[go: up one dir, main page]

WO1999031254A1 - Genes de geranyl diphosphate synthase - Google Patents

Genes de geranyl diphosphate synthase Download PDF

Info

Publication number
WO1999031254A1
WO1999031254A1 PCT/JP1998/005590 JP9805590W WO9931254A1 WO 1999031254 A1 WO1999031254 A1 WO 1999031254A1 JP 9805590 W JP9805590 W JP 9805590W WO 9931254 A1 WO9931254 A1 WO 9931254A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
gene
diphosphate synthase
geranyl diphosphate
synthase
Prior art date
Application number
PCT/JP1998/005590
Other languages
English (en)
French (fr)
Inventor
Chikara Ohto
Keishi Narita
Tokuzo Nishino
Shin-Ichi Ohnuma
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US09/367,528 priority Critical patent/US6395525B2/en
Priority to EP98959156A priority patent/EP0974661A4/en
Priority to CA002281206A priority patent/CA2281206C/en
Publication of WO1999031254A1 publication Critical patent/WO1999031254A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/832Bacillus

Definitions

  • the present invention relates to geranyl diphosphate synthase, a gene encoding the enzyme, a recombinant vector containing the gene, and a method for producing geranyl diphosphate synthase and geranyl diphosphate.
  • isoprene (2-methyl-1,3-butadiene)
  • terpenoids terpenes
  • terpenes hemiterpenes (hemi terpene, C5), monotenolene monoterpene (CIO), and sesquiterolene sesqui terpene.
  • C15 diterpene (diterpene, C20), sesterterpene (sesterterpene, C25), triterpene (triterpene, C30), tetraterpene (tetraterpene, C40).
  • IPP isopentenyl diphosphate
  • DMAPP Dimethylallyl diphosphate
  • GPP geranyl diphosphate
  • neryl diphosphate neryl diphosphate
  • DMPP funaresyl diphosphate
  • FPP farnesyl diphosphate
  • GGPP geranyl geranyl diphosphate
  • GFPP geranyl farnesyl diphosphate
  • HexPP hexaprenyl diphosphate Diphosphoric acid
  • HepPP heptaprenyl d iphosphate
  • all-trans form (aU- £ ⁇ ) is considered to be the active form, but due to c / s condensation reaction, natural rubber, dolichol-pactoprenol (ndecaprenol), or various types found in plants Polyprenol and the like are synthesized. These compounds are considered to be synthesized by a condensation reaction using a phosphoric acid ester bonding energy between pyrophosphoric acid and a carbon skeleton in the molecule, and pyrophosphoric acid is generated as a reaction by-product. It is believed that an acid is formed.
  • Prenyl diphosphate synthases Active isoprenide synthase that sequentially condenses IPP to allylic substrates such as DMAPP, GPP, FPP, GGPP, and GFPP is called prenyl diphosphate synthase or prenyl transferase. .
  • Prenyl diphosphate synthases are distinguished from each other by the number of carbon atoms in the main reaction product.
  • pharmacophoric acid synthase FPP synthase
  • GGPP synthase geranylgeranyl diphosphate synthase
  • thermostable bacteria and auxilia have isolated thermostable FPP synthase and GGPP synthase genes [in Chen and D. Poulter (1993), J Biol Chem, 268 (15), 11002-11007; T. Koyama et al.
  • GPP is the first synthetic intermediate of many known monoterpenes and the most important compound in the monoterpene biosynthetic pathway.
  • Geraniol a typical substance of monoterpene, and nerol, its isomer, are all fragrances based on rose oil, and camphor in camphor extract is also used as an insect repellent.
  • thermostable prenyl diphosphoric acid synthase that specifically catalyzes the GPP synthesis reaction by artificially modifying the amino acid sequence of a stable and high-specificity homodimer-type prenylnylinate synthase derived from a thermophilic organism is proposed. There is a need for a technology for artificially producing enzymes.
  • prenyl diphosphate synthases derived from thermophilic organisms have been modified with FPP synthase from Bacillus stearothermophilus and GGPP synthase from Sulfolobus' Sulfolobus acidocaldarius. There are examples. 5. Ac / i / oca / r / us GGPP synthase mutant The enzyme and its gene are responsible for the metabolic ability of budding yeast Saccharomyces cerevisiae deficient in HexPP synthase activity. [S.-i. Ohnuma et al. (1996) J. Biol.
  • An object of the present invention is to provide a geranyl diphosphate synthase and a gene encoding the enzyme.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found that geranyl diphosphate synthase and a gene encoding the enzyme can be simply replaced by substituting a part of the amino acid sequence of pharmacosyl diphosphate synthase. The separation was successful, and the present invention was completed.
  • the present invention is the following recombinant protein (a) or (b).
  • the present invention is a gene encoding the recombinant protein of the above (a) or (b).
  • the present invention is a geranyl diphosphate synthase gene comprising the nucleotide sequence represented by SEQ ID NO: 2.
  • the present invention is a recombinant vector containing the gene.
  • the present invention is a transformant transformed by the recombinant vector.
  • the present invention is a method for producing geranyl diphosphate synthase, which comprises culturing the transformant in a medium and collecting geranilinyl phosphate synthase from the obtained culture. Further, the present invention is a method for producing geranyl diphosphate, comprising culturing the transformant in a medium and collecting geraniline diphosphate from the obtained culture. Further, the present invention is a method for producing geranyl diphosphate, wherein the culture of the transformant is allowed to act on isopentenyl diphosphate or an isomer thereof.
  • the present invention will be described in detail.
  • prenyl diphosphate synthase having the aspartic acid litchi domain as described above examples include funaresyl diphosphate synthase, geranylgeranyl diphosphate synthase, hexaprenyl diphosphate synthase, heptabrenyl diphosphate synthase, and octabrenyl diphosphate synthase. Tabrenyl diphosphate synthase, nonaprenyl diphosphate synthase, pendecabrenil diphosphate synthase, and the like.
  • FIG. 4 shows the amino acid sequences of the above conserved regions I to V in the amino acid sequence of bacterial farnesyl diphosphate synthase.
  • 4 1 is the amino acid sequence of pharmacophoric acid synthase from Bacillus' Stealoza monophyllus, and 2 is the amino acid sequence of E. coli. 2 shows the amino acid sequence of arnesyl diphosphate synthase.
  • the part surrounded by the frame (within a square) indicates the aspartic acid-rich domain I, and the asterisk ( ⁇ ) indicates the amino acid residue N-terminal 4 amino acids from the N-terminal of aspartic acid-rich domain I.
  • the present invention provides geranyl diphosphate by modifying an amino acid residue located 4 amino acid residues upstream of the Asp-rich domain I to another amino acid residue having a larger molecular weight than the amino acid. It is characterized by creating a synthetic enzyme and producing ligeranyl diphosphate by the enzyme reaction. That is, in the amino acid sequence “DDXX (XX) D” constituting the aspartic acid rich domain I, four amino acid residues present on the N-terminal side from the N-terminal amino acid (Asp) (FIG.
  • amino acid residue having a higher molecular weight than Ser any amino acid except Gly and Ala, that is, Val, Leu, lie, Thr, Asp, Glu, Asn, Gin, Lys, Arg , Cys, Met, Phe, Tyr, Trp, His, and Pro.
  • the amino acid to be substituted is not particularly limited as long as it is other than G 1 y and A 1 a, but Phe is preferred.
  • the geranyl diphosphate synthase of the present invention comprises, for example, a Ser residue at the 82nd residue in the amino acid sequence (see the amino acid sequence set forth in SEQ ID NO: 5) of the funesyl diphosphate synthase. It can be obtained by substituting Phe residue.
  • substitution can be performed, for example, by partially modifying the nucleotide sequence of a stearothermophilus-derived FPP synthase gene reported to have high thermostability and high specific activity.
  • the target gene for introducing the mutation is Bacillus stearosa-morphophilus
  • BstFPS ⁇ Bacillus stearothermophilus -derived FPP synthase
  • the entire nucleotide sequence of the BstFPS gene is known (T. Koyama et al. (1993) J. Biochem, 113, 355-363; SEQ ID NO: 4), and is published as accession number D13293 in genetic information databases such as DDBJ. Have been.
  • B. stearothen nophi lus is also available from various microorganism depositors (ATCC 10149), the conventional gene cloning method (edited by J. Sambrook et al. (1989)) The DNA of the BstFPS gene can be obtained by Molecular Cloning, Cold Spring Harbor Laboratory Press, New York).
  • plasmid DNA for mutagenesis.
  • This plasmid DNA is designated as pFPS.
  • Oligonucleotides for mutagenesis include a Ser codon encoding the amino acid residue at position 82 of BstFPS and a codon encoding any amino acid (other than Ser) except Gly and Ala (eg, Phe codon).
  • the design is such that a new SJDHI cleavage site (5'TCATGA 3 ') is introduced.
  • 5'TCATGA 3 ' the following nucleotide sequence can be mentioned.
  • the synthesis of the oligonucleotide can be performed using a conventional chemical synthesizer, and it is preferable that the synthesized oligonucleotide is phosphorylated and then deactivated (for example, at 70 ° C. for 10 minutes).
  • a substitution mutation is introduced into the plasmid prepared as described above using the oligonucleotide as a primer.
  • the method for introducing a mutation is not particularly limited.
  • a commercially available kit (Mutan-K kit; Takara Shuzo) based on the Kunkel method (Proc. Natl. Acad. Sci., USA (1985) 82, 488) can be used.
  • the polymerase chain reaction (PCR) may be used.
  • the obtained single-stranded DNA is made into a type II, and a primer DNA for complementary strand synthesis is subjected to chaining to synthesize a double strand. This is inserted into a plasmid and transformed into an E. coli strain.
  • the gene of the present invention may be, for example, a DNA encoding a native amino acid sequence (SEQ ID NO: 4) It can be easily obtained by introducing a site-specific mutation or a mutation according to a conventional method such as PCR.
  • the nucleotide sequence of the obtained clone is determined.
  • the nucleotide sequence can be determined by a known method such as the Maxam-Gilbert method and the dideoxy method, but usually the sequence is determined using an automatic base sequencer based on the dideoxy method.
  • SEQ ID NO: 2 shows the nucleotide sequence of the gene of the present invention
  • SEQ ID NOs: 1 and 3 show the amino acid sequence of the geraniline diphosphate synthase of the present invention.
  • a protein consisting of this amino acid sequence has geranyl diphosphate synthase activity
  • those having a sequence in which the first Met in the amino acid sequence represented by SEQ ID NO: 1 or 3 is deleted are also included in the geranyl diphosphate synthase of the present invention.
  • genes encoding these geranyl diphosphate synthases are also included in the gene of the present invention.
  • the geranyl diphosphate synthase activity means a catalytic activity for synthesizing GPP using IPP or its isomer (eg, DMAPP) as a substrate.
  • the mutation can be introduced by the same method as described above.
  • the nucleotide sequence of the geranyl diphosphate synthase gene of the present invention is determined, it is then hybridized by chemical synthesis, by PCR using the gene as a ⁇ , or using a DNA fragment having the nucleotide sequence of the gene as a probe. Thereby, the gene of the present invention can be obtained.
  • the recombinant vector of the present invention can be obtained by ligating (inserting) the gene of the present invention into an appropriate vector.
  • the vector for introducing the gene of the present invention is not particularly limited as long as it can be replicated in a host.
  • a vector that can be used to construct the recombinant vector of the present invention is a vector extracted from E. coli or the like (Birnboim, HC & Doly, J. (1979) Nucleic acid Res 7: 1513). ) Or a modification thereof. Also, commercially available products may be used as they are, and invitations may be made according to the purpose. Various derived vectors may be used.
  • pBR322, pBR327, pKK233-2, ⁇ 233-3, pTrc99A and the like having a replication origin derived from pMBl can be mentioned.
  • a plasmid originating from.
  • a fusion protein expression vector that is easier to purify after expression for example, a pGEX-based vector or a pMal-based vector can also be used.
  • gene transfer can also be performed using a viral vector such as phage M13 phage or a transposon.
  • a viral vector such as phage M13 phage or a transposon.
  • the phage DNA include M13mpl8, M13mpl9, Agt10, Lgt11, and the like.
  • Integration of the gene fragment encoding geranyl diphosphate synthase into these vectors can be performed by a known method using an appropriate restriction enzyme and ligase.
  • a method is used in which the purified DNA is cleaved with an appropriate restriction enzyme, inserted into an appropriate restriction enzyme site of the vector DNA, and ligated to the vector.
  • the vector of the present invention can include a replication origin, an expression control sequence, and the like depending on the host.
  • a transcription promoter, a transcription terminator, a ribosome binding sequence and the like may be incorporated.
  • the promoters include Ptac, Plac, and Ptrc
  • the terminators include rrnB terminator
  • the ribosome binding sequence is the SD sequence (represented by 5′-AGGAGG-3 ′).
  • plasmid vector thus produced include pFPSm in Examples.
  • the transformant of the present invention can be obtained by introducing the recombinant vector for expression of the present invention into a host so that the target gene can be expressed.
  • the host is not particularly limited as long as it can express the gene of the present invention.
  • E. coli (/ a coli), Bacillus subtilis Baci 1) us subtil is), a bacterium belonging to the genus Escherichia or Bacillus such as Bacillus brevis (Baci Uus 6reWs), Saccharomyces cerevisiae
  • Filamentous fungi belonging to the genus Aspergillus such as (Aspergi 1 lus oryzae) and Aspergi 1 lus niger, cultured cells of silkworms, animal cells such as COS cells or CH0 cells, or plant cells. No.
  • the recombinant vector of the present invention can replicate autonomously in the bacterium, and at the same time, a transcription promoter, a ribosome binding sequence,
  • It is preferably composed of DNA and a transcription terminator.
  • a gene that controls a transcriptional motor may be included.
  • a naturally occurring sequence eg, lac, trp, bla, lpp, PL, PR, T3, T7, etc.
  • a promoter sequence for initiating transcription of mRNA from DNA can be used as a promoter sequence for initiating transcription of mRNA from DNA.
  • their mutants eg, lacUV5
  • artificially fused sequences of natural promoter sequences eg, tac, trc, etc.
  • the distance from the ribosome binding site (GAGG and its similar sequence) to ATG or GTG as the initiation codon is important as a sequence that regulates the ability to synthesize a protein from mRNA.
  • a terminator eg, rrnBT1T2
  • the gene can be efficiently expressed by using these sequences.
  • the method for introducing a foreign gene into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria.
  • a method using calcium ions Pro Natl. Acad. Sci., USA, 69, 2110-2114 (1972)
  • an elect opening method and the like can be mentioned.
  • yeast When yeast is used as a host, for example, YEpl3, YEp24, YCp50 and the like are used as expression vectors.
  • the promoter in this case is not particularly limited as long as it can be expressed in yeast.
  • a gall promoter, a gallO promoter, Heat shock protein promoter, MFa1 promoter and the like For example, a gall promoter, a gallO promoter, Heat shock protein promoter, MFa1 promoter and the like.
  • the method for introducing a foreign gene into yeast is not particularly limited as long as it is a method for introducing DNA into yeast.
  • Examples of the method include the electoporation method (Methods. Enzyraol., 194, 182-187 (1990)) Acad. Sci., USA, 84, 1929-1933 (1978), lithium acetate method (J. Bacter iol., 153, 163-168 (1983)) and the like.
  • pcDNAI / Amp, pcDNAI, etc. are used as an expression vector, etc.
  • an early gene promoter of human cytomegalovirus may be used as a promoter.
  • Examples of a method for introducing a foreign gene into animal cells include an electroporation method, a calcium phosphate method, and a lipofection method.
  • an infection method using an agrobacterium is widely used, and examples of a direct introduction method include a protoplast method, an electroporation method, and a bombardment method.
  • the recombinant vector of the present invention was introduced into Escherichia coli DH5a (pFPSm (S82F) / DH5 ⁇ ), and the Institute of Biotechnology, Institute of Industrial Science and Technology (1-1-3 Higashi, Tsukuba, Ibaraki Prefecture) It has been deposited internationally as FERM BP-6551 under the Budapest Treaty on December 12, 2012.
  • the geranyl diphosphate synthase of the present invention can be obtained by culturing the transformant in a medium and collecting from the culture.
  • the method for culturing the transformant of the present invention in a medium is performed according to a usual method used for culturing a host.
  • the medium for culturing transformants obtained using microorganisms such as Escherichia coli and yeast as a host contains a carbon source, a nitrogen source, inorganic salts, etc. that can be used by the microorganisms, and the cultivation of the transformants is efficient.
  • a natural medium or a synthetic medium can be used as long as the medium can be used for the purpose.
  • Examples of the carbon source include carbohydrates such as glucose, fructose, sucrose, and starch; organic acids such as acetic acid, propionic acid, and citric acid; and alcohols such as glycerol, methanol, ethanol, and propanol.
  • Examples of the nitrogen source include ammonia, ammonium salts of inorganic or organic acids such as ammonium chloride, ammonium sulfate, ammonium acetate, and ammonium phosphate, and other nitrogen-containing compounds, peptone, meat extract, corn steep liquor, and the like. Used.
  • Inorganic substances include potassium (II) phosphate, potassium (II) phosphate, magnesium phosphate, magnesium sulfate, magnesium chloride, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, calcium chloride, etc. Used.
  • the culture When Escherichia coli is used as a host, the culture is usually performed at 37 ° C for 16 to 24 hours under aerobic conditions such as shaking culture or aeration-agitation culture. During the culture period, 11 is kept at 6-8.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, a buffer, or the like.
  • an antibiotic such as ampicillin / tetracycline may be added to the medium as needed. .
  • an inducer may be added to the medium as necessary.
  • an inducer may be added to the medium as necessary.
  • IPTG isopropyl- / 3-D-thiogalactovyranoside
  • IAA indoleacrylic acid
  • a medium for culturing a transformant obtained using animal cells as a host a commonly used RPMI 1640 medium, DMEM medium, or a medium obtained by adding fetal calf serum or the like to such a medium is used.
  • Culture is usually, 5 to 10% C0 2 presence is performed 2-20 days at 37 ° C. During the culture, antibiotics such as kanamycin and benicillin may be added to the medium as needed.
  • a medium for culturing a transformant obtained by using a plant cell as a host As a medium for culturing a transformant obtained by using a plant cell as a host, a commonly used MS medium or a medium obtained by adding kanamycin, various plant hormones, etc. to this medium is used. Culture is usually performed at 20-30 ° C for 3-14 days.
  • the cells or cells are disrupted to prepare a cell extract. Further, when the geranilinyl phosphate synthase of the present invention is produced extracellularly or extracellularly, it is centrifuged or the like. The cells or cells are removed to prepare a culture supernatant. Next, these cultures (cell extracts or culture supernatants) are subjected to general biochemical methods used for protein isolation and purification, such as salting out, organic solvent precipitation, gel filtration, affinity chromatography, and the like.
  • the geranyl nitric acid synthase of the present invention can be isolated and purified from the culture by using chromatography, water-phobic interaction chromatography, ion exchange chromatography or the like alone or in an appropriate combination.
  • the geranyl diphosphate synthase of the present invention may have geranyl diphosphate synthase activity even without purifying the enzyme from the above culture, so that the cell extract or culture solution can be used as long as it has the enzyme activity. It can also be used as a crude enzyme solution.
  • GPP can be accumulated in a culture by culturing a host transformed with the DNA of the present invention, and GPP is produced by collecting the GPP. be able to.
  • GPP can also be produced by allowing the enzyme of the present invention to act on IPP or DMAPP serving as a substrate.
  • the enzyme of the present invention is allowed to act on the reaction substrate in a solvent, particularly an aqueous solution, and the target prenyl diphosphoric acid may be collected from the reaction solution as needed.
  • a solvent particularly an aqueous solution
  • the target prenyl diphosphoric acid may be collected from the reaction solution as needed.
  • the enzyme not only the produced enzyme but also an enzyme obtained by semi-purification to various stages or an enzyme-containing substance such as a cultured cell or a culture may be used. Further, an immobilized enzyme obtained by immobilizing the enzyme, the crude enzyme, or a substance containing the enzyme according to a conventional method may be used.
  • IPP and / or DMAPP are used as substrates.
  • a solvent for the reaction water or an aqueous buffer, for example, a Tris buffer / phosphate buffer is used.
  • FIG. 1 shows the results of the enzyme activities of mutant BstFPS and wild-type BsrFPS.
  • Figure 2 is a photograph of a thin layer chromatograph.
  • FIG. 3 is a diagram showing the reaction product specificity of mutant BstFPS and wild-type BsrFPS.
  • FIG. 4 is a diagram comparing the amino acid sequences of pharmacophoric acid synthase. BEST MODE FOR CARRYING OUT THE INVENTION
  • amino acid residues are represented by the following one-letter or three-letter abbreviations.
  • amino acid residue substitution refers to “amino acid residue before substitution” “amino acid residue number”
  • amino acid residue is represented by one letter in the order of “amino acid residue after substitution”. For example, to replace the 82nd Ser with Phe, display as “S82F”.
  • the FPP synthase (BstFPS) gene derived from Bacillus stearothennophilus was subcloned at the yVcol- //// ⁇ site of plasmid vector pTV118N, which is commercially available from Takara Shuzo. This plasmid DNA is designated as pFPS.
  • the entire nucleotide sequence of the BstFPS gene has been published as accession number D13293 in a genetic information database such as T. Koyama et al. (1993) J. Biochem, 113, 355-363, or DDBJ.
  • the sequence of the above oligonucleotide is intended to replace the Ser codon encoding the amino acid residue at position 82 of BstFPS with the Phe codon.
  • the design is such that a new cleavage site for spHI (5'TCATGA 3 ') is introduced.
  • the introduction of the SspHI cleavage site does not change the amino acid sequence encoded by the BstFPS gene due to codon degeneracy.
  • the plasmid into which the substitution mutation has been introduced can be detected by agarose gel electrophoresis after spHI digestion.
  • the synthesized oligonucleotides were phosphorylated at 37 ° C for 30 minutes in the following reaction solution and then deactivated at 70 ° C for 10 minutes.
  • T4 polynucleotide kinase ⁇ ⁇ [Example 3] Introduction of substitution mutation at codon for amino acid residue at position 82 of BstFPS gene
  • a substitution mutation was introduced into the plasmid prepared in Example 1 by the Kunkel method.
  • Kunkel method a Mutan-K kit commercially available from Takara Shuzo was used. The experimental procedure also followed the experimental manual attached to the Mutan-K kit.
  • the obtained single-stranded DNA was turned into a ⁇ -type and the primer DNA for complementary strand synthesis was annealed as follows.
  • Single-stranded DNA 0.6 pmol
  • H 2 0 Make final volume ⁇ ⁇ . Furthermore, 25 ⁇ l of an extension buffer, 60 units of E. coli DNA ligase, and 1 unit of ⁇ 4 DNA polymerase were added, and a complementary strand synthesis reaction was performed at 25 for 2 hours.
  • the growth buffer is 50 mM Tris-CI (pH 8.0), 60 mM ammonium acetate, 5 mM MgCl 2 , 5 mM DTT, 1 mM NAD, 0.5 mM dNTP.
  • E. coli DH5 strain was transformed by the CaCl 2 method as described below. That is, the DH5 ⁇ combination treated with 50 mM CaCl 2 The DNA solution was added to the tent cell suspension and kept on ice for 30 minutes.
  • the resulting transformant was spread on an agar plate containing ampicillin, which is a transformation selection marker, and cultured overnight at 37 ° C.
  • Plasmid DNA was prepared from a transformant having phenotype of ampicillin resistance and subjected to agarose gel electrophoresis after digestion with spHI. Among the transformants obtained, a substitution mutant having an SspHI cleavage site in the BstFPS coding region was obtained. pFPS plasmid was selected.
  • a crude enzyme solution was prepared from the two transformants containing the mutant and wild-type BstFPS genes obtained in Example 4 and the transformant containing only the vector PTV118N as described below.
  • Transformants cultured once in 2x LB medium are collected by centrifugation, and suspended in a cell disruption buffer (50 mM TrisCl (pH 8.0), 10 mM / 3-mercaptoethanol, ImM EDTA). It became cloudy. This was sonicated, and the supernatant centrifuged at 4 ° C and 10,000 rpm for 10 minutes was heat-treated at 55 ° C for 30 minutes to inactivate the prenyl diphosphate synthase activity derived from E. coli. Was. This was further centrifuged under the same conditions, and the supernatant was used as a crude enzyme extract and reacted at 55 ° C for 15 minutes in the following reaction solution.
  • a cell disruption buffer 50 mM TrisCl (pH 8.0), 10 mM / 3-mercaptoethanol, ImM EDTA. It became cloudy. This was sonicated, and the supernatant centrifuged at 4 ° C and 10,000 rpm for 10 minutes was
  • FIG. 1 is a graph showing the enzyme activities of S82F mutant BstFPS and wild-type BsrFPS.
  • Sample Nos. 1, 4, and 7 were prepared from a host containing only vector pTV118N
  • Sample Nos. 2, 5, and 8 were prepared from a host containing the gene encoding S82F mutant BstFPS
  • Sample No. 3 6 and 9 were prepared from a host carrying the gene encoding wild-type BstFPS.
  • Sample numbers 1, 2, and 3 show the results when DMAPP was used as the aryl substrate.
  • Sample numbers 4, 5, and 6 show the results when FPP was used as the aryl substrate.
  • Sample numbers 7 and 8 9 and 9 show the results when FPP was used as the aryl group.
  • Figure 1 shows that the wild-type enzyme can use DMAPP and GPP as aryl substrates, but not FPP, but the S82F mutant enzyme has an extremely reduced ability to use GPP as an aryl substrate.
  • FIG. 2 shows the TLC development pattern in the dephosphorization of the mutant BstFPS reaction product when each allylic substrate was used.
  • sf indicates the solvent front
  • ori. indicates the development start point
  • G0H indicates the development position of the geraniol standard sample
  • F0H indicates the development position of the fumaresol standard sample.
  • Wild type shows the results when using wild-type BstFPS
  • S82F shows the results when using mutant BstFPS
  • vector shows the results when using a host that holds only the vector.
  • nd is live No gender was detected.
  • FIG. 3 is a graph showing the reaction product specificity of wild-type BstFPS and mutant BstFPS, and shows the production rates of GGPP, FPP and GPP when IPP and DMAPP are used as substrates.
  • a geranyl diphosphate synthase a gene encoding the enzyme, a recombinant vector containing the gene, and a method for producing geranyl diphosphate synthase and geranyl diphosphate are provided.
  • the gene of the present invention is useful in that it can be used for metabolic engineering and enzyme engineering for the purpose of synthesizing monoterbenes. Sequence listing free text
  • Xaa represents Val, Leu, lee, Thr, Asp, Glu, Asn, Gln, Lys, Arg, Cys, Met, Phe, Tyr, Trp, His or Pro.
  • SEQ ID NO: 6 Oligonucleotide designed from amino acid sequence of FPP synthase and having BspHI site.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明 細 書 ゲラニルニリン酸合成酵素遺伝子 技術分野
本発明は、 ゲラニルニリン酸合成酵素、 該酵素をコードする遺伝子、 該遺伝 子を含む組換えべクタ一、 並びにゲラニルニリン酸合成酵素及びゲラニルニリン 酸の製造方法に関する。 背景技術
生体内で重要な機能を持つ物質のうち、 イソプレン (i soprene : 2-メチル- 1,3-ブタジエン) を構成単位として生合成される物質は数多い。 これらの化合物 はイソプレノイ ド (i soprenoid) 、 テルぺノイ ド (terpenoid) 又はテルペン (terpene) とも呼ばれ、 炭素数によりへミテルペン (hemi terpene, C5) 、 モノ テノレペン mono terpene, CIO) 、 セスキテソレペン sesqui terpene, C15) 、 ンテ ルペン (di terpene, C20) 、 セスタテルペン (sesterterpene, C25) 、 トリテル ペン (tri terpene, C30) 、 テトラテルペン (tetraterpene, C40) などに分類さ れる。
これらの物質の実際の生合成は、 活性型イソプレン単位であるイソペンテニル 二リン酸 (IPP : isopentenyl diphosphate) が合成されるところから始まる。 架 空の前駆体物質として提唱されたイソプレン単位の真の姿は、 結局、 活性型イソ プレン単位といわれる IPPである。
IPPの異性体であるジメ チルァ リ ル二リ ン酸 (DMAPP : dimethylal lyl diphosphate) は、 IPPとの縮合反応によってゲラニルニリン酸 (GPP: geranyl diphosphate) 、 ネリルニリン酸 (neryl diphosphate) 、 フアルネシル二リン酸 ( FPP : farnesyl diphosphate) 、 ゲラニルゲラニルニリン酸 (GGPP : geranyl geranyl diphosphate ) 、 ゲラニルフアルネシル二リ ン酸 (GFPP: geranyl farnesyl diphosphate ) 、 へキサプレニノレ二 リ ン酸 ( HexPP : hexaprenyl diphosphate) 、 へフタプレニノレニリン酸 (HepPP : heptaprenyl d iphosphate) などの鎖状活性型ィソプレノイ ドに合成されることが知られている。
FPPや GGPPなどでは全トランス型 (aU- £¾) が活性型と考えられるが、 c/s縮 合反応することによって天然ゴム、 ドリコール ·パクトプレノール (ゥンデカプ レノール) 、 あるいは植物で見出される各種ポリプレノール等が合成される。 こ れらの化合物は、 分子内に持つピロリン酸と炭素骨格とのリン酸エステル結合ェ ネルギ一を用いて縮合反応が進行することによリ合成されるものと考えられ、 反 応副産物としてピロリン酸が生成すると考えられている。
ァリル性 (allylic) 基質である DMAPP、 GPP、 FPP、 GGPP, GFPPなどに IPPを順 次縮合していく活性型イソプレノィド合成酵素は、 プレニルニリン酸合成酵素又 はプレニルトランスフェラ一ゼど呼ばれている。 プレニルニリン酸合成酵素は、 主要反応産物の炭素数の違いにより名称を区別している。 例えば、 炭素数 15個の フアルネシルニリン酸の生成を触媒する酵素はフアルネシルニリン酸合成酵素 (FPP synthase) と呼ばれ、 炭素数 20個のゲラニルゲラニルニリン酸の生成を触 媒する酵素はゲラニルゲラニルニリン酸合成酵素 (GGPP synthase) と呼ばれる。 すでに、 バクテリア、 ァ一キア (archaea) 、 真菌、 植物、 動物から各種ブレ 二ルニリン酸合成酵素遺伝子が得られており、 フアルネシルニリン酸合成酵素、 ゲラニルゲラニルニリン酸合成酵素、 へキサプレニルニリン酸合成酵素、 ヘプタ プレニルニリン酸合成酵素、 ォクタプレニルニリン酸合成酵素、 ノナブレニルニ リン酸合成酵素 (ソラネシル二リン酸合成酵素) 、 ゥンデカブレニルニリン酸合 成酵素などについて、 酵素の精製、 活性測定及び遺伝子クロ一ニング ·塩基配列 決定が報告されている。
産業的にも生命科学的にも重要かつ多岐にわたる化合物合成の根本をなすこれ らプレニルニリン酸合成酵素は、 一般的に不安定であり比活性も低く、 工業的に 利用することが期待できなかった。 ところ力 ここ数年、 好熱性のバクテリアや ァ一キアから耐熱性の FPP合成酵素や GGPP合成酵素遺伝子が単離され [ に Chen and D. Poulter (1993), J Biol Chem, 268(15), 11002-11007; T. Koyama et al.
(1993) , J. Biochem. (Tokyo), 113(3), 355-363; S.-i. Ohnuraa et al.
(1994) J. Biol. Chem. , 269(20), 14792-14797]、 プレニルニリン酸合成酵素を 利用するための条件が整つてきた。 炭素数 10〜25のプレニルニリン酸を合成する酵素はホモダイマ一であリ、 in vitroで反応させるのは比較的容易でその報告例も多い。 その中でも炭素数 10の プレニルニリン酸である GPPを特異的に合成する活性をもつ酵素は、 部分精製の 報告はあるが (L.Heide and U.Berger, 1989, Arch Biochem Biophys, 273(2), 331-8) 単離されていない。 豚の肝臓から GPP合成酵素の精製に成功したとして報 告されている力' ( J.K.Dorsey et aし, 1966, J Biol Chem, 241(22), 5353- 5360. ) 、 この酵素は FPPの合成も同時に触媒してしまうため、 現在のプレニルニ リン酸合成酵素の定義からは FPP合成酵素と呼ぶベきものである。
GPPは、 知られている多くのモノテルペンのうち、 最初の合成中間体であり、 モノテルペンの生合成経路で最も重要な化合物である。
モノテルペンの代表的な物質であるゲラニオール及びその異性体ネロールはい ずれも薔薇油主成分の香料であり、 楠抽出物の樟脳は、 防虫剤としても利用され ている。
しかしながら、 GPP合成酵素遺伝子はいまだに単離されていない。
そこで、 好熱性生物由来の安定で比活性の高いホモダイマ一型のプレニルニリ ン酸合成酵素のアミノ酸配列を人工的に改変し、 GPPの合成反応を特異的に触媒 するホモダイマ一型耐熱性プレニルニリン酸合成酵素を人工的に作リ出す技術が 要求されている。
好熱性生物由来のプレニルニリン酸合成酵素としては、 これまでに、 バシル ス .ステアロザーモフィラス Bacillus stearothermophilus) 由来の FPP合成酵 素とスルフォロバス ' ァシドカルダリウス ( Sulfolobus acidocaldarius) の GGPP合成酵素で改変された例がある。 5. ac/i/oca/ r/usの GGPP合成酵素の変異型 酵素とその遺伝子は、 HexPP合成酵素活性欠損の出芽酵母サッカロミセス ·セレ ピシェ ( Saccha醒 yces serevisiae) のグリセ口ール代謝能を相補することを指 標にして選択された [ S.-i. Ohnuma et al. (1996) J. Biol. Chem. , 271(31), 18831-18837 ]0 リ コペン (lycopene) 合成を指標に、 GGPP合成活性をもつ stearothermophilus FPP合成酵素の変異型酵素とその遺伝子が得られ [ S.-i. Ohnuma et al. (1996) , J. Biol. Chem. , 271(17), 10087-蘭 5]、 更に、 Asp- richドメイン I保存配列 (DDXX(XX)D) の 5アミノ酸残基上流のアミノ酸残基をコ 一ドする遺伝子を部位特異的変異させることによって、 GGPPから HexPPまでのプ レニルニリン酸を様々な割合で合成する 18種の変異型酵素とその遺伝子が得られ た [ S. - i . Ohnuma et al . ( 1996) J. Bi o l . Chem. , 271 (48) , 30748-30754 ]。 そして、 Asp- r i chドメイン I保存配列 (DDXX(XX)D) の 5アミノ酸残基上流に位置 するアミノ酸残基が反応産物の鎖長制御に関与することがわかった。
しかし、 GPPを特異的に合成する活性を有する変異型酵素は得られていない。 発明の開示
本発明は、 ゲラニルニリン酸合成酵素及び該酵素をコードする遺伝子を提供す ることを目的とする。
本発明者は、 上記課題を解決するため鋭意研究を行った結果、 フアルネシル二 リン酸合成酵素のァミノ酸配列の一部を置換することによりゲラニルニリン酸合 成酵素及び該酵素をコードする遺伝子を単離することに成功し、 本発明を完成す るに至った。
すなわち、 本発明は、 以下の (a ) 又は (b ) の組換えタンパク質である。
( a ) 配列番号 1で表されるアミノ酸配列からなるタンパク質
( b ) 配列番号 1で表されるアミノ酸配列において第 8 2番目のアミノ酸 を除く少なくとも 1個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列 からなリ、 かつゲラニルニリン酸合成酵素活性を有するタンパク質
さらに、 本発明は、 上記 (a ) 又は (b ) の組換えタンパク質をコードする遺 伝子である。
さらに、 本発明は、 配列番号 2で表される塩基配列を含む、 ゲラニルニリン酸 合成酵素遺伝子である。
さらに、 本発明は、 前記遺伝子を含む組換えべクタ一である。
さらに、 本発明は、 前記組換えベクターによって形質転換された形質転換体で ある。
さらに、 本発明は、 前記形質転換体を培地に培養し、 得られる培養物からゲラ 二ルニリン酸合成酵素を採取することを特徴とするゲラニルニリン酸合成酵素の 製造方法である。 さらに、 本発明は、 前記形質転換体を培地に培養し、 得られる培養物からゲラ 二ルニリン酸を採取することを特徴とするゲラニルニリン酸の製造方法である。 さらに、 本発明は、 前記形質転換体の培養物をイソペンテニルニリン酸又はそ の異性体に作用させることを特徴とするゲラニルニリン酸の製造方法である。 以下、 本発明を詳細に説明する。
プレニルニリン酸合成酵素 (ヘテロダイマーの場合は一方のサブユニット) の アミノ酸配列には 5つの保存領域が存在することが知られている [ A. Chen et al . ( 1994) Protein Sci .,3(4), 600-607 ] 。 この 5つの保存領域には、 反応産 物又は反応基質が結合していると考えられているァスパラギン酸残基に富む領域 が 2箇所存在する。 この領域を 「ァスパラギン酸リッチドメイン」 又は 「Asp- richドメイン」 といい、 このうち、 プレニルニリン酸合成酵素のァミノ末端側に 位置する Asp-richドメイン (上記保存領域 I Iに位置する) を Asp-richドメイン I (配列: 「DDXX(XX)D」 (配列中、 かっこ内の 「XX」 は存在しない場合がある) ) とし、 カルボキシル末端側に位置する Asp- richドメイン (上記保存領域 Vに位置 する) を Asp-richドメイン I Iとして両者を区別する。
上記のようなァスパラギン酸リツチドメインを有するプレニルニリン酸合成酵 素としては、 フアルネシル二リン酸合成酵素、 ゲラニルゲラニルニリン酸合成酵 素、 へキサプレニルニリン酸合成酵素、 ヘプタブレニルニリン酸合成酵素、 ォク タブレニルニリン酸合成酵素、 ノナプレニルニリン酸合成酵素、 ゥンデカブレニ ルニリン酸合成酵素などがあげられる。 さらに具体的な例として、 バシルス 'ス テアロサ一モフィラス Baci l lus stearo thermophi lus) のフアルネシソレニリン 酸合成酵素、 大腸菌 Escherichia col i) のフアルネシル二リン酸合成酵素、 サ ッカロミセス ·セレピシェ ( SacchsLromyces cerevisiae) のファルネシノレニリン 酸合成酵素、 ラットのフアルネシル二リン酸合成酵素、 ヒトのフアルネシルニリ ン酸合成酵素、 サッカロミセス 'セレヒシェ { Saccharomyces cerevisiae) のへ キサプレニルニリン酸合成酵素などが挙げられる。 これらのうち、 細菌型のファ ルネシルニリン酸合成酵素のアミノ酸配列における上記保存領域 I〜Vのァミノ 酸配列を図 4に示す。 図 4において、 1 . はバシルス 'ステアロザ一モフィラス 由来のフアルネシル二リン酸合成酵素のアミノ酸配列を、 2. は大腸菌由来のフ アルネシル二リン酸合成酵素のアミノ酸配列を示す。 枠で囲まれた部分 (四角 内) はァスパラギン酸リッチドメイン I、 星印 (☆) はァスパラギン酸リッチド メイン Iの N末端から 4アミノ酸残基分 N末端側のアミノ酸残基を示す。
本発明は、 前記 Asp - richドメイン I よりも 4アミノ酸残基上流に位置するアミ ノ酸残基を、 そのアミノ酸よリも大きな分子量を持った他のアミノ酸残基に改変 することにより、 ゲラニルニリン酸合成酵素を創出し、 当該酵素反応によリゲラ ニルニリン酸を製造することを特徴とする。 すなわち、 前記ァスパラギン酸リツ チドメイン I を構成するアミノ酸配列 「DDXX(XX)D」 のうち、 N末端のアミノ酸 (Asp) から 4個 N末端側に存在するアミノ酸残基 (図 4、 ☆印を付した Ser) を、 Serよリも分子量の大きい他のアミノ酸残基 (Gly及び Alaを除くいずれかのアミ ノ酸、 すなわち Val、 Leu, lie, Thr、 Asp, Glu、 Asn、 Gin, Lys、 Arg、 Cys、 Met, Phe、 Tyr、 Trp、 His及び Proからなる群から選ばれるいずれかのアミノ酸) に置 換するものである。 置換するアミノ酸は G 1 y及び A 1 a以外であれば特に限定されな いが、 Pheが好ましい。
具体的には、 本発明のゲラニルニリン酸合成酵素は、 フアルネシル二リン酸合 成酵素のアミノ酸配列 (配列番号 5に記載のアミノ酸配列を参照) のうち第 82残 基目の Ser残基を、 例えば Phe残基に置換することにより得ることができる。
かかる置換は、 例えば、 熱安定性も高く比活性も高いと報告されている stearothermophilus 由来の FPP合成酵素遺伝子の塩基配列を一部改変することに より行うことができる。
(1) 変異導入の目的遺伝子の調製
変異を導入するための目的遺伝子は、 バシルス · ステアロザ一モフィラス
{Bacillus stearothermophilus) 由来の FPP合成酵素 (以下 BstFPSと略す) 遺伝 子である。 BstFPS遺伝子の全塩基配列は公知であり(T.Koyama et al. (1993) J. Biochem, 113, 355-363;配列番号 4)、 また DDBJなどの遺伝情報データベースで ァクセッション番号 D13293として公開されている。
B. stearothennophi lusも などの各種微生物の寄託機関から入手可能であ るため (ATCC 10149) 、 通常の遺伝子クロ一ニング法 (J. Sambrookら編(1989) Molecular Cloning, Cold Spring Harbor Laboratory Press, New York) によつ て BstFPS遺伝子部分の DNAを得ることができる。
次に、 得られた DNA断片を適当なプラスミ ドベクタ一 (例えば PTV118N; 宝酒 造) につないで変異導入のためのプラスミ ド DNAとする。 このプラスミ ド DNAを pFPSとする。
(2) 変異導入用オリゴヌクレオチドの合成及び変異の導入
変異導入のためのオリゴヌクレオチドは、 BstFPSの 82位のアミノ酸残基をコ一 ドする Serコドンを、 Gly及び Alaを除く任意の(Ser以外の) アミノ酸をコードす るコドン (例えば Pheコドン) に置換する目的に加えて、 新たに SJDHIの切断部位 (5'TCATGA 3' ) が導入されるような設計になっており、 例えば以下の塩基配列 が挙げられる。
5' - CAT ACG TAC TTC TTG ATT CAT GAT GAT TTG-3' (配列番号 6 ) この塩基配列は、 ·¾ρΗΙ切断部位を導入しても BstFPS遺伝子がコードするアミ ノ酸配列はコドンの縮重により変化しないよう設計されている。 この切断部位の 導入によリ、 消化後のァガロースゲル電気泳動で置換変異導入されたブラ スミ ドを検出することができる。
なお、 オリゴヌクレオチドの合成は通常の化学合成装置を用いて行うことがで き、 さらに合成したオリゴヌクレオチドをリン酸化した後失活処理 (例えば 70°C で 10分間) しておくことが好ましい。
次に、 前記オリゴヌクレオチドをプライマ一として用いて、 前記の通り作製し たプラスミ ドに置換変異を導入する。 変異の導入法は特に限定されず、 例えば Kunkel法 ( Proc. Natl. Acad. Sci. , USA(1985)82, 488 ) に基づく市販のキッ ト (Mutan-Kキット ;宝酒造社) を用いてもよく、 ポリメラーゼ連鎖反応法 (PCR 法) を用いてもよい。
得られた一本鎖 DNAを錡型にして、 相補鎖合成用プライマ一 DNAをァ二一リング させて二本鎖を合成する。 これをプラスミ ドに組み込んで大腸菌株に形質転換を 行う。
本発明の遺伝子は、 例えば、 生来のアミノ酸配列をコードする DNA (配列番号 4 ) に部位特異的変異や PCR法等の常法にしたがって変異を導入することにより 容易に得ることが出来る。
得られたクローンについて塩基配列の決定を行う。 塩基配列の決定はマキサム -ギルバート法、 ダイデォキシ法等の公知手法により行うことができるが、 通常 はダイデォキシ法に基づいた自動塩基配列決定装置を用いて配列決定が行われる。 配列番号 2に本発明の遺伝子の塩基配列を、 配列番号 1及び 3に本発明のゲラ 二ルニリン酸合成酵素のアミノ酸配列を例示するが、 このアミノ酸配列からなる タンパク質がゲラニルニリン酸合成酵素活性を有する限り、 変異が導入されたァ ミノ酸配列 (配列番号 1又は 3 ) の第 82番目のアミノ酸 (例えば Phe) を除く当 該アミノ酸配列において少なくとも 1個 (例えば 1若しくは数個) のアミノ酸に 欠失、 置換、 付加等の変異が生じてもよい。 例えば、 配列番号 1又は 3で表わさ れるアミノ酸配列の第 1番目の Metが欠失した配列を有するものなども、 本発明 のゲラニルニリン酸合成酵素に含まれる。 また、 これらのゲラニルニリン酸合成 酵素をコードする遺伝子も、 本発明の遺伝子に含まれる。
ここで、 ゲラニルニリン酸合成酵素活性とは、 IPP又はその異性体 (例えば DMAPP) を基質として GPPを合成する触媒活性を意味する。 なお、 変異の導入は、 前記と同様の手法により行うことができる。
一旦本発明のゲラニルニリン酸合成酵素遺伝子の塩基配列が確定されると、 その後は化学合成によって、 又は該遺伝子を鎵型とした PCRによって、 あるいは 該遺伝子の塩基配列を有する DNA断片をプローブとしてハイブリダィズさせるこ とにより、 本発明の遺伝子を得ることができる。
(3) ベクタ一の構築
本発明の組換えべクタ一は、 適当なベクタ一に本発明の遺伝子を連結(挿入)す ることによリ得ることができる。 本発明の遺伝子を揷入するためのベクターは、 宿主中で複製可能なものであれば特に限定されない。 本発明の組換えべクタ一を 作製するのに使用できるベクターは、 大腸菌等からアル力リ抽出法(B i rnbo im, H. C. & Do ly, J. ( 1979) Nuc l e i c ac i d Res 7 : 1513)又はその変法等により調製 することができる。 また、 市販のものをそのまま用いてもよく、 目的に応じて誘 導した各種ベクターを用いてもよい。 例えば、 pMBl由来の複製開始点を持つ pBR322、 pBR327、 pKK233- 2、 ρΚΚ233- 3、 pTrc99Aなどが挙げられる。 また、 コピ —数が向上するように改変した pUC18、 pUC19、 pUC 118、 pUC1 19、 pTV1 18N、 pTV119N、 pB luescr ipt, pHSG298、 pHSG396など、 さらには、 pSC 101、 Co lEl、 Rl、 F因子等に由来するプラスミ ドも挙げられる。 さらに、 発現後の精製がより容易 な融合タンパク質発現べクタ一、 例えば pGEX系べクタ一や pMal系べクタ一も利用 できる。
また、 プラスミ ド以外にもえファージゃ M13ファージのようなウィルスベクタ —やトランスポゾンによっても遺伝子導入が可能である。 ファージ DNAとしては、 例えば M13mpl8、 M13mpl9 、 A gt lO、 ; L gt l l等が挙げられる。
これらのベクターへのゲラニルニリン酸合成酵素をコードする遺伝子断片の組 込みは、 適当な制限酵素とリガーゼを用いる既知の方法で行うことが出来る。 例 えば、 精製された DNAを適当な制限酵素で切断し、 適当なベクター DNAの制限酵 素部位に挿入してベクタ一に連結する方法などが採用される。
本発明の遺伝子は、 その機能が発揮されるようにベクターに組み込まれること が必要である。 そこで、 本発明のベクターには、 宿主に応じた複製開始点、 発現 制御配列などを含めることができる。 さらに、 転写プロモーター、 転写ターミネ 一ター、 リボソーム結合配列等を組み込んでもよい。 この場合、 プロモータ一と しては Ptac、 Plac、 Ptrcが挙げられ、 ターミネータ一としては rrnBターミネータ —が挙げられ、 リボソーム結合配列としては SD配列 (5' -AGGAGG-3'で代表され る) が挙げられる。
こうして作製されるプラスミ ドベクターの具体的なものとしては実施例中の pFPSmが挙げられる。
(4) 形質転換体の作製
本発明の形質転換体は、 本発明の発現用組換えべクタ一を、 目的遺伝子が発現 し得るように宿主中に導入することにより得ることができる。
ここで、 宿主としては、 本発明の遺伝子を発現できるものであれば特に限定さ れるものではない。 例えば、 大腸菌( /a co l i) 、 バシルス · ズブチリ ス Baci 1】us subtil is), バシルス · ブレビス(Baci Uus 6reWs)等のエツシエリ ヒア属又はバシルス属に属する細菌、 サッカロ ミ セス · セ レ ピシェ
{Saccharo yces cerevisiae) . ヒキア ·ノ ストリス (Pichia pastris) 等のサッ カロ ミセス属又はピキア属に属する酵母、 ァスペルギルス · ォリゼ一
{Aspergi 1 lus oryzae) 、 ァスぺノレギメレス - 二力一 (Aspergi 1 lus niger) 等の ァスペルギルス属に属する糸状菌、 カイコの培養細胞、 COS細胞又は CH0細胞等の 動物細胞、 あるいは植物細胞等が挙げられる。
大腸菌等の細菌を宿主とする場合は、 本発明の組換えベクターが該細菌中で自 律複製可能であると同時に、 転写プロモータ一、 リボソーム結合配列、 本発明の
DNA、 転写ターミネータ一により構成されていることが好ましい。 また、 転写プ 口モーターを制御する遺伝子が含まれていてもよい。
DNAから mRNAの転写を開始するするプロモータ配列として、 天然に存在する配 列 (例えば lac、 trp、 bla、 lpp、 PL、 PR、 T3、 T7など) を用いることができる。 また、 これらのプロモータ一以外にも、 それらの変異体 (例えば lacUV5) 又は天 然にあるプロモーター配列を人工的に融合した配列 (例えば tac、 trcなど) が知 られており、 本発明にも使用できる。
ここで、 mRNAから蛋白質を合成する能力を調節する配列として、 リボソーム結 合部位 (GAGGおよびその類似配列) から開始コドンである ATGまたは GTGまでの距 離が重要であることは既知である。 また、 3'側に転写終了を指令するターミネ一 ター (例えば、 rrnBTlT2) が組換え体での蛋白質合成効率に影響することはよく 知られている。 従って、 本発明では、 これらの配列を使用することにより、 遺伝 子の発現を効率よく行わせることができる。
細菌への外来遺伝子の導入方法としては、 細菌に DNAを導入する方法であれば 特に限定されない。 例えばカルシウムイオンを用いる方法(Pro Natl. Acad.Sci., USA, 69, 2110-2114(1972)), エレクト口ポレーシヨン法等が挙げら れる。
酵母を宿主として用いる場合は、 発現べクタ一として例えば YEpl3、 YEp24、 YCp50等が用いられる。 この場合のプロモータ一としては、 酵母中で発現できる ものであれば特に限定されず、 例えば gallプロモーター、 gallOプロモータ一、 熱ショックタンパク質プロモータ一、 MF a 1プロモータ一等が挙げられる。
酵母への外来遺伝子の導入方法としては、 酵母に DNAを導入する方法であれば特 に限定されず、 例えばエレクト口ポレーシヨン法(Methods. Enzyrao l . , 194, 182- 187 ( 1990) )、 スフエロプラスト法(Pro Nat l . Acad. Sci . , USA, 84, 1929-1933 ( 1978)、 酢酸リチウム法(J. Bacter i o l . , 153, 163 - 168( 1983) )等が挙げられる。 動物細胞を宿主として用いる場合は、 発現べクタ一として例えば pcDNAI /Amp、 pcDNAI等が用いられる。 この場合、 プロモータ一としてヒトサイトメガロウィル スの初期遺伝子プロモータ一等を用いてもよい。
動物細胞への外来遺伝子の導入方法としては、 例えばエレクトロポレーシヨン 法、 リン酸カルシウム法、 リポフエクシヨン法等が挙げられる。
植物細胞への外来遺伝子の導入方法としては、 ァグロパクテリゥムによる感染 法が広く用いられ、 直接導入法としては例えばプロトプラスト法、 エレクトロボ レ一シヨン法、 ボンバードメント法等が挙げられる。
なお、 本発明の組換えベクターは、 大腸菌 DH5 aに導入され(pFPSm(S82F) /DH5 α )、 工業技術院生命工学工業技術研究所 (茨城県つくば市東 1丁目 1番 3号) に、 1997年 12月 12日付で、 FERM BP-6551としてブダぺスト条約に基づき国際寄託され ている。
(5)ゲラニルニリン酸合成酵素の製造
本発明のゲラニルニリン酸合成酵素は、 前記形質転換体を培地に培養し、 その 培養物から採取することにより得ることができる。
本発明の形質転換体を培地に培養する方法は、 宿主の培養に用いられる通常の方 法に従って行われる。
大腸菌や酵母菌等の微生物を宿主として得られた形質転換体を培養する培地と しては、 微生物が資化し得る炭素源、 窒素源、 無機塩類等を含有し、 形質転換体 の培養が効率的に行える培地であれば、 天然培地、 合成培地のいずれを用いても よい。
炭素源としては、 グルコース、 フラクトース、 スクロース、 デンプン等の炭水 化物、 酢酸、 プロピオン酸、 クェン酸等の有機酸、 グリセロール、 メタノール、 エタノ一ル、 プロパノール等のアルコール類が用いられる。 窒素源としては、 アンモニア、 塩化アンモニゥム、 硫酸アンモニゥム、 酢酸アン モニゥム、 リン酸アンモニゥム等の無機酸若しくは有機酸のアンモニゥム塩又は その他の含窒素化合物のほか、 ペプトン、 肉エキス、 コーンスティープリカ一等 が用いられる。
無機物としては、 リン酸第一カリウム、 リン酸第二カリウム、 リン酸マグネシ ゥム、 硫酸マグネシウム、 塩化マグネシウム、 塩化ナトリウム、 硫酸第一鉄、 硫 酸マンガン、 硫酸銅、 炭酸カルシウム、 塩化カルシウム等が用いられる。
培養は、 大腸菌を宿主として用いた場合、 通常、 振盪培養又は通気攪拌培養な どの好気的条件下、 37°Cで 16〜24時間行う。 培養期間中、 11は6〜 8に保持す る。 p Hの調整は、 無機又は有機の酸、 アルカリ溶液、 バッファ一等を用いて行 う。 培養中は必要に応じてアンピシリンゃテトラサイクリン等の抗生物質を培地 に添加してもよい。 .
プロモーターとして誘導性のプロモータ一を用いた発現ベクターで形質転換し た微生物を培養する場合は、 必要に応じてィンデューサーを培地に添加してもよ い。 例えば、 l acプロモータ一を用いた発現べクタ一で形質転換した微生物を培 養するときにはイソプロピル- /3 -D-チォガラクトビラノシド(IPTG)等を、 trpプ 口モータ一を用いた発現べクタ一で形質転換した微生物を培養するときにはィン ドールァクリル酸( I AA)等を培地に添加してもよい。
動物細胞を宿主として得られた形質転換体を培養する培地としては、 一般に使 用されている RPMI 1640培地、 DMEM培地又はこれらの培地に牛胎児血清等を添加し た培地等が用いられる。
培養は、 通常、 5〜10% C02存在下、 37°Cで 2〜20日行う。 培養中は必要に応 じてカナマイシン、 ベニシリン等の抗生物質を培地に添加してもよい。
植物細胞を宿主として得られた形質転換体を培養する培地としては、 一般に使 用されている MS培地、 又はこの培地にカナマイシン、 各種植物ホルモン等を添加 した培地等が用いられる。 培養は、 通常、 20〜30°Cで 3〜14日行う。
培養後、 本発明のゲラニルニリン酸合成酵素が菌体内又は細胞内に生産される 場合には菌体又は細胞を破砕して細胞抽出物を調製する。 また、 本発明のゲラニ ルニリン酸合成酵素が菌体外又は細胞外に生産される場合には遠心分離等により 菌体又は細胞を除去して培養上清を調製する。 次に、 これらの培養物 (細胞抽出 物又は培養上清) を、 タンパク質の単離精製に用いられる一般的な生化学的方法、 例えば塩析、 有機溶剤沈殿、 ゲル濾過、 ァフィ二ティ一クロマトグラフィー、 疎 水相互作用クロマトグラフィー、 イオン交換クロマトグラフィー等を単独で又は 適宜組み合わせて用いることにより、 当該培養物中から本発明のゲラニルニリン 酸合成酵素を単離精製することができる。
但し、 本発明のゲラニルニリン酸合成酵素は、 上記培養物から酵素を精製し なくてもゲラニルニリン酸合成酵素活性を有する場合もあるため、 当該酵素活性 を有する限り、 その細胞抽出物又は培養液をそのまま粗酵素溶液として用いるこ ともできる。
(6) プレニルニリン酸の製造
本発明によれば、 実施例に示すように、 本発明の DNAにより形質転換した宿主 を培養することにより、 培養物中に GPPを蓄積することができ、 これを採取する ことにより GPPを製造することができる。
本発明はまた、 本発明の酵素を基質となる IPP又は DMAPPに作用させることによ つても GPPを製造することができる。 この方法においては、 溶媒、 特に水溶液中 で、 本発明の酵素を反応基質に作用させ、 必要に応じて反応溶液中から目的とす るプレニルニリン酸を採取すればよい。 酵素としては、 生成酵素だけではなく、 種々の段階まで半精製して得られる耝酵素、 または培養菌体もしくは培養物など の酵素含有物でもよい。 また、 前記の酵素、 粗酵素または酵素含有物を常法にし たがって固定した固定化酵素であってもよい。
基質としては IPP及び 又は DMAPPが用いられる。 反応用の溶媒としては水また は水性緩衝液、 例えば Tri s緩衝液ゃリン酸緩衝液が用いられる。 図面の簡単な説明
図 1は、 変異型 BstFPSと野生型 BsrFPSの酵素活性の結果を示す図である。
図 2は、 薄層クロマトグラフの写真である。
図 3は、 変異型 BstFPSと野生型 BsrFPSの反応産物特異性を示す図である。 図 4は、 フアルネシルニリン酸合成酵素のアミノ酸配列を比較した図である。 発明を実施するための最良の形態
以下、 実施例により本発明をさらに具体的に説明する。 但し、 本発明は以下の 実施例にその技術的範囲が限定されるものではない。
なお、 本明細書中で、 アミノ酸残基は以下の 1文字表記または 3文字表記の略号 で示される。
A -zr
, Ala, / フ―一一ノ
し , し ys t
Asp ,タ 、 j ffift
Ώ , ; ノ Λノヽフ ^wi
u ·
, u ill , ンノレ ^ wL
U '
ile , ェ -r-一一ノレノ ノ一― ノ
n · H \ \
, uiy , ン リ ノノ
U Π nib , レ \ 7 Aブ 、ノ、プ、ノ
T 1 T i p . ゝノノ ΓΤつ 、ノ、 ノ
κ T · リノジンン
L Leu; ロイシン
M Met; メチォニン
N Asn; ァスパラギン
P Pro , プロリン
Q Gin■ グルタミン
R Arg アルギニン
S Ser ·セリン
T Thr スレ才ニン
V • Val バリン
W , Trp トリブトファン
Y ; Tyr チロシン
また、 アミノ酸残基の置換は 「置換前のアミノ酸残基」 「アミノ酸残基番号」
「置換後のアミノ酸残基」 の順番で 1文字表記のアミノ酸残基記号で表す。 例えば、 第 82番目の Serを Pheに置換する場合は、 「S82F」 のように表示する。
〔実施例 1〕 FPP合成酵素遺伝子を含むプラスミ ドの作製
宝酒造よリ市販されているプラスミ ドベクタ一 pTV118Nの yVcol- //// ΛΙΙ部位に バシルス 'ステアロザーモフィラス Bacillus stearothennophilus) 由来の FPP 合成酵素 (BstFPS) 遺伝子をサブクロ一ニングした。 このプラスミ ド DNAを pFPS とする。 なお、 BstFPS遺伝子の全塩基配列は、 T.Koyama et al. (1993) J. Biochem, 113, 355-363、 又は DDBJなどの遺伝情報データベースでァクセッショ ン番号 D13293として公開されている。
〔実施例 2〕 変異導入用オリゴヌクレオチドの合成
実施例 1で得られた遺伝子に変異を導入するため、 次のオリゴヌクレオチドを 合成した。
5,- CAT ACG TAC TTC TTG ATT CAT GAT GAT TTG-3' (配列番号 6) 上記オリゴヌクレオチドの配列は、 BstFPSの 82位のアミノ酸残基をコードする Serコ ドンを Pheコ ドンに置換する目的に加えて、 新たに spHIの切断部位 (5'TCATGA 3') が導入されるような設計になっている。 この SspHI切断部位の導 入ではコドンの縮重のため BstFPS遺伝子がコードするアミノ酸配列は変化しない。 spHI切断部位の導入により、 spHI消化後のァガロースゲル電気泳動で置換変異 導入されたプラスミ ドを検出することができる。
合成したオリゴヌクレオチドは以下の反応溶液中で 37°Cで 30分間リン酸化をし た後 70°Cで 10分間失活処理した。
10 pmol/μΐ オリゴヌクレオチド 2μ1
10Xカイネーシヨン緩衝液 Ιμΐ
lOOOraM Tris-Cl (pH8.0)
lOOmM MgCl2
70mM DTT
lOmM ATP \β \
H20 5 μ 1
T4ポリヌクレオチドキナーゼ Ιμ ΐ 〔実施例 3〕 BstFPS遺伝子の 82位のァミノ酸残基に対するコドンへの置換変 異の導入
実施例 2で作製したオリゴヌクレオチドをプライマ一として用いて Kunkel法に よつて実施例 1で作製したプラスミ ドに置換変異を導入した。 Kunkel法を行うに あたっては、 宝酒造から市販されている Mutan-Kキッ トを用いた。 実験手順も Mutan- Kキット添付の実験書に従った。
大腸菌 CJ- 236をホスト細胞としてプラスミ ド pFPS中のチミン塩基がデォキシゥ ラシル塩基に置き換わつた一本鎖 DNAを調製した。
得られた一本鎖 DNAを錡型にして相補鎖合成用ブライマ一 DNAを下記のようにァニ —リングさせた。 一本鎖 DNA 0.6 pmol
アニーリング緩衝液 1^1
200 mM Tris-Cl (pH8.0)
100 mM MgCl2
500 mM NaCl
10 mM DTT
プライマー DNA (実施例 2) 1 n\
H20 最終容積 ΙΟ Ιにする。 さらに、 25μ1の伸長緩衝液、 60ユニットの大腸菌 DNA リガーゼ、 1ユニットの Τ4 DNAポリメラ一ゼを加え、 25でで 2時間相補鎖合成反応を行った。 ただし、 伸 長緩衝液は、 50 mM Tris- CI (pH8.0)、 60 mM酢酸アンモニゥム、 5 mM MgCl2、 5 mM DTT、 1 mM NAD、 0.5 mM dNTPである。
反応後、 3 1の 0.2 M EDTA (pH8.0)を加え、 65°Cで 5分間処理することによリ 反応を停止させた。
〔実施例 4〕 BstFPS遺伝子の 82位のアミノ酸残基に対するコドンへ置換変異 が導入された遺伝子を持つ形質転換体の作製
実施例 3により作製した DNA溶液を用いて、 下記のようにして大腸菌 DH5 株へ CaCl2法により形質転換を行った。 すなわち、 50mM CaCl2で処理した DH5 αコンビ テント細胞懸濁液に DNA溶液を加え、 氷上で 30分保持した。
得られた形質転換体を、 形質転換選択マーカ一であるアンピシリン含有寒天プ レートにまき、 37°Cで一晩培養した。 アンピシリン耐性を表現型としてもつ形質 転換体よりプラスミ ド DNAを調製し、 spHI消化後ァガロースゲル電気泳動にかけ ることにより、 得られた形質転換体のうち、 SspHI切断部位を BstFPSコード領域 に持つ置換変異型 pFPSプラスミ ドを選択した。
次に、 選択した置換変異型 PFPSプラスミ ドの BstFPS遺伝子の 82位アミノ酸残基 に対するコドン周辺の塩基配列をダイデォキシ法によって決定した。 その結果、 82位の Serコドン (TCT) 力^ he (TTC) コドンに置き換わった置換変異型 BstFPS遺 伝子 (配列番号 2 ) を含む pFPSプラスミ ドが得られた。 この変異体を S82Fと表示 し、 プラスミ ドを pFPSmとする。
〔実施例 5〕 変異型 BstFPSの活性測定
実施例 4で得られた変異型および野生型 BstFPS遺伝子を含む 2種の形質転換体、 さらに、 ベクタ一 PTV118Nのみを保持する形質転換体から下記のようにして粗酵 素液を調製した。
2x LB培地で一晚培養した形質転換体を遠心によリ集菌し、 菌体破碎用緩衝液 (50mM Tri s-C l (pH8. 0)、 10 mM /3 -メルカプトエタノール、 ImM EDTA) に懸濁 した。 これを超音波破砕処理し、 さらに、 4°C、 10,000r. p. m.、 10分遠心処理し た上清を 55°Cで 30分熱処理し、 大腸菌由来のプレニルニリン酸合成酵素活性を失 活させた。 これをさらに同条件で遠心処理し、 その上清を粗酵素抽出液として下 記の反応溶液中、 55°Cで 15分反応を行った。
[r14C]-IPP ( IC i /mo l ) 25 nmo l
ァリル性ニリン酸 (DMAPPまたは GPPまたは FPP) 25 nmo l
Tri s-C l (pH8. 5) 50 mM
MgCl2 o mM
NH4C1 50 mM
/3—メルカプトエタノール 50 mM
酵素液 50 g
H?0で lmlにする < 反応後、 3mlの水飽和ブタノールを加えて反応産物をブタノ一ル層に抽出した。 得られたブタノ一ル層 lmlに液体シンチレ一夕一3mlを加えて、 液体、ンンチレ一シ ョンカウンタ一により放射活性を測定した。
結果を図 1に示す。 図 1は S82F変異型 BstFPSと野生型 BsrFPSの酵素活性を示す グラフである。 サンプル番号 1、 4、 7はべクタ一 pTV118Nのみを保持する宿主から 調製したもの、 サンプル番号 2、 5、 8は S82F変異型 BstFPSをコードする遺伝子を 保持する宿主から調製したもの、 サンプル番号 3、 6、 9は野生型 BstFPSをコード する遺伝子を保持する宿主から調製したものである。 また、 サンプル番号 1、 2、 3はァリル性基質として DMAPPを用いたときの結果を、 サンプル番号 4、 5、 6はァ リル性基質として FPPを用いたときの結果を、 サンプル番号 7、 8、 9はァリル性基 質として FPPを用いたときの結果を示す。
図 1より、 野生型酵素は DMAPPと GPPをァリル性基質として利用でき FPPを基質 としないが、 S82F変異型酵素は GPPをァリル性基質として利用する能力が極端に 低下していることがわかる。
次に、 別途同様に作製した反応液に、 反応後すぐにジャガイモ酸性フォスファ ターゼ溶液 (2mg/mlジャガイモ酸性フォスファターゼ、 0. 5M酢酸ナトリウム (pH4. 7) ) lmlを加えて 37°Cで脱リン酸化処理をした後、 3mlのペンタンで抽出 した。 これを薄層クロマトグラフィー (逆相 TLCプレート : LKC18 (Whatman社 製) 、 展開溶液: アセトン 水 = 9 1 ) により解析した。 展開された脱リン酸 化された反応産物をバイオイメージアナライザ一 BAS2000 (富士写真フィルム社 製) にかけ、 放射活性の位置及び相対量を決定した。
結果を図 2及び図 3に示す。 図 2は、 各ァリル性基質を用いたときの変異型 BstFPS反応産物の脱リン酸化物における TLC展開パターンを示す。 比較として、 野生型 BstFPSとベクターのみを保持する宿主よリ調製したサンプルを用いたとき のものも示す。 s. f.は溶媒先端、 ori .は展開開始点、 G0Hはゲラニオール標準試 料の展開位置、 F0Hはフアルネソール標準試料の展開位置をそれぞれ表す。 wi ld typeは野生型 BstFPSを用いたときの結果、 S82Fは変異型 BstFPSを用いたときの結 果、 vectorはベクターのみを保持する宿主を用いたときの結果を示す。 n. d.は活 性が検出されなかったものを表す。 図 3は、 野生型 BstFPSと変異型 BstFPSの反応 産物特異性を示すグラフであって、 IPP及び DMAPPを基質とした際の GGPP、 FPP及 び GPPの生成割合を示すものである。
図 2及び図 3の結果より、 野生型 BstFPSは FPPを特異的に合成する反応を触媒し ていたが、 S82F変異型 BstFPSでは GPPを特異的に合成する反応を触媒するように なった。 すなわち、 S82F変異型 BstFPSは、 ゲラニルニリン酸合成酵素と呼びうる 酵素に変化したことになる。 産業上の利用可能性
本発明により、 ゲラニルニリン酸合成酵素、 該酵素をコードする遺伝子、 該遺 伝子を含む組換えべクタ一、 並びにゲラニルニリン酸合成酵素及びゲラニルニリ ン酸の製造方法が提供される。
本発明の遺伝子は、 モノテルべン類合成を目的とした代謝工学や酵素工学に利用 できる点で有用である。 配列表フリーテキスト
配列番号 1 : Xaaは Val、 Leu、 l i e, Thr、 Asp, Glu、 Asn、 Gln、 Lys、 Arg、 Cys、 Met, Phe、 Tyr、 Trp、 Hi s又は Proを表す。
配列番号 6 : FPP合成酵素のアミノ酸配列から設計し、 かつ BspHI部位を有す るオリゴヌクレオチド。

Claims

請 求 の 範 囲
1. 以下の ( a) 又は (b) の組換えタンパク質。
(a) 配列番号 1で表されるアミノ酸配列からなるタンパク質
(b ) 配列番号 1で表されるアミノ酸配列において第 82番目のアミノ酸を 除く少なくとも 1個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列か らなり、 かつゲラニルニリン酸合成酵素活性を有するタンパク質
2. 以下の ( a) 又は (b) の組換えタンパク質をコードする遺伝子。
(a) 配列番号 1で表されるアミノ酸配列からなるタンパク質
(b) 配列番号 1で表されるアミノ酸配列において第 82番目のアミノ酸を 除く少なくとも 1個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列か らなり、 かつゲラニルニリン酸合成酵素活性を有するタンパク質
3. 配列番号 2で表される塩基配列を含む、 ゲラニルニリン酸合成酵素遺伝子。
4. 請求項 2又は 3記載の遺伝子を含む組換えべクタ一。
5. 請求項 4記載の組換えベクターによって形質転換された形質転換体。
6. 請求項 5記載の形質転換体を培地に培養し、 得られる培養物からゲラニルニ リン酸合成酵素を採取することを特徴とするゲラニルニリン酸合成酵素の製造方 法。
7. 請求項 5記載の形質転換体を培地に培養し、 得られる培養物からゲラニルニ リン酸を採取することを特徴とするゲラニルニリン酸の製造方法。
8. 請求項 5記載の形質転換体の培養物をイソペンテ二ルニリン酸又はその異性 体に作用させることを特徴とするゲラニルニリン酸の製造方法。
PCT/JP1998/005590 1997-12-16 1998-12-10 Genes de geranyl diphosphate synthase WO1999031254A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/367,528 US6395525B2 (en) 1997-12-16 1998-12-10 Geranyl diphosphate synthase genes
EP98959156A EP0974661A4 (en) 1997-12-16 1998-12-10 GERANYL DIPHOSPHATE SYNTHESIS GENES
CA002281206A CA2281206C (en) 1997-12-16 1998-12-10 Geranyl diphosphate synthase genes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/346686 1997-12-16
JP34668697A JP3562280B2 (ja) 1997-12-16 1997-12-16 ゲラニル二リン酸合成酵素遺伝子

Publications (1)

Publication Number Publication Date
WO1999031254A1 true WO1999031254A1 (fr) 1999-06-24

Family

ID=18385135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005590 WO1999031254A1 (fr) 1997-12-16 1998-12-10 Genes de geranyl diphosphate synthase

Country Status (7)

Country Link
US (1) US6395525B2 (ja)
EP (1) EP0974661A4 (ja)
JP (1) JP3562280B2 (ja)
KR (1) KR20000071073A (ja)
CN (1) CN1130460C (ja)
CA (1) CA2281206C (ja)
WO (1) WO1999031254A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876689A (zh) * 2012-07-11 2013-01-16 浙江大学 茶树fps基因及其应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660507B2 (en) * 2000-09-01 2003-12-09 E. I. Du Pont De Nemours And Company Genes involved in isoprenoid compound production
WO2007029577A1 (ja) * 2005-09-07 2007-03-15 Toudai Tlo, Ltd. 放線菌由来のゲラニルジリン酸合成酵素及びこれを用いたゲラニルジリン酸の製造方法
JP5035871B2 (ja) 2005-09-16 2012-09-26 株式会社ブリヂストン パラゴムノキのプレニルトランスフェラーゼの遺伝子群
AU2008260557B2 (en) * 2007-06-01 2012-08-02 Sapphire Energy, Inc. Use of genetically modified organisms to generate biomass degrading enzymes
CN101889068A (zh) * 2007-09-11 2010-11-17 蓝宝石能源公司 用光合生物生产有机产物的方法及其产物和组合物
MX2010002723A (es) * 2007-09-11 2010-05-21 Sapphire Energy Inc Produccion de moleculas mediante organismos fotosinteticos.
WO2009114939A1 (en) 2008-03-17 2009-09-24 National Research Council Of Canada Aromatic prenyltransferase from hop
JP5787341B2 (ja) * 2009-11-19 2015-09-30 国立大学法人 千葉大学 テルペン合成酵素遺伝子のスクリーニング方法
US8715962B2 (en) 2010-03-31 2014-05-06 Codexis, Inc. Production of geranyl diphosphate
CN111593032B (zh) * 2020-05-26 2022-10-28 中国烟草总公司郑州烟草研究院 酶口袋和酶分子表面的定向五位点突变蛋白ggpps
CN111534496B (zh) * 2020-05-26 2022-10-28 中国烟草总公司郑州烟草研究院 Ggpps定向单点突变蛋白ggpps-154
CN111500551B (zh) * 2020-05-26 2022-10-28 中国烟草总公司郑州烟草研究院 Ggpps定向单点突变蛋白ggpps-218
CN111534499A (zh) * 2020-05-28 2020-08-14 河南大学 Ggpps定向单点突变蛋白ggpps-233
CN111718916A (zh) * 2020-06-08 2020-09-29 贵州省烟草科学研究院 Ggpps定向单点突变蛋白及其应用
CN112410236B (zh) * 2020-11-23 2022-08-30 江南大学 类大牻牛儿烯合成酶c突变体及构建方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214877A (ja) * 1995-02-14 1996-08-27 Toyota Motor Corp ゲラニルゲラニル二リン酸を合成する変異型ファルネシル二リン酸合成酵素及びそれをコードするdna
JPH1014567A (ja) * 1996-07-03 1998-01-20 Toyota Motor Corp 変異型プレニル二燐酸合成酵素

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538998B2 (ja) * 1995-09-01 2004-06-14 トヨタ自動車株式会社 長鎖プレニル二燐酸合成酵素
US5876964A (en) * 1997-10-16 1999-03-02 Washington State University Research Foundation Geranyl diphosphate synthase from mint

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214877A (ja) * 1995-02-14 1996-08-27 Toyota Motor Corp ゲラニルゲラニル二リン酸を合成する変異型ファルネシル二リン酸合成酵素及びそれをコードするdna
JPH1014567A (ja) * 1996-07-03 1998-01-20 Toyota Motor Corp 変異型プレニル二燐酸合成酵素

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PHYTOCHEMISTRY, Vol. 31, No. 7, (July 1992), T. ENDO et al., "Demonstration of Geranyl Diphosphate Synthase in Several Higher Plants", p. 2273-2275. *
PLANT PHYSIOLOGY, Vol. 102, No. 1, (May 1993), M. CLASTRE et al., "Purification and Characterization of Geranyl Diphosphate Synthase from Vitis Vinifera 1. cv Muscat de Frontignan Cell Culture", p. 205-211. *
See also references of EP0974661A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876689A (zh) * 2012-07-11 2013-01-16 浙江大学 茶树fps基因及其应用
CN102876689B (zh) * 2012-07-11 2014-06-18 浙江大学 茶树fps基因及其应用

Also Published As

Publication number Publication date
JPH11169178A (ja) 1999-06-29
JP3562280B2 (ja) 2004-09-08
CA2281206C (en) 2003-04-29
EP0974661A4 (en) 2004-09-01
CN1252838A (zh) 2000-05-10
EP0974661A1 (en) 2000-01-26
CA2281206A1 (en) 1999-06-24
US6395525B2 (en) 2002-05-28
KR20000071073A (ko) 2000-11-25
US20010051359A1 (en) 2001-12-13
CN1130460C (zh) 2003-12-10

Similar Documents

Publication Publication Date Title
WO1999031254A1 (fr) Genes de geranyl diphosphate synthase
US5773273A (en) Geranylgeranyl diphosphate synthase and DNA coding therefor
US5885810A (en) Process for the production of prenyl diphosphate using mutants of geranylgeranyl diphosphate synthase
JP3376838B2 (ja) プレニル二リン酸合成酵素
US5766911A (en) Mutated farnesyldiphoshate synthase capable of synthesizing geranylgeranyldiphosphate and gene coding therefor
JP3209103B2 (ja) 変異型プレニル二燐酸合成酵素
JP3379344B2 (ja) ファルネシル二リン酸合成酵素
US5436138A (en) Method for protein N-myristoylation
EP0779298A2 (en) Thermostable geranylgeranyl diphosphate synthase
Cane Isoprenoid antibiotics
EP0348958A2 (en) Purification and characterization of an acetyl-CoA hydrolase

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98804224.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2281206

Country of ref document: CA

Ref document number: 2281206

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997007359

Country of ref document: KR

Ref document number: 1998959156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09367528

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998959156

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997007359

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019997007359

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998959156

Country of ref document: EP