[go: up one dir, main page]

WO1999032819A1 - Inner surface repair material for pipeline and inner surface repairing method - Google Patents

Inner surface repair material for pipeline and inner surface repairing method Download PDF

Info

Publication number
WO1999032819A1
WO1999032819A1 PCT/JP1997/004724 JP9704724W WO9932819A1 WO 1999032819 A1 WO1999032819 A1 WO 1999032819A1 JP 9704724 W JP9704724 W JP 9704724W WO 9932819 A1 WO9932819 A1 WO 9932819A1
Authority
WO
WIPO (PCT)
Prior art keywords
repair
pipeline
diameter
inner layer
layer
Prior art date
Application number
PCT/JP1997/004724
Other languages
French (fr)
Japanese (ja)
Inventor
Shinkichi Ooka
Takeshi Nishimura
Kensuke Okamoto
Shozo Yano
Hisashi Kitajima
Hidemi Nishiyama
Original Assignee
Toa Grout Kogyo Kabushiki Kaisha
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Grout Kogyo Kabushiki Kaisha, The Furukawa Electric Co., Ltd. filed Critical Toa Grout Kogyo Kabushiki Kaisha
Priority to AU39099/99A priority Critical patent/AU3909999A/en
Priority to PCT/JP1997/004724 priority patent/WO1999032819A1/en
Publication of WO1999032819A1 publication Critical patent/WO1999032819A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • F16L55/163Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a ring, a band or a sleeve being pressed against the inner surface of the pipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/46Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses of internal surfaces
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/06Methods of, or installations for, laying sewer pipes
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/06Methods of, or installations for, laying sewer pipes
    • E03F2003/065Refurbishing of sewer pipes, e.g. by coating, lining

Definitions

  • the present invention relates to a member for repairing the inner surface and a method of repairing the inner surface of a pipe buried for an existing water supply, sewer, gas, electric wire, telephone line, etc. Concerning the construction method.
  • fume pipes and ceramic pipes are widely used as sewage pipes buried underground.
  • the internal surfaces of these pipes are eroded by hydrogen sulfide and other corrosive gases and deposits, etc., due to long-term use, and are deteriorated, resulting in thinner pipes and lower strength.
  • the joints of the pipelines are displaced due to ground pressure, land subsidence, etc., resulting in gaps, and cracks, etc., in some of the pipelines due to the overload, etc.
  • Intrusion or running water flowing through the pipeline may leak into the ground.
  • earth and sand around the pipeline will flow out due to infiltration or leakage of such groundwater into the pipeline and a cavity will be created on the back of the annular body, causing road surface collapse and the like.
  • a base made of a metal material with excellent corrosion resistance such as stainless steel, and wound in a cylindrical shape with both ends overlapped
  • a repair material consisting of a plate and a water-impervious, elastically deformable sleeve wrapped around the plate, and this repair material is used when repairing a defective part in a pipeline after it has been transported to that location.
  • the compressed elastic sleeve rebounds.
  • the base plate receives pressure in the direction to reduce the diameter of the base plate, and a large number of hooks formed on the overlapping end of the base plate and the hooks Attachment is performed by engaging a pair of a hook and an opening that are closest to each other so as to prevent the base plate from being reduced in diameter.
  • a reinforcing material such as glass fiber impregnated with a curable resin
  • the curable resin differs in curing time depending on the outside air temperature, and the curing time depends on the work. It is necessary to match the time required, and it will cause problems if it is too early or too late (If it is too early, curing will start during the work, and if it is too late, resin will sag after crimping on the inner wall of the pipeline) , Each time, the curing agent must be prepared at the site so that the curing time is appropriate to the situation at the time, so there is a problem that the work takes time and labor, and the proper preparation was performed. Even so, it is difficult to always obtain uniform repair results.
  • the liquid resin is impregnated into the glass cloth or the nonwoven fabric, if the pressure by the repair machine is applied too much, the impregnated resin may be squeezed out, and there may be a case where insufficient impregnation occurs.
  • a thin layer of resin alone is formed at both ends of the repair material in the pipe axis direction due to the structure and operation of the packer as a repair machine, and a peeling phenomenon easily occurs from this portion.
  • the resin after curing is about 2 to 8% less than before curing in the process of curing the resin. Heat shrinkage may occur. Therefore, even when the lining is in close contact with the lining, the solidification and shrinkage may cause peeling and gaps as it cures.
  • a solid repair effect can be permanently obtained with a simple repair work. It is intended to provide a member for repairing the inner surface of a pipeline and a method for repairing the inner surface, which makes it possible to do so.
  • the present invention makes it possible to transport the inner layer as a repairing member to a repair-required portion without difficulty even in a case where a person cannot enter and work, for example, a pipeline having an inner diameter of 700, Moreover, the purpose is to ensure that effective repairs are achieved. Disclosure of the invention
  • the pipe repairing member of the present invention comprises at least two layers of a cylindrical body, and the inner layer is repaired in an unconstrained state where the internal stress is minimized.
  • the outer layer is made of a cylinder having an outer diameter smaller than the inner diameter of the pipe, and the inner layer is formed by a mechanical force on the outer layer.
  • the inner layer is held in a state where expansion is prevented, and the cross section of the inner layer in a direction perpendicular to the axis of the conduit is substantially similar to the contour of the inner periphery of the conduit. It is characterized by the following.
  • the inner surface repair member according to the present invention which is transported to the required repair point in the pipeline, has the outer layer removed at the same point, and only the inner layer made of the elastic body is left, and the internal stress force tends to be minimized. Due to the nature of the inner layer, even if no energy such as heat or electricity is given from the outside, it expands spontaneously and tries to return to the open state larger than the inner diameter of the pipe. Even after the repair is completed, the state where the internal stress is not minimal is maintained and the internal stress is always remaining, so the adhesion to the inner peripheral surface of the pipeline is always maintained, and peeling may occur.
  • the problem of disengagement can be completely avoided, and the effect that the work can be performed simply and easily can be obtained since a diameter expanding machine is not required.
  • the inner layer expands inside the pipeline, so the outer diameter does not become larger than the inner diameter of the pipeline, but the inner layer itself has the potential to expand further. It does not shrink permanently after installation.
  • the inner layer of the repair member has a cross section in a direction perpendicular to the pipe axis that is substantially similar to the inner circumference of the pipe, the elastic restoring action at the time of diameter expansion is performed almost uniformly as a whole. Therefore, uniform adhesion to the inner peripheral surface of the pipe is obtained.
  • the repair parts can be managed and produced in the factory, the quality is constant, reliable repair is possible, and mass production is possible. Thus, the effect that the cost can be reduced is obtained.
  • the member for repairing an inner surface of the present invention according to claim 2 is composed of at least two layers of a cylindrical body, and has an outer diameter of d1 when the inner layer exists alone, and an outer diameter of the inner layer in a two-layer state.
  • d2 is the outer diameter of the outer layer
  • d3 is the outer diameter of the inner layer that constitutes the repair material after the repair is completed
  • D is the inner diameter of the existing tubular body.
  • the present invention can be more effectively applied to an existing pipeline, that is, a pipeline having an inside diameter of 50 to 800 mm in which no person can enter the pipe.
  • the inner layer is made of such a material, the compressibility and the elastic restoring property are particularly good, and the inner layer adheres to the inner peripheral surface of the pipeline. It is particularly well-maintained, and the outer layer firmly holds the inner layer in the reduced diameter state, and when mass-produced and stored for repair, it is difficult to crack, and its function can be maintained for a long time and at the same time iteratively It can also be used.
  • the repair member according to claim 4 is characterized in that the outer layer is a cylindrical body mainly composed of paper.
  • the paper is lightweight and has excellent impact resistance, so it is easy to carry the repair parts at the construction site, and it is hard to break if dropped too much.
  • the outer layer can be easily removed with a simple device.
  • paper is economical and easy to dispose of after removal.
  • the material of the inner layer as the repairing member in the present invention is preferably made of resin, and polyethylene having a density of 0.890 to 0.950 is suitable. ing. Particularly, low-density polyethylene of 0.91 to 0.935 is suitable. The reason for this is that the lower the density, the more uniform the diameter can be reduced, and the greater the recoverability of the diameter after removing the outer layer, the smaller the diameter can be designed. It is. However, if the density is less than 0.890, the inner layer will have a small force to push the inner surface of the pipeline, and after the repair is completed, it may not be able to withstand the water pressure or earth pressure that enters from the damaged part of the pipeline.
  • the repair member according to claim 6 is characterized in that a water-stop ring is attached near an end of the inner layer.
  • the inner layer is formed in a pipeline, for example, a location where a crack occurs in a sewer pipe.
  • the repair member according to claim 7 is characterized in that the water blocking annular body is made of styrene butadiene rubber or a porous plastic having elasticity and high water stopping function, so that the repair member and the pipe are connected to each other. It is deformed quickly and provides an effective water stop function for a long time.
  • the repair member according to claim 8 is provided with a slope force that extends outward in the axial direction at an end of the inner layer. According to this configuration, when the inner layer is installed in the pipeline, the repair member is used for repair. The smooth flow of water or the like is not hindered by the ends of the members.
  • the repair member according to claim 9 is characterized in that a lubricant is applied between the inner layer and the outer layer, and according to this configuration, the repair member is provided at the repair target portion in the pipeline. When removing the outer layer, the extraction work can be performed smoothly.
  • the sleeve as the outer layer is formed of two portions each having a semicircular cross section divided in a longitudinal direction, and one of the semicircular portions protrudes.
  • the mating edge is connected to the hinge, and the other butting edge is provided with a tongue piece which is folded back along the outer peripheral surface, respectively, and a sleeve is provided at the edge of the both folded tongue pieces.
  • it has an arcuate coupling piece having an engagement edge portion slidably engaged in the axial direction of the sleeve.
  • the repair method of the inner surface of the pipeline according to claim 11 is to repair the tubular repair member for the pipeline in the axial length L, the thickness T, and the repair.
  • the repair member By using a repair member that is capable of spontaneously expanding and deforming, the repair member whose diameter d 1 in the unconstrained state is d 1> D is reduced in diameter, and the outer diameter d 2 after reducing the diameter is d 2 ⁇ D, while maintaining the reduced diameter state, transport the repairing member to the required repair location in the pipeline, release the reduced diameter state at that point, and spontaneously expand the repairing member.
  • This method is characterized by causing radial deformation and bringing it into close contact with the inner peripheral surface of the pipeline. According to this method, a repair member suitable for the pipeline diameter of the pipeline can be prepared. A stable adhesion with a uniform force is obtained, and efficient repair is possible without waste of materials.
  • the method for repairing the inner surface of a pipeline according to the present invention according to claim 12 is composed of a tubular body having at least two layers, and the inner layer is a pipe to be repaired in an unconstrained state where internal stress is small.
  • the outer layer is formed of an elastic body having an outer layer larger than the inner diameter of the passage, the outer layer is formed of a cylindrical body having an outer diameter smaller than the inner diameter of the pipe, and the inner layer is prevented from expanding by the outer layer by mechanical forcing.
  • the inner layer uses a repairing member whose cross section in a direction perpendicular to the axis of the pipeline is substantially similar to the inner periphery of the pipeline.
  • the repair method for the inner surface of the pipeline uses a vehicle that has a gripper that grips both ends of the repair member and maintains a reduced diameter state, and that runs in the pipeline, The gripper of this vehicle grips both ends of the repair member in the reduced diameter state, moves the vehicle toward the required repair point in the pipeline while maintaining the reduced diameter, and after reaching the repair required point, replaces the repair member. Release from gripping state by gripper, spontaneous use of repair members According to this method, the work of bringing the repairing member to the repair-required portion and releasing the repairing member can be performed quickly and easily.
  • the repair method for the inner surface of the pipeline according to claim 14 is constituted by at least two layers of the cylindrical body, the inner layer of the repair member is made of an elastic material, and the internal stress force is minimized.
  • the outer layer has an outer diameter larger than the inner diameter of the pipe to be repaired, the outer layer has an inner diameter smaller than the inner diameter of the pipe, and the inner layer expands the outer layer by mechanical forcing.
  • the inner layer is maintained in a blocked state, and the inner layer uses a repairing member having a cross-sectional shape perpendicular to the axis of the pipeline that is substantially similar to the contour shape of the inner circumference of the pipeline.
  • the outer layer preventing its diameter from being expanded is removed. Then, only the inner layer is put into the pipeline, quickly transported to the required repair location, and installed at the specified location. Since the inner layer made of an elastic material expands in diameter to minimize the internal stress, it can be stuck to the inner surface of the area requiring repair, and the area can be repaired.
  • the inner layer when the outer layer is removed, the inner layer gradually expands in diameter. Therefore, the inner layer must be transported to a specified location while the outer diameter of the inner layer is at least smaller than the inner diameter of the pipeline. Since there may be a step at the junction of the pipelines, it is preferable that the clearance between the inner layer outer diameter and the pipeline inner diameter be as large as possible during transportation. In order to increase the clearance, the inner layer must be reduced in diameter. However, if the diameter is reduced excessively, the expandability after removing the outer layer becomes worse, and the pipe does not adhere to the inner surface of the pipe.
  • the outer diameter of the inner layer is small until the outer layer is removed and the inner layer is installed at the required repair location of the pipeline, and after installation, it is required to expand the diameter until it comes into close contact with the inner surface of the pipeline. Therefore, in order to secure the clearance during the inner layer transport for a long time, according to the method of claim 15, the two-layer repair member is cooled before the outer layer is removed. By doing so, it is possible to temporarily slow down the expanding speed of the elastic body of the inner layer immediately after removing the outer layer, and to further increase the clearance until the elastic body is transported to the repair-required portion. Since it can be held for a long time, it can pass through the step formed at the joint of the pipeline, and can be transported to a predetermined location without any trouble.
  • the method according to claim 16 is characterized in that even after the outer layer is removed, the inner layer is cooled until the transfer is completed. By doing so, the diameter of the inner layer after the outer layer is removed can be further delayed, and even if the distance to the required repair point in the pipeline is relatively long, smooth transport is possible.
  • a means for heating the elastic body after the inner layer is installed at a repair-required portion of the pipeline is adopted.
  • the inner layer follows the step portion, ensuring water stoppage, and being able to adhere to the pipeline in a short time.
  • any method may be used, and hot air, hot water or light heat may be applied.
  • the surface temperature of the inner layer during heating is preferably from 20 to 100 ° C, and more preferably from 40 to 70 ° C.
  • FIG. 1 is a perspective view of one embodiment of a member for repairing the inner surface of a pipe according to the present invention.
  • FIG. 2 is an end view showing a relationship between the repair member of FIG. 1 and a pipeline to be repaired.
  • FIG. 3 is a partial perspective view showing three embodiments of the inner layer of the repair member.
  • FIG. 4 is a diagram for explaining the end configuration of the inner surface repair member (inner layer) installed at the repair location in relation to the pipeline.
  • FIG. 5 is a schematic diagram illustrating an example of a method for manufacturing a repair member according to the present invention.
  • FIG. 6 is a perspective view showing another embodiment of the outer layer of the repair member.
  • FIG. 7 is a perspective view showing still another embodiment of the outer layer of the repair member.
  • FIG. 8 is a partial perspective view showing still another embodiment of the outer layer of the repair member.
  • FIG. 9 is a perspective view showing an elastic pipe which is advantageous as an inner surface repairing member of the present invention.
  • FIG. 10 is a schematic perspective view showing an example of a repair device for performing an inner surface repair operation using the inner surface repair member shown in FIG.
  • FIG. 11 is a perspective view (a) of an inner layer or an elastic inner surface repairing member fitted with a water blocking annular body, and FIGS. 11 (b) and (c) showing a part of an axial longitudinal sectional view thereof.
  • FIG. 12 is a perspective view showing another embodiment of the repair member of the present invention.
  • FIG. 13 is a partial perspective view showing another embodiment of the outer layer of the repair member according to the present invention.
  • FIG. 1 is a perspective view showing one embodiment of the repair member 1 of the present invention, in which 2 is an inner layer as an inner surface repair member made of a cylindrical elastic body, and 3 is a cylinder holding the inner layer.
  • 2 is an inner layer as an inner surface repair member made of a cylindrical elastic body
  • 3 is a cylinder holding the inner layer.
  • the inner layer 2 is accommodated in the outer layer in a reduced diameter state.
  • the material constituting the inner layer 2, that is, the member for repairing the inner surface has elasticity, such as polyethylene, cross-linked polyethylene, polypropylene, ethylene vinyl acetate, ethylene copolymer such as ethylene methacrylic acid, and other multi-component copolymers.
  • elasticity such as polyethylene, cross-linked polyethylene, polypropylene, ethylene vinyl acetate, ethylene copolymer such as ethylene methacrylic acid, and other multi-component copolymers.
  • polyethylene or cross-linked polyethylene In consideration of the long-term strength of the inner surface repair member, which is applicable to a wide range of thermoplastic resin materials, it is particularly preferable to use polyethylene or cross-linked polyethylene.
  • the outer layer 3 is preferably made of a so-called paper tube in which paper is a main material and a plurality of papers are laminated.
  • the material constituting the outer layer 3 is not limited to paper, but may be, for example, stainless steel, aluminum alloy, corrosion-resistant steel, ceramic, plastic such as hard vinyl chloride, or the like. . It may be a stainless steel, aluminum alloy, or corrosion-resistant iron sleeve. It may be made of composite materials such as FRP, engineering plastics, and other high-strength materials. Further, the sleeve can be a thin plate, a perforated plate, a mesh-like one, or the like.
  • the inner layer 2 of the repair member 1 is held in the outer layer 3 in a reduced diameter state, but in a free state before being fitted into the outer layer 3, as shown in FIG. It has an outer diameter d1 that is larger than the inner diameter D of the road 4, and in that state, Partial stress is minimized.
  • Such an inner layer 2 is confined by mechanical forcing so as to have an outer diameter of d2 in an outer layer 3 having an outer diameter d3 smaller than the inner diameter D of the pipeline 4, and is in close contact with the outer layer 3. It is in a situation of constantly expanding its diameter and trying to return to the normal (open) state.
  • the inner layer 2 spontaneously expands so as to reduce the internal stress, adheres tightly to the inner peripheral surface of the pipeline 4, and the force for expanding the diameter is suppressed, and the remaining The distortion always remains.
  • a radial force is constantly acting to expand the diameter, and the internal stress is maintained at a state where it is not minimal.
  • the above-mentioned spontaneous is synonymous with the spontaneous change of the second law of thermodynamics, and the internal stress of the elastic body itself can be obtained without applying external energy (heat, water pressure, gas pressure, electricity, light, etc.). Means the nature of trying to reach a minimum.
  • the above (1) represents the state shown in FIG.
  • the diameter reduction ratio becomes large, the resilience becomes insufficient, and the adhesion after the repair is completed becomes insufficient.
  • dZ / DX the diameter of the entire repair material will be large, making it difficult to transport inside the pipeline.
  • the adhesion after completion of the repair will be insufficient, and if 013 0> 0.95, the pipe Is difficult to transport.
  • d lZD ⁇ l. 01
  • the internal stress becomes insufficient, and the adhesion after the repair is completed becomes weak. If d lZD> l. 2, the diameter reduction ratio must be increased. Yes, resilience is inadequate.
  • the inner layer 2 is cylindrical is illustrated and described, as shown in Fig. 3, it is cylindrical and has an arch shape (a), a hexagonal shape (b), an oval shape or an oval shape (c). Datsu Or a polygon other than a hexagon.
  • the cross-sectional shape in the direction perpendicular to the axis of the pipeline 4 is substantially similar to the contour shape of the inner circumference of the pipeline.
  • an inclined surface (taper) 5 extending outward in the axial direction is formed at the end of the inner layer 2, and the taper angle 0 is 1 0 ° ⁇ 0 ⁇ 80 °, preferably 25 ° to 60 °.
  • the above-mentioned repair member 1 can be mass-produced in a factory as follows. That is, as shown in FIG. 5, for example, a polyethylene pipe 6 formed by extrusion molding and then cooled, for example, after a tension member 8 is attached to the tip, is pulled and substantially similar to the same. It is passed through a shaped ring 7 and reduced to the required diameter.
  • the ring 7 may be provided with polyethylene tube heating means.
  • a metal sheath tube 9 having a predetermined length is arranged after the ring 7, and the reduced-diameter polyethylene tube is drawn into the metal sheath tube 9.
  • the work of arresting the bow is stopped, and then the polyethylene pipe spontaneously expands somewhat to the inside of the metal sheath pipe 9.
  • it is cut into a desired length using a cutting machine at a location indicated by arrows c1, c2, cn + 1.
  • the obtained individual cut pieces a 1, a 2,..., A n serve as repair members. Cutting may be performed immediately after the ring 7 or at another location.
  • the outer layer is formed of a metal sleeve. In that case, it is preferable to interpose a lubricant between the metal sleeve and the polyethylene pipe.
  • the metal sleeve is preferably made of corrosion-resistant iron, stainless steel, or an aluminum alloy, but a sleeve made of a plastic material or other material can be used instead of the metal sleeve.
  • the sleeve as the outer layer may take other forms shown in FIGS. 6 to 8.
  • the sleeve shown in FIGS. 6 (a) to 6 (c) is composed of two parts 3a and 3b which are divided in the longitudinal direction and have a semicircular cross section, and these semicircular parts 3a and 3b One end of the The joining edges are hinged together by hinges 3c.
  • a tongue piece 3d is formed on the other butted edge portion, which is folded back along the outer peripheral surface.
  • the sleeve further has an arcuate connecting piece 3e, which has an engaging edge 3f with a U-shaped cross section slidably engaging the edge of the tongue. ing. In the state shown in FIG.
  • the sleeve holds the elastic inner layer 2 in a reduced diameter state, and pulls out the arc-shaped connecting piece 3e in the axial direction indicated by the arrow at a repair required portion in the pipeline.
  • the semicircular portions 3a and 3b are opened with the hinge 3c as a fulcrum, and then the opened semicircular portion is removed, leaving only the inner layer there.
  • the diameter is spontaneously expanded and closely adheres to the inner peripheral surface of the pipeline to repair defective parts.
  • small holes 3g and 3h are provided at the ends of the members for connecting to the pulling ropes, respectively.
  • the semicircular portions 3a and 3b are connected by a string or similar member 3i near the tongue piece 3d so that the open semicircular portions 3a and 3b do not open more than necessary. . Also, as shown in Fig. 6 (c), the semicircular portions 3a and 3b are reinforced by applying a corrugating force by a press.
  • Fig. 7 shows the deformation of the sleeve.Folded tongue pieces 3d are formed at both butting edges of the semicircular portions 3a and 3b, and a pair of adjacent folded tongue pieces 3d is formed. They are joined by the above-mentioned arc-shaped joining pieces 3e. In order to open the semicircular portions 3a and 3b during the repair work, one or both of the arc-shaped connecting pieces 3e are withdrawn.
  • FIG. 8 shows another deformation of the sleeve, in which the upper and lower butted edges of the semicircular portions 3a, 3b are connected by a pin 3j, and when this pin is pulled out in the axial direction, The connection state is released and the sleeve is opened.
  • the object of the present invention can also be achieved by the following method.
  • LZD ⁇ 0.12
  • the pipe length is too short, There is a problem that pipes tend to buckle in the diameter state. If LZD> 10, the adhesiveness in the length direction tends to be non-uniform, and material is likely to be wasted as a partial repair.
  • the above-mentioned elastic pipe 10 is used as an inner layer in combination with each of the above-mentioned outer layers.
  • the repair device shown in FIG. 10 is used. It can be used as a substitute for the outer layer to achieve its intended purpose.
  • This device has a pair of opposing grip members 11, each grip member having a plurality of grip arms 11 b extending radially from a central hub 11 a, and a tip of each grip arm.
  • a grip 11 c for gripping the peripheral portion of the elastic pipe 10 is provided.
  • Each grip member 11 is supported by a support shaft 12 so as to be movable in its axial direction.
  • a female screw is formed on the hub 11a, and a male screw is formed on the support shaft 12, so that they engage with each other.
  • the external threads for both grip members are counter-threaded.
  • the support shaft 12 is supported at both ends by bearing members 14 supported by a pair of wheels 13, respectively, and is further coupled to forward / reverse rotation driving means (not shown) at at least one end.
  • a piston means may be used.
  • the elastic pipe 10 reduced in diameter by the diameter reducing die shown in FIG. It is set on the repair device so that the peripheral edges of both ends are grasped by 1.
  • an open elastic pipe 10 within the above dimensions is placed between both grip members 11 and the pipe edge is gripped by the grip 11 c of the grip member 11.
  • the support shaft 12 may be rotated to move the two grip members 11 away from each other, and the flexible pipe 10 may be stretched to reduce the diameter.
  • the repair equipment holding the elastic pipe whose diameter has been reduced so that d2 ⁇ D as described above will be carried into the pipeline through manholes and open locations in the pipeline.
  • the repair equipment is moved to the required repair point while guiding with the TV camera separately attached to the mobile vehicle.
  • the grip 11c of the gripping member 11 of the repair device that has reached the repair location is released and the reduced-diameter elastic pipe 10 is released, the pipe spontaneously expands in diameter, and finally the inner surface of the pipeline Adhere to The empty repair equipment is then recovered and the repair work is completed.
  • the inner layer 2 or the elastic pipe 10 is fitted with the water-stop ring 15 near both ends thereof.
  • Reference numeral 15 denotes a ring-shaped member formed of a styrene-butadiene rubber, a water-swellable rubber, a sponge, a plastic foam, or a curable liquid water-swellable rubber-impregnated belt.
  • This annular body may be simply fitted around the inner layer 2 or the elastic pipe 10 as shown in FIG. 11 (b), but may be fitted as shown in FIG. 11 (c). It may be fitted into a circumferential groove formed on the outer periphery of the body pipe 10.
  • FIG. 12 is a perspective view showing another embodiment of the repair member 1 used in the method of the present invention, in which 2 is a cylindrical inner layer made of an elastic material, and 3 is a cylindrical inner layer holding the inner layer. Is the outer layer.
  • the inner layer 2 is accommodated in the sleeve 3 as the outer layer in a reduced diameter state, and the inner layer tries to expand the diameter in the direction of minimizing the internal stress, that is, in the direction of increasing the diameter. Is suppressed by the sleeve 3.
  • the inner layer 2 is preferably made of a resin mainly composed of polyethylene having a density of 0.920. The density of polyethylene is not limited to this value, but is 0.
  • the sleeve as the outer layer is cut in the axial direction, and if the hose band 16 fixing the sleeve is removed, the inner layer can be easily taken out from the cut surface 3k by hand to take out the inner layer.
  • a structure in which the sleeve is closed by a buckle 17 attached to the sleeve is also conceivable.
  • the hose band 16 shown in Fig. 12 is constructed so that both ends are connected to form an annular shape, and a screw is turned around the connecting portion with a screwdriver to provide tightening and loosening action.
  • a configuration in which a turnbuckle is provided may be used.
  • the inner layer 2 of the repair member 1 is held in a contracted state in the sleeve 3, but in a free state before being housed in the sleeve, as shown in FIG.
  • the outer diameter d1 is larger than the inner diameter D of the path K.
  • Such an inner layer is housed in a tightly closed state in a sleeve 3 having an inner diameter d2 smaller than the inner diameter D of the conduit, and the outer diameter of the inner layer in a contracted state is similar to the aforementioned d2.
  • d 2 is preferably 0.92 D or less, more preferably 0.85 D or less.
  • the inner layer 2 is constantly expanding to return to the unconstrained state. Therefore, when sleeve 3 is removed, the inner layer spontaneously expands to reduce the internal stress and adheres tightly to the inner surface of the pipe, and expands until the outer diameter becomes approximately equal to D. Since the force to expand the diameter is pressed by the pipe, residual strain remains. In other words, even after the repair is completed, a radial force is always working to expand the diameter. If there is no restriction such as a pipe, it is assumed that the inner layer expands to the outer diameter d1. Then, the following relationship is established.
  • the above-mentioned repair member 1 is used for repairing pipelines such as sewers that have become aging and have cracks or steps.
  • the repair method is as follows.
  • the above repair member is cooled to ⁇ 50 ° C. This is to reduce the diameter expansion speed of the resin inner layer 2 immediately after removing the sleeve 3 as the outer layer, and to easily remove the inner layer.
  • the radial expansion force of the inner layer is weakened, so that the inner layer can be easily taken out from the outer layer.
  • the inner layer can be easily removed by hand.
  • the effect is exhibited as the cooling temperature is lower. 0 ° C or less, preferably 130 ° C or less is good.
  • the cooling method is not particularly limited, and may be storage in a freezer, immersion in a low-temperature medium, or the like.
  • a method is used in which the repair member 1 is immersed in an anhydrous ethanol solution cooled by adding dry ice.
  • the repair member having a surface temperature of ⁇ 50 ° C. was taken out of the anhydrous ethanol, the sleeve 3 was removed, and as shown in FIG. 11, near the both ends of the inner layer 2, a water-stop ring 15 was formed. Be attached.
  • This annular body is a ring formed from water-swelled rubber, styrene-butadiene rubber, sponge, or the like, and has an effect of improving the water stopping property.
  • the inner layer fitted with the water stop ring is quickly transported to the required repair point in the pipeline.
  • the pipe K may have unevenness such as a step at the joint.
  • the inner layer is cooled, so the diameter expansion speed is slow and the clearance from the pipe is secured for a long time. It can be easily transported in the pipeline.
  • the inner layer is heated after being transported to the required repair location in the pipeline.
  • the heating method is not particularly limited, and may be a general method such as hot air, hot water, or light heat.
  • the surface temperature of the resin inner layer is preferably 40 ° C to 70 ° C.
  • the diameter expansion speed is increased, and the inner layer can quickly adhere to the inner surface of the pipe.
  • the diameter can be expanded larger than when left at room temperature, so that the diameter can be reduced to be smaller than designed.
  • the inner layer may be lined to the step formed at the joint of the pipeline, but heating the inner layer improves the expandability and softens temporarily. Therefore, the ability to follow steps is excellent, and higher water stopping performance can be secured.
  • a 15 mm step was made using a 200 mm fume tube, and the results of comparison of the repair performance are shown in Table 1.
  • the repair material used was 400 mm long, and the thickness of the resin inner layer 2 was 5 mm.
  • the inner diameter ⁇ of the sleeve 3 is 170 mm, and the outer diameter of the inner layer 2 in an unconstrained state is 210 mm.
  • the inner layer 2 was made of two types, low-density polyethylene (LDPE) with a density of 0.920 and high-density polyethylene (HDPE) with a density of 0.955.
  • LDPE low-density polyethylene
  • HDPE high-density polyethylene
  • the evaluation items for repair performance are transportability and external water pressure resistance.
  • transportability whether the inner layer 2 can pass through the step is measured.
  • external water pressure resistance the external water pressure that can withstand one hour after the inner layer is installed at the step is measured.
  • a water-stop ring 15 having a thickness of l mm is mounted on the inner layer.
  • the inner surface repair member produced at the factory is transported to the site and directly transported to the repair location in the pipeline.
  • the repair work is completed simply by removing the diameter and then reducing the diameter, and a uniform and sufficient repair effect can be obtained at all times. The effect is obtained.
  • the inner layer is transported to the repair-required point.
  • the clearance with the pipeline is large, and the transport in the pipeline is performed quickly without any trouble.
  • the outer layer is removed by cooling the inner layer before or during loading, even if the outer layer is removed, it is cooled.
  • the inner layer expands slowly, and the clearance between the pipe and the inner peripheral surface of the pipe is maintained for a long time when the pipe is transported to the repair location in the pipeline, and the transport work to remote locations can be performed efficiently and smoothly. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Pipe Accessories (AREA)

Abstract

A repair material and a repairing method, in which partial repair for faulty portions of a pipeline such as a sewerage pipe is surely effected in fewer working processes and in a short time. A repair material (1) is used which is composed of at least two layered cylinders with an elastic inner layer (2) held in an outer layer (3) in contracted condition. The repair material is introduced into a pipeline to be taken to a location where the pipeline should be repaired, and the outer layer is removed to cause spontaneous diametrical expansion of the inner layer for close adherence to an inner surface of the pipeline. In the case where the pipeline is small in diameter, the outer layer (3) is removed outside the pipeline and only the elastic inner layer (2) is introduced into the pipeline to be conveyed to a location where the pipeline should be repaired. Before the outer layer (3) is removed outside the pipeline the repair material is cooled to temporarily delay a diametrically enlarging speed of the inner layer. Conveyed to a location where the pipeline should be repaired, the inner layer is heated.

Description

明 細 書 管路の内面補修用部材及び内面補修工法 技術分野  Description Materials for inner surface repair of pipes and inner surface repair method
本発明は、 既設の水道、 下水道、 ガス、 電線、 電話線などのために埋設されて いる管路の内面補修用部材及び内面補修工法に係り、 殊に内面部分補修用部材及 びそれを用いる工法に係る。 技術背景  The present invention relates to a member for repairing the inner surface and a method of repairing the inner surface of a pipe buried for an existing water supply, sewer, gas, electric wire, telephone line, etc. Concerning the construction method. Technology background
例えば、 地中に埋設された下水管はヒューム管、 陶管等が広く使用されてい る。 これらの管路は長期間の使用により内面が硫化水素やその他の腐食ガス及び 付着物等によって侵食され、 かつ劣化して管厚が薄くなつて強度が低下する。 ま た地圧や地盤沈下等により管路の接合部がずれて隙間ができたり、 上載荷重等に よつて管路の一部にクラック等が発生し、 この部分より地下水等が管路内に侵 入、 或いは管路内を流れる流水等が地中に漏水することがある。 これら地下水等 の管路内への侵入や漏水に伴い管路周辺の土砂が流出して環状体背面に空洞部が 生じて路面陥没等を誘発するおそれがある。  For example, fume pipes and ceramic pipes are widely used as sewage pipes buried underground. The internal surfaces of these pipes are eroded by hydrogen sulfide and other corrosive gases and deposits, etc., due to long-term use, and are deteriorated, resulting in thinner pipes and lower strength. In addition, the joints of the pipelines are displaced due to ground pressure, land subsidence, etc., resulting in gaps, and cracks, etc., in some of the pipelines due to the overload, etc. Intrusion or running water flowing through the pipeline may leak into the ground. There is a risk that earth and sand around the pipeline will flow out due to infiltration or leakage of such groundwater into the pipeline and a cavity will be created on the back of the annular body, causing road surface collapse and the like.
また、 例えばガス本管の場合には、 長期間の間に地盤変動等により接合部に弛 みが生じたり、 また大規模な地震やその他の大きな衝撃を受けたとき、 管路の接 合部が損傷し、 弛んだり損傷した不良箇所からガスが漏洩することがある。 従来、 上記のような管路内の不良箇所を部分補修するための部材として、 ステ ンレス等の耐食性に優れた金属材料製で、 両端部が重ね合わせられた状態で円筒 状に巻かれたベース板と、 その周囲に巻き付けられた不透水性で弾性変形可能な スリーブとから成る補修材料があり、 この補修材料は管路内の不良箇所を補修す る際に、 同箇所まで搬入された後、 パッカー等の拡径機によって拡径され、 弾性 スリーブが管路不良箇所内面に圧接され、 適度に圧縮された状態で拡径機の作用 が解除されると、 圧縮された弾性スリーブの反発作用でベース板が縮径する方向 で圧力を受け、 ベース板の重ね合わせ端部に形成された多数のフックとそれに係 合する開口との組み合わせのうち、 そのときに至近にあるフックと開口の対が ベース板の縮径を阻止するように相互に係合することによって、 取り付けが行わ れる。 In the case of gas mains, for example, if the joints are loosened due to ground deformation, etc. over a long period of time, or if a large-scale earthquake or other large impact is received, the joints of the pipelines Can be damaged and gas can leak from loose or damaged defective parts. Conventionally, as a member for partially repairing a defective part in the above pipeline, a base made of a metal material with excellent corrosion resistance such as stainless steel, and wound in a cylindrical shape with both ends overlapped There is a repair material consisting of a plate and a water-impervious, elastically deformable sleeve wrapped around the plate, and this repair material is used when repairing a defective part in a pipeline after it has been transported to that location. When the diameter of the elastic sleeve is increased by a diameter expander such as a packer, and the elastic sleeve is pressed against the inner surface of the defective pipe, and the operation of the diameter expander is released in a state of being appropriately compressed, the compressed elastic sleeve rebounds. The base plate receives pressure in the direction to reduce the diameter of the base plate, and a large number of hooks formed on the overlapping end of the base plate and the hooks Attachment is performed by engaging a pair of a hook and an opening that are closest to each other so as to prevent the base plate from being reduced in diameter.
この補修部材はそれ自体効果的なものであるが、 拡径機を使用し、 それを動作 させる必要があり、 そのために要するコスト及び手数の点で改善の余地がある。 管路内の不良箇所を補修するための他の方法として、 ガラスクロス又はポリェ ステル繊維等からなる不織布による補強材に液状の硬化性樹脂を含浸積層した補 修材をパッカー状の補修機に巻き付けて、 管路の設置箇所まで誘導し、 パッカー に圧縮空気を送って補修材を設置箇所内壁に圧着した後、 硬化性樹脂を硬化する 方法がある。  Although this repair element is effective in itself, it requires the use of a diameter expander to operate it, and there is room for improvement in the cost and effort required. As another method for repairing a defective part in a pipeline, a repair material in which a liquid hardening resin is impregnated and laminated on a reinforcing material made of a nonwoven fabric made of glass cloth or polyester fiber is wound around a packer-like repair machine. Then, there is a method of guiding the pipe to the installation location, sending compressed air to the packer, pressing the repair material on the inner wall of the installation location, and then curing the curable resin.
この従来方法は、 上記のようにガラス繊維などの補強材に硬化性樹脂を含浸し たものを使用するのであるが、 硬化性樹脂は外気温により硬化時間が異なり、 ま た硬化時間は作業に要する時間に合わせておく必要があり、 早すぎても遅すぎて も問題が生じるため (早やすぎると作業途中で硬化が始まり、 遅すぎると管路内 壁に圧着後に樹脂の垂れが生じる) , その都度現場で、 その時々の状況に見合つ た硬化時間になるように硬化剤を調合しなければならないので、 作業に時間と手 間がかかるという不具合があり、 また適当な調合を行ったとしても、 常に均一な 補修結果を得ることは困難である。  In this conventional method, as described above, a reinforcing material such as glass fiber impregnated with a curable resin is used, but the curable resin differs in curing time depending on the outside air temperature, and the curing time depends on the work. It is necessary to match the time required, and it will cause problems if it is too early or too late (If it is too early, curing will start during the work, and if it is too late, resin will sag after crimping on the inner wall of the pipeline) , Each time, the curing agent must be prepared at the site so that the curing time is appropriate to the situation at the time, so there is a problem that the work takes time and labor, and the proper preparation was performed. Even so, it is difficult to always obtain uniform repair results.
また、 液状の樹脂はガラスクロスゃ不織布に含浸しているので、 補修機による 圧力をかけすぎると、 含浸した樹脂がしぼり出されてしまい、 含浸不足の箇所が 発生するおそれがある。 また、 補修材の管軸方向の両端部に、 補修機としてのパ ッカーの構成及び作用上の影響で、 樹脂だけの薄層部分が生じ、 この部分から剥 離現象が発生しやすい。  In addition, since the liquid resin is impregnated into the glass cloth or the nonwoven fabric, if the pressure by the repair machine is applied too much, the impregnated resin may be squeezed out, and there may be a case where insufficient impregnation occurs. In addition, a thin layer of resin alone is formed at both ends of the repair material in the pipe axis direction due to the structure and operation of the packer as a repair machine, and a peeling phenomenon easily occurs from this portion.
更に、 ガラス繊維と光あるいは熱硬化性樹脂を使用して管路内面に樹脂層を形 成する方法においては、 樹脂が硬化する過程で硬化後の樹脂が硬化前に比べて 2 〜 8 %程度の熱収縮が発生することがある。 従って、 内張りしたときは密着状態 にあっても、 硬化するに従って固化収縮により剥離、 隙間が発生することがあ る。  Furthermore, in the method of forming a resin layer on the inner surface of a pipeline using glass fiber and light or thermosetting resin, the resin after curing is about 2 to 8% less than before curing in the process of curing the resin. Heat shrinkage may occur. Therefore, even when the lining is in close contact with the lining, the solidification and shrinkage may cause peeling and gaps as it cures.
従って、 本発明は、 簡単な補修作業で、 確固たる補修効果が永続的に得られる ようにすることを可能にする、 管路の内面補修用部材と、 内面補修工法を提供す ることを目的としている。 Therefore, according to the present invention, a solid repair effect can be permanently obtained with a simple repair work. It is intended to provide a member for repairing the inner surface of a pipeline and a method for repairing the inner surface, which makes it possible to do so.
また、 本発明は、 人が入って作業ができないような、 例えば内径 7 0 0誦の管 路であっても、 要補修箇所へ補修用部材としての内層の搬送を困難なく行えるよ うにし、 しかも有効な補修が達成されるようにすることを目的として 、る。 発明の開示  In addition, the present invention makes it possible to transport the inner layer as a repairing member to a repair-required portion without difficulty even in a case where a person cannot enter and work, for example, a pipeline having an inner diameter of 700, Moreover, the purpose is to ensure that effective repairs are achieved. Disclosure of the invention
上記の目的を達成する請求項 1に記載の本発明の管路の補修用部材は、 少なく とも 2層の筒体から構成され、 その内層は、 内部応力が極小となる非拘束状態 で、 補修しょうとする管路の内径よりも大きな外径を有する弾性体からなり、 外 層は、 前記管路の内径よりも小さな外径を有する筒体からなり、 前記内層は外層 に機械的強制力により拡径を阻止された状態で保持されており、 また前記内層は 前記管路の軸に対して直交方向の断面の形状が、 前記管路の内周の輪郭形状とほ ぼ相似形であることを特徴とするものである。  The pipe repairing member of the present invention according to claim 1, which achieves the above object, comprises at least two layers of a cylindrical body, and the inner layer is repaired in an unconstrained state where the internal stress is minimized. The outer layer is made of a cylinder having an outer diameter smaller than the inner diameter of the pipe, and the inner layer is formed by a mechanical force on the outer layer. The inner layer is held in a state where expansion is prevented, and the cross section of the inner layer in a direction perpendicular to the axis of the conduit is substantially similar to the contour of the inner periphery of the conduit. It is characterized by the following.
管路の要補修箇所まで搬送される本発明による上記の内面補修用部材は、 同箇 所で外層が取り去られ、 弾性体から成る内層のみカ残され、 内部応力力極小に向 かおうとする内層の性質によって、 外部から熱や電気などのエネルギーを与えな くても、 それ自身で自発的に拡径し、 管路の内径よりも大きな解放時の状態に戻 ろうとするので管路の内周面に密着し、 補修完了後でも内部応力が極小でない状 態が持続し、 内部応力が常に残った状態にあるので、 管路の内周面に対する密着 性は常に維持され、 剥離が生じたり、 外れたりするという問題は完全に回避さ れ、 更に拡径機を必要としないので作業が簡単且つ容易に行えるという効果が得 られる。 実際の補修では、 内層は管路内で拡径するため、 管路の内径よりも、 外 径が大きくなることはないが、 内層自体が潜在的にさらに拡径しょうとする力を 有しているため、 設置後永続的に収縮することはない。 また、 補修用部材の内層 は管路の軸に対して直交方向の断面が、 管路の内周とほぼ相似形であるので、 拡 径の際の弾性復元作用が全体にほぼ均一に行われ、 管路の内周面に対する、 むら のない密着性が得られる。 そして、 この補修用部材は工場で管理生産できるの で品質が一定し、 信頼性のある補修が可能であり、 また大量生産が可能であるの で安価にできるという効果が得られる。 The inner surface repair member according to the present invention, which is transported to the required repair point in the pipeline, has the outer layer removed at the same point, and only the inner layer made of the elastic body is left, and the internal stress force tends to be minimized. Due to the nature of the inner layer, even if no energy such as heat or electricity is given from the outside, it expands spontaneously and tries to return to the open state larger than the inner diameter of the pipe. Even after the repair is completed, the state where the internal stress is not minimal is maintained and the internal stress is always remaining, so the adhesion to the inner peripheral surface of the pipeline is always maintained, and peeling may occur. In addition, the problem of disengagement can be completely avoided, and the effect that the work can be performed simply and easily can be obtained since a diameter expanding machine is not required. In actual repairs, the inner layer expands inside the pipeline, so the outer diameter does not become larger than the inner diameter of the pipeline, but the inner layer itself has the potential to expand further. It does not shrink permanently after installation. In addition, since the inner layer of the repair member has a cross section in a direction perpendicular to the pipe axis that is substantially similar to the inner circumference of the pipe, the elastic restoring action at the time of diameter expansion is performed almost uniformly as a whole. Therefore, uniform adhesion to the inner peripheral surface of the pipe is obtained. And since the repair parts can be managed and produced in the factory, the quality is constant, reliable repair is possible, and mass production is possible. Thus, the effect that the cost can be reduced is obtained.
請求項 2に記載の本発明の内面補修用部材は、 少なくとも 2層の筒体から構成 され、 その内層が単独で存在するときの外径寸法を d 1、 2層状態における内層 の外径寸法を d 2、 外層の外径寸法を d 3、 補修完了後における補修材を構成す る内層の外径寸法を d 4、 既設管状体の内径を Dとすると、  The member for repairing an inner surface of the present invention according to claim 2 is composed of at least two layers of a cylindrical body, and has an outer diameter of d1 when the inner layer exists alone, and an outer diameter of the inner layer in a two-layer state. Where d2 is the outer diameter of the outer layer, d3 is the outer diameter of the inner layer that constitutes the repair material after the repair is completed, and D is the inner diameter of the existing tubular body.
d2<d3<d4=D<d l  d2 <d3 <d4 = D <d l
の関係があり、 かつ Relationship, and
d 2/D= 0. 5〜0. 93、  d 2 / D = 0.5 to 0.93,
d 3/D= 0. 6〜0. 95、  d 3 / D = 0.6 to 0.95,
d 1/D= 1. 01〜1. 2、  d 1 / D = 1.01 to 1.2,
D = 50〜800mm  D = 50-800mm
であることを特徴とする。 It is characterized by being.
この構成によれば、 現状の管路、 即ち管内に人が立入ることのできない、 内径 が 50— 800mmの管路に対し更に効果的に適用することができる。  According to this configuration, the present invention can be more effectively applied to an existing pipeline, that is, a pipeline having an inside diameter of 50 to 800 mm in which no person can enter the pipe.
請求項 3に記載の補修用部材は、 内層の主材料がポリエチレンあるいは架橋さ れたポリエチレンであり、 外層が、 防食処理を施した鉄、 あるいはステンレス製 あるいはアルミ合金製のスリ―ブぁることを特徴としており、 この構成によれば 内層がこのような材料で製作されていることにより、 その圧縮性並びに弾性復元 性が特に良好であり、 また管路の内周面への内層の密着が特に良好に維持され、 また外層は縮径状態の内層を確固に保持すると共に、 補修用部材を大量生産して 保存しておく場合、 锖びにくく、 その機能を長く維持することができると同時に 繰り返し使用することも可能となる。  The repair member according to claim 3, wherein the main material of the inner layer is polyethylene or cross-linked polyethylene, and the outer layer is a sleeve made of anticorrosion-treated iron, stainless steel, or an aluminum alloy. According to this configuration, since the inner layer is made of such a material, the compressibility and the elastic restoring property are particularly good, and the inner layer adheres to the inner peripheral surface of the pipeline. It is particularly well-maintained, and the outer layer firmly holds the inner layer in the reduced diameter state, and when mass-produced and stored for repair, it is difficult to crack, and its function can be maintained for a long time and at the same time iteratively It can also be used.
請求項 4に記載の補修用部材は、 外層が紙を主材料とする筒体であることを特 徴としている。 紙は軽量かつ耐衝撃性に優れており、 従って補修用部材を施工現 場で運び易く、 過って落下させても割れにくい。 また、 紙製であると、 外層の除 去を簡単な器具で容易に行うことができる。 更に、 紙は経済性にも優れており、 また除去後は処分し易い。  The repair member according to claim 4 is characterized in that the outer layer is a cylindrical body mainly composed of paper. The paper is lightweight and has excellent impact resistance, so it is easy to carry the repair parts at the construction site, and it is hard to break if dropped too much. In addition, if it is made of paper, the outer layer can be easily removed with a simple device. In addition, paper is economical and easy to dispose of after removal.
請求項 5に記載のように、 本発明における補修用部材としての内層の材料は樹 脂製であることが好ましく、 密度 0. 890〜0. 950のポリエチレンが適し ている。 特に 0 . 9 1〜0 . 9 3 5の低密度ポリエチレンが適している。 その理 由は密度が低い方力 均一に、 より小さく縮径することができ、 また、 外層を除 去した後の径の回復性が優れるため、 設計上小さく縮径することが可能となるた めである。 ただし、 密度が 0 . 8 9 0未満になると内層が管路の内面を押す力が 小さいため、 補修完了後、 管路の損傷部から侵入する水圧または土圧に耐えられ ないことがある。 よって、 この範囲の密度のポリエチレンが最も適している。 請求項 6に記載の補修用部材は、 内層の端部付近に止水環状体が装着されてい ることを特徴としており、 この構成によれば、 内層を管路、 例えば下水管の亀裂 発生箇所に取り付けた際、 たとえ亀裂から内層周囲に侵入する地下水があつても 下水管内への流入が止水環状体によって確実に止められる。 As described in claim 5, the material of the inner layer as the repairing member in the present invention is preferably made of resin, and polyethylene having a density of 0.890 to 0.950 is suitable. ing. Particularly, low-density polyethylene of 0.91 to 0.935 is suitable. The reason for this is that the lower the density, the more uniform the diameter can be reduced, and the greater the recoverability of the diameter after removing the outer layer, the smaller the diameter can be designed. It is. However, if the density is less than 0.890, the inner layer will have a small force to push the inner surface of the pipeline, and after the repair is completed, it may not be able to withstand the water pressure or earth pressure that enters from the damaged part of the pipeline. Therefore, polyethylene having a density in this range is most suitable. The repair member according to claim 6 is characterized in that a water-stop ring is attached near an end of the inner layer. According to this configuration, the inner layer is formed in a pipeline, for example, a location where a crack occurs in a sewer pipe. When attached to the groundwater, even if there is groundwater that penetrates around the inner layer through cracks, the inflow into the sewer pipe is reliably stopped by the water stop ring.
請求項 7に記載の補修用部材は、 止水環状体が、 弾力性があり止水機能の高い スチレンブタジエンゴムあるいは多孔性ブラスチックからなっていることによ り、 補修用部材と管路の間ですき間なく変形し長時間にわたり効果的な止水機能 が得られる。  The repair member according to claim 7 is characterized in that the water blocking annular body is made of styrene butadiene rubber or a porous plastic having elasticity and high water stopping function, so that the repair member and the pipe are connected to each other. It is deformed quickly and provides an effective water stop function for a long time.
