WO1999039064A1 - Viscoelastic brace - Google Patents
Viscoelastic brace Download PDFInfo
- Publication number
- WO1999039064A1 WO1999039064A1 PCT/JP1999/000367 JP9900367W WO9939064A1 WO 1999039064 A1 WO1999039064 A1 WO 1999039064A1 JP 9900367 W JP9900367 W JP 9900367W WO 9939064 A1 WO9939064 A1 WO 9939064A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- viscoelastic
- steel
- core
- channel steel
- sheet
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 207
- 239000010959 steel Substances 0.000 claims abstract description 207
- 239000002356 single layer Substances 0.000 claims abstract description 14
- 239000011162 core material Substances 0.000 claims description 110
- 230000008602 contraction Effects 0.000 claims description 6
- 238000010008 shearing Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 17
- 238000013016 damping Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000003190 viscoelastic substance Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
- E04H9/0237—Structural braces with damping devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/30—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium with solid or semi-solid material, e.g. pasty masses, as damping medium
- F16F9/303—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium with solid or semi-solid material, e.g. pasty masses, as damping medium the damper being of the telescopic type
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
- E04H9/0235—Anti-seismic devices with hydraulic or pneumatic damping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2236/00—Mode of stressing of basic spring or damper elements or devices incorporating such elements
- F16F2236/10—Shear
- F16F2236/103—Shear linear
Definitions
- the present invention relates to a viscoelastic brace that gives a damping effect to external forces such as seismic force and wind in buildings and other structures.
- a conventional vibration damping device is a vibration damping device 102 (Japanese building) in which a steel plate 103 and a viscoelastic body 104 are adhered to the end of a brace 101 in a laminated manner.
- the steel outer bracing 111 Vibration suppressor 115 for buildings having a viscoelastic material layer 113 interposed between the peripheral surface and the outer peripheral surface of steel inner reinforcing member 112 (FIG. 8 (b)), or disclosed in Japanese Patent No. 2583801.
- a cement-based hardening material 114 is fixed in a pipe, which is a steel outer bracing material 111, and an inner peripheral surface of the cement-based hardening material 114 and an outer peripheral surface of the steel inner bracing material 112.
- a vibration suppression device 116 (FIG. 8 (c)) for a building in which a viscous material layer 113 is interposed and fixed between and.
- a conventional vibration damping device is attached to the end of the brace as described above, or the gap between the inner peripheral surface of the steel outer bracing member and the outer peripheral surface of the steel inner bracing member.
- the portion that absorbs the vibration energy is limited to the end of the brace, or only one viscoelastic material layer can be inserted. The total area of the viscoelastic material that can be applied was limited, and it was difficult to increase the energy absorption capacity of the brace.
- the present invention has been made to solve the above problems, and It is configured as described.
- a first core and a second core made of a shaped steel, a square steel pipe, or a circular steel pipe are arranged in series with a gap for expansion and contraction, and face the side of the first core so as to surround the first core.
- a single layer of the arranged channel steel or semicircular steel sheet and the viscoelastic sheet are each laminated and adhered in a single layer, and the end of the channel steel or semicircular steel sheet is fixed to the second core material.
- the first core member and the second core member constitute a viscoelastic brace viscoelastically connected to the channel steel or the semicircular steel plate via the viscoelastic sheet.
- the viscoelastic brace according to the above (1) or (2), which is fixed, is constituted.
- the section steel forming the first core member and the second core member is any one of an H-section steel, an I-section steel, an H-section assembly, and an I-section assembly;
- a pair of the channel steel and the viscoelastic sheet which are opposed to each other are laminated and adhered in a single layer, and the end of the channel steel which is opposed to the web side is fixed to the second core material.
- the viscoelastic brace according to any one of (1) to (4), wherein
- a plurality of sets of channel steel and viscoelastic sheet that are arranged opposite to the side of the web are laminated and adhered alternately, and the ends of the channel steel are alternately
- the viscoelastic brace according to the above (5) characterized in that the viscoelastic brace is fixed to an end portion of the second core member or the first core member.
- the first core and the second core made of the H-section steel, the I-section steel, the H-section assembly, or the I-section assembly are arranged in series with a gap for expansion and contraction.
- a pair of channel steel and viscoelastic sheet which are arranged opposite to each other are laminated and adhered in a single layer, and the end of the channel steel is fixed to the second core material, and the first core material and the A viscoelastic brace, wherein the two core members are viscoelastically connected to the channel steel via the viscoelastic sheet.
- a plurality of sets of the channel steel and the viscoelastic sheet arranged opposite to the side of the web are laminated and adhered alternately, and the ends of the channel steel are alternately formed at the end of the second core member or the first core member.
- At least one of the one or more sets of the channel steel or semicircular steel plate and the viscoelastic sheet which are arranged opposite to each other is arranged on only one side.
- the viscoelastic brace according to any one of (1) to (8).
- FIG. 1 is a diagram showing an application example of a viscoelastic brace in the present invention, wherein (a) is one example, (b) is another example, and (c) is another example.
- 1A and 1B are diagrams showing a viscoelastic brace according to a first embodiment of the present invention, in which FIG. 1A is a longitudinal sectional view, and FIG. 1B is a sectional view taken along line A—A in FIG. (C) is another example of A-A cross section of (a) (1st core material 3 and 2nd core material 4 are square steel pipes), and (d) is A— of (a) A cross section (1st core 3 and 2nd core 4 are circles) This is another example.
- FIGS. 3A and 3B are diagrams showing a second embodiment of the viscoelastic brace according to the present invention.
- FIG. 3A is a longitudinal sectional view
- FIG. 3B is a sectional view taken along the line BB in FIG.
- C is another example of the cross section B-B of (a) (first core 3 and second core 4 are square steel pipes),
- (d) is (a) ) Is another example of a cross-sectional view taken along line B-B (the first core member 3 and the second core member 4 are circular steel pipes).
- FIGS. 4A and 4B show a third embodiment of the viscoelastic brace according to the present invention, wherein FIG. 4A is a longitudinal sectional view, and FIG. 4B is a sectional view taken along the line D-D of FIG. Core material 4 is an example of H-section steel).
- FIG. 5 (a) is a cross-sectional view taken along line C-C of FIG. 4 (a), and FIG. 5 (b) is a cross-sectional view of FIG.
- FIG. 6 shows a cross-sectional view of another example of a viscoelastic brace according to the present invention.
- FIG. 7 shows an example of a conventional vibration suppressing device, where (a) is a conceptual diagram of device installation and (b) is a control diagram. It is a conceptual diagram and a sectional view of a vibration device.
- Fig. 8 is a diagram showing another example of a conventional vibration damping device.
- (A) is a conceptual diagram of the device installation, and (b) and (c) are cross-sectional views of two different examples of the vibration damping device of a building. is there.
- FIG. 9 is a diagram showing a comparison of the magnitude of the secondary radius of the cross section in Example 1.
- (a) is a channel steel
- (b) is a semi-circular steel plate
- (c) is a cross sectional secondary radius of a flat steel.
- FIG. 10 is a diagram showing a comparison of the magnitude of the secondary radius of the cross section in Example 2.
- (a) is a channel steel
- (b) is a semi-circular steel plate
- (c) is a cross sectional secondary radius of a flat steel.
- FIG. BEST MODE FOR CARRYING OUT THE INVENTION a channel steel or semicircular steel plate and a viscoelastic sheet, which surround the first core and are opposed to each other, are laminated and adhered to the side surface of the first core in a single layer or a plurality of layers.
- the end portions of the channel steel or semicircular steel plate are alternately fixed to the end portion of the first core material and the second core material, and the first core material and the second core material are provided with a gap for expansion and contraction to form the groove.
- the channel steel or semicircular steel plate on which the viscoelastic sheet is laminated has a large secondary radius in cross section, so that it does not buckle even during compression, and stable stress transmission is achieved. You.
- the entire laminated structure is enclosed and restrained by fixing a lid to a side surface of the outermost channel steel or the semi-circular steel plate which is arranged opposite to each other, and is constrained. And the viscoelastic sheet does not separate.
- the viscoelastic brace of the present invention has such a configuration, and solves the problem that in the case of the conventional technique, the components of the vibration damping device could buckle under compressive force.
- the lid By fixing the lid to the side of the outermost grooved steel or semi-circular steel plate and connecting them together, the problem of peeling of the viscoelastic sheet and the steel plate is solved, and the number is dramatically increased.
- FIGS. 1 (a), (b) and (c) show examples in which the viscoelastic brace of the present invention is applied to, for example, a brace of a high-rise building.
- the viscoelastic brace 2 shown in FIGS. 1 (a), (b) and (c) has the first core 3 on the side of the H-shaped first core 3 shown in FIGS. 2 (a) and (b).
- the first viscoelastic body sheet 9 and the first channel steel 6 that are arranged and opposed to each other are laminated and adhered alternately, and the end of the first channel steel 6 is attached to the second core 4 having an H-shaped cross section.
- the first core 3 and the second core 4 are fixed to each other with the channel steel fixing material 13 interposed, and the first core connecting hole 15 and the second core 15 for fixing to the building frame 1 shown in Fig. 1 are installed in the first core 3 and the second core 4.
- a hole 16 for connecting the core material is made, and a lid ⁇ is fixed on the side surface of the first channel steel 6 which is arranged oppositely.
- the first core material 3 and the second core material 4 are interposed between the first core material 3 and the second core material 4 with the first viscoelastic body They are connected by a sheet 9 and a first channel steel 6.
- the cross-sectional shape of the first core material 3 and the second core material 4 may be a square steel pipe or a circular steel pipe as shown in Figs. 2 (c) and 2 (d).
- the first semicircular steel plate 27 is used instead of the first channel steel 6.
- the expansion / contraction gap 30 is interposed between the first core member 3 and the second core member 4, so that the first core member 3, the second core member 4, and the first groove with respect to the vibration energy input to the viscoelastic brace 2.
- the shape steel 6 is not deformed, and only the first viscoelastic sheet 9 can be sheared.
- Figs. 9 (a), (b) and (c) when the thickness t and width B of the first channel steel 6, the first semicircular steel plate 27 and the first flat steel 31 are the same, respectively.
- the second moments I,, I 2 are the cross section of the first flat steel 31, the second moment I 3, the cross section around the neutral axis X _ X of the first channel steel 6 and the first semicircular steel plate 27.
- the cross-sectional secondary radii i 1, and i 2 of the circular steel plate 27 are 9 to 10 times larger than the cross-sectional secondary radius i of the first flat steel 31, and buckling does not occur when a compressive axial force is applied.
- the lid 17 is opposed to the first channel steel 6 and the side surfaces of the first channel steel 6 are fixed to each other, thereby restraining the first channel steel 6, the first viscoelastic sheet 9 and the first core member 3, and Separation can be prevented, and the stress can be transmitted stably.
- the viscoelastic brace 2 shown in Fig. 1 is fixed to the building frame 1 by bolts or the like using the first core material connection hole 15 and the second core material connection hole 16. Accordingly, the vibration energy input to the framework 1 of the building acts so as to be absorbed by the shear deformation of the first viscoelastic sheet 9.
- the viscoelastic sheet 9 For example, if the adhesive length of the viscoelastic sheet 9 adhered to the side surface of the first core material 3 shown in FIG. 2 is the entire length of the core material excluding the connecting portion, the viscoelastic sheet 9
- the shear cross-sectional area of the conventional technology is five times that of the conventional technology shown in Fig. 8 with the vibration control device 115 (116) having one layer of viscoelastic sheet at the end, and the vibration energy absorption capacity is also five times. Becomes Thereby, the vibration of the framework 1 of the building is quickly attenuated, and the viscoelastic braces 2 can exhibit an excellent vibration damping effect.
- the viscoelastic brace 2 is composed of a first viscoelastic sheet that surrounds the first core member 3 and is arranged on the side surface of the first core member 3 having an H-shaped cross section as shown in FIGS. 3 (a) and 3 (b). 9, 1st channel steel 6, 2nd viscoelastic sheet 10, 2nd channel steel 7, 3rd viscoelastic sheet 11 and 3rd channel steel 8 are laminated and adhered alternately.
- the end of the channel steel 6 is interposed with the first channel steel fixing material 13, and the end of the third channel steel 8 is interposed with the third channel steel fixing material 14, thereby forming an H-shaped cross section.
- the second core 4 is fixed to the first core 3 having an H-shaped cross section with the second channel steel fixing member 12 interposed therebetween.
- the core material 4 is composed of the first viscoelastic sheet 9, the first channel steel 6, the second viscoelastic sheet 10, the second channel steel 7, the third viscoelastic sheet 11 and the third viscoelastic sheet 11.
- the viscoelastic brace 2 of the first embodiment shown in FIG. 2 is different from the viscoelastic brace 2 shown in FIG. 2 in that the lid 17 is fixed to the side surface of the third channel steel 8 connected by the channel steel 8 and arranged to face each other. That is, the viscoelastic brace 2 shown in FIG. 2 has a single-layer structure of the pair of the first viscoelastic sheet 9 and the first channel steel 6, whereas the viscoelastic brace 2 shown in FIG. Are the first viscoelastic sheet 9 and the first channel steel 6, the second viscoelastic sheet 10 and the second channel steel 7, and the third viscoelastic sheet 11 and the third channel steel 8 It has a three-layer structure.
- Such a structure may be provided not only in three layers but also in an additional number of layers by combining a viscoelastic sheet and a channel steel.
- the cross-sectional shapes of the first core material 3 and the second core material 4 may be rectangular steel pipes or circular steel pipes as shown in FIGS. 3 (c) and 3 (d).
- a first semicircular steel plate 27, a second semicircular steel plate 28 and a third semicircular steel plate 29 are used instead of the first channel steel 6, the second channel steel 7 and the third channel steel 8.
- the thickness t and width B of the first channel steel 6, the first semicircular steel plate 27 and the first flat steel 31 are the same, respectively.
- the cross section secondary radius of the circular steel plate 29 is larger than that of the second flat bar 32 and the third flat bar 33, so that buckling does not occur against the compressive force.
- the viscoelastic sheets adhered to the side surfaces of the first core material 3 are laminated and adhered in three layers, and the same viscoelastic bodies as those of the first embodiment laminated and adhered in a single layer.
- the vibration energy-absorbing capacity is three times as large as the sheet thickness and volume. This makes it possible to form a large-capacity viscoelastic brace 2 that can absorb the vibration energy input to the framework 1 of the building by the shear deformation of the viscoelastic sheet. It can be obtained more effectively than the form.
- FIGS. 4 (a), (b) and 5 (a) A viscoelastic brace according to a third embodiment of the present invention will be described with reference to FIGS.
- the viscoelastic brace 2 faces the web side surface of the first core material 3 having an H-shaped cross section, with the web of the first core material 3 interposed therebetween.
- first internal viscoelastic sheet 21, the first internal channel steel 19, the second internal viscoelastic sheet 22, and the second internal channel steel 20 are alternately laminated and adhered, and the first internal channel
- the end of the steel 19 is fixedly attached to the second core 4 having an H-shaped cross section with a first internal channel steel fixing member 23 interposed therebetween, and the end of the second internal channel steel 20 is formed into an H-shaped cross section.
- the first core member 3 and the second core member 4 are fixed to the first core member 3 with the second inner channel steel fixing member 24 interposed therebetween, and the first viscoelastic sheet 9, the first channel steel 6, and the second 2 Viscoelastic sheet 10, 2nd channel steel 7, 3rd viscoelastic sheet 11 and 3rd channel steel 8, 1st internal viscoelastic sheet 21, 1st internal Channel steel 19, 2nd internal viscoelastic sheet 22 and
- the point of connection by the second internal channel steel 20 is different from the viscoelastic brace 2 of Example 2 shown in Figs. 3 (a) and (b). That is, the viscoelastic brace 2 in the third embodiment shown in FIGS.
- a core material 3 has a laminated structure of viscoelastic sheet and channel steel added to both sides of the web.
- FIG. 5 (b) at least one set of one or more sets of channel steel or semicircular steel plate and viscoelastic sheet which are arranged opposite to each other is provided on one side. Only the channel steel or semi-circular steel plate and the viscoelastic sheet may be provided on only one side.
- a viscoelastic sheet and a channel steel may be combined to provide additional layers.
- the third embodiment compared with the second embodiment, four layers of viscoelastic sheets laminated and adhered to the side surface of the first core material 3 are added, and the added four layers of the viscoelastic body are added.
- the ability to absorb vibration energy increases according to the shear cross-sectional area of the sheet.
- the viscoelastic brace according to the present invention has a first core member made of an H-shaped steel, an I-shaped steel, an H-shaped assembled material, or an I-shaped assembled material, as shown in FIG.
- the core material is arranged in series with a gap for expansion and contraction, and a pair of channel steel and a viscoelastic sheet which are opposed to each other are laminated and adhered in a single layer on the web side surface of the first core material.
- the structure of a viscoelastic bracing in which an end of a section steel is fixed to the second core, and the first core and the second core are viscoelastically connected to the channel steel via the viscoelastic sheet.
- the channel steel and viscoelastic sheet opposing the web side consist of a plurality of sets. Each of the end portions of the channel steel is alternately laminated and adhered, and the end of the channel steel is alternately the second core material or the first core.
- a viscoelastic brace may be configured to be fixed near the end of the bar, and a pair of channel steel and a viscoelastic body that surround and surround the first core as described above. The viscoelastic brace, which has a simpler structure without sticking the sheet in a single layer or a plurality of layers, can sufficiently withstand use.
- a viscoelastic brace 2 having a larger capacity is formed by laminating and adhering the viscoelastic sheet and the channel steel to both sides of the web of the first core material 3 having the H-shaped cross section. can do.
- the vibration energy input to the framework 1 of the building can be further absorbed by the shear deformation of the viscoelastic sheet than in the second embodiment, and a high damping effect can be obtained.
- the vibration of the framework 1 of the building is rapidly attenuated, and the viscoelastic brace 2 can exhibit an excellent vibration damping effect.
- the channel steel or circular steel plate on which the viscoelastic sheet is laminated have a large secondary radius in cross section, buckling does not occur even when compressed, and the steel is stable. A stress is transmitted, and a lid is fixedly attached to the side surface of the outermost channel steel or the circular steel plate which is disposed opposite to and connected to each other, whereby the entire laminated structure is surrounded and restrained, and the channel steel is restrained.
- the circular steel plate and the viscoelastic sheet do not separate from each other, and further, since the channel steel or the circular steel plate is separated and opposed to each other, the viscoelastic sheet and the groove are not provided.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
A viscoelastic brace, wherein first and second core members comprising shape steel, square steel tubes or circular steel tubes are disposed in series via a pipe expanding and contracting clearance, one set of channel steel or semicircular steel sheets and viscoelastic sheets disposed in opposite positions so as to enclose the first core member therewith being laminated in a single layer on and stuck to a side surface of the first core member, end portions of the channel steel or semicircular steel sheets being fixed to the second core member, whereby the first and second core members are viscoelastically joined to each other via the channel steel or semicircular steel sheets and viscoelastic sheets. This viscoelastic brace enables, in a structure which is higher than it is wide, such as a multistoried building, the horizontal deformation due to an earthquake and wind and a shearing force to be reduced, and vibration to be speedily damped.
Description
明 細 書 粘弾性ブレース 技術分野 Description Viscoelastic brace Technical field
本発明は、 建築物その他の構造物において、 地震力や風などの外 力に対して減衰効果を与える粘弾性ブレースに関するものである。 従来技術 The present invention relates to a viscoelastic brace that gives a damping effect to external forces such as seismic force and wind in buildings and other structures. Conventional technology
従来の振動抑制装置は、 図 7 ( a ) , (b ) に示すように、 ブレー ス 101 の端部に、 鋼板 103 と粘弾性体 104 を積層状に固着させた制 振装置 102(日本建築学会大会学術講演会概要集、 九州、 1989年 10月 P 629 〜 P 630 参照) や、 図 8 ( a ) , (b ) , (c ) に示すように、 鋼製外側筋かい材 111 の内周面と鋼製内側筋かい材 112 の外周面と の間に粘弾性材層 113 を介在させた建造物の振動抑制装置 115(図 8 ( b ))、 又は特許第 2583801号公報に開示されたように、 鋼製外側 筋かい材 111 である管体内にセメ ン ト系硬化材 114 を固定し、 この セメ ン ト系硬化材 114 の内周面と鋼製内側筋かい材 112 の外周面と の間に粘弹性材層 113 を介在させて固着させた建造物の振動抑制装 置 116(図 8 ( c ))等がある。 As shown in FIGS. 7 (a) and 7 (b), a conventional vibration damping device is a vibration damping device 102 (Japanese building) in which a steel plate 103 and a viscoelastic body 104 are adhered to the end of a brace 101 in a laminated manner. As shown in the summary of the conference, Kyushu, October 1989, pp. 629-630, and Fig. 8 (a), (b) and (c), the steel outer bracing 111 Vibration suppressor 115 for buildings having a viscoelastic material layer 113 interposed between the peripheral surface and the outer peripheral surface of steel inner reinforcing member 112 (FIG. 8 (b)), or disclosed in Japanese Patent No. 2583801. As described above, a cement-based hardening material 114 is fixed in a pipe, which is a steel outer bracing material 111, and an inner peripheral surface of the cement-based hardening material 114 and an outer peripheral surface of the steel inner bracing material 112. There is a vibration suppression device 116 (FIG. 8 (c)) for a building in which a viscous material layer 113 is interposed and fixed between and.
高層建築物等のように建物の幅に比べて高さの高い建造物におい て、 地震力や風等による振動が構造体に大きな影響を与える可能性 がある。 この振動に対して、 前述したような従来のブレース端部に 制振装置を取り付けたものや、 鋼製外側筋かい材の内周面と鋼製内 側筋かい材の外周面との間に粘弾性材層を介在させた振動抑制装置 では、 振動エネルギーを吸収する部分がブレース端部に限られたり 、 粘弾性材層が 1層しか挿入することができないことから、 介在さ
せることができる粘弾性体の総面積が制限され、 ブレースのェネル ギ一吸収能力を上げることが困難であった。 また図 7 ( a ) ,(b ) の従来技術による方式をブレース長全体に延長し粘弾性体の総面積 を増加させよう と した場合、 粘弾性体の間に積層された平鋼板が圧 縮力により座屈する可能性があつたり、 最外層の粘弾性材層と平鋼 板が外側に剥離する等の問題点があつた。 In buildings that are taller than the width of the building, such as high-rise buildings, vibrations due to seismic force or wind may have a significant effect on the structure. In response to this vibration, a conventional vibration damping device is attached to the end of the brace as described above, or the gap between the inner peripheral surface of the steel outer bracing member and the outer peripheral surface of the steel inner bracing member. In the vibration suppression device in which the viscoelastic material layer is interposed, the portion that absorbs the vibration energy is limited to the end of the brace, or only one viscoelastic material layer can be inserted. The total area of the viscoelastic material that can be applied was limited, and it was difficult to increase the energy absorption capacity of the brace. When the conventional method shown in Figs. 7 (a) and 7 (b) is extended to the entire brace length to increase the total area of the viscoelastic body, the flat steel sheet laminated between the viscoelastic bodies is compressed. There were problems such as the possibility of buckling due to force and the peeling of the outermost viscoelastic material layer and the flat steel plate outward.
上述した問題点を解決するための構造と しては、 特開平 9 一 1331 69号公報に開示されたように、 外筒と内筒の間に粘弾性体を固着さ せる構造が提案されているが、 この構造を実現するためには液体状 の粘弾性体をこれらの間に流し込んで固着させなければならず、 粘 弾性体シー トのような固体状のものは固着させることができない上 、 粘弾性体の層を一層しか構成できず、 複層にして振動エネルギー 吸収能力を向上させることができないという問題がある。 また、 特 開平 1 一 187271号公報に開示されたように、 粘弾性体を閉鎖断面の 管体で挟み込み、 二重管の間に接着することにより面外方向力に対 する抵抗を高める構造が提案されているが、 これは内管の表面に粘 弾性体を固着させ、 これを外管で挟み込んで固着するものであるた め、 粘弾性体を複層にして振動エネルギー吸収能力を向上させるこ とができない。 また、 分離された外管と内管で粘弾性体を挟むよう になっているが、 分離された外管どう しが接しており外管、 内管及 び粘弾性体を十分に圧着させることができない。 外管を十分に圧着 させるためには分離された互いの外管は一定間隔をおいて配置され なければならない。 したがって、 従来技術によると十分に密着させ て粘着させることは不可能である。 発明の開示 As a structure for solving the above-mentioned problem, a structure in which a viscoelastic body is fixed between an outer cylinder and an inner cylinder has been proposed as disclosed in Japanese Patent Application Laid-Open No. 9-113369. However, in order to realize this structure, a liquid viscoelastic body must be poured between them and fixed, and solid objects such as viscoelastic sheets cannot be fixed. However, there is a problem that only one layer of the viscoelastic body can be formed, and it is not possible to improve the vibration energy absorbing ability by forming a plurality of layers. In addition, as disclosed in Japanese Patent Publication No. Hei 11-187271, a structure in which a viscoelastic body is sandwiched between pipes having a closed cross section and adhered between double pipes to increase resistance to an out-of-plane force is provided. Although it has been proposed, this involves fixing a viscoelastic body to the surface of the inner tube and sandwiching the viscoelastic body with the outer tube to fix it. I can't do that. In addition, the viscoelastic body is sandwiched between the separated outer pipe and inner pipe.However, the separated outer pipes are in contact with each other, and the outer pipe, inner pipe, and viscoelastic body must be sufficiently compressed. Can not. In order for the outer tubes to be sufficiently crimped, the separated outer tubes must be arranged at regular intervals. Therefore, according to the prior art, it is impossible to sufficiently adhere and adhere. Disclosure of the invention
本発明は、 前記の課題を解決するためになされたものであり、 下
記のように構成される。 The present invention has been made to solve the above problems, and It is configured as described.
( 1 ) 形鋼、 角形鋼管又は円形鋼管からなる第 1 心材及び第 2心 材は伸縮用間隙を介して直列に配置され、 前記第 1 心材の側面に、 前記第 1 心材を包囲して対向配置した 1組の溝形鋼又は半円形鋼板 と粘弾性体シー トをそれぞれ単層で積層粘着し、 前記溝形鋼又は前 記半円形鋼板の端部を前記第 2心材に固着し、 前記第 1 心材と前記 第 2心材は、 前記溝形鋼又は前記半円形鋼板と前記粘弾性体シー ト を介して粘弾性的に連結した粘弾性ブレースを構成する。 (1) A first core and a second core made of a shaped steel, a square steel pipe, or a circular steel pipe are arranged in series with a gap for expansion and contraction, and face the side of the first core so as to surround the first core. A single layer of the arranged channel steel or semicircular steel sheet and the viscoelastic sheet are each laminated and adhered in a single layer, and the end of the channel steel or semicircular steel sheet is fixed to the second core material. The first core member and the second core member constitute a viscoelastic brace viscoelastically connected to the channel steel or the semicircular steel plate via the viscoelastic sheet.
( 2 ) 対向配置した溝形鋼又は半円形鋼板と粘弾性体シー トは複 数組からなり、 それぞれ交互に積層粘着され、 前記溝形鋼又は前記 半円形鋼板の端部は交互に前記第 2心材と前記第 1 心材端部近傍に 固着されている前記 ( 1 ) 記載の粘弾性ブレースを構成する。 (2) The channel steel or semi-circular steel sheet and the viscoelastic sheet which are arranged oppositely consist of a plurality of sets, which are laminated and adhered alternately, respectively, and the ends of the channel steel or semi-circular steel sheet alternately form The viscoelastic brace according to the above (1), wherein the viscoelastic brace is fixed to the two-core material and the vicinity of the first core material end.
( 3 ) 対向配置した最も外側の一方の溝形鋼又は半円形鋼板の側 面と、 対向配置した最も外側の他方の前記溝形鋼又は前記半円形鋼 板の側面とを互いに連結する蓋を固着させた前記 ( 1 ) 又は ( 2 ) 記載の粘弾性ブレースを構成する。 (3) A lid for connecting the side surface of one of the outermost channel steel or semi-circular steel plate disposed opposite to the other and the side surface of the other outermost channel steel or semi-circular steel plate disposed opposite to each other. The viscoelastic brace according to the above (1) or (2), which is fixed, is constituted.
( 4 ) 対向配置した前記溝形鋼又は前記半円形鋼板は互いに所定 の間隔を空けて設置された前記 ( 1 ) 〜 ( 3 ) のいずれか 1 項に記 載の粘弾性ブレース。 (4) The viscoelastic brace according to any one of (1) to (3), wherein the channel steel or the semi-circular steel plate opposingly arranged is installed at a predetermined interval from each other.
( 5 ) 前記第 1 心材及び第 2心材を成す形鋼が、 H形鋼、 I 形鋼 、 H形組み立て材、 または I形組み立て材のいずれかであり、 前記 第 1 心材のゥエブ側面には、 対向配置した 1 組の溝形鋼と粘弾性体 シー トをそれぞれ単層で積層粘着し、 該ゥェブ側面に対向配置した 溝形鋼の端部を前記第 2心材に固着したことを特徴とする前記 ( 1 :) 〜 ( 4 ) のいずれか 1 項に記載の粘弾性ブレース。 (5) The section steel forming the first core member and the second core member is any one of an H-section steel, an I-section steel, an H-section assembly, and an I-section assembly; A pair of the channel steel and the viscoelastic sheet which are opposed to each other are laminated and adhered in a single layer, and the end of the channel steel which is opposed to the web side is fixed to the second core material. The viscoelastic brace according to any one of (1) to (4), wherein
( 6 ) ゥェブ側面に対向配置した溝形鋼と粘弾性シー トは複数組 からなり、 それぞれ交互に積層粘着され、 前記溝形鋼の端部は交互
に前記第 2心材または前記第 1心材端部近傍に固着されていること を特徴とする前記 ( 5 ) 記載の粘弾性ブレース。 (6) A plurality of sets of channel steel and viscoelastic sheet that are arranged opposite to the side of the web are laminated and adhered alternately, and the ends of the channel steel are alternately The viscoelastic brace according to the above (5), characterized in that the viscoelastic brace is fixed to an end portion of the second core member or the first core member.
( 7 ) H形鋼、 I形鋼、 H形組み立て材、 または I形組み立て材 からなる第 1心材及び第 2心材は伸縮用間隙を介して直列に配置さ れ、 前記第 1心材のウェブ側面には、 対向配置した 1組の溝形鋼と 粘弾性体シー 卜をそれぞれ単層で積層粘着し、 前記溝形鋼の端部を 前記第 2心材に固着し、 前記第 1心材と前記第 2心材は前記溝形鋼 と前記粘弾性シー トを介して粘弾性的に連結したことを特徴とする 粘弾性ブレース。 (7) The first core and the second core made of the H-section steel, the I-section steel, the H-section assembly, or the I-section assembly are arranged in series with a gap for expansion and contraction. In this method, a pair of channel steel and viscoelastic sheet which are arranged opposite to each other are laminated and adhered in a single layer, and the end of the channel steel is fixed to the second core material, and the first core material and the A viscoelastic brace, wherein the two core members are viscoelastically connected to the channel steel via the viscoelastic sheet.
( 8 ) ゥェブ側面に対向配置した溝形鋼と粘弾性シー トは複数組 からなり、 それぞれ交互に積層粘着され、 前記溝形鋼の端部は交互 に前記第 2心材または前記第 1心材端部近傍に固着されていること を特徴とする前記 ( 7 ) 記載の粘弾性ブレース。 (8) A plurality of sets of the channel steel and the viscoelastic sheet arranged opposite to the side of the web are laminated and adhered alternately, and the ends of the channel steel are alternately formed at the end of the second core member or the first core member. The viscoelastic brace according to the above (7), wherein the viscoelastic brace is fixed near the portion.
( 9 ) 対向配置した前記 1組又は複数組の溝形鋼又は半円形鋼板 と粘弾性体シ一 卜の組のうち、 少なく とも一組は片側のみの配置と したこ とを特徴とする前記 ( 1 ) 〜 ( 8 ) のいずれか 1項に記載の 粘弾性ブレース。 図面の簡単な説明 (9) At least one of the one or more sets of the channel steel or semicircular steel plate and the viscoelastic sheet which are arranged opposite to each other is arranged on only one side. The viscoelastic brace according to any one of (1) to (8). BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明における粘弾性ブレースの適用例を示す図で、 ( a ) は一つの例、 ( b ) は別の例、 ( c ) はもう一つ別の例である 図 2は、 本発明における粘弾性ブレースの実施例 1 を示す図で、 ( a ) は縦断面図、 ( b ) は同図 ( a ) の A— A断面図 (第 1心材 3及び第 2心材 4が H形鋼) の一例、 ( c ) は同じく ( a ) の A— A断面図 (第 1心材 3及び第 2心材 4が角形鋼管) の別の例、 ( d ) は同じく ( a ) の A— A断面図 (第 1心材 3及び第 2心材 4が円
形鋼管) のもう一つ別の例である。 FIG. 1 is a diagram showing an application example of a viscoelastic brace in the present invention, wherein (a) is one example, (b) is another example, and (c) is another example. 1A and 1B are diagrams showing a viscoelastic brace according to a first embodiment of the present invention, in which FIG. 1A is a longitudinal sectional view, and FIG. 1B is a sectional view taken along line A—A in FIG. (C) is another example of A-A cross section of (a) (1st core material 3 and 2nd core material 4 are square steel pipes), and (d) is A— of (a) A cross section (1st core 3 and 2nd core 4 are circles) This is another example.
図 3 は、 本発明における粘弾性ブレースの実施例 2を示す図で、 ( a ) は縦断面図、 (b ) は同図 ( a ) の B— B断面図 (第 1心材 3及び第 2心材 4が H形鋼) の一例、 ( c ) は同じく ( a ) の B— B断面図 (第 1心材 3及び第 2心材 4が角形鋼管) の別の例、 ( d ) は同じく ( a ) の B— B断面図 (第 1心材 3及び第 2心材 4が円 形鋼管) のもう一つ別の例である。 FIGS. 3A and 3B are diagrams showing a second embodiment of the viscoelastic brace according to the present invention. FIG. 3A is a longitudinal sectional view, and FIG. 3B is a sectional view taken along the line BB in FIG. (C) is another example of the cross section B-B of (a) (first core 3 and second core 4 are square steel pipes), (d) is (a) ) Is another example of a cross-sectional view taken along line B-B (the first core member 3 and the second core member 4 are circular steel pipes).
図 4は、 本発明における粘弾性ブレースの実施例 3を示す図で、 ( a) は縦断面図、 (b) は同図 ( a ) の D— D断面図 (第 1心材 3及び第 2心材 4が H形鋼) の例である。 FIGS. 4A and 4B show a third embodiment of the viscoelastic brace according to the present invention, wherein FIG. 4A is a longitudinal sectional view, and FIG. 4B is a sectional view taken along the line D-D of FIG. Core material 4 is an example of H-section steel).
図 5 ( a) は、 図 4 ( a ) の C一 C断面図、 (b ) は図 4 ( a ) において溝形鋼を片側のみに配置した場合の断面図である。 FIG. 5 (a) is a cross-sectional view taken along line C-C of FIG. 4 (a), and FIG. 5 (b) is a cross-sectional view of FIG.
図 6 は、 本発明における粘弾性ブレースの別の例の断面図を示す 図 7は、 従来の振動抑制装置の例を示す図で、 ( a ) は装置取り 付け概念図、 ( b ) は制振装置の概念図及び断面図である。 FIG. 6 shows a cross-sectional view of another example of a viscoelastic brace according to the present invention. FIG. 7 shows an example of a conventional vibration suppressing device, where (a) is a conceptual diagram of device installation and (b) is a control diagram. It is a conceptual diagram and a sectional view of a vibration device.
図 8 は、 従来の振動抑制装置の他の例を示す図で、 ( a ) は装置 取り付け概念図、 ( b ) 及び ( c ) は建造物の振動抑制装置の異な る 2例の断面図である。 Fig. 8 is a diagram showing another example of a conventional vibration damping device. (A) is a conceptual diagram of the device installation, and (b) and (c) are cross-sectional views of two different examples of the vibration damping device of a building. is there.
図 9は、 実施例 1 における断面 2次半径の大きさの比較を示す図 で、 ( a ) は溝形鋼、 (b ) は半円形鋼板、 ( c ) は平鋼の断面 2 次半径を示す図である。 FIG. 9 is a diagram showing a comparison of the magnitude of the secondary radius of the cross section in Example 1. (a) is a channel steel, (b) is a semi-circular steel plate, and (c) is a cross sectional secondary radius of a flat steel. FIG.
図 10は、 実施例 2 における断面 2次半径の大きさの比較を示す図 で、 ( a ) は溝形鋼、 (b ) は半円形鋼板、 ( c ) は平鋼の断面 2 次半径を示す図である。 発明を実施するための最良の形態
本発明において、 第 1 心材の側面に、 前記第 1 心材を包囲して対 向配置した溝形鋼又は半円形鋼板と粘弾性体シー トを交互に単層又 は複層で積層粘着し、 前記溝形鋼又は半円形鋼板の端部を交互に前 記第 1 心材の端部と第 2心材に固着し、 前記第 1 心材と前記第 2心 材は伸縮用間隙を介在させて前記溝形鋼又は前記半円形鋼板と前記 粘弾性体シー トにより連結して構成することにより、 振動エネルギ 一が粘弾性ブレースに入力される場合には粘弾性体シ一 トのせん断 変形によつてこの振動エネルギーを吸収し減衰させる。 FIG. 10 is a diagram showing a comparison of the magnitude of the secondary radius of the cross section in Example 2. (a) is a channel steel, (b) is a semi-circular steel plate, and (c) is a cross sectional secondary radius of a flat steel. FIG. BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a channel steel or semicircular steel plate and a viscoelastic sheet, which surround the first core and are opposed to each other, are laminated and adhered to the side surface of the first core in a single layer or a plurality of layers. The end portions of the channel steel or semicircular steel plate are alternately fixed to the end portion of the first core material and the second core material, and the first core material and the second core material are provided with a gap for expansion and contraction to form the groove. By connecting the section steel or the semi-circular steel plate and the viscoelastic sheet, the vibration energy is input to the viscoelastic brace, and the viscoelastic sheet is subjected to shear deformation. Absorbs and attenuates vibration energy.
この際、 粘弾性体シー トを積層する溝形鋼又は半円形鋼板は全て 断面 2次半径の大きなものとなっているため、 圧縮時にも座屈を生 じず、 安定した応力伝達が成される。 また、 対向配置した最も外側 の前記溝形鋼又は前記半円形鋼板の側面に蓋を固着して互いに連結 することにより積層構造全体が囲い込まれて拘束され、 前記溝形鋼 又は前記半円形鋼板と前記粘弾性体シー トは剝離を生じない。 At this time, all of the channel steel or semicircular steel plate on which the viscoelastic sheet is laminated has a large secondary radius in cross section, so that it does not buckle even during compression, and stable stress transmission is achieved. You. In addition, the entire laminated structure is enclosed and restrained by fixing a lid to a side surface of the outermost channel steel or the semi-circular steel plate which is arranged opposite to each other, and is constrained. And the viscoelastic sheet does not separate.
これにより、 高層建築物のような水平振動を伴う構造物の水平方 向の変形及びせん断力を軽減させ、 速やかに振動を減衰させること ができる。 As a result, horizontal deformation and shearing force of a structure such as a high-rise building with horizontal vibration can be reduced, and the vibration can be rapidly damped.
本発明の粘弾性ブレースは、 かかる構成によるものであり、 従来 の技術の場合には制振装置構成材が圧縮力の下で座屈する可能性が あつたという問題点を解決し、 また対向配置した最も外側の溝形鋼 または半円形鋼板の側面に蓋を固着して互に連結することにより粘 弾性体シー ト と鋼板の剥離の問題点を解決し、 さ らに従来より飛躍 的に多く の断面の粘弾性体シー 卜を介在させ得ることによつて性能 の高い粘弾性ブレースを可能と した点で新規の発明となっている。 実施例 The viscoelastic brace of the present invention has such a configuration, and solves the problem that in the case of the conventional technique, the components of the vibration damping device could buckle under compressive force. By fixing the lid to the side of the outermost grooved steel or semi-circular steel plate and connecting them together, the problem of peeling of the viscoelastic sheet and the steel plate is solved, and the number is dramatically increased. This is a novel invention in that a high-performance viscoelastic brace is made possible by interposing a viscoelastic sheet having a cross section of the above. Example
次に本発明を実施例に基づいて詳細に説明する。
実施例 1 Next, the present invention will be described in detail based on examples. Example 1
本発明による粘弾性ブレースの実施例 1 を図 1 および図 2 を参照 しつつ説明する。 First Embodiment A viscoelastic brace according to a first embodiment of the present invention will be described with reference to FIGS.
図 1 ( a ) , ( b ) 及び ( c ) には、 例えば、 高層建物のブレース に本発明の粘弾性ブレースを適用 した例を示した。 FIGS. 1 (a), (b) and (c) show examples in which the viscoelastic brace of the present invention is applied to, for example, a brace of a high-rise building.
図 1 ( a ) ,( b ) および ( c ) に示した粘弾性ブレース 2 は、 図 2 ( a ) , ( b ) の H形断面をした第 1 心材 3の側面に、 第 1 心材 3 を包囲して対向配置した第 1 粘弾性体シー ト 9及び第 1 溝形鋼 6 を 交互に積層粘着し、 第 1溝形鋼 6 の端部を H形断面をした第 2心材 4 に第 1 溝形鋼固定材 13を介在させて固着し、 第 1 心材 3 と第 2心 材 4 には図 1 に示す建築物の骨組み 1 に固定するための第 1 心材連 結用穴 15と第 2心材連結用穴 16をあけ、 対向配置した第 1 溝形鋼 6 の側面上に蓋 Πを固着し、 第 1 心材 3 と第 2心材 4 は伸縮用間隙 30 を介在させて第 1粘弾性体シ一 卜 9及び、 第 1 溝形鋼 6 により連結 したものである。 The viscoelastic brace 2 shown in FIGS. 1 (a), (b) and (c) has the first core 3 on the side of the H-shaped first core 3 shown in FIGS. 2 (a) and (b). The first viscoelastic body sheet 9 and the first channel steel 6 that are arranged and opposed to each other are laminated and adhered alternately, and the end of the first channel steel 6 is attached to the second core 4 having an H-shaped cross section. The first core 3 and the second core 4 are fixed to each other with the channel steel fixing material 13 interposed, and the first core connecting hole 15 and the second core 15 for fixing to the building frame 1 shown in Fig. 1 are installed in the first core 3 and the second core 4. A hole 16 for connecting the core material is made, and a lid Π is fixed on the side surface of the first channel steel 6 which is arranged oppositely.The first core material 3 and the second core material 4 are interposed between the first core material 3 and the second core material 4 with the first viscoelastic body They are connected by a sheet 9 and a first channel steel 6.
また、 第 1 心材 3及び、 第 2心材 4 の断面形状は、 図 2 ( c ) , ( d ) に示すように角形鋼管、 円形鋼管と してもよ く 、 円形鋼管の場 合には前記第 1溝形鋼 6 に代わり第 1 半円形鋼板 27を用いる。 The cross-sectional shape of the first core material 3 and the second core material 4 may be a square steel pipe or a circular steel pipe as shown in Figs. 2 (c) and 2 (d). The first semicircular steel plate 27 is used instead of the first channel steel 6.
前記伸縮用間隙 30は、 第 1 心材 3 と第 2心材 4 の間に介在させる ことで、 粘弾性ブレース 2 に入力された振動エネルギーに対して第 1 心材 3、 第 2心材 4及び第 1 溝形鋼 6 には変形を生じさせず、 第 1 粘弾性体シー ト 9 にのみせん断変形を生じさせることができる。 また図 9 ( a ) , ( b ) 及び ( c ) に示すように第 1溝形鋼 6、 第 1半円形鋼板 27及び第 1平鋼 31の厚さ t と幅 Bをそれぞれ同じにし たとき、 第 1溝形鋼 6 と第 1 半円形鋼板 27の中立軸 X _ Xまわりの 断面 2次モーメ ン ト I , , I 2 が第 1平鋼 31の断面 2次モ一メ ン ト I 3 のおよそ 150倍〜 160 倍となるため、 第 1溝形鋼 6及び第 1 半
円形鋼板 27の断面 2次半径 i , , i 2 が第 1 平鋼 31の断面 2次半径 i に対して 9倍〜 10倍となり、 圧縮軸方向力が作用 したときに座 屈が生じない。 また、 蓋 17を対向配置して第 1 溝形鋼 6の側面を固 着するこ とで、 第 1溝形鋼 6、 第 1 粘弾性体シー ト 9及び第 1 心材 3を拘束し、 互いの剝離を防止することができ、 安定して応力を伝 達することができる。 The expansion / contraction gap 30 is interposed between the first core member 3 and the second core member 4, so that the first core member 3, the second core member 4, and the first groove with respect to the vibration energy input to the viscoelastic brace 2. The shape steel 6 is not deformed, and only the first viscoelastic sheet 9 can be sheared. As shown in Figs. 9 (a), (b) and (c), when the thickness t and width B of the first channel steel 6, the first semicircular steel plate 27 and the first flat steel 31 are the same, respectively. The second moments I,, I 2 are the cross section of the first flat steel 31, the second moment I 3, the cross section around the neutral axis X _ X of the first channel steel 6 and the first semicircular steel plate 27. About 150 to 160 times that of the first channel steel 6 and the first half The cross-sectional secondary radii i 1, and i 2 of the circular steel plate 27 are 9 to 10 times larger than the cross-sectional secondary radius i of the first flat steel 31, and buckling does not occur when a compressive axial force is applied. Further, the lid 17 is opposed to the first channel steel 6 and the side surfaces of the first channel steel 6 are fixed to each other, thereby restraining the first channel steel 6, the first viscoelastic sheet 9 and the first core member 3, and Separation can be prevented, and the stress can be transmitted stably.
図 2 に示すように、 図 1 に示した前記粘弾性ブレース 2を建築物 の骨組み 1 に前記第 1心材連結用穴 15及び、 前記第 2心材連結用穴 16を使ってボル ト等で固定することにより、 建築物の骨組み 1 に入 力された振動エネルギーは、 前記第 1 粘弾性体シー ト 9 のせん断変 形により吸収するように作用する。 As shown in Fig. 2, the viscoelastic brace 2 shown in Fig. 1 is fixed to the building frame 1 by bolts or the like using the first core material connection hole 15 and the second core material connection hole 16. Accordingly, the vibration energy input to the framework 1 of the building acts so as to be absorbed by the shear deformation of the first viscoelastic sheet 9.
例えば、 図 2 に示した前記第 1 心材 3の側面に粘着させた前記粘 弾性体シ一 ト 9の粘着長さを連結部を除く心材の全長にすれば、 前 記粘弾性体シー ト 9のせん断断面積は、 例えば端部に 1 層の粘弾性 体シー トを有する制振装置 1 15 ( 1 16) を取り付けた図 8 の従来技術 の 5倍になり、 振動エネルギー吸収能力も 5倍となる。 これにより 前記建築物の骨組み 1 の振動は速やかに減衰し、 前記粘弾性ブレー ス 2 は優れた制振効果を発揮することができる。 For example, if the adhesive length of the viscoelastic sheet 9 adhered to the side surface of the first core material 3 shown in FIG. 2 is the entire length of the core material excluding the connecting portion, the viscoelastic sheet 9 The shear cross-sectional area of the conventional technology is five times that of the conventional technology shown in Fig. 8 with the vibration control device 115 (116) having one layer of viscoelastic sheet at the end, and the vibration energy absorption capacity is also five times. Becomes Thereby, the vibration of the framework 1 of the building is quickly attenuated, and the viscoelastic braces 2 can exhibit an excellent vibration damping effect.
実施例 2 Example 2
本発明による粘弾性ブレースの実施例 2を図 3 を参照しつつ説明 する。 Second Embodiment A viscoelastic brace according to a second embodiment of the present invention will be described with reference to FIG.
粘弾性ブレース 2 は、 図 3 ( a ) ,(b ) に示すように H形断面を した第 1 心材 3の側面に、 第 1 心材 3 を包囲して対向配置した第 1 粘弾性体シー ト 9、 第 1溝形鋼 6、 第 2粘弾性体シー ト 10、 第 2溝 形鋼 7、 第 3粘弾性体シー ト 1 1及び第 3溝形鋼 8 を交互に積層粘着 し、 第 1 溝形鋼 6の端部を第 1 溝形鋼固定材 13を介在させ、 さ らに 第 3溝形鋼 8 の端部を第 3溝形鋼固定材 14を介在させて H形断面を
した第 2心材 4 に固着し、 第 2溝形鋼 7 の端部を第 2溝形鋼固定材 12を介在させて H形断面をした第 1 心材 3 に固着し、 第 1 心材 3 と 第 2心材 4 は第 1 粘弾性体シー ト 9、 第 1 溝形鋼 6、 第 2粘弾性体 シ一 ト 10、 第 2溝形鋼 7、 第 3粘弾性体シ一 ト 1 1及び第 3溝形鋼 8 により連結し、 対向配置した第 3溝形鋼 8の側面に蓋 17を固着した 点が、 図 2 に示す実施例 1 の粘弾性ブレース 2 とは異なっている。 つまり、 図 2 に示した粘弾性ブレース 2 は、 第 1 粘弾性体シー ト 9 と第 1 溝形鋼 6の組が 1 層構造であるのに対して、 図 3で示した 粘弾性ブレース 2 は、 第 1 粘弾性体シー ト 9 と第 1溝形鋼 6、 第 2 粘弾性体シー ト 10と第 2溝形鋼 7及び第 3粘弾性体シー ト 1 1と第 3 溝形鋼 8 の組の 3層構造と している。 The viscoelastic brace 2 is composed of a first viscoelastic sheet that surrounds the first core member 3 and is arranged on the side surface of the first core member 3 having an H-shaped cross section as shown in FIGS. 3 (a) and 3 (b). 9, 1st channel steel 6, 2nd viscoelastic sheet 10, 2nd channel steel 7, 3rd viscoelastic sheet 11 and 3rd channel steel 8 are laminated and adhered alternately. The end of the channel steel 6 is interposed with the first channel steel fixing material 13, and the end of the third channel steel 8 is interposed with the third channel steel fixing material 14, thereby forming an H-shaped cross section. The second core 4 is fixed to the first core 3 having an H-shaped cross section with the second channel steel fixing member 12 interposed therebetween. The core material 4 is composed of the first viscoelastic sheet 9, the first channel steel 6, the second viscoelastic sheet 10, the second channel steel 7, the third viscoelastic sheet 11 and the third viscoelastic sheet 11. The viscoelastic brace 2 of the first embodiment shown in FIG. 2 is different from the viscoelastic brace 2 shown in FIG. 2 in that the lid 17 is fixed to the side surface of the third channel steel 8 connected by the channel steel 8 and arranged to face each other. That is, the viscoelastic brace 2 shown in FIG. 2 has a single-layer structure of the pair of the first viscoelastic sheet 9 and the first channel steel 6, whereas the viscoelastic brace 2 shown in FIG. Are the first viscoelastic sheet 9 and the first channel steel 6, the second viscoelastic sheet 10 and the second channel steel 7, and the third viscoelastic sheet 11 and the third channel steel 8 It has a three-layer structure.
このような構造は、 3層だけでなく粘弾性体シー トと溝形鋼を組 み合わせてさ らに層を増やして設けるようにしてもよい。 Such a structure may be provided not only in three layers but also in an additional number of layers by combining a viscoelastic sheet and a channel steel.
また、 前記第 1 心材 3及び前記第 2心材 4 の断面形状は、 図 3 ( c ) , (d ) に示すように角形鋼管、 円形鋼管と してもよ く、 円形鋼 管の場合には前記第 1 溝形鋼 6、 前記第 2溝形鋼 7及び前記第 3溝 形鋼 8 に代わり第 1半円形鋼板 27、 第 2半円形鋼板 28及び第 3半円 形鋼板 29を用いる。 The cross-sectional shapes of the first core material 3 and the second core material 4 may be rectangular steel pipes or circular steel pipes as shown in FIGS. 3 (c) and 3 (d). A first semicircular steel plate 27, a second semicircular steel plate 28 and a third semicircular steel plate 29 are used instead of the first channel steel 6, the second channel steel 7 and the third channel steel 8.
このとき、 図 10 ( a ) ,(b ) 及び ( c ) に示すように、 第 1 溝形 鋼 6、 第 1半円形鋼板 27及び第 1平鋼 31の厚さ t と幅 Bをそれぞれ 同じにしたとき、 第 1溝形鋼 6 と第 1半円形鋼板 27の中立軸 X 1 — X I まわりの断面 2次モーメ ン ト I , , 1 2 力く、 第 1 平鋼 31の断面 2次モーメ ン ト 1 3 のおよそ 150倍〜 160 倍となるため、 第 1 溝形 鋼 6及び第 1半円形鋼板 27の断面 2次半径 i , , i 2 が第 1 平鋼 31 の断面 2次半径 i 3 に対して 9倍〜 10倍となり、 圧縮軸方向力が作 用したときに座屈が生じない。 At this time, as shown in Figs. 10 (a), (b) and (c), the thickness t and width B of the first channel steel 6, the first semicircular steel plate 27 and the first flat steel 31 are the same, respectively. when the neutral axis X 1 of the first Mizokatachiko 6 first semicircular steel plate 27 - section secondary Mome around XI down bets I,, 1 2 Chikaraku, secondary section 2 of the first flat bar 31 Mome since the approximately 150-fold to 160-fold down sheet 1 3, section secondary radius i of the first channel steel 6 and the first semicircular steel plate 27,, i 2 is a cross-sectional secondary radius i of the first flat bar 31 9 to 10 times that of 3. No buckling occurs when a compressive axial force is applied.
同様に、 第 2溝形鋼 7、 第 3溝形鋼 8、 第 2 円形鋼板 28及び第 3
円形鋼板 29の断面 2次半径が第 2平鋼 32及び第 3平鋼 33より大き く 圧縮力に対して座屈が生じない。 Similarly, the second channel steel 7, the third channel steel 8, the second circular steel plate 28 and the third The cross section secondary radius of the circular steel plate 29 is larger than that of the second flat bar 32 and the third flat bar 33, so that buckling does not occur against the compressive force.
また、 積層構造全体が最外層鋼板 8又は 29と蓋 17により拘束され ているため、 粘弾性体シー トと溝形鋼の剝離が生じず、 安定して応 力を伝達することができる。 Further, since the entire laminated structure is constrained by the outermost steel sheet 8 or 29 and the lid 17, separation of the viscoelastic sheet and the channel steel does not occur, and the stress can be transmitted stably.
本実施例 2では、 第 1 心材 3の側面に粘着させた粘弾性体シー ト が 3層に積層粘着されており、 単層で積層粘着した第 1 実施形態と 比べると、 同じ各粘弾性体シー 卜の厚さと体積に対し振動エネルギ —吸収能力も 3倍となる。 これにより建築物の骨組み 1 に入力され た振動エネルギーは、 粘弾性体シー トのせん断変形により吸収させ ることができる大容量の粘弾性ブレース 2 を形成することができ、 減衰効果を第 1 実施形態よりさ らに効果的に得ることができる。 In the second embodiment, the viscoelastic sheets adhered to the side surfaces of the first core material 3 are laminated and adhered in three layers, and the same viscoelastic bodies as those of the first embodiment laminated and adhered in a single layer. The vibration energy-absorbing capacity is three times as large as the sheet thickness and volume. This makes it possible to form a large-capacity viscoelastic brace 2 that can absorb the vibration energy input to the framework 1 of the building by the shear deformation of the viscoelastic sheet. It can be obtained more effectively than the form.
実施例 3 Example 3
本発明による粘弾性ブレースの実施例 3 を図 4、 図 5 を参照しつ つ説明する。 粘弾性ブレース 2 は図 4 ( a ) , (b ) 、 図 5 ( a ) に 示すように、 H形断面をした第 1 心材 3 のウェブ側面に、 前記第 1 心材 3 のゥエブを挟んで対向配置した第 1 内部粘弾性体シー ト 21、 第 1 内部溝形鋼 19、 第 2 内部粘弾性体シー ト 22、 第 2 内部溝形鋼 20 を交互に積層粘着し、 前記第 1 内部溝形鋼 19の端部を H形断面をし た第 2心材 4 に第 1 内部溝形鋼固定材 23を介在させて固着し、 且つ 前記第 2 内部溝形鋼 20の端部を H形断面をした第 1 心材 3 に第 2 内 部溝形鋼固定材 24を介在させて固着し、 第 1 心材 3 と第 2心材 4 は 第 1 粘弾性体シー ト 9、 第 1溝形鋼 6、 第 2粘弾性体シー ト 10、 第 2溝形鋼 7、 第 3粘弾性体シ一 ト 1 1及び第 3溝形鋼 8 さ らに第 1 内 部粘弾性体シ一 ト 21、 第 1 内部溝形鋼 19、 第 2 内部粘弾性体シー ト 22及び前記第 2 内部溝形鋼 20により連結した点が図 3 ( a ) ,(b ) に示す実施例 2 の粘弾性ブレース 2 とは異なっている。
つまり、 図 4 ( a ) ,(b ) 、 図 5 ( a ) に示す実施例 3 における 粘弾性ブレース 2 は、 図 3 ( a ) , ( b ) に示す実施例 2 における粘 弾性ブレース 2の第 1 心材 3のゥェブ両側面に粘弾性体シー 卜と溝 形鋼の積層構造を付加したものである。 なお、 本発明においては、 図 5 ( b ) に示すように、 対向配置した 1 組または複数組の溝形鋼 又は半円形鋼板と粘弾性体シー 卜の組のうち、 少く とも一組は片側 のみ前記溝形鋼又は半円形鋼板と前記粘弾性シー 卜を片側のみに配 置する粘弾性ブレースの構造と してもよい。 Third Embodiment A viscoelastic brace according to a third embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 4 (a), (b) and 5 (a), the viscoelastic brace 2 faces the web side surface of the first core material 3 having an H-shaped cross section, with the web of the first core material 3 interposed therebetween. The arranged first internal viscoelastic sheet 21, the first internal channel steel 19, the second internal viscoelastic sheet 22, and the second internal channel steel 20 are alternately laminated and adhered, and the first internal channel The end of the steel 19 is fixedly attached to the second core 4 having an H-shaped cross section with a first internal channel steel fixing member 23 interposed therebetween, and the end of the second internal channel steel 20 is formed into an H-shaped cross section. The first core member 3 and the second core member 4 are fixed to the first core member 3 with the second inner channel steel fixing member 24 interposed therebetween, and the first viscoelastic sheet 9, the first channel steel 6, and the second 2 Viscoelastic sheet 10, 2nd channel steel 7, 3rd viscoelastic sheet 11 and 3rd channel steel 8, 1st internal viscoelastic sheet 21, 1st internal Channel steel 19, 2nd internal viscoelastic sheet 22 and The point of connection by the second internal channel steel 20 is different from the viscoelastic brace 2 of Example 2 shown in Figs. 3 (a) and (b). That is, the viscoelastic brace 2 in the third embodiment shown in FIGS. 4 (a), (b) and 5 (a) is the same as the viscoelastic brace 2 in the second embodiment shown in FIGS. 3 (a) and (b). 1 A core material 3 has a laminated structure of viscoelastic sheet and channel steel added to both sides of the web. In the present invention, as shown in FIG. 5 (b), at least one set of one or more sets of channel steel or semicircular steel plate and viscoelastic sheet which are arranged opposite to each other is provided on one side. Only the channel steel or semi-circular steel plate and the viscoelastic sheet may be provided on only one side.
こう した積層構造はもちろん、 粘弾性体シー トと溝形鋼を組み合 わせてさ らに層を増やして設けるようにしてもよい。 In addition to such a laminated structure, a viscoelastic sheet and a channel steel may be combined to provide additional layers.
本実施例 3では、 実施例 2 と比べると第 1 心材 3 のゥ ヱブ側面に 積層粘着させた粘弾性体シ一 卜が 4層分付加されており、 この付加 した 4層の粘弾性体シ一トのせん断断面積に応じて振動エネルギ一 吸収能力が増加する。 In the third embodiment, compared with the second embodiment, four layers of viscoelastic sheets laminated and adhered to the side surface of the first core material 3 are added, and the added four layers of the viscoelastic body are added. The ability to absorb vibration energy increases according to the shear cross-sectional area of the sheet.
更に、 本発明による粘弾性ブレースは、 その変形と して図 6 に示 したように、 H形鋼、 I 形鋼、 H形組み立て材、 または I 形組み立 て材からなる第 1 心材及び第 2心材は伸縮用間隙を介して直列に配 置され、 前記第 1 心材のウェブ側面には、 対向配置した 1 組の溝形 鋼と粘弾性体シー トをそれぞれ単層で積層粘着し、 前記溝形鋼の端 部を前記第 2心材に固着し、 前記第 1 心材と前記第 2心材は前記溝 形鋼と前記粘弾性シー トを介して粘弾性的に連結した粘弾性ブレー スの構成と してもよく、 また、 この粘弾性ブレースの溝形鋼と粘弾 性体シー トの単層の構成に代えて、 ゥェブ側面に対向配置した溝形 鋼と粘弾性シー トは複数組からなり、 それぞれ交互に積層粘着され 、 前記溝形鋼の端部は交互に前記第 2心材または前記第 1 心材端部 近傍に固着されている粘弾性ブレースの構成と してもよく、 前述し たような第 1 心材を包囲して対向配置した 1組の溝形鋼と粘弾性体
シー トを単層または複層して積層粘着することなく 、 より簡便な構 造と した粘弾性ブレースでも十分使用に耐え得る。 Further, as shown in FIG. 6, the viscoelastic brace according to the present invention has a first core member made of an H-shaped steel, an I-shaped steel, an H-shaped assembled material, or an I-shaped assembled material, as shown in FIG. The core material is arranged in series with a gap for expansion and contraction, and a pair of channel steel and a viscoelastic sheet which are opposed to each other are laminated and adhered in a single layer on the web side surface of the first core material. The structure of a viscoelastic bracing in which an end of a section steel is fixed to the second core, and the first core and the second core are viscoelastically connected to the channel steel via the viscoelastic sheet. Also, instead of the single-layer structure of the viscoelastic brace channel and viscoelastic sheet, the channel steel and viscoelastic sheet opposing the web side consist of a plurality of sets. Each of the end portions of the channel steel is alternately laminated and adhered, and the end of the channel steel is alternately the second core material or the first core. A viscoelastic brace may be configured to be fixed near the end of the bar, and a pair of channel steel and a viscoelastic body that surround and surround the first core as described above. The viscoelastic brace, which has a simpler structure without sticking the sheet in a single layer or a plurality of layers, can sufficiently withstand use.
このように、 H形断面をした前記第 1 心材 3のゥェブ両側面に粘 弾性体シー トと溝形鋼を積層粘着させることによつてもさ らに大容 量の粘弾性ブレース 2 を形成することができる。 In this manner, a viscoelastic brace 2 having a larger capacity is formed by laminating and adhering the viscoelastic sheet and the channel steel to both sides of the web of the first core material 3 having the H-shaped cross section. can do.
これにより、 建築物の骨組み 1 に入力された振動エネルギーを粘 弾性体シー トのせん断変形により実施例 2 より さ らに吸収すること ができ、 高い減衰効果を得ることができる。 本発明により建築物の 骨組み 1 の振動は速やかに減衰し、 前記粘弾性ブレース 2 は優れた 制振効果を発揮することができる。 産業上の利用可能性 Thereby, the vibration energy input to the framework 1 of the building can be further absorbed by the shear deformation of the viscoelastic sheet than in the second embodiment, and a high damping effect can be obtained. According to the present invention, the vibration of the framework 1 of the building is rapidly attenuated, and the viscoelastic brace 2 can exhibit an excellent vibration damping effect. Industrial applicability
以上説明したように本発明によると、 粘弾性体シー トを積層する 溝形鋼又は円形鋼板は全て断面 2次半径の大きなものとなっている ため、 圧縮時にも座屈を生じず、 安定した応力伝達が成され、 また 、 対向配置した最も外側の前記溝形鋼又は前記円形鋼板の側面に蓋 を固着して互いに連結することにより積層構造全体が囲い込まれて 拘束され、 前記溝形鋼又は前記円形鋼板と前記粘弾性体シー トは剝 離を生じず、 さ らに、 前記溝形鋼又は前記円形鋼板を分離して対向 配置しているため、 前記粘弾性体シー トと前記溝形鋼又は前記円形 鋼板を積層に圧着して製造することが可能となり、 粘弾性体を流し 込む必要がなく なり (流し込むことができない粘弾性体に対しても 有効に製造を行う ことができ) 、 これにより、 高層建築物のように 建物の幅に比べて高さの高い構造物において、 地震や風による水平 方向の変形及びせん断力を軽減させ、 速やかに振動を減衰させるこ とができる。
As described above, according to the present invention, since all of the channel steel or circular steel plate on which the viscoelastic sheet is laminated have a large secondary radius in cross section, buckling does not occur even when compressed, and the steel is stable. A stress is transmitted, and a lid is fixedly attached to the side surface of the outermost channel steel or the circular steel plate which is disposed opposite to and connected to each other, whereby the entire laminated structure is surrounded and restrained, and the channel steel is restrained. Alternatively, since the circular steel plate and the viscoelastic sheet do not separate from each other, and further, since the channel steel or the circular steel plate is separated and opposed to each other, the viscoelastic sheet and the groove are not provided. It is possible to manufacture by shaping the shaped steel or the circular steel plate into a laminate, eliminating the need to pour a viscoelastic body (effectively manufacturing viscoelastic bodies that cannot be poured). , Which enables high-rise buildings In a structure having a high height than in the width of the building as object, and reduce the deformation and shear force in the horizontal direction by seismic and wind, you are the this damping vibrations quickly.
Claims
1. 形鋼、 角形鋼管又は円形鋼管からなる第 1 心材及び第 2心材 は伸縮用間隙を介して直列に配置され、 前記第 1 心材の側面に、 前 記第 1 心材を包囲して対向配置した 1組の溝形鋼又は半円形鋼板と 粘弾性体シー トをそれぞれ単層で積層粘着し、 前記溝形鋼又は前記 半円形鋼板の端部を前記第 2心材に固着し、 前記第 1 心材と前記第 2心材は前記溝形鋼又は前記半円形鋼板と前記粘弾性体シー トを介 して粘弾性的に連結したことを特徴とする粘弾性ブレース。 1. The first core and the second core made of shaped steel, square steel pipe or round steel pipe are arranged in series with a gap for expansion and contraction, and are arranged opposite to the side of the first core so as to surround the first core. The single set of grooved steel or semicircular steel plate and the viscoelastic sheet are laminated and adhered in a single layer, and the end of the grooved steel or semicircular steel plate is fixed to the second core material. A viscoelastic brace wherein the core and the second core are viscoelastically connected to the channel steel or the semicircular steel plate via the viscoelastic sheet.
2. 対向配置した溝形鋼又は半円形鋼板と粘弾性体シー トは複数 組からなり、 それぞれ交互に積層粘着され、 前記溝形鋼又は前記半 円形鋼板の端部は交互に前記第 2心材または前記第 1 心材端部近傍 に固着されていることを特徴とする請求項 1 記載の粘弾性ブレース 2. A plurality of sets of channel steel or semi-circular steel sheet and viscoelastic sheet which are arranged opposite to each other are laminated and adhered alternately, and the ends of the channel steel or semi-circular steel sheet are alternately made of the second core material. 2. The viscoelastic brace according to claim 1, wherein the viscoelastic brace is fixed near an end of the first core material.
3. 対向配置した最も外側の一方の溝形鋼又は半円形鋼板の側面 と、 対向配置した最も外側の他方の前記溝形鋼又は前記半円形鋼板 の側面とを互いに連結する蓋を固着させたことを特徴とする請求項 1 又は 2記載の粘弾性ブレース。 3. A lid for connecting the side of one of the outermost channel steel or semi-circular steel plate disposed opposite to the other and the side of the other outermost channel steel or semi-circular steel plate disposed opposite to each other is fixed. The viscoelastic brace according to claim 1 or 2, wherein:
4. 対向配置した前記溝形鋼又は前記半円形鋼板は互いに所定の 間隔を空けて設置された請求項 1 〜 3のいずれか 1 項に記載の粘弾 性ブレース。 4. The viscoelastic brace according to any one of claims 1 to 3, wherein the channel steel or the semi-circular steel plate arranged opposite to each other is installed at a predetermined interval from each other.
5. 前記第 1 心材及び第 2心材を成す形鋼が、 H形鋼、 I 形鋼、 H形組み立て材、 または I 形組み立て材のいずれかであり、 前記第 5. The section steel forming the first core member and the second core member is any of an H-section steel, an I-section steel, an H-section assembly, or an I-section assembly;
1 心材のゥ ブ側面には、 対向配置した 1 組の溝形鋼と粘弾性体シ 一トをそれぞれ単層で積層粘着し、 該ウェブ側面に対向配置した溝 形鋼の端部を前記第 2心材に固着したことを特徴とする請求項 1〜(1) A pair of channel steel and viscoelastic sheet which are opposed to each other are laminated and adhered in a single layer on the side surface of the core. Claim 1-characterized by being fixed to the core material
4のいずれか 1 項に記載の粘弾性ブレース。
4. The viscoelastic brace according to any one of 4.
6. ゥ ブ側面に対向配置した溝形鋼と粘弾性シー トは複数組か らなり、 それぞれ交互に積層粘着され、 前記溝形鋼の端部は交互に 前記第 2心材または前記第 1 心材端部近傍に固着されていることを 特徴とする請求項 5記載の粘弾性ブレース。 6. A plurality of sets of channel steel and visco-elastic sheet arranged opposite to the side surface of the groove are laminated and adhered alternately, and the ends of the channel steel are alternately provided with the second core material or the first core material. 6. The viscoelastic brace according to claim 5, wherein the viscoelastic brace is fixed near an end.
7. H形鋼、 I形鋼、 H形組み立て材、 または I 形組み立て材か らなる第 1 心材及び第 2心材は伸縮用間隙を介して直列に配置され 、 前記第 1 心材のウ ェブ側面には、 対向配置した 1組の溝形鋼と粘 弾性体シー トをそれぞれ単層で積層粘着し、 前記溝形鋼の端部を前 記第 2心材に固着し、 前記第 1 心材と前記第 2心材は前記溝形鋼と 前記粘弾性シー トを介して粘弾性的に連結したことを特徴とする粘 弹性ブレース。 7. A first core and a second core made of an H-shaped steel, an I-shaped steel, an H-shaped assembly, or an I-shaped assembly are arranged in series with an expansion gap, and the web of the first core is formed. A pair of channel steel and a viscoelastic sheet which are arranged opposite to each other are laminated and adhered in a single layer on the side surface, and the end of the channel steel is fixed to the second core material, and the first core material and The viscous brace wherein the second core is viscoelastically connected to the channel steel via the viscoelastic sheet.
8. ゥェブ側面に対向配置した溝形鋼と粘弹性シ一卜は複数組か らなり、 それぞれ交互に積層粘着され、 前記溝形鋼の端部は交互に 前記第 2心材または前記第 1 心材端部近傍に固着されていることを 特徴とする請求項 7記載の粘弾性ブレース。 8. A plurality of sets of the channel steel and the viscous sheet arranged opposite to the side of the web are laminated and adhered alternately, and the ends of the channel steel are alternately provided with the second core material or the first core material. The viscoelastic brace according to claim 7, wherein the viscoelastic brace is fixed near an end.
9. 対向配置した前記 1 組又は複数組の溝形鋼又は半円形鋼板と 粘弾性体シ一 卜の組のうち、 少なく と も一組は片側のみの配置と し たことを特徵とする請求項 1 〜 8 のいずれか 1 項に記載の粘弾性ブ レース n
9. At least one of the one or more sets of the channel steel or semicircular steel plate and the viscoelastic sheet that are arranged opposite to each other is arranged on only one side. Viscoelastic brace n according to any one of Items 1 to 8
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HK00106395.8A HK1027143B (en) | 1998-01-28 | 1999-01-28 | Viscoelastic brace |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2906298 | 1998-01-28 | ||
JP10/29062 | 1998-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999039064A1 true WO1999039064A1 (en) | 1999-08-05 |
Family
ID=12265891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/000367 WO1999039064A1 (en) | 1998-01-28 | 1999-01-28 | Viscoelastic brace |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN1128282C (en) |
WO (1) | WO1999039064A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003100198A1 (en) * | 2002-05-27 | 2003-12-04 | Cambridge University Technical Services Ltd. | Building collapse control system and method |
EP2261442A3 (en) * | 2002-02-21 | 2011-01-12 | Oiles Corporation | Damper and vibration damping structure using the same |
EP3196500A4 (en) * | 2014-09-19 | 2018-05-30 | Oiles Corporation | Vibration damping device for structure |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1995576B (en) * | 2002-02-21 | 2012-08-22 | 奥依列斯工业株式会社 | Damper and vibration controlling structure using the same |
JP4729132B2 (en) | 2009-03-12 | 2011-07-20 | 新日本製鐵株式会社 | Linked hardware, vibration control structure, and building structure |
CN103122662B (en) * | 2013-03-19 | 2015-08-12 | 上海沃耳沃建筑材料有限公司 | A kind of buckling restrained brace containing viscoelastic material |
CN104534014B (en) * | 2014-11-11 | 2016-10-12 | 上海宇航系统工程研究所 | A kind of shearing-type damping pipe with damping property and vibration damping adapter |
CN105888090A (en) * | 2014-11-12 | 2016-08-24 | 徐赵东 | Low yield point steel and high dissipation viscoelasticity buckling restraining brace |
CN110035945B (en) * | 2017-01-30 | 2021-09-07 | 住友理工株式会社 | Vehicle frame support device |
CN110847674B (en) * | 2019-11-22 | 2021-02-23 | 山东大学 | Breeze vibration energy consumption suppression device for rod piece of service steel pipe tower |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01187271A (en) * | 1988-01-21 | 1989-07-26 | Kajima Corp | Vibration control device |
JPH05133137A (en) * | 1991-07-24 | 1993-05-28 | Nippon Steel Corp | Vibration damping device for building |
JPH06167138A (en) * | 1992-11-27 | 1994-06-14 | Ohbayashi Corp | Damping device for eccentric brace structure |
-
1999
- 1999-01-28 WO PCT/JP1999/000367 patent/WO1999039064A1/en active Application Filing
- 1999-01-28 CN CN99800011A patent/CN1128282C/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01187271A (en) * | 1988-01-21 | 1989-07-26 | Kajima Corp | Vibration control device |
JPH05133137A (en) * | 1991-07-24 | 1993-05-28 | Nippon Steel Corp | Vibration damping device for building |
JPH06167138A (en) * | 1992-11-27 | 1994-06-14 | Ohbayashi Corp | Damping device for eccentric brace structure |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2261442A3 (en) * | 2002-02-21 | 2011-01-12 | Oiles Corporation | Damper and vibration damping structure using the same |
EP2261443A3 (en) * | 2002-02-21 | 2011-01-12 | Oiles Corporation | Damper and vibration damping structure using the same |
US8002093B2 (en) | 2002-02-21 | 2011-08-23 | Oiles Corporation | Damper and vibration damping structure using the same |
WO2003100198A1 (en) * | 2002-05-27 | 2003-12-04 | Cambridge University Technical Services Ltd. | Building collapse control system and method |
EP3196500A4 (en) * | 2014-09-19 | 2018-05-30 | Oiles Corporation | Vibration damping device for structure |
Also Published As
Publication number | Publication date |
---|---|
CN1128282C (en) | 2003-11-19 |
HK1027143A1 (en) | 2001-01-05 |
CN1255952A (en) | 2000-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1948878B1 (en) | Structure with increased damping by means of fork configuration dampers | |
JP4901491B2 (en) | Buckling restraint brace | |
CN106593464B (en) | A kind of tunnel axial damping energy absorption device and the tunnel lining structure with the device | |
JP2002089077A (en) | Viscoelastic brace with springs joined in series | |
JP3686542B2 (en) | Viscoelastic brace | |
WO1999039064A1 (en) | Viscoelastic brace | |
CN116163433B (en) | A hollow multi-layer steel-concrete composite corrugated steel plate shear wall structure | |
JP2000213200A (en) | Damping structure | |
JP3389521B2 (en) | Vibration energy absorber for tension structure and its construction method | |
JP6022435B2 (en) | Bearing wall with brace and brace | |
CN106368319A (en) | Joint connecting device suitable for assembly type structure | |
JPH01187271A (en) | Vibration control device | |
JP2002295053A (en) | Damping stud and its construction method | |
JP2008008364A (en) | Structure for reinforcing multilayer flat metal plate | |
JP4881084B2 (en) | Seismic structure | |
JP5478131B2 (en) | Brace structure and building having the brace structure | |
HK1027143B (en) | Viscoelastic brace | |
JPH1162313A (en) | Lead bearing | |
JP3106992U (en) | Pure axial force bending prevention bundling brace | |
JPH08326814A (en) | Layered rubber support body | |
JPH1150574A (en) | Vibration control partition wall panel | |
TW390944B (en) | Viscoelastic brace | |
JP2824009B2 (en) | Concrete structural members | |
JP2008127137A (en) | Device for horizontally supporting mast of tower crane | |
JP2023019256A (en) | Brace structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 99800011.6 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN SG |