[go: up one dir, main page]

WO1999038984A1 - Procede de production de peptide au moyen d'un peptide accessoire - Google Patents

Procede de production de peptide au moyen d'un peptide accessoire Download PDF

Info

Publication number
WO1999038984A1
WO1999038984A1 PCT/JP1999/000406 JP9900406W WO9938984A1 WO 1999038984 A1 WO1999038984 A1 WO 1999038984A1 JP 9900406 W JP9900406 W JP 9900406W WO 9938984 A1 WO9938984 A1 WO 9938984A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
glp
added
auxiliary
target peptide
Prior art date
Application number
PCT/JP1999/000406
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Ohsuye
Masayuki Yabuta
Yuji Suzuki
Original Assignee
Suntory Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Limited filed Critical Suntory Limited
Priority to NZ338004A priority Critical patent/NZ338004A/en
Priority to DE69937272T priority patent/DE69937272T2/de
Priority to IL132030A priority patent/IL132030A/en
Priority to AU21857/99A priority patent/AU765206B2/en
Priority to KR1019997008935A priority patent/KR100627590B1/ko
Priority to DK99901926T priority patent/DK0978565T3/da
Priority to EP99901926A priority patent/EP0978565B1/en
Priority to JP53918299A priority patent/JP4331270B2/ja
Priority to CA002284847A priority patent/CA2284847A1/en
Publication of WO1999038984A1 publication Critical patent/WO1999038984A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • C07K2319/75Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor containing a fusion for activation of a cell surface receptor, e.g. thrombopoeitin, NPY and other peptide hormones

Definitions

  • the present invention relates to a method for producing a peptide using a genetic recombination technique.
  • bioactive peptides have been produced using microorganisms and animal cells as hosts by using genetic recombination technology.
  • the method for producing the target peptide is to secrete it extracellularly, to express the target peptide in the cell from the N-terminus, a so-called direct expression method, or to use the N-terminus of the target peptide.
  • Methods for expressing a fusion protein in which a protective peptide is added to the C-terminus are known.
  • the target peptide is expressed inside and outside the cell by the above-mentioned methods, etc., undergoes chemical or enzymatic cleavage or modification to produce the target peptide, is purified by a purification process, and is purified.
  • the method of obtaining is performed.
  • the above fusion protein expression method is used to avoid degradation by proteolytic enzymes present in cells.
  • the cells are expressed in the cell.
  • a method has been used in which a target peptide is cleaved from a fusion protein by a chemical or enzymatic method, and the target peptide is isolated and purified through one step of precipitation or chromatography.
  • peptides with a C-terminal amidation such as calcitonin
  • a target peptide a peptide in which glycine is added to the C-terminal portion of the amino acid sequence of the peptide is expressed as a part of the fusion protein, and is expressed by a protease.
  • an amidolytic enzyme which is a modifying enzyme, is acted on to produce the amido-encapsulated peptide, which is then subjected to a purification process. Chemical peptides are produced.
  • the target peptide is human glucagon-like peptide 1 (Glucagon-shi ike Peptide-1 ⁇ Bel l GI, etc. ⁇ Nature, Vol. 304, p36 8-371, 1983; hereafter, GLP-1 And GLP-1 derivatives having an insulin release promoting activity (hereinafter referred to as GLP-1 derivatives).
  • GLP-1 is a peptide consisting of 37 amino acid residues derived from prebuc glucagon, GLP-1 in which preproglucagon has been processed and the N-terminal 6 amino acid of GLP-1 has been deleted.
  • GLP 1 was modified to a mi de of (7- 36) NH 2 is biosynthesized (Moj sow, S. like J. Invest. Vol. 79, p616_619, 1987).
  • These peptide hormones act on the beta cells of the kidney and promote the secretion of insulin, etc. (Gutniak MK, et al., New England Medicine, Vol. 326, pl316-1322, 1992; Nathan DM, et al. Diabetes Care, Vol. 15, P270-275, 1992).
  • the peptide is produced by a fusion protein expression method using Escherichia coli or the like as a host based on the above-mentioned conventional techniques.
  • GLP-1 (7-37) is chemically or enzymatically added to the GLP-1 (7-37) at the N-terminal or C-terminal site from the fusion protein. It is expressed as a fusion protein to which a protective peptide is added via a cleavage site region for excision, and then manufactured by chemically or enzymatically excising GLP-1 (7-37) from the fusion protein. be able to.
  • GLP-1 (7-36) NH 2 it can be produced by adding a modification reaction step to the above steps. That is, GLP-1 (7-37) is expressed as a fusion protein as described above as a substrate for the amidating enzyme for the amidating modification reaction (in this case, GLP-1 (7 - 37) can and this regarded as GLP- 1 (7- 36) prepared in Matthew peptide of NH 2), then, from chemically or enzymatically fusion protein GLP 1 (7 - cut out 37) The desired GLP-1 (7-36) NH 2 can be produced by subjecting the obtained GLP-1 (7-37) to an amidation modification reaction using an amidase.
  • the protective peptide and GLP-1 (7-37) can be used in a usual manner.
  • GLP-K7-37) gelled or aggregated during purification. Easy recovery may cause an extreme decrease in recovery rate or problems in the manufacturing process due to physicochemical properties when resin regeneration becomes impossible
  • GLP-1 (7-36) NH 2 which is an amidated peptide
  • GLP-1 (7-36) NH 2 produced by precipitation of GLP-1 (7-37) is also co-precipitated, and the enzyme reaction may not proceed sufficiently. Occurs.
  • GLP-1 (7-36) is also a peptide that undergoes aggregation in the column process during processing (handling) and is liable to gel in the column, which poses a problem in purification. May occur. That is, the GLP-1 derivative may have a problem in production due to the physicochemical properties described above.
  • the present invention relates to a problem that arises due to the physicochemical properties of the target peptide itself when efficiently producing the target peptide by using a genetic recombination technique on an industrial scale (for example, the peptide concerned).
  • a genetic recombination technique on an industrial scale for example, the peptide concerned.
  • the target peptide according to the present invention means not only the peptide finally obtained, but also a production intermediate peptide required in the production process.
  • the method for producing a peptide according to the present invention is a method for producing a peptide having a desired biological activity, comprising the following steps:
  • Step (1) encoding the target peptide to which the auxiliary peptide is added or the fusion protein to which the protective peptide is further added to the target peptide to which the auxiliary peptide is added Culturing cells transformed by an expression vector having a nucleotide sequence, and collecting the target peptide to which the auxiliary peptide is added or the fusion protein from the culture; Step (2); Step When the fusion protein is obtained in (1), the target peptide to which the auxiliary peptide is added and the protective peptide are cut and separated from the fusion protein, and further purified if necessary;
  • Step (3) when the target peptide requires modification, a step of subjecting the target peptide to which the auxiliary peptide obtained in step (1) or step (2) has been added to a modification reaction;
  • Step (4) obtained in step (1), step (2) or step (3) A step of cleaving and separating the auxiliary peptide and the target peptide from the target peptide to which the auxiliary peptide has been added, and further purifying, if desired; and the steps (5) and (4)
  • This production method comprises a step of purifying the peptide (FIG. 1).
  • Figure 1 shows an outline of a method for producing a target peptide using an auxiliary peptide.
  • FIG. 2 shows a method for producing PG117S4HR6GLP-1.
  • FIG. 3 is a diagram showing a method for producing pGP117S4HompRHKR.
  • FIG. 4 is a diagram showing a method for producing pGP117S4HompRHPR.
  • FIG. 5 is a diagram showing a method for producing pGP97ompPR.
  • FIG. 6 is a diagram showing the oligonucleotides and primers used for the production of pGP97ompPR.
  • FIG. 7 shows the amino acid sequence of the fusion protein (GP97onipPR) encoded by pGP97ompPR.
  • the underlined part indicates the amino acid sequence derived from GLP-1 (7-37), and the double underlined part indicates the sequence of the auxiliary peptide. Indicates the cleavage site by E. coli OmpT protease, and the arrow after the double underline indicates the cleavage site by Kex2 protease.
  • FIG. 8 is a diagram showing the DNA base sequence of the fusion protein (GP97ompPR) encoded by pG97ompPR.
  • the fusion protein corresponding to GLP-1 (7-37) corresponds to nucleotides A to 462 at nucleotides A to 462. This is the area to code.
  • lac P0 represents the promoter / operator region of the E. coli lactosoperon.
  • Figure 9 is an electropherogram showing the cultivation of the producing bacteria and the expression of the fusion protein (GP97ompPR).
  • the SDS-polyacrylamide gel gel sample of samples a to e at the time of sampling is shown in the figure.
  • the results of the electrophoresis are shown.
  • Figure The arrow in the middle indicates the band of the fusion protein.
  • FIG. 10 shows the results of analyzing the cleavage of the fusion protein (GP97ompPR) using Escherichia coli OmpT protease endogenous to the inclusion bodies.
  • FIG. 11 shows the amino acid sequence of the fusion protein encoded in PG117S4HR6GLP-1.
  • the underlined portion indicates the amino acid sequence derived from GLP-1 (7-37), and the double underlined portion indicates the amino acid sequence derived from the auxiliary peptide.
  • FIG. 12 is a diagram showing an amino acid sequence of a fusion protein encoded in pGP117S4HompRHKR.
  • the underlined portion indicates the amino acid sequence derived from GLP-1 (7-37), and the double underlined portion indicates the amino acid sequence derived from the auxiliary peptide.
  • FIG. 13 is a diagram showing the amino acid sequence of the fusion protein encoded in pGP117S4HompRHPR.
  • the underlined portion indicates the amino acid sequence derived from GLP-1 (7-37), and the double underlined portion indicates the amino acid sequence derived from the auxiliary peptide.
  • Fig. 14 shows the elution pattern of RHHGP [G] from SP Sepharose Big Beads, where the elution start position is indicated by and the pooled fraction is indicated. Absorbance was measured at 280 nm.
  • Figure 15 shows the analysis pattern of each purification step in the excision step of GLP-1 (7-37) by Kex2 protease from RHHGP [G], where A shows cleavage by Kex2 protease. Before, B shows cleavage after Kex2 protease, C shows reverse phase pool after PorosR2, 1 shows RHHGP [G], and 2 shows GLP-1 (7-37).
  • Figure 16 shows the pH dependence of the amidation reaction of RHHGP CG].
  • Figure 17 shows the time course of the conversion of RHHGP [G] to RHHGP-1 in the amidation reaction. Is the figure measured by ion exchange HPLC, and 1 is RHHGP [G] and 2 indicates RHHGP-1. Absorbance was measured at 280 mn. The analysis conditions are as follows.
  • FIG. 18 is a diagram showing the pH dependence of the Kex2 protease processing reaction using RHHGP-1 as a substrate.
  • FIG. 19 is a diagram showing an elution pattern and a formed pH gradient in purification of GLP-1 (7-36) NH 2 by Macrobure- / High-S. Absorbance was measured at 28 Onm.
  • Figure 20 shows the removal of impurities by Macroprep High-S.
  • A shows the sample loaded on the column
  • B shows the analytical HPLC pattern after elution
  • 1 shows the GLP- 1 represents (7-37)
  • 2 represents GLP-1 (7-36) NH 2 .
  • Absorbance was measured at 280 nm.
  • FIG. 1 shows the first cleavage with OmpT, via the second disconnected by Kex2 protease Ichize, GLP- 1 (7 - 36) at the time of manufacture NH 2, analytical HPLC pattern of each purification step preparation
  • FIG. A shows the reverse phase HPLC pattern after OmpT reaction
  • B shows the result after SP Sephas
  • C shows the result after Kex2 reaction
  • D shows the reverse phase HPLC pattern after Mac ⁇ pre '/ p High-S
  • 2 is a protective peptide
  • the 4 RHHGP- 1 5 denotes a GLP- 1 (7-36) NH 2.
  • Absorbance was measured at 280 nm.
  • the analysis conditions are as follows.
  • RHHGPtG RHHGP- 1
  • GLP- 1 (7- 37) GLP - 1 (7 - 36) is a diagram showing a p H-dependent NH 2 dissolved Kaido.
  • FIG. 23 shows the effect of Tween 80 on inhibiting the aggregation of RHHGP [G], RHHGP-1 and GLP-1 (7-36) NH 2 , wherein A is the RHHGP [G] and RHHGP- 1 indicates aggregation inhibition, and B indicates inhibition of GLP-1 (7-36) NH 2 aggregation by Tween 80.
  • FIG. 24 is a graph showing the effect of NaCl and temperature on suppressing the aggregation of GLP-1 (7-36) NH 2 , wherein C represents the inhibition of GLP-1 [G] aggregation by NaCl, and D represents the GLP- Shows 1 (7-36) NH 2 aggregation suppression.
  • the auxiliary peptide according to the present invention is a peptide used for avoiding industrial production problems derived from the physicochemical properties of the target peptide itself.
  • problems related to chemical or enzymatic reaction and purification in the manufacturing process of the peptide such as various cleavage and modification
  • Particular attention is paid to the solubility and gelation of the target peptide under the reaction conditions, as well as to the sample concentration applied to the column in one column chromatography, elution conditions from the column, and stability after elution.
  • the auxiliary peptide can be appropriately prepared depending on the physicochemical properties of the target peptide.
  • the isoelectric point of the target peptide is neutral to weakly acidic, and the The optimum pH is neutral to weakly acidic. If the solubility of the target peptide is too low under such pH, it is desirable to design the auxiliary peptide so that the isoelectric point (pi) of the target peptide to which the auxiliary peptide is added is 8 to 12, and it should be designed to 9 to 11 Is preferred.
  • the auxiliary peptide may be added to the N-terminal or C-terminal of the target peptide).
  • the size (length) of the auxiliary peptide is preferably one having 5 to 50 amino acid residues, more preferably 5 to 30 amino acid residues or less. However, it contains at least one or more basic amino acids or acidic amino acids.
  • the target peptide that can be produced by the present invention is not particularly limited, but in addition to the above-mentioned GLP-1 derivative, a peptide having an amino acid sequence of 200 amino acid residues or less. It is suitable for the production method.
  • peptides include: Adrenocortic otropic hormone, Adrenomedullin, Amylin, Angiotensin I , Angiotensin II, Angiotensin III, A-type Natriuretic Peptide, B-type Natriuretic Peptide, B-type type Natriuretic Peptide), Bradykinin, Big Gastrin, Calcitonin, Canolecitrinin Seki; ii peptide (Calcitonin gene related peptide), Cholecystokinin, Conorechicot mouth Releasing Factor, Conoretistin, C-type sodium diuresis Peptides (C-type Natriuretic Peptide), Defesin 1, Der Sleep.
  • Platelet Factor -4 Peptide T, Secretin, Serum Thymic Factor, Somatostatin, Substance P (Substance P), Thyrotropin Releasing Hormone W
  • GLP-1 derivatives include GLP-K7-37) and GLP-1 (7-
  • a GLP-1 derivative having an isoelectric point of 4.5 to 9.0 is desirable.
  • it is a GLP-1 derivative having an isoelectric point of 5.5 to 7.5.
  • GLP-1 derivative As specific examples of the GLP-1 derivative, the following can be mentioned as examples in addition to those described in Examples of the present invention.
  • GLP-K7-34 • GLP-K7-34), GLP- K7-35), GLP- 1 (7- 36), GLP-1 (7-34) NH 2, GLP- 1 (7- 35) NH 2 and GLP 1 ( 7-37) NH 2 ,
  • GLP-1 (7-37)-Arg GLP-1 (7-37)-Arg, GLP-1 (7-37)-Arg-Arg, GLP-1 (7-37) Lys, GLP-K7-37)-Lys-Lys, GLP-1 (7-37) -Lys-Arg and GLP-1 (7-37) -Arg-Lys and their C-terminal amides,
  • Lys an amino acid at position 26 of GLP-1, is substituted with Arg
  • Lys an amino acid at position 34, is substituted with Arg
  • Ar an amino acid at position 36, is further substituted with Arg. was replaced with Lys GLP- 1 (7- 37) and GLP- 1 (7- 36) NH 2 ,
  • GLP-1 (7-37) is an example of a target peptide, which solves problems in the purification process, such as gelation and solubility caused by GLP-1 (7-37).
  • 5.5
  • the purity of the auxiliary peptide and GLP (7-37) can be extremely high and high in one chromatographic step. It is very useful to use an auxiliary peptide in this step, because it will be possible to separate the polypeptide consisting of GLP-1 (7-37).
  • GLP-1 (7-36) NH 2 is given as an example of the target peptide
  • the substance is an amidated peptide
  • its production intermediate is first used as the target peptide.
  • the peptide is GLP-1 (7-37 ). That can be used for the production of GLP- 1 (7- 37) to attach an auxiliary Bae flop Ji De with basic ⁇ Mi Amino Acids GLP- 1 (7-36) NH 2.
  • auxiliary peptide containing a basic amino acid By adding an auxiliary peptide containing a basic amino acid, the isoelectric point of GLP-1 (7-37) can be shifted to the alkaline side, and the subsequent amide conversion During the modification reaction, at the pH of the amidase enzyme reaction solution, the auxiliary peptide was added to GLP-K7-37) to increase the solubility of the peptide, so that precipitation was suppressed and yield and yield were reduced. The yield can be increased.
  • a hydrophilic auxiliary peptide containing a basic amino acid the solubility of the target peptide is increased, and GLP- as a substrate in the amidation modification reaction is further improved. 1 (7- 37), as a product of GLP 1 (7- 36) can avoid agglutination property possessed by NH 2, is a very closed in the purification process after a mi de enzyme reaction .
  • the peptide whose auxiliary peptide is added to GLP-1 (7-37) has an isoelectric point of 8 to 12; By acting on the ion exchange resin, the peptide can be obtained in high yield (98% or more).
  • a cleavage site region that can be cut chemically or enzymatically between the auxiliary peptide and the target peptide is introduced.
  • a cleavage site region with high cutting efficiency is set according to the physicochemical properties of the target peptide.
  • the method described in Methods in ENZYMOLOGY, vol. 185, Gene Expression Technology (edited by David V. Goeddel, publisher ACADEMIC PRESS, INC) can also be used.
  • methionine when methionine is not contained in the amino acid sequence of the target peptide, methionine is introduced at the end of the cleavage site region adjacent to the target peptide, and the cleavage site region is chemically treated by bromocyan treatment. Cutting can be performed.
  • a cleavage site region that can be specifically recognized as a substrate by the enzyme used for the cleavage treatment may be set, and examples thereof include X-Gly and Pro-X-Gly-
  • the sequence between the -X-Gly-system of the Pro-X-Gly-Pro sequence is collagenase (Col lagenase) (Pro Natl. Acad. Sci. USA, Vol. 81, P4692-4696, 1984).
  • the C-terminal end of Lys in (SEQ ID NO: 1) is enterokinase (Enterokinase), and the C-terminal end of Arg in the -Ile-Glu-Gly-Arg- sequence (SEQ ID NO: 2) is a blood coagulation factor Xa ( In blood coagulat ion factor Xa) (JP-A-61-135591), the C-terminal side of Arg in the -Gly-Pro-Arg- sequence was replaced with Thrombin (Thrombin) (JP-A-62-135500).
  • -Trypsin or Clostripain at the C-terminal side of the-and end-protease Arg-C (Nature, Vol.
  • the C-terminal side of poly-Gly was lysostaphin (Japanese Patent Laid-Open No. 1-160496).
  • Examples include a method of cleaving the C-terminal side of Lys-Arg, Arg-Arg, Pro-Arg or the like with Kluverromyces lactis (Japanese Patent Laid-Open No. 1-124390).
  • an amino acid sequence (Lys-Arg, Arg-Arg or Pro-Arg sequence) that can be recognized by Kex2 protease is introduced into a cleavage site region, and the enzyme is used to produce an auxiliary peptide. The target peptide was cut from the target.
  • one or more methionines and triptophores are included in the amino acid sequence of the cleavage site region. It is preferred that phan, proline, glycine, cysteine, arginine, lysine, aspartic acid or glutamic acid be present.
  • a modification reaction for example, an amido-modification reaction with an amido-enzyme
  • a modification reaction for example, amide modification
  • decoration reaction to obtain the final target peptide to which the auxiliary peptide has been added, and then cut the region of the cleavage site between the auxiliary peptide and the final target peptide to thereby obtain the final target peptide.
  • the target peptide to which the auxiliary peptide is added is expressed at a high level, a high-purity target peptide can be obtained in a high yield.However, in order to obtain a larger amount of the target peptide, conventional methods are required. It can also be produced by further adding and expressing a protective peptide as used in the above fusion protein method. That is, it can also be produced by highly expressing in a host cell as a fusion protein in which a protective peptide is further added to a target peptide to which an auxiliary peptide has been added. It may be added to the N-terminus or C-terminus of the target peptide to which the peptide has been added).
  • the protective peptides that can be used in the production method according to the present invention are not particularly limited, and those used in conventional methods can be appropriately modified and used.
  • a fragment having an amino acid sequence related to a monogalactosidase derived from Escherichia coli can be used as a protection peptide.
  • the amino acid sequence of the enzyme is known to those skilled in the art, and the peptide fragment derived from yS-galactosidase is widely used by those skilled in the art as a protective peptide in the fusion protein method. I have.
  • the amino acid sequence of / 3—galactosidase is appropriately modified in consideration of the properties of the target peptide to which the auxiliary peptide is added.
  • the defragment can be used as a protection peptide.
  • the protective peptide or the protective peptide constituting the fusion protein may be used.
  • Auxiliary peptides are added
  • a protective peptide When a protective peptide is added as described above, it is necessary to set a cleavage site region between the target peptide to which the auxiliary peptide is added and the protective peptide, but according to the setting policy described above. It is possible to appropriately set a suitable cutting site region having a high cutting efficiency.
  • a target peptide is obtained from a fusion protein having a protective peptide via a target peptide to which an auxiliary peptide has been added, since multiple cleavage site regions are provided, multi-step cleavage of the fusion protein at each site is performed. You need a way.
  • a cutting process is performed in a cutting site region between the target peptide to which the auxiliary peptide has been added and the protective peptide, and then, a cutting process is performed between the auxiliary peptide and the target peptide.
  • the target peptide can be obtained by performing the cutting process in the cutting site region.
  • Cleavage at each cleavage site region is performed by the same enzyme, but by using a different amino acid sequence for the enzyme recognition site, under the reaction conditions in one cleavage site region, the other is used. Cleavage occurs at the cleavage site region And how to avoid
  • the host cells that can be used in the present invention are not particularly limited, and include prokaryotic or eukaryotic cells already used in conventional methods, such as microbial cells such as Escherichia coli, yeast, and animal cells.
  • the nucleotide sequence encoding the target peptide to which the auxiliary peptide is added can be appropriately selected and used so that it can be more suitably expressed by an expression vector having the sequence.
  • promoter, terminator, splice site, etc. those already known in the conventional method can be appropriately used.
  • target peptide is GLP-1 (7-37) and GLP-1 (7-36) NH 2 in the method for producing the target peptide according to the present invention will be described below.
  • a fusion protein (GP97ompPR) encoded by expression plasmid (GPGP97ompPR) contains a basic peptide region at the N-terminal side of GLP-1 (7-37). It has a peptide to which a peptide is added (hereinafter referred to as HGP [G]), and further protects Escherichia coli / 3-galactosidase derivative (-gal97S) on the N-terminal side of RHHGP [G]. This is the fusion protein that was added. Between the protection peptide and RHHGP [G] and RHHGP [G] A cleavage site region was introduced between the auxiliary peptide and GLP-1 (7-37).
  • Each of the regions is cleaved by Escherichia coli-derived endogenous OmpT protease in one cleavage site region and by Kex2 protease (Japanese Patent No. 2643968, Japanese Patent Application Laid-Open No. Hei 10-229884) in the other cleavage site region. It has an amino acid sequence related to substrate specificity so that it can be cleaved.
  • GP97oinpPR ⁇ -gal 97S or RHHGP [G], which constitutes GP97ompPR, or RHHGP [G] and GP97ompPR itself, in order to enhance the fragment separation ability in one chromatographic step after the cleavage reaction.
  • These isoelectric points are devised and set so as to be different. For example, in the embodiment described later, the isoelectric point of GP97ompPR is set to 5.95, the isoelectric point of ⁇ -gal 97S is set to 4.60, and the isoelectric point of RHHGP [G] is set to 10.09. .
  • Escherichia coli (W3110 / pGP97omp PR) transformed with pGP97ompPR was cultured to express GP97ompPR.
  • GP97ompPR was solubilized with urea, and the protective peptide ⁇ -gal 97S and the auxiliary peptide present in GP97ompPR were detected by the endogenous OmpT protease contained in the inclusion body.
  • the cleavage site region between the added target peptide BH HGP [G] was cut.
  • OmpT protease specifically cleaved the cleavage site region, and the cleavage efficiency was 85%.
  • Kex2 protease was used to cut the cleavage site region between the auxiliary peptide and the target peptide present in RHHGP [G] (1.0 g). The reaction proceeded at a cleavage efficiency of 95% under the reaction conditions according to the Examples described later. The recovery was 90%.
  • the target peptide is GLP-1 (7-36) NH 2
  • an amidation modification reaction is required because the peptide is an amidated peptide.
  • the peptide can be obtained, for example, as follows.
  • RHHGP [G] already obtained as described above was subjected to an amido-modification reaction using an amido-enzyme (BBR Vol.150, P1275-1281, 1988, EP299790A, etc.).
  • an amido-enzyme BBR Vol.150, P1275-1281, 1988, EP299790A, etc.
  • RHHGP [G] as an enzyme substrate and GLP-1 (7-36) NH 2 to which an amidated auxiliary peptide as a reaction product was added were added.
  • No aggregation or gelation of RHHGP-1 hereinafter referred to as RHHGP-1) occurred, producing RHHGP-1 with a high reaction rate of 98% (recovery rate 95%) We were able to.
  • Kex2 protease was used to cut the cleavage site region between the auxiliary peptide and the target peptide present in RHHGP-1. Under the reaction conditions according to the examples described below, the reaction proceeded with a cleavage efficiency of 95% or more (recovery rate 90%).
  • the above-mentioned process is performed by passing through a peptide consisting of GLP-1 (7-37) to which an auxiliary peptide is added.
  • a modifying enzyme such as an amidase. Therefore, in order to try to further examine whether the find utility, RHHGP [G], RHHGP- 1 , GLP- 1 (7- 37) and GLP- 1 (7- 36) NH 2 were purified The pH dependence of the solubility of each peptide was examined.
  • GLP- 1 (7-36) NH 2 in a manufacturing process of manufacturing method using the present invention GLP-1 (7- 36) 10 gram scale purification of NH 2 KoTsuta or stop of each step yield The results are shown in Table 1 (the production bacterium W3110 / pGP97ompPR was cultured in 20 liters, and the equivalent of 8 liters of the culture was used for purification).
  • GLP-1 (7-37) amount from culture to amidoenzyme reaction GLP-1 (7-36) NH from Kex2 process to Poros R2 chromatographic process Shows 2 quantities.
  • the amount of GLP-1 (7-37) / GLP-1 (7-36) NH 2 was determined from the converted value from the HPLC peak area and the number ratio of amino acid.
  • the unit process yield of each process was very high, and the final recovery was very high, about 50%. Therefore, it is clear that the method for producing a peptide according to the present invention is applicable to the production of GLP-l (7-36) NH 2 and that scale-up at an industrial production level is possible.
  • the unit process yields in the step of cleavage treatment with OmpT protease and Kex2 protease are 85% and 90.4%, respectively, the cleavage treatment reaction with enzyme is It was also confirmed that an amino acid sequence that was very suitable for was used.
  • a method for producing a GLP-1 derivative having insulin release accelerating activity is taken as an example, and there is a problem in the production process due to the inherent physicochemical properties of the target peptide. It was demonstrated that the point could be improved by using auxiliary peptides.
  • GLP-K7- 37) and GLP 1 mentioned as an example (7- 36) production according to the physicochemical properties quality possessed by typified by GLP 1 derivative NH 2 problems, according to the present invention It can be overcome by the production method, and it goes without saying that the present invention is also useful in the production of the GLP-1 derivative.
  • the above-mentioned GLP-1 derivative can also be produced by a production method using a fusion protein to which a protective peptide has been added, but the target peptide to which an auxiliary peptide has been added from the fusion protein can be used.
  • the target peptide to which an auxiliary peptide has been added from the fusion protein can be used.
  • Both cleavage sites are cleaved by Kex2 protease, but by modifying the amino acid in one cleavage site region (cleavage site region 2), the other cleavage site region (cleavage site region) is modified.
  • the cleavage at the former cleavage site region (cleavage site region 2) is prevented from occurring, and after the cleavage at the latter cleavage site region (cleavage site region 1),
  • a method comprising purifying a peptide consisting of a peptide and a target peptide and modifying the modified amino acid again to make the former cleavage site region (cleavage site region 2) cleavable with Kex2 protease.
  • the pGP97ompPR expression plasmid which encodes the fusion protein (GP97ompPR) that was designed to produce GLP-K7-37), was prepared through the following four steps.
  • the conditions for restriction enzyme treatment, ligation reaction, phosphorylation of the 5 'end, and PCR were in accordance with conventional methods.
  • R6 synthetic DNA encoding the amino acid sequence R6 (see Fig. 2) having the Arg-Arg sequence, which is the recognition sequence of OmpT protease (Fig. 6) ) was inserted into the Stul site of pG117S4HGP (see JP-A-9-296000) to produce PG117S4HR6GLP-1 (Fig. 2).
  • fragment C a 3.2 kb fragment obtained by digesting pGP117S4HompRHKR with BglII and HindIII, and digesting pGP117S4 HompRHKR with SphI and HindIII.
  • fragment D a 0.2 kb fragment obtained as described above to prepare pGPinS4HompRHPR (FIG. 4).
  • PGP97ompPR was constructed in order to further reduce the size of the protected peptide.
  • the P3 and P4 primers (see FIG. 6) were synthesized, and PCR was performed using pGP117S4HompRHPR as type III to prepare a DNA fragment.
  • pGP117S4HompRHPR was ligated to a 3.2 kb fragment obtained by digestion with PvuII and NsiI to prepare pGP97ompPR.
  • FIG. 7 shows the amino acid sequence of the fusion protein (GP97om pPR) encoded by the prepared plasmid pGP97onipPR
  • FIG. 8 shows the DNA base sequence encoding the amino acid sequence.
  • the culture was homogenized using a mantongoline homogenizer (15M-8TA) under the condition of 500 kg / cm2, and the precipitate fraction (inclusion body) was collected by a centrifuge.
  • M-8TA mantongoline homogenizer
  • an equal amount of deionized water as that of the culture solution was added, and after suspending, centrifugation was performed again to collect the precipitate. This washing operation was repeated once more, and the finally obtained precipitate was suspended in an appropriate amount of deionized water.
  • Figure 10 shows the results of reverse phase HPLC analysis of the exclusion of RHHGP [G] from GP97ompPR.
  • the analysis was performed using a YMC PROTEIN-PR column, and solution A was a 10% acetate solution containing 0.1% trifluoroacetic acid, and solution B was 70% S solution containing 0.095% trifluoroacetic acid.
  • Solution B was added to the solution B for 13 minutes at a flow rate of lml / min using A linear concentration gradient from 70% to 70% was used.
  • 85% of GP97 ompPR was cleaved, and a peak corresponding to KHHGP [G] was obtained in the sample after the reaction (Fig. 21A) c
  • GLP-1 (7-37) The excision of GLP-1 (7-37) to which the auxiliary peptide was added from the fusion protein by cleavage treatment using Escherichia coli OmpT protease was not limited to the fusion protein derived from pGP97ompPR. The same was possible with the fusion proteins derived from pGll7S4HR6GLP-1, pGP117S4HompRHKK and pGP117S4HompRHPR prepared in 1. The amino acid sequences of the fusion proteins derived from these plasmids are shown in FIG. 11, FIG. 12 and FIG.
  • urea and Tween 80 were added to 7 M and 0.1%, respectively, and the pH was adjusted to 8.0 with NaOH. Thereafter, the supernatant was obtained by centrifugation. Columns packed with SP-Sepharose BigBeads (Amersham-Pharmacia Biotechnology) were loaded with 100 mM Tris HC1 (pH 8.0), followed by 20 mM Tris HC1 (pH 8.0) I 5 M urea I 0.1% Tween Equilibrated at 80. Add the supernatant to the equilibrated column, wash with the same equilibration solution, and then add 0.2 M NaCl / 20 mM Tris
  • the cells were washed with HC1 (pH 8.0) I 0.1% Tween 80 and eluted with 0.5 M NaCl / 20 mM Tris HC1 (pH 8.0) I 0.1% Tween 80 (FIG. 14).
  • Example 5 shows that the above results greatly contributed to labor saving in the purification process after this process.
  • Example 5 Extraction and production of GLP-K7-37) from RHHGP [G] RHHGP [G] purified in Example 4 was processed by Kex2 protease using the following reaction solution composition.
  • Reaction solution composition 5.0 mg / ml RHHGPCG], 20 mM Tris HC1, 0.1% Tween 80, 0.3 NaCl, H 8.0, 2.0 mM CaCl 2 , 8000 unit / ml Kex2 protease (about 1.0 mg / L).
  • a reaction rate of 95% was obtained in one hour (FIG. 15—B). During this reaction, precipitation of GLP-K7-37) was not observed.
  • Table 2 shows a comparison between a method for directly cutting out GLP-1 (7-37) from a fusion protein consisting of a protection peptide and a target peptide (see, for example, JP-A-9-296000) and the method of the present invention.
  • A is based on the method of directly cutting out GLP-K7-37) from a fusion protein consisting of a protection peptide and a target peptide.
  • B is based on a method of cutting out GLP-1 (7-37) from a fusion protein in which a protective peptide has been added to a target peptide to which an auxiliary peptide has been added.
  • RHHGP [G] obtained in Example 4 was converted to RHHGP-1 using an amidase.
  • the enzyme concentration was optimized. Separation analysis of RHHGP [G] and RHHGP-1 was carried out using an ion-exchange HPLC column (Poros S / H, Perceptive Biosystems) using a 30 mM Britton-Robinson buffer (excluding Barbitur®). PH gradient elution (6.0-9.0) in the presence of (BR buffer).
  • the optimum pH under the reaction conditions was 5.0 to 5.5 (Fig. 16).
  • the optimal reaction conditions were 1 GmM sodium acetate (pH 5.0), 5.0 M copper sulfate, 0.5 g / 1 L-ascorbic acid, 1 ⁇ I ml force tarase, 5.0 mg I ml RHHG P [G],
  • the enzyme was 1500 unit Iml.
  • Tween 80 (0.1 3 ⁇ 4), which has the aggregation-inhibiting effect found in Example 11 described later, is added to these conditions, and 5 liters of the RHHGP [G] solution is reacted under the above conditions, and EDTA is added. To stop the reaction.
  • RHHGP [G] was converted to RHHGP-1 at a conversion of 98% or more in one hour (Fig. 17).
  • the processing reaction by Kex2 protease shows pH dependence and activity change depending on the sequence of the substrate (EP794255A). Therefore, the pH, the concentration of calcium chloride, and the amount of added enzyme were optimized with a reaction volume of 0.5 ml. In the case of KHHGP-1, the maximum was shown at pH 8.0 (Fig. 18). When RHHGP-1 was used as the substrate, the optimal reaction conditions were 10 mM TrisHC1 (pH 8.0), 1 mM chloride, 8,000 units Iml Kex2 protease, and a reaction temperature of 30 to 32 ° C. . From the results of Example 11 described later, aggregation could be avoided by setting the NaCl concentration in the reaction solution to 0.1 M or more and further adding Tween 80 to the 0.1% reaction solution.
  • the impurity ratio was set to less than 0.5% (FIG. 20). In this step, most of the reagents, unreacted substances and trace impurities added up to Example 7 were removed, and GLP-1 (7-36) NH 2 with a purity of 98% or more was obtained (Fig. 2 1D). The pooled solution was stored at pH 4.5, 4 ° C.
  • Example 8 GLP-1 (7-36) NH 2 having a purity of 98% or more was obtained.
  • the contamination of non-peptide endotoxins must be avoided, as well as the purity of the target peptide. Therefore, we attempted to remove endotoxin and other substances using a preparative reversed-phase HPLC column, which is frequently used for the final purification of peptide drugs, but GLP-1 (7-36) NH 2 Aggregation and Z or gelation could occur. It was predicted that the easy aggregation of GLP-1 (7-36) NH 2 would be a significant risk factor in scaling up.
  • hydrophobic chromatographic resins similar to reversed-phase chromatographic resins, adsorb by utilizing the hydrophobicity of the substance.
  • the density of the functional groups is generally low, and the adsorption capacity is 5-1. 5 mg Zm 1 resin.
  • the types of carriers and the types of functional groups are abundant, and even peptides with high cohesion, such as GLP-1 (7-36) NH 2 , may be selected that give high recovery.
  • a resin consisting of a hydrophilic carrier having a butyl group, an isobutyl group, a hexyl group or a phenyl group, or a polystyrene-based resin represented by Poros R2 was used.
  • the resin was found to be suitable.
  • the maximum adsorption capacity for Poros R2 of the resin showing an example of a (Pas one Seputi Bed Biosystems) GLP- 1 (7- 36) NH 2 is about 1 2 mg / m 1 resin and other hydrophobic chromatographic resins are much higher, and the concentration of GL Pl (7-36) NH 2 during elution is higher, suggesting that it is suitable for lyophilization.
  • the concentration of GL Pl (7-36) NH 2 during elution is higher, suggesting that it is suitable for lyophilization.
  • Example 10 Relaxation of cohesiveness by using auxiliary peptide
  • the physicochemical properties of the target peptide which had been a problem in the conventional production method, were used.
  • One of the objectives is to improve the cohesiveness, which is a property derived from the above, so it is necessary to examine whether or not such improvement has been made. Therefore, in this embodiment, a peptide composed of an auxiliary peptide and GLP-1 (7-37) and a peptide composed of an amide-modified auxiliary peptide and GLP-1 (7-36) NH 2 are used. de of cohesion GLP- 1 (7- 37) and GLP- 1 (7- 36) was examined whether it is improved compared to NH 2.
  • RHHGP [G] was purified and its cohesiveness was improved compared to GLP-1 (7-37). In addition to examining whether it has been improved, a search was made for substances that suppress aggregation.
  • the sample of each peptide was GLP-1 for RHHGPCG], the sample purified by SP-Sepharose BigBe ads chromatography, and RHHGP-1 for the sample purified from RHHGP [G].
  • Kex2 flop port tare the RHHGP [G] was purified about - the sample cut by zero, GLP - 1 (7-36) for NH 2 is RHHGP - 1 was cut by Kex2 protease Ichize sample was purified to a purity of 98% by elution with an acetonitrile gradient using a Poros R2 column, and lyophilized.
  • GLP-1 (7-37) has a low solubility under pH 5.5 to pH 6.5, that is, weakly acidic to neutral pH, which is the optimal pH for the reaction of the enzyme, and is a production intermediate. Is inappropriate.
  • Example 1 Screening of a substance with aggregation suppression
  • GLP-1 (7-36) NH 2 lags behind GLP-1 (7-37) in the test shown in Fig. 22, but precipitates over time in a wide range from pH 5.3 to pH 8.0. Alternatively, it has been found that microcrystals are formed.
  • RHHGPCG RHHGPCG
  • GLP- 1 7- 36 to adjust the 10 mg I ml aqueous solution of NH 2, previously 300 mM BR buffer 0. 1 m 1 (pH7.9), and 0.1 ml of
  • NH 2 was adjusted to pH 6.5 and pH at which aggregation was likely to occur, and turbidity (absorbance at 660 nm) was measured over time.
  • Fig. 2 shows the effect of Tween 80, NaCl and temperature on the suppression of agglutination.
  • RHHGPCG RHHGPCG
  • RHHGP-1 strongly inhibited the formation of precipitates at 0.1 3 ⁇ 4 Tween 80 (Fig. 23 A), while GLP-1 (7-36) NH 2 showed 0.3% or more of Tween 80 (Fig. 23).
  • B) 100 mM NaCl or more (Fig. 24C) and Z or low temperature (Fig.
  • Example 1 Cutting method in the cutting site region
  • Cleavage site region 1 Cyanation / Alkylation
  • Cleavage site region 2 Kex2 protease
  • Cleavage site region 1 Kex2 protease
  • Cleavage site region 2 Kex2 protease
  • Cleavage site region 2 Kex2 protease
  • Cleavage site region 1 DTNB (5, 5'-ditiobis- (2-nitrobenzoic acid)) addition / Kex2 protease
  • Cleavage site region 2 Reduction / Kex2 protease for the purpose base petit de GLP-K7 - 37) and GLP- 1 (7-36) NH 2 and then was examined, in the case of using a fusion protein having a protective base petit de at manufacturing method according to the present invention
  • cleavage by a multi-step cleavage reaction can be performed by chemical or enzymatic treatment.
  • This method is a method of chemically cleaving a cystine residue in one cleavage site region (cleavage site region 1) when the target peptide does not contain cystine.
  • the cysteine residue was subjected to alkali (NaOH) treatment to reduce the cysteine in the cleavage site region. It was confirmed that cleavage was possible specifically at the N-terminal side.
  • PGGRPSRHKR (SEQ ID NO: 6) was selected as an amino acid sequence of the cleavage site region 1 adjacent to the amino acid sequence of GCHHHH (SEQ ID NO: 5) as an auxiliary peptide, Introduced into the fusion protein.
  • the fusion protein was treated at a concentration of 30 mg / ml in 50 mM TrisHC1 (pH 8.2), 5 M urea, 10 mM
  • acetic acid was added to a final concentration of 0.1 M, and CADP was added in an amount of 4 times the molar amount of cystine, followed by reaction at 30 ° C for 1 hour.
  • the remaining SH group was quantified with DTNB to verify the cyanation reaction.
  • cleavage site region 2 was cut in the same manner as in Example 7.
  • each cleavage site region has a Kex2 protease cleavage site region
  • the amino acid sequence of one cleavage site region (cleavage site region 2) is used for cleavage at the other cleavage site region (cleavage site region 1). It was designed to be hardly cleaved under such reaction conditions.
  • the charge on the amino acid residue of the P4 subsite affects the activity of the enzyme. It is known that the fusion protein has a large effect, especially if the acidic amino acid is present in the P4 subsite, the fusion protein is not completely cleaved under certain conditions (Japanese Patent Application Laid-Open No. 9-296000). Using this, for example, the amino acid sequence of cleavage site region 2 adjacent to the amino acid sequence consisting of HRHKRSHHHH (SEQ ID NO: 7) as an auxiliary peptide is converted to SDHKR (SEQ ID NO: 8).
  • This method is almost the same as the method described in B. (2) above, except that if there is no cystine residue in the target peptide, the P4 subsite of one cleavage site region (cleavage site region 2)
  • cleavage site region 2 By modifying the cysteine residue introduced into the cysteine, that is, treating the side chain of cystine with DTNB (dithionitriobenzoic acid), the Kex2 protease cleavage reaction of the other cleavage site region (cleavage site region 1)
  • a peptide consisting of GLP-1 (7-37) to which an auxiliary peptide is added and protected from cleavage is obtained, then reduced, and the cleavage site region 2 is cleaved with Kex2 protease.
  • a modification reaction include sulfonation and asymmetric disulfide formation by DTNB.However, any method may be used as long as a method for imparting a negative charge to the cysteine side chain is used. is not.
  • the amino acid sequence of cleavage site region 2 adjacent to an amino acid sequence consisting of HRHKRSHHHH (SEQ ID NO: 7) as an auxiliary peptide is converted into a fusion protein by using SCHKR (SEQ ID NO: 24) as an amino acid sequence.
  • SCHKR SEQ ID NO: 24
  • the fusion protein designed as described above was expressed, and the obtained fusion protein was subjected to DTNB treatment to make cysteine a non-target disulfide. After confirming that the cystine is completely modified, a cleavage treatment with Kex2 protease is performed to obtain a peptide consisting of GLP-K7-37) with a quantitatively added auxiliary peptide. And confirmed. That is, in the cleavage site region 2, the P4 subsite of the amino acid sequence recognition site of Kex2 protease is used as the cysteine, and a negative charge is specifically introduced into the side chain thereof, whereby the cleavage site is introduced. Cleavage by Kex2 protease for region 1 Sometimes cleavage site region 2 was protected from cleavage.
  • the cleavage site region 2 was performed in a reduced state.
  • the reactivity to Kex2 protease can be changed by performing modification to have a positive charge.
  • a method for efficiently and inexpensively producing a physiologically active peptide on an industrial scale was provided. Specifically, as described in the examples of the present specification, GLP-1 derivatives that have been difficult to produce on an industrial scale until now can be produced with high purity and high yield. It was shown to be.
  • the production method according to the present invention can be used for the effective production of physiologically active peptides other than GLP-1 derivatives, and is extremely useful industrially.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Diabetes (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Endocrinology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Emergency Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明 細 書 補助べプチ ドを用いたぺプチ ドの製造方法 発明の分野
本発明は遺伝子組換え技術を用いたぺプチ ドの製造方法に関する
冃景技術
多く の生理活性べプチ ドが遺伝子組み換え技術を用いて微生物や 動物細胞などを宿主と して生産されている。 目的べプチ ドの生産方 法と しては細胞外に分泌させる方法、 細胞内に目的ペプチ ドの N末 端から発現させる、 いわゆる直接発現法、 また、 目的ペプチ ドの N 末端も し く は C末端に保護べプチ ドを付加した融合蛋白質発現方法 等が知られている。 目的べプチ ドは上記の方法等により、 細胞内外 に発現され、 化学的も し く は酵素的な切断や修飾を経て、 目的ぺプ チ ドを生成させ、 精製工程により純化され、 目的ペプチ ドを得ると いう方法が行われている。
一般的に、 低分子量のペプチ ドを生産するには、 細胞内に存在す る蛋白分解酵素による分解を避けるため、 上記の融合蛋白質発現法 が使われている。 この場合、 目的ペプチ ドと保護ペプチ ドの間に、 目的ペプチ ドを化学的あるいは酵素反応を用いて切断させるように デザィ ンした切断部位領域を付加した融合蛋白質を細胞内に発現さ せた後、 化学的も し く は酵素的方法により融合蛋白から目的べプチ ドを切断し、 目的ペプチ ドを沈殿やク ロマ 卜グラフィ 一工程を経て 単離精製を行う方法が行われている。
更に、 カルシ トニンのような C末端がア ミ ド化されたペプチ ドが 目的べプチ ドの場合は、 当該べプチ ドに係るア ミ ノ酸配列の C末端 部位にグリ シ ンを付加したぺプチ ドを融合蛋白の一部と して発現さ せ、 蛋白分解酵素により融合蛋白から目的のグリ シン付加べプチ ド を切断させた後、 修飾酵素であるア ミ ド化酵素を作用させ、 ア ミ ド 化べプチ ドを生成し、 精製工程を経て目的のァ ミ ド化ぺプチ ドが生 産されている。
しかしながら、 工業的スケールで様々なべプチ ドを生産しょう と する際には、 種々の切断及び修飾反応条件下における目的べプチ ド の溶解性やゲル化の問題、 カラムク ロマ ト グラフィ 一工程において カラムに負荷する試料濃度、 カラムからの溶出条件及び溶出後の安 定性等に関して問題が生じる場合があり、 その原因は目的ペプチ ド の物理化学的な諸性質によると ころが大きい。
例えば、 目的ペプチ ドと してはヒ 卜 · グルカゴン様ペプチ ド一 1 ( Glucagon -し ike Peptide - 1 ヽ Bel l GI 等ヽ Nature, Vol. 304, p36 8-371, 1983 、 以下、 GLP- 1 と称する) や、 イ ンシュ リ ン放出促進 活性を有する GLP- 1 の誘導体 (以下、 GLP- 1 誘導体と称する) を挙 げることができる。 GLP- 1 はプレブ口グルカゴン由来の 37ァ ミ ノ酸 残基からなるぺプチ ドであり、 プレブログルカゴンがプロセシング され、 GLP- 1 の N末端の 6 ア ミ ノ酸が欠失した GLP- 1 (7- 37 ) や更に GLP- K 7- 36) の C 末端がア ミ ド体に修飾された GLP- 1 (7- 36)NH 2が生 合成される (Moj sow, S.等 J. Cl in. Invest. Vol. 79, p616_619 , 1987)。 これらのペプチ ドホルモン (即ち、 GLP- 1 や GLP- 1 誘導体 ) は脬臓のベータ細胞に作用 しィ ンシュ リ ンの分泌を促進する作用 などを有するため、 近年、 その薬理作用から糖尿病治療薬の可能性 が示唆されている (Gutniak MK, 等、 New England Medicine, Vol . 326, pl316- 1322, 1992、 Nathan DM,等 Diabetes Care, Vol. 15, P270-275, 1992) 。 上記ペプチ ドの製法と しては、 上記のような従来技術に基づき大 腸菌等を宿主と した融合蛋白質発現法により製造する場合が考えら れる。 例えば、 GLP- 1(7- 37) の場合、 GLP- 1(7- 37) の N末端部位又 は C末端部位に、 化学的あるいは酵素的に融合蛋白から GLP- 1(7- 37 ) を切り出すための切断部位領域を介して保護べプチ ドを付加した 融合蛋白と して発現させ、 その後、 化学的又は酵素的に融合蛋白か ら GLP-1(7- 37) を切り出すことにより製造することができる。 また 、 GLP- 1(7- 36)NH2の場合は、 上記工程に修飾反応の工程を加えるこ とにより製造する こ とができる。 即ち、 ア ミ ド化修飾反応のために ア ミ ド化酵素の基質と して GLP-1(7- 37) を上記のように融合蛋白と して発現させ (この場合、 GLP- 1(7- 37) は GLP- 1(7- 36)NH2の製造中 間体ペプチ ドとみなすこ とができる) 、 その後、 化学的又は酵素的 に融合蛋白から GLP- 1(7 - 37) を切り出し、 得られた GLP- 1(7- 37) を ア ミ ド化酵素を用いたア ミ ド化修飾反応により、 目的の GLP-l(7-36 )NH2を製造することができる。
しかしながら、 上記の方法により、 目的ペプチ ドであるイ ンシュ リ ン放出促進活性を有する GLP- 1 誘導体を製造する場合でも、 製法 工程上、 好ま し く ない問題が生じるために、 未だ工業レベルで安価 に供給できる製造法は確立されておらず、 その製造法の確立が望ま れている。
例えば、 目的ペプチ ドと して GLP- 1(7- 37) を挙げた場合の製造法 と しては、 既に述べたよ うに、 常法により、 保護べプチ ドと GLP- 1( 7-37) からなる融合蛋白質を発現させ、 当該蛋白質から直接 GLP - 1( 7-37) を切り出すことにより製造することができ、 当該製法の精製 工程は ( 1 ) 酵素による融合蛋白からの GLP- 1(7- 37) 切り出し、 ( 2 ) ク ロマ ト グラフィ ー工程という方法を用いることができる。 し かしながら、 GLP-K7-37) は精製中にゲル化あるいは凝集を起こ し 易いため、 極端な回収率の低下や、 樹脂再生が不可能になるといつ た物理化学的性質に起因した製造工程上の問題が生じる場合がある
。 一旦ゲル化した場合、 p HIO 以上で可溶化して精製することも可 能ではあるが、 好ま しからざる修飾体や立体構造変化が生じると言 うような問題が見られる (Senderoff RI, 等、 J Pharm Sci, Vol.8 7, pl83-189, 1998 ) 。
また、 ア ミ ド化ペプチ ドである GLP - 1(7- 36)NH2を目的ペプチ ドと する場合には、 ア ミ ド化修飾反応に関して問題が生じる場合がある 。 即ち、 ア ミ ド化酵素反応の至適 p Hは弱酸性から中性付近である が、 GLP- 1(7- 37) 及び GLP- 1(7- 36)NH2の理論上の等電点はそれぞれ pl = 5.5及び pl = 7.5である。 従って、 ア ミ ド化酵素至適 p H条件で GL P - 1(7-37) への酵素反応を行う と基質である GLP- 1(7-37) の等電点 に反応液の P Hが近接しているため、 GLP- 1(7- 37) の等電点沈殿を 形成しゃすいと考えられる。
更に、 GLP- 1(7- 37) が沈殿するこ とで生成された GLP- 1(7-36)NH2 も共沈し、 酵素反応が十分進行しない可能性があり、 製造工程上の 問題が生じる。 更に、 GLP- 1(7- 36) も処理 (ハ ン ドリ ング) する際 にカラム工程で凝集を起こ し、 カラム中でゲル化を起こ しやすいべ プチ ドであるため、 精製上も問題が生じる場合がある。 即ち、 GLP - 1 誘導体においても上記に示した物理化学的性質に起因する製造上 の問題が考えられる。
上記のよ う な問題は、 何れも工業的スケールで GLP- 1 (7- 37)、 GL P - 1(7- 36)NH2および GLP-1 誘導体を製造する場合に、 当該目的ぺプ チ ド自体の物理化学的性質に起因する工業的製造上の問題が生じて 、 回収率及び工程管理ひいては製造コス 卜上の面で非常に問題にな る θ 発明の開示
本発明は、 工業的スケールでの遺伝子組換え技術を用いて目的べ プチ ドを効率よ く生産する際に、 目的ペプチ ド自体が有する物理化 学的性質のために生じる問題 (例えば、 当該ペプチ ドの生産工程上 の化学反応的又は酵素反応的処理あるいは精製工程における低溶解 性とゲル化の問題) を改善して目的べプチ ドを効率的に生産する方 法を提供する ことを目的とする。
なお、 本発明に係る目的ペプチ ドとは、 最終的に得よう と してい るべプチ ドだけでなく 、 その製造過程において必要な製造中間体べ プチ ドも意味する。
本発明者らは先に述べた問題を回避するために、 目的ペプチ ドに 補助べプチ ドを付加することにより 目的べプチ ドが有する問題点を 解消して、 目的ペプチ ドを効率よ く製造する方法を見出した。 即ち 、 本発明に係るペプチ ドの製造方法は、 目的の生物学的活性を有す るペプチ ドを製造する方法であって、 以下の工程 ;
工程 ( 1 ) ; 補助べプチ ドが付加された目的べプチ ド又は補助べ プチ ドが付加された目的べプチ ドにさ らに保護べプチ ドが付加され た融合蛋白質、 をコ一 ドする塩基配列を有する発現べクターにより 形質転換された細胞を培養して、 当該培養物から前記補助べプチ ド が付加された目的べプチ ド又は前記融合蛋白質を採取する工程 ; 工程 ( 2 ) ; 工程 ( 1 ) で融合蛋白質を得た場合、 当該融合蛋白 質から補助べプチ ドが付加された目的べプチ ドと保護べプチ ドを切 断分離し、 所望により さ らに精製する工程 ;
工程 ( 3 ) ; 目的べプチ ドに修飾が必要な場合、 工程 ( 1 ) 又は 工程 ( 2 ) で得られた補助べプチ ドが付加された目的べプチ ドに修 飾反応を施す工程 ;
工程 ( 4 ) ; 工程 ( 1 ) 、 工程 ( 2 ) 又は工程 ( 3 ) で得られた 補助べプチ ドが付加された目的べプチ ドから、 補助ペプチ ドと目的 ペプチ ドを切断分離し、 所望により さ らに精製する工程 ; 並びに 工程 ( 5 ) ; 工程 ( 4 ) で得られた目的ペプチ ドを精製する工程 を含んでなる当該製造方法である (図 1 ) 。 図面の簡単な説明
図 1 は、 補助べプチ ドを利用した目的べプチ ドの製造方法の概略 を示す。
図 2 は、 PG 1 17S4HR6GLP- 1 の作製方法を示す図である。
図 3 は、 pGP 117S4HompRHKRの作製方法を示す図である。
図 4 は、 pGP 1 17S4HompRHPRの作製方法を示す図である。
図 5 は、 pGP97ompPRの作製方法を示す図である。
図 6 は、 pGP97ompPRの作製に用いたォ リ ゴヌ ク レオチ ド及びブラ ィマ一を示す図である。
図 7 は、 pGP97ompPRにコー ドされた融合蛋白 (GP97onipPR ) のァ ミ ノ酸配列を示す図である。 下線部は GLP- 1 ( 7 - 37 ) の由来のァ ミ ノ 酸配列を示し、 二重下線部は補助ペプチ ドの配列を示す。 は大腸 菌 OmpTプロテア一ゼによる切断部位を示し、 二重下線の後の矢印は Kex2プ口テア一ゼによる切断部位を示す。
図 8 は、 pG97ompPR にコー ドされた融合蛋白 (GP97ompPR ) の DN A 塩基配列を示す図であり、 塩基番号 1 の A から 462 の T までが GL P - 1 ( 7- 37 ) に係る融合蛋白をコ一 ドする領域である。 lac P0は大腸 菌ラ ク ト一スオペロ ンのプロモーター/ オペレータ一領域を示す。
図 9 は、 生産菌の培養と融合蛋白 (GP97ompPR ) の発現を示す電 気泳動図の図面代用写真であり、 図中にサンプリ ング時 aから eの 試料の S D S -ポリ アク リ ルア ミ ドゲル電気泳動の結果を示す。 図 中の矢印は融合蛋白質のバン ドを示す。
図 1 0 は、 封入体に内在する大腸菌 OmpTプロテアーゼを用いた融 合蛋白 (GP97ompPR ) の切断を分析した結果を示す図である。
図 1 1 は、 PG117S4HR6GLP- 1 にコ一 ドされた融合蛋白質のァミ ノ 酸配列を示す図である。 図中、 下線部は GLP- 1 ( 7- 37) の由来のアミ ノ酸配列を示し、 二重下線部は補助べプチ ド由来のアミ ノ酸配列を 示す。
図 1 2 は、 pGP 117S4HompRHKRにコ一ドされた融合蠭白質のァミ ノ 酸配列を示す図である。 図中、 下線部は GLP- 1 ( 7- 37) の由来のアミ ノ酸配列を示し、 二重下線部は補助べプチ ド由来のァ ミ ノ酸配列を 示す。
図 1 3 は、 pGP 117S4HompRHPRにコ一 ドされた融合蛋白質のァミ ノ 酸配列を示す図である。 図中、 下線部は GLP- 1 ( 7- 37) の由来のアミ ノ酸配列を示し、 二重下線部は補助べプチ ド由来のァミ ノ酸配列を 示す。
図 1 4 は、 S Pセファロースビッグビーズからの RHHGP [G]の溶出 パターンを示す図であり、 溶出開始位置を で示し、 プールした画 分を図に示す。 吸光度は 280nm で測定した。
図 1 5 は、 RHHGP [G]からの Kex2プロテア—ゼによる GLP- 1 ( 7- 37) の切り出し工程における、 各精製工程の分析パターンを示した図で あり、 A は Kex2プロテア一ゼによる切断前、 B は Kex2プロテアーゼ 切断後、 C は PorosR2 後の逆相プールを示し、 1 は RHHGP [G]を、 2 は GLP- 1 ( 7- 37 ) を示す。
図 1 6 は、 RHHGP CG]のァ ミ ド化反応の p H依存性を示す図である 図 1 7 は、 ア ミ ド化反応において、 RHHGP [G]が RHHGP- 1 に変換さ れる経時変化をイオ ン交換 H P L C によ り測定した図であり、 1 は RHHGP[G]を、 2 は RHHGP-1 を示す。 吸光度は 280mn で測定した。 分析条件は以下の通りである。
カラム ; Poros S/H 4.6mm I. D. x 50mm、
流 ¾ ; 1.6 ml/min
溶液 A ; 30mM BR 緩衝液 pH 6.0
溶液 B ; 30mM BR 緩衝液 pH 9.0
平衡化 ; 溶液 A
溶出 ; 溶液 B 0¾ →100¾ 直線 pH勾配
図 1 8 は、 RHHGP-1 を基質と した、 Kex2プロテア一ゼプロセッ シ ング反応の p H依存性を示す図である。
図 1 9 は、 マクロブレ -/ブ High-Sによる GLP- 1(7 - 36)NH2精製における溶 出パターン及び、 形成された p H勾配を示す図である。 吸光度は 28 Onm で測定した。
図 2 0 は、 マクロプレップ High- Sによる不純物の除去状況を示す図であ り、 Aはカラムにロー ドした試料を、 Bは溶出後の分析 HPLCパター ンを示し、 また、 1 は GLP- 1(7- 37) を、 2 は GLP- 1(7- 36)NH2を示す 。 吸光度は 280nm で測定した。
図 2 1 は、 OmpTによる第 1切断、 Kex2プロテア一ゼによる第 2切 断を経由して、 GLP- 1(7 - 36)NH2を製造した際の、 各精製工程標品の 分析 H P L Cパターンをま とめて示した図である。 Aは O m p T反 応後、 Bは SPセファ ス後、 Cは Kex2反応後、 Dはマク πプレ '/プ High-S後、 Eは PorosR2 後の逆相 HPLCパターンを示し、 また、 1 は GP97ompPR を、 2 は保護ペプチ ドを、 3 は RHHGPCG]を、 4 は RHHGP- 1 を、 5 は GLP- 1(7-36)NH2を示す。 吸光度は 280nm で測定した。
分析条件は以下の通りである。
カラム ; YMC Protein RP 4.6mm I. D. x 150mm
流速 ; 1.0 ml/min 溶液 A ; 0.1% TFA / 10¾ ァセ 卜 ニ ト リ ノレ
溶液 B ; 0.1% TFA / 60¾ ァセ トニ 卜 リ ノレ
平衡化 ; 溶液 A
溶出 ; 溶液 B 44%→74¾ /12 分
図 2 2 は、 RHHGPtG], RHHGP- 1, GLP- 1(7- 37), GLP - 1(7 - 36)NH2溶 解度の p H依存性を示す図である。
図 2 3 は、 Tween 80による、 RHHGP[G]、 RHHGP - 1 及び GLP - 1(7-36 )NH2の凝集抑制効果を示す図であり、 Aは Tween 80による RHHGP [G] 及び RHHGP- 1 の凝集抑制を示し、 Bは Tween 80による GLP- 1 (7- 36)N H2凝集抑制を示す。
図 2 4 は、 NaCl及び温度による GLP- 1(7- 36)NH2の凝集抑制効果を 示す図であり、 Cは NaClによる GLP- 1[G]凝集抑制を示し、 Dは温度 による GLP- 1(7 - 36)NH2凝集抑制を示す。 発明の実施の形態
本発明に係る補助ペプチ ドとは、 目的ペプチ ド自体の物理化学的 性質に由来する工業的製造上の問題を回避するために用いるぺプチ ドである。 目的べプチ ド自体の物理化学的性質に由来する製造上の 問題のうち、 当該べプチ ドの製造工程上の化学反応的又は酵素反応 的処理及び精製上の問題、 例えば、 種々の切断及び修飾反応条件下 における目的べプチ ドの溶解性やゲル化の問題、 またカラムク ロマ トグラフィ 一工程におけるカラムに負荷する試料濃度、 カラムから の溶出条件及び溶出後の安定性等に関する問題が特に注目される。 当該補助ペプチ ドは目的ペプチ ドが有している物理化学的性質に 応じて適宜作製する こ とができ、 例えば目的べプチ ドの等電点が中 性〜弱酸性であり、 且つ製造工程上の至適 pHも中性〜弱酸性であり このよ うな pHのもとでは目的べプチ ドの溶解度が低すぎる場合には 、 補助べプチ ドが付加した目的べプチ ドの等電点 (pi) を 8〜12と なるように補助べプチ ドを設計する こ とが望ま し く 、 9 ~ 1 1 に設 計することが好ま しい。 (当該補助ペプチ ドは目的ペプチ ドの N末 端又は C末端の何れに付加してもよい) 。 また、 当該補助ペプチ ド の大きさ (長さ) は 5〜50のア ミ ノ酸残基を有する ものが好ま し く 、 更に好ま し く は 5〜30ア ミ ノ酸残基以下を有することであるが、 塩基性ァ ミ ノ酸又は酸性ァ ミ ノ酸を少な く と も 1つ以上含む。
本発明により生産することができる目的べプチ ドは特に限定され る ものではないが、 上記の GLP- 1 誘導体の他にも 200 ァ ミ ノ酸残基 以下のア ミ ノ酸配列を有するペプチ ドの製法に好適である。 そのよ うなペプチ ドの例と しては、 副腎皮質刺激ホルモ ン (Adrenocortic otropic hormone), ア ト レノ メ デユ リ ン(Adrenomedullin), ァ ミ リ ン(Amylin), ア ンジォテ ンシ ン (Angiotensin) I, ア ンジォテンシ (Angiotensin) II, ア ンジォテ ンシ ン (Angiotensin) III , A型 ナ ト リ ゥム利尿べプチ ド(A- type Natriuretic Peptide), B型ナ 卜 リ ゥム利尿べプチ ド(B- type Natriuretic Peptide), ブラ ジキニン (Bradykinin), ビッ グガス 卜 リ ン (Big Gastrin), カルシ 卜ニン(C alcitonin) , カノレシ 卜ニン
Figure imgf000012_0001
関; iiぺプチ 卜 (Calcitonin gene related peptide), コ レ シス 卜 キニン (Cholecystokinin) , コノレチ コ 卜 口 ピン放出因子(Corticotropin Releasing Factor), コノレチス 夕チ ン (Cortistatin), C型ナ ト リ ウム利尿ペプチ ド(C- type Natr iuretic Peptide), デフ エ シ ン (Defesin) 1, デル夕 . ス リ ープ、 ィ ンデューシ ングぺプチ K (Delta Sleep-Inducing Peptide), ダイ ノ ルフ ィ ン (Dynorphin), エラ フ ィ ン(Elaf in) , α —エン ドルフ ィ ン ( a—Endorphin), ;8—エン ドルフ ィ ン ( /3—Endorphin), γ - エン ドルフィ ン ( ァ — Endorphin), エン ドセ リ ン一 1 (Endothelin— 1), エン ドセ リ ン一 2 (Endothelin— 2), エン ドセ リ ン— 3 (Endothe lin-3), ビッ グェン ドセ リ ン 一 1 (Big Endothelin- 1), ビッ グェン ドセ リ ン— 2 (Big Endothelin— 2), ビッ グェン ドセ リ ン - 3 (Big E ndothelin-3), エンケフ ア リ ン(Enkephalin), ガラニン (Galanin) , ビッ グガス 卜 リ ン (Big Gastrin), ガス ト リ ン (Gastrin), GIP (Gastric Inhibitory Polypeptide), ガス ト リ ン放出ぺプチ ド (Ga strin Releasing Peptide), グ、ノレカコ、 'ン(Glucagon) , グ'ノレカコ'ン様 ぺプチ ド— 2 (Glucagon- like peptide -2), 成長ホルモン放出因子
(Growth Hormone Releasing Factor) , 成長ホノレモ ン (Growth Horm one), グァニ リ ン(Guanylin), ゥ ロ グァニ リ ン (Uroguanylin), ヒ スタチ ン 5 (Histatin 5), イ ン シュ リ ン (Insulin), ジ ョ イニング ペプチ ド (Joining Peptide), 黄体ホルモ ン放出ホルモ ン (Lutein izing Hormone Releasing Hormone), 黒色細胞刺激ホノレモ ン(Melan ocyte Stimulating Hormone) , ミ ト'、カイ ン (Midkine) , モチ リ ン ( Motilin), ニューロキニン A (Neurokinin A) , ニューロキニン B (N eurokinin B) , ニュ一ロメ ジ ン B (Neuromedin B) , ニューロ メ ジ ン C (Neuromedin C), ニューロペプチ ド Y (Neuropeptide Y), ニュー 口テンシ ン (Neurotensin), ォキシ 卜 シ ン(Oxytocin) , プロア ドレ ノ メ デユ リ ン Ν—末端 20ぺプチ ド (Proadrenomedullin N - terminal
20 Peptide), ク ロモグラニ ン A (Cromogranin A), 副甲状腺ホル モ ン (Parathyroid Hormone), PTH 関連べプチ ド (PTH related pe ptide), ぺプチ ドヒスチジ ン一メ チォニン一 27(Peptide Histidine -Methionin-27), 脳下垂体アデ二レー トサイ ク ラ—ゼ活性化ポリぺ プチ ド 38 (Pituitary Adenylate Cyclase Activating Polypeptide
38), 血小板因子一 4 (Platelet Factor -4), ぺプチ ド T (Peptid e T), セク レチ ン(Secretin), 血清胸腺因子 (Serum Thymic Facto r), ソマ 卜 スタチン(Somatostatin), サブスタ ンス P (Substance P), チロ 卜 口 ピン放出ホノレモ ン (Thyrotropin Releasing Hormone) W
, ゥロコルチン (Urocortin), 管活性腸ペプチ ド (Vasoactive Int estinal Peptide), バソプレシ ン (Vasopressin)及びこれらの誘導 体等が挙げられる。
また、 GLP- 1 誘導体と しては、 上記の GLP-K7- 37) や、 GLP- 1(7 -
36) NH2の他に、 GLP-1 の 37個のァ ミ ノ酸残基よりなるぺプチ ドから ァ ミ ノ酸残基が置換、 付加、 欠失されたイ ン シ ユ リ ン放出促進活性 を有するペプチ ド、 当該ペプチ ドに係るア ミ ノ酸が更に修飾された イ ンシ ユ リ ン放出促進活性を有するぺプチ ド (例えばァ ミ ド体) 、 及びこれらの組み合わせにより得られるイ ンシユ リ ン放出促進活性 を有するぺプチ ドを挙げるこ とができる。
更に、 本願発明に係る製法により好適に製造し得る GLP-1 誘導体 と しては、 4.5 から 9.0 の等電点を有する GLP- 1誘導体が望ま しい 。 好ま し く は 5.5 から 7.5 の等電点を有する GLP - 1誘導体である。
GLP-1 誘導体の具体例と しては本発明の実施例に記載した以外に 以下のものを例示と して挙げることができる。
• GLP-K7-34) 、 GLP-K7-35) 、 GLP- 1(7- 36) 、 GLP-1(7-34)NH2 、 GLP- 1(7- 35)NH2及び GLP- 1(7- 37)NH2
• GLP- 1(7- 37) - Arg 、 GLP- 1(7- 37) - Arg-Arg 、 GLP- 1(7- 37) 一 Lys 、 GLP-K7-37) - Lys-Lys 、 GLP- 1(7- 37) - Lys-Arg 及び G LP - 1(7- 37) - Arg- Lys 並びにこれらの C 末端ァ ミ ド体、
• GLP-1 の 8 位のァ ミ ノ酸である Ala を Thr 、 Gly 又は Ser に置 換した GLP - 1(7- 37) 及び GLP- 1(7 - 36)NH2
• GLP-1 の 26位のァ ミ ノ酸である Lys を Arg に置換した GLP- 1 (7-
37) 及び GLP- 1(7- 36)NH2
• GLP-1 の 34位のァ ミ ノ酸である Lys を Arg に置換した GLP - 1(7 - 37) 及び GLP- 1(7- 36)NH2
• GLP-1 の 36位のァ ミ ノ酸である Arg を Lys に置換した GLP- 1(7- 37) 及び GLP- 1(7- 36)NH2
• GLP 1 の 8 位のア ミ ノ酸である Ala を Thr, Gly 又は Ser に置換 し、 更に 26位のァ ミ ノ酸である Lys を Arg に置換した GLP- 1(7- 37) 及び GLP- 1(7- 36)NH2
• GLP- 1 の 8 位のァ ミ ノ酸である Ala を Thr, Gly 又は Ser に置換 し、 更に 34位のァ ミ ノ酸である Lys を Arg に置換した GLP - 1 (7 - 37) 及び GLP- 1(7- 36)NH2
• GLP- 1 の 8 位のア ミ ノ酸である Ala を Thr, Gly 又は Ser に置換 し、 更に 36位のァ ミ ノ酸である Arg を Lys に置換した GLP- 1 (7-37) 及び GLP- 1(7- 36)NH2
• GLP-1 の 26位のァ ミ ノ酸である Lys を Arg に置換し、 更に 34位 のア ミ ノ酸である Lys を Arg に置換した GLP - 1 (7- 37) 及び GLP - 1(7 - 36)NH2
• GLP-1 の 26位のァ ミ ノ酸である Lys を Arg に置換し、 更に 36位 のア ミ ノ酸である Arg を Lys に置換した GLP - 1 (7- 37) 及び GLP - 1(7 - 36)NH2
• GLP-1 の 34位のァ ミ ノ酸である Lys を Arg に置換し、 更に 36位 のア ミ ノ酸である Arg を Lys に置換した GLP- 1 (7 - 37) 及び GLP - 1(7 - 36)NH2
• GLP-1 の 8 位のア ミ ノ酸である Ala を Thr, Gly 又は Ser に置換 し、 更に 26位のア ミ ノ酸である Lys を Arg に置換し、 更に 34位のァ ミ ノ酸である Lys を Arg に置換した GLP-K7-37) 及び GLP- 1 (7- 36)N H2
• GLP-1 の 8 位のァ ミ ノ酸である Ala を Thr, Gly 又は Ser に置換 し、 更に 26位のァ ミ ノ酸である Lys を Arg に置換し、 更に 36位のァ ミ ノ酸である Arg を Lys に置換した GLP- 1 (7 - 37) 及び GLP - 1 (7- 36)N H2、 • GLP-1 の 8 位のァ ミ ノ酸である Ala を Thr, Gly 又は Ser に置換 し、 更に 34位のァ ミ ノ酸である Lys を Arg に置換し、 更に 36位のァ ミ ノ酸である Arg を Lys に置換した GLP- 1 (7- 37) 及び GLP- 1 (7 - 36)N H2
• GLP-1 の 26位のァ ミ ノ酸である Lys を Arg に置換し、 更に 34位 のア ミ ノ酸である Lys を Arg に置換し、 更に 36位のァ ミ ノ酸である Ar を Lys に置換した GLP- 1 (7- 37) 及び GLP- 1(7- 36)NH2
• GLP-1 の 8 位のア ミ ノ酸である Ala を Thr, Gly 又は Ser に置換 し、 更に 26位のァ ミ ノ酸である Lys を Arg に置換し、 更に 34位のァ ミ ノ酸である Lys を Arg に置換し、 更に 36位のァ ミ ノ酸である Arg を Lys に置換した GLP- 1(7 - 37) 及び GLP- 1 (7_36)NH2
目的べプチ ドの例と して GLP- 1(7- 37) を挙げる と、 精製工程上の 問題、 例えば、 GLP-l(7-37) に起因したゲル化、 溶解性などを解決 するために GLP- 1(7- 37) に塩基性ァ ミ ノ酸を有する補助ペプチ ドを 付加して、 GLP- 1(7-37) の生産に用いることができる。 即ち、 当該 捕助ペプチ ドを GLP- 1(7- 37) に付加する こ とにより、 GLP- 1(7- 37) の等電点 (Ρΐ = 5· 5) をアルカ リ側にシフ ト させ、 親水性を増加させ ることにより精製工程上の問題である力ラム中の凝集性 (ゲル化) などを回避する こ とができる。 また、 当該補助ペプチ ドを GLP- 1(7 - 37) に付加する こ とにより最初のク ロマ 卜グラフィ 一工程で非常に 純度が高く かつ高収量で補助べプチ ドと GLP(7-37) からなるポリべ プチ ドを分離する事が可能になり、 GLP- 1(7- 37) の回収率が増加す るので、 当該工程において補助べプチ ドを用いることは非常に有用 である。
また、 目的ペプチ ドの例と して GLP- 1(7- 36)NH2を挙げると、 当該 物質はア ミ ド化ペプチ ドであるので、 その製造中間体をまず目的べ プチ ドと して得る必要があり、 具体的に当該べプチ ドは GLP- 1(7 - 37 ) である。 即ち、 GLP- 1(7- 37) に塩基性ァ ミ ノ酸を有する補助ぺプ チ ドを付加して GLP- 1(7-36)NH2の生産に用いることができる。 塩基 性ァ ミ ノ酸を含む補助べプチ ドを付加する こ とにより、 GLP- 1(7-37 ) の等電点をアルカ リ側にシフ トさせるこ とができ、 後のア ミ ド化 修飾反応の際にァ ミ ド化酵素反応液の p Hにおいて補助べプチ ドが GLP-K7-37) に付加したぺプチ ドの溶解性が增すために沈殿形成が 抑えられ、 収率及び収量を增加させることができる。 また、 塩基性 ァ ミ ノ酸を含む親水性補助べプチ ドを付加するこ とで目的べプチ ド の溶解度を上昇させる こ と、 更にはア ミ ド化修飾反応における基質 と しての GLP- 1(7- 37) と、 生成物と しての GLP- 1(7- 36)NH2の持つ凝 集性を回避でき、 ア ミ ド化酵素反応後の精製工程において非常に有 用である。
上記の何れの場合においても、 補助ペプチ ドが GLP- 1(7- 37) に付 加したぺプチ ドは等電点 8〜 1 2を有するこ とが望ま し く 、 当該べ プチ ドを陽ィォン交換樹脂に作用させるこ とにより、 高収率 ( 9 8 %以上) で当該ペプチ ドを得るこ とができる。
補助べプチ ドが付加したぺプチ ドから目的べプチ ドを得るために 、 補助ペプチ ドと目的ペプチ ドとの間に化学的あるいは酵素的に切 断できるような切断部位領域を導入する。 当該切断部位領域につい ても目的ペプチ ドが有している物理化学的性質に応じて切断効率の 高い切断部位領域を設定する。 酵素的及び化学的な切断方法と して は Methods in ENZYMOLOGY, 185巻, Gene Expression Technology ( David V. Goeddel編集、 出版社 ACADEMIC PRESS, INC ) に記載され ている方法も用いるこ とができる。
化学的切断方法と しては、 メ チォニンの C末端側をブロムシアン で切断する方法 (D. V· Goeddel et al, Proc. Natl. Acad. Sci. US A , Vol.76, P106-110, 1979) 、 -Asp-Pro- 配列の間を蟻酸で切断 する方法 ( Biochem. Biophys. Res. Commun. , Vol. 0, pl l 73, 197 0 ) 、 -Asn-Gly- 配列の間をヒ ドロキシルア ミ ンで切断する方法及 び ト リ ブシンの C末端側を BNPS- スカ 卜ール又は N-ク ロロスク シン イ ミ ドで切断する方法等が挙げられる。 例えば、 目的ペプチ ドに係 るア ミ ノ酸配列中にメ チォニンが含まれない場合は目的ペプチ ドに 隣接する切断部位領域の末端にメ チォニンを導入し、 ブロムシアン 処理により化学的に切断部位領域での切断を行う ことができる。
また、 酵素的切断方法と しては、 切断処理に用いる酵素が基質と して特異的に認識することができる切断部位領域を設定すれば良く 、 それらの例と しては、 X- Gly 又は Pro- X-Gly- Pro配列の- X- Gly- 配歹 ijの間をコラゲナーゼ ( Col lagenase ) ( Pro Natl. Acad. Sci . USA, Vol. 81 , P4692-4696, 1984 ) で、 -Asp- Asp- Asp- Lys- 配列
(配列番号 : 1 ) の Lys の C末端側をェンテロキナーゼ (Enteroki nase) で、 - I le-Glu- Gly- Arg- 配列 (配列番号 : 2 ) の Arg の C末 端側を血液凝固因子 Xa ( blood coagulat ion Factor Xa ) (特開昭 61- 135591 ) で、 - Gly-Pro- Arg- 配列の Arg の C末端側を ト ロ ンビ ン (Thrombin) (特開昭 62- 135500 ) で、 -Arg- の C末端側を ト リ プシン (Tryps in ) 又はク ロス ト リパイ ン (Clostripain ) で、 Ar g 又は Lys の C末端側をェン ドプロテア—ゼ (endoprotease) Arg- C (Nature, Vol. 285, p456- 461, 1980) で、 Lys- Arg 、 Arg- Arg 又 は Pro- Arg 配列の C末端側をサッカロ ミ セス . セレピシェ (Saccha romyces cerevi siae) Kex2 プロテア一セ及びその誘導体 ( Bioche m. Biophys. Res. Commun. , Vol. 144, p807-814, 1987 、 特開平 1 - 199578 ) で、 Lys の C末端側をリ シル エン ドべプチダ一ゼ (lysl endopeptidase) 又はェン 卜ぺ "7チダ一ゼ ( endopept idase ) Lys -C (特開昭 61- 275222 ) で、 Asp 又は Glu の C末端側をスタフィ 口 コ ッカス ' ァウ レウス (S. aureus ) V8プロテアーゼ (Proc. Nat l . Acad. Sci. USA, Vol. 69, p3506- 3509, 1972) で、 - Phe- Arg- 配 列の C末端側をカ リ ク レイ ン (Kal l ikrein) (特開昭 62- 248489 ) でヽ - Pro-Phe - Hi s - Leu - Leu - Vaト Tyr - 配歹リ (配列番号 : 3 ) © Leu- Leu の間をレニン (renin ) で (特開昭 60 - 262595 ) 、 - Glu-Gly- A rg- 配列の C末端側をゥロキナーゼ (Urokinase ) (特開平 2- 1006 85) で、 Val- Asp- Asp- Asp- Asp- Lys 配列 (配列番号 : 4 ) の C末端 俱 |Jをェンテロぺプチダ一ゼ ( entero - pept idase) ( Biotechnology, Vol. 6, pl204 - 1210, 1988) で、 poly-Glyの C末端側をリ ソスタフ ィ ン (lysostaphin ) (特開平 1- 160496) で、 Lys- Arg, Arg- Arg又 は Pro - Arg等の C末端側をク リ ベロ ミ セス ' ラクチス (Kluverromy ces lacti s ) (特開平 1- 124390) で切断する方法等が挙げられる。 例えば、 本願発明に係る実施例においては、 Kex2プロテアーゼが 認識できるァ ミ ノ酸配列 (Lys- Arg 、 Arg- Arg 又は Pro- Arg 配列) を切断部位領域に導入し、 当該酵素を用いて補助ペプチ ドから目的 ぺプチ ドの切断を行つた。
従って、 切断処理に使用する酵素の基質特異性及び目的べプチ ド のァ ミ ノ酸配列に合わせて、 切断部位領域のァ ミ ノ酸配列中に 1つ 以上のメ チォニン、 ト リ プ 卜 フ ァ ン、 プロ リ ン、 グリ シン、 システ イ ン、 アルギニン、 リ ジン、 ァスパラギン酸又はグルタ ミ ン酸を存 在させるこ とが好ま しい。
なお、 最終目的ペプチ ドとするために修飾が必要な場合 (例えば 、 ア ミ ド化ペプチ ド) は、 補助べプチ ドが付加した目的べプチ ド ( この場合、 最終目的べプチ ドの製造中間体べプチ ド) から当該目的 ペプチ ドを切り出す前又は切り出した後に修飾反応 (例えば、 ア ミ ド化酵素によるア ミ ド化修飾反応) を行う こ とができる。 更に、 効 率的に修飾反応を行いたい場合、 目的ペプチ ドを切り出す前に補助 ペプチ ドが付加した目的ペプチ ドに修飾反応 (例えば、 ア ミ ド化修 飾反応) を行い、 補助べプチ ドが付加した最終目的ぺブチ ドを得、 その後、 補助ペプチ ドと最終目的べプチ ドとの間にある切断部位領 域を切断する ことにより最終目的べプチ ドを得ることができる。
補助ペプチ ドが付加した目的ペプチ ドを高発現させれば、 高純度 の目的ペプチ ドを高収率で得る こ とが可能であるが、 更に大量の目 的べプチ ドを得るためには従来の融合蛋白法において行われている ような保護ペプチ ドを更に付加して発現させて製造する こ ともでき る。 即ち、 補助べプチ ドが付加した目的べプチ ドに更に保護べプチ ドを付加した融合蛋白と して宿主細胞内に高発現させて製造するこ と もできる (保護べプチ ドの付加は補助べプチ ドが付加した目的べ プチ ドの N末端又は C末端の何れに付加してもよい) 。
本発明に係る製造法に用いる こ とができる保護べプチ ドは特に限 定される ものではなく 、 従来の方法において用いられたものを適宜 修飾して用いることができる。 例えば、 特開昭 54 - 145289 において は保護べプチ ドと して大腸菌由来の 一ガラク ト シダーゼに係るァ ミ ノ酸配列を有するフラグメ ン 卜を用いる こ とができる。 当該酵素 に係るア ミ ノ酸配列は当業者にとって公知であり、 yS —ガラ ク ト シ ダ一ゼ由来のペプチ ドフラグメ ン トは広く 当業者により融合蛋白法 における保護ペプチ ドと して用いられている。 本願発明に係る製造 法においても、 補助ペプチ ドが付加された目的べプチ ドの特性を考 慮して、 /3 —ガラク ト シダ一ゼに係るァ ミ ノ酸配列を適切に修飾し たべプチ ドフラグメ ン 卜を保護べプチ ドと して用いることができる 。 また、 保護ぺプチ ドに係るァ ミ ノ酸配列をコー ドする D N A塩基 配列を化学合成するこ と も可能である。
保護べプチ ドを有する融合蛋白については、 切断処理反応後のク ロマ 卜グラフィ 一工程でのフラ グメ ン ト分離能を高めるために、 当 該融合蛋白を構成する保護べプチ ド若し く は補助べプチ ドが付加し た目的べプチ ド及び当該融合蛋白自体に係る各等電点が異なるよう に工夫して設定する こ とが望ま しい。 補助ペプチ ドと目的ペプチ ド についても同様である。
上記のように保護べプチ ドを付加させる場合、 補助べプチ ドが付 加した目的ペプチ ドと保護べプチ ドとの間にも切断部位領域を設定 する必要があるが、 上述の設定方針に従って適宜好適な切断効率の 高い切断部位領域を設定する ことができる。 但し、 保護べプチ ドを 有する融合蛋白から補助ペプチ ドが付加した目的ペプチ ドを経て目 的ペプチ ドを得る場合、 複数の切断部位領域が設けられるために各 部位における多段階の融合蛋白の切断方法が必要になる。 この場合 、 最初に補助べプチ ドが付加した目的べプチ ドと保護べプチ ドとの 間の切断部位領域において切断処理を行い、 次に補助べプチ ドと目 的べプチ ドとの間の切断部位領域において切断処理を行なう ことに よ り 目的べプチ ドを得るこ とができる。
上記の製造方法は汎用性がある こ とを確認するために各切断部位 領域を化学的又は酵素的に切断する方法について検討を行い、 何れ の切断処理方法によっても実施可能である こ とを確認した。 このよ うな切断部位領域に係るベプチ ド鎖の部位特異的切断方法の代表例 と しては、
( 1 ) 保護べプチ ド及び目的べプチ ドがシスティ ン残基をそのァ ミ ノ酸配列中に含まないことを利用し、 補助べプチ ドが付加した目 的べプチ ドと保護べプチ ドの間にシスティ ンを揷入し、 シァノ化、 アルカ リ処理にて当該部位において融合蛋白を特異的に切断する方 法、
( 2 ) 各切断部位領域における切断は共に同一酵素で行うが、 酵 素認識部位に異なったア ミ ノ酸配列を用いるこ とで、 一方の切断部 位領域での反応条件下では、 他方の切断部位領域での切断が起こ ら ない様にする方法、 及び
( 3 ) 各切断部位領域において共に同一酵素で切断を行うが、 補 助ペプチ ドと目的べプチ ドの間に存在する切断部位領域 (切断部位 領域 2 ) のア ミ ノ酸を修飾する こ とにより、 補助べプチ ドが付加し た目的べプチ ドと保護べプチ ドの間に存在する切断部位領域 (切断 部位領域 1 ) に係る切断の反応条件下では、 切断部位領域 2での切 断が起こ らない様にし、 切断部位領域 1での切断後、 補助ペプチ ド が付加した目的べプチ ドを精製し、 修飾されたア ミ ノ酸を再度修飾 して切断部位領域 2 を上記酵素で切断可能にする方法等が挙げられ る ο
なお、 本発明において用いる こ とができる宿主細胞は特に限定さ れる ものではなく 、 従来の方法において既に用いられている原核細 胞又は真核細胞、 例えば大腸菌等の微生物細胞、 酵母又は動物細胞 等を、 補助べプチ ドが付加された目的べプチ ドをコ一 ドする塩基配 列が当該配列を有する発現べク夕一により好適に発現できる ものを 適宜選択して用いることができる。 更に、 高発現に必要なその他の 要素、 例えばプロモータ一、 ター ミ ネータ一、 スプライ ス部位等に ついても従来の方法において既に知られている ものを適宜用いるこ とができる。
本発明に係る目的ペプチ ドの製法において、 目的べプチ ドを GLP - 1(7-37) 及び GLP-1(7- 36)NH2と した場合を以下に説明する。
GLP-K7-37) 発現プラス ミ ド (以下、 pGP97ompPR) がコー ドする 融合蛋白 (以下、 GP97ompPR ) は、 GLP- 1(7- 37) の N末端側に塩基 性べプチ ド領域を含む補助べプチ ドを付加したぺプチ ド (以下、 HGP[G]) を有し、 更に RHHGP[G]の N末端側に大腸菌 /3 -ガラク ト シ ダーゼ誘導体 ( -gal97S ) を保護べプチ ドと して付加した融合蛋 白である。 当該保護べプチ ドと RHHGP[G]との間及び RHHGP[G]に係る 補助べプチ ドと GLP- 1 ( 7- 37 ) の間には各々切断部位領域が導入され ている。 当該各領域は、 一方の切断部位領域では大腸菌由来の内在 性 OmpTプロテア—ゼにより切断されるよ うに、 また他方の切断部位 領域では Kex2プロテアーゼ (特許第 2643968 号、 特開平 10- 229884 等) により切断されるように基質特異性に係るア ミ ノ酸配列を有し ている。
また、 GP97oinpPR については、 切断処理反応後のク ロマ トグラフ ィ 一工程でのフラグメ ン 卜分離能を高めるために、 GP97ompPR を構 成する β -gal 97S 若し く は RHHGP [G]及び GP97ompPR 自体に係る各等 電点が異なるように工夫され設定されている。 例えば、 後述の実施 例では GP97ompPR の等電点は 5. 95、 β -gal 97S の等電点は 4. 60及び RHHGP [G]の等電点は 10. 09 となるように設定されている。
次に、 pGP97ompPRにより形質転換された大腸菌 ( W3110/pGP97omp PR) を培養して GP97ompPR の発現を行った。 GP97ompPR は菌体内に 不溶性蛋白と して高発現され、 封入体中に蓄積された。 最終菌体濃 度は約 OD660nm = 180 であった。
菌体破砕後、 尿素を用いて GP97ompPR を可溶化した後、 封入体中 に含まれる内在性 OmpTプ口テア一ゼにより GP97ompPR 中に存在する 保護べプチ ド β -gal 97S と補助べプチ ドが付加した目的べプチ ド BH HGP [G]の間の切断部位領域を切断した。 OmpTプロテア—ゼは特異的 に当該切断部位領域を切断し、 切断効率は 8 5 %であった。
次に、 - gal97S と RHHGP [G]を分離するため、 また尿素を除去す るために陽ィォン交換ク 口マ トグラフィ 一を行つた。 未切断の GP97 ompPR ( pl = 5. 95 ) と ; 3 - ga197 ( pI - 4. 60 ) は等電点が酸性側のた めにこのカラムに吸着せず、 RHHGP [G] ( pl = 10. 09 ) が吸着された後 、 溶出される。 このわずか 1工程のカラム処理により純度が 99 %の RHHGP [G]が得られた。 生産工程の最初のカラム工程でこの様な純度 が高く 、 かつ高収率で RHHGP[G]が得られるこ とは、 工業的な大量生 産上非常に有用である。
Kex2プロテア一ゼを用いて、 RHHGP[G] (1.0 g ) 中に存在する、 補助ペプチ ドと目的べプチ ドの間の切断部位領域を切断した。 後述 の実施例に係る反応条件では切断効率 95%で反応が進行した。 また 、 回収率は 90%であつた。
次に、 GLP- 7-37) を更に精製するため逆相ク ロマ ト グラフィ ー を行った。 本工程の回収率は 80%で、 全工程の最終収率は約 6 4 % であり、 純度 98%の GLP- 1(7- 37) が 0.72 g得られた。 精製に使用し た培養液は 0.36リ ッ トル相当であり、 培養液 1 リ ッ トルあたり約 2. 0 g得られたことになる。 この収率及び収量は共に非常に高く 、 補 助べプチ ドを用いた本発明に係る製法の有用性が実証できた。 即ち 、 本発明に係る製造法は目的べプチ ドを十分に工業的スケールで製 造することを実施可能なら しめる ものである。
本発明に係る製造法を用いた GLP- 1(7- 37) の製造に関し、 各工程 における収率については後記の表 2 — Bに示した。
表 2 - Bから明らかなように、 各工程の回収率は非常に高く 、 最 終の回収率が 6 4 %と非常に高いことが示された。
更に、 目的ペプチ ドを GLP- 1(7-36)NH2とする場合は、 当該べプチ ドはア ミ ド化ペプチ ドであるためにア ミ ド化修飾反応が必要となる 。 当該ペプチ ドは例えば、 次のよ うにして得るこ とができる。
上述のように既に得られた RHHGP[G]に、 ア ミ ド化酵素 (B.B.R. Vol.150, P1275-1281, 1988、 EP299790A 等) 用いてア ミ ド化修飾 反応を行った。 後述の実施例で示した反応条件では、 酵素基質と し ての RHHGP[G]及び反応生成物であるア ミ ド化された補助べプチ ドが 付加した GLP- 1(7- 36)NH2 (以下、 RHHGP- 1 と称する) の凝集やゲル 化は起こ らず、 98%の高い反応率( 回収率 95%) で RHHGP- 1 を生成 することができた。 これらの結果より、 RHHGP [G]を基質と してア ミ ド化酵素反応を行う際の補助べプチ ドの有用性が実証された。
ア ミ ド化修飾反応後、 Kex2プロテアーゼを用いて RHHGP-1 中に存 在する補助ペプチ ドと目的べプチ ドの間の切断部位領域を切断した 。 後述の実施例に係る反応条件では切断効率 9 5 %以上( 回収率 90 %) で反応が進行した。
次に、 GLP- 1(7- 36)NH2を更に精製するため陽イオン交換ク ロマ ト グラフィ 一を行った後、 疎水性ク ロマ トグラフィ ーを行った。 全ェ 程の最終収率は約 50%であり、 純度 98%の GLP- 1(7- 36)NH2が 13.5 g 得られた。 精製に使用 した培養液は 8 リ ッ トル相当であり、 培養液 1 リ ッ トルあたり約 1.68 g得られたこ とになる。 この収率及び収量 は共に非常に高く 、 補助ペプチ ドを用いた本発明に係る製法の有用 性が実証できた。 即ち、 本発明に係る製造法は目的ペプチ ドを十分 に工業的スケールで製造することを実施可能なら しめる ものである o
GLP- 1(7- 36)NH2の製造に係る本発明の意図の一つと して、 補助べ プチ ドが付加した GLP-1(7- 37) からなるぺプチ ドを経る ことにより 、 上述のようにア ミ ド化酵素のような修飾酵素等の反応時における 凝集性の改善や溶解度を上げるという ことが挙げられる。 そこで、 当該有用性があるか否かについて更に検討してみるために、 RHHGP[ G]、 RHHGP- 1 、 GLP- 1(7- 37) 及び GLP- 1(7- 36)NH2を精製し、 各々の ペプチ ドの溶解度の p H依存性を調べた。 その結果、 GLP- 1(7- 37) は予想した通りに ρΗ5· 0 から ρΗ7.0 の範囲で溶解度が低いことが明 らかになつた。 一方、 MHGP[G]は ρΗ4.0 から ρΗ6.0 付近まで溶解度 が高い結果が得られた。 この結果により、 ア ミ ド化酵素反応は弱酸 性領域で行なわれるために、 酵素基質と しては補助ペプチ ドを有す る RHHGP[G]を GLP-K7- 37) の代わりに用いる有用性が確認された。 各べプチ ドの溶解度の pH依存性を検討した実験において、 RHHGP[ G]及び RHHGP-1 は各々 pH6.0, pH6.4付近で急激に溶解度が低下した 。 また、 GLP-1(7-36)NH2は経時的に沈殿あるいは微結晶を形成した 。 従って、 RHHGP[G]及び RHHGP- 1 の中性から弱アルカ リ領域での溶 解度を上げる物質、 及び弱酸性から弱アル力 リ領域で目的べプチ ド の溶解性を維持できる物質があれば、 生産工程上非常に有用である と考えられる。
そこで、 そのよ うな物質を鋭意検討した結果、 反応液に RHHGP[G] 及び RHHGP- 1 の場合は界面活性剤の添加 (例えば、 Tween 80、 0.1% 添加) 、 GLP-1(7- 36)NH2の場合は界面活性剤の添加 (例えば、 Twee n 80、 0.3%以上の添加) 及び/又は塩の添加 (例えば NaCl lOOmM以 上の添加) により有効に凝集を防ぐこ とができることを見出し、 本 発明に係る製法工程に導入してその有用性もあわせて実証すること ができた。
本発明に係る製造法を用いた GLP- 1(7-36)NH2の製造工程について 、 GLP-1(7- 36)NH2の 10グラムスケールの精製を行つた各工程収率の ま とめを表 1 に示した (生産菌 W3110/pGP97ompPRを 20リ ッ トル培養 し、 その培養液 8 リ ッ トル相当分を精製に使用した) 。
表 1
GLP- 1(7- 36)NH2生産工程のま とめ
工程 GLP - 1(7 - 37)/ 単位ェ 全回収率
GLP-K7-36) 程収率
NH2 量 (g) (%) (%) 培養 ( 8 L培養液相当) 26.87 100 100 OmpT反応 22.95 85.4 85.4
SPセファ ロ一スク ロマ ト 20.22 98.8 76.2 ァ ミ ド化酵素反応 20.70 100 77.0 Kex2酵素反応 18.70 90.4 69.6 MacroPrep HSク ロマ 卜 16.78 93.7 62.4
Poros R2ク ロマ 卜 13.48 80.4 50.2 培養からア ミ ド化酵素反応の工程は GLP- 1(7- 37) 量、 Kex2工程か ら Poros R2ク ロマ ト工程までは GLP- 1(7 - 36)NH2量を示す。 GLP- 1(7- 37)/GLP- 1(7- 36)NH2量は H P L Cのピーク面積とア ミ ノ酸の数比か らの換算値から求めた。
表 1 から明らかなように各工程の単位工程収率は非常に高く 、 ま た最終の回収率が約 5 0 %と非常に高いこ とが示された。 従って、 本発明に係るペプチ ドの製造法が GLP-l(7-36) NH2 の製造において 適用可能であり、 且つ工業生産レベルでのスケールアップが可能で あるこ とは明らかである。 更に、 OmpTプロテア一ゼ及び Kex2プロテ ァ―ゼによる切断処理反応の工程において単位工程収率が各々 85% 及び 90.4%であるこ とから、 設定した各切断部位領域には酵素によ る切断処理反応に非常に適したァ ミ ノ酸配列が用いられていること も確認された。
以上のように、 本発明ではィ ンシュ リ ン放出促進活性を有する GL P-1 誘導体の製法を例と して、 目的のペプチ ドが本来有する物理化 学的性質のため製造工程上問題となる点を補助べプチ ドを用いるこ とで改善できる こ とを実証した。 具体例と して挙げた GLP-K7- 37) 及び GLP- 1(7- 36)NH2に代表される GLP- 1 誘導体の持つ物理化学的性 質による製造上の問題は、 本発明に係る製法により克服する事が可 能であり、 本発明が当該 GLP- 1 誘導体の製造においても有用である ことは言う までもない。
また、 上記の GLP- 1 誘導体の製造においても保護べプチ ドを付加 した融合蛋白を用いた製法により行う こ とができるが、 当該融合蛋 白から補助べプチ ドが付加した目的べプチ ドを経て目的ペプチ ドを 得る場合、 複数の切断部位領域が設けられるために各領域における 多段階の融合蛋白の切断方法が必要になる。
そこで、 各切断部位領域を化学的又は酵素的に切断する方法につ いて検討を行い、 特に、 後述の実施例において確認された大腸菌 Om pTプロテア一ゼで切断する方法以外によつても可能であることを確 認した。 このような、 切断部位領域に係るペプチ ド鎖の部位特異的 切断方法の代表例と しては、
( 1 ) 保護べプチ ド及び目的べプチ ドがシスティ ン残基をそのァ ミ ノ酸配列中に含まないことを利用し、 保護べプチ ドの C末端にシ スティ ンを揷入し、 シァノィ匕、 アルカ リ処理にて該システィ ン Ν末 端側で融合蛋白を特異的に切断する方法、
( 2 ) 各切断部位領域における切断は共に Kex2プロテア一ゼで行 う力 酵素認識部位に異なつたア ミ ノ酸配列を用いる ことで、 一方 の切断部位領域での反応条件下では他方の切断部位領域での切断が 起こ らない様にする方法、 及び
( 3 ) 各切断部位領域において共に Kex2プロテアーゼで切断を行 うが、 一方の切断部位領域 (切断部位領域 2 ) のア ミ ノ酸を修飾す ることにより、 他方の切断部位領域 (切断部位領域 1 ) に係る切断 の反応条件下では、 前者の切断部位領域 (切断部位領域 2 ) での切 断が起こ らない様にし、 後者の切断部位領域 (切断部位領域 1 ) で の切断後、 補助ペプチ ドと目的ペプチ ドからなるペプチ ドを精製し 、 修飾されたァ ミ ノ酸を再度修飾して前者の切断部位領域 (切断部 位領域 2 ) を Kex2プロテア一ゼで切断可能にする方法等が挙げられ 実施例
以下に、 GLP- 1 誘導体を目的ペプチ ドと して、 本発明を具体的実 施例により更に詳細に説明する。
まず、 目的ペプチ ドと して GLP- 1 ( 7-37 ) を挙げた場合の製造法と しては、 既に述べたように、 常法により、 保護ペプチ ドと GLP- 1(7 - 37) からなる融合蛋白質を発現させ、 当該蛋白質から直接 GLP- 1(7 - 37) を切り出すこ とによ り製造するこ とができるが、 精製工程に関 して GLP- 1(7- 37) の物理化学的性質上、 精製中にゲル化あるいは凝 集を起こ し、 極端な回収率の低下や、 樹脂再生が不可能になるとい つた問題が見られた。 そこで、 補助べプチ ドを付加する ことにより 、 GLP-K7-37) の物理化学的性質を変化させ、 上記欠点を回避する ことができた。 以下具体的に当該べプチ ドの製造法を説明する。
実施例 1. プラス ミ ドの構築
GLP-K7-37) を生産するためにデサイ ンされた融合蛋白質(GP97o mpPR) をコー ドする pGP97ompPR発現プラス ミ ドは、 以下に示す 4段 階のステップを経て作製した。 なお、 制限酵素処理、 ライゲ—ショ ン反応、 5'末端のリ ン酸化、 PCR の条件は常法に従った。
( 1 ) ステップ 1 PG117S4HR6GLP-1 の作製
大腸菌 OmpTプロテアーゼにより切断される GP97ompPR を設計する 目的で、 OmpTプロテアーゼの認識配列である Arg- Arg 配列を有する ア ミ ノ酸配列 R 6 (図 2参照) をコー ドする R 6合成 DNA (図 6参 照) を pG117S4HGP (特開平 9- 296000参照) の Stul部位に挿入し、 PG117S4HR6GLP-1 を作製した (図 2 ) 。
( 2 ) ステップ 2 pGP117S4HompRHKRの作製
大腸菌 OmpTプロテア一ゼによる切断の効率をさ らに高めるため、 R6部分の配列を変化させた。 PG117S4HR6GLP- 1 を Nsi I 及び Hind III で切断して得られる 3.2kb の断片 (断片 A)、 PG117S4HR6GLP-1 を BamH I及び Hind IIIで切断して得られる 0.2kb の断片 (断片 B)、 及び OmpTプロテア一ゼの認識配列である Arg- Arg 配列を有するァ ミ ノ酸配列 L 1 (図 3参照) の一部をコー ドする L 1合成 DNA (図 6 参照) を連結させ、 pGP117S4HompRHKRを作製した (図 3 ) 。 ( 3 ) ステ ッ プ 3 pGP117S4HompRHPRの作製
切断部位領域における大腸菌 OmpTプ口テア一ゼ認識配列と Kex2プ 口テア一ゼ認識配列とを異なつた配列とするため、 Kex2プ口テア— ゼ認識配列を Lys- Arg から Pro- Arg に置換することを行った。 P1及 び P2プライマ一 (図 6参照) を合成し、 pGP117S4HompRHKRを錚型と して PCR を行い、 0. lkb の DNA 断片を調製した。 得られた DNA 断片 を Bgl II及び Sph I で処理した後、 pGP117S4HompRHKR を Bgl II及 び Hind IIIで切断して得られる 3.2kb の断片 (断片 C ) と pGP117S4 HompRHKRを Sph I 及び Hind IIIで切断して得られる 0.2kb の断片 ( 断片 D ) に連結し、 pGPinS4HompRHPRを作製した (図 4 ) 。
( 4 ) ステ ッ プ 4 pGP97ompPRの作製 (図 5 )
保護ペプチ ド部分をさ らに縮小する目的で、 pGP97ompPR を作製 した。 P3及び P4プライマ一 (図 6参照) を合成し、 pGP117S4HompRH PRを鏵型と して PCR を行い、 DNA 断片を調製した。 得られた DNA 断 片を Pvu II及び Nsi I で処理した後、 pGP117S4HompRHPRを Pvu II及 び Nsi I で切断して得られる 3.2kb の断片に連結し、 pGP97ompPRを 作製した。
作製されたプラス ミ ド pGP97onipPRがコー ドする融合蛋白 (GP97om pPR)のァ ミ ノ酸配列を図 7に、 当該ア ミ ノ酸配列をコー ドする DNA 塩基配列を図 8に示す。
実施例 2. 融合蛋白(GP97ompPR) の発現
pGP97ompPR を有する大腸菌 W3110 株を 30リ ッ トル ' ジャ ーフ ァ ーメ ンタ一を用いて、 4 g/1 K2HP04> 4 g/1 KH2P04, 2.7 g/1 Na 2HP0,, 0.2 g/1 NH,C1, 1.2 g/1 (NH,)2S04, 4 g/1 酵母エキス , 2 g/1 MgS04 · 7H20, 40 mg/1 CaCl2 · 2H20, 40 mg/1 FeSO, · 7H20, 10 mg/1 MnSO^ · nH20, 10 mg/1 A1C13 · 6H20, 4 mg/1 CoC 12 · 6H20, 2 mg/1 ZnSO, · 7H20, 2 mg/1 Na2Mo04 · 2H20, 1 mg/ 1 CuCl 2 · 2H 2 0, 0. 5 nig/ 1 H 3 B0 " l Omg/ 1テ トラサイ ク リ ンを含む 培地 (20L 、 pH7. 0 ) で、 培養温度を 12時間までは 32°C、 その後は 37 °Cと し、 グルコースを添加しながら、 24時間にわたり培養を行つ た。 培地 pHは 28 %アンモニア液を添加し、 pH7. 0に制御した。 図 9 は菌体濃度 (OD660 ) の推移と各サンプリ ング時点における融合蛋 白質 (GP97ompPR ) の発現を、 16% SDS- PAGEにより調べた結果であ る。 GP97ompPR は封入体と して発現し、 培養終了時には全菌体蛋白 質の 30% 以上を占めた。
培養後、 マン ト ンゴリ ーンホモジナイザ一(15M- 8TA) を用いて、 培養液を 500Kg/cm2 の条件でホモジナイズ処理し、 遠心機により沈 殿画分 (封入体) を回収した。 次に得られた沈殿を洗浄するため、 培養液と等量の脱イオン水を添加し、 懸濁後、 再度遠心分離を行い 、 沈殿を回収した。 この洗浄操作をさ らにも う一度繰り返し、 最終 的に得られた沈殿を適量の脱イオン水に懸濁した。
実施例 3 . GP97ompPR の大腸菌 OmpTプロテア一ゼによるプロセッ
シング
得られた封入体懸濁液を OD660 の値が 1000となるように希釈した 後、 その 1000 ml を採取し、 pH未調整の 1M Tri s-HCl を 250 ml、 0. 5M EDTA (pH8. 0 )を 10 ml 、 粉末尿素 1200 gを添加し、 その後、 脱ィ オン水を加え最終容量を 5000 ml と した。 次に、 塩酸を用いて pHを 7. 5 に調整し、 37 °Cで 2 時間加温した。 この操作により封入体中に 存在している大腸菌 OmpTプロテアーゼが働き、 GP97ompPR を切断し 、 RHHGP [G]が遊離された。 図 10は GP97ompPR からの RHHGP [G]の切り 出しを、 逆相 HPLCにより分析した結果である。 分析は YMC PROTEIN - PRカラムを用い、 溶液 A に 0. 1%ト リ フルォロ酢酸を含む 10% ァセ ト 二 ト リ ル溶液、 溶液 B には 0. 095%ト リ フルォロ酢酸を含む 70¾S ァセ トニ ト リ ル溶液を用い、 lml /min の流速にて、 溶液 B を 13分間で 44 %から 70%とする直線濃度勾配で行った。 本操作により 85% の GP97 ompPR が切断を受け、 反応終了後の試料には、 KHHGP[G]に相当する ピークが得られた (図 2 1 A ) c
なお、 大腸菌 OmpTプロテア一ゼを用いた切断処理による融合蛋白 からの補助べプチ ドが付加した GLP- 1(7- 37) の切出しは pGP97ompPR 由来の融合蛋白に限ったものではな く 、 実施例 1 で作製された pGll 7S4HR6GLP-1 、 pGP117S4HompRHKK及び pGP117S4HompRHPR由来の融合 蛋白質においても同様に可能であった。 これらのプラス ミ ド由来の 融合蛋白のァ ミ ノ酸配列を図 1 1 、 図 1 2及び図 1 3 に示す。
実施例 4. RHHGP[G]の精製
大腸菌 OmpTプロテア一ゼ反応後、 尿素、 Tween 80をそれぞれ、 7M 、 0.1%となるように添加した後、 NaOHにて pHを 8.0 と した。 その後 、 遠心分離して上清を得た。 SP- Sepharose BigBeads (アマシャム • フ アルマシアバイオテク ノ ロジ一社) を充塡したカラムを 100 mM Tris HC1 (pH8.0) 、 次いで 20 mM Tris HC1 (pH8.0) I 5 M尿素 I 0.1% Tween 80にて平衡化した。 上記の上清を平衡化したカラムに 添加し、 同平衡化液にて洗浄、 次いで、 0.2 M NaCl /20 mM Tris
HC1 (pH8.0) I 0.1¾ Tween 80 にて洗浄し、 0.5 M NaCl/20 mM Tris HC1 (pH8.0) I 0.1% Tween 80 にて溶出した (図 1 4 ) 。
本溶出液中の RHHGP[G]の純度は 9 8 %と非常に高かった。 補助べ プチ ド付加および、 低圧ク ロマ トカラムからのステップ溶出という 簡便な工程で、 このよ うな高純度のペプチ ドが得られた理由は、 捕 助ペプチ ド設計の際に、 親水性ァ ミ ノ酸の導入や等電点を考慮しィ オン交換カラムでの精製を行つたこ とによる。
以上の結果が本工程以降の精製工程の省力化に大き く 寄与したこ とを、 実施例 5で示す。
実施例 5. RHHGP[G]からの GLP-K7- 37) の切り出し及び 製 実施例 4 で精製された RHHGP[G]を次に示す反応液組成と し、 Kex2 プロテア一ゼによるプロセッ シングを行った。 反応液組成 ; 5.0 mg /ml RHHGPCG], 20 mM Tris HC1, 0.1% Tween 80, 0.3 NaCl, H 8.0, 2.0 mM CaCl2, 8000 unit/ml Kex2プロテア一ゼ (約 1.0 mg/L ) 。 1時間で 9 5 %の反応率を得た (図 1 5 — B ) 。 本反応中、 GL P-K7-37) の沈殿形成は観察されなかった。
酵素反応後、 直ちに本反応液に酢酸アンモニゥムを最終 10 mM と なるように添加し、 塩酸にて pH4.5 と した。 10 mM 酢酸ァンモニゥ ム (pH 4.5) で平衡化した Poros R2カラムに、 10 mg GLP- 1(7- 37) 相当量 I 1 ml 樹脂となるように負荷し、 同平衡化液つづいて 0.2% 酢酸 /10% ァセ トニ ト リ ルで洗浄し、 0.2 酢酸 Z40% ァセ トニ ト リ ルで溶出した。 ァセ トニ 卜 リ ルを除去したのち、 凍結乾燥品を得た 。 GLP_1(7- 37) の回収率は 80!¾ で、 純度は 99%であった (図 1 5 —
C )
保護べプチ ドと目的ペプチ ドからなる融合蛋白質から直接 GLP-1( 7-37) を切り出す方法 (例えば、 特開平 9- 296000参照) と本発明の 方法の比較を表 2 に示す。
表 2
GLP- 1(7- 37) 生産ェ 呈の比較
A
工程 純 度 単位工程収率 全回収率
( ) (%) (%)
Kex2酵素反応 15 100 酸沈殿処理 68 68 ろ過 75 88 60 陽ィォン交換ク ロマ ト 95 95 57 逆相ク ロマ ト 99 72 41
B 工程 純 度 単位工程収率 全回収率
( % ) (%) (%)
OmpT反応 24 - 100 ろ過 24 90 90 陽ィォン交換ク ロマ ト 99 99 89
Kex2酵素反応 96 90 80 逆相ク ロマ ト 98 80 64
Aは、 保護べプチ ドと目的ペプチ ドからなる融合蛋白質から直接 GLP-K7-37) を切り出す方法による。 Bは、 補助ペプチ ドが付加さ れた目的ペプチ ドにさ らに保護べプチ ドが付加された融合蛋白質か ら GLP- 1(7-37) を切り出す方法による。
RHHGP[G]を中間体とする ことで、 純度 9 9 %の GLP- 1 (7- 37) が簡 便かつ高収率で得られた。 本精製方法では HPLCを使用しないため、 工業的スケ一ルへの拡大が容易である ことは言う までもない。
次に、 目的ペプチ ドに修飾が必要な場合の例を以下に示す。 GLP - 1(7- 36)NH2はア ミ ド化ペプチ ドであるためにア ミ ド化修飾反応が必 要である。
実施例 6. 補助ペプチ ドが付加した GLP- 1(7- 37) のア ミ ド化修飾 反応
ア ミ ド化酵素を用いて実施例 4で得られた RHHGP[G]を RHHGP- 1 に 変換した。 RHHGP [G]を基質と した場合の反応条件を決定するため、 0.5 mlの反応容積で p H、 温度、 硫酸銅濃度、 カタラーゼ濃度、 基 質濃度、 L—ァスコルビン酸、 及び濃度ア ミ ド化酵素濃度の至適化 を行った。 また、 RHHGP[G]と RHHGP- 1 の分離分析は、 イオン交換 H P L Cカラム (Poros S/H 、 パ一セプティ ブバイォシステム社) を 用い、 バルビツールを除く 30 mM Britton - Robinson緩衝液 (以下 、 BR緩衝液) 存在下、 pH勾配溶出 (6.0 〜9.0 ) で行った。 本反応条件の至適 pHは 5.0 〜5.5 であった (図 1 6 ) 。 至適反応 条件は 1G mM 酢酸ナ ト リ ウム (pH 5.0) 、 5.0 M 硫酸銅、 0.5 g/ 1 L ーァスコルビン酸、 1 μ I ml力 タ ラ 一ゼ、 5.0 mg I ml RHHG P[G]、 温度 32°C、 1500 unit I mlア ミ ド化酵素であった。 本条件に 後述の実施例 1 1 において判明した凝集抑制効果を有する Tween 80 (0.1 ¾ ) を加え、 RHHGP[G]溶液 5 リ ッ トルを上記の条件で反応を 行い、 EDTAを添加するこ とで反応を停止した。 本条件下による反応 の結果、 RHHGP[G]は 1時間で 98%以上の反応率で RHHGP- 1 に変換さ れた (図 1 7 ) 。
実施例 7. RHHGP-1 から Kex2プロテアーゼによる GLP - 1 (7-36)NH 2
の切り出し
Kex2プ口テア一ゼによるプロセ ッ シ ング反応は、 基質となる部分 の配列によって pH依存性及び活性変化を示す (EP794255A ) 。 そこ で、 0.5 ml反応容量で pH、 塩化カルシウム濃度及び添加酵素量の至 適化を行った。 KHHGP- 1 の場合は、 pH8.0 で最大となる ことが示さ れた (図 1 8 ) 。 RHHGP- 1 を基質にした場合の至適反応条件は、 10 mM Tris · HC1 (pH8.0) 、 1 mM塩化力ルシゥム、 8, 000 units I ml Kex2 プロテアーゼ及び反応温度 30〜32°Cと した。 後述の実施例 1 1 の結果から、 反応溶液中の NaCl濃度を 0.1 M 以上と し、 更に Twee n 80を 0.1 % 反応溶液中に添加するこ とで凝集を回避する事ができ た。
実施例 6のア ミ ド化反応後の試料溶液本条件で 30°Cで 2時間反応 させることで、 95%以上の反応率を得た (図 2 1 C ) 。 本反応中、 GLP- 1(7- 36)NH2の沈殿形成はみられなかつた。
実施例 8. GLP- 1(7- 36)NH2の精製
微量混在する不純物を除去するため、 陽イ オ ン交換樹脂 (MacroP rep High- S、 バイオラ ッ ド社) を用い、 pH勾配溶出にて GLP- 1.(7- 36 )NH2と分離した。 カラムを、 20 DiM BR緩衝液 (pH 4.5) / 20 mM N aCl / 0.3 ¾ Tween 80にて平衡化した。 試料溶液の組成を 0.3 M Na C1 / 0.3 % Tween 80 、 pH4.5 と した。 当該試料溶液をカラムに添 加し、 平衡化液にて洗浄した。 平衡化液 (A液) と、 溶出液 ( B液
; 平衡化液と同じ組成で pH 7.0) を用いて 50 % B液から 100 ¾ B 液 へのリ ニアグラジェン トにて、 GLP- 1(7- 36)NH2の溶出を行い (図 1
9 ) 、 不純物の割合を 0.5 % 未満と した (図 2 0 ) 。 本工程で、 実 施例 7 までに添加された各試薬、 未反応物及び微量不純物の大半は 除去され、 純度 98%以上の GLP-1(7- 36)NH2が得られた (図 2 1 D ) 。 プールされた溶液は pH4.5 、 4 °Cにて保存した。
実施例 9 . GLP- 1(7- 36)NH2の最終精製
前述の実施例 8で純度 9 8 %以上の GLP- 1(7- 36)NH2が得られた。 しかし、 医薬品と して使用する場合には目的ペプチ ドの純度もさる ことながら、 非べプチ ド性のェン ド トキシンの混入を避けなければ ならない。 そこでぺプチ ド性医薬品最終精製に頻繁に使用される分 取逆相 H P L Cカラムを使用し、 エン ド トキシンなどの除去を試み たが、 力ラム内で GLP- 1(7- 36)NH2の凝集及び Z又はゲル化が起こる 場合があった。 GLP- 1(7- 36)NH2の易凝集性は、 スケールア ップに際 し、 大きな危険因子となる こ とが予測された。
一方、 疎水性ク ロマ 卜樹脂は、 逆相ク ロマ ト樹脂と同様に、 物質 の疎水性を利用して吸着させる ものであるが、 その官能基の密度は 一般に低く 、 吸着容量は 5 — 1 5 m g Zm 1 樹脂である。 しかし、 担体の種類、 官能基の種類は豊富で、 GLP- 1(7- 36)NH2の様な易凝集 性を有するペプチ ドでも、 高回収率を与える ものを選べる可能性が ある。 そこで種々の疎水性ク ロマ ト樹脂を検討した結果、 ブチル基 、 イ ソブチル基、 へキシル基あるいはフヱニル基を持つ親水性の担 体からなる樹脂、 あるいは、 Poros R2に代表されるポリ スチレン系 の樹脂が適しているこ とが判明した。 以下、 そのような樹脂の一つ と して、 Poros R2 (パ一セプティ ブバイオシステム社) の例を示す 本樹脂の GLP- 1(7- 36)NH2に対する最大吸着容量は約 1 2 m g / m 1 樹脂と、 他の疎水性ク ロマ 卜用樹脂にく らベて高く 、 溶出時の GL P-l(7- 36)NH2濃度が高く なり、 凍結乾燥に適している ことが示唆さ れた。
800 mlのカラムを、 lOmM酢酸アンモニゥ厶 (pH4.5 ) にて平衡化 し、 実施例 8 における試料溶液を添加し、 平衡化液で洗浄後、 さ ら に 0.2 %酢酸で洗浄し、 0.2 %酢酸/ 40%ァセ トニ ト リ ルで溶出し た。 GLP-K7- 36)NH2の回収率は 80%で、 純度は 98%であった (図 2 1 E ) 。 本標品は、 揮発性の酸を低濃度含むのみであり、 ァセ トニ ト リ ル除去の後、 容易に凍結乾燥が行えた。 凍結乾燥品を再溶解し 、 ゲル化法 (リ ムルス ES-II テス 卜、 和光純薬社) にてエン ド トキ シンを測定した結果、 検出限界以下 (0.03u/mg以下) であった。 上 記の方法で示したカラム操作で高収率かつ高純度の GLP- 1(7-36)NH2 が精製でき、 さ らに凍結乾燥できる溶媒で溶出できることは産業上 非常に有用である ことは言うまでもない。
実施例 1 0. 補助ペプチ ドを用いる こ とによる凝集性の緩和 補助べプチ ドを利用する本発明に係る製造法においては、 従来の 製法では問題となっていた目的ペプチ ドの物理化学的性質に由来す る特性である凝集性の改善を一つの目的と しているので、 当該改善 の有無を検討する必要がある。 そこで本実施例においては、 補助べ プチ ドと GLP- 1(7 - 37) からなるペプチ ド及びア ミ ド化された補助べ プチ ドと GLP- 1(7- 36)NH2からなるぺプチ ドの凝集性が GLP- 1(7- 37) 及び GLP- 1(7- 36)NH2に比較して改善されているかを検討した。
まず、 RHHGP[G]を精製し、 その凝集性が GLP- 1(7- 37) に比べて改 善されているかを調べると と もに凝集を抑制する物質の検索を行つ た。 各ペプチ ドの試料は、 RHHGPCG]については SP- Sepharose BigBe ads ク ロマ トグラフィ 一にて精製した試料を、 RHHGP - 1 については 精製した RHHGP[G]をア ミ ド化した試料を、 GLP- 1(7- 37) については 精製した RHHGP[G]を Kex2プ口テア—ゼにより切断した試料を、 GLP - 1(7-36)NH2については RHHGP - 1 を Kex2プロテア一ゼにより切断した 試料を、 各々 Poros R2カラムを用いてァセ トニ 卜 リ ル濃度勾配溶出 するこ とで純度 9 8 %にまで精製し、 凍結乾燥して調製した。
凝集性は各べプチ ドの溶解性に密接に関係している と考えられる ので、 各ペプチ ドの溶解度の p H依存性を検討した。 その結果を図 2 2及び図 2 3に示す。 GLP- 1(7- 37) は pH5.5 から pH 6.5、 即ち、 了 ミ ド化酵素反応条件至適 pHである弱酸性から中性 p H条件下では 溶解性が低く 、 製造中間体と して不適切であることが判る。
一方、 RHHGP[G]及び RHHGP- 1 は、 pH 6.2付近から溶解度が低下す る ものの、 少な く と も pH 5から pH6 までは十分な溶解性が保持でき るため、 ア ミ ド化酵素反応条件でも十分効率よ く反応が行えること が確認できた。
実施例 1 1. 凝集抑制をもつ物質のスク リ 一ニング
補助べプチ ドを利用する本発明に係る製造法を用いた GLP- 1(7-36 )NH2の工業的レベルでの製造方法の確立において、 中性から弱アル カ リ性の領域で RHHGP[G]及び RHHGP- 1 の溶解度を上げる物質、 及び 弱酸性から弱アル力 リ性の領域で GLP- 1(7- 36)NH2の溶解性を維持で きる物質があればさ らに良い (GLP- 1(7- 36)NH2は図 2 2 に示した試 験において GLP- 1(7- 37) よ り遅れるが、 pH5.3 から pH8.0 の広い範 囲で経時的に沈殿あるいは微結晶を形成する こ とが明らかになつた
) o
上記の各べプチ ドの溶解性を維持できるように溶液に添加する物 質と して、 界面活性剤、 糖類、 塩、 有機溶媒等が候補と して考えら れる。 そこで、 界面活性剤と しては Tween 80、 Triton X- 100、 糖類 と してはグルコース、 マンニ トール、 シュ一ク ロース、 塩と しては NaCl、 有機溶媒と してはエタノ ール、 グリ セロール、 DMS0について その凝集抑制能の検討を行った。
RHHGPCG]. RHHGP- 1及び GLP- 1(7- 36)NH2の 10 mg I ml水溶液を調 整し、 予め 0. 1 m 1 の 300 mM BR 緩衝液(pH7.9) 、 及び 0.1 mlの
1 0倍濃度の被検物質溶液が入ったプラスチッ クチューブに、 各べ プチ ド溶液 0.8 mlを加え、 pHを RHHGP[G]は pH7.5 - 8.5 、 RHHGP-1 は PH8.0 、 GLP- 1(7- 36)NH2は pH 6.5と凝集の起こ りやすい p Hに調 製し、 濁度 ( 6 6 0 n mの吸光度) を経時的に測定した。 得られた 結果の内、 Tween 80、 NaCl 及び温度による凝集能抑制効果を図 2
3及び図 2 4 に示した。
RHHGPCG]. RHHGP-1 は 0.1 ¾ Tween 80にて沈殿形成が強く 抑制さ れたが (図 2 3 A) 、 GLP- 1(7- 36)NH2では 0.3 % 以上の Tween 80 ( 図 2 3 B ) 、 100 mM以上の NaCl (図 2 4 C ) 及び Z又は低温 (図 2
4 D) で凝集が抑制されるこ とが判明した。
上記の結果により、 実際の生産系での pH条件に関して、 本発明に 係るぺプチ ドの製造法を用いる場合、 反応液に塩及び界面活性剤の 添加が目的べプチ ドの凝集抑制に有用であることが実証され、 高純 度かつ高収量で目的のぺプチ ドを生産することができることが示さ れた。
実施例 1 2. 切断部位領域における切断方法
切断部位領域において切断処理をする際に用いられる切断方法に ついて検討した。 即ち、 ( 1 ) 切断部位領域 1 : シァノ化/アル力 リ化、 切断部位領域 2 : Kex2プロテアーゼ、 ( 2 ) 切断部位領域 1 : Kex2プロテアーゼ、 切断部位領域 2 : Kex2プロテア—ゼ、 及び ( 3 ) 切断部位領域 1 : DTNB (5, 5' - ditiobis- (2- nitrobenzoic aci d)) 付加/ Kex2プロテア—ゼ、 切断部位領域 2 : 還元/ Kex2プロテ ァ一ゼである場合の各切断方法について、 目的べプチ ドを GLP-K7 - 37) 及び GLP- 1(7-36) NH2 と して検討したところ、 本発明に係る製 法おいて保護べプチ ドを有する融合蛋白を用いる場合に、 多段階切 断反応による切断が化学的又は酵素的処理により実施可能であるこ とが明らかとなつた。
各方法に係る結果を以下に示す。 切断反応後に生成する補助ぺプ チ ドと GLP- 1(7- 37) からなるポリペプチ ドの親水性を增加させ、 中 性付近での溶解性を改善するために、 全ての補助ペプチ ド中に 4連 続する ヒ スチジ ン配列を導入した。
A. ( 1 ) の方法を用いたシスティ ン残基での特異的切断を経由 する GLP- 1(7- 37) の製造方法
本方法は、 目的べプチ ドがシスティ ンを含まない場合、 一方の切 断部位領域中 (切断部位領域 1 ) のシスティ ン残基を化学的に切断 する方法であり、 例えば、 発現した融合蛋白を得た後に CADP ( 1-c yano-4-dimethy lammo-pyridinium tetraf luorobor te ) でシステ イ ン残基をシァノィ匕した後、 アルカ リ (NaOH) 処理することより切 断部位領域のシスティ ンの N—末端側で特異的に切断できることを 確認した。
即ち、 まず補助べプチ ドと して GCHHHH (配列番号 : 5 ) のァ ミ ノ 酸配列に隣接した切断部位領域 1 のァ ミ ノ酸配列と して PGGRPSRHKR (配列番号 : 6 ) を選択し、 融合蛋白中に導入した。 当該融合蛋白 を 30mg/ml の濃度で、 50mM Tris · HC1 (pH8.2) 、 5M尿素、 lOmM
DTT (dithiothreitol) に溶解し、 30°Cの恒温槽中で 30分保温し てシスティ ンを完全に還元した。 これを lOmM Tris · HC1 (pH8.2) 、 5M尿素で平衡化したゲルろ過カラム (フアルマシア社製 PD10力 ラム) にて DTT を除去した。
システィ ンをシァノ化するため、 酢酸を最終 0. 1Mとなるように加 え、 さ らに CADPをシスティ ンの 4倍モル量加え、 30°Cで 1 時間反応 させた。 残存 SH基を、 DTNBで定量する こ とで、 シァノ化反応を検証 した。
10mM酢酸、 5M尿素で平衡化した PD10力ラムで過剰の試薬を除去し 、 NaOHを最終 50mMになるように添加し室温で 30分放置してシァノィ匕 されたシスティ ン部位で上記融合蛋白を特異的に切断した。 切断率 は約 50- 70 %であつた。
他方の切断部位領域 (切断部位領域 2 ) については実施例 7 と同 様の方法で切断処理を行った。
B . ( 2 ) の方法を用いた Kex2プロテア一ゼによる切断部位領域 の切断
各切断部位領域は Kex2プロテアーゼ切断部位領域を有しているが 、 一方の切断部位領域 (切断部位領域 2 ) のァ ミ ノ酸配列は他方の 切断部位領域 (切断部位領域 1 ) での切断に係る反応条件では殆ど 切断されないように設計された。
Kex2プロテア—ゼの切断部位領域に係る切断認識配列の最適化に おいて、 P l、 P 2サブサイ 卜の他に、 P 4サブサイ トのア ミ ノ酸 残基に電荷が本酵素の活性に大き く 影響すること、 特に P 4サブサ ィ 卜に酸性ァ ミ ノ酸が存在すると、 一定の条件下では融合蛋白が全 く切断されないこ とが知られている (特開平 9- 296000 ) 。 これを利 用し、 例えば、 補助ペプチ ドと しての HRHKRSHHHH (配列番号 : 7 ) からなるア ミ ノ酸配列に隣接した切断部位領域 2 のア ミ ノ酸配列を SDHKR (配列番号 : 8 ) と して P 4サブサイ 卜にァスパラギン酸 ( D ) を導入したところ、 融合蛋白中の切断部位領域 1 に係る Kex2プ 口テア一ゼによる切断では 90 %以上が切断されたが、 切断部位領域 2 は切断から保護された。 この結果より、 P 4サブサイ トにァスパ ラギン酸を導入するこ とで、 切断部位領域 1 が特異的に切断される ことが明らかになつた。
得られた補助べプチ ドが付加した GLP-l(7-37) を分離するため、 イオン交換とゲルろ過機能を有するカラムク ロマ ト グラフィ ー (例 えば、 セル口ファイ ン C- 200 カラムク ロマ トグラフィ ー) を行った と ころ、 目的の補助ペプチ ドが付加した GLP-1(7- 37) が特異的に吸 着された。 一部未反応の融合蛋白も吸着するが、 塩濃度勾配で容易 に分離できた。 回収率は 94%であった。 なお、 このク ロマ トグラフ ィ 一は他の補助べプチ ドが付加した GLP- 1(7- 36) 2にも適用できる 次に、 ア ミ ド化修飾反応を行った後に、 補助ペプチ ドが付加した GLP- 1(7- 36)NH2から GLP- 1(7- 36)NH2を切りだすために切断部位領域 2 において Kex2プロテア一ゼによる切断処理を行った。 尿素 (変性 剤) が存在し且つアル力 リ性という第一切断条件下では、 Kex2プロ テアーゼは切断部位領域 2 を切断しなかつたが、 尿素がない状態で は、 適当な p Hを選ぶこ とで、 切断部位領域 2 を認識できることが 判明した。 最適 pHは 6.5-7.3 で、 切断部位領域 1 における切断反応 条件の pH8.2 では切断されにく かったことが示された。
これは、 上記補助ペプチ ドが付加した GLP - 1(7 - 36) NH2 が、 それ に保護べプチ ドが更に付加した融合蛋白とは異なり、 尿素非存在下 でも、 広い p H領域で可溶性であるためである。 そこで Kex2プロテ ァ一ゼを反応させ、 逆相 HPLCにてぺプチ ドを分離定量し 98%以上の 切断で終了と した。 本系は反応液中に尿素を含んでいないため、 Ke x2プ口テア一ゼの失活はほとんど起こ らない。 そのため必要な Kex2 プロテア一ゼ量は基質とのモル比で 1:20000 〜1:40000 と極端に少 なく てすむ利点がある。 上記のように、 各切断部位領域に係る切断処理において同一の酵 素を使用することで GLP- 1(7- 37) 及び GLP- 1(7-36)NH2が生産できる ことを実証することができた。
C . ( 3 ) の方法を用いたシスティ ンの特異的修飾を利用する切 断方法
本方法は上記 B. ( 2 ) の方法とほぼ同様の方法であるが、 目的 ぺプチ ドにシスティ ン残基が存在しない場合、 一方の切断部位領域 (切断部位領域 2 ) の P 4サブサイ トに導入したシスティ ン残基を 修飾、 即ちシスティ ンの側鎖を DTNB (dithionitriobenzoic acid) で処理を行う こ とで他方の切断部位領域 (切断部位領域 1 ) に係る Kex2プロテア一ゼ切断反応時の切断から保護し、 補助べプチ ドが付 加した GLP - 1(7-37) からなるペプチ ドを得た後に還元を行い、 切断 部位領域 2を Kex2プロテアーゼで切断する方法である。 このよ うな 修飾反応にはスルフ ォ ン酸化、 D T N Bによる非対称ジスルフ ィ ド 化が代表例と して挙げられるが、 システィ ン側鎖に負電荷を与える 方法であればよ く 、 特に限定される ものではない。 例えば、 補助べ プチ ドと しての HRHKRSHHHH (配列番号 : 7 ) からなるァ ミ ノ酸配列 に隣接した切断部位領域 2のァ ミ ノ配列を SCHKR (配列番号 : 2 4 ) と して融合蛋白に導入する。
上記のようにデザイ ンされた融合蛋白を発現させ、 得られた融合 蛋白に DTNB処理を行い、 システィ ンを非対象ジスルフィ ドと した。 完全にシスティ ンが修飾されていることを確認後、 Kex2プロテア一 ゼによる切断処理反応を行い、 定量的に補助べプチ ドの付加した GL P-K7-37) からなるペプチ ドが得られる こ とを確認した。 即ち、 切 断部位領域 2 において Kex2プロテア—ゼのァ ミ ノ酸配列認識部位の P 4サブサイ 卜をシスティ ンと し、 その側鎖特異的に負の電荷を導 入するこ とで、 切断部位領域 1 に係る Kex2プロテアーゼによる切断 時に切断部位領域 2 は切断から保護された。
次に、 上記 B と同様に精製及びア ミ ド化反応を行い、 DTT を加え て補助べプチ ドが付加した GLP-1(7-36)NH2を還元し、 疎水性カラム ク ロマ 卜 グラフィ 一によ り純度 98%まで精製し凍結乾燥を行つた。 本品を 5 mg/ml の濃度で 20 mM BisTris (pH7.0), 2 mM塩化カルシ ゥムに溶解し、 1000ュニッ ト / mlの Kex2プロテアーゼを加え、 3 0 °Cで反応させたと ころ、 補助べプチ ドが付加された GLP- 1(7- 36)NH2 は特異的に切断されて GLP - 1(7- 36)NH2が生成した。
本実施例では切断部位領域 2 を還元状態で行ったが、 正電荷を持 たせるよ うな修飾を行って、 Kex2プロテア一ゼに対する反応性を変 化させる こと も可能である ことは言うまでもない。 産業上の利用可能性
本願発明により、 生理活性べプチ ドを工業的スケールで効率的に かつ安価に製造する方法が提供された。 具体的には本願明細書の実 施例に記載されているように、 今まで、 工業的スケールでの生産が 困難であった GLP-1 誘導体が高純度、 且つ高収量で生産することが 可能であることが示された。 本願発明に係る製法は GLP-1 誘導体以 外の生理活性べプチ ドの効果的な製造に用いることができ、 産業上 の有用性は極めて高い。

Claims

請 求 の 範 囲
1 . 目的の生物学的活性を有するぺプチ ドの製造方法であって、 工程 ( 1 ) ; 補助べプチ ドが付加された目的べプチ ド又は補助べ プチ ドが付加された目的べプチ ドにさ らに保護べプチ ドが付加され た融合蛋白質、 をコー ドする塩基配列を有する発現べク ターにより 形質転換された細胞を培養して、 当該培養物から前記補助べプチ ド が付加された目的べプチ ド又は前記融合蛋白質を採取する工程 ; 工程 ( 2 ) ; 工程 ( 1 ) で融合蛋白質を得た場合、 当該融合蛋白 質から補助ペプチ ドが付加された目的べプチ ドと保護べプチ ドを切 断分離し、 所望により さ らに精製する工程 ;
工程 ( 3 ) ; 目的べプチ ドに修飾が必要な場合、 工程 ( 1 ) 又は 工程 ( 2 ) で得られた補助ペプチ ドが付加された目的べプチ ドに修 飾反応を施す工程、
工程 ( 4 ) ; 工程 ( 1 ) 、 工程 ( 2 ) 又は工程 ( 3 ) で得られた 補助べプチ ドが付加された目的べプチ ドから、 補助ペプチ ドと目的 ぺプチ ドを切断分離し、 所望によりさ らに精製する工程 ; 並びに 工程 ( 5 ) ; 工程 ( 4 ) で得られた目的ペプチ ドを精製する工程 を含んでなる方法。
2 . 前記捕助べプチ ドが 5 ~ 5 0 のア ミ ノ酸残基を有することを 特徵とする請求項 1記載の製造方法。
3 . 前記補助べプチ ドが付加された目的べプチ ドの等電点が 8〜 1 2である ことを特徵とする請求項 1乃至 2記載の製造方法。
4 . 前記目的べプチ ドが 2 0 0以下のァ ミ ノ酸残基を有すること を特徴とする請求項 1乃至 3 のいずれか 1項記載の製造方法。
5 . 前記保護べプチ ドが 3 0〜 2 0 0 のア ミ ノ酸残基を有するこ とを特徴とする請求項 1乃至 4 のいずれか 1項記載の製造方法。
6 . 精製工程において、 イオ ン交換樹脂を用いるこ とを特徴とす る請求項 1乃至 5 のいずれか 1項記載の製造方法。
7 . ィォン交換樹脂が陽ィオン交換樹脂である こ とを特徴とする 請求項 6記載の製造方法。
8 . 精製工程において逆相または、 疎水性ク 口マ ト グラフィ ーを 用いること特徴とする請求項 1乃至 5 のいずれか 1項記載の製造方 法。
9 . 目的べプチ ドの溶解性を維持するために工程 ( 1 ) ~ ( 5 ) の少なく と も 1 つの工程において界面活性剤及び Z又は塩を添加す る ことを特徵とする請求項 1乃至 8のいずれか 1項記載の製造方法
1 0 . 宿主細胞が原核細胞又は真核細胞であることを特徴とする 請求項 1乃至 9 のいずれか 1項記載の製造方法。
1 1 . 宿主細胞が大腸菌であることを特徴とする請求項 1 0記載 の製造方法。
1 2 . 補助べプチ ドが付加された目的べプチ ドの等電点が 8〜 1 2 であることを特徴とする請求項 1乃至 1 1 のいずれか 1項記載の 製造方法。
1 3 . 目的ペプチ ドがア ミ ド化ペプチ ドであることを特徴とする 請求項 1乃至 1 1 のいずれか 1項記載の製造方法。
1 4 . 目的ペプチ ドがイ ンシユ リ ン放出促進活性を有する GLP- 1 誘導体であることを特徵とする請求項 1乃至 1 1 のいずれか 1 項記 載の製造方法。
1 5 . 補助べプチ ドが付加されたィ ン シユ リ ン放出促進活性を有 する GLP- 1 誘導体の等電点が 8〜 1 2である ことを特徼とする請求 項 1 4記載の製造方法。
1 6 . イ ンシユ リ ン放出促進活性を有する GLP- 1 誘導体の等電点 が 4. 5 〜9. 0 であるこ とを特徴とする請求項 1 4乃至 1 5記載の製 造方法。
1 7 . イ ンシユ リ ン放出促進活性を有する GLP- 1 誘導体の等電点 が 5. 5 - 7. 5 であるこ とを特徴とする請求項 1 4乃至 1 5記載の製 造方法。
1 8 . 精製工程においてイオン交換樹脂を用いることを特徴とす る請求項 1 2乃至 1 7 のいずれか 1項記載の製造方法。
1 9 . イオン交換樹脂が陽イオン交換樹脂であることを特徵とす る請求項 1 8記載の製造方法。
2 0 . 精製工程において逆相または、 疎水性ク 口マ トグラフィ ー を用いる こと特徴とする請求項 1 2乃至 1 7 のいずれか 1項記載の 製造方法。
2 1 . 目的ペプチ ドの溶解性を維持するために界面活性剤及び Z 又は塩を添加することを特徴とする請求項 1 2乃至 1 7 のいずれか 1項記載の製造方法。
2 2 . 得られたイ ンシユ リ ン放出促進活性を有する GLP- 1 誘導体 の純度が 98 %以上であるこ とを特徴とする請求項 1 4乃至 2 1 のい ずれか 1項記載の製造方法。
2 3 . 最終精製物におけるェン ド トキシ ンの含有量が 0. 03ュニッ ト I mg以下であることを特徴とする請求項 1乃至 2 2 のいずれか 1 項記載の製造方法。
2 4 . 請求項 1 4乃至 2 3 のいずれか 1 項記載の製造方法により 得られたイ ンシユ リ ン放出促進活性を有する GLP- 1 誘導体を有効成 分とする糖尿病治療用医薬組成物。
2 5 . 補助べプチ ドが付加された目的べプチ ド又は補助ペプチ ド が付加された目的べプチ ドにさ らに保護べプチ ドが付加された融合 蛋白質をコー ドする塩基配列を有する発現ベク ター。
2 6 . 補助べプチ ドが付加された目的べプチ ド又は補助ペプチ ド が付加された目的べプチ ドにさ らに保護べプチ ドが付加された融合 蛋白質をコー ドする塩基配列を有する発現べク ターで形質転換され た原核又は真核宿主細胞。
2 7 . 宿主細胞が大腸菌であることを特徴とする請求項 2 6記載 の細胞。
PCT/JP1999/000406 1998-01-30 1999-01-29 Procede de production de peptide au moyen d'un peptide accessoire WO1999038984A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NZ338004A NZ338004A (en) 1998-01-30 1999-01-29 Process for producing peptide with glucagon like peptide-1 (GLP-1) activity by incorporating a protective and helper component to facilitate purification
DE69937272T DE69937272T2 (de) 1998-01-30 1999-01-29 Verfahren zur herstellung eines peptids mittels eines hilfspeptids
IL132030A IL132030A (en) 1998-01-30 1999-01-29 Process for producing peptide with the use of accessory peptide
AU21857/99A AU765206B2 (en) 1998-01-30 1999-01-29 Process for producing peptide with the use of accessory peptide
KR1019997008935A KR100627590B1 (ko) 1998-01-30 1999-01-29 보조 펩타이드를 사용하는 펩타이드의 제조방법
DK99901926T DK0978565T3 (da) 1998-01-30 1999-01-29 Fremgangsmåde til fremstilling af peptid under anvendelse af et hjælperpeptid
EP99901926A EP0978565B1 (en) 1998-01-30 1999-01-29 Process for producing peptide with the use of accessory peptide
JP53918299A JP4331270B2 (ja) 1998-01-30 1999-01-29 補助ペプチドを用いたペプチドの製造方法
CA002284847A CA2284847A1 (en) 1998-01-30 1999-01-29 Process for producing peptides using a helper peptide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3227298 1998-01-30
JP10/32272 1998-01-30

Publications (1)

Publication Number Publication Date
WO1999038984A1 true WO1999038984A1 (fr) 1999-08-05

Family

ID=12354362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000406 WO1999038984A1 (fr) 1998-01-30 1999-01-29 Procede de production de peptide au moyen d'un peptide accessoire

Country Status (12)

Country Link
EP (1) EP0978565B1 (ja)
JP (1) JP4331270B2 (ja)
KR (1) KR100627590B1 (ja)
CN (1) CN1198937C (ja)
AT (1) ATE375393T1 (ja)
AU (1) AU765206B2 (ja)
CA (1) CA2284847A1 (ja)
DE (1) DE69937272T2 (ja)
DK (1) DK0978565T3 (ja)
IL (1) IL132030A (ja)
NZ (1) NZ338004A (ja)
WO (1) WO1999038984A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027310A1 (fr) * 1999-10-15 2001-04-19 Shionogi & Co., Ltd. Procede de production d'un precurseur d'adrenomeduline
KR100407792B1 (ko) * 2000-08-02 2003-12-01 한국생명공학연구원 인간 글루카곤 유사펩타이드를 융합파트너로 이용한재조합 단백질의 제조방법
JPWO2004037859A1 (ja) * 2002-10-11 2006-02-23 株式会社三和化学研究所 Glp−1誘導体及びその経粘膜吸収型製剤
JP2010502734A (ja) * 2006-09-06 2010-01-28 フェーズバイオ ファーマシューティカルズ,インコーポレイテッド 融合ペプチド治療用組成物
US9328154B2 (en) 2005-12-20 2016-05-03 Duke University Therapeutic agents comprising fusions of growth hormone and elastic peptides
US9821036B2 (en) 2008-06-27 2017-11-21 Duke University Therapeutic agents comprising a GLP-2 peptide and elastin-like peptides
US10258700B2 (en) 2005-12-20 2019-04-16 Duke University Methods and compositions for delivering active agents with enhanced pharmacological properties

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL139338A0 (en) * 1999-03-04 2001-11-25 Suntory Ltd METHOD OF CONTROLLING CLEAVAGE BY OmpT PROTEASE
GB0121591D0 (en) 2001-09-06 2001-10-24 Chiron Spa Hybrid and tandem expression of neisserial proteins
US20050232936A1 (en) 2001-07-27 2005-10-20 Chiron Corporation Meningococcus adhesins nada, app and orf 40
US7176278B2 (en) 2001-08-30 2007-02-13 Biorexis Technology, Inc. Modified transferrin fusion proteins
US8129504B2 (en) 2001-08-30 2012-03-06 Biorexis Technology, Inc. Oral delivery of modified transferrin fusion proteins
IL162780A0 (en) 2002-04-11 2005-11-20 Kenji Kangawa Method for producing modified peptide
AU2003239865A1 (en) 2002-05-24 2003-12-12 Restoragen Inc. Method for universal enzymatic production of bioactive peptides
CA2485701A1 (en) * 2002-05-24 2003-12-04 Fred W. Wagner Method for enzymatic production of glp-1 (7-36) amide peptides
WO2003099854A2 (en) 2002-05-24 2003-12-04 Nps Allelix Corp. Method for enzymatic production of glp-2(1-33) and glp-2-(1-34) peptides
ES2608048T3 (es) 2002-10-11 2017-04-05 Glaxosmithkline Biologicals Sa Vacunas polipeptídicas para protección amplia contra linajes meningocócicos hipervirulentos
WO2004078777A2 (en) * 2003-03-04 2004-09-16 Biorexis Pharmaceutical Corporation Dipeptidyl-peptidase protected proteins
PL1704234T3 (pl) 2003-11-21 2012-06-29 Nps Pharma Inc Wytwarzanie glukagonopodobnego peptydu 2 i analogów
PL2038423T3 (pl) 2006-06-21 2013-05-31 Biocon Ltd Metoda wytwarzania biologicznie aktywnego polipeptydu insulinotropowego
MX2009001066A (es) 2006-07-24 2009-02-05 Biorexis Pharmaceutical Corp Proteinas de fusion de exendina.
CN104936610A (zh) * 2012-11-13 2015-09-23 益普生制药股份有限公司 Glp-1类似物的纯化方法
CN104592381A (zh) * 2013-10-31 2015-05-06 江苏万邦生化医药股份有限公司 一种利拉鲁肽中间体多肽的制备方法
RU2544959C1 (ru) * 2014-04-04 2015-03-20 Александр Владимирович Бубнов Способ получения пептидов
CA2966358C (en) 2014-12-01 2021-12-07 Pfenex Inc. Fusion partners for peptide production
CN105669856A (zh) * 2016-02-13 2016-06-15 王大勇 一种基因重组长效人促肾上腺皮质激素及其制备方法
MA46990B1 (fr) 2017-08-24 2024-03-29 Novo Nordisk As Compositions glp-1 et ses utilisations
CN111378027B (zh) * 2018-12-29 2022-04-15 万新医药科技(苏州)有限公司 一种索玛鲁肽前体的制备方法
KR20220143036A (ko) 2020-02-18 2022-10-24 노보 노르디스크 에이/에스 약학적 제형

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328992A (ja) * 1991-08-19 1993-12-14 Suntory Ltd ペプチドの製造方法
JPH08187094A (ja) * 1994-09-07 1996-07-23 Suntory Ltd 蛋白の製造方法
JPH09296000A (ja) * 1996-03-04 1997-11-18 Suntory Ltd プロセッシング酵素を用いたキメラタンパク質の切断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328992A (ja) * 1991-08-19 1993-12-14 Suntory Ltd ペプチドの製造方法
JPH08187094A (ja) * 1994-09-07 1996-07-23 Suntory Ltd 蛋白の製造方法
JPH09296000A (ja) * 1996-03-04 1997-11-18 Suntory Ltd プロセッシング酵素を用いたキメラタンパク質の切断方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027310A1 (fr) * 1999-10-15 2001-04-19 Shionogi & Co., Ltd. Procede de production d'un precurseur d'adrenomeduline
KR100407792B1 (ko) * 2000-08-02 2003-12-01 한국생명공학연구원 인간 글루카곤 유사펩타이드를 융합파트너로 이용한재조합 단백질의 제조방법
JPWO2004037859A1 (ja) * 2002-10-11 2006-02-23 株式会社三和化学研究所 Glp−1誘導体及びその経粘膜吸収型製剤
US9328154B2 (en) 2005-12-20 2016-05-03 Duke University Therapeutic agents comprising fusions of growth hormone and elastic peptides
US10258700B2 (en) 2005-12-20 2019-04-16 Duke University Methods and compositions for delivering active agents with enhanced pharmacological properties
JP2010502734A (ja) * 2006-09-06 2010-01-28 フェーズバイオ ファーマシューティカルズ,インコーポレイテッド 融合ペプチド治療用組成物
US9821036B2 (en) 2008-06-27 2017-11-21 Duke University Therapeutic agents comprising a GLP-2 peptide and elastin-like peptides
US10596230B2 (en) 2008-06-27 2020-03-24 Duke University Methods of increasing nutrient absorption in the intestine using therapeutic agents comprising GLP-2 and elastin-like peptides
US11103558B2 (en) 2008-06-27 2021-08-31 Duke University Therapeutic agents comprising a BMP-9 peptide and eleastin-like peptides

Also Published As

Publication number Publication date
DE69937272T2 (de) 2008-07-10
CN1198937C (zh) 2005-04-27
NZ338004A (en) 2001-08-31
DE69937272D1 (de) 2007-11-22
DK0978565T3 (da) 2008-02-04
KR20010005859A (ko) 2001-01-15
IL132030A0 (en) 2001-03-19
AU765206B2 (en) 2003-09-11
KR100627590B1 (ko) 2006-09-25
EP0978565B1 (en) 2007-10-10
EP0978565A4 (en) 2003-05-02
IL132030A (en) 2009-06-15
CN1255945A (zh) 2000-06-07
CA2284847A1 (en) 1999-08-05
AU2185799A (en) 1999-08-16
ATE375393T1 (de) 2007-10-15
JP4331270B2 (ja) 2009-09-16
EP0978565A1 (en) 2000-02-09

Similar Documents

Publication Publication Date Title
WO1999038984A1 (fr) Procede de production de peptide au moyen d'un peptide accessoire
CN101068833B (zh) 产生羧基端酰胺化肽的方法
US7276590B1 (en) Ion exchange chromatography of proteins and peptides
US6136564A (en) Process for the production of peptides by way of streptavidin fusion proteins
KR0150565B1 (ko) 유전자 조환에 의한 사람 인슐린 전구체의 제조 및 이를 이용한 인슐린의 제조방법
US8298789B2 (en) Orthogonal process for purification of recombinant human parathyroid hormone (rhPTH) (1-34)
US8765910B2 (en) Method for amidating polypeptides with basic amino acid C-terminals by means of specific endoproteases
EP0700995B1 (en) Process for production of protein
US20100210815A1 (en) Insulin production methods and pro-insulin constructs
JP4975895B2 (ja) 高圧液体クロマトグラフィーによるインシュリンの単離方法
IE914347A1 (en) Fusion polypeptides
CA1340877C (en) Elastase inhibitory polypeptide and process for production thereof by recombinant gene technology
KR100468268B1 (ko) 카메라단백질및프로세싱효소를사용한이의절단방법
JP2021511785A (ja) 組換えポリペプチド生産用n末端融合パートナーおよびこれを用いた組換えポリペプチドの生産方法
JP4638223B2 (ja) ポリペプチド切断方法
JP3995279B2 (ja) 蛋白の製造方法
KR100443890B1 (ko) 재조합 대장균으로부터 인간 성장 호르몬의 정제 방법
WO2012115640A1 (en) Liquid insulin- containing compositions and methods of making the same
CN117965667B (zh) 一种通过切割融合蛋白制备多肽的方法
KR100473443B1 (ko) 단백질의 생산방법
JP4143300B2 (ja) 遺伝子組換えポリペプチドの生産における副生成物の生成を抑制する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 132030

Country of ref document: IL

Ref document number: 99800113.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN IL JP KR NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 21857/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 338004

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2284847

Country of ref document: CA

Ref document number: 2284847

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09402093

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997008935

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999901926

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999901926

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997008935

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 21857/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1019997008935

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999901926

Country of ref document: EP