請求項 8に記載の補修用部材は、 内層の端部に軸線方向外方へ向って拡がって いる斜面力設けてあり、 この構成によれば、 内層を管路内に取り付けた際、 補修 用部材の端部によって水等の円滑な流れが阻害されることがない。  The repair member according to claim 8 is provided with a slope force that extends outward in the axial direction at an end of the inner layer. According to this configuration, when the inner layer is installed in the pipeline, the repair member is used for repair. The smooth flow of water or the like is not hindered by the ends of the members.
請求項 9に記載の補修用部材は、 内層と外層との間に潤滑剤が施されているこ とを特徴としており、 この構成によれば、 管路内の補修対象箇所において補修用 部材から外層を抜き去る際、 抜き取り作業が円滑に行 t、得る。  The repair member according to claim 9 is characterized in that a lubricant is applied between the inner layer and the outer layer, and according to this configuration, the repair member is provided at the repair target portion in the pipeline. When removing the outer layer, the extraction work can be performed smoothly.
請求項 1 0に記載の補修用部材は、 外層としてのスリーブが、 縦方向に分割さ れた横断面が半円状の 2つの部分より成っており、 これら半円状部分の一方の突 き合わせ端縁がヒンジに結合され、 また他方の突き合わせ端縁部には、 それぞれ 外周面に沿って折り返された舌片カ設けてあり、 またスリーブが、 前記両折り返 し舌片の縁部に対してスリーブの軸線方向に滑動可能に係合している係合縁部を 具備している弧状結合片を有していることを特徴としており、 この構成によれ ば、 管路内の補修対象箇所において補修用部材から外層を取り去る際、 まず弧状 結合片を抜き取り、 次 、で 2つの半円状部分をヒンジ部を支点として開くことに よって、 外層の取り去りを極めて簡単に行うことができる。 上記目的を達成するための請求項 1 1に記載の管路内面の補修工法は、 管路用 の筒状補修用部材の軸方向の長さを L、 その厚さを T、 補修しょうとする管路の 内径寸法を Dとするとき、 The repair member according to claim 10, wherein the sleeve as the outer layer is formed of two portions each having a semicircular cross section divided in a longitudinal direction, and one of the semicircular portions protrudes. The mating edge is connected to the hinge, and the other butting edge is provided with a tongue piece which is folded back along the outer peripheral surface, respectively, and a sleeve is provided at the edge of the both folded tongue pieces. On the other hand, it has an arcuate coupling piece having an engagement edge portion slidably engaged in the axial direction of the sleeve. When the outer layer is removed from the repair member at the location, the outer layer can be removed very easily by first extracting the arc-shaped connecting piece and then opening the two semicircular portions with the hinge as a fulcrum. In order to achieve the above object, the repair method of the inner surface of the pipeline according to claim 11 is to repair the tubular repair member for the pipeline in the axial length L, the thickness T, and the repair. When the inside diameter of the pipe is D,
L/D = 0. 1 2—1 0  L / D = 0. 1 2—1 0
T/D = 0. 0 1〜0. 0 9  T / D = 0.01 to 0.09
である自発的拡径変形可能の補修用部材を使用し、 非拘束状態での径 d 1が d 1 〉Dである補修用部材を縮径させて、 縮径後の外径 d 2が d 2 < Dとなるように し、 縮径状態を保持しつつ補修用部材を管路内の要補修箇所へ搬送し、 その箇所で縮径状態の保持を解除し、 補修用部材の自発的拡径変形を生ぜしめ、 管路の内周面に密着させることを特徴とするものであって、 この方法によれば、 管路の管径に適応した補修用部材が準備可能であり、 拡径力が均質で安定した密 着力が得られ、 材料の無駄なく効率のよい補修が可能である。 By using a repair member that is capable of spontaneously expanding and deforming, the repair member whose diameter d 1 in the unconstrained state is d 1> D is reduced in diameter, and the outer diameter d 2 after reducing the diameter is d 2 <D, while maintaining the reduced diameter state, transport the repairing member to the required repair location in the pipeline, release the reduced diameter state at that point, and spontaneously expand the repairing member. This method is characterized by causing radial deformation and bringing it into close contact with the inner peripheral surface of the pipeline. According to this method, a repair member suitable for the pipeline diameter of the pipeline can be prepared. A stable adhesion with a uniform force is obtained, and efficient repair is possible without waste of materials.
請求項 1 2に記載の本発明の管路の内面補修工法は、 少なくとも 2層の筒体か ら構成され、 その内層は、 内部応力カ 小となる非拘束状態で、 補修しようとす る管路の内径より大きな外層を有する弾性体からなり、 外層は、 前記管路の内径 よりも小さ 、外径を有する筒体からなり、 前記内層は外層に機械的強制力により 拡径を阻止された状態で保持されており、 また前記内層は前記管路の軸に対して 直交方向の断面が、 前記管路の内周とほぼ相似形である補修用部材を使用し、 こ の補修用部材を管路内の要補修箇所へ搬送し、 その箇所で外層のみを取り去り、 内層を構成する弾性体の、 その内部応力が小さくなる方向での、 自発的拡径変形 を生ぜしめ、 管路の内周面に密着させ、 内部応力が残った状態で内面補修を完了 することを特徴とするものであり、 この方法によれば、 工場で生産した補修用部 材を現場に送り、 そのまま管路の要補修箇所まで搬送し、 外層を取り除くことに よって補修が完了するので、 補修作業が効率よく簡単に行える。  The method for repairing the inner surface of a pipeline according to the present invention according to claim 12 is composed of a tubular body having at least two layers, and the inner layer is a pipe to be repaired in an unconstrained state where internal stress is small. The outer layer is formed of an elastic body having an outer layer larger than the inner diameter of the passage, the outer layer is formed of a cylindrical body having an outer diameter smaller than the inner diameter of the pipe, and the inner layer is prevented from expanding by the outer layer by mechanical forcing. In addition, the inner layer uses a repairing member whose cross section in a direction perpendicular to the axis of the pipeline is substantially similar to the inner periphery of the pipeline. It is transported to the required repair location in the pipeline, only the outer layer is removed at that location, and spontaneous radial expansion deformation of the elastic body that constitutes the inner layer in the direction in which the internal stress is reduced, causing Close the inner surface with internal stress remaining According to this method, the repair parts produced in the factory are sent to the site, transported to the required repair points in the pipeline, and the outer layer is removed to complete the repair. Repair work can be performed efficiently and easily.
請求項 1 3に記載の管路内面の補修工法は、 補修用部材の両端を掴んで縮径状 態を維持するグリッパーを有すると共に、 管路内を走行するようになされた車両 を使用し、 この車両のグリッパーによって縮径状態の補修用部材の両端を掴み、 縮径を維持しつつ車両を管路内の要補修箇所へ向けて走行させ、 要補修箇所へ到 達後、 補修用部材をグリッパ一による掴み状態から解放し、 補修用部材の自発的 拡径変形を生ぜしめることを特徴とするものであって、 この方法によれば、 上記 補修用部材を要補修箇所へもたらし解放する作業を迅速且つ容易に行うことがで さる。 The repair method for the inner surface of the pipeline according to claim 13 uses a vehicle that has a gripper that grips both ends of the repair member and maintains a reduced diameter state, and that runs in the pipeline, The gripper of this vehicle grips both ends of the repair member in the reduced diameter state, moves the vehicle toward the required repair point in the pipeline while maintaining the reduced diameter, and after reaching the repair required point, replaces the repair member. Release from gripping state by gripper, spontaneous use of repair members According to this method, the work of bringing the repairing member to the repair-required portion and releasing the repairing member can be performed quickly and easily.
請求項 1 4に記載の管路内面の補修工法は、 少なくとも 2層の筒体から構成さ れ、 補修用部材としてのその内層は弾性材料製であり、 その内部応力力極小とな る非拘束状態では、 補修しょうとする管路の内径よりも大きな外径を有し、 外層 は前記管路の内径よりも小さな内径を有し、 前記内層は外層に機械的強制力によ り拡径を阻止された状態で保持されており、 また前記内層は前記管路の軸に対し て垂直方向の断面形状が、 前記管路の内周の輪郭形状とほぼ相似形である補修用 部材を使用し、 外層を除去した後、 内層のみを管路内に挿入し、 管路の要補修箇 所まで搬送、 設置し、 内部応力が小さくなる方向での自発的拡径変形を生ぜし め、 管路の内面に密着させ、 内部応力が残った状態で内面補修を完了することを 特徴とする。  The repair method for the inner surface of the pipeline according to claim 14 is constituted by at least two layers of the cylindrical body, the inner layer of the repair member is made of an elastic material, and the internal stress force is minimized. In this state, the outer layer has an outer diameter larger than the inner diameter of the pipe to be repaired, the outer layer has an inner diameter smaller than the inner diameter of the pipe, and the inner layer expands the outer layer by mechanical forcing. The inner layer is maintained in a blocked state, and the inner layer uses a repairing member having a cross-sectional shape perpendicular to the axis of the pipeline that is substantially similar to the contour shape of the inner circumference of the pipeline. After removing the outer layer, only the inner layer is inserted into the pipeline, transported and installed to the required repair point of the pipeline, causing spontaneous radial expansion in the direction of reducing internal stress, The inner surface repair is completed with internal stress remaining. .
上記の内層は管路内に挿入、 搬送される直前に、 その拡径を阻止している外層 を除去される。 そして内層のみを管路内に入れ、 要補修箇所まで素早く搬送し、 所定箇所に設置する。 弾性材料製内層は内部応力を極小にすべく拡径するため、 要補修箇所の内面に張り付き、 同箇所を補修することができるのである。  Immediately before the inner layer is inserted and conveyed into the pipeline, the outer layer preventing its diameter from being expanded is removed. Then, only the inner layer is put into the pipeline, quickly transported to the required repair location, and installed at the specified location. Since the inner layer made of an elastic material expands in diameter to minimize the internal stress, it can be stuck to the inner surface of the area requiring repair, and the area can be repaired.
本工法においては、 外層を除去すると、 内層は徐々に拡径を開始するため、 少 なくとも内層の外径が管路の内径よりも小さいうちに所定箇所に搬送しなければ ならない。 管路の接合部には段差が生じていることもあるため、 搬送中は内層外 径と管路の内径のクリアランスは可能な限り大きい方が好ましい。 そのクリアラ ンスを大きくするためには内層をより小さく縮径しなければならない。 しかし過 剰に縮径すると外層除去後の拡径性が悪くなり、 管路の内面に密着しなくなる。 すなわち、 外層を除去し、 内層を管路の要補修箇所に設置するまでは内層の外径 が小さく、 設置後は、 管路の内面に密着するまで拡径すること力要求される。 そこで、 内層搬送時の前記クリアランスを長時間確保するために、 請求項 1 5 に記載の方法によれば、 外層を除去する前に 2層の補修用部材が冷却される。 そ うすることにより、 外層を除去した直後の内層の弾性体の拡径速度を一時的に遅 くすることができ、 要補修箇所まで搬送するまでの間、 前記クリアランスをより 長時間保持することができるので、 管路の接合部に生じた段差部を通過すること ができ、 所定の箇所まで支障なく搬送することが可能となる。 In this method, when the outer layer is removed, the inner layer gradually expands in diameter. Therefore, the inner layer must be transported to a specified location while the outer diameter of the inner layer is at least smaller than the inner diameter of the pipeline. Since there may be a step at the junction of the pipelines, it is preferable that the clearance between the inner layer outer diameter and the pipeline inner diameter be as large as possible during transportation. In order to increase the clearance, the inner layer must be reduced in diameter. However, if the diameter is reduced excessively, the expandability after removing the outer layer becomes worse, and the pipe does not adhere to the inner surface of the pipe. In other words, the outer diameter of the inner layer is small until the outer layer is removed and the inner layer is installed at the required repair location of the pipeline, and after installation, it is required to expand the diameter until it comes into close contact with the inner surface of the pipeline. Therefore, in order to secure the clearance during the inner layer transport for a long time, according to the method of claim 15, the two-layer repair member is cooled before the outer layer is removed. By doing so, it is possible to temporarily slow down the expanding speed of the elastic body of the inner layer immediately after removing the outer layer, and to further increase the clearance until the elastic body is transported to the repair-required portion. Since it can be held for a long time, it can pass through the step formed at the joint of the pipeline, and can be transported to a predetermined location without any trouble.
請求項 1 6に記載の方法は、 外層除去後も、 引き続き、 搬送し終るまでの間、 内層を冷却することを特徴とする。 このようにすることによって、 外層除去後の 内層の拡径を更に遅延させることができ、 管路内の要補修箇所までの距離が比較 的長い場合でも、 円滑な搬送が可能である。  The method according to claim 16 is characterized in that even after the outer layer is removed, the inner layer is cooled until the transfer is completed. By doing so, the diameter of the inner layer after the outer layer is removed can be further delayed, and even if the distance to the required repair point in the pipeline is relatively long, smooth transport is possible.
更には、 請求項 1 7に記載の方法のように、 内層を管路の要補修箇所に設置し た後、 前記弾性体を加熱する手段が採られる。 そうすることで、 弾性体の拡径速 度を速くし、 管路に速く密着させることができるだけでなく、 内層の到達する径 を大きくすることができる。 また管路の段差部の内張りを行う場合にも、 内層が 段差部に追従し、 止水性を確保でき、 短時間で管路に密着させることができる。 加熱方法については、 どのような手段でもよく、 熱風や温水あるいは光熱を当て る方法が考えられる。 加熱時の内層の表面温度はポリエチレンの場合、 2 0〜 1 0 0 °C、 好ましくは 4 0〜7 0 °Cの温度が良い。 2 0 °C以下では拡径速度を速 める効果が少なく、 1 0 0 °C以上では、 内層の剛性が低くなり過ぎるために自重 による扁平が生じたり、 拡径力が失われる恐れがあるからである。 図面の簡単な説明  Further, as in the method according to claim 17, a means for heating the elastic body after the inner layer is installed at a repair-required portion of the pipeline is adopted. By doing so, not only can the speed of expanding the elastic body be increased and the elastic body can be brought into close contact with the pipe, but also the diameter that the inner layer can reach can be increased. In addition, even when lining the step portion of the pipeline, the inner layer follows the step portion, ensuring water stoppage, and being able to adhere to the pipeline in a short time. Regarding the heating method, any method may be used, and hot air, hot water or light heat may be applied. In the case of polyethylene, the surface temperature of the inner layer during heating is preferably from 20 to 100 ° C, and more preferably from 40 to 70 ° C. Below 20 ° C, the effect of increasing the expanding speed is small, and above 100 ° C, the rigidity of the inner layer becomes too low, which may cause flattening due to its own weight or loss of expanding force. Because. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の管路の内面補修用部材の一実施形態の斜視図である。 第 2図は、 図 1の補修用部材と補修すべき管路との関係を示す端面図である。 第 3図は、 補修用部材の内層の 3種の実施形態を示す部分斜視図である。 第 4図は、 補修箇所に設置された内面補修用部材 (内層) の端部構成を管路と の関連で説明する図である。  FIG. 1 is a perspective view of one embodiment of a member for repairing the inner surface of a pipe according to the present invention. FIG. 2 is an end view showing a relationship between the repair member of FIG. 1 and a pipeline to be repaired. FIG. 3 is a partial perspective view showing three embodiments of the inner layer of the repair member. FIG. 4 is a diagram for explaining the end configuration of the inner surface repair member (inner layer) installed at the repair location in relation to the pipeline.
第 5図は、 本発明の補修用部材の製造方法の例を説明する概略図である。 第 6図は、 補修用部材の外層の他の実施形態を示す斜視図である。  FIG. 5 is a schematic diagram illustrating an example of a method for manufacturing a repair member according to the present invention. FIG. 6 is a perspective view showing another embodiment of the outer layer of the repair member.
第 7図は、 補修用部材の外層の更に他の実施形態を示す斜視図である。  FIG. 7 is a perspective view showing still another embodiment of the outer layer of the repair member.
第 8図は、 補修用部材の外層の更に他の実施形態を示す部分的斜視図である。 第 9図は、 本発明の内面補修用部材として有利な弾性体パイプを示す斜視図で ある。 第 1 0図は、 図 9に示す内面補修用部材を使用して、 内面補修作業を行うため の補修装置の一例を示す概略斜視図である。 FIG. 8 is a partial perspective view showing still another embodiment of the outer layer of the repair member. FIG. 9 is a perspective view showing an elastic pipe which is advantageous as an inner surface repairing member of the present invention. FIG. 10 is a schematic perspective view showing an example of a repair device for performing an inner surface repair operation using the inner surface repair member shown in FIG.
第 1 1図は、 止水環状体を嵌着した内層又は弾性内面補修用部材の斜視図 ( a ) 及びその軸方向縦断面図の一部分を示す図 (b ) ( c ) である。  FIG. 11 is a perspective view (a) of an inner layer or an elastic inner surface repairing member fitted with a water blocking annular body, and FIGS. 11 (b) and (c) showing a part of an axial longitudinal sectional view thereof.
第 1 2図は、 本発明の補修用部材の他の実施形態を示す斜視図である。  FIG. 12 is a perspective view showing another embodiment of the repair member of the present invention.
第 1 3図は、 本発明による補修用部材の外層の他の実施形態を示す部分的斜視 図である。 発明を実施するための最良の形態  FIG. 13 is a partial perspective view showing another embodiment of the outer layer of the repair member according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 第 1図は本発明の補修用部材 1の一実施形態を斜視図で示しており、 図中 2は 筒状の弾性体から成る、 内面補修用部材としての内層、 3は内層を保持する筒状 の外層であって、 図示の状態では内層 2は縮径された状態で外層内に収められて いる。  The present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing one embodiment of the repair member 1 of the present invention, in which 2 is an inner layer as an inner surface repair member made of a cylindrical elastic body, and 3 is a cylinder holding the inner layer. In the illustrated state, the inner layer 2 is accommodated in the outer layer in a reduced diameter state.
内層 2すなわち内面補修用部材を構成する材料には、 ポリエチレン、 架橋ポリ エチレン、 ポリプロピレンやエチレン酢酸ビニル、 エチレンメタクリル酸、 等の ェチレン系共重合体をはじめとする多元共重合体等、 弾性を有する熱可塑性樹脂 材料を幅広く適用出来、 内面補修用部材の長期的な強度を考慮した場合には、 特 にポリエチレン、 架橋ポリエチレンであるのが望ましい。  The material constituting the inner layer 2, that is, the member for repairing the inner surface, has elasticity, such as polyethylene, cross-linked polyethylene, polypropylene, ethylene vinyl acetate, ethylene copolymer such as ethylene methacrylic acid, and other multi-component copolymers. In consideration of the long-term strength of the inner surface repair member, which is applicable to a wide range of thermoplastic resin materials, it is particularly preferable to use polyethylene or cross-linked polyethylene.
外層 3は紙を主材料とし、 複数の紙を積層した、 いわゆる紙管から構成されて いるものが好ましい。 し力、し、 外層 3を構成する材料は紙に限定されるものでは なく、 例えばステンレス鋼、 アルミ合金、 防食処理を施した鋼、 セラミック、 硬 質塩化ビニル等のプラスチック等を用いてもよい。 ステンレス、 アルミ合金、 防 食処理を施した鉄製のスリーブであってもよい。 F R Pなどの複合材料ゃェンジ ニアリングプラスチック、 更にその他の高強度の材料で製作してもよい。 また、 スリーブは薄板、 穿孔板、 網目状のものなどであることができる。  The outer layer 3 is preferably made of a so-called paper tube in which paper is a main material and a plurality of papers are laminated. The material constituting the outer layer 3 is not limited to paper, but may be, for example, stainless steel, aluminum alloy, corrosion-resistant steel, ceramic, plastic such as hard vinyl chloride, or the like. . It may be a stainless steel, aluminum alloy, or corrosion-resistant iron sleeve. It may be made of composite materials such as FRP, engineering plastics, and other high-strength materials. Further, the sleeve can be a thin plate, a perforated plate, a mesh-like one, or the like.
上記のように、 補修用部材 1の内層 2は外層 3内に縮径された状態で保持され ているが、 外層 3内に嵌め込まれる前の自由な状態では第 2図に示すように、 管 路 4の内径 Dよりも大きな外径 d 1を有しており、 その状態で弾性体内層 2の内 部応力は極小となる。 このような内層 2が、 管路 4の内径 Dより小さい外径 d 3 を有する外層 3内に外径が d 2となるように、 機械的強制力により閉じ込められ て密着した状態にあり、 従って常に拡径して平常時 (解放時) の状態に戻ろうと する状況にある。 As described above, the inner layer 2 of the repair member 1 is held in the outer layer 3 in a reduced diameter state, but in a free state before being fitted into the outer layer 3, as shown in FIG. It has an outer diameter d1 that is larger than the inner diameter D of the road 4, and in that state, Partial stress is minimized. Such an inner layer 2 is confined by mechanical forcing so as to have an outer diameter of d2 in an outer layer 3 having an outer diameter d3 smaller than the inner diameter D of the pipeline 4, and is in close contact with the outer layer 3. It is in a situation of constantly expanding its diameter and trying to return to the normal (open) state.
従って、 外層 3を取り去ると、 内層 2は内部応力が小さくなるように自発的に 拡径し、 管路 4の内周面に密着し、 なおも拡径しょうとする力は押さえられ、 残 留歪みが常に残った状態になる。 即ち、 常に拡径しょうとする半径方向の力が働 いており、 内部応力が極小でない状態に持続する。 上記の自発的というのは、 熱 力学第 2法則の自発変化と同義であって、 外部からエネルギー (熱、 水圧、 ガス 圧、 電気、 光等) を与えなくても、 弾性体自身の内部応力が極小に向かおうとす る性質を意味している。  Therefore, when the outer layer 3 is removed, the inner layer 2 spontaneously expands so as to reduce the internal stress, adheres tightly to the inner peripheral surface of the pipeline 4, and the force for expanding the diameter is suppressed, and the remaining The distortion always remains. In other words, a radial force is constantly acting to expand the diameter, and the internal stress is maintained at a state where it is not minimal. The above-mentioned spontaneous is synonymous with the spontaneous change of the second law of thermodynamics, and the internal stress of the elastic body itself can be obtained without applying external energy (heat, water pressure, gas pressure, electricity, light, etc.). Means the nature of trying to reach a minimum.
人間が中に入って作業できない、 管内径 Dが 50〜80 Ommの管路の場合、 上記の d l、 d2、 d 3及び補修完了後における補修用部材 (内層) の外径寸法 を d 4とするとき、 これらは次のような関係にあることが好ましい。  In the case of pipes with a pipe inner diameter D of 50 to 80 Omm, where humans cannot enter and work, the above dl, d2, d3 and the outer diameter of the repair member (inner layer) after the repair is completed are d4. In doing so, it is preferable that they have the following relationship.
d2<d3<d4 D<d l (1)  d2 <d3 <d4 D <d l (1)
d 2/D= 0. 5〜0. 93 (2)  d 2 / D = 0.5 to 0.93 (2)
d 3/D= 0. 6〜0. 95 (3)  d 3 / D = 0.6 to 0.95 (3)
d 1/D= 1. 01〜1. 2 (4)  d 1 / D = 1.01 to 1.2 (4)
上記の (1) は第 2図に示した状態を表わしている。 上記 (2) において、 d2/D<0. 5であると縮径率を大きくとることになり、 回復力が十分でなく なり、 補修完了後の密着性が不十分となる。 dZ/DX). 93であると、 補修 材全体の径が大きくなり、 管路の内部を搬送しにくくなる。 上記 (3) において は (2) の場合と同様、 d3/D<0. 6であると、 補修完了後の密着性が不十 分となり、 013 0>0. 95であると、 管路内を搬送するのに困難である。 上 記 (4) において、 d lZD< l. 01であると内部応力が不十分となり、 補修 完了後の密着力が弱くなり、 d lZD〉 l. 2であると縮径率を大きくとる必要 があり、 回復力が不十分となる。  The above (1) represents the state shown in FIG. In the above (2), if d2 / D <0.5, the diameter reduction ratio becomes large, the resilience becomes insufficient, and the adhesion after the repair is completed becomes insufficient. If dZ / DX). 93, the diameter of the entire repair material will be large, making it difficult to transport inside the pipeline. In (3) above, as in (2), if d3 / D <0.6, the adhesion after completion of the repair will be insufficient, and if 013 0> 0.95, the pipe Is difficult to transport. In (4) above, if d lZD <l. 01, the internal stress becomes insufficient, and the adhesion after the repair is completed becomes weak. If d lZD> l. 2, the diameter reduction ratio must be increased. Yes, resilience is inadequate.
上記の内層 2は円筒形である場合を図示説明したが、 第 3図に示すように、 筒 状で横断面がアーチ形 (a) 、 六角形 (b) 、 だ円形あるいは卵形 (c) であつ てもよく、 更に六角形以外の多角形であってもよい。 いずれの場合も、 管路 4の 軸に対して直交方向の断面形状が、 管路内周の輪郭形状とほぼ相似形となってい る。 Although the case where the inner layer 2 is cylindrical is illustrated and described, as shown in Fig. 3, it is cylindrical and has an arch shape (a), a hexagonal shape (b), an oval shape or an oval shape (c). Datsu Or a polygon other than a hexagon. In each case, the cross-sectional shape in the direction perpendicular to the axis of the pipeline 4 is substantially similar to the contour shape of the inner circumference of the pipeline.
上記の内層 2の端部には第 4図 (a ) 、 ( b ) に示すように、 軸線方向外方へ 向って拡がっている斜面 (テーパー) 5が形成されており、 テーパー角 0は 1 0 ° < 0 < 8 0 ° 、 好ましくは 2 5 ° く 0く 6 0 ° である。  As shown in FIGS. 4 (a) and 4 (b), an inclined surface (taper) 5 extending outward in the axial direction is formed at the end of the inner layer 2, and the taper angle 0 is 1 0 ° <0 <80 °, preferably 25 ° to 60 °.
上記の補修用部材 1は、 次のようにして工場で大量生産することが可能であ る。 即ち、 第 5図に示すように、 押し出し成型により成型され、 続いて冷却され た、 例えばポリエチレン管 6は、 先端に引張り用の部材 8を取り付けられた後、 牽引されると共に同管とほぼ相似形のリング 7を通過せしめられ、 所要の径まで 縮径される。 リング 7にポリエチレン管の加熱手段を付設してもよい。 リング 7 に後続して所定の長さの金属鞘管 9が配置されており、 縮径されたポリエチレン 管は金属鞘管 9内に引き込まれる。 縮径ポリェチレン管が金属鞘管 9内にその全 長に亘つて引き込まれた後、 弓 1込み作業は停止され、 次いでポリエチレン管が自 発的に幾分拡径し金属鞘管 9の内面に密着した後、 切断機を用いて所要の長さ に、 矢印 c 1、 c 2 · · · · c n + 1にて示す箇所で輪切り状態に切断される。 得ら れた個々の切断片 a 1、 a 2 · · · · a nが補修用部材となる。 切断はリング 7の直 後の箇所で行ってもよく、 別の場所で行ってもよい。 外層 3としてのスリーブが 再使用される場合には、 スリーブを連接して鞘管とする際、 スリーブとスリーブ の間にスぺーサーを入れ、 スぺ一サ一の部分で切断を行うようにしてもよい。 上記の大量生産方式で補修用部材 1を製造する場合には、 外層は金属スリ一ブ にて形成されることが有利である。 その場合、 金属スリーブとポリエチレン管と の間に潤滑剤を介在させることが好ましい。 金属スリーブは、 防食処理を施した 鉄、 ステンレス、 あるいはアルミ合金であることが好ましいが、 金属スリーブに 代えて、 プラスチック材料やその他の材料製のスリ一ブも使用可能である。 外層としてのスリーブは、 その他に第 6図〜第 8図に示す形態をとることがで さる。  The above-mentioned repair member 1 can be mass-produced in a factory as follows. That is, as shown in FIG. 5, for example, a polyethylene pipe 6 formed by extrusion molding and then cooled, for example, after a tension member 8 is attached to the tip, is pulled and substantially similar to the same. It is passed through a shaped ring 7 and reduced to the required diameter. The ring 7 may be provided with polyethylene tube heating means. A metal sheath tube 9 having a predetermined length is arranged after the ring 7, and the reduced-diameter polyethylene tube is drawn into the metal sheath tube 9. After the reduced-diameter polyethylene pipe has been drawn into the metal sheath pipe 9 over its entire length, the work of arresting the bow is stopped, and then the polyethylene pipe spontaneously expands somewhat to the inside of the metal sheath pipe 9. After being in close contact with each other, it is cut into a desired length using a cutting machine at a location indicated by arrows c1, c2, cn + 1. The obtained individual cut pieces a 1, a 2,..., A n serve as repair members. Cutting may be performed immediately after the ring 7 or at another location. When the sleeve as the outer layer 3 is reused, when connecting the sleeve to the sheath tube, insert a spacer between the sleeve and the sleeve, and cut at the spacer part. You may. When the repair member 1 is manufactured by the mass production method described above, it is advantageous that the outer layer is formed of a metal sleeve. In that case, it is preferable to interpose a lubricant between the metal sleeve and the polyethylene pipe. The metal sleeve is preferably made of corrosion-resistant iron, stainless steel, or an aluminum alloy, but a sleeve made of a plastic material or other material can be used instead of the metal sleeve. The sleeve as the outer layer may take other forms shown in FIGS. 6 to 8.
第 6図 (a ) 〜 (c ) に示すスリーブは、 縦方向に分割された横断面半円状の 2つの部分 3 a、 3 bから成っており、 これら半円状部分 3 a、 3 bの一方の突 き合わせ端縁はヒンジ 3 cによって丁番結合されている。 他方の突き合わせ端縁 部には、 それぞれ外周面に沿って折り返された舌片 3 dが形成されている。 ス リーブは更に弧状結合片 3 eを有しており、 この結合片は、 上記舌片の縁部と滑 動可能に係合している断面コ字状の係合縁部 3 f を有している。 第 6図 (a) の 状態でスリ一ブは弾性体内層 2を縮径した状態で保持しており、 管路内の要補修 箇所で弧状結合片 3 eを矢印で示す軸線方向へ引き去ると、 第 6図 (b) に示す ように半円部分 3 a、 3bはヒンジ 3 cを支点として開放し、 次いで開放した半 円部分を引き去ると、 内層のみがそこに残され、 前述のように自発的に拡径して 管路内周面に密着し、 不良箇所を補修する。 弧状結合片 3 e及び半円部分 3 a、 3 bを引き去るために、 それぞれ、 それらの部材の端部には引張用ロープと結合 するための小孔 3 g、 3 hが設けてある。 また、 開放した半円部分 3 a、 3 bが 必要以上に開かないように、 半円部分 3 a、 3 bは舌片 3 dの付近で紐又は同様 の部材 3 iにて連結されている。 また、 第 6図 (c) に示すように、 半円部分 3 a、 3 bにはプレスによる波付け加工力施され補強されている。 The sleeve shown in FIGS. 6 (a) to 6 (c) is composed of two parts 3a and 3b which are divided in the longitudinal direction and have a semicircular cross section, and these semicircular parts 3a and 3b One end of the The joining edges are hinged together by hinges 3c. A tongue piece 3d is formed on the other butted edge portion, which is folded back along the outer peripheral surface. The sleeve further has an arcuate connecting piece 3e, which has an engaging edge 3f with a U-shaped cross section slidably engaging the edge of the tongue. ing. In the state shown in FIG. 6 (a), the sleeve holds the elastic inner layer 2 in a reduced diameter state, and pulls out the arc-shaped connecting piece 3e in the axial direction indicated by the arrow at a repair required portion in the pipeline. As shown in Fig. 6 (b), the semicircular portions 3a and 3b are opened with the hinge 3c as a fulcrum, and then the opened semicircular portion is removed, leaving only the inner layer there. The diameter is spontaneously expanded and closely adheres to the inner peripheral surface of the pipeline to repair defective parts. In order to remove the arc-shaped connecting piece 3e and the semicircular portions 3a and 3b, small holes 3g and 3h are provided at the ends of the members for connecting to the pulling ropes, respectively. The semicircular portions 3a and 3b are connected by a string or similar member 3i near the tongue piece 3d so that the open semicircular portions 3a and 3b do not open more than necessary. . Also, as shown in Fig. 6 (c), the semicircular portions 3a and 3b are reinforced by applying a corrugating force by a press.
第 7図はスリーブの変形を示しており、 半円部分 3 a、 3 bの上下両方の突き 合わせ端縁部に、 折り返し舌片 3 dが形成され、 隣接する折り返し舌片 3 dの対 が上記の弧状結合片 3 eによって結合されている。 補修作業の際に半円部分 3 a、 3 bを開放するには、 一方又は両方の弧状結合片 3 eが引き去られる。 第 8図はスリーブの他の変形を示しており、 半円部分 3 a、 3 bの上下両方の 突き合わせ端縁部がピン 3 jによって結合されており、 このピンを軸線方向へ引 き抜くと、 結合状態が解除され、 スリーブが開放するようになされている。 本発明の内層材の材料物性値等に起因する他の観点によれば、 本発明の課題は 下記の方法によっても達成可能である。  Fig. 7 shows the deformation of the sleeve.Folded tongue pieces 3d are formed at both butting edges of the semicircular portions 3a and 3b, and a pair of adjacent folded tongue pieces 3d is formed. They are joined by the above-mentioned arc-shaped joining pieces 3e. In order to open the semicircular portions 3a and 3b during the repair work, one or both of the arc-shaped connecting pieces 3e are withdrawn. FIG. 8 shows another deformation of the sleeve, in which the upper and lower butted edges of the semicircular portions 3a, 3b are connected by a pin 3j, and when this pin is pulled out in the axial direction, The connection state is released and the sleeve is opened. According to another aspect attributable to the material properties of the inner layer material of the present invention, the object of the present invention can also be achieved by the following method.
即ち、 第 9図に示す内層 (内面補修用部材) あるいは弾性体パイプ 10におい て、 同パイプの軸方向の長さを L、 厚みを T、 補修しょうとする管路内径寸法を Dとするとき、  That is, in the inner layer (inner surface repair member) or the elastic pipe 10 shown in Fig. 9, when the axial length of the pipe is L, the thickness is T, and the inner diameter of the pipe to be repaired is D. ,
L/D = 0. 1 2~10、 好ましくは 0. 4〜2、 (5) T/D=0. 0 1〜0. 09、 好ましくは 0. 0 1 25〜0. 03 (6) とし、 非拘束状態での外径 d 1が d 1〉Dである弾性体パイプ 1 0を縮径させ て、 縮径後の外径 d 2が d 2 < Dとなるようにし、 縮径状態を保持しつつ弾性体 パイプを管路内の要補修箇所へ搬送し、 その箇所で縮径状態の保持を解除し、 弾 性体パイプの自発的拡径変形を生ぜしめ、 管路の内周面に密着させるものであ る。 上記の式 (5 ) は弾性体パイプ 1 0が均質に縮径、 拡径及び必要な密着強度 を保っための条件であって、 LZD < 0. 1 2であるとパイプ長が短すぎ、 縮径 状態において、 パイプが挫屈しやすくなるという問题がある。 また LZD > 1 0 であると、 長さ方向での密着性が不均質になりやすく、 また部分補修としては材 料の無駄が生じやすくなる。 L / D = 0.12 ~ 10, preferably 0.4 ~ 2, (5) T / D = 0.01 ~ 0.09, preferably 0.01 25 ~ 0.03 (6) The diameter of the elastic pipe 10 whose outer diameter d 1 in the unconstrained state is d 1> D is reduced. So that the outer diameter d2 after diameter reduction is such that d2 <D, and while maintaining the reduced diameter state, the elastic pipe is transported to the required repair location in the pipeline, where the reduced diameter state is maintained. Is released, causing spontaneous expansion deformation of the elastic pipe and bringing it into close contact with the inner peripheral surface of the pipe. The above equation (5) is a condition for keeping the elastic pipe 10 uniformly reduced in diameter, expanded in diameter, and required adhesion strength. If LZD <0.12, the pipe length is too short, There is a problem that pipes tend to buckle in the diameter state. If LZD> 10, the adhesiveness in the length direction tends to be non-uniform, and material is likely to be wasted as a partial repair.
上記の式 (6 ) については、 TZD O . 0 1であると、 薄肉のため十分な密 着強度及び水圧に対する安全率がとりづらくなる。 密着強度は管路内洗浄のため の高圧ウォータージヱッ 卜でも外れることなく、 また補修用部材にかかる管路外 部からの地下水圧に対して十分に対応できる必要がある。 TZD > 0. 0 9であ ると厚肉となり、 流下水量の減少を招き、 水圧に対する強度は過剰となり、 材料 の無駄が生じる。  Regarding the above equation (6), if TZD 01.01, it is difficult to secure a sufficient adhesion strength and a safety factor against water pressure because of the thin wall. It is necessary that the strength of the adhesion does not come off even with a high-pressure water jet for cleaning the inside of the pipeline, and that it can sufficiently cope with the groundwater pressure on the repair member from outside the pipeline. If TZD> 0.09, it becomes thicker, causing a decrease in the amount of flowing water, resulting in excessive strength against water pressure and waste of materials.
上記の弾性体パイプ 1 0は内層として上述の各外層と組み合わせて使用される が、 本発明方法を効果的に実施するための別の観点から、 第 1 0図に示されてい る補修装置を外層に代わるものとして用いて所期の目的を達成することができ る。 この装置は一対の対向するグリップ部材 1 1を有しており、 各グリップ部材 は中心部のハブ 1 1 aから放射状に延びる複数のグリップアーム 1 1 bを有し、 各グリップアームの先端には弾性体パイプ 1 0の周縁部を掴むグリップ 1 1 cが 設けてある。 各グリップ部材 1 1は支持軸 1 2に、 その軸線方向へ移動可能に支 持されている。 一対のグリップ部材 1 1を相互に離間する方向、 並びに接近する 方向へ移動させるために、 ハブ 1 1 aには雌ねじが、 支持軸 1 2には雄ねじが形 成されて相互に嚙合し、 しかも両方のグリップ部材に対する雄ねじは逆ねじにな されている。  The above-mentioned elastic pipe 10 is used as an inner layer in combination with each of the above-mentioned outer layers. From another viewpoint for effectively performing the method of the present invention, the repair device shown in FIG. 10 is used. It can be used as a substitute for the outer layer to achieve its intended purpose. This device has a pair of opposing grip members 11, each grip member having a plurality of grip arms 11 b extending radially from a central hub 11 a, and a tip of each grip arm. A grip 11 c for gripping the peripheral portion of the elastic pipe 10 is provided. Each grip member 11 is supported by a support shaft 12 so as to be movable in its axial direction. In order to move the pair of grip members 11 away from each other and in the direction in which they approach each other, a female screw is formed on the hub 11a, and a male screw is formed on the support shaft 12, so that they engage with each other. The external threads for both grip members are counter-threaded.
支持軸 1 2は両端部でそれぞれ一対の車輪 1 3によって支持された軸受部材 1 4によって軸受けされ、 更に少なくとも一方の端部で正逆回転駆動手段 (図示 せず) に結合されている。  The support shaft 12 is supported at both ends by bearing members 14 supported by a pair of wheels 13, respectively, and is further coupled to forward / reverse rotation driving means (not shown) at at least one end.
上記のグリップ部材 1 1を相互に他方に対して移動させるために、 上記ねじ手 段に代えて、 ピストン手段を用いてもよい。 In order to move the grip members 11 with respect to each other, Instead of the step, a piston means may be used.
上記の補修装置を用いて管路の不良箇所補修方法について説明すると、 まず、 第 5図に示した縮径用ダイ Ί又は同様の手段によって縮径された弾性体パイプ 1 0が、 グリップ部材 1 1によって両端の周縁部を掴まれた状態になるよう、 補 修装置にセットされる。 場合によっては上記の寸法の範囲内にある解放状態の弾 性体パイプ 1 0を両グリップ部材 1 1の間に配置し、 グリップ部材 1 1のグリッ プ 1 1 cによってパイプ縁部を掴持し、 次いで、 支持軸 1 2を回転させ両グリッ プ部材 1 1を相互に離間する方向へ移動させ、 弹性体パイプ 1 0を引き伸ばして 縮径するようにしてもよい。  A method for repairing a defective portion of a pipeline using the above repair device will be described. First, the elastic pipe 10 reduced in diameter by the diameter reducing die shown in FIG. It is set on the repair device so that the peripheral edges of both ends are grasped by 1. In some cases, an open elastic pipe 10 within the above dimensions is placed between both grip members 11 and the pipe edge is gripped by the grip 11 c of the grip member 11. Then, the support shaft 12 may be rotated to move the two grip members 11 away from each other, and the flexible pipe 10 may be stretched to reduce the diameter.
上記のように d 2 < Dとなるように縮径された弾性体パイプを保持した補修装 置をマンホールや管路の開放箇所から管路内へ搬入する。 別途移動車に取り付け たテレビカメラで誘導しながら、 補修装置を要補修箇所まで移動する。 次いで要 補修箇所まで到達した補修装置のグリップ部材 1 1のグリップ 1 1 cを開放し、 縮径弾性体パイプ 1 0を解放すると、 同パイプは自発的に拡径し、 最終的に管路 内面に密着する。 次いで空の補修装置は回収され補修作業が完了する。  The repair equipment holding the elastic pipe whose diameter has been reduced so that d2 <D as described above will be carried into the pipeline through manholes and open locations in the pipeline. The repair equipment is moved to the required repair point while guiding with the TV camera separately attached to the mobile vehicle. Next, when the grip 11c of the gripping member 11 of the repair device that has reached the repair location is released and the reduced-diameter elastic pipe 10 is released, the pipe spontaneously expands in diameter, and finally the inner surface of the pipeline Adhere to The empty repair equipment is then recovered and the repair work is completed.
以上の各実施例において、 内層 2または弾性体パイプ 1 0には第 1 1図 (a ) に示すように、 その両端部付近に止水環状体 1 5が嵌着されており、 この環状体 1 5はスチレンブタジエンゴム、 水膨潤ゴム、 スポンジ、 プラスチックの発泡体 又は硬化性の液状水膨潤ゴムを含浸した帯状体などをリング状に形成したもので ある。 この環状体は、 第 1 1図 (b ) に示すように、 内層 2または弾性体パイプ 1 0の周囲に単に嵌めるだけでもよいが、 第 1 1図 (c ) に示すように内層また は弾性体パイプ 1 0の外周に形成した周溝内に嵌め込むようにしてもよい。 第 1 2図は本発明方法に使用される補修用部材 1のほかの一実施形態を斜視図 で示しており、 図中 2は筒状の弾性材料製内層、 3は内層を保持する筒状のス リーブ、 即ち外層である。 図示の状態では内層 2は縮径された状態で外層として のスリーブ 3内に収容されており、 内層が内部応力を極小にしょうとする方向、 すなわち径を大きくする方向に拡径しょうとするのをスリーブ 3が抑制してい る。 内層 2は密度 0 . 9 2 0のポリエチレンを主成分とする樹脂製であることが 好ましい。 ポリエチレンの密度はこの値に限定されるものではないが、 0 . 8 9 0 ~ 0. 9 5 0、 好ましくは 0. 9 1 0〜0 . 9 3 5が適している。 その理 由は、 密度が 0. 9 5 0以上の高密度ポリエチレンの場合、 縮径率を大きくした 場合に均一に縮径すること力難しく、 また低密度ポリェチレンに比べ拡径性が悪 いからである。 密度が 0. 8 9 0未満の場合には、 補修完了後、 樹脂製内層が管 路の内面を押す力が小さく、 補修後に管路の破損部から侵入する水や土の圧力に 耐えられな 、場合があるからである。 またこの密度の範囲に対応する結晶化度は 6 0〜8 5 %となる。 また、 内層の材料としてはポリエチレン以外のポリオレフ ィン系樹脂を用いることもできる。 In each of the above embodiments, as shown in FIG. 11 (a), the inner layer 2 or the elastic pipe 10 is fitted with the water-stop ring 15 near both ends thereof. Reference numeral 15 denotes a ring-shaped member formed of a styrene-butadiene rubber, a water-swellable rubber, a sponge, a plastic foam, or a curable liquid water-swellable rubber-impregnated belt. This annular body may be simply fitted around the inner layer 2 or the elastic pipe 10 as shown in FIG. 11 (b), but may be fitted as shown in FIG. 11 (c). It may be fitted into a circumferential groove formed on the outer periphery of the body pipe 10. FIG. 12 is a perspective view showing another embodiment of the repair member 1 used in the method of the present invention, in which 2 is a cylindrical inner layer made of an elastic material, and 3 is a cylindrical inner layer holding the inner layer. Is the outer layer. In the state shown in the figure, the inner layer 2 is accommodated in the sleeve 3 as the outer layer in a reduced diameter state, and the inner layer tries to expand the diameter in the direction of minimizing the internal stress, that is, in the direction of increasing the diameter. Is suppressed by the sleeve 3. The inner layer 2 is preferably made of a resin mainly composed of polyethylene having a density of 0.920. The density of polyethylene is not limited to this value, but is 0. 890 to 0.995, preferably 0.910 to 0.935 is suitable. The reason is that, in the case of high-density polyethylene with a density of 0.950 or more, it is difficult to reduce the diameter uniformly when the diameter reduction rate is increased, and the diameter expansion is lower than that of low-density polyethylene. It is. If the density is less than 0.890, after the repair is completed, the force of the resin inner layer pressing on the inner surface of the pipeline is small, and it will not be able to withstand the pressure of water or soil that enters from the damaged part of the pipeline after the repair. Because there are cases. The degree of crystallinity corresponding to this density range is 60 to 85%. Further, as the material of the inner layer, a polyolefin resin other than polyethylene can be used.
また、 外層としてのスリーブは軸線方向に切断されていて、 スリーブを固定し ているホースバンド 1 6を取り外せば、 手で容易に切断面 3 kより開き、 内層を 取り出すことができる。 また第 1 3図のように、 スリーブに取り付けられたバッ クル 1 7でスリーブを閉鎖しておく構造も考えられる。 更に、 第 1 2図のホース バンド 1 6を、 両端部を連結して環状になるような構造のものとなし、 連結部 に、 ねじをドライバ一などで回して締め付け及び緩解作用をもたらすことのでき るターンバックルを設けた構成にしてもよい。  Further, the sleeve as the outer layer is cut in the axial direction, and if the hose band 16 fixing the sleeve is removed, the inner layer can be easily taken out from the cut surface 3k by hand to take out the inner layer. Further, as shown in FIG. 13, a structure in which the sleeve is closed by a buckle 17 attached to the sleeve is also conceivable. In addition, the hose band 16 shown in Fig. 12 is constructed so that both ends are connected to form an annular shape, and a screw is turned around the connecting portion with a screwdriver to provide tightening and loosening action. A configuration in which a turnbuckle is provided may be used.
上記のように補修用部材 1の内層 2はスリーブ 3内に収縮された状態で保持さ れているが、 スリーブ内に収納される前の自由な状態では、 第 2図に示すよう に、 管路 Kの内径 Dよりも大きな外径 d 1を有している。 このような内層が、 管 路の内径 Dよりも小さい内径 d 2を有するスリーブ 3内に密着された状態で収納 されており、 収縮状態における内層の外径が前記 d 2と近似している。 d 2は 0. 9 2 D以下、 好ましくは 0. 8 5 D以下であることが望ましい。 これは搬送 時の内層 2と管路 Kのクリアランスが大きい方が、 管路に生じた段差部を通過し 易く、 また補修作業が容易であるからである。 内層 2はスリーブ 3に収納されて いる状態では、 常に拡径して非拘束状態に戻ろうとする状況にある。 従って、 ス リーブ 3を取り去ると、 内層は内部応力が小さくなるように自発的に拡径して管 路の内面に密着し、 外径が近似的に Dと等しくなるまで拡径し、 なおも拡径しょ うとする力は管路に押えられるため、 残留歪みが残った状態になる。 すなわち補 修完了後も常に拡径しょうとする半径方向の力が働いていることになる。 仮に管 路のような拘束物が存在しなかった場合、 内層が外径 d 1まで拡径すると仮定す ると以下の関係が成り立つ。 As described above, the inner layer 2 of the repair member 1 is held in a contracted state in the sleeve 3, but in a free state before being housed in the sleeve, as shown in FIG. The outer diameter d1 is larger than the inner diameter D of the path K. Such an inner layer is housed in a tightly closed state in a sleeve 3 having an inner diameter d2 smaller than the inner diameter D of the conduit, and the outer diameter of the inner layer in a contracted state is similar to the aforementioned d2. d 2 is preferably 0.92 D or less, more preferably 0.85 D or less. This is because the larger the clearance between the inner layer 2 and the pipeline K during transportation is, the easier it is to pass through the step formed in the pipeline and the easier the repair work is. When the inner layer 2 is housed in the sleeve 3, the inner layer 2 is constantly expanding to return to the unconstrained state. Therefore, when sleeve 3 is removed, the inner layer spontaneously expands to reduce the internal stress and adheres tightly to the inner surface of the pipe, and expands until the outer diameter becomes approximately equal to D. Since the force to expand the diameter is pressed by the pipe, residual strain remains. In other words, even after the repair is completed, a radial force is always working to expand the diameter. If there is no restriction such as a pipe, it is assumed that the inner layer expands to the outer diameter d1. Then, the following relationship is established.
d 2 < D < d 1 d 2 <D <d 1
実施例 Example
老巧化し、 亀裂や段差等の生じた下水道等の管路の補修に上記補修用部材 1が 用いられる。 補修方法は以下の手順で行う。 上記補修用部材を- 5 0 °Cに冷却す る。 これは、 外層としてのスリーブ 3を除去した直後の樹脂製内層 2の拡径速度 を遅くするためと、 内層を容易に取り出すためである。 上記補修用部材を冷却す ると、 内層の拡径力が弱まるため、 内層を外層から容易に取り出すことができ る。 第 1図の実施形態の場合は手で容易に内層を抜き取ることができる。 冷却温 度が低いほどその効果を発揮する。 0 °C以下好ましくは一 3 0 °C以下が良い。 第 1 2図および第 1 3図の場合は、 ホースバンド 1 6またはノくックノレ 1 7を外して 内層 2を取り出すことも可能である。 冷却方法は特に限定されるものではなく、 冷凍庫での保存、 低温媒体への浸せき等が考えられる。 本実施例ではドライアイ スを投入して低温化した無水エタノール溶液に、 前記補修用部材 1を浸せきする 方法が適用される。 表面温度が- 5 0 °Cになった補修用部材を、 無水エタノール から取り出し、 スリーブ 3を除去し、 第 1 1図に示すように内層 2の両端部付近 に、 止水環状体 1 5が装着される。 この環状体は水膨潤ゴム、 スチレンブタジェ ンゴム、 スポンジ等をリング状にしたものであり、 止水性を向上させる効果があ る。 止水環状体を装着した内層は、 素早く管路の要補修箇所に搬送される。 管路 Kには接合部に生じた段差等の凹凸が存在する場合がある力 内層が冷却されて いることにより、 拡径速度が遅く、 管路とのクリアランスが長時間確保されるの で、 容易に、 管路内を搬送することが可能である。  The above-mentioned repair member 1 is used for repairing pipelines such as sewers that have become aging and have cracks or steps. The repair method is as follows. The above repair member is cooled to −50 ° C. This is to reduce the diameter expansion speed of the resin inner layer 2 immediately after removing the sleeve 3 as the outer layer, and to easily remove the inner layer. When the above-mentioned repair member is cooled, the radial expansion force of the inner layer is weakened, so that the inner layer can be easily taken out from the outer layer. In the case of the embodiment shown in FIG. 1, the inner layer can be easily removed by hand. The effect is exhibited as the cooling temperature is lower. 0 ° C or less, preferably 130 ° C or less is good. In the case of FIG. 12 and FIG. 13, it is also possible to remove the hose band 16 or the knocker 17 and take out the inner layer 2. The cooling method is not particularly limited, and may be storage in a freezer, immersion in a low-temperature medium, or the like. In the present embodiment, a method is used in which the repair member 1 is immersed in an anhydrous ethanol solution cooled by adding dry ice. The repair member having a surface temperature of −50 ° C. was taken out of the anhydrous ethanol, the sleeve 3 was removed, and as shown in FIG. 11, near the both ends of the inner layer 2, a water-stop ring 15 was formed. Be attached. This annular body is a ring formed from water-swelled rubber, styrene-butadiene rubber, sponge, or the like, and has an effect of improving the water stopping property. The inner layer fitted with the water stop ring is quickly transported to the required repair point in the pipeline. The pipe K may have unevenness such as a step at the joint.The inner layer is cooled, so the diameter expansion speed is slow and the clearance from the pipe is secured for a long time. It can be easily transported in the pipeline.
さらに、 内層を管路の要補修箇所に搬送後に加熱する。 加熱方法は特に限定さ れるものではなく、 温風、 温水、 光熱等の一般的な手段で構わない。 この時の樹 脂製内層の表面温度は 4 0 °C〜7 0 °Cが好ましい。 内層は加熱されることによ り、 拡径速度を増し、 速く管路内面に密着することができる。 またそれだけでは なく、 常温で放置するよりも、 大きく拡径することがでこるので、 設計上より小 さく縮径することができる。 また、 管路の接合部に生じた段差部に内張りするこ とがあるが、 内層を加熱した方が拡径性がよく、 かつ一時的に若干、 軟化するこ とから、 段差への追従性が優れ、 より高い止水性を確保することができる。 上記実施例のもと、 02 0 0mmのヒューム管を用いて 1 5 mmの段差を作 り、 その補修性能を比較した結果を表 1 に示す。 用いた補修材は長さ 4 0 0 mm、 樹脂製内層 2の肉厚は 5 mmである。 スリ一ブ 3の内径 øは 1 7 0 mmで、 非拘束状態での内層 2の外径は 2 1 0 mmである。 内層 2の材質 は密度 0. 9 2 0の低密度ポリエチレン (LD P E) と密度 0. 9 5 5の高密度 ポリエチレン (HDP E) の 2種類を用いた。 Furthermore, the inner layer is heated after being transported to the required repair location in the pipeline. The heating method is not particularly limited, and may be a general method such as hot air, hot water, or light heat. At this time, the surface temperature of the resin inner layer is preferably 40 ° C to 70 ° C. By heating the inner layer, the diameter expansion speed is increased, and the inner layer can quickly adhere to the inner surface of the pipe. In addition to this, the diameter can be expanded larger than when left at room temperature, so that the diameter can be reduced to be smaller than designed. In addition, the inner layer may be lined to the step formed at the joint of the pipeline, but heating the inner layer improves the expandability and softens temporarily. Therefore, the ability to follow steps is excellent, and higher water stopping performance can be secured. Based on the above example, a 15 mm step was made using a 200 mm fume tube, and the results of comparison of the repair performance are shown in Table 1. The repair material used was 400 mm long, and the thickness of the resin inner layer 2 was 5 mm. The inner diameter ø of the sleeve 3 is 170 mm, and the outer diameter of the inner layer 2 in an unconstrained state is 210 mm. The inner layer 2 was made of two types, low-density polyethylene (LDPE) with a density of 0.920 and high-density polyethylene (HDPE) with a density of 0.955.
補修性能の評価項目は、 搬送性と耐外水圧である。 搬送性については段差部を 内層 2が通過できるかどうか、 耐外水圧については、 段差部に内層を設置し、 1 時間後の耐え得る外水圧を測定したものである。 内層には、 厚さ l mmの止水環 状体 1 5が装着されている。 表 1 The evaluation items for repair performance are transportability and external water pressure resistance. Regarding the transportability, whether the inner layer 2 can pass through the step is measured. Regarding the external water pressure resistance, the external water pressure that can withstand one hour after the inner layer is installed at the step is measured. On the inner layer, a water-stop ring 15 having a thickness of l mm is mounted. table 1
Figure imgf000019_0001
Figure imgf000019_0001
冷却 : 表面温度一 5 0 、 1 5分間保持  Cooling: Surface temperature-50, hold for 15 minutes
加熱 : 表面温度 5 0°C、 5分間保持 発明の効果  Heating: Surface temperature 50 ° C, hold for 5 minutes Effect of the invention
以上説明した本発明の管路の内面補修用部材及び内面補修工法によれば、 工場 で生産した内面補修用部材を現場へ運び、 そのまま管路内の要補修箇所まで運び 込み、 次いで縮径を解除するだけで、 補修作業が完了し、 常に均一で十分な補修 効果も得られることから、 施工期間の短縮、 施工費の低減、 長期にわたる安定し た止水機能が図れるという効果が得られる。 According to the inner surface repair member and inner surface repair method of the present invention described above, the inner surface repair member produced at the factory is transported to the site and directly transported to the repair location in the pipeline. The repair work is completed simply by removing the diameter and then reducing the diameter, and a uniform and sufficient repair effect can be obtained at all times. The effect is obtained.
また、 管路内に搬送される直前に、 その拡径を阻止している外層を除去された 内層のみが管路内に導入されるようにした場合には、 要補修箇所までの内層の搬 送の際、 管路とのクリアランスが大きくとれ、 管路内での搬送が支障なく迅速に おこなわれ、 特に搬入前または搬入中に内層を冷却することにより、 外層を除去 しても、 冷却された内層の拡径動作は緩慢となり、 管路内の要補修箇所までの搬 送時に管路内周面との間のクリアランスは長時間保持され、 遠隔箇所までの搬送 作業も効率よく円滑に行うことができる。  If only the inner layer from which the outer layer preventing the expansion has been removed is introduced into the pipeline just before being transported into the pipeline, the inner layer is transported to the repair-required point. When transporting, the clearance with the pipeline is large, and the transport in the pipeline is performed quickly without any trouble.Especially, even if the outer layer is removed by cooling the inner layer before or during loading, even if the outer layer is removed, it is cooled. The inner layer expands slowly, and the clearance between the pipe and the inner peripheral surface of the pipe is maintained for a long time when the pipe is transported to the repair location in the pipeline, and the transport work to remote locations can be performed efficiently and smoothly. be able to.
さらに、 補修用部材を管路内の要補修箇所に搬送後、 加熱することにより弾性 体の拡径速度が速くなるために、 補修完了までに要する作業時間を短縮すること ができるとともに残留する内部応力により止水性能を長期間維持することが可能 となる。  In addition, after the repair member is transported to the repair location in the pipeline and heated, the expansion speed of the elastic body is increased, so that the work time required to complete the repair can be shortened and the remaining internal It is possible to maintain the water stopping performance for a long time due to the stress.

Claims

請 求 の 範 囲 The scope of the claims
1. 少なくとも 2層の筒体から構成され、 その内層は、 内部応力が極小となる非 拘束状態で、 補修しょうとする管路の内径よりも大きな外径を有する弾性体から なり、 外層は、 前記管路の内径よりも小さな外径を有する筒体からなり、 前記内 層は外層に機械的強制力により拡径を阻止された状態で保持されており、 また前 記内層は前記管路の軸に対して直交方向の断面の形状が、 前記管路の内周の輪郭 形状とほぼ相似形であることを特徴とする、 管路の補修用部材。 1. It is composed of at least two layers of cylinders. The inner layer is made of an elastic body having an outer diameter larger than the inner diameter of the pipe to be repaired in an unconstrained state where the internal stress is minimal. A cylindrical body having an outer diameter smaller than the inner diameter of the pipe, wherein the inner layer is held by the outer layer in a state where the diameter is prevented from being expanded by a mechanical forcing force; A member for repairing a pipeline, wherein a shape of a cross section in a direction perpendicular to an axis is substantially similar to a contour shape of an inner circumference of the pipeline.
2. 少なくとも 2層の筒体から構成され、 その内層が単独で存在するときの外径 寸法を d l、 2層状態における内層の外径寸法を d 2、 外層の外径寸法を d 3、 補修完了後における補修用部材を構成する内層の外径寸法を d 4、 管路の内径を Dとすると、  2. It consists of at least two layers of cylinders, the outer diameter when the inner layer exists alone is dl, the outer diameter of the inner layer in a two-layer state is d2, and the outer diameter of the outer layer is d3, repair Assuming that the outer diameter of the inner layer constituting the repair member after completion is d 4 and the inner diameter of the pipeline is D,
d2<d3<d4=D<d l  d2 <d3 <d4 = D <d l
の関係があり、 かつ Relationship, and
d 2/D= 0. 5〜0. 93、  d 2 / D = 0.5 to 0.93,
d 3/D= 0. 6〜0. 95、  d 3 / D = 0.6 to 0.95,
d 1/D= 1. 01〜1. 2、  d 1 / D = 1.01 to 1.2,
D=50〜800 mm  D = 50-800 mm
であることを特徴とする、 管路の補修用部材。 A member for repairing a pipeline.
3. 内層の主材料がポリエチレンあるいは架橋されたポリエチレンであり、 外層 が、 防食処理を施した鉄、 あるいはステンレス製のスリーブあるいはアルミ合金 製のスリーブであることを特徴とする、 請求項 1または 2項に記載の補修用部 材。  3. The main material of the inner layer is polyethylene or cross-linked polyethylene, and the outer layer is an anticorrosion-treated iron or stainless steel sleeve or an aluminum alloy sleeve. Repair parts described in section.
4. 外層が紙を主材料とすることを特徴とする、 請求項 1または 2項に記載の補 修用部材。  4. The repair member according to claim 1, wherein the outer layer is mainly made of paper.
5. 弾性材料製内層が樹脂製であり、 この樹脂が密度 0. 890〜0. 950の ポリエチレンあるいは架橋ポリエチレンを主成分とすることを特徴とする、 請求 項 1〜 3のいずれか 1つに記載の補修用部材。  5. The inner layer made of an elastic material is made of a resin, and the resin is mainly made of polyethylene or crosslinked polyethylene having a density of 0.890 to 0.950, according to any one of claims 1 to 3, The repair member as described.
6. 内層の端部付近に止水環状体が嵌着されていることを特徴とする、 請求項 1 〜 5項のいずれか 1つに記載の補修用部材。 6. A water-blocking annular body is fitted near an end of the inner layer. The repair member according to any one of Items 5 to 5.
7 . 止水環状体の主材料がスチレンブタジエンゴムあるいは多孔性プラスチック であることを特徴とする、 請求項 1〜 6項のいずれか 1つに記載の補修用部材。 7. The repair member according to any one of claims 1 to 6, wherein a main material of the water-stop ring is styrene-butadiene rubber or porous plastic.
8. 内層の端部に軸線方向外方へ向って拡がっている斜面が設けてあることを特 徴とする、 請求項 1〜 7項のいずれか 1つに記載の補修用部材。 8. The repair member according to any one of claims 1 to 7, wherein a slope extending outward in the axial direction is provided at an end of the inner layer.
9. 内層と外層との間に潤滑剤が施されていることを特徴とする、 請求項 1〜8 項のいずれか 1つに記載の補修用部材。  9. The repair member according to any one of claims 1 to 8, wherein a lubricant is applied between the inner layer and the outer layer.
1 0. スリーブが縦方向に分割された横断面が半円状の 2つの部分より成ってお り、 これら半円状部分の一方の突き合わせ端縁がヒンジ結合され、 また他方の突 き合わせ端縁部には、 それぞれ外周面に沿って折り返された舌片が設けてあり、 またスリーブが、 前記両折り返し舌片の縁部に対してスリーブの軸線方向に滑動 可能に係合している係合縁部を具備している弧状結合片を有していることを特徴 とする、 請求項 3に記載の補修用部材。  10 0. The sleeve is composed of two parts with a semi-circular cross section, which is divided in the vertical direction. One butt edge of these semi-circular parts is hinged, and the other butt edge. Each of the edges is provided with a tongue folded back along the outer peripheral surface, and the sleeve is engaged with the edges of the two folded tongues slidably in the axial direction of the sleeve. 4. The repair member according to claim 3, wherein the repair member has an arc-shaped connecting piece having an edge.
1 1 . 管路用の筒状補修用部材の軸方向の長さを L、 その厚さを T、 補修しょう とする管路の内径寸法を Dとするとき、  1 1. When the axial length of the tubular repair member for pipeline is L, its thickness is T, and the inner diameter of the pipeline to be repaired is D,
L/D = 0. 1 2 - 1 0  L / D = 0.12-1 0
T/D = 0. 0 1〜0. 0 9  T / D = 0.01 to 0.09
である自発的拡径変形可能の補修用部材を使用し、 非拘束状態での径 d 1が d 1 > Dである補修用部材を縮径させて、 縮径後の外径 d 2が d 2 < Dとなるように し、 縮径状態を保持しつつ補修用部材を管路内の要補修箇所へ搬送し、 その箇所で縮径状態の保持を解除し、 補修用部材の自発的拡径変形を生ぜしめ、 管路体の内周面に密着させることを特徴とする、 管路の内面補修工法。 Using a repair member that is capable of spontaneously expanding and deforming, the repair member whose diameter d 1 in the unconstrained state is d 1> D is reduced in diameter, and the outer diameter d 2 after reducing the diameter is d 2 <D, while maintaining the reduced diameter state, transport the repairing member to the required repair location in the pipeline, release the reduced diameter state at that point, and spontaneously expand the repairing member. A method of repairing the inner surface of a pipe, characterized by causing radial deformation and bringing it into close contact with the inner peripheral surface of the pipe body.
1 2. 少なくとも 2層の筒体から構成され、 その内層は、 内部応力が極小となる 非拘束状態で、 補修しょうとする管路の内径よりも大きな外径を有する弾性体か らなり、 外層は、 前記管路の内径よりも小さな外径を有する筒体からなり、 前記 内層は外層に機械的強制力により拡径を阻止された状態で保持されており、 また 前記内層は前記管路の軸に対して直交方向の断面が、 前記管路の内周とほぼ相似 形である請求項 1〜9に記載の補修材を使用し、 この補修材を管路体内の要補修 箇所へ搬送し、 その箇所で外層のみを取り去り、 内層を構成する弾性体の、 その 内部応力が小さくなる方向での、 自発的拡径変形を生ぜしめ、 管路の内周面に密 着させ、 残留歪みが残った状態で内面補修を完了することを特徴とする、 管路の 内面補修工法。 1 2. It is composed of at least two layers of cylinders. The inner layer is made of an elastic body with an outer diameter larger than the inner diameter of the pipe to be repaired in an unconstrained state where the internal stress is minimized. Comprises a cylindrical body having an outer diameter smaller than the inner diameter of the conduit, wherein the inner layer is held by the outer layer in a state where the diameter is prevented from being increased by a mechanical forcing force, and the inner layer is formed of the conduit. The repair material according to claim 1, wherein a cross section in a direction perpendicular to an axis is substantially similar to an inner circumference of the pipeline, and transports the repair material to a repair location in the pipeline body. At that point, only the outer layer is removed, and the elastic body that constitutes the inner layer is A spontaneous expansion deformation in the direction in which the internal stress is reduced, causing it to adhere to the inner peripheral surface of the pipeline, and completing the inner surface repair with residual strain remaining. Inner surface repair method.
1 3 . 補修用部材の両端を掴んで縮径状態を維持するグリッパーを有すると共 に、 管路内を走行するようになされた車両を使用し、 この車両のグリッパ一によ つて縮径状態の補修用部材の両端を掴み、 縮径を維持しつつ車両を管路内の要補 修箇所へ向けて走行させ、 要補修箇所へ到達後、 補修用部材をグリッパーによる 掴み状態から解放し、 補修部材の自発的拡径変形を生ぜしめることを特徴とす る、 請求項 9に記載の管路の内面補修工法。  13 3. Use a vehicle that has a gripper that grips both ends of the repair member and maintains the reduced diameter state, and uses a vehicle that is designed to run in a pipeline. Grasp both ends of the repairing member and move the vehicle to the required repair point in the pipeline while maintaining the reduced diameter.After reaching the required repairing point, release the repairing member from the gripping state by the gripper. 10. The method for repairing an inner surface of a pipeline according to claim 9, wherein spontaneous radial deformation of the repair member is caused.
1 4. 少なくとも 2層の筒体から構成され、 補修用部材としてのその内層は弾性 材料製であり、 その内部応力が極小となる非拘束状態では、 補修しょうとする管 路の内径よりも大きな外径を有し、 外層は前記管路の内径よりも小さな内径を有 し、 前記内層は外層に機械的強制力により拡径を阻止された状態で保持されてお り、 また前記内層は前記管路の軸に対して垂直方向の断面形状が、 前記管路の内 周の輪郭形状とほぼ相似形である請求項 1 - 9に記載の補修用部材を使用し、 外 層を除去した後、 補修用部材としての内層のみを管路内に挿入し、 管路の要補修 箇所まで搬送、 設置し、 内部応力が小さくなる方向での自発的拡径変形を生ぜし め、 管路の内面に密着させ、 残留歪みが残った状態で内面補修を完了することを 特徴とする管路の内面補修工法。  1 4. It consists of at least two layers of cylinders, and its inner layer as a repair member is made of an elastic material. In the unconstrained state where its internal stress is minimized, it is larger than the inner diameter of the pipe to be repaired. An outer layer having an inner diameter smaller than an inner diameter of the conduit, the inner layer being held by the outer layer in a state where the diameter is prevented from being increased by a mechanical forcing force, and 10. The repair member according to claim 1, wherein a cross-sectional shape in a direction perpendicular to an axis of the pipeline is substantially similar to a contour shape of an inner periphery of the pipeline, after removing an outer layer. Inserting only the inner layer as a repair member into the pipeline, transporting and installing it to the required repair point in the pipeline, causing spontaneous expansion deformation in the direction where the internal stress becomes smaller, the inner surface of the pipeline The inner surface repair is completed with residual strain remaining The inner surface repair method of the conduit.
1 5. 外層を除去する前に補修用部材を冷却することを特徴とする請求項 1 4に 記載の内面補修工法。  15. The method for repairing an inner surface according to claim 14, wherein the repair member is cooled before removing the outer layer.
1 6. 外層除去後も、 引き続き、 搬送し終るまでの間、 内層を冷却することを特 徴とする、 請求項 1 4または 1 5に記載の内面補修工法。  1 6. The inner surface repair method according to claim 14 or 15, characterized in that the inner layer is cooled after the outer layer is removed until the transport is completed.
1 7 . 内層を管路の要補修箇所に搬送後、 加熱することを特徴とする、 請求項 1 2または 4〜1 6項のいずれか 1つに記載の内面補修工法。  17. The method for repairing an inner surface according to any one of claims 12 or 4, wherein the inner layer is heated after being transported to a repair-required portion of the pipeline.
PCT/JP1997/004724 1997-12-19 1997-12-19 Inner surface repair material for pipeline and inner surface repairing method WO1999032819A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU39099/99A AU3909999A (en) 1997-12-19 1997-12-19 Inner surface repair material for pipeline and inner surface repairing method
PCT/JP1997/004724 WO1999032819A1 (en) 1997-12-19 1997-12-19 Inner surface repair material for pipeline and inner surface repairing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/004724 WO1999032819A1 (en) 1997-12-19 1997-12-19 Inner surface repair material for pipeline and inner surface repairing method

Publications (1)

Publication Number Publication Date
WO1999032819A1 true WO1999032819A1 (en) 1999-07-01

Family

ID=14181706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004724 WO1999032819A1 (en) 1997-12-19 1997-12-19 Inner surface repair material for pipeline and inner surface repairing method

Country Status (2)

Country Link
AU (1) AU3909999A (en)
WO (1) WO1999032819A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE287819T1 (en) * 2002-07-10 2005-02-15 Solideal Holding Sa TRACKER BELT FOR MOTOR VEHICLES

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459228A (en) * 1990-06-28 1992-02-26 Sumitomo Metal Ind Ltd Inner lining method using polyolefin resin pipe
JPH079539A (en) * 1993-06-23 1995-01-13 Sekisui Chem Co Ltd Manufacture of synthetic resin pipe
JPH0716929A (en) * 1993-07-06 1995-01-20 Sumitomo Metal Ind Ltd Reduced diameter polyolefin resin tube and its application
JPH0777289A (en) * 1993-06-30 1995-03-20 Osaka Gas Co Ltd Tube insertion method
JPH0857956A (en) * 1994-08-17 1996-03-05 Toa Gurauto Kogyo Kk Recycling method for existing conduit and recycled conduit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459228A (en) * 1990-06-28 1992-02-26 Sumitomo Metal Ind Ltd Inner lining method using polyolefin resin pipe
JPH079539A (en) * 1993-06-23 1995-01-13 Sekisui Chem Co Ltd Manufacture of synthetic resin pipe
JPH0777289A (en) * 1993-06-30 1995-03-20 Osaka Gas Co Ltd Tube insertion method
JPH0716929A (en) * 1993-07-06 1995-01-20 Sumitomo Metal Ind Ltd Reduced diameter polyolefin resin tube and its application
JPH0857956A (en) * 1994-08-17 1996-03-05 Toa Gurauto Kogyo Kk Recycling method for existing conduit and recycled conduit

Also Published As

Publication number Publication date
AU3909999A (en) 1999-07-12

Similar Documents

Publication Publication Date Title
US6612340B1 (en) Turnback protection for installation of cured in place liners
US6167913B1 (en) Pipe liner, a liner product and methods for forming and installing the liner
US7896032B2 (en) Method and device for lining pipe
US5855729A (en) Apparatus for providing a tubular material within a pipeline
US5964249A (en) Apparatus and method for repairing a pipeline
KR102261120B1 (en) Repair tube expansion device for repair of underground pipes, repairing device including thereof and repairing method thereof
US8550121B2 (en) Method and apparatus for lining a pipe
WO1997017565A1 (en) Method and apparatus for lining a conduit
WO1991007619A1 (en) Thermoplastic saddle in two parts for repairing or renovating a pipeline with branch pipe and repaired or renovated pipe with a saddle
US6682668B1 (en) Installation of cured in place liners with an endless reusable inflation bladder and installation apparatus
US6382876B2 (en) Method of repairing or reinforcing worn-out underground burried drainpipes by resin transfer molding process using both flexible tubes and bagging films
US20090194183A1 (en) Bladder and method for cured-in-place pipe lining
US10295104B2 (en) Pipe liner and method of using the same
WO1999032819A1 (en) Inner surface repair material for pipeline and inner surface repairing method
JP4909795B2 (en) Pipeline rehabilitation method
JPH106401A (en) Inner surface repair member for tubular body and inner surface repair method
EP1210544B1 (en) A pipe liner, a liner product and methods for forming and installing the liner
EP0101712A1 (en) COATING SHEATH FOR REPAIR OR MANUFACTURE OF A TRANSPORT PIPE.
JP5066288B2 (en) Line rehabilitation liner
JP3400955B2 (en) Existing pipe rehabilitation pipe and existing pipe rehabilitation repair method
JP2000161585A (en) Pipe lining method
JP4625165B2 (en) Rehabilitation method for connecting pipe connections of sewer pipes
FI125956B (en) Branch piece to be used in pipe cleaning and method for cleaning a branch point in a pipe arrangement
JPH11182776A (en) Pipe line inner surface repair method and repair members used in this method
JP2000094522A (en) Method for lining inside of pipe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT AU, CA, CN, SG)

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase