[go: up one dir, main page]

WO1999029035A1 - Method for controlling turn-on/off of motor preheater and motor preheater - Google Patents

Method for controlling turn-on/off of motor preheater and motor preheater Download PDF

Info

Publication number
WO1999029035A1
WO1999029035A1 PCT/JP1998/005315 JP9805315W WO9929035A1 WO 1999029035 A1 WO1999029035 A1 WO 1999029035A1 JP 9805315 W JP9805315 W JP 9805315W WO 9929035 A1 WO9929035 A1 WO 9929035A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
preheating
turned
power supply
switching elements
Prior art date
Application number
PCT/JP1998/005315
Other languages
English (en)
French (fr)
Inventor
Yoriyuki Takekawa
Mitsuo Hagiwara
Original Assignee
Zexel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corporation filed Critical Zexel Corporation
Publication of WO1999029035A1 publication Critical patent/WO1999029035A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/02Details of starting control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor

Definitions

  • the present invention relates to, for example, a preheating device for an electric motor used for driving a compressor of an air conditioner, and more particularly to a device for improving the preheating efficiency.
  • the compressor is heated in advance from the viewpoint of preventing the compressor cooled by the ambient temperature from being damaged by the liquid refrigerant generated by cooling at the start-up during heating.
  • a motor that has a motor integrated with a compressor
  • power is supplied to the excitation coil of the motor to apply preheating.
  • An object of the present invention is to provide an energization control method and a motor preheating device in a motor preheating device that can perform sufficient preheating with a minimum current consumption and that have high power efficiency. Is to do.
  • Another object of the present invention is to provide an energization control method and a motor preheating device in a motor preheating device capable of performing preheating with high power efficiency while minimizing the loss of a switching element.
  • Still another object of the present invention is to provide a method for controlling power supply in a motor preheating device and a motor preheating device that can reduce the burden of so-called heat radiation design. Disclosure of the invention
  • a switching element is bridge-connected between a power supply and a ground, and a power supply control is performed in a motor preheating device configured to supply power to a stationary coil of a motor for driving a compressor.
  • a switching element having one end connected to the power supply side, and one of the switching elements having one end connected to the ground side at the same time as turning on and off at a predetermined repetition cycle for a predetermined time.
  • the two switches are turned on for the predetermined time, and thereafter, the corresponding switching elements are repeatedly controlled in the same manner as described above so that the current flowing through the coils is reversed.
  • a control method is provided.
  • the switching element is bridge-connected between the power supply and the ground, so that power is supplied to the motor coil for driving the compressor. Control in a preheated motor preheating device
  • One of a plurality of switching elements connected in series between the power supply and the ground is turned on and off at a predetermined repetition cycle, and the other switching element is turned on during this period.
  • such a method replaces the conventional operation control in which one switching element is repeatedly turned on and off for a predetermined time, and after a certain time, is again turned off and off for the same predetermined time, instead of a conventional operation control.
  • the number of switching operations per unit time is reduced, and so-called switching loss is reduced while high efficiency is achieved.
  • Preheating can be performed.
  • a switching element is connected by a plug between the power supply and the ground, and energizing means for energizing a stator coil of a motor driving the compressor,
  • a motor preheating device comprising: a control unit that controls operation of the energizing unit.
  • the control means turns on and off one of the switching elements, one end of which is connected to the power supply side, at a predetermined repetition cycle for a predetermined time, and at the same time, one of the switching elements, one end of which is connected to the ground side.
  • An electric motor configured to repeatedly turn on the corresponding switching elements in the same manner as described above so that the two are turned on for the predetermined time, and thereafter the current flowing through the coil is in the opposite direction.
  • a preheating device is provided.
  • control means can be realized by, for example, executing a so-called software by a microcomputer.
  • This The switching element that is turned on and off is periodically changed by the control of the energizing means by such a control means as described above, and the current direction of the stay coil is periodically changed to the opposite direction.
  • power efficiency is improved by generating heat due to hysteresis loss.
  • the switching element is connected by a bridge between the power supply and the ground, and energizing means for energizing the stay coil of the motor driving the compressor,
  • a motor preheating device comprising: a control unit that controls operation of the energizing unit.
  • the control means simultaneously turns on any two of the switching elements having one end connected to the ground side for a predetermined time, and switches any one of the switching elements having one end connected to the power supply side.
  • the on state is maintained for a predetermined time shorter than the predetermined time, and thereafter, the control of the corresponding switching element in the same manner as described above is repeated so that the current flowing through the stay coil is in the opposite direction.
  • An electric motor preheating device is provided.
  • control means can be realized by, for example, execution of so-called software by a microcomputer.
  • the combination of the switching elements is periodically changed so that the direction of the current of the stay coil is periodically reversed, and furthermore, the on / off of the switching elements is performed.
  • the power efficiency is improved by not only generating heat due to the so-called resistance loss, but also generating heat due to hysteresis loss, and the switching loss of the switching element is reduced.
  • Heating amount determining means for setting an energizing period based on a signal about the atmosphere of the compressor inputted from outside;
  • a drive element for bridge-connecting a switching element between a power supply and a ground to energize a coil of a motor for driving the compressor, and outputs of the preheating determination means and the heating amount determination means;
  • a preheating signal generating means for controlling the operation of the driving means based on the signal;
  • the preheating signal generating means is configured such that one of a plurality of switching elements connected in series between the power supply and the ground is turned on and off at a predetermined repetition cycle, and during the other, An electric motor preheating device configured to control the operation of the driving means so that the switching element is turned on.
  • the preheating determination unit, the heating amount determination unit, and the preheating signal generation unit include, for example, a so-called software using a microcomputer. This can be achieved by executing a to-air.
  • the number of times of switching of the switching element is reduced, and so-called switching loss is reduced, and preheating with high power efficiency can be performed.
  • the preheating determination means for determining whether or not the preheating is necessary based on a signal regarding the atmosphere of the compressor input from the outside, and the atmosphere of the compressor input from the outside.
  • Heating amount determining means for setting an energizing period based on a signal related to
  • a drive unit that bridges a switching element between the power supply and the ground to energize a stationary coil of a motor that drives the compressor;
  • a preheating signal generating unit that controls the operation of the driving unit based on each output signal of the preheating determining unit and the heating amount determining unit,
  • an overcurrent detecting means for detecting that the current of the motor driving the compressor has reached the overcurrent value is provided.
  • the preheating signal generating means is configured so that the time until the overcurrent detection means detects that the current of the current reaches the overcurrent value is set as the on time of the switching element that is turned on and off.
  • An electric motor preheating device is provided.
  • the on-time of the switching element that is turned on and off is set within a range where the current of the motor does not become an overcurrent, so that preheating can be performed efficiently without consuming excessive power. You can do it.
  • FIG. 1 is a configuration diagram illustrating a first configuration example of a motor preheating device according to an embodiment of the present invention.
  • FIG. 2 is a main flowchart illustrating a control operation of the motor preheating device according to the embodiment of the present invention.
  • FIG. 3 is a subroutine flowchart illustrating a more specific control procedure of the preheating energization process shown in FIG.
  • FIG. 4 is a timing chart showing the timing of the main part in the energization control for preheating in the first configuration example, and FIG. 4 (A) shows the first transformer.
  • 4 (B) is a timing chart showing the operation state of the second transistor
  • FIG. 4 (C) is a timing chart showing the operation state of the third transistor
  • FIG. D) is a timing chart showing the operating state of the fourth transistor
  • FIG. 4 (E) is a timing chart showing the operating state of the fifth transistor
  • FIG. 4 (F) is a timing chart showing the operating state of the sixth transistor FIG.
  • FIG. 6 is a timing chart showing the timing of the main part in the energization control for preheating in the second configuration example
  • FIG. 6 (A) is a timing chart showing the operation state of the first transistor
  • FIG. 6 (B) is a timing chart showing the operation state of the second transistor
  • FIG. 6 (C) is a timing chart showing the operation state of the third transistor
  • FIG. 6 (D) is an operation state of the fourth transistor.
  • FIG. 6E is a timing chart showing the operation state of the fifth transistor
  • FIG. 6F is a timing chart showing the operation state of the sixth transistor
  • FIG. FIG. 6 is a timing chart showing the state of the power supply current of FIG.
  • FIG. 7 is a configuration diagram showing a configuration of a motor preheating device in a third configuration example.
  • FIG. 9 is a configuration diagram functionally showing a configuration example of a motor preheating device in a fourth configuration example.
  • FIG. 10 is a timing chart showing the timing of the main part in the energization control for preheating in the fourth configuration example
  • FIG. 10 (A) is a timing chart showing the operation state of the first transistor
  • FIG. 10 (B) is a timing chart showing the operation state of the fifth transistor
  • FIG. 10 (C) is a timing chart showing the operation states of the second to fourth transistors and the sixth transistor
  • 10 (D) is a timing chart showing the state of the power supply current over time.
  • FIG. 11 is a configuration diagram functionally showing a configuration example of a motor preheating device in a fifth configuration example.
  • FIG. 12 is a timing chart showing the timing of the main part in the energization control for preheating in the fifth configuration example
  • FIG. 12 (A) is a timing chart showing the operation state of the first transistor
  • FIG. 12 (B) is a timing chart showing the operation state of the fifth transistor
  • FIG. 12 (C) is a timing chart showing the operation state of the second to fourth transistors and the sixth transistor
  • FIG. 12D is a timing chart showing the state of the power supply current of the motor.
  • This electric motor preheating device is roughly divided into an energization drive unit 1, a drive control unit (denoted as “DRC” in FIG. 1) 2, and a microcomputer 3. This is for controlling the operation of an electric motor provided integrally with a compressor used for a vehicle air conditioner (not shown). As the electric motor, for example, a brushless motor 4 is used.
  • the brushless motor 4 is composed of a low-speed motor 5 using permanent magnets, three stages of U, V, and W phase coils 6a to 6c, and It is a well-known and well-known device having three hall elements 7 a to 7 c appropriately arranged around evening 5 as main components.
  • the first to third stay coils 6 a to 6 c are so-called Y-connected and connected to an energization driving unit 1, which will be described later, and the energization driving unit 1 performs known and known energization control. It is like that.
  • the energization drive unit 1 has six switching elements connected in a so-called three-phase bridge connection to the first to third stay coils 6 a to 6 c, and receives a control signal from the drive control unit 2. Accordingly, each switching element is so-called turned on / off, whereby the DC power from the DC power supply 8 is converted into AC power, and the first to third stay coils 6a to 6c are turned on. A so-called circuit for overnight circuit supplied to 6 c is configured. That is, the energization drive unit 1 has six npn-type first to sixth transistors 10 to 15 as switching elements as main components, and these first to sixth transistors 10 to 15 are so-called switching elements. It is a three-phase bridge connected.
  • the collectors of the first to third transistors 10 to 12 are connected to the positive side of the DC power supply 8 and the respective collectors of the fourth to sixth transistors 13 to 15.
  • the first transistor 10 and the fourth transistor 13 are connected to the second transistor 11 and the fifth transistor 14 and the third power so that the current is on the negative side of the DC power supply 8.
  • the transistor 12 and the sixth transistor 15 are connected in series.
  • One end of the first stage coil 6a is connected to the mutual connection point of the first and fourth transistors 10 and 13, and the second and fifth transistors 11 and 14 are connected to each other.
  • One end of the second stationary coil 6b is connected to the mutual connecting point, and the third stationary coil 6c is connected to the connecting point of the third and sixth transistors 12 and 15. Are connected to each other.
  • reflux diodes 16a to 16f are connected to the first to sixth transistors 10 to 15 in parallel between the collector and the emitter, respectively.
  • Each of the bases of the first to sixth transistors 10 to 15 is connected to the output stage of the energization driving unit 1, and a pulse for driving the first to sixth transistors 10 to 15 is provided.
  • the signal is applied by the energization driver 1.
  • the drive control unit 2 generates and outputs a pulse signal to the first to sixth transistors 10 to 15 of the energization drive unit 1 according to a control signal from the microcomputer 3. Things.
  • the microcomputer 3 is a well-known IC-known device. Any environment signal (details will be described later) and the output signals of the first to third Hall elements 7a to 7c are input, and as will be described later, power is supplied through the drive control unit 2 based on these input signals. The operation of the drive unit 1 is controlled.
  • the environmental signal is a signal that can determine various weather conditions in which a compressor (not shown) is placed. Specifically, for example, the outside air temperature, the vehicle interior temperature, the compressor temperature, etc. It is preferable to use.
  • These sensors use the output signals of the sensors for acquiring data, which are already provided in a vehicle air conditioner (not shown), so that there is no need to provide a new sensor and input. Things.
  • an environmental signal is detected, that is, the environmental signal such as the outside air temperature and the vehicle interior temperature is read into the microcomputer 3 as described above. (See step 100 in Figure 2).
  • step 110 in FIG. 2 it is determined whether or not it is time to start preheating based on a predetermined criterion using the environmental signal (see step 110 in FIG. 2), and if it is determined that it is the time to start preheating (YES) In this case, the preheating energization process, which will be described in detail later, is performed (see step 120 in FIG. 2).
  • an environmental signal is detected again in the same manner as in the previous step 100 (see step 140 in FIG. 2), and it is determined based on the environmental signal whether the preheating end time has come. Then, (see step 150 in FIG. 2), if it is determined that the preheating end time is reached (in the case of YES), the preheating energizing process is ended. On the other hand, if it is determined that it is not time to end preheating (in the case of N ⁇ ), the process returns to step 120 and the preheating energization process is repeated and continued.
  • the preheating energizing process will be described more specifically with reference to FIGS. 3 to 5.
  • the microcomputer 3 drives the U-phase so that current flows from the U-phase to each of the V and W phases.
  • the control of the energizing drive unit 1 is performed via the control unit 2 (see steps 122 in FIG. 3).
  • the fifth and sixth transistors 14 and 15 are turned on, and the first transistor 10 is turned on during the first predetermined time T1. It is turned on and off at a predetermined repetition cycle (see FIGS. 4 (A), 4 (E) and 4 (F)).
  • the first stage coil 6a which is the U phase
  • the second stator coil 6b which is the V phase
  • the third stage coil which is the W phase. Current will flow to the coil 6 overnight.
  • energization drive unit 1 is driven by the microcomputer 3 via the drive control unit 2 so that current flows from the V and W phases to the U phase. It will be controlled (see steps 126 in FIG. 3).
  • the second and third transistors 11 and 12 are turned on, and the fourth transistor 13 is turned on during the third predetermined time T3. It is turned on and off at a predetermined repetition cycle (see FIGS. 4 (B) to 4 (D)).
  • the direction of the synthetic magnetic field generated when energizing in step 122 and the direction of the synthetic magnetic field generated when energizing in step 126 are the same as those in the first to third coils. Depending on the direction of the current for 6a to 6c (see Fig. 5), the direction is just the opposite.
  • the steel plate (not shown) on which the coils 6a to 6c are wound is not rotated by the power supply for the preheating, and the steel plates (not shown) on which the coils 6a to 6c are wound.
  • the electrodes are exposed to magnetic fields in opposite directions, so that a so-called hysteresis loss is generated, which also generates heat.
  • the routine After the energization for the third predetermined time T3 as described above, the first to third stay coils 6a to 6c by the energization driving unit 1 for the fourth predetermined time T4.
  • the power supply to the power supply is stopped (see FIGS. 4 (A) to 4 (F)), and then, at one end, the routine returns to the main routine described above (see FIG. 2), and preheating is still required as described above. If it is determined that there is (“NO” in step 150 of FIG. 2), the processing after step 122 described above is repeated again.
  • the suspension of energization during the second predetermined time T2 and the fourth predetermined time T4 is a protection of the switching element against a so-called circulating current, that is, the first to sixth transistors 10 to 15 It is provided for protection.
  • the first predetermined time T1> the third predetermined time T3 is set so that even if the position of the mouth 5 is slightly shifted due to a disturbance or the like, it does not rotate during the second predetermined time T2. That's why.
  • the energization drive unit 1 and the drive control unit 2 Further, the energizing means according to claim 3 is realized by the microcomputer 3 and the control means according to claim 3 is realized respectively.
  • the configuration as so-called hardware may be the configuration shown in FIG. 1 and the operation control by the microcomputer 3 is changed.
  • step 122 the first transistor 10 is turned on for the first predetermined time T1 (see FIG. 6A), while the fifth and sixth transistors 14 and 14 are turned on. 15 is also made conductive (see FIGS. 6 (E) and 6 (F)). Accordingly, this energization generates heat due to the resistance loss of the first to third stay coils 6a to 6c.
  • the first predetermined time T1 is one in which the power supply current of the brushless motor 4 is set to reach the rated current I R (see FIGS. 6 (A) and 6 (G)).
  • the first transistor 10 After the elapse of the first predetermined time T1, the first transistor 10 is turned off and the power supply is stopped for the second predetermined time T2 (steps 124 and FIG. 6 in FIG. 3). (A)). On the other hand, during the second predetermined time T2, the fifth and sixth transistors 14 and 15 are kept conductive (see FIGS. 6 (E) and 6 (F)).
  • the second predetermined time T2 is determined by the required amount of heating, and is determined by using a micro-computer using a predetermined arithmetic expression based on the environmental signal. Calculated by Compute 3
  • the energization drive unit 1 is controlled by the microcomputer 3 via the drive control unit 2 so that the current flows from the V and W phases to the U phase. (See steps 1 and 26 in Figure 3).
  • the fourth transistor 13 is turned on (see FIG. 6D), and the second and third transistors 11 and 12 are also turned on. (See Fig. 6 (B) and Fig. 6 (C)). Accordingly, this energization generates heat due to the resistance loss of the first to third coils 6a to 6c.
  • the third predetermined time T 3 is set so that the power supply current of the brushless motor 4 reaches the rated current (1 I) by the conduction of the fourth transistor 13 (FIG. 6). (D) and Fig. 6 (G)).
  • the direction of the synthetic magnetic field generated when energizing in step 122 and the direction of the synthetic magnetic field generated in energizing in step 126 are as described above in the first to third steps.
  • the reverse direction is just like the first configuration example, depending on the direction of the current to the coils 6a to 6c.
  • the mouth 5 is not rotated by the current for preheating, and the steel plate (not shown) on which the coils 6a to 6c are wound is connected to the steps 122, 122.
  • the energization by 6 results in exposure to magnetic fields in opposite directions, so that a so-called hysteresis loss is generated, which also generates heat, similarly to the first configuration example.
  • step 122 is repeated again.
  • the fourth predetermined time T4 is determined based on the required heating amount, similarly to the second predetermined time T2, and is calculated in advance based on the environmental signal. This is calculated by the microcomputer 3 using the formula.
  • the first to sixth transistors 10 are used at the first predetermined time T1 and the second predetermined time T2, respectively. Since any one of (1) to (15) is not turned on and off a plurality of times, the number of switching operations per unit time is small, and so-called switching loss is reduced.
  • the energizing means according to claim 4 is realized by the energizing drive unit 1 and the drive control unit 2, and the control means according to claim 4 is realized by the microcomputer 3. It has become.
  • the conduction period of the first transistor 10 is substantially equal to the power supply current of the brushless memory 4.
  • the difference is that the power supply current of the brushless motor 4 is set to substantially reach the overcurrent value while the current is set to reach the current, and the other components are basically the same.
  • the motor preheating device in the third configuration example includes a negative electrode of a DC power supply 8 and fourth to sixth transistors 13 to The resistor 17 for overcurrent detection is connected in series between the emitters of 15 and the fourth to sixth transistors of the resistor 17 for overcurrent detection.
  • the connection point between each of the switches 13 to 15 is connected to the input port of the microcomputer 1 and the voltage drop at the overcurrent detection resistor 17
  • the configuration is such that the overcurrent of the brushless mode 4 is determined by the 3rd mode.
  • the other components are the same as those shown in FIG. 1, and therefore, the same components will be denoted by the same reference characters, and detailed description thereof will be omitted below. Next, the operation in such a configuration will be described with reference to FIGS. 8 (A) to 8 (G).
  • step 122 the first transistor 10 is turned on for the first predetermined time T1 (see FIG. 8A), while the fifth and sixth transistors 14 and 14 are turned on. Similarly, 15 is made conductive (see FIGS. 8 (E) and 8 (F)). Therefore, this energization generates heat due to the resistance loss of the first to third stay coils 6a to 6c.
  • the first predetermined time T1 is determined when the microcomputer 3 determines that the voltage of the overcurrent detection resistor 17 has exceeded the predetermined value and is an overcurrent (see FIGS. 8A and 8B). G)), which is determined by turning off the first transistor 10.
  • the first transistor 10 After the lapse of the first predetermined time T1, the first transistor 10 is turned off and the power supply is stopped for the second predetermined time T2 (steps 124 and FIG. 8 in FIG. 3). (See (A)).
  • the fifth and sixth transistors 14 and 15 are kept conductive (see FIGS. 8E and 8F).
  • the second predetermined time T 2 is determined by the required amount of heating, and is calculated by the microcomputer 3 using a predetermined arithmetic expression based on the environmental signal. is there.
  • energization is started again.
  • the energization drive unit 1 is controlled by the microcomputer 3 via the drive control unit 2 so that current flows from each phase of V and W to the U phase. (See steps 1 and 2 in Figure 3).
  • the fourth transistor 13 is turned on (see FIG. 8D), and the second and third transistors 11 and 12 are also turned on. (See Figure 8 ( ⁇ ) and Figure 8 (C)). Accordingly, this energization generates heat due to the resistance loss of the first to third coils 6a to 6c.
  • the third predetermined time T3 is determined when the microcomputer 3 determines that the voltage of the overcurrent detection resistor 17 has exceeded the predetermined value and is an overcurrent (see FIGS. 8D and 8 G)), but it is determined by turning off the fourth transistor 13.
  • the direction of the composite magnetic field generated when energizing in step 122 and the direction of the composite magnetic field generated in energizing in step 126 are the same as those in the first to third coils described above.
  • the reverse direction is just the same as in the first configuration example, depending on the direction of the current with respect to 6a to 6c.
  • the steel plate (not shown) on which the coils 6a to 6c are wound is not rotated by the power supply for the preheating, and the steel plates (not shown) on which the coils 6a to 6c are wound.
  • a so-called hysteresis loss is generated and heat is also generated by this, as in the first configuration example.
  • step 122 After the lapse of the third predetermined time T3, during the fourth predetermined time T4, The fourth transistor 13 is turned off and the power is turned off (see FIG. 6 (D)). Meanwhile, the second and third transistors 11 and 12 are continuously turned on during this time. (See Fig. 8 (B) and Fig. 8 (C)). Then, once returning to the main routine (see FIG. 2), as described above, if it is determined that preheating is still necessary (in the case of “NO” in step 150 of FIG. 2), The processing after step 122 described above will be repeated again.
  • the fourth predetermined time T4 is determined based on the required heating amount, similarly to the second predetermined time T2, and is calculated in advance based on the environmental signal. It is calculated by microcomputer 3 using the formula.
  • the first to sixth transistors 10 are used in each of the first predetermined time T1 and the second predetermined time T2. Since any one of (1) to (15) is not turned on and off a plurality of times, the number of switching operations per unit time is small, and so-called switching loss is reduced.
  • the motor preheating device in the fourth configuration example includes a preheating determination means 20, a heating amount determining means 21, a preheating signal generating means 22, and a driving means 23, It is designed to preheat an integrated compressor.
  • the preheating determination means 20 is for inputting the environmental signal as described in the first configuration example, and for determining the necessity of preheating based on the input.
  • the heating amount determination means 21 also receives an environmental signal, and The amount of heating (heat generation) is calculated, and the energization time and energization stop time are calculated according to the amount of heating.
  • the preheating signal generating means 22 is a control signal for energizing the electric motor of the motor-integrated compressor through the driving means 23 based on the signals from the preheating determining means 20 and the heating amount determining means 21. Is to occur.
  • the driving means 23 is for actually energizing the electric motor based on the control signal from the preheating signal generating means 22.
  • a more specific configuration having such functional units is preferably, for example, a configuration as shown in FIG. 1 as shown above.
  • the preheating determining means 20, the heating amount determining means 21 and the preheating signal generating means 22 are realized by the microcomputer 3, and the driving means 23 is composed of the energizing driving section 1 and the driving control section. This is realized by 2.
  • the microcomputer 3 determines the necessity of preheating based on the environmental signal in the same manner as in the first and second configuration examples, and determines that preheating is necessary. Then, the energization as described below is started.
  • the first transistor 10 is turned on for a predetermined conduction time T ON (see FIG. 10 (A)), and thereafter, for a predetermined non-conduction time T. ! During ⁇ , the non-conducting state is repeated (see Figure 10 (A)).
  • the fifth transistor 14 is continuously turned on (see FIG. 10B). Then, the second to fourth transistors 11 to 13 and the The transistor 15 of No. 6 is turned off during this energization control (see FIG. 10 (C)).
  • the predetermined conduction time TON is set to such a time that the currents of the first and second stay coils 6a and 6b can substantially reach the rated current (FIG. 10). (D)).
  • the predetermined non-conducting time T. Fr is a time determined based on the amount of heating required for a compressor (not shown), and is set to a shorter time as the amount of heating increases. Note that this non-conduction time T.
  • the FF may be changed according to a predetermined reference based on environmental signals such as the outside air temperature and the compressor temperature.
  • the above-described energization control is stopped when it is determined that preheating is unnecessary based on the environmental signal or when the operation of the compressor is started, and the normal operation state, that is, the opening 5 It will be in a rotating state.
  • the first transistor 10 is turned on and off, and the fifth transistor 14 is turned on continuously during that time.
  • another combination of transistors may be used.
  • the first transistor 10 may be turned on and off, and the sixth transistor 15 may be continuously turned on during that time, and the second transistor 11 may be turned on and off.
  • the fourth transistor 13 may be turned on.
  • the combination of phases to be energized may be sequentially changed at predetermined time intervals. In that case, -11--As described above, preheating unevenness will be reduced as compared with the case where a specific phase is continuously energized.
  • the motor preheating device in the fifth configuration example includes a preheating determination means 20, a heating amount determining means 21, an overcurrent detecting means 24, a preheating signal generating means 22, and a driving means 2. 3 to preheat the motor-integrated compressor.
  • the other units except the overcurrent detection unit 24 have the same functions as those in the fourth configuration example shown in FIG.
  • the components are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • different points will be mainly described.
  • the overcurrent detecting means 24 is for detecting the power supply current of the electric motor, that is, the brushless motor 4, and judging that the microcomputer 3 is overcurrent.
  • a more specific configuration having such functional units is preferably a configuration as shown in FIG. 7, for example, as already shown.
  • the preheating determining means 20, the heating amount determining means 21 and the preheating signal generating means 22 are realized by the microcomputer 3, and the overcurrent detecting means 24 is provided with the overcurrent detecting resistor 1.
  • the driving means 23 is realized by the energization driving unit 1 and the driving control unit 2, respectively.
  • the microcomputer 3 determines whether or not the preheating is necessary based on the environmental signal according to the first and second configuration examples. Similarly, if it is determined that it is necessary, the energization will be started as described below.
  • the first transistor 10 is turned on for a predetermined conduction time T o (see FIG. 12 (A)), and thereafter, for a predetermined non-conduction time. T. During this time, the non-conductive state is repeated (see Fig. 12 (A)).
  • the fifth transistor 14 is continuously turned on (see FIG. 12B). Then, the second to fourth transistors 11 to 13 and the sixth transistor 15 are turned off during the energization control (see FIG. 12C).
  • the predetermined conduction time TON is a time until it is determined that the power supply current of the brushless motor 4 has substantially reached the overcurrent value (see FIG. 12 (D)).
  • the microcomputer 3 determines whether or not the voltage of the current detection resistor 17 has reached a predetermined value.
  • the predetermined non-conducting time T. , .F is a time determined based on the amount of heating required for the compressor (not shown), and is set to a shorter time as the amount of heating increases. Note that this non-conduction time T. K F may be changed according to a predetermined reference set in advance based on environmental signals such as the outside air temperature and the compressor temperature.
  • the above-described energization control is stopped when it is determined that preheating is unnecessary based on the environmental signal or when the operation of the compressor is started, and the normal operation is performed.
  • the rotating state that is, the road 5 is brought into the rotating state.
  • the first transistor 10 is turned on and off, and the fifth transistor 14 is turned on during that time.
  • the first transistor 10 may be turned on and off, and the sixth transistor 15 may be continuously turned on during that time, and the second transistor 11 may be turned on and off.
  • the fourth transistor 13 may be continuously turned on during that time.
  • the combination of phases to be energized may be sequentially changed at predetermined time intervals. In that case, the preheating unevenness is reduced as compared with the case where the specific phase is continuously energized as described above.
  • the brushless motor 4 has been described as an example of the motor. However, it is not necessary to be limited to this. It can supply power to the coil overnight.
  • the electric motor preheating device is suitable for use in preheating an electric motor integrated with a compressor constituting a so-called refrigerant cycle in an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compressor (AREA)

Description

明 細 書 電動機予熱装置における通電制御方法及び電動機予熱装置 技術分野
本発明は、 例えば、 空気調和装置の圧縮機を駆動するために用いられ る電動機の予熱装置に係り、 特に、 その予熱効率の向上を図ったものに 関する。 背景技術
従来、 空気調和装置においては、 雰囲気温度により冷却された圧縮機 が暖房時の立ち上がりに、 冷却により生じた液冷媒のために破損に至る ようなことを防止する観点等から、 圧縮機を予め加熱することが行われ ており、 特に、 圧縮機と一体化された電動機を有するものにあっては、 電動機の励磁コイルに通電を行い、 予熱を加えるようにしたものが公 知 · 周知となっている (例えば、 特公平 6 — 7 0 5 4 1号公報、 特公平 5 - 4 1 8 3 6号公報等参照) 。
しかしながら、 何れの公報に開示されたものも、 いわゆる抵抗損によ る発熱だけを利用したものであり、 消費電流に対する発熱効率が決して 良好なものとは言い難いものである。
また、 コイルへの通電方法として、 断続通電を行うようにしたものが あるが (特公平 5 — 4 1 8 3 6号公報等参照) 、 スイッチング素子の断 続制御により生ずる損失を極力軽減するようにしたものではなく、 スィ ツチング素子による損失が無視できないという問題がある。
本発明の目的は、 極力少ない消費電流で十分な予熱ができ、 電力効率 の高い電動機予熱装置における通電制御方法及び電動機予熱装置を提供 することにある。
本発明の他の目的は、 スイッチング素子の損失を極力低減しつつ、 電 力効率の高い予熱を行うことができる電動機予熱装置における通電制御 方法及び電動機予熱装置を提供することにある。
さらに、 本発明の他の目的は、 いわゆる放熱設計の負担を軽減するこ とのできる電動機予熱装置における通電制御方法及び電動機予熱装置を 提供することにある。 発明の開示
本発明によれば、 電源とアースとの間でスイッチング素子がブリッジ 接続されて、 圧縮機を駆動するモ一夕のステ一夕コィルへの通電を行う よう構成されてなる電動機予熱装置における通電制御方法であって、 一端が電源側に接続されたスィツチング素子の何れか一つを所定時間 の間に所定繰り返し周期でオン · オフさせると同時に、 一端がアース側 に接続されたスイッチング素子の何れか二つを当該所定時間の間、 オン 状態とし、 しかる後、 ステ一夕コイルに流れる電流が逆方向となるよう に対応するスィツチング素子を前記同様に制御することを繰り返し行う よう構成されてなる通電制御方法が提供される。
かかる方法においては、 特に、 オン · オフするスイッチング素子を定 期的に変えるようにすることで、 ステ一夕コイルの電流の向きが定期的 に逆方向とされるようにし、 従来のいわゆる抵抗損による発熱だけでな く、 ヒステリシス損による発熱が生ずるようにして電力効率の向上が図 られたものである。
また、 第 2の発明の形態によれば、 電源とアースとの間でスィッチン グ素子がブリ ッジ接続されて、 圧縮機を駆動するモー夕のステ一夕コィ ルへの通電を行うよう構成されてなる電動機予熱装置における通電制御 方法であって、
前記電源とアースとの間に直列接続された複数のスイッチング素子の いずれか一組のスイッチング素子について、 一方を所定の繰り返し周期 でオン ' オフすると共に、 この間、 他方のスイッチング素子をオン状態 とするよう構成されてなる通電制御方法が提供される。
かかる方法は、特に、一つのスイッチング素子を、所定時間の間オン オフを繰り返し、 一定時間の後、 再び同様な所定時間におけるオフ · ォ フを繰り返す従来のような動作制御に代えて、 一定時間オンした後、 一 定時間の駆動停止の後、 再び一定時間オンとすることを繰り返すように することで、 単位時間当たりのスイッチング回数を減らして、 いわゆる スィツチング損失の低減を図りつつ、 効率の高い予熱が行えるようにし たものである。
また、 第 3の発明の形態によれば、 電源とアースとの間でスィッチン グ素子がプリ ッジ接続されて、 圧縮機を駆動するモータのステ一タコィ ルへの通電を行う通電手段と、
前記通電手段の動作制御を行う制御手段とを具備してなる電動機予熱 装置であって、
前記制御手段は、 一端が電源側に接続されたスィツチング素子の何れ か一つを所定時間の間に所定繰り返し周期でオン 'オフさせると同時に、 一端がアース側に接続されたスィツチング素子の何れか二つを当該所定 時間の間、 オン状態とし、 しかる後、 ステ一夕コイルに流れる電流が逆 方向となるように対応するスィツチング素子を前記同様に制御すること を繰り返し行うよう構成されてなる電動機予熱装置が提供される。
かかる構成は、 第 1の発明の形態における通電制御方法を実行するの に適したものであり、 特に、 制御手段は、 例えば、 マイクロコンピュー 夕によるいわゆるソフ トウエアの実行により実現される得るもので、 こ のような制御手段による通電手段の制御により、 オン · オフするスイツ チング素子が定期的に変えられ、 ステ一夕コイルの電流の向きが定期的 に逆方向とされて、 従来のいわゆる抵抗損による発熱だけでなく、 ヒス テリシス損による発熱が生ずるようにして電力効率の向上が図られるも のである。
さらに、 第 4の発明の形態によれば、 電源とアースとの間でスィッチ ング素子がプリッジ接続されて、 圧縮機を駆動するモータのステ一夕コ ィルへの通電を行う通電手段と、
前記通電手段の動作制御を行う制御手段とを具備してなる電動機予熱 装置であって、
前記制御手段は、 一端がアース側に接続されたスィツチング素子の何 れか二つを所定時間の間、 同時にオン状態とすると共に、 一端が電源側 に接続されたスィツチング素子の何れか一つを前記所定時間より短い所 定時間の間オン状態とし、 しかる後、 ステ一夕コイルに流れる電流が逆 方向となるように対応するスィツチング素子を前記同様に制御すること を繰り返し行うよう構成されてなる電動機予熱装置が提供される。
かかる構成において、 特に、 制御手段は、 例えば、 マイクロコンピュ 一夕によるいわゆるソフトウェアの実行により実現される得るものであ る。
このような制御手段による通電手段の制御により、 ステ一夕コイルの 電流の向きが定期的に逆方向とされるようスィツチング素子の組み合わ せが定期的に変えられ、 しかも、 スイッチング素子のオン · オフの回数 を極力少なく したので、 従来のいわゆる抵抗損による発熱だけでなく、 ヒステリシス損による発熱が生ずるようにして電力効率の向上が図られ ると共に、スィツチング素子のスィツチング損が軽減されるものである。 さらにまた、 第 5の発明の形態によれば、 外部から入力される圧縮機 の雰囲気に関する信号に基づいて、 予熱の要否を判定する予熱判定手段 と、
外部から入力される圧縮機の雰囲気に関する信号に基づいて、 通電期 間を設定する加熱量決定手段と、
電源とアースとの間でスイッチング素子がブリ ッジ接続されて、 圧縮 機を駆動するモー夕のステ一夕コィルへの通電を行う駆動手段と、 前記予熱判定手段及び加熱量決定手段の各出力信号に基づいて、 前記 駆動手段の動作制御を行う予熱信号発生手段とを具備し、
前記予熱信号発生手段は、 前記電源とアースとの間に直列接続された 複数のスィツチング素子のいずれか一組のスィツチング素子について、 一方が所定の繰り返し周期でオン · オフされると共に、 この間、 他方の スイッチング素子がオン状態とされるよう前記駆動手段の動作を制御す るよう構成されてなる電動機予熱装置が提供される。
かかる構成は、 第 2の発明の形態における通電制御方法を実行するの に適したものであり、 特に、 予熱判定手段、 加熱量決定手段及び予熱信 号発生手段は、 例えば、 マイクロコンピュータによるいわゆるソフ トゥ エアの実行により実現される得るものである。 かかる構成により、 第 2 の発明の形態における通電制御方法と同様に、 スイッチング素子のスィ ツチング回数を減らして、いわゆるスィツチング損失の低減を図りつつ、 電力効率の高い予熱が行えるものである。
また、 第 6の発明の形態によれば、 外部から入力される圧縮機の雰囲 気に関する信号に基づいて、 予熱の要否を判定する予熱判定手段と、 外部から入力される圧縮機の雰囲気に関する信号に基づいて、 通電期 間を設定する加熱量決定手段と、
電源とアースとの間でスイッチング素子がブリッジ接続されて、 圧縮 機を駆動するモータのステ一夕コイルへの通電を行う駆動手段と、 前記予熱判定手段及び加熱量決定手段の各出力信号に基づいて、 前記 駆動手段の動作制御を行う予熱信号発生手段とを具備し、
前記予熱信号発生手段は、 前記電源とアースとの間に直列接続された 複数のスイッチング素子のいずれか一組のスイッチング素子について、 一方が所定の繰り返し周期でオン · オフされると共に、 この間、 他方の スィツチング素子がオン状態とされるよう前記駆動手段の動作を制御す るよう構成されてなる電動機予熱装置において、
さらに、 圧縮機を駆動するモー夕の電流が過電流値に達したことを検 出する過電流検出手段を設け、
予熱信号発生手段は、 前記過電流検出手段により、 モ一夕の電流が過 電流値に達したことが検出されるまでの時間を、 オン · オフされるスィ ツチング素子のオン時間とするよう構成されてなる電動機予熱装置が提 供される。
かかる構成においては、 オン · オフされるスィツチング素子のオン時 間が、 モー夕の電流が過電流とならない範囲とされるため、 必要以上の 電力を消費することなく、効率良く予熱を行うことができるものである。 図面の簡単な説明
図 1は、 本発明の実施の形態における電動機予熱装置の第 1 の構成例 を示す構成図である。
図 2は、 本発明の実施の形態における電動機予熱装置の制御動作を説 明するメインフローチャートである。
図 3は、 図 2に示された予熱通電処理のより具体的な制御手順を説明 するサブルーチンフローチヤ一トである。
図 4は、 第 1の構成例における予熱のための通電制御における主要部 のタイミングを示すタイミング図であって、 図 4 ( A ) は第 1のトラン ジス夕の動作状態を示すタイミング図、 図 4 ( B ) は第 2のトランジス 夕の動作状態を示すタイミング図、 図 4 ( C ) は第 3の トランジスタの 動作状態を示すタイミング図、 図 4 (D) は第 4の トランジスタの動作 状態を示すタイミング図、 図 4 (E) は第 5のトランジスタの動作状態 を示すタイミング図、 図 4 ( F ) は第 6の トランジスタの動作状態を示 すタイミング図である。
図 5は、 図 4に示されたタイミングで通電された場合の第 1乃至第 3 のステ一夕コイルに流れる電流の方向を説明する説明図である。
図 6は、 第 2の構成例における予熱のための通電制御における主要部 のタイ ミングを示すタイミング図であって、 図 6 ( A) は第 1の トラン ジス夕の動作状態を示すタイミング図、 図 6 (B ) は第 2のトランジス 夕の動作状態を示すタイミング図、 図 6 (C) は第 3のトランジスタの 動作状態を示すタイミング図、 図 6 (D) は第 4の トランジスタの動作 状態を示すタイミング図、 図 6 (E) は第 5のトランジスタの動作状態 を示すタイミング図、 図 6 ( F ) は第 6のトランジスタの動作状態を示 すタイミング図、 図 6 (G) はモー夕の電源電流の様子を示すタイミン グ図である。
図 7は、 第 3の構成例における電動機予熱装置の構成を示す構成図で ある。
図 8は、 第 3の構成例における予熱のための通電制御における主要部 のタイミングを示すタイミング図であって、 図 8 ( A) は第 1のトラン ジス夕の動作状態を示すタイミング図、 図 8 (B) は第 2のトランジス 夕の動作状態を示すタイミング図、 図 8 (C) は第 3のトランジスタの 動作状態を示すタイミング図、 図 8 (D) は第 4の トランジスタの動作 状態を示すタイミング図、 図 8 (E) は第 5のトランジスタの動作状態 を示すタイミング図、 図 8 ( F ) は第 6の トランジスタの動作状態を示 すタイミング図、 図 8 (G) はモー夕の電源電流の様子を示すタイミン グ図である。
図 9は、 第 4の構成例における電動機予熱装置の構成例を機能的に示 す構成図である。
図 1 0は、 第 4の構成例における予熱のための通電制御における主要 部のタイミングを示すタイミング図であって、 図 1 0 (A) は第 1のト ランジス夕の動作状態を示すタイミング図、 図 1 0 (B) は第 5のトラ ンジス夕の動作状態を示すタイミング図、 図 1 0 (C) は第 2乃至 4の トランジスタ及び第 6のトランジス夕の動作状態を示すタイミング図、 図 1 0 (D) はモ一夕の電源電流の様子を示すタイミング図である。 図 1 1は、 第 5の構成例における電動機予熱装置の構成例を機能的に 示す構成図である。
図 1 2は、 第 5の構成例における予熱のための通電制御における主要 部のタイミングを示すタイミング図であって、 図 1 2 ( A) は第 1のト ランジス夕の動作状態を示すタイミング図、 図 1 2 (B) は第 5のトラ ンジス夕の動作状態を示すタイミング図、 図 1 2 (C) は第 2乃至 4の トランジス夕及び第 6のトランジス夕の動作状態を示すタイミング図、 図 1 2 (D) はモータの電源電流の様子を示すタイミング図である。 発明を実施するための最良の形態
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明 する。
なお、 以下に説明する部材、 配置等は本発明を限定するものではなく、 本発明の趣旨の範囲内で種々改変することができるものである。
最初に、 図 1を参照しつつ第 1 の構成例における電動機予熱装置の構 成について説明する。 P T 5
一 9 一 ' この電動機予熱装置は、 通電駆動部 1 と、 駆動制御部 (図 1 において は 「D R C」 と表記) 2 と、 マイクロコンピュー夕 3とに大別されてな るもので、 例えば、 図示されない車両用空気調和装置に用いられる圧縮 機と一体に設けられる電動機の動作を制御するためのものである。 そし て、 電動機としては、 例えば、 ブラシレスモータ 4が用いられたものと なっている。
まず、 ブラシレスモータ 4について説明すれば、 このブラシレスモー 夕 4は、 永久磁石を用いてなるロー夕 5 と、 U, V, W相の 3つのステ 一夕コイル 6 a ~ 6 c と、 口一夕 5の周辺に適宜に配設された 3つのホ ール素子 7 a〜 7 c とを主たる構成要素としてなる公知 · 周知のもので ある。
第 1乃至第 3のステ一夕コイル 6 a〜 6 cは、いわゆる Y結線されて、 後述する通電駆動部 1に接続されており、 通電駆動部 1 により公知 , 周 知の通電制御がなされるようになつている。
通電駆動部 1は、 6つのスイッチング素子がいわゆる三相ブリッジ接 続されて、第 1乃至第 3のステ一夕コイル 6 a〜 6 cに接続されており、 駆動制御部 2からの制御信号に応じて各スイッチング素子がいわゆるォ ン · オフされるようになっており、 これによつて直流電源 8からの直流 電力が交流電力に変換されて第 1乃至第 3のステ一夕コイル 6 a〜 6 c へ供給されるいわゆるィンバ一夕回路が構成されたものとなっている。 すなわち、 通電駆動部 1は、 スイッチング素子としての n p n形の 6 つの第 1乃至第 6のトランジスタ 1 0〜 1 5を主たる構成要素として、 これら第 1乃至第 6のトランジスタ 1 0〜 1 5がいわゆる三相ブリ ッジ 接続されてなるものである。
具体的には、 第 1乃至第 3のトランジスタ 1 0〜 1 2の各コレクタが 直流電源 8の正極側と、 第 4乃至第 6のトランジスタ 1 3〜 1 5の各ェ ミツ夕が直流電源 8の負極側となるように、 第 1 の トランジスタ 1 0 と 第 4の トランジスタ 1 3 とが、 第 2のトランジスタ 1 1 と第 5のトラン ジス夕 1 4 と力 第 3の トランジスタ 1 2 と第 6の トランジスタ 1 5 と が、 それぞれ直列接続されている。
そして、 第 1及び第 4のトランジスタ 1 0 , 1 3の相互の接続点に、 第 1 のステ一夕コイル 6 aの一端が、 また、 第 2及び第 5の 卜ランジス 夕 1 1, 1 4の相互の接続点に、 第 2のステ一夕コイル 6 bの一端が、 さらに、 第 3及び第 6のトランジスタ 1 2, 1 5の相互の接続点に、 第 3のステ一夕コイル 6 c の一端が、 それぞれ接続された構成となってい る。
さらに、 第 1乃至第 6のトランジスタ 1 0〜 1 5には、 いわゆる環流 ダイォ一ド 1 6 a〜 1 6 f がそれぞれコレク夕とエミッ夕の間に並列接 続されている。
そして、 第 1乃至第 6のトランジスタ 1 0〜 1 5の各ベースは、 通電 駆動部 1 の出力段に接続されており、 第 1乃至第 6のトランジスタ 1 0 〜 1 5を駆動するためのパルス信号が通電駆動部 1 により印加されるよ うになつている。
なお、 図 1、 図 4、 図 6、 図 7、 図 8、 図 1 0及び図 1 2において、 「U +」 は第 1 のトランジスタ 1 0を、 「V +」 は第 2のトランジスタ 1 1 を、 「W +」 は第 3のトランジスタ 1 2を、 「U j は第 4のトランジ ス夕 1 3を、 「V―」 は第 5の トランジスタ 1 4を、 「W は第 6のト ランジス夕 1 5を、 それぞれ表すものとする。
駆動制御部 2は、 マイクロコンピュー夕 3からの制御信号に応じて、 通電駆動部 1 の第 1 乃至第 6のトランジスタ 1 0〜 1 5へ対するパルス 信号を生成、 出力するようになっているものである。
マイクロコンピュータ 3は、 I C化された公知 ' 周知のもので、 いわ ゆる環境信号 (詳細は後述) 及び第 1乃至第 3のホール素子 7 a 〜 7 c の出力信号を入力し、 後述するように、 これら入力信号に基づいて、 駆 動制御部 2を介して通電駆動部 1の動作を制御するようになっている。
ここで、 環境信号は、 図示されない圧縮機がおかれている気象的な諸 条件を判断することのできる信号であり、 具体的には、 例えば、 外気温 度、 車室内温度、 圧縮機温度等を用いるようにすると好適である。 これ らは、 図示されない車両用空調装置に既に設けられているこれらのデ一 夕取得のためのセンサの出力信号をそのまま流用することで、 新たにセ ンサを設けて入力するような必要がないものである。
次に、 図 2乃至図 5を参照しつつ、 この電動機予熱装置の動作につい て説明する。
まず、 マイクロコンピュータ 3による制御動作が開始されると、 環境 信号の検出、 すなわち、 先に述べたような外気温度、 車室内温度等の環 境信号のマイクロコンピュー夕 3への読み込みが行われる (図 2のステ ップ 1 0 0参照 ) 。
そして、 環境信号を用いて予め定めた基準によって、 予熱を開始する 時期か否かの判断が行われ (図 2のステップ 1 1 0参照) 、 予熱開始時 期であると判定されると (Y E Sの場合) 、 詳細は後述する予熱通電処 理が行われることとなる (図 2のステップ 1 2 0参照) 。
続いて、 再び環境信号の検出が先のステップ 1 0 0同様にして行われ (図 2のステップ 1 4 0参照) 、 この環境信号に基づいて予熱終了の時 期となったか否かが判定されて (図 2のステップ 1 5 0参照) 、 予熱終 了の時期であると判定されると (Y E Sの場合) 、 予熱通電処理が終了 されることとなる。 一方、 未だ予熱終了の時期ではないと判定された場 合 (N〇の場合) には、 先のステップ 1 2 0に戻り予熱通電処理が繰り 返し続行されることとなる。 ここで、 予熱通電処理について、 図 3乃至図 5を参照しつつより具体 的に説明すれば、 まず最初に、 U相から V , Wのそれぞれの相へ電流が 流れるようにマイクロコンピュータ 3から駆動制御部 2を介して通電駆 動部 1の制御が行われることとなる (図 3のステップ 1 2 2参照) 。
すなわち、 第 1の所定時間 T 1の間、 第 5及び第 6のトランジスタ 1 4 , 1 5が導通状態とされると共に、 第 1のトランジスタ 1 0がこの第 1の 所定時間 T 1の間、 所定の繰り返し周期でオン ·オフされる (図 4 ( A ) 、 図 4 ( E ) 及び図 4 ( F ) 参照) 。 その結果、 図 5において実線矢印で 示されたように、 U相である第 1のステ一夕コイル 6 aから V相である 第 2のステ一タコイル 6 b及び W相である第 3のステ一夕コイル 6 じ へ 電流が流通されることとなる。 したがって、 この通電により第 1乃至第 3のステ一夕コイル 6 a〜 6 cの抵抗損による発熱が生ずることとなる c そして、 上述のようにして第 1の所定時間 T 1の通電の後は、 第 2の所 定時間 T 2の間、 通電休止状態とされる (図 3のステップ 1 2 4並びに図 4 ( A ) 乃至図 4 ( F ) 参照) 。
この後、 再び、 通電が開始されるが、 この場合は、 V, Wのそれぞれ の相から U相へ電流が流れるようにマイクロコンピュー夕 3により駆動 制御部 2を介して通電駆動部 1が制御されることとなる (図 3のステツ プ 1 2 6参照) 。
すなわち、 第 3の所定時間 T 3の間、 第 2及び第 3のトランジスタ 1 1 , 1 2が導通状態とされると共に、 第 4のトランジスタ 1 3がこの第 3の 所定時間 T 3の間、 所定の繰り返し周期でオン · オフされる (図 4 ( B ) 乃至図 4 ( D ) 参照) 。
その結果、 図 5において点線矢印で示されたように、 V , W相である 第 2及び第 3のステ一夕コイル 6 b , 6 cから V相である第 1 のステ一 夕コイル 6 aへ向かって電流が流通されることとなる。 したがって、 こ の通電により第 1乃至第 3のステ一夕コイル 6 a〜 6 cの抵抗損による 発熱が生ずることとなる。
ここで、 ステップ 1 2 2による通電の際に生ずる合成磁界の方向と、 ステップ 1 2 6による通電の際に生ずる合成磁界の方向とは、 上述した ような第 1乃至第 3のステ一夕コイル 6 a〜 6 cに対する電流の向きに より (図 5参照) 、 丁度逆方向となる。
したがって、 この予熱のための通電によりロー夕 5が回転することは なく、 しかも、 ステ一夕コイル 6 a〜 6 cが巻かれた鋼板 (図示せず) が、 ステップ 1 2 2, 1 2 6による通電により互いに逆方向の磁界中に 晒されることとなるため、 いわゆるヒステリシス損が発生し、 これによ る発熱も生ずることとなる。
また、 上述のようにして第 3の所定時間 T 3の通電の後は、 第 4の所定 時間 T 4の間、通電駆動部 1 による第 1乃至第 3のステ一夕コイル 6 a〜 6 cへの通電が休止され (図 4 ( A ) 乃至図 4 ( F ) 参照) 、 その後、 一端、 先に説明したメインルーチン (図 2参照) へ戻り、 先に説明した ように予熱が未だ必要であると判定された場合 (図 2のステップ 1 5 0 において 「N O」 の場合) に、 上述したステップ 1 2 2以後の処理が再 び繰り返されることとなる。
ここで、先の第 2の所定時間 T 2及び第 4の所定時間 T 4の通電休止は、 いわゆる環流電流に対するスイッチング素子の保護、 すなわち、 第 1乃 至第 6のトランジスタ 1 0〜 1 5の保護を図るために設けられたもので ある。
また、第 1の所定時間丁1 >第 3の所定時間 T 3と設定されているのは、 外乱等により口一夕 5位置が多少ずれても第 2の所定時間 T 2の期間に 回転しないようにするためである。
上述した第 1の構成例においては、 通電駆動部 1及び駆動制御部 2に より請求項 3記載の通電手段が、 マイクロコンピュー夕 3により請求項 3記載の制御手段が、 それぞれ実現されたものとなっている。
次に、 第 2の構成例について図 1乃至図 3及び図 6を参照しつつ説明 する。
この第 2の構成例は、 いわゆるハ一ドウエアとしての構成は、 図 1に 示された構成でよく、 マイクロコンピュータ 3による動作制御を変えた ものである。
基本的な制御手順としては、 先の図 2及び図 3に示されたものと同一 であるが、 具体的な通電のタイミング等が次述するように異なるもので ある。 したがって、 以下の説明においては、 適宜図 2及び図 3を流用し つつ説明することとする。
すなわち、 ステツプ 1 2 2においては、 第 1の所定時間 T1の間、 第 1 のトランジスタ 1 0が導通状態とされる (図 6 (A) 参照) 一方、 第 5 及び第 6のトランジスタ 1 4, 1 5も同様に導通状態とされる(図 6 (E) 及び図 6 (F) 参照) 。 したがって、 この通電により第 1乃至第 3のス テ一夕コイル 6 a〜 6 cの抵抗損による発熱が生ずることとなる。
ここで、 第 1の所定時間 T1は、 ブラシレスモータ 4の電源電流が定格 電流 I Rに達するように設定されたものである (図 6 (A) 及び図 6 (G) 参照) 。
そして、 第 1の所定時間 T1経過後は、 第 2の所定時間 T2の間、 第 1 のトランジスタ 1 0が非導通状態とされ、 通電休止状態となる (図 3の ステップ 1 2 4及び図 6 ( A ) 参照) 。 一方、 この第 2の所定時間 T 2 の間、 第 5及び第 6のトランジスタ 1 4 , 1 5は、 引き続き導通状態と される (図 6 (E) 及び図 6 (F) 参照) 。
ここで、 第 2の所定時間 T2は、 必要な加熱量によって決定されるもの で、 これは、 環境信号に基づいて予め定めた演算式を用いてマイクロコ ンピュー夕 3により算出されるものである。
そして、 再び、 通電が開始されるが、 この場合は、 V, Wのそれぞれ の相から U相へ電流が流れるようにマイクロコンピュー夕 3により駆動 制御部 2を介して通電駆動部 1が制御されることとなる (図 3のステツ プ 1 2 6参照) 。
すなわち、 第 3の所定時間 T3の間、 第 4のトランジスタ 1 3が導通状 態とされる (図 6 (D) 参照) と共に、 第 2及び第 3のトランジスタ 1 1, 1 2も導通状態とされる (図 6 (B) 及び図 6 (C) 参照) 。 した がって、 この通電により第 1乃至第 3のステ一夕コイル 6 a〜 6 cの抵 抗損による発熱が生ずることとなる。
ここで、 第 3の所定時間 T 3は、 第 4のトランジスタ 1 3の導通により, ブラシレスモ一夕 4の電源電流が定格電流(一 I )に達するように設定 されたものである (図 6 (D ) 及び図 6 ( G) 参照) 。
また、 ステップ 1 2 2による通電の際に生ずる合成磁界の方と、 ステ ップ 1 2 6による通電の際に生ずる合成磁界の方向とは、 上述したよう な第 1乃至第 3のステ一夕コイル 6 a〜 6 cに対する電流の向きにより, 丁度逆方向となるのは、 先の第 1の構成例と同様である。
したがって、 この予熱のための通電により口一夕 5が回転することは なく、 しかも、 ステ一夕コイル 6 a〜 6 cが巻かれた鋼板 (図示せず) が、 ステップ 1 2 2 , 1 2 6による通電により互いに逆方向の磁界中に 晒されることとなるため、 いわゆるヒステリシス損が発生し、 これによ る発熱も生ずることとなるのも第 1 の構成例と同様である。
そして、 この第 3の所定時間 T3経過後は、 第 4の所定時間 T4の間、 第 4のトランジスタ 1 3が非導通状態とされて通電休止状態となる (図 6 (D) 参照) 一方、 第 2及び第 3のトランジスタ 1 1, 1 2は、 この 間、 引き続き導通状態とされる (図 6 (B) 及び図 6 (C) 参照) 。 そ して、 一旦、 メインルーチン (図 2参照) へ戻り、 既に説明したように 予熱が未だ必要であると判定された場合 (図 2のステツプ 1 5 0におい て 「N O」 の場合) に、 上述したステップ 1 2 2以後の処理が再び繰り 返されることとなる。
ここで、 第 4の所定時間 T 4は、 先の第 2の所定時間 T 2と同様に、 必 要な加熱量によって決定されるもので、 これは、 環境信号に基づいて予 め定めた演算式を用いてマイクロコンピュータ 3により算出されるもの である。
この第 2の構成例の場合、 先の第 1の構成例と異なり、 第 1の所定時 間 T 1及び第 2の所定時間 T 2のそれぞれにおいて、 第 1乃至第 6のトラ ンジス夕 1 0〜 1 5の何れかを複数回にわたってオン · オフするような ことがないので、 単位時間当たりのスィツチング回数が少ないものとな り、 そのため、 いわゆるスイッチング損が低減されることとなる。
上述した第 2の構成例においては、 通電駆動部 1及び駆動制御部 2に より請求項 4記載の通電手段が、 マイクロコンピュー夕 3により請求項 4記載の制御手段が、 それぞれ実現されたものとなっている。
次に、 第 3の構成例について、 図 7乃び図 8を参照しつつ説明する。 この第 3の構成例は、 最初に概括的にその構成を言えば、 上述した第 2の構成例において、 第 1のトランジスタ 1 0の導通期間を、 ブラシレ スモ一夕 4の電源電流が略定格電流に達するように設定したのに対して, ブラシレスモータ 4の電源電流が略過電流値に達するように設定した点 が異なるもので、 他の構成部分は基本的に同一のものである。
以下、 具体的に説明すれば、 この第 3の構成例における電動機予熱装 置は、 図 7に示されたように、 直流電源 8の負極側と第 4乃至第 6の卜 ランジス夕 1 3〜 1 5のェミツ夕との間に、 過電流検出用抵抗器 1 7を 直列に接続し、 この過電流検出用抵抗器 1 7の第 4乃至第 6のトランジ ス夕 1 3〜 1 5の各ェミツ夕との接続点をマイクロコンピュ一夕 3の入 力ポートに接続して、 この過電流検出用抵抗器 1 7における電圧降下の 大きさによって、 マイクロコンピュー夕 3によりブラシレスモー夕 4の 過電流が判定されるように構成されたものである。 そして、 他の構成部 分は、 図 1に示されたと同一のものであるので、 同一の構成要素につい ては、 同一の符号を付し、 以下、 その詳細な説明を省略するものとする。 次に、 かかる構成における動作について、 図 8 ( A) 乃至図 8 (G) を参照しつつ説明する。
まず、 基本的な制御手順としては、 先の図 2及び図 3に示されたもの と同一であるが、 具体的な通電のタイミング等が次述するように異なる ものである。 したがって、 以下の説明においては、 適宜図 2及び図 3を 流用しつつ説明することとする。
すなわち、 ステツプ 1 2 2においては、 第 1の所定時間 T1の間、 第 1 のトランジスタ 1 0が導通状態とされる (図 8 (A) 参照) 一方、 第 5 及び第 6のトランジスタ 1 4 , 1 5も同様に導通状態とされる(図 8 (E) 及び図 8 ( F ) 参照) 。 したがって、 この通電により第 1乃至第 3のス テ一夕コィル 6 a〜 6 cの抵抗損による発熱が生ずることとなる。
ここで、 第 1の所定時間 T1は、 マイクロコンピュータ 3により過電流 検出用抵抗器 1 7の電圧が所定値を越えて、過電流と判定された際に(図 8 ( A) 及び図 8 (G) 参照) 、 第 1のトランジスタ 1 0が非導通とさ れることで定まるようになっているものである。
そして、 第 1の所定時間 T1経過後は、 第 2の所定時間 T2の間、 第 1 のトランジスタ 1 0が非導通状態とされ、 通電休止状態となる (図 3の ステップ 1 2 4及び図 8 ( A) 参照) 。 一方、 この第 2の所定時間 T2 の間、 第 5及び第 6のトランジスタ 1 4, 1 5は、 引き続き導通状態と される (図 8 (E) 及び図 8 ( F ) 参照) 。 ここで、 第 2の所定時間 T 2は、 必要な加熱量によって決定されるもの で、 これは、 環境信号に基づいて予め定めた演算式を用いてマイクロコ ンピュー夕 3により算出されるものである。
そして、 再び、 通電が開始されるが、 この場合は、 V, Wのそれぞれ の相から U相へ電流が流れるようにマイクロコンピュータ 3により駆動 制御部 2を介して通電駆動部 1が制御されることとなる (図 3のステツ プ 1 2 6参照) 。
すなわち、 第 3の所定時間 Τ3の間、 第 4のトランジスタ 1 3が導通状 態とされる (図 8 (D) 参照) と共に、 第 2及び第 3のトランジスタ 1 1, 1 2も導通状態とされる (図 8 (Β) 及び図 8 (C) 参照) 。 した がって、 この通電により第 1乃至第 3のステ一夕コイル 6 a〜 6 cの抵 抗損による発熱が生ずることとなる。
ここで、 第 3の所定時間 T3は、 マイクロコンピュータ 3により過電流 検出用抵抗器 1 7の電圧が所定値を越えて、過電流と判定された際に(図 8 (D) 及び図 8 (G) 参照) 、 第 4のトランジスタ 1 3が非導通とさ れることで定まるようになっているものである。
また、 ステップ 1 2 2による通電の際に生ずる合成磁界の方向と、 ス テツプ 1 2 6による通電の際に生ずる合成磁界の方向とは、 上述したよ うな第 1乃至第 3のステ一夕コイル 6 a〜 6 cに対する電流の向きによ り、 丁度逆方向となるのは、 先の第 1の構成例と同様である。
したがって、 この予熱のための通電によりロー夕 5が回転することは なく、 しかも、 ステ一夕コイル 6 a〜 6 cが巻かれた鋼板 (図示せず) が、 ステップ 1 2 2, 1 2 6による通電により互いに逆方向の磁界中に 晒されることとなることから、 いわゆるヒステリシス損が発生し、 これ による発熱も生ずることとなるのも第 1の構成例と同様である。
そして、 この第 3の所定時間 T3経過後は、 第 4の所定時間 T4の間、 第 4のトランジスタ 1 3が非導通状態とされて通電休止状態となる (図 6 ( D ) 参照) 一方、 第 2及び第 3のトランジスタ 1 1 , 1 2は、 この 間、 引き続き導通状態とされる (図 8 ( B ) 及び図 8 ( C ) 参照) 。 そ して、 一旦、 メインルーチン (図 2参照) へ戻り、 既に説明したように 予熱が未だ必要であると判定された場合 (図 2のステップ 1 5 0におい て 「N O」 の場合) に、 上述したステップ 1 2 2以後の処理が再び繰り 返されることとなる。
ここで、 第 4の所定時間 T 4は、 先の第 2の所定時間 T 2と同様に、 必 要な加熱量によって決定されるもので、 これは、 環境信号に基づいて予 め定めた演算式を用いてマイクロコンピュー夕 3により算出されるもの である。
この第 3の構成例の場合、 先の第 1の構成例と異なり、 第 1の所定時 間 T 1及び第 2の所定時間 T 2のそれぞれにおいて、 第 1乃至第 6のトラ ンジス夕 1 0〜 1 5の何れかを複数回にわたってオン · オフするような ことがないので、 単位時間当たりのスイッチング回数が少ないものとな り、 そのため、 いわゆるスイッチング損が低減されることとなる。
次に、 第 4の構成例について図 9乃び図 1 0を参照しつつ説明する。 初めに、 図 9を参照しつつ、 この第 4の構成例における電動機予熱装 置の構成、 特に、 機能的な面に着目した構成について説明する。
すなわち、 この第 4の構成例における電動機予熱装置は、 予熱判定手 段 2 0と、 加熱量決定手段 2 1 と、 予熱信号発生手段 2 2と、 駆動手段 2 3とを具備してなり、 電動機一体型圧縮機の予熱を行うようになって いるものである。
予熱判定手段 2 0は、 先の第 1の構成例で述べたような環境信号を入 力し、 それを基に、 予熱の要否を判定するものである。
加熱量決定手段 2 1は、 同じく環境信号を入力し、 それを基に必要な 加熱 (発熱) 量を算定して、 その加熱量に応じて通電時間、 通電停止時 間を算出するものである。
予熱信号発生手段 2 2は、 予熱判定手段 2 0及び加熱量決定手段 2 1 からの信号を基に、 駆動手段 2 3を介して電動機一体型圧縮機の電動機 への通電を行うための制御信号を発生するものである。
そして、 駆動手段 2 3は、 予熱信号発生手段 2 2からの制御信号に基 づいて、 電動機に実際に通電を行うためのものである。
このような機能的な各手段を有するより具体的な構成は、 既に、 示さ れたように例えば図 1のような構成が好適である。
すなわち、 この場合、 予熱判定手段 2 0、 加熱量決定手段 2 1及び予 熱信号発生手段 2 2は、 マイクロコンピュー夕 3により実現され、 駆動 手段 2 3は、 通電駆動部 1及び駆動制御部 2により実現されたものとな る。
次に、 この第 4の構成例における通電制御について図 1及び図 1 0を 参照しつつ説明する。
この第 4の構成例では、 マイクロコンピュータ 3において、 環境信号 に基づいて、 予熱の要否が判定されるのは、 先の第 1及び第 2の構成例 と同様であり、 予熱が必要と判定されると、 次述するような通電が開始 されることとなる。
すなわち、 予熱開始と判定されると、 第 1のトランジスタ 1 0が、 所 定の導通時間 T O Nの間、 導通状態とされ (図 1 0 ( A ) 参照) 、 その後, 所定の非導通時間 T。!^の間、 非導通状態とされることが繰り返される (図 1 0 ( A ) 参照) 。
また、 このような第 1のトランジスタ 1 0の導通、 非導通の繰り返し の間、 第 5のトランジスタ 1 4が、 連続的に導通状態とされる (図 1 0 ( B ) 参照) 。 そして、 第 2乃至第 4のトランジスタ 1 1〜 1 3及び第 6のトランジスタ 1 5は、 この通電制御の間、 非導通状態とされること となる (図 1 0 ( C ) 参照) 。
したがって、 第 1のトランジスタ 1 0が導通状態にある期間、 第 1の ステ一夕コイル 6 aと第 2のステ一夕コイル 6 bとに電流が流通し、 抵 抗損による発熱が生ずることとなる。
ここで、 所定の導通時間 T O Nは、 第 1及び第 2のステ一夕コイル 6 a , 6 bの電流が略定格電流に達することができる程度の時間に設定される ものである (図 1 0 ( D ) 参照) 。
また、 所定の非導通時間 T。F rは、 圧縮機 (図示せず) に必要とされ る加熱量に基づいて決定される時間であり、 加熱量が大となるに従い短 い時間とされるものである。 なお、 この非導通時間 T。F Fは、 外気温度、 圧縮機温度等の環境信号に基づいて、 予め設定した所定の基準に従って 変化させるようにしてもよい。
そして、 上述した通電制御は、 環境信号に基づいて予熱が不要と判定 された際、 または、 圧縮機の運転が開始された際に停止され、 通常の運 転状態、 すなわち、 口一夕 5が回転状態とされることとなる。
なお、 上述した制御例においては、 第 1のトランジスタ 1 0をオン - オフさせると共に、 その間、 第 5のトランジスタ 1 4を継続的にオンと するようにしたが、 他のトランジス夕の組み合わせでもよいことは勿論 であり、 例えば、 第 1のトランジスタ 1 0をオン · オフさせると共に、 その間、 第 6のトランジスタ 1 5を継続的にオンとしてもよく、 また、 第 2のトランジスタ 1 1 をオン · オフすると共に、 その間、 第 4のトラ ンジス夕 1 3をオンとするようにしてもよい。
さらに、 上述のように、 ある トランジスタの組み合わせ、 換言すれば、 ある相の組み合わせのみに電流を流すようにする他、所定の時間間隔で、 通電する相の組み合わせを順次変えるようにしてもよく、その場合には、 - 11 — ― 上述のように特定の相が継続的に通電される場合に比して予熱むらが軽 減されることとなる。
次に、図 1 1乃至図 1 2を参照しつつ第 5の構成例について説明する。 初めに、 図 1 1 を参照しつっこの第 5の構成例における電動機予熱装 置の構成、 特に、 機能的な面に着目した構成について説明する。
すなわち、 この第 5の構成例における電動機予熱装置は、 予熱判定手 段 2 0 と、 加熱量決定手段 2 1 と、 過電流検出手段 2 4と、 予熱信号発 生手段 2 2 と、 駆動手段 2 3 とを具備してなり、 電動機一体型圧縮機の 予熱を行うようになっているものである。 この第 5の構成例における電 動機予熱装置において、 過電流検出手段 2 4を除く他の手段は、 図 9に 示された第 4の構成例におけるものと同一機能を有するものであるので、 同一構成要素には同一の符号を付してここでの詳細な説明は省略し、 以 下、 異なる点を中心に説明するものとする。
過電流検出手段 2 4は、 電動機すなわちブラシレスモー夕 4の電源電 流を検出し、 マイクロコンピュータ 3により過電流であると判定するた めのものである。
このような機能的な各手段を有するより具体的な構成は、 既に、 示さ れたように例えば図 7のような構成が好適である。
すなわち、 この場合、 予熱判定手段 2 0、 加熱量決定手段 2 1及び予 熱信号発生手段 2 2は、 マイクロコンピュータ 3により実現され、 過電 流検出手段 2 4は、 過電流検出用抵抗器 1 7により、 駆動手段 2 3は、 通電駆動部 1及び駆動制御部 2により、それぞれ実現されたものとなる。 次に、 この第 5の構成例における通電制御について図 1及び図 1 2を 参照しつつ説明する。
この第 5の構成例では、 マイクロコンピュー夕 3において、 環境信号 に基づいて、 予熱の要否が判定されのは、 先の第 1及び第 2の構成例と 同様であり、 必要と判定されたと、 次述するような通電が開始されるこ ととなる。
すなわち、 予熱開始と判定されると、 第 1のトランジスタ 1 0が、 所 定の導通時間 T o、の間、 導通状態とされ (図 1 2 ( A ) 参照) 、 その後、 所定の非導通時間 T。 の間、 非導通状態とされることが繰り返される (図 1 2 ( A ) 参照) 。
また、 このような第 1のトランジスタ 1 0の導通、 非導通の繰り返し の間、 第 5のトランジスタ 1 4が、 連続的に導通状態とされる (図 1 2 ( B ) 参照) 。 そして、 第 2乃至第 4のトランジスタ 1 1〜 1 3及び第 6のトランジスタ 1 5は、 この通電制御の間、 非導通状態とされること となる (図 1 2 ( C ) 参照) 。
したがって、 第 1のトランジスタ 1 0が導通状態にある期間、 第 1の ステ一夕コイル 6 aと第 2のステ一夕コイル 6 とに電流が流通し、 抵 抗損による発熱が生ずることとなる。
ここで、 所定の導通時間 T O Nは、 ブラシレスモー夕 4の電源電流が略 過電流値に達したと判定されるまでの時間であり (図 1 2 ( D ) 参照) 、 具体的には、 過電流検出用抵抗器 1 7の電圧が所定値に達したか否かの 判定がマイクロコンピュー夕 3によって行われることで定められるよう になっている。
また、 所定の非導通時間 T。,. Fは、 圧縮機 (図示せず) に必要とされ る加熱量に基づいて決定される時間であり、 加熱量が大となるに従い短 い時間とされるものである。 なお、 この非導通時間 T。K Fは、 外気温度、 圧縮機温度等の環境信号に基づいて、 予め設定した所定の基準に従って 変化させるようにしてもよい。
そして、 上述した通電制御は、 環境信号に基づいて予熱が不要と判定 された際、 または、 圧縮機の運転が開始された際に停止され、 通常の運 転状態、 すなわち、 ロー夕 5が回転状態とされることとなる。
なお、 上述した制御例においては、 第 1のトランジスタ 1 0をオン オフさせると共に、 その間、 第 5のトランジスタ 1 4をオンとするよう にしたが、 他の卜ランジス夕の組み合わせでもよいことは勿論であり、 例えば、 第 1のトランジスタ 1 0をオン · オフさせると共に、 その間、 第 6のトランジスタ 1 5を継続的にオンとしてもよく、 また、 第 2のト ランジス夕 1 1 をオン · オフすると共に、 その間、 第 4のトランジスタ 1 3を継続的にオンとするようにしてもよい。
さらに、 上述のように、 ある トランジスタの組み合わせ、 換言すれば、 ある相の組み合わせのみに電流を流すようにする他、所定の時間間隔で、 通電する相の組み合わせを順次変えるようにしてもよく、その場合には、 上述のように特定の相が継続的に通電される場合に比して予熱むらが軽 減されることとなる。
上述した各構成例では、 電動機としてブラシレスモー夕 4を例に挙げ て説明したが、 これに限定される必要は勿論なく、 他の形態の電動機、 例えば、 誘導電動機であっても同様にしてステ一夕コイルへの通電を行 えるものである。
産業上の利用可能性
以上のように、 本発明に係る電動機予熱装置は、 空気調和装置におけ るいわゆる冷媒サイクルを構成する圧縮機と一体化された電動機の予熱 に用いるのに適している。

Claims

請 求 の 範 囲
1. 電源とアースとの間でスイッチング素子 ( 1 0, 1 1, 1 2, 1 3, 1 4, 1 5 ) がブリ ッジ接続されて、 圧縮機を駆動するモータ ( 4 ) の ステ一夕コイル ( 6 a, 6 b, 6 c ) への通電を行うよう構成されてな る電動機予熱装置における通電制御方法であって、
一端が電源側に接続されたスイッチング素子 ( 1 0, 1 1, 1 2 ) の 何れか一つを所定時間の間に所定繰り返し周期でオン · オフさせると同 時に、 一端がアース側に接続されたスィツチング素子 ( 1 3, 1 4, 1 5 ) の何れか二つを当該所定時間の間、 オン状態とし、 しかる後、 ステ —夕コイル ( 6 a , 6 b , 6 c ) に流れる電流が逆方向となるように対 応するスィツチング素子を前記同様に制御することを繰り返し行うこと を特徴とする電動機予熱装置における通電制御方法。
2. 電源とアースとの間でスイッチング素子 ( 1 0 , 1 1 , 1 2, 1 3, 1 4 , 1 5 ) がプリッジ接続されて、 圧縮機を駆動するモー夕 (4 ) の ステ一夕コイル ( 6 a , 6 b , 6 c ) への通電を行うよう構成されてな る電動機予熱装置における通電制御方法であって、
前記電源とアースとの間に直列接続された複数のスイ ッチング素子 ( 1 0, 1 1, 1 2 , 1 3, 1 4 , 1 5 ) のいずれか一組のスィッチン グ素子 ( 1 0及び 1 3、 1 1及び 1 4又は 1 2及び 1 5 ) について、 一 方 ( 1 0、 1 1又は 1 2 ) を所定の繰り返し周期でオン · オフすると共 に、 この間、 他方のスィツチング素子 ( 1 3、 1 4又は 1 5 ) をオン状 態とすることを特徴とする電動機予熱装置における通電制御方法。
3. 電源とアースとの間でスイッチング素子 ( 1 0, 1 1 , 1 2, 1 3, 1 4, 1 5 ) がプリ ッジ接続されて、 圧縮機を駆動するモー夕 (4 ) の ステ一夕コイル ( 6 a , 6 b , 6 c ) への通電を行う通電手段 ( 1及び 2 ) と、
前記通電手段の動作制御を行う制御手段 ( 3 ) とを具備してなる電動 機予熱装置であって、
前記制御手段 ( 3 ) は、 一端が電源側に接続されたスイッチング素子 ( 1 0, 1 1, 1 2 ) の何れか一つを所定時間の間に所定繰り返し周期 でオン · オフさせると同時に、 一端がアース側に接続されたスィッチン グ素子 ( 1 3 , 1 4, 1 5 ) の何れか二つを当該所定時間の間、 オン状 態とし、 しかる後、 ステ一夕コイル ( 6 a, 6 b, 6 c ) に流れる電流 が逆方向となるように対応するスィツチング素子を前記同様に制御する ことを繰り返し行うことを特徴とする電動機予熱装置。
4. 電源とアースとの間でスイッチング素子 ( 1 0 , 1 1, 1 2 , 1 3, 1 4, 1 5 ) がブリ ッジ接続されて、 圧縮機を駆動するモー夕 (4 ) の ステ一夕コイル ( 6 a, 6 b, 6 c ) への通電を行う通電手段 ( 1及び 2 ) と、
前記通電手段 ( 1及び 2 ) の動作制御を行う制御手段 ( 3 ) とを具備 してなる電動機予熱装置であって、
前記制御手段 ( 3 ) は、 一端がアース側に接続されたスイッチング素 子 ( 1 3 , 1 4, 1 5 ) の何れか二つを所定時間の間、 同時にオン状態 とすると共に、 一端が電源側に接続されたスイッチング素子 ( 1 0 , 1 1, 1 2 ) の何れか一つを前記所定時間より短い所定時間の間オン状態 とし、 しかる後、 ステ一夕コイル ( 6 a, 6 b , 6 c ) に流れる電流が 逆方向となるように対応するスィツチング素子を前記同様に制御するこ とを繰り返し行うことを特徴とする電動機予熱装置。
5. 所定時間は、 モータ (4 ) の電源電流が所定値に達するよう設定さ れたものであることを特徴とする請求の範囲第 4項記載の電動機予熱装 置。
6. 外部から入力される圧縮機の雰囲気に関する信号に基づいて、 予熱 の要否を判定する予熱判定手段 ( 2 0 ) と、
外部から入力される圧縮機の雰囲気に関する信号に基づいて、 通電期 間を設定する加熱量決定手段 ( 2 1 ) と、
電源とアースとの間でスイッチング素子がブリ ッジ接続されて、 圧縮 機を駆動するモータのステ一夕コイルへの通電を行う駆動手段 ( 2 3 ) と、
前記予熱判定手段 ( 2 0 ) 及び加熱量決定手段 ( 2 1 ) の各出力信号 に基づいて、 前記駆動手段 ( 2 3 ) の動作制御を行う予熱信号発生手段 ( 2 2 ) とを具備し、
前記予熱信号発生手段 ( 2 2 ) は、 前記電源とアースとの間に直列接 続された複数のスイッチング素子のいずれか一組のスイッチング素子に ついて、 一方が所定の繰り返し周期でオン ·オフされると共に、 この間、 他方のスィツチング素子がオン状態とされるよう前記駆動手段 ( 2 3 ) の動作を制御することを特徴とする電動機予熱装置。
7. オン · オフされるスイッチング素子のオン時間は、 モー夕電流が所 定値に達するよう設定されたものであることを特徴とする請求の範囲第 6項記載の電動機予熱装置。
8. 圧縮機を駆動するモータの電流が過電流値に達したことを検出する 過電流検出手段 ( 2 4 ) を設け、
予熱信号発生手段 ( 2 2 ) は、 前記過電流検出手段 ( 2 4 ) により、 モー夕の電流が過電流値に達したことが検出されるまでの時間を、 ォ ン · オフされるスイッチング素子のオン時間とすることを特徴とする請 求の範囲第 6項記載の電動機予熱装置。
PCT/JP1998/005315 1997-11-28 1998-11-26 Method for controlling turn-on/off of motor preheater and motor preheater WO1999029035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/341887 1997-11-28
JP9341887A JPH11159467A (ja) 1997-11-28 1997-11-28 電動機予熱装置における通電制御方法及び電動機予熱装置

Publications (1)

Publication Number Publication Date
WO1999029035A1 true WO1999029035A1 (en) 1999-06-10

Family

ID=18349516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005315 WO1999029035A1 (en) 1997-11-28 1998-11-26 Method for controlling turn-on/off of motor preheater and motor preheater

Country Status (2)

Country Link
JP (1) JPH11159467A (ja)
WO (1) WO1999029035A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075378A1 (en) * 2000-03-30 2001-10-11 Daikin Industries, Ltd. Method of controlling preheating power and mechanism for providing preheating
US20100186975A1 (en) * 2007-06-18 2010-07-29 Rainer Glauning Electric tool having cold start function
CN102472532A (zh) * 2009-08-10 2012-05-23 三菱电机株式会社 空气调节器
GB2503671A (en) * 2012-07-03 2014-01-08 Dyson Technology Ltd Method of controlling a brushless motor for preheating
GB2503670A (en) * 2012-07-03 2014-01-08 Dyson Technology Ltd Method of preheating a brushless motor
EP2894409A3 (en) * 2013-12-27 2015-10-21 Mitsubishi Electric Corporation Air conditioner and control method of air conditioner
US9543887B2 (en) 2010-10-15 2017-01-10 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
US9618249B2 (en) 2010-12-21 2017-04-11 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
US9829226B2 (en) 2011-04-28 2017-11-28 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling inverter
US10208991B2 (en) 2011-12-14 2019-02-19 Mitsubishi Electric Corporation Heat pump device, and air conditioner, heat pump water heater, refrigerator and freezing machine including heat pump device
CN112549952A (zh) * 2020-12-16 2021-03-26 常州信息职业技术学院 电动汽车热控制管理系统
CN115135880A (zh) * 2020-02-26 2022-09-30 三菱电机株式会社 电力转换装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797476B2 (ja) 2005-07-12 2011-10-19 トヨタ自動車株式会社 二次電池の制御装置
JP2008231987A (ja) 2007-03-19 2008-10-02 Mitsubishi Heavy Ind Ltd 電動圧縮機
CN103154636B (zh) * 2010-08-30 2015-08-05 三菱电机株式会社 热泵装置、热泵系统和三相逆变器的控制方法
US9077274B2 (en) 2011-02-07 2015-07-07 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
JP2011139632A (ja) * 2011-02-14 2011-07-14 Toshiba Elevator Co Ltd 昇降機制御装置
EP2722613B1 (en) 2011-06-17 2016-08-17 Mitsubishi Electric Corporation Heat pump device, air conditioner, and refrigerator
US9829234B2 (en) 2011-09-30 2017-11-28 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling inverter
US10605500B2 (en) 2012-01-04 2020-03-31 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer
WO2013157074A1 (ja) 2012-04-16 2013-10-24 三菱電機株式会社 ヒートポンプ装置、空気調和機および冷凍機
CN104321596B (zh) 2012-06-20 2016-11-23 三菱电机株式会社 热泵装置、空调机和制冷机
CN104412049B (zh) 2012-06-29 2017-05-24 三菱电机株式会社 热泵装置、空调机和制冷机
JP6336264B2 (ja) * 2013-11-19 2018-06-06 東芝シュネデール・インバータ株式会社 永久磁石同期電動機駆動装置
US10128788B2 (en) 2016-01-28 2018-11-13 Trane International Inc. Increasing component life in a variable speed drive with stator heating
JP6444463B2 (ja) * 2017-08-28 2018-12-26 三菱電機株式会社 ヒートポンプ装置
CN112297749A (zh) * 2019-07-26 2021-02-02 浙江吉智新能源汽车科技有限公司 用于车辆的热管理系统及车辆
IT202000004474A1 (it) * 2020-03-03 2021-09-03 Marelli Europe Spa Metodo di controllo di un motore elettrico che aziona una pompa per alimentare un liquido operatore a base acqua
WO2025126255A1 (ja) * 2023-12-11 2025-06-19 三菱電機株式会社 電力変換装置、冷凍サイクル装置、およびモータシステム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485588A (en) * 1987-09-25 1989-03-30 Mitsubishi Electric Corp Low-temperature starting equipment for oil-sealed rotary vacuum pump motor
JPH01123454U (ja) * 1988-02-13 1989-08-22
JPH01298972A (ja) * 1988-05-27 1989-12-01 Fuji Electric Co Ltd インバータ駆動ギャードモータの低温時始動方法
JPH0388980A (ja) * 1989-09-01 1991-04-15 Hitachi Ltd 電動機制御装置
JPH0933117A (ja) * 1995-07-19 1997-02-07 Daikin Ind Ltd 空気調和機
JPH09271197A (ja) * 1996-03-29 1997-10-14 Daikin Ind Ltd 電動機の制御装置
JPH09271135A (ja) * 1996-03-29 1997-10-14 Daikin Ind Ltd 電動機の過電流保護装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485588A (en) * 1987-09-25 1989-03-30 Mitsubishi Electric Corp Low-temperature starting equipment for oil-sealed rotary vacuum pump motor
JPH01123454U (ja) * 1988-02-13 1989-08-22
JPH01298972A (ja) * 1988-05-27 1989-12-01 Fuji Electric Co Ltd インバータ駆動ギャードモータの低温時始動方法
JPH0388980A (ja) * 1989-09-01 1991-04-15 Hitachi Ltd 電動機制御装置
JPH0933117A (ja) * 1995-07-19 1997-02-07 Daikin Ind Ltd 空気調和機
JPH09271197A (ja) * 1996-03-29 1997-10-14 Daikin Ind Ltd 電動機の制御装置
JPH09271135A (ja) * 1996-03-29 1997-10-14 Daikin Ind Ltd 電動機の過電流保護装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617819B2 (en) 2000-03-30 2003-09-09 Daikin Industries, Ltd. Method of controlling preheating power and mechanism for providing preheating
WO2001075378A1 (en) * 2000-03-30 2001-10-11 Daikin Industries, Ltd. Method of controlling preheating power and mechanism for providing preheating
US20100186975A1 (en) * 2007-06-18 2010-07-29 Rainer Glauning Electric tool having cold start function
CN102472532A (zh) * 2009-08-10 2012-05-23 三菱电机株式会社 空气调节器
US9543887B2 (en) 2010-10-15 2017-01-10 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
US9618249B2 (en) 2010-12-21 2017-04-11 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
US9829226B2 (en) 2011-04-28 2017-11-28 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling inverter
US10208991B2 (en) 2011-12-14 2019-02-19 Mitsubishi Electric Corporation Heat pump device, and air conditioner, heat pump water heater, refrigerator and freezing machine including heat pump device
EP2683073A3 (en) * 2012-07-03 2018-01-10 Dyson Technology Limited Method of preheating a brushless motor
US9160255B2 (en) 2012-07-03 2015-10-13 Dyson Technology Limited Method of preheating a brushless motor
GB2503671B (en) * 2012-07-03 2014-12-17 Dyson Technology Ltd Control of a brushless motor
GB2503670B (en) * 2012-07-03 2014-12-10 Dyson Technology Ltd Method of preheating a brushless motor
GB2503670A (en) * 2012-07-03 2014-01-08 Dyson Technology Ltd Method of preheating a brushless motor
GB2503671A (en) * 2012-07-03 2014-01-08 Dyson Technology Ltd Method of controlling a brushless motor for preheating
US10756653B2 (en) 2012-07-03 2020-08-25 Dyson Technology Limited Control of a brushless motor
EP2894409A3 (en) * 2013-12-27 2015-10-21 Mitsubishi Electric Corporation Air conditioner and control method of air conditioner
RU2598867C2 (ru) * 2013-12-27 2016-09-27 Мицубиси Электрик Корпорейшн Кондиционер воздуха и способ управления кондиционером воздуха
US9696045B2 (en) 2013-12-27 2017-07-04 Mitsubishi Electric Corporation Air conditioner and control method of air conditioner
CN115135880A (zh) * 2020-02-26 2022-09-30 三菱电机株式会社 电力转换装置
CN115135880B (zh) * 2020-02-26 2024-05-14 三菱电机株式会社 电力转换装置
CN112549952A (zh) * 2020-12-16 2021-03-26 常州信息职业技术学院 电动汽车热控制管理系统

Also Published As

Publication number Publication date
JPH11159467A (ja) 1999-06-15

Similar Documents

Publication Publication Date Title
WO1999029035A1 (en) Method for controlling turn-on/off of motor preheater and motor preheater
JP3971520B2 (ja) 空気調和機の室外ファン用ブラシレスモータの駆動装置
JP3489285B2 (ja) 電動車両用モータ制御装置
JP5144315B2 (ja) ブラシレスdcモータの駆動回路
JP4689905B2 (ja) ブラシレスモータの駆動制御方法及びその装置
JPH08322106A (ja) モータの制御方法
JP4055372B2 (ja) モータ駆動装置
JP2000014183A (ja) ファンモータ駆動装置
JPH05288411A (ja) 圧縮機の予熱制御装置
JP2804796B2 (ja) 電動機制御装置
JP3039328B2 (ja) 空気調和機
JPH0759384A (ja) インバータ装置
JPH05184188A (ja) ブラシレスモータ駆動制御装置
JPH10225014A (ja) モータ制御装置
JP2008043073A (ja) ブラシレスモータの回転数制御方法、ブラシレスモータの回転数制御装置
JP2021065074A (ja) モータ制御装置
JPH0866074A (ja) 電動機の停止制御方法及び装置
JPH06343285A (ja) ブラシレスモータの停止方法
JP3353545B2 (ja) 電動車両駆動制御装置
JP2004260886A (ja) 冷凍サイクル制御装置
JPH06253581A (ja) インバータ装置およびそのインバータ装置を備えたエアコンディショナ
JP2019146405A (ja) モータ制御装置及びモータ制御方法
JP4016602B2 (ja) 電動パワーステアリング装置
JP6657472B1 (ja) 車両用モータ駆動制御装置、及び、車両用モータ駆動制御装置の制御方法
KR101000121B1 (ko) Bldc 전동기 제어를 위한 pwm 스위칭 방법과 이를 위한 시스템 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR