 図では省略するが、 枠体 1 0 7の上方部に被処理水の流入口が、 また枠 体の下方部に処理水の流出口が付設されている。
このような脱イオンモジュール 1 0 6の複数個をその間に図では省略するスぺ —サーを挟んで、 並設した状態が図 5に示されたものであり、 並設した脱イオン モジュール 1 0 6の一端側に陰極 1 0 9を配設するとともに、 他端側に陽極 1 1 0を配設する。 なお、 前述したスぺ一サ一を挟んで並設された脱イオンモジユー ル 1 0 6の間の空間が濃縮室 1 0 5であり、 また両端の濃縮室 1 0 5の両外側に 必要に応じカチオン交換膜、 ァニオン交換膜、 あるいはイオン交換性のない単な る隔膜等の仕切り膜 1 1 1を配設し、 仕切り膜 1 1 1で仕切られた両電極 1 0 9、 1 1 0が接触する部分をそれぞれ陰極室 1 1 2及び陽極室 1 1 3とする。
このような電気式脱イオン水製造装置によって脱イオン水を製造する場合、 以 下のように操作される。 すなわち、 陰極 1 0 9と陽極 1 1 0間に直流電圧を印加 し、 また被処理水流入口 Aから被処理水が流入するとともに、 濃縮水流入口 Bか ら濃縮水が流入し、 かつ電極水流入口 Cおよび Dからそれそれ電極水が流入する。 被処理水流入口 Aから流入した被処理水は実線で示した矢印のごとく各脱塩室 1 0 4を流下し、 混合イオン交換樹脂 1 0 3の充填層を通過する際に不純物イオン が除かれ、 脱イオン水が脱イオン水流出口 aから得られる。 また、 濃縮水流入口 Bから流入した濃縮水は点線の矢印で示したごとく各濃縮室 1 0 5を流下し、 両 イオン交換膜を介して移動してくる不純物イオンを受け取り、 不純物イオンを濃 縮した濃縮水として濃縮水流出口 bから流出され、 さらに電極水流入口 C及び D から流入した電極水は電極水流出口 c及び dから流出される。
上記のような操作によって被処理水中の不純物イオンは電気的に除去され、 濃 縮水中に濃縮されるので、 充填したイオン交換樹脂を薬液による再生を全く行う ことなく脱ィォン水を連続的に得ることができる。
このような従来の電気式脱ィォン水製造装置は、 通常前段に逆浸透膜装置や硬 水軟化装置を設置して使用され、 各種工業で使用する脱イオン水を極めて有効に 供給している。—
しかしながら、 従来の電気式脱イオン水製造装置は、 構造が複雑で、 製作に相 当の時間と労力を必要とする。 特に、 脱塩室を形成する脱イオンモジュールは、 充填するイオン交換体の充填と均一充填を保証するため、 空間内に複数のリブを 縦設する枠体を使用するため、 装置の形状が制限される等の問題もあった。
従って、 本発明の目的は、 従来通りの脱イオン効率を維持すると共に、 構造が 簡単で製作が容易であり、 装置形状の自由度が高い電気式脱ィオン水製造装置を 提供することにある。
[発明の開示]
かかる実情において、 本発明者は、 電気式脱イオン水製造装置における脱ィォ ンの原理に立ち戻り種々検討を行った結果、 次のような知見を得た。
①イオン交換体、 すなわちイオン交換樹脂は処理水中のイオンを吸着する目的の ために脱塩室に充填され、 一方、 イオン交換膜はイオン交換樹脂で吸着したィォ ンを濃縮室に移動させ、 濃縮室の対立イオンは脱塩室に移動させない目的に利用 されるため、 イオン交換体とイオン交換膜の両者は互いにその目的を異にするも のの、 本質的に材質は同一であること。
②イオン交換体を充填しない条件で運転すると脱イオン効率が極めて悪いこと。
③イオン交換膜とイオン交換樹脂が接触している部分は水の電気分解が起こりや すく、 ここで発生した H + イオンや O H— イオンがイオン交換樹脂を化学的に再 生していると考えられること。
このような①〜③の知見から、 脱塩室を被処理水が流通する流路を保持して力 チオン交換膜とァニオン交換膜とを接触させた構造とすれば、 従来の電気式脱ィ オン水製造装置と同様の脱ィォン効率が得られると共に構造が簡単で製作が容易 であり、 装置形状の自由度が高い装置が得られることを見出し、 本発明を完成す るに至った。
すなわち、 本発明は、 陽極と陰極の間にカチオン交換膜とァニオン交換膜を交 互に配し、 両膜の間に脱塩室と濃縮室を交互に形成した電気式脱イオン水製造装 置において、 前記脱塩室が、 当該脱塩室の一方から他方に被処理水が流通する流 路を保持して前記カチオン交換膜と前記ァニオン交換膜とを接触させることによ り形成される電気式脱ィォン水製造装置を提供するものである。
[図面の簡単な説明]
図 1は、 本発明におけるァニオン交換膜とカチオン交換膜の接触状態の一部を 示す模式断面図を示す。
図 2は、 本発明におけるァニオン交換膜とカチオン交換膜の他の接触状態の一 部を示す模式断面図を示す。
図 3は、 本発明の電気式脱イオン水製造装置に用いられる脱イオンモジュール の組立て図を示す。
図 4は、 本発明の実施の形態における電気式脱イオン水製造装置の模式断面図 を示す。
図 5は、 従来の電気式脱イオン水製造装置の模式断面図を示す。
図 6は、 従来の電気式脱イオン水製造装置に用いられる脱イオンモジュールの 組立図を示す。
図 7は、 本発明におけるスパイラル形式の脱ィオンモジュールを用いた例を示 す模式図である。 ―
図 8は、 本発明におけるァニオン交換膜とカチオン交換膜の接触状態の一部の 他の例を示す模式断面図を示す。
図 9は、 本発明におけるァニオン交換膜とカチオン交換膜の接触状態の一部の さらに他の例を示す模式断面図を示す。
[符号の説明] 8 9 突起部
1 0 電気式脱イオン水製造装置
1 1 1 0 1 カチオン交換膜
1 2 1 0 2 ァニオン交換膜
1 4 1 0 4 脱塩室
1 5 1 0 5
1 6 1 0 6 脱イオンモジュール
1 9 1 0 9
2 0 1 2 0
2 1 1 1 1 仕切り膜
2 2 1 1 2
2 3 1 1 3
5 1 カチオン交換膜多孔構造部
5 2 ァニオン交換膜多孔構造部
1 0 7 枠体
1 0 8 リブ
A 被処理水流入口
B 濃縮水流入口
D 電極水流入口
a 脱イオン水流出口
b 濃縮水流出口
c、 d 電極水流出口
[発明を実施するための最良の形態]
本発明の電気式脱イオン水製造装置の脱塩室は、 当該脱塩室の一方から他方に 被処理水が流通する流路を保持して前記カチオン交換膜と前記ァニオン交換膜と を接触させ形成されたものであれば、 特に制限されず、 イオン交換体を充填する ことなく形成される。 当該被処理水の流路を保持したカチオン交換膜又はァニォ ン交換膜 (以下、 両者を単に 「イオン交換膜」 ということもある。 ) としては、 例えば、 表面近傍を多孔構造に加工したイオン交換膜、 表面に無数の繊維状の突 起を形成するイオン交換膜、 不織布状の表面を有するイオン交換膜、 多数の突起 部を形成するイオン交換膜等が挙げられる。 これら特定の表面構造は、 カチオン 交換膜及びァニオン交換膜の双方の脱塩室側の表面に形成するものであっても、 また、 カチオン交換膜及びァニォン交換膜の一方の脱塩室側の表面に形成するも のであってもよい。 また、 カチオン交換膜又はァニオン交換膜の濃縮側の表面は、 前記特定構造又は突起部があっても無くてもよい。
また、 前記多数の突起部を形成するイオン交換膜の場合、 当該突起部の形状と しては、 特に制限されず、 例えば、 略半球状、 半球状、 円錐状等の突起物;断面 が半球状、 円錐状等の直線状、 渦巻き状、 不定形模様状の突状物等が挙げられる。 突起部の高さとしては、 約 l ~ 3 mmの範囲が好ましい。 また、 突起部は、 前記突 起物の場合、 9〜2 5個/ cm2 形成することが好ましく、 前記突状物の場合、 溝 幅を突起物断面幅の 1 . 0〜 1 . 5倍の範囲とすることが好ましい。
前記多孔構造の表面、 不織布状の表面及び無数の繊維状の突起を有する表面を 形成する方法としては、 特に制限されず、 従来から使用されているイオン交換膜 の表面に前記多孔構造又は突起等を形成するイオン交換膜を接着剤等で固定する 貼り合わせ法、 熱可塑性高分子を用いた加熱成型の場合は成型時に多孔構造や突 起を形成する一体形成法等が挙げられる。
また、 表面に多数の突起部を形成するイオン交換膜の場合、 その形成方法とし ては、 特に制限されず、 例えば、 不均質膜の場合、 膜内に粒状のイオン交換体を 混入させ、 該イオン交換体の形状を利用し、 イオン交換膜表面を突起させて製膜 する方法及びこの方法により一旦製膜した後、 イオン交換体以外の部分を削り取 る方法等が挙げられる。 また、 半均質膜又は均質膜の場合、 膜の支持体に用いる ォレフィン樹脂や塩化ビニル樹脂製のネッ 卜に予め凹凸を形成させたものを用い て突起物を形成する方法、 塊状重合による製膜の場合、 塊状物から切り出す際に 凹凸を付ける方法、 熱可塑性高分子を用いた加熱成形法やペースト法の場合、 成 形時に凹凸を付ける方法及びイオン交換膜を製膜後に一部を削り取る方法等が挙 げられる。 また、 前記カチオン交換膜とァニオン交換膜との接触形態としては、 特に制限 されず、 前記の如く、 多孔構造、 突起又は突起部が形成されたカチオン交換膜と ァニオン交換膜の表面同士を単に当接させるだけでよい。 これにより、 カチオン 交換膜とァニオン交換膜の接触界面及び表面近傍に空隙が形成され、 被処理水が 流通する流路が保持される。
前記多数の突起部を形成するイオン交換膜の場合、 その接触形態としては、 前 記カチオン交換莫とァ二オン交換膜との接触により形成される脱塩室の被処理水 の流路となる空隙の確保及び脱イオン効率等の点から適宜選択すればよいが、 特 に、 突起部と他方の膜の溝部を接触させることが好ましい。 例えば、 突起部の形 状が半球状であれば、 図 1に示すように、 カチオン交換膜 1 1の突起部 9がァニ オン交換膜 1 2の溝部 7に、 ァニオン交換膜 1 2の突起部 8がカチオン交換膜 1 1の溝部 6にそれぞれ相対するように当接させればよい。 この場合、 突起部 8、 9の頂部と溝部 6、 7の底面部との接触は、 一部であってもよいが、 実質的に全 突起部の頂部が溝部底面部と接触させることが好ましい。 また、 ァニオン交換膜 1 2が突起部を形成しない場合には、 図 2に示すように、 カチオン交換膜 1 1の 突起部 9をァニオン交換膜 1 2に当接させればよい。
本発明において、 カチオン交換膜とァニオン交換膜との接触により形成される 脱塩室の空隙率としては、 特に制限されないが、 表面近傍を多孔構造に加工した イオン交換膜及び不織布の表面を有するイオン交換膜の場合、 両イオン交換膜が 占有する容積に対して、 約 3〜5 0 %程度とすることが好ましい。 また、 前記多 数の突起部を有するイオン交換膜の場合、 脱塩室の空隙率としては、 脱塩室の全 容積に対して、 図 1及び図 2のカチオン交換膜 1 1とァニオン交換膜 1 2で形成 される隙間 (空白部分) の割合をいい、 具体的には、 3 0〜8 0 %の範囲とする のが好ましい。
本発明において、 脱塩室を形成する脱イオンモジュールは、 例えば、 図 3に示 すように、 脱塩室側の表面に多数の突起部 9を形成したカチオン交換膜 1 1とァ 二オン交換膜 1 2 (ァニオン交換膜 1 2の表面突起部は図では見えない) とで形 成される。 また、 脱イオンモジュールの形態としては、 種々の形態を採ることが でき、 例えば、 スパイラル状の形態とすることもできる。 本発明の電気式脱イオン水製造装置の脱塩室は、 前記表面が特定構造を有する カチオン交換膜とァニオン交換膜とを接触させることにより形成され、 この脱塩 室の空隙に被処理水を通過させるとともに、 前記両イオン交換膜を介して直流電 流を作用させて、 両イオン交換膜の外側に流れている濃縮水中に被処理水中のィ オンを電気的に排除しながら脱イオン水を製造するものである。
図 4は本発明の実施の形態における電気式脱イオン水製造装置の模式断面図を 示す。 図 4に示すように、 多数の略半球状の突起を有するカチオン交換膜 1 1及 び多数の略半球状の突起を有するァニオン交換膜 1 2を嵌め合うように接触させ て形成した脱イオンモジュール 1 6を離間して交互に配置し、 カチオン交換膜 1 1とァニオン交換膜 1 2で形成される空隙内を脱塩室 1 4とする。 なお、 脱塩室 1 4のそれぞれの隣に位置するァニオン交換膜 1 2とカチオン交換膜 1 1で形成 される突起部を形成しない部分は濃縮水を流すための濃縮室 1 5とする。
図 4は脱イオンモジュール 1 6の複数個をその間に図では省略するスぺ一サ一 を挟んで、 並設した状態のものであり、 並設した脱イオンモジュール 1 6の一端 側に陰極 1 9を配設するとともに、 他端側に陽極 2 0を配設する。 なお、 前述し たスぺーサーを挟んだ位置が濃縮室 1 5であり、 また両端の濃縮室 1 5の両外側 に必要に応じカチオン交換膜、 ァニオン交換膜、 あるいはイオン交換性のない単 なる隔膜等の仕切り膜 2 1を配設し、 仕切り膜 2 1で仕切られた両電極 1 9、 2 0が接触する部分をそれぞれ陰極室 2 2及び陽極室 2 3とする。
このような電気式脱イオン水製造装置によって脱イオン水を製造する場合、 以 下のように操作される。 すなわち、 陰極 1 9と陽極 2 0間に直流電圧を印加する。 これによつて、 陰極 1 9と陽極 2 0の間に電流が流れる。 また、 被処理水流入口 Aから被処理水が流入するとともに、 濃縮水流入口 Bから濃縮水が流入し、 かつ 電極水流入口 Cおよび Dからそれぞれ電極水が流入する。 被処理水流入口 Aから 流入した被処理水は実線で示した矢印のごとく各脱塩室 1 4を流下し、 突起部の 接触によって形成される流路を通過する際に不純物イオンが除かれ、 脱イオン水 が脱イオン水流出口 aから得られる。 また、 カチオン交換膜とァニオン交換膜が 直接接触する部分では水の電気分解が発生して、 不純物ィオンをイオン交換作用 により吸着したイオン交換膜の再生に寄与する。 また、 濃縮水流入口 Bから流入 した濃縮水は点線の矢印で示したごとく各濃縮室 1 5を流下し、 両イオン交換膜 を介して移動してくる不純物イオンを受け取り、 不純物イオンを濃縮した濃縮水 として濃縮水流出口 bから流出され、 さらに電極水流入口 C及び Dから流入した 電極水は電極水流出口 c及び dから流出される。
上記のような操作によって被処理水中の不純物イオンは電気的に除去されるの で、 従来の電気式脱ィォン水製造装置と同様の脱ィオン率で脱ィォン水を連続的 に得ることができる。 また、 本実施の形態の電気式脱イオン水製造装置 1 0は構 造が簡単であり、 極めて容易に製作することができる。 また、 脱イオンモジユー ル 1 6がコンパクトであるため装置が小型化できる。 また、 イオン交換体及びそ の充填作業を省略できる。
本発明の電気式脱イオン水製造装置によれば、 構造が簡単であり、 極めて容易 に製作することができる。 また、 脱イオンモジュールがコンパクトであるため装 置が小型化できる。 また、 イオン交換体及びその充填作業を省略できる。
また、 図 7に模式的に示すように、 脱イオンモジュール 1 6をスパイラル形態 とし、 これを円筒形の耐圧容器 4 0に装填し、 耐圧容器側とスパイラルの中心部 側を電極 4 2、 4 4とすれば、 耐圧性能を高めた電気式脱イオン水製造装置とす ることができ、 従来の電気式脱イオン水製造装置に比して、 形態の自由度が著し く高まる。
さらに、 図 8に示したのは、 カチオン交換膜 1 1の表面にカチオン交換膜多孔 構造部 5 1が形成された例である。 また、 ァニオン交換膜 1 2の表面には、 ァニ オン交換膜多孔構造部 5 2が形成されている。 カチオン交換膜多孔構造部 5 1及 びァニオン交換膜多孔構造部 5 2は多孔質であり、 両交換膜 1 1、 1 2の接触部 分を構成すると共に、 被処理水の流通する流路となっている。
また、 図 9に示したのは、 カチオン交換膜 1 1の表面にカチオン交換膜多孔構 造部 5 1が形成された例である。 そして、 このカチオン交換膜多孔構造部 5 1は、 直接ァニオン交換膜 1 2に接触しており、 かっここがカチオン交換膜多孔構造部 5 1が被処理水の流通する流路となっている。
[産業上の利用可能性] 本発明にかかる電気式脱イオン水製造装置は、 脱イオン水を用いる半導体製造 工業、 製薬工業、 食品工業等の各種の工業あるいは発電所、 研究所等で利用され る。

Claims

請求の範囲
1 . 陽極と陰極の間にカチオン交換膜とァニオン交換膜を交互に配し、 両膜の間 に脱塩室と濃縮室を交互に形成した電気式脱イオン水製造装置において、 前記脱塩室が、 当該脱塩室の一方から他方に被処理水が流通する流路を保持し て前記カチオン交換膜と前記ァニオン交換膜とを接触させることにより形成され る電気式脱ィオン水製造装置。
2 . 請求項 1に記載の装置において、
前記カチオン交換膜及び/又は前記ァニオン交換膜の表面に多数の突起部を形 成し、 当該カチオン交換膜と当該ァニオン交換膜を接触させ、 両イオン交換膜が 接触しない部分を被処理水が流通する流路とした電気式脱イオン水製造装置。
3 . 請求項 2に記載の装置において、
前記突起部は、 半球状である電気式脱イオン水製造装置。
4 . 請求項 2または 3に記載の装置において、
前記突起部は、 カチオン交換膜及び前記ァニオン交換膜の両方の表面に形成さ れ、
カチオン交換膜に形成された突起部の頂部が、 ァニオン交換膜の突起部が形成 されていない領域に接触し、
ァニオン交換膜に形成された突起部の頂部が、 カチオン交換膜の突起部が形成 されていない領域に接触する電気式脱イオン水製造装置。
5 . 請求項 2または 3に記載の装置において、
前記突起部は、 カチオン交換膜及び前記ァニオン交換膜のいずれか一方の表面 に形成され、
カチオン交換膜またはァニオン交換膜のいずれか一方に形成された突起部の頂 部が、 他方の交換膜の表面に接触する電気式脱イオン水製造装置。
6 . 請求項 1に記載の装置において、
前記カチオン交換膜及び/又は前記ァニオン交換膜の少なくとも表面部分が多 孔質構造とされており、 この多孔質構造の部分においてカチオン交換膜と当該ァ 二オン交換膜を接触させるとともに、 被処理水を流通させる電気式脱イオン水製
PCT/JP1998/004763 1997-10-21 1998-10-21 Appareil permettant de produire electriquement de l'eau desionisee WO1999020567A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU96451/98A AU9645198A (en) 1997-10-21 1998-10-21 Apparatus for electrically producing deionized water
CA002275471A CA2275471C (en) 1997-10-21 1998-10-21 Electrodeionization water producing apparatus
US09/331,256 US6436264B1 (en) 1997-10-21 1998-10-21 Apparatus for electrically producing deionized water

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/306511 1997-10-21
JP30651197 1997-10-21
JP31594497 1997-10-31
JP9/315944 1997-10-31

Publications (1)

Publication Number Publication Date
WO1999020567A1 true WO1999020567A1 (fr) 1999-04-29

Family

ID=26564753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004763 WO1999020567A1 (fr) 1997-10-21 1998-10-21 Appareil permettant de produire electriquement de l'eau desionisee

Country Status (4)

Country Link
US (1) US6436264B1 (ja)
AU (1) AU9645198A (ja)
CA (1) CA2275471C (ja)
WO (1) WO1999020567A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1364709A3 (en) * 2002-05-15 2004-01-14 Organo Corporation Electrodeionization deionized water producing apparatus
EP1540039A4 (en) * 2002-09-12 2007-01-03 Ionics EDI DEVICE AND METHOD WITH A MEDIUM MEDIUM

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190528B1 (en) 1998-03-19 2001-02-20 Xiang Li Helical electrodeionization apparatus
JP2001344169A (ja) * 2000-06-01 2001-12-14 Internatl Business Mach Corp <Ibm> ネットワークシステム、サーバ、ウェブサーバ、ウェブページ、データ処理方法、記憶媒体及びプログラム伝送装置
US7029563B2 (en) * 2002-07-30 2006-04-18 Zhejiang Omex Environmental Engineering Ltd. EDI device with composite electrode
US7097752B2 (en) * 2002-07-30 2006-08-29 Zhejiang Omex Environmental Engineering, Ltd. EDI device with resin seepage-proof inserts
US7097753B2 (en) * 2002-07-30 2006-08-29 Zhejiang Omex Environmental Engineering Ltd. Dilute support frame for an EDI device
KR101161884B1 (ko) * 2003-10-20 2012-07-03 지이 이오닉스 인코포레이티드 나선형 전기 탈이온화 장치 및 그의 구성요소
KR100723424B1 (ko) * 2006-04-07 2007-05-30 삼성전자주식회사 세포 또는 바이러스의 농축 및 용해용 미세유동장치 및방법 및 상기 미세유동장치의 제조 방법
CA3186394A1 (en) 2010-10-22 2012-04-26 Ionic Solutions Ltd. Apparatus and process for separation and selective recomposition of ions
US8671985B2 (en) 2011-10-27 2014-03-18 Pentair Residential Filtration, Llc Control valve assembly
US8961770B2 (en) 2011-10-27 2015-02-24 Pentair Residential Filtration, Llc Controller and method of operation of a capacitive deionization system
US9637397B2 (en) 2011-10-27 2017-05-02 Pentair Residential Filtration, Llc Ion removal using a capacitive deionization system
US9010361B2 (en) 2011-10-27 2015-04-21 Pentair Residential Filtration, Llc Control valve assembly
US9695070B2 (en) 2011-10-27 2017-07-04 Pentair Residential Filtration, Llc Regeneration of a capacitive deionization system
JP6456827B2 (ja) 2012-08-27 2019-01-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 改良型の電気脱イオンモジュールおよび装置
CA2916613C (en) 2013-06-25 2020-02-11 Ionic Solutions Ltd. Process and apparatus for osmotic flow control in electrodialysis systems
GB201401308D0 (en) 2014-01-27 2014-03-12 Fujifilm Mfg Europe Bv Process for preparing membranes
US10384919B2 (en) * 2014-11-25 2019-08-20 Troy L. Deal Mobile bottling, packaging and distribution system
RU2712599C1 (ru) * 2019-07-09 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Электробаромембранный аппарат комбинированного типа
CN116675376B (zh) * 2023-06-15 2024-03-12 艾培克环保科技(上海)有限公司 一种丙烯酸丁酯废水的处理设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543826B1 (ja) * 1968-05-10 1979-02-27
JPS60235608A (ja) * 1984-05-09 1985-11-22 Asahi Chem Ind Co Ltd 電気透析装置
JPH07100391A (ja) * 1993-10-05 1995-04-18 Ebara Corp 電気再生式連続イオン交換装置とその使用方法
JPH07236889A (ja) * 1993-04-21 1995-09-12 Nippon Rensui Kk 純水製造装置
JPH10235358A (ja) * 1997-02-28 1998-09-08 Japan Organo Co Ltd 電解水製造装置及び電解水製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH586059A5 (ja) * 1974-11-29 1977-03-31 Yeda Res & Dev
JPS543826A (en) 1977-06-11 1979-01-12 Yutaka Kitahara Method of forming concrete block by using supplied presseddmaterial

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543826B1 (ja) * 1968-05-10 1979-02-27
JPS60235608A (ja) * 1984-05-09 1985-11-22 Asahi Chem Ind Co Ltd 電気透析装置
JPH07236889A (ja) * 1993-04-21 1995-09-12 Nippon Rensui Kk 純水製造装置
JPH07100391A (ja) * 1993-10-05 1995-04-18 Ebara Corp 電気再生式連続イオン交換装置とその使用方法
JPH10235358A (ja) * 1997-02-28 1998-09-08 Japan Organo Co Ltd 電解水製造装置及び電解水製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1364709A3 (en) * 2002-05-15 2004-01-14 Organo Corporation Electrodeionization deionized water producing apparatus
EP1540039A4 (en) * 2002-09-12 2007-01-03 Ionics EDI DEVICE AND METHOD WITH A MEDIUM MEDIUM

Also Published As

Publication number Publication date
US6436264B1 (en) 2002-08-20
CA2275471A1 (en) 1999-04-29
CA2275471C (en) 2009-08-25
AU9645198A (en) 1999-05-10

Similar Documents

Publication Publication Date Title
WO1999020567A1 (fr) Appareil permettant de produire electriquement de l&#39;eau desionisee
EP0984998B1 (en) Bipolar membranes with fluid distribution passages
KR100980989B1 (ko) 전기식 탈이온수 제조 장치
AU2011326389B2 (en) Electrical purification apparatus
EP0660747A1 (en) MODULES FOR ELECTROENTIONIZING DEVICE.
US20080078672A1 (en) Hybrid Capacitive Deionization and Electro-Deionization (CDI-EDI) Electrochemical Cell for Fluid Purification
JP5015990B2 (ja) 電気式脱イオン水製造装置
JP3729386B2 (ja) 電気式脱イオン水製造装置
JP4107750B2 (ja) 脱塩室構造体及び電気式脱イオン液製造装置
JP2010227730A (ja) 電気式脱イオン水製造装置の製造方法
JP2001321773A (ja) 電気式脱イオン水製造装置及び脱イオン水製造方法
JP3532032B2 (ja) 電気式脱イオン水製造装置
AU738488B2 (en) Purification of a liquid stream
KR101408086B1 (ko) 탈이온 장치
JP2003039070A (ja) 脱塩水製造装置及び脱塩水製造方法
MXPA99005767A (en) Apparatus for electrically producing deionized water
JP2000237750A (ja) 電気再生式脱塩モジュールおよび電気再生式脱塩装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS KE KG KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2275471

Country of ref document: CA

Ref country code: CA

Ref document number: 2275471

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/005767

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09331256

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase