[go: up one dir, main page]

WO1999039030A1 - Procede de fabrication d'un elastomere de polyurethanne et d'un filament souple - Google Patents

Procede de fabrication d'un elastomere de polyurethanne et d'un filament souple Download PDF

Info

Publication number
WO1999039030A1
WO1999039030A1 PCT/JP1998/000400 JP9800400W WO9939030A1 WO 1999039030 A1 WO1999039030 A1 WO 1999039030A1 JP 9800400 W JP9800400 W JP 9800400W WO 9939030 A1 WO9939030 A1 WO 9939030A1
Authority
WO
WIPO (PCT)
Prior art keywords
diol
polymer
molecular weight
diisocyanate
polymer diol
Prior art date
Application number
PCT/JP1998/000400
Other languages
English (en)
French (fr)
Other versions
WO1999039030A8 (fr
Inventor
Nobuhisa Tsutsumi
Kenji Tamura
Mitsuhiko Yoshimoto
Original Assignee
Nisshinbo Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries, Inc. filed Critical Nisshinbo Industries, Inc.
Priority to AT98901068T priority Critical patent/ATE280852T1/de
Priority to DE69827242T priority patent/DE69827242T2/de
Priority to EP98901068A priority patent/EP0972864B1/en
Priority to CN98805568A priority patent/CN1100896C/zh
Priority to US09/402,361 priority patent/US6252031B1/en
Priority to CA002285396A priority patent/CA2285396A1/en
Priority to HK01100717.1A priority patent/HK1030027B/xx
Priority to JP53914499A priority patent/JP3636727B2/ja
Priority to PCT/JP1998/000400 priority patent/WO1999039030A1/ja
Priority to KR10-1999-7008930A priority patent/KR100469550B1/ko
Priority to BR9808443-7A priority patent/BR9808443A/pt
Priority to TR1999/02380T priority patent/TR199902380T1/xx
Publication of WO1999039030A1 publication Critical patent/WO1999039030A1/ja
Publication of WO1999039030A8 publication Critical patent/WO1999039030A8/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0895Manufacture of polymers by continuous processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S528/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S528/906Fiber or elastomer prepared from an isocyanate reactant

Definitions

  • the present invention relates to a method for producing a polyurethane elastic body, particularly an elastic yarn by a reaction spinning method.
  • BACKGROUND ART It is known to produce a polyurethane elastomer by an extrusion method using a thermoplastic polyurethane pellet produced from a polymer diol, a disocyanate and a low molecular weight diol.
  • a part of the bond in the polymer is decomposed during extrusion molding, and the polyurethane elastic body having satisfactory thermal properties such as residual strain after elongation in a high-temperature atmosphere, particularly, having excellent thermal properties.
  • Polyurethane elastic yarn cannot be obtained.
  • polymer diols, diisocyanates, and low-molecular-weight diols are polymerized by a one-shot method to improve the thermal properties of polyurethane elastic yarn by melt spinning, and a method of directly spinning from this polymerization system, or an isocyanate
  • a reaction spinning method such as a method of reacting a terminal prepolymer with a low molecular weight diol and spinning directly from this reaction system is also known. Since the elastic material obtained by these reaction spinning methods has a small thermal history of the polymer, the thermal properties are improved more than the elastic material obtained by the melt spinning method using pellets.
  • the isocyanate remaining in the pellet after synthesis reacts with moisture in the air to generate a urea group, or to generate a three-dimensional bond by an arophanate or burette reaction.
  • Rare groups and three-dimensional bonds improve the thermal properties of the polymer, but decompose during extrusion.
  • the elastic body obtained by the reaction spinning method the urea group and the three-dimensional bond remain as they are in the polymer, and good thermal properties can be maintained. But, Since the reaction spinning method itself easily spins out an unfinished and unstable polymer in the course of polymer synthesis, its spinnability is generally poor.
  • a mixture of a polymer diol and a low molecular weight diol having a molar amount of 1 to 3 times that of the polymer diol in advance is used.
  • a method is also known in which an isocyanate is reacted to prepare a hydroxyl-terminated prepolymer and an isocyanate-terminated prepolymer. The two are reacted to obtain an elastomer such as a pellet (Japanese Patent Publication No. — 6 339).
  • the elastomer obtained by this method is a melt-spinning elastomer for melting and spinning, and does not disclose spinning by continuously reacting raw materials such as polyol.
  • the present invention solves the above-mentioned disadvantages of the prior art, and provides a method for stably producing a polyurethane elastic material having excellent thermal properties, particularly an elastic yarn by a reaction spinning method. Made for purpose.
  • the present invention provides a first polymer diol having a molecular weight of 600 or more, and a second polymer diol having a molecular weight of 600 or more, which may be the same as or different from the first polymer diol, A first low molecular weight diol having a molecular weight of 500 or less, a second low molecular weight diol which may be the same as or different from the first low molecular weight diol, and a first diisocyanate; A second diisocyanate which may be the same as or different from the first diisocyanate as a main raw material;
  • the total amount of the first diisocyanate and the second diisocyanate in the raw material is the total moles of the first polymer diol, the second polymer diol, the first low molecular weight diol, and the second low molecular weight diol.
  • the second low molecular weight diol is less than 1.0 times the molar amount of the second polymer diol.
  • the present invention provides a first polymer diol having a molecular weight of 600 or more, a second polymer diol having a molecular weight of 600 or more which may be the same as or different from the first polymer diol, A first low molecular weight diol of 500 or less; a second low molecular weight polyol which may be the same as or different from the first low molecular weight diol; a first diisocyanate; A first diisocyanate and a second diisocyanate which may be the same or different;
  • the total amount of the first diisocyanate and the second diisocyanate in the raw material is the total mole of the first polymer diol, the second polymer diol, the first low molecular weight diol, and the second low molecular weight diol. 0.95 to 1.25 times the molar amount of the second low molecular weight diol with respect to the second polymer diol.
  • a method for producing a polyurethane elastomer having a molar amount of less than 0 times comprising reacting a first polymer diol, a first low molecular weight diol, and a first diisocyanate with a hydroxyl group-terminated prepolymer, A continuous flow of a polyurethane polymer in a fluid state obtained by continuously reacting an isocyanate-terminated prepolymer obtained by reacting a polymer diol of No. 2 with a second low molecular weight diol and a second diisocyanate, This is a method for producing a polyurethane elastic body, which is characterized by being extruded from a nozzle.
  • the present invention provides a first polymer diol having a molecular weight of 600 or more, a second polymer diol having a molecular weight of 600 or more which may be the same as or different from the first polymer diol, A low molecular weight diol of 500 or less, a first diisocyanate, and a second diisocyanate which may be the same as or different from the first diisocyanate as main raw materials,
  • the total amount of the first diisocyanate and the second diisocyanate in the raw material is 0.95-1.2 with respect to the total molar amount of the first polymer diol, the second polymer diol and the low molecular weight diol.
  • the present invention provides a first polymer diol having a molecular weight of 600 or more, a second polymer diol having a molecular weight of 600 or more which may be the same as or different from the first polymer diol, A low molecular weight diol of 500 or less, a first diisocyanate, and a second diisocyanate which may be the same as or different from the first diisocyanate as main raw materials,
  • the total amount of the first diisocyanate and the second diisocyanate in the raw material is 0.95 to 1.25 times the total molar amount of the first polymer diol, the second polymer diol and the low molecular weight diol.
  • polymer diol is a polymer diol having a molecular weight of 600 or more
  • low molecular weight diol is a diol having a molecular weight of 500 or less. Means that.
  • the hydroxyl-terminated prepolymer is used in an amount of 60 mol% to 10 mol% based on the total amount of the first polymer diol and the second polymer diol.
  • the above-mentioned isocyanate-terminated prepolymer is 90 mol% to 40 mol% of the second polymer diol and the second polymer diol, based on the total amount of the first polymer diol and the second polymer diol.
  • the polymer is obtained by reacting a polymer with a second diisocyanate in a molar amount twice or more the amount of the second polymer diol.
  • the precursor and the low molecular weight diol are mixed. It is preferably obtained by reacting.
  • the second polymer diol, the second diisocyanate and the second low molecular weight diol are used for preparing an isocyanate-terminated prepolymer, the hydroxyl-terminated prepolymer is used as the first polymer diol.
  • a first diisocyanate to obtain a first precursor, and then the first precursor is reacted with a first low molecular weight diol, and the isocyanate-terminated prepolymer is obtained.
  • the first polymer diol and the second polymer diol are each selected from the group consisting of a polyether diol and a polyester diol. Further, in the production method of the present invention, it is preferable that the first polymer diol is a polyether diol and the second polymer diol is a polyester diol.
  • the present invention also provides a polyurethane elastic body and an elastic yarn produced by the above method.
  • the present invention will be described in detail.
  • polyurethane elastic material or elastic yarn (hereinafter sometimes referred to as “elastic material, etc.”) from a polymerization system is the ideal mixing state, taking into account the reactivity of the reaction components. It is to realize.
  • the polyurethane produced from polymer-diol, diisocyanate and low-molecular-weight diol is directly spun from the polymerization system by one-shot method, in which isocyanate-terminated prepolymer is reacted with low-molecular-weight diol.
  • the conventional pre-polymer method (hereinafter sometimes simply referred to as “the conventional pre-polymer method”) or the method using an additive such as finely divided silica is used together, as described above, each reaction is performed.
  • a sufficient mixing effect cannot be expected from the viewpoint of the viscosity and the volume ratio of the components, and there are many opportunities for the low-molecular-weight diol to react with the dissociate in a non-uniform mixing state. It is difficult to accurately measure the components, and as a result, the problem of lack of spinning stability has not been essentially solved.Further, in the elastic body and the elastic yarn, in addition to the viscosity and the volume ratio of each reaction component, it is required to realize an ideal mixed state with less abnormal reaction.
  • the inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, a fluid state obtained by continuously reacting two types of prepolymers having almost the same volume and relatively close viscosity has been obtained.
  • the uniformity of the reaction is increased by continuously extruding the polyurethane polymer directly from the nozzle and finding the ideal blending conditions of the two types of prepolymers, and it is thermally stable without special additives.
  • Polyurethane elasticity with excellent properties It succeeded in stably spinning the body and the elastic yarn, and completed the present invention.
  • One of the two types of prepolymers is a hydroxyl-terminated prepolymer obtained by reacting a first polymer diol, a first low molecular weight diol, and a first diisocyanate.
  • the other is an isocyanate-terminated prepolymer obtained by reacting a second polymer diol, a second low-molecular-weight polyol, and a second diisocyanate.
  • the first polymer diol and the second polymer diol may be the same or different.
  • the first low molecular weight diol and the second low molecular weight diol may be the same low molecular weight diol or different diols.
  • the first dissociate and the second dissociate may be the same dissociate or different ones.
  • the total amount of the first diisocyanate and the second diisocyanate is the first polymer diol, the second polymer diol, the first low molecular weight diol, and the second low molecular weight
  • the molar amount is 0.95 to 1.25 times the total molar amount of the diol, and preferably 1.03 to 1.15.
  • the molar ratio of the total amount of the first diisocyanate and the second diisocyanate to the total molar amount of the first polymer diol, the second polymer diol, the first low molecular weight diol, and the second low molecular weight diol If the above requirements are satisfied, the amount ratio of the polymer diol, diisocyanate, and low molecular weight diol in the polyurethane elastomer or the like can be variously changed depending on the respective molecular weights, desired elastic body performance, and the like.
  • the amount ratio of the raw material components for obtaining the hydroxyl-terminated prepolymer is preferably such that the first polymer diol is preferably 60 mol% to 10 mol%, particularly preferably 60 mol% to 10 mol% of the total amount of the first and second polymer diols. Preferably, it is 50 mol% to 15 mol%, and the first diisocyanate is preferably 1.3 to 2.5 times the molar amount of the first polymer diol, particularly preferably 1.8 to 2.5 times.
  • the molar ratio of the first low molecular weight diol is preferably 2 times or more, more preferably 4 times or more the molar amount of the first polymer diol. You.
  • the amount ratio of the raw material components for obtaining the isocyanate-terminated prepolymer is preferably such that the second polymer-diol is 90 mol% to the total amount of the first and second polymer diols. 40 mol%, particularly preferably 85 mol% to 50 mol%.
  • the diol is preferably at least twice, more preferably at least three times, the molar amount of the second polymer diol, and the second low molecular weight diol is preferably at least two times the molar amount of the second polymer diol.
  • a molar amount of less than 1.0 times, particularly preferably 0.5 times or less is exemplified.
  • the viscosity of the hydroxyl-terminated prepolymer is generally 100,000 centivoise (at a temperature of 70 ° C., (The viscosity is the value at 70 ° C unless otherwise specified.) While the viscosity is higher than the above, the viscosity of the isocyanate-terminated prepolymer is generally as low as 800 cmb or less.
  • the viscosity of the hydroxyl-terminated prepolymer is generally as low as 500 centiboise or less, while the viscosity of the isocyanate-terminated prepolymer is generally 5,000 or less.
  • two types of prepolymers, a hydroxyl-terminated prepolymer and an isocyanate-terminated prepolymer are obtained by increasing the density to more than a centipoise. It does not give a very good effect on the mixed state of.
  • the viscosity of the isocyanate-terminated prepolymer is generally 20%.
  • the blending amount of the second low-molecular-weight diol is preferably less than 1.0 times the molar amount of the second polymer diol.
  • the second low molecular weight gel is more preferably a molar amount of 0.5 times or less with respect to the second polymer diol, and furthermore, It is also possible to choose not to incorporate a second low molecular weight diol.
  • the distribution ratio of diisocyanate to two types of prepolymers also greatly affects the formation of abnormal reactants and the viscosity of hydroxyl-terminated prepolymers during the synthesis of hydroxyl-terminated prepolymers. If the amount of the first diisocyanate used in the hydroxyl-terminated prepolymer is more than 2.5 mole times the molar amount of the first polymer diol used in the hydroxyl-terminated prepolymer, the first diisocyanate in the hydroxyl-terminated prepolymer may be used. Unusual reaction product of low molecular weight diol and first diisocyanate reacting to produce spinning stability Tends to decrease.
  • the amount of the first diisocyanate used in the hydroxyl-terminated prepolymer is less than 1.3 mol times, the viscosity of the hydroxyl-terminated prepolymer is not less than 10,000 centiboise at 70 ° C. As a result, the mixed state with the isocyanate-terminated prepolymer is deteriorated, and the spinning stability is not adversely affected.
  • the hydroxyl-terminated prepolymer and the isocyanate-terminated prepolymer can be obtained by mixing and stirring various raw materials under predetermined conditions such as reaction temperature and reaction time. Specifically, a polymer diol, a diisocyanate, and a low-molecular-weight polyol can be reacted in one shot, and a more effective method is to react a polymer diol with a diisocyanate to firstly react the isocyanate.
  • This stepwise method comprises, for example, in the case of hydroxyl-terminated prepolymers, from 60 mol% to 10 mol% of the first polymer diol, based on the total amount of the first and second polymer diols, 1.3 to 2.5 times the molar amount of the first diisocyanate to obtain a first precursor, and then react the first precursor with the first polymer. It is embodied by reacting a diol with a first low molecular weight diol at least twice the molar amount of the diol.
  • an isocyanate-terminated prepolymer for example, 90 mol% to 40 mol% of the second polymer diol with respect to the total amount of the first and second polymer diols, and more than twice as much as the second polymer diol
  • a second molar amount of a second diisocyanate to obtain a second precursor the second precursor being combined with a second polymeric diol having a molar amount of less than 1.0 times the second polymeric diol.
  • a low molecular weight diol for example, 90 mol% to 40 mol% of the second polymer diol with respect to the total amount of the first and second polymer diols, and more than twice as much as the second polymer diol
  • a molar ratio of the second diisocyanate which is at least twice the molar amount of the second polymer diol to the second polymeric diol is 1.3 to 2.5 times, particularly preferably. It can also be obtained by reacting stepwise by dividing it into two parts, a second dissociate having a molar amount of 1.8 to 2.1 times and the remaining second dissociate.
  • the first and second polymer diols 90 mol% to 40 mol% of the second polymer diol and 1.3 to 2.5 times, particularly preferably 1.8 to 2.1 times, the amount of the polymer diol.
  • the fourth precursor can be obtained by a stepwise reaction method in which the remaining amount of the second dissociate is reacted with the fourth precursor.
  • the amount of the first diisocyanate used in the first-stage reaction of the hydroxyl-terminated prepolymer is more than 2.5 times the molar amount of the first polymer diol.
  • Tends to contain many unusual reactants such as D (ID) m molecules (m ⁇ 2) in the hydroxyl-terminated prepolymer D in the abbreviation stands for low molecular weight diol and I for diisocyanate, respectively) . same as below) .
  • the amount of the first diisocyanate is less than 1.3 times the molar amount, the diisocyanate monomer is mixed in a large amount in the isocyanate-terminated prepolymer and remains as a result.
  • abnormal reactants such as I (DI) n molecules (n ⁇ 2) are likely to be generated. That is, in both cases where the amount of the first diisocyanate is greater than 2.5 times the molar amount of the first polymer diol and less than 1.3 times the molar amount of the first polymer diol, Does not have a positive effect on output stability.
  • the conditions such as the reaction temperature and the reaction time when producing the hydroxyl group-terminated prepolymer may be adjusted depending on the type of the raw material components and the like.
  • the reaction temperature is preferably 60 to 130 ° C., and particularly preferably. Is from 80 to 120 ° C, and the reaction time is preferably from 30 to 100 minutes, particularly preferably from 50 to 70 minutes.
  • the reaction temperature of the reaction between the first polymer and the first diisocyanate is preferably 60 to 130 ° C, particularly preferably 80 to 130 ° C.
  • the reaction time is preferably 120 ° C., and the reaction time is preferably 30 to 100 minutes, particularly preferably 50 to 70 minutes.
  • the reaction temperature between the obtained first precursor and the low molecular weight diol is preferably 60 to 130 ° C., and particularly preferably 8 to 130 ° C. 0 to: L 00 ° C.
  • the second precursor can be reacted with the second polymer at least twice as a second precursor to form a second precursor.
  • the amount of the second low molecular weight diol to be reacted with the substance is small, specifically, when the molar amount is less than 1.0 times the amount of the second polymer diol, the above abnormal reaction product is generated. There is no problem because it is difficult.
  • the conditions such as the reaction temperature and the reaction time when producing the isocyanate-terminated prepolymer may be adjusted depending on the type of the raw material components and the like.
  • the reaction temperature is preferably 60 to 130 ° C.
  • the reaction time is particularly preferably 80 to 120 ° C., and the reaction time is preferably 30 to 100 minutes, particularly preferably 50 to 70 minutes.
  • the reaction temperature of the reaction between the second polymer diol and the second diisocyanate is preferably 60 to 130 ° C, particularly preferably 80 to 120 ° C.
  • the reaction time is preferably from 30 to 100 minutes, particularly preferably from 50 to 70 minutes.
  • the reaction temperature of the obtained second precursor with the low molecular weight diol is preferably 60 to 130. C, particularly preferably 80 to 100 ° C.
  • conditions such as stirring may be appropriately determined.
  • the viscosity of the hydroxyl-terminated prepolymer and the isocyanate-terminated prepolymer depends on the type of raw material used, the mixing ratio, the reaction temperature, etc., and the type of raw material used and the mixing ratio depend on the desired polyurethane elastomer.
  • the quantitative ratio of each component is adjusted so that the viscosities of the two types of prepolymers are relatively close to each other.
  • the viscosity ratio of the two types of prepolymers is preferably 10 times or less, more preferably 5 times or less, particularly preferably 4 times or less, and the volume ratio is almost the same.
  • the two types of pre-polymers described above are fed at a fixed ratio to a reactor that has a mechanism to continuously mix and agitate and send them to the outlet to form a polyurethane polymer. While the obtained polymer was in a flowing state, it was continuously extruded through the nozzle, then cooled and wound up. Thereby, a polyurethane elastic body is obtained.
  • elastic bodies having various shapes such as fiber, tape, cord, and tube can be obtained, and especially when producing fiber, that is, polyurethane elastic yarn, the production method of the present invention. Is useful.
  • Examples of the polymer diol having a molecular weight of 600 or more used in the production method of the present invention include ethylene glycol, propylene glycol, butylene glycol, hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol and the like.
  • the polymer diols may be used alone or in combination of two or more.
  • the molecular weight of the polymer diol is smaller than 600, the elasticity of the obtained elastic body becomes too low, which is not preferable. On the contrary, if the molecular weight is too high, the elastic recovery property decreases. Has a great deal of confounding with other factors, and it is generally difficult to determine the preferred upper limit. Although it depends on the type and amount of the low molecular weight diol and diisocyanate, and the like, the preferable range of molecular weight is generally appropriate in the range of 600 to 300,000.
  • the type of the polymer diol can be appropriately selected depending on the physical properties required according to the application.
  • the total amount of the first polymer diol and the second polymer diol is a polyester diol
  • the obtained polyurethane elastic body or elastic yarn has excellent abrasion resistance, oil resistance, tear strength, and the like.
  • the total amount of the first polymer diol and the second polymer diol is polyether diol
  • the obtained polyurethane elastic body or elastic yarn has excellent hydrolysis resistance, mold resistance and the like.
  • a polyester diol and a polyester diol can be used in combination so as to combine the advantages of the polyester diol and the polyether diol.
  • polyester diol and polyether diol are used in combination, they are mixed to form a hydroxyl-terminated prepolymer and an isocyanate-terminated prepolymer, respectively.
  • polyether diol as the first polymer diol constituting the hydroxyl-terminated prepolymer and use the second polymer diol constituting the isocyanate-terminated prepolymer.
  • a polyester diol as the polymer diol (2).
  • the more polyester polyols are used the more effective they are to improve the abrasion resistance, oil resistance, tear strength, etc. of polyurethane elastomers, etc.
  • the polyether diol should be 15 to 50 mol%, preferably 15 to 35 mol%
  • the polyester diol should be 85 to 50 mol% based on the total amount of the polymer diol.
  • the polyester diol is more preferably added in an amount of up to 50 mol%, preferably 85 to 65 mol%.
  • polyesterdiol as the first polymer diol constituting the hydroxyl-terminated prepolymer and use polyester diol as the second polymer diol constituting the isocyanate-terminated prepolymer. Is preferred.
  • the low molecular weight polyol having a molecular weight of 500 or less used in the production method of the present invention is preferably ethylene glycol, propylene glycol, butylene glycol, hexanediol, bishydroxyhydroxyethoxybenzene, Mouth hexane dimethanol and the like, with butylene glycol being particularly preferred.
  • the diisocyanate is preferably tolylene diisocyanate, diphenylmethane diisocyanate, a hydrogenated product thereof, isophorone diisocyanate, hexamethylene diisocyanate, etc., and is particularly preferred. Or diphenylmethane diisocyanate.
  • the low molecular weight diol having a molecular weight of 500 or less and the diisocyanate may be used alone or in combination of two or more.
  • a method for producing a polyurethane elastic body or the like is usually used.
  • Optional components such as titanium oxide, an ultraviolet absorber, and an antioxidant used in this case can be mixed with the raw material.
  • a hydroxyl-terminated prepolymer and an isocyanate-terminated prepolymer are mixed, stirred and continuously reacted to obtain a fluidized polyurethane polymer, which is continuously extruded from a nozzle to form a polyurethane polymer.
  • the mixing and stirring in the reactor may be a rotary type such as a screw type or a stirring blade, or a static mixing and stirring device.
  • reaction time, reaction temperature, and other conditions in the reaction of the hydroxyl-terminated prepolymer and the isocyanate-terminated prepolymer by the reactor may be adjusted according to the difference in the raw materials, but the reaction time is preferably 1 to 90 minutes. Particularly preferred is 1 to 60 minutes, and the reaction temperature is preferably 160 to 220 ° C, and particularly preferably 180 to 210 ° C.
  • D (ID) m (m ⁇ 2), I (DI) n (n ⁇ 2), etc. which are the reaction products of low molecular weight diols and diisocyanates, generally have high melting points and poor solubility in prepolymers. It is necessary to avoid the formation of such compounds as much as possible, as this causes deterioration of spinning stability. On the other hand, from the viewpoint of thermal properties and elastic performance, there are some problems in the structure of polyurethane elastomers. It is indispensable to repeat one IDID as one segment.
  • 1.3 to 2.5 moles of the first diisocyanate and 1 mole of the excess moles of the first polymer diol (hereinafter abbreviated as P) are used per mole of the first polymer diol.
  • P the excess moles of the first polymer diol
  • the reaction is preferentially performed to form a hard segment having a repeating structure of one IDID between DIPID and IPI in a well-balanced manner.
  • the production method of the present invention is compared with the one-shot method or the conventional prepolymer method. The thermal performance of the obtained polyurethane elastic body or elastic yarn is improved.
  • the viscosity of a low molecular weight diol having a molecular weight of 500 or less is several tens of centiboise in a molten state, and the viscosity of diisocyanates is extremely low at 10 or less in a molten state.
  • the viscosity of polymer diols is several hundred centiboise in the molten state, which is extremely high for low molecular weight diols and diisocyanates.
  • the reaction raw materials whose viscosity differs greatly and whose volume ratio is more than 10 times are used as they are and mixed in an extremely short time. As a result, an abnormal reaction product was generated due to uneven mixing, and as a result, spinning stability was lacking.
  • the viscosity of the hydroxyl-terminated prepolymer is set to 70 by setting the distribution ratio of the polymer diol to the two types of prepolymers used, for example, within the range described above.
  • the viscosity of the pre-polymer at the end of prepolymer is approximately 500 to 100,000 centimeters
  • the viscosity of the diisocyanate terminal prepolymer is within the range of approximately 800 to 5,000 centiboise, improving spinning stability. Can be done.
  • the above-described stepwise reaction method is preferably employed during the synthesis of the hydroxyl-terminated prepolymer.
  • the first polymer diol is reacted with, for example, 1.3 to 2.5 times, preferably 1.8 to 2.1 times, the molar amount of the second diisocyanate, which is close to 1.8 to 2.1 times, and as much as possible
  • the first polymer diol is reacted with an excess molar amount of low molecular weight diol to form a hydroxyl-terminated prepolymer in a mixed state of DIPID and D, to suppress the generation of abnormal reactants, and further spin. It increases outgoing stability.
  • the isocyanate-terminated prepolymer it is preferable to use a low molecular weight diol having a molar amount of less than 1.0 times the polymer diol from the viewpoint of spinning stability. Also in this case, it is preferable to carry out a stepwise reaction. That is, after preparing IPI in advance and reacting it with a low molecular weight diol to obtain an isocyanate-terminated prepolymer containing IPIDIPI as a main component, generation of an abnormal reaction product can be suppressed.
  • Example 1 Polyethylene adipate having hydroxyl groups at both ends (molecular weight: 2,100): 100 parts by weight, 24 parts by weight of diphenylmethanediisocyanate and 22 parts by weight of butylene glycol The reaction was continued with stirring at a reaction temperature of 115 ° C. and a reaction time of 60 minutes to obtain a hydroxyl-terminated prepolymer. This pre-terminated hydroxyl group The viscosity of the lima at 70 ° C. was 4,000 centimeters.
  • the reaction temperature was 115 ° C at a ratio of 84 parts by weight of diphenylmethane diisocyanate to 200 parts by weight of polyethylene adipate having a hydroxyl group at both ends (molecular weight: 2,100).
  • the reaction was continuously carried out while stirring under the condition of a reaction time of 60 minutes to obtain a pre-polymer having a terminal at the terminal.
  • the viscosity at 70.degree. C. of this isocyanate-terminated prepolymer was 1,500 cm.
  • the hydroxyl group-terminated prepolymer obtained in this way was continuously injected into a two-sided heat exchange reactor at a ratio of 284 parts by weight of isocyanate-terminated prepolymer to 146 parts by weight, and a reaction temperature of 19 The mixture was stirred under the conditions of 0 ° C and a residence time of 30 minutes.
  • the obtained viscous material was immediately extruded through a nozzle by a spinning pump, treated with an oil agent mainly composed of mineral oil, and then wound at a speed of 500 m / min to wind a 40 denier polyurethane elastic yarn for 7 consecutive days. .
  • the ratio of the total molar amount of the diols (polyethylene adipate and butylene glycol) used as the raw material of the obtained polyurethane elastic yarn to the molar amount of the diisocyanate (diphenylmethane diisocyanate) was 1.12. Was.
  • the yarn breakage during this time is twice, that is, 1 Z 2 or less of the conventional method.
  • the elongation of the obtained polyurethane elastic yarn was 450% as in the case of the conventional method, and as an index showing the thermal properties, after treatment at 115 ° C for 1 minute at 100% elongation.
  • the value obtained by the conventional method was 45%, whereas the value obtained by the conventional method was 30%.
  • Prepolymer A physical property was measured according to the following method. The same applies to the following embodiments.
  • the elongation (%) of the tape is determined according to the JIS standard (K7311).
  • Example 2 A reaction temperature of 80 ° C. and a reaction time of 60 parts by weight of 100 parts by weight of polyethylene adipate having a hydroxyl group at both terminals (molecular weight: 2,100) and 24 parts by weight of diphenylmethane diisocyanate.
  • polyethylene adipate having hydroxyl groups at both ends 100 parts by weight of diphenylmethane diisocyanate in a ratio of 110 parts by weight was reacted continuously with stirring at a reaction temperature of 80 ° C. and a reaction time of 60 minutes.
  • a sodium terminal prepolymer was obtained. 70 of this terminal prepolymer.
  • the viscosity at C was 1,500 centivoise.
  • the hydroxy-terminated prepolymer obtained in this way was continuously injected into a two-sided heat-exchange reactor at a ratio of 310 parts by weight of isocyanate-terminated prepolymer to 157 parts by weight.
  • the mixture was stirred under the conditions of 0 ° C and a residence time of 30 minutes.
  • the obtained viscous material was immediately extruded through a nozzle by a spinning pump, treated with an oil agent mainly composed of mineral oil, and wound up to obtain a 70 denier polyurethane elastic yarn.
  • the winding operation at 350 m / min was performed for 7 consecutive days, but no nozzle clogging was observed. After repeating the above experiment for 7 days three times, the reactor was disassembled and the internal state was observed.
  • the ratio of the total molar amount of the diol (polyethylene adipate and butylene glycol) used as the raw material of the obtained polyurethane elastic yarn to the molar amount of diisocyanate (diphenylmethane diisocyanate) was 1.0. It was five.
  • the elongation of the obtained polyurethane elastic yarn was 500%, and as an index indicating thermal properties, the result of measuring the residual strain after treatment at 115 ° C for 1 minute in a 100% elongation state , 35%.
  • Example 3 24 parts by weight of diphenylmethanediisocyanate and 28 parts by weight of butyraldiene alcohol were added to 100 parts by weight of polyethylene adipate having a hydroxyl group at both terminals (molecular weight: 2,100). The reaction was continuously performed with stirring at a reaction temperature of 115 ° C. and a reaction time of 60 minutes to obtain a hydroxyl-terminated prepolymer.
  • the viscosity at 70 ° C. of this hydroxyl-terminated prepolymer was 4.50 centiboise.
  • the reaction temperature was 115 ° C at a ratio of 200 parts by weight of polyethylene adipate having a hydroxyl group at both terminals (molecular weight: 2,100) to 96 parts by weight of diphenylmethane diisocyanate.
  • the reaction is continuously performed with stirring for 60 minutes.
  • the viscosity at 70 ° C. of this isocyanate-terminated prepolymer was 1,800 centiboise.
  • the thus obtained hydroxyl-terminated prepolymer was added to a screw-type extruder continuously at a ratio of 126 parts by weight of the resin-terminated prepolymer to 152 parts by weight, and the reaction temperature was changed to 19 by weight.
  • the mixture was stirred under the conditions of 0 ° C and a residence time of 10 minutes.
  • the obtained viscous material is immediately extruded through a slit nozzle by a spinning pump, and treated with an oil obtained by dispersing an oil or fat in water with a surfactant.
  • the operation of winding a polyurethane tape having a width of about 6 mm and a thickness of about 180 m) was performed continuously for 7 days.
  • the ratio of the total molar amount of the diols (polyethylene adipate and butylene glycol) used as the raw material of the obtained polyurethane tape to the molar amount of diisocyanate (diphenylmethane diisocyanate) was 1.06.
  • Example 4 Polyethylene Azide 100 parts by weight Reaction was performed at a reaction temperature of 115 ° C and a reaction time of 60 minutes at a ratio of 24 parts by weight of diphenylmethane diisocyanate to obtain a precursor. The reaction time was 115 ° C and the reaction time was 60 minutes. In response, a hydroxyl-terminated prepolymer was obtained.
  • the viscosity of the hydroxyl-terminated prepolymer at 70 ° C. was 4.50 centiboise.
  • the reaction temperature was 115 ° C at a ratio of 200 parts by weight of polyethylene adipate having a hydroxyl group at both ends (molecular weight: 2,100) to 96 parts by weight of diphenylmethane diisocyanate.
  • the reaction was continuously carried out while stirring under the conditions of a reaction time of 60 minutes to obtain an isocyanate-terminated prepolymer.
  • the viscosity at 70 ° C. of this isocyanate-terminated prepolymer was 1,800 centiboise.
  • the thus obtained hydroxy-terminated prepolymer was added to a screw-type extruder continuously at a rate of 152 parts by weight of isocyanate-terminated prepolymer, and the reaction temperature was 190 °. C.
  • the mixture was stirred under the conditions of a residence time of 10 minutes.
  • the obtained viscous material is immediately extruded through a slit nozzle by a spinning pump, and treated with an oil obtained by dispersing an oil or fat in water with a surfactant.
  • the operation of winding a denier (approximately 6 mm wide and approximately 180 m thick) polyurethane tape was performed for 7 consecutive days.
  • the ratio of the total molar amount of the diols (polyethylene adipate and butylene glycol) used as the raw material of the obtained polyurethane tape to the molar amount of the diisocyanate (diphenylmethane diisocyanate) was 1.06.
  • Example 5 Polytetramethylene glycol having a hydroxyl group at both ends (molecular weight: 65500) 100 The reaction was carried out at a reaction temperature of 80 ° C. and a reaction time of 60 minutes at a ratio of 75 parts by weight of diphenylmethane diisocyanate to parts by weight to obtain a precursor, and the obtained precursor 17 The reaction was carried out continuously at a reaction temperature of 80 ° C. and a reaction time of 60 minutes at a ratio of 58 parts by weight of butylene glycol to 5 parts by weight to obtain a hydroxyl-terminated prepolymer. The viscosity of this hydroxyl-terminated prepolymer at 70 ° C was 5,500 centipoise (much less).
  • the reaction temperature was 80 ° with a ratio of 173 parts by weight of diphenylmethane diisocyanate to 327 parts by weight of polyethylene adipate having a hydroxyl group at both ends (molecular weight: 3,000).
  • the reaction was continuously carried out while stirring under the conditions of a reaction time of 60 minutes to obtain an isocyanate-terminal prepolymer.
  • the viscosity at 70 ° C. of this isocyanate-terminal prepolymer was 1,300 cm.
  • the thus obtained hydroxy-terminated prepolymer was added continuously to the surface-type heat-exchange reactor at a ratio of 500 parts by weight of the isocyanate-terminated prepolymer to 133 parts by weight of the hydroxyl-terminated prepolymer, and the reaction was carried out.
  • the mixture was stirred under the conditions of a temperature of 190 ° C and a residence time of 30 minutes.
  • the obtained viscous material was immediately extruded through a nozzle by a spinning pump, treated with an oil agent mainly composed of mineral oil, and wound up to obtain a 20 denier polyurethane elastic yarn.
  • Example 6 The reaction was carried out at a ratio of 48 parts by weight of diphenylmethanedioxonate to 100 parts by weight of polytetramethylene glycol having a hydroxyl group at both ends (molecular weight: 1,000). The reaction was carried out at a temperature of 80 ° C. and a reaction time of 60 minutes to obtain a precursor, and then the obtained precursor was treated at a reaction temperature of 80 ° C. at a ratio of 148 parts by weight of butylene glycol to 54 parts by weight of butylene glycol. The reaction was continuously performed while stirring under the conditions of a reaction time of 60 minutes to obtain a hydroxyl-terminated prepolymer.
  • the viscosity of the hydroxyl-terminated prepolymer at 70 ° C. was 5,000 centiboise.
  • the reaction was continuously carried out while stirring at a reaction temperature of 80 ° C and a reaction time of 60 minutes to obtain an isocyanate-terminated prepolymer.
  • the viscosity of this isocyanate-terminated prepolymer at 70 ° C. was 2,000 centiboise.
  • the thus-obtained hydroxyl-terminated prepolymer was added in a ratio of 108 parts by weight of isocyanate-terminated prepolymer to 202 parts by weight, and the mixture was continuously injected into a two-sided heat exchange reactor. The mixture was mixed and stirred at 0 ° C and a residence time of 30 minutes. The obtained viscous material was immediately extruded through a nozzle by a spinning pump, treated with an oil agent mainly composed of mineral oil, and wound up to obtain a 20 denier polyurethane elastic yarn. Polymer tetradiol (polytetramethylene glycol and polyethylene propylene adsorbate) 32 mol% of the total amount was polytetramethylene glycol.
  • the ratio of the total molar amount of the diols (polytetramethylene glycol, butylene glycol, and polyethylene propylene adipate) to the molar amount of diisocyanate (diphenylethanediisocyanate) was 1.05.
  • the measurement result of the mold resistance was as good as 19 days.
  • the measurement result of mold resistance was 3 days.
  • Example 7 100 parts by weight of polytetramethylene glycol having a hydroxyl group at both ends (molecular weight: 2,000) was added to 100 parts by weight of diphenylmethanediisomethane. The precursor was obtained by reacting at a reaction temperature of 80 ° C and a reaction time of 60 minutes at a ratio of 24 parts by weight of the sheet, and then 60 parts by weight of butylene glycol was added to 24 parts by weight of the precursor obtained.
  • the mixture was continuously reacted with stirring at a reaction temperature of 80 ° C. and a reaction time of 60 minutes to obtain a hydroxyl-terminated prepolymer.
  • the viscosity of the hydroxyl-terminated prepolymer at 70 ° C. was 3,500 centigrade.
  • the reaction was continuously carried out while stirring at a reaction temperature of 80 ° C. and a reaction time of 60 minutes to obtain an isocyanate-terminal prepolymer.
  • the viscosity of this isocyanate-terminated prepolymer at 70 ° C. was 1,800 cm.
  • the thus obtained hydroxyl-terminated prepolymer was added to a surface-type heat exchange reactor continuously at a ratio of 175 parts by weight of isocyanate-terminated prepolymer to 184 parts by weight, and the reaction temperature was lowered.
  • the mixture was stirred under the condition of 190 ° C and a residence time of 30 minutes.
  • the obtained viscous material was immediately extruded through a nozzle by a spinning pump, treated with an oil agent mainly composed of mineral oil, and wound up to obtain a 20 denier polyurethane elastic yarn.
  • Polymer diol (polytetramethylene glycol and polyethylene propylene adsorbate) 17 mol% of the total amount was polytetramethylene glycol.
  • the ratio of the total molar amount of the diols (polytetramethylene glycol, butylene glycol and polyethylene propylene adduct) to the molar amount of diisocyanate (diphenylmethane diisocyanate) was 1.12.
  • the operation of winding at 80 O mZ was performed for 7 consecutive days, but no nozzle clogging was observed. After the continuous operation was repeated three times for 7 days, the reactor was disassembled and the internal state was observed. As a result, no abnormal reaction product adhered.
  • the elongation of the obtained polyurethane elastic yarn was 420%, and it was 100% elongation as an index indicating thermal properties.
  • the residual strain after long-term treatment at 115 ° C for 1 minute was 31%.
  • Comparative Example 1 Spinning was performed by a short shot method at a ratio of 100 parts by weight of polyethylene adipate (molecular weight: 2,100) to 40 parts by weight of diphenylmethylbenzene and 8 parts by weight of butylene glycol. Winding operation was performed at 80 O m Z minutes, but nozzle clogging occurred in one day. After the continuous spinning, when the reactor was disassembled, a large amount of abnormal reactants adhered inside. The residual strain after treatment at 115 ° C. for 1 minute in a stretched state of 100% was 50%, which was inferior to that of the polyurethane elastic yarn obtained by the production method of the present invention.
  • Comparative Example 2 100 parts by weight of polyethylene adipate (molecular weight: 2,100) was reacted with 40 parts by weight of diphenylmethyldisocyanate, and the resulting prepolymer and 8 parts of butylene glycol were added. Spinning was carried out by the conventional pre-bollima method. Winding operation was performed at 80 O m Z minutes, but nozzle clogging occurred in 2 days. Also, as in Comparative Example 1, adhesion of an abnormal reaction product was observed in the reactor. Further, the residual strain after treatment at 115 ° C. for 1 minute in a stretched state of 100% was 50%, which was inferior to that of the polyurethane elastic yarn obtained by the production method of the present invention.
  • polymerization reaction is carried out after obtaining isocyanate-terminated prepolymers and hydroxyl-terminated prepolymers having relatively close viscosities, and the volume ratio of the two prepolymers is also reduced by the conventional method.
  • the mixing of the reaction components becomes possible and the formation of abnormal reactants can be suppressed, thus improving spinning stability. It can be dramatically improved.
  • the formation of abnormal reactants is suppressed, and the spinning effect is improved by improving the stirring effect by making the viscosity of the two prepolymers the same level.
  • the stability can be further improved.
  • the mixing ratio of each raw material of the two prepolymers in the present invention is excellent in terms of compatibility, and it is possible to improve not only spinning stability but also quality such as thermal properties and mold resistance. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Artificial Filaments (AREA)

Description

明細書 ポリウレタン弾性体および弾性糸の製造方法 技術分野 本発明は、 反応紡出法によるポリゥレタン弾性体特に弾性糸の製造方法に関す るものである。 背景技術 ポリマージオール、 ジィソシァネート及び低分子量ジオールとから製造した熱 可塑性ポリウレタンペレツ トを使用し、 押出成形法によってポリウレタン弾性体 を製造することは公知である。 しかし、 この方法では押出成型の際にポリマ一中 の一部の結合が分解し、 高温雰囲気中伸長後の残留歪などの熱的性質の満足でき るポリウレタン弾性体、 特に熱的性質の良好なポリウレタン弾性糸を得ることは できない。
一方、 溶融紡出法によるポリウレタン弾性糸の熱的性質を向上させる目的で、 ポリマージオール、 ジイソシァネート、 低分子量ジオールをワンショッ ト法によ り重合し、 この重合系より直接紡出する方法や、 イソシァネート末端プレボリマ —と低分子量ジオールとを反応させ、 この反応系より直接紡出する方法等の反応 紡出法等も公知である。 これらの反応紡出法により得られる弾性体は、 ポリマー の熱的履歴が少ないために、 ペレツ トを使用した溶融紡出法による弾性体よりも 熱的性質の向上が認められる。 すなわち、 ペレツ トを使用した溶融紡糸方法では 合成後ペレツ ト中に残存するイソシァネ一トは空気中の水分と反応してゥレア基 を生成するか、 ァロファネート又はビュレツ ト反応による 3次元結合を生成する c ゥレア基及び 3次元結合はポリマーの熱的性質を向上させるが、 押出成形の際に 分解が起こる。 一方、 反応紡出法により得られた弾性体では、 ウレァ基及び 3次 元結合がそのままポリマ一中に残り良好な熱的性質を保つことができる。 しかし、 反応紡出法そのものが、 ポリマ一合成途中の未完成で不安定なポリマ一を紡出し やすいものであるため、 一般的に可紡性が劣っている。 更に、 粘度、 容積比の大 きく異なる反応成分を混合しながら反応させる結果、 混合不良により多くの異常 反応物を生成しやすく、 又、 少量成分を精度良く計量することが困難なため、 紡 出安定性に欠けるばかりでなく、 均質なポリウレタン弾性糸、 特に均質な細デニ —ルのポリゥレタン弾性糸を得ることは困難である。
反応紡出法によるポリゥレタン弾性体の熱的性質をより一層向上させるには、 ポリマージオール及び低分子ジオールに対するジイソシァネートのモル比を高く することが一般的に有効である。 しかし、 ジイソシァネートのモル比を高く した 場合、 紡出時にポリウレタンポリマーの分子量が十分大きくならず、 可紡性が低 下するので、 本発明の発明者等は、 イソシァネート末端プレボリマーと低分子量 ジオールとからの反応紡出法の実施にあたり、 ジィソシァネ一トダイマ一若しく は微粉末シリ力等の特殊添加物を添加して可紡性を向上させる方法を提唱した (特公昭 6 3 - 5 3 2 8 7号及び特公昭 6 3 - 5 3 2 8 8号公報) 。 しかし、 こ の方法にも、 これらの添加物の均一分散性に難があり、 工程が複雑になると共に、 反応時の混合条件の選択が難しい等の問題が残されていた。
また、 水酸基末端とイソシァネート末端のプレボリマ一の粘度差を少なく し混 合状態をよくするために、 予めポリマ一ジオール及びこのポリマージオールの 1 〜 3倍のモル量の低分子量ジオールを混合したものとィソシァネ一トとを反応さ せ、 水酸基末端のプレポリマ一とイソシァネ一卜末端のプレポリマーとを作製し- 両者を反応させてペレツ トなどのエラストマ一を得る方法も公知である (特公平 4 3— 6 3 9号公報) 。 しかしながら、 この方法において得られたエラストマ一 はそれを溶融して紡糸するための溶融紡糸用のエラストマ一であり、 ポリオール などの原料を連続的に反応させて紡糸することは開示されていない。 発明の開示 本発明は、 上述した従来技術の難点を解消して、 熱的性質に優れたポリウレタ ン弾性体、 特に弾性糸を反応紡出法により安定に製造する方法を提供することを 目的としてなされた。
すなわち、 本発明は、 分子量 6 0 0以上の第 1のポリマージオールと、 前記第 1のポリマージオールと同一であっても異なっていてもよい分子量 6 0 0以上の 第 2のポリマ一ジオールと、 分子量 5 0 0以下の第 1の低分子量ジオールと、 前 記第 1の低分子量ジオールと同一であっても異なっていてもよい第 2の低分子量 ジオールと、 第 1のジィソシァネ一トと、 前記第 1のジィソシァネ一トと同一で あっても異なっていてもよい第 2のジイソシァネートとを主原料とし、
原料中における第 1のジイソシァネ一ト及び第 2のジイソシァネ一卜の合計量が、 第 1のポリマージオール、 第 2のポリマージオール、 第 1の低分子量ジオール及 び第 2の低分子量ジオールの合計モル量に対して 0 . 9 5〜 1 . 2 5倍のモル量 であるポリゥレタン弾性糸の製造方法であって、
第 1のポリマ一ジオールと第 1の低分子量ジオールと第 1のジィソシァネ一トと を反応させて得られる水酸基末端プレボリマ一と、 第 2のポリマ一ジオールと第 2の低分子量ジオールと第 2のジイソシァネートとを反応させて得られるイソシ ァネ一ト末端プレボリマーとを連続的に反応させて得られる流動状態のポリウレ タンポリマ一を、 連続的にノズルから押し出すことを特徴とするポリウレタン弾 性糸の製造方法である。
該製造方法では、 前記第 2の低分子量ジオールを、 第 2のポリマージオールに 対して 1 . 0倍未満のモル量とすることが好ましい。
また、 本発明は、 分子量 6 0 0以上の第 1のポリマージオールと、 前記第 1の ポリマージオールと同一であっても異なっていてもよい分子量 6 0 0以上の第 2 のポリマージオールと、 分子量 5 0 0以下の第 1の低分子量ジオールと、 前記第 1の低分子量ジオールと同一であっても異なっていてもよい第 2の低分子量ジォ —ルと、 第 1のジイソシァネートと、 前記第 1のジイソシァネ一卜と同一であつ ても異なっていてもよい第 2のジイソシァネートとを主原料とし、
原料中における第 1のジィソシァネ一ト及び第 2のジィソシァネ一卜の合計量が、 第 1のポリマージオール、 第 2のポリマージオール、 第 1の低分子量ジオール及 び第 2の低分子量ジオールの合計モル量に対して 0 . 9 5〜 1 . 2 5倍のモル量 であり、 前記第 2の低分子量ジオールが、 第 2のポリマージオールに対して 1 . 0倍未満のモル量であるポリゥレタン弾性体の製造方法であって、 第 1のポリマージオールと第 1の低分子量ジオールと第 1のジィソシァネ一トと を反応させて得られる水酸基末端プレボリマーと、 第 2のポリマージオールと第 2の低分子量ジオールと第 2のジィソシァネートとを反応させて得られるイソシ ァネ一卜末端プレポリマ一とを連続的に反応させて得られる流動状態のポリウレ タンポリマーを、 連続的にノズルから押し出すことを特徴とするポリウレタン弾 性体の製造方法である。
また、 本発明は、 分子量 6 0 0以上の第 1のポリマージオールと、 前記第 1の ポリマージオールと同一であっても異なっていてもよい分子量 6 0 0以上の第 2 のポリマージオールと、 分子量 5 0 0以下の低分子量ジオールと、 第 1のジィソ シァネ一トと、 前記第 1のジィソシァネートと同一であっても異なっていてもよ い第 2のジィソシァネ一トとを主原料とし、
原料中における第 1のジィソシァネート及び第 2のジィソシァネ一卜の合計量が、 第 1のポリマ一ジオール、 第 2のポリマージオール及び低分子量ジオールの合計 モル量に対して 0 . 9 5〜 1 . 2 5倍のモル量であるポリウレタン弾性糸の製造 方法であって、
第 1のポリマージオールと低分子量ジオールと第 1のジィソシァネ一トとを反応 させて得られる水酸基末端プレボリマーと、 第 2のポリマージオールと第 2のジ イソシァネートとを反応させて得られるイソシァネート末端プレボリマ一とを連 続的に反応させて得られる流動状態のポリウレタンポリマ一を、 連続的にノズル から押し出すことを特徴とするポリウレタン弾性糸の製造方法である。
また、 本発明は、 分子量 6 0 0以上の第 1のポリマージオールと、 前記第 1の ポリマージオールと同一であっても異なっていてもよい分子量 6 0 0以上の第 2 のポリマージオールと、 分子量 5 0 0以下の低分子量ジオールと、 第 1のジイソ シァネ一 トと、 前記第 1のジィソシァネ一トと同一であっても異なっていてもよ い第 2のジィソシァネ一トとを主原料とし、
原料中における第 1のジイソシァネー ト及び第 2のジイソシァネートの合計量が、 第 1のポリマージオール、 第 2のポリマージオール及び低分子量ジオールの合計 モル量に対して 0 . 9 5〜 1 . 2 5倍のモル量であるポリウレタン弾性糸の製造 方法であって、
第 1のポリマージオールと低分子量ジオールと第 1のジイソシァネ一トとを反応 させて得られる水酸基末端プレボリマ一と、 第 2のポリマージオールと第 2のジ イソシァネー卜とを反応させて得られるイソシァネ一ト末端プレボリマ一とを連 続的に反応させて得られる流動状態のポリウレタンポリマ一を、 連続的にノズル から押し出すことを特徴とするポリウレタン弾性体の製造方法である。
なお、 本明細書においては、 特に明示しない限り、 「ポリマージオール」 は分 子量が 6 0 0以上のポリマージオールであり、 また 「低分子量ジオール」 は分子 量が 5 0 0以下のジオールであることを意味する。
上記本発明の製造方法においては、 前記水酸基末端プレボリマ一が、 第 1のポ リマージオール及び第 2のポリマージオールの全量に対して 6 0モル%〜 1 0モ ル%の量の第 1のポリマージオールと、 この第 1のポリマージオールに対して 1 . 3〜 2 . 5倍のモル量の第 1のジイソシァネートと、 第 1のポリマージオールに 対し 2倍以上のモル量の第 1の低分子量ジオールとを反応させて得られ、 かつ、 前記イソシァネ一ト末端プレボリマ一が、 第 1のポリマージオール及び第 2のポ リマ一ジオールの全量に対して 9 0モル%〜4 0モル%の第 2のポリマ一ジォ一 ルと、 この第 2のポリマージオールに対して 2倍以上のモル量の第 2のジィソシ ァネ一卜とを反応させて得られるものであることが好ましい。
また、 本発明の製造方法においては、 前記水酸基末端プレボリマーが、 第 1の ポリマージオールと第 1のジィソシァネートとを反応させて第 1の前駆物質を得 た後、 該前駆物質と低分子量ジオールとを反応させて得られるものであることが 好ましい。 さらに、 イソシァネート末端プレボリマ一を作製するために第 2のポ リマージオールと第 2のジィソシァネ一トと第 2の低分子量ジオールとを用いる 場合には、 前記水酸基末端プレボリマ一が、 第 1のポリマージオールと第 1のジ ィソシァネ一トとを反応させて第 1の前駆物質を得た後、 第 1の前駆物質と第 1 の低分子量ジオールとを反応させて得られ、 かつ、 前記イソシァネート末端プレ ポリマーが、 第 2のポリマージオールと第 2のイソシァネ一卜とを反応させて第 2の前駆物質を得た後、 第 2の前駆物質と第 2のポリマ一ジオールに対して 1 . 0倍未満のモル量の第 2の低分子量ジオールとを反応させて得られるものである ことが好ましい。
また、 本発明の製造方法においては、 前記第 1のポリマージオール及び第 2の ポリマージオールがそれぞれポリエーテルジオール及びポリエステルジオールか らなる群より選ばれることことが好ましい。 さらに、 本発明の製造方法において は、 第 1のポリマージオールがポリエーテルジオールであり、 第 2のポリマージ オールがポリエステルジオールであることが好ましい。
また、 本発明は、 上記方法により製造されるポリウレタン弾性体及び弾性糸を 提供するものである。 以下本発明を詳細に説明する。
重合系からポリウレタン弾性体または弾性糸 (以下 「弾性体等」 ということが ある) を直接紡出するにあたり、 最も重要な点は、 反応成分の反応性を考慮した うえで、 理想的な混合状態を実現することにある。 特に弾性糸において、 ポリマ —ジオール、 ジィソシァネ一ト及び低分子量ジオールから生成したポリウレタン を、 重合系より直接紡出するにあたり、 ワンショッ ト法、 イソシァネ一ト末端プ レポリマ一と低分子量ジオールとを反応させる従来のプレボリマー法 (以下、 単 に 「従来のプレボリマ一法」 ということがある) 、 更には微粉末シリカ等の添加 物を併用する方法のいずれを採用しても、 すでに述べたように各反応成分の粘度 及び容積比の点から十分な混合効果は期待できず、 不均一な混合状態で低分子量 ジオールとジィソシァネー卜が反応する機会が多いため、 異常反応物を生成しや すく、 又、 少量成分を精度良く計量することが困難であり、 結果として紡出安定 性に欠けるという問題は本質的に解決されていない。 又、 弾性体及び弾性糸にお いて、 各反応成分の粘度及び容積比の点に加えて更に異常反応が少なく理想的な 混合状態を実現することが求められている。
本発明の発明者等は、 上記問題を解決するために鋭意研究を重ねた結果、 ほぼ 同容積の、 比較的粘度の近い 2種類のプレポリマーを連続的に反応させて得られ る流動状態のポリウレタンポリマ一を、 直接ノズルから連続的に押し出すことに より、 また 2種類のプレボリマ一の理想的な配合条件を見いだすことにより、 反 応の均一性を増し、 特殊な添加物なしでも熱的安定性に優れたポリゥレタン弾性 体及び弾性糸を安定して紡出することに成功し、 本発明を完成させたものである。 前記 2種類のプレボリマーのうちの一方は、 第 1のポリマージオールと第 1の 低分子量ジオールと第 1のジィソシァネートとを反応させて得られる水酸基末端 プレボリマ一である。 他方は、 第 2のポリマージオールと第 2の低分子量ジォ一 ルと第 2のジィソシァネ一トとを反応させて得られるイソシァネ一ト末端プレボ リマ一である。 ここで、 第 1のポリマージオールと第 2のポリマージオールとは 同一のポリマージオールであっても異なるものであってもよい。 また第 1の低分 子量ジオールと第 2の低分子量ジオールとは同一の低分子量ジオールであっても 異なるものであってもよい。 さらに、 第 1のジィソシァネ一卜と第 2のィソシァ ネートとは同一のジィソシァネー卜であっても異なるものであってもよい。
本発明の製造方法では、 第 1のジイソシァネ一ト及び第 2のジイソシァネ一ト の合計量は、 第 1のポリマージオール、 第 2のポリマージオール、 第 1の低分子 量ジオール及び第 2の低分子量ジオールの合計モル量に対して 0 . 9 5〜 1 . 2 5倍のモル量であり、 好ましくは 1 . 0 3〜 1 . 1 5である。
第 1のジイソシァネート及び第 2のジイソシァネ一卜の合計量と、 第 1のポリ マージオール、 第 2のポリマージオール、 第 1の低分子量ジオール及び第 2の低 分子量ジオールの合計モル量とのモル比について上記要件を満たせば、 ポリウレ タン弾性体等におけるポリマージオールとジィソシァネートと低分子量ジオール との量比は、 それぞれの分子量および所望の弾性体性能などにより種々変更する ことができる。 また、 水酸基末端プレボリマ一を得るための原料成分の量比とし ては、 第 1のポリマージオールが第 1及び第 2のポリマージオール全量の好まし くは 6 0モル%〜 1 0モル%、 特に好ましくは、 5 0モル%〜 1 5モル%であり、 第 1のジィソシァネー卜が第 1のポリマージオールに対し好ましくは 1 . 3〜 2 . 5倍のモル量、 特に好ましくは 1 . 8〜 2 . 1倍のモル量であり、 第 1の低分子 量ジオールが第 1のポリマージオールに対し好ましくは 2倍以上のモル量、 特に 好ましくは 4倍以上のモル量、 という量比が好ましく例示される。 他方、 イソシ ァネ一ト末端プレボリマ一を得るための原料成分の量比としては、 第 2のポリマ ―ジオールが第 1及び第 2のポリマージオールの全量に対して好ましくは 9 0モ ル%〜 4 0モル%、 特に好ましくは 8 5モル%〜 5 0モル%であり、 第 2のジィ ソシァネー卜が第 2のポリマージオールに対して好ましくは 2倍以上のモル量、 特に好ましくは 3倍以上のモル量であり、 第 2の低分子量ジオールが第 2のポリ マージオールに対して好ましくは 1 . 0倍未満のモル量、 特に好ましくは 0 . 5 倍以下のモル量が例示される。
尚、 水酸基末端プレボリマ一に用いられる第 1のポリマージオールの量が全量 の 6 0モル%以上の場合は、 水酸基末端プレボリマーの粘度が概して 1 0, 0 0 0センチボイズ (温度 7 0 °C、 以下粘度はことわりのない限り 7 0 °Cでの値であ る) 以上と高くなる一方、 イソシァネート末端プレボリマーの粘度が概して 8 0 0センチボイズ以下と低くなること、 又、 水酸基末端プレボリマ一に用いられる 第 1のポリマージオールの量が全量の 1 0モル%以下の場合は、 水酸基末端プレ ポリマーの粘度が概して 5 0 0センチボイズ以下と低くなる一方、 イソシァネ一 ト末端プレボリマーの粘度が概して 5 , 0 0 0センチポィズ以上と高くなること により、 いずれの場合も水酸基末端プレポリマー及びィソシァネート末端プレボ リマ一の 2種のプレボリマ一の混合状態にあまり良い影響を与えない。
また、 イソシァネ一ト末端プレボリマ一に使用する第 2の低分子量ジオールが 第 2のポリマージオールに対して 1 . 0倍以上のモル量であると、 イソシァネ一 ト末端プレボリマ一の粘度が概して 2 0 , 0 0 0センチボイズ以上となり、 水酸 基末端プレボリマ一の粘度との差が大きくなりやすいため、 2種のプレボリマ一 の混合状態にあまり良い影響を与えない。 従って、 第 2の低分量ジオールの配合 量は、 第 2のポリマージオールに対して 1 . 0倍未満のモル量であることが好ま しい。 また、 紡糸安定性を特に重視する場合は、 第 2の低分子量ジォ一ルは、 よ り好ましくは第 2のポリマージオールに対して 0 . 5倍以下のモル量であり、 さ らには第 2の低分子量ジオールを配合しないという選択も可能である。
一方、 2種類のプレボリマ一へのジイソシァネートの配分比率も、 水酸基末端 プレボリマ一合成時の異常反応物の生成や水酸基末端プレボリマーの粘度に大き く影響する。 水酸基末端プレポリマーで使用する第 1のジイソシァネートの量が、 水酸基末端プレボリマーで使用する第 1のポリマージオールの 2 . 5モル倍より 多いモル量である場合は、 水酸基末端プレポリマ一中に第 1の低分子量ジオール と第 1のジィソシァネートとが反応した異常反応物が生成するため、 紡出安定性 が低下する傾向にある。 一方、 水酸基末端プレボリマ一で使用する第 1のジイソ シァネートの量が、 1 . 3モル倍未満の場合は、 水酸基末端プレボリマ一の粘度 が、 7 0 °Cにおいて 1 0, 0 0 0センチボイズ以上と高くなり、 この結果イソシ ァネ一ト末端プレポリマ一との混合状態が悪化して紡出安定性に良い影響を与え ない。
水酸基末端プレポリマ一及びィソシァネ一卜末端プレボリマ一は、 所定の反応 温度、 反応時間などの条件下で各種原料成分を混合、 攪拌することにより得るこ とができる。 具体的にはポリマージオールとジイソシァネートと低分子量ジォ一 ルとをワンショッ 卜で反応させることもでき、 また、 更に効果的な方法としては、 ポリマージオールとジィソシァネ一トとを反応させてまずィソシァネ一ト末端を 有するポリマーを含有してなる前駆物質を得、 この得られた前駆物質に対し低分 子量ジォ一ルを反応させて、 水酸基末端プレポリマ一またはイソシァネート末端 プレボリマーとするという段階的反応法を挙げることができる。
この段階的方法は、 例えば、 水酸基末端プレボリマーの場合、 第 1及び第 2の ポリマージオール全量に対して 6 0モル%〜 1 0モル%の第 1のポリマ一ジォ一 ルと、 このポリマージオールに対し 1 . 3〜2 . 5倍のモル量の第 1のジイソシ ァネ一トとを反応させて第 1の前駆物質を得た後、 この第 1の前駆物質に対し、 第 1のポリマージオールに対し 2倍以上のモル量の第 1の低分子量ジオールとを 反応させるという方法により具現化される。 また、 イソシァネート末端プレポリ マ一の場合、 例えば、 第 1および第 2のポリマージオール全量に対して 9 0モル %〜4 0モル%第 2のポリマージオールと、 第 2のポリマージオールに対し 2倍 以上のモル量の第 2のジィソシァネートとを反応させて第 2の前駆物質を得た後、 この第 2の前駆物質と、 第 2のポリマージオールに対して 1 . 0倍未満のモル量 の第 2の低分子量ジオールとを反応させることにより具体化される。
さらに、 イソシァネート末端プレボリマーの場合、 第 2のポリマージオールに 対して 2倍以上のモル量の第 2のジィソシァネ一トを、 第 2のポリマージオール に対し 1 . 3〜2 . 5倍、 特に好ましくは 1 . 8〜 2 . 1倍のモル量の第 2のジ ィソシァネー卜と、 残りの第 2のジィソシァネ一トとの 2つに分けて段階的に反 応させて得ることもできる。 具体的には、 第 1および第 2のポリマージオール全 量に対して 9 0モル%〜4 0モル%の第 2のポリマージオールと、 このポリマ一 ジオールに対しまず先に 1 . 3〜 2 . 5倍、 特に好ましくは 1 . 8〜 2 . 1倍の モル量の第 2のジイソシァネートとを反応させて、 第 3の前駆物質を得た後、 こ の第 3の前駆物質に対し、 第 2のポリマージオールに対し 1 . 0倍未満のモル量 の第 2の低分子量ジオールとを反応させて第 4の前駆物質を得る。 その後、 この 第 4の前駆物質に対し、 第 2のジィソシァネ一卜の残量を反応させるという段階 的反応法によっても得ることができる。
水酸基末端プレボリマーを段階的方法により得る場合、 水酸基末端プレポリマ 一の第一段階の反応で使用する第 1のジィソシァネ一卜の量が、 第 1のポリマー ジオールの 2 . 5倍より多いモル量の場合には水酸基末端プレボリマ一中に D 〔 I D ) m 分子 (m≥ 2 ) 等の異常反応物が多く混在することになりやすい (略 号中の Dは低分子量ジオールを、 Iはジイソシァネートをそれぞれ表す。 以下、 同じ) 。 一方、 第 1のジイソシァネートの量が 1 . 3倍より少ないモル量の場合、 ィソシァネー卜末端プレボリマ一中にジィソシァネ一トモノマーが多量に配合さ れて残存する結果、 水酸基末端プレボリマーとィソシァネート末端プレボリマ一 との反応時に、 I ( D I ) n 分子 (n≥ 2 ) 等の異常反応物を生成しやすくなる。 すなわち、 第 1のジイソシァネートの量が、 第 1のポリマージオールの 2 . 5倍 より多いモル量の場合および第 1のポリマージオールの 1 . 3倍より少ないモル 量の場合のいずれの場合も、 紡出安定性に良い影響を与えない。
水酸基末端プレボリマーを製造する際の、 反応温度、 反応時間等の条件は、 原 料成分の種類などにより調整してよい。 例えば、 第 1のポリマージオールと第 1 のジイソシァネ一卜と第 1の低分子量ジオールとをワンショッ 卜で反応させる場 合であれば、 反応温度として好ましくは 6 0〜 1 3 0 °C、 特に好ましくは 8 0〜 1 2 0 °Cであり、 また反応時間として好ましくは 3 0〜 1 0 0分、 特に好ましく は 5 0〜 7 0分である。 また、 段階的方法による場合には、 第 1のポリマ一ジォ —ルと第 1のジィソシァネ一トとの反応の反応温度として好ましくは 6 0〜 1 3 0 °C、 特に好ましくは 8 0〜 1 2 0 °C、 また反応時間として好ましくは 3 0〜 1 0 0分、 特に好ましくは 5 0〜 7 0分である。 得られた第 1の前駆物質と低分子 量ジオールとの反応温度として好ましくは、 6 0〜 1 3 0 °C、 特に好ましくは 8 0〜: L 0 0 °Cである。
また、 イソシァネート末端プレボリマーの場合、 例えば、 第 2のポリマ一ジォ —ルに対して第 2のジィソシァネ一トを 2倍以上反応させて第 2の前駆物質とす ることができるが、 この前駆物質に反応させる第 2の低分子量ジオールが少量の 場合、 具体的には第 2のポリマージオールに対して 1 . 0倍未満のモル量程度で あれば、 上記のような異常反応物が生成しにくいため問題ない。
イソシァネート末端プレボリマ一を製造する際の、 反応温度、 反応時間等の条 件は、 原料成分の種類などにより調整してよい。 例えば、 第 2のポリマ一ジォ一 ルと第 2のジィソシァネ一トと第 2の低分子量ジオールとをワンショッ 卜で反応 させる場合であれば、 反応温度として好ましくは 6 0〜 1 3 0 °C、 特に好ましく は 8 0〜 1 2 0 °Cであり、 また反応時間として好ましくは 3 0〜 1 0 0分、 特に 好ましくは 5 0〜 7 0分である。 また、 段階的方法による場合には、 第 2のポリ マージオールと第 2のジイソシァネートとの反応の反応温度として好ましくは 6 0〜 1 3 0 °C、 特に好ましくは 8 0〜 1 2 0 °C、 また反応時間として好ましくは 3 0〜 1 0 0分、 特に好ましくは 5 0〜 7 0分である。 さらに低分子量ジオール を反応させる場合には、 得られた第 2の前駆物質と低分子量ジオールとの反応温 度として好ましくは、 6 0〜 1 3 0。C、 特に好ましくは 8 0〜 1 0 0 °Cである。 また、 攪拌などの条件は適宜定めてよい。
尚、 水酸基末端プレボリマ一およびィソシァネ一ト末端プレボリマーの粘度は、 使用する原料の種類、 配合比率、 反応温度等によって異なり、 そして、 使用する 原料の種類、 配合比率は、 目的とするポリウレタン弾性体の物性によって決定さ れるものであるカ^ 本発明においては、 2種類のプレボリマ一の粘度が比較的近 くなるように、 各構成成分の量比を調整するものとする。 2種類のプレボリマ一 の粘度比は、 好ましくは 1 0倍以下、 更に好ましくは 5倍以下、 特に好ましくは 4倍以下であり、 容積比についてもほぼ同様である。
そして、 上記説明した 2種類のプレボリマ一を、 一定の反応時間を保ったうえ で、 連続的に混合攪拌しながら出口に送り出す機構を有する反応機に、 一定比率 で送り込んでポリウレタンボリマ一を形成させ、 得られたポリゥレ夕ンポリマ一 が流動状態を示しているうちにノズルょり連続的に押し出した後、 冷却して巻取 ることにより、 ポリウレタン弾性体が得られる。 尚、 前記ノズルの形状により、 繊維状、 テープ状、 コード状、 チューブ状等、 種々の形状の弾性体が得られ、 繊 維状、 すなわちポリゥレタン弾性糸を製造するときに特に本発明の製造方法は有 用である。
本発明の製造方法で用いられる分子量 6 0 0以上のポリマ一ジオールとしては、 エチレングリコール、 プロピレングリコール、 ブチレングリコ一ル、 へキサンジ オール、 ネオペンチルグリコール、 3—メチル— 1 、 5—ペンタンジオール等の 2価アルコールと、 アジピン酸、 セバシン酸等の 2価カルボン酸との縮合物、 及 びポリカプロラク トンのようなポリエステルグリコール、 及びエチレンォキサイ ド、 プロピレンオキサイ ド、 テトラヒ ドロフラン等の開環重合により得られるポ リエーテルグリコール等が好ましく例示される。 ポリマージオールは、 1種又は 2種以上を混合して用いてもよい。
尚、 このポリマージオールの分子量が 6 0 0より小さいと、 得られた弾性体の 伸度が低くなりすぎるので好ましくなく、 逆に分子量が高すぎる場合は、 弾性回 復性が低下するが、 これは他の要因との交絡が大きく、 好ましい上限がどの程度 であるかは一概には決め難い。 低分子量ジオール及びジイソシァネー卜の種類及 び使用量等によって異なるが、 一般的にいって好ましい分子量の範囲は、 分子量 6 0 0〜 3 0 0 0の範囲が適当な場合が多い。
ポリマージオールの種類は用途により必要とされる物性により適宜選択するこ とができる。 例えば、 第 1のポリマージオールおよび第 2のポリマージオールの 全量がポリエステルジオールである場合は、 得られるポリウレタン弾性体または 弾性糸は、 耐磨耗性、 耐油性、 引裂き強度等に優れたものとなる。 又、 第 1のポ リマージオールおよび第 2のポリマージオールの全量がポリエーテルジオールで ある場合は、 得られるポリウレタン弾性体または弾性糸は、 耐加水分解性、 耐か び性等に優れたものとなる。 さらに、 ポリエステルジオール及びポリエーテルジ オールのそれぞれの長所を合わせ持つように、 ポリエステルジオール及びポリェ —テルジオールを併用することもできる。
ポリエステルジオール及びポリエーテルジオールを併用する場合には、 両者を 混合して水酸基末端プレボリマー、 ィソシァネ一ト末端プレポリマーのそれぞれ の作製に用いてもよいが、 両者の物性を効果的に発揮するためには、 水酸基末端 プレボリマ一を構成する第 1のポリマージオールとしてポリエーテルジオールを 使用し、 ィソシァネート末端プレボリマ一を構成する第 2のポリマージオールと してポリエステルジオールを用いることが好ましい。 即ち、 ポリエステルジォ一 ルはポリウレタン弾性体等の耐磨耗性、 耐油性、 引裂き強度等を向上させるため には多く使用するほど効果が認められ、 一方、 ポリエーテルジォ一ルは耐かび性 を向上するためにはポリマージオールの全量の 1 5モル%以上配合することで効 果を発揮することが認められる。 そのため、 両者の物性を効果的に発揮するには、 ポリマージオール全量に対してポリエーテルジオールを 1 5〜 5 0モル%、 好ま しくは、 1 5〜 3 5モル%とし、 ポリエステルジオールを 8 5〜 5 0モル%、 好 ましくは 8 5〜 6 5モル%としてポリエステルジオールをより多く配合すること がよい。 又、 ここで、 水酸基末端プレボリマ一とイソシァネート末端プレボリマ —へのポリマージオールの配合について、 特に両プレポリマーの粘度差を少なく する点からィソシァネ一ト末端プレボリマーにより多くポリマージオールを配合 することが好ましい。 この両者を満足させるためには、 水酸基末端プレボリマ一 を構成する第 1のポリマージオールにポリエ一テルジオールを使用し、 イソシァ ネ一ト末端プレボリマ一を構成する第 2のポリマージオールとしてポリエステル ジオールを用いることが好ましい。
一方、 本発明の製造方法において用いられる分子量 5 0 0以下の低分子量ジォ —ルとして好ましくは、 エチレングリコール、 プロピレングリコール、 ブチレン グリコール、 へキサンジオール、 ビスべ一夕ヒ ドロキシエトキシベンゼン、 シク 口へキサンジメタノール等が挙げられ、 特に好ましくはブチレングリコールが挙 げられる。 また、 ジイソシァネートとして好ましくは、 トリ レンジイソシァネ一 ト、 ジフヱニルメタンジイソシァネート、 およびこれらの水添物、 並びにイソホ ロンジイソシァネート、 へキサメチレンジイソシァネート等が挙げられ、 特に好 ましくはジフヱニルメタンジイソシァネ一卜が挙げられる。 分子量 5 0 0以下の 低分子量ジオールおよびジィソシァネ一トはそれそれ 1種又は 2種以上を混合し て用いてもよい。
また、 本発明の製造方法にあっては、 通常ポリウレタン弾性体等を製造する場 合に用いられる酸化チタン、 紫外線吸収剤、 酸化防止剤等の任意成分を原料に配 合することができる。
本発明の製造方法においては、 水酸基末端プレボリマーとイソシァネ一ト末端 プレボリマーとを混合、 攪拌して連続的に反応させて流動状態のポリウレタンポ リマ一を得、 これを連続的にノズルから押し出してポリウレタン弾性体または弾 性糸を得る。 すなわち、 本発明の製造方法は反応紡出法の一種といえる。
水酸基末端プレポリマ一とイソシァネ一ト末端プレボリマ一とを反応を行う反 応機としては、 前記 2種類のプレボリマ一用の入り口からポリウレタンポリマ一 用の出口までの間に、 内容物のショートパスがなく、 2種類のプレボリマ一を、 一定の反応時間を保ったうえで、 連続的に混合攪拌しながら出口に送り出す機構 を有する構造のものでありさえすれば、 通常用いられているものでよく、 特に限 定する必要はない。 尚、 反応機内の混合攪拌には、 スクリユータイプ、 攪拌翼夕 イブ等の回転式のほか、 静的混合攪拌装置などを用いることができる。 反応機に よる水酸基末端プレボリマーとイソシァネー卜末端プレポリマーとの反応におけ る反応時間、 反応温度などの条件は原料の違いなどにより調整してよいが、 反応 時間として好ましくは 1〜 9 0分、 特に好ましくは 1〜6 0分を例示でき、 また 反応温度として好ましくは 1 6 0〜 2 2 0 °Cであり、 特に好ましくは 1 8 0〜 2 1 0 °Cを例示できる。
以下、 発明の作用について詳説する。
低分子量ジオールとジィソシァネートとの反応生成物である D ( I D ) m ( m≥ 2 ) 、 I ( D I ) n ( n≥ 2 ) 等は、 一般に融点が高く、 プレボリマ一に対する溶 解性が劣り、 紡糸安定性を悪化させる原因となるので、 このような化合物の生成 を極力避ける必要があり、 その半面、 熱的性質や弾性性能の面からは、 ポリウレ 夕ン弾性体等の構造中にはハ一ドセグメン卜として一 I D I D—の繰り返しが不 可欠である。
そこで、 本発明においては、 第 1のポリマージオール (以下、 Pと略記する) 1モルに対し、 例えば 1 . 3〜2 . 5モル量の第 1のジイソシァネートと過剰の モル量の第 1の低分子量ジオールとを反応させ、 極力 D I P I Dおよび Dの混合 状態である水酸基末端プレボリマ一を作る。 一方、 第 2のポリマージオールと第 2のジイソシァネートとを反応させ、 或いは、 この反応の後さらに、 第 2の低分 子量ジオールを反応させ、 I P Iおよび Iの混合状態であるイソシァネート末端 プレボリマ一を作る。
そして、 この 2種類のプレボリマ一を反応機中で反応させると、 水酸基末端プ レポリマ一中の第 1の低分子量ジオールと、 ィソシァネ一卜末端プレポリマ一中 の第 2のジイソシァネートモノマ一がまず優先的に反応して D I P I Dと I P I との間に一 I D I D—の繰り返し構造を持つハードセグメントをバランスよく形 成する結果、 本発明の製造方法はワンショッ ト法若しくは従来のプレポリマー法 に比し、 得られるポリウレタン弾性体または弾性糸の熱的性能が向上する。 又、 水酸基末端プレポリマ一合成時において既に一部の低分子量ジオールを消費され ているうえ、 ジィソシァネ一卜の一部をもポリマージオールとの反応に消費され ており、 さらに、 イソシァネート末端プレボリマーの合成時においてもジイソシ ァネートの一部は既に消費され、 また低分子量ジオールも一部消費される (若し くはもともと含まない) 結果、 ワンショッ ト法または従来のプレポリマ一法に比 し、 D ( I D ) m ( m≥ 2 ) 、 I ( D I ) „ ( n≥ 2 ) 等の異常反応物の生成が大 幅に減少し、 紡出安定性が向上する。
分子量 5 0 0以下の低分子量ジオールの粘度は、 溶融状態で数十センチボイズ であり、 又、 ジイソシァネート類の粘度は、 溶融状態で 1 0センチボイズ以下と 極めて低いものである。 これに対しポリマージオールの粘度は、 溶融状態で数百 センチボイズであり、 低分子量ジオール、 ジイソシァネート類に対し極めて高い。 従来のポリウレタン弾性体等、 特に弾性糸の反応紡出法においては、 各反応原料 の粘度が大きく異なり、 しかも容積比で 1 0倍以上もある反応原料をそのまま用 いて、 極めて短時間で混合するため、 混合の不均一に起因する異常反応物を生成 しゃすく、 結果として紡出安定性に欠けていた。
本発明では、 使用する 2種類のプレボリマ一へのポリマージオールの配分比率 を、 例えば前記説明した範囲とすることによって、 水酸基末端プレボリマ一の粘 度を、 7 0。Cにおいてほぼ 5 0 0〜 1 0 , 0 0 0センチボイズ、 ジイソシァネ一 ト末端プレボリマーの粘度をほぼ 8 0 0〜 5 , 0 0 0センチボイズの範囲内とす ることができ、 紡出安定性を向上させることができる。 更にこの効果を上げるために、 水酸基末端プレボリマーの合成時に、 前述の段 階的反応法をとることが好ましい。 即ち、 まず第 1のポリマージオールを、 例え ば 1 . 3〜 2 . 5倍、 好ましくは 1 . 8〜 2 . 1倍モルに近いモル量の第 2のジ ィソシァネートと反応させ、 極力ポリマージオールの両端にジィソシァネートが 結合した状態の I P I とした後、 過剰のモル量の低分子量ジオールと反応させ、 D I P I Dと Dの混合状態の水酸基末端プレボリマ一とし、 異常反応物の生成を 抑制して、 更に紡出安定性を増大させるのである。 また、 イソシァネート末端プ レポリマ一の合成では、 紡出安定性の点からポリマージオールに対して 1 . 0倍 未満のモル量の低分子量ジオールを用いることが好ましい。 この場合にも段階的 反応を行うことが好ましい。 すなわち、 予め I P Iを作製した後、 低分子量ジォ —ルを反応させ I P I D I P Iを主成分としたイソシァネート末端プレボリマ一 とすることにより、 異常反応物の生成を抑制することができる。
更に、 ポリマージオールとして、 互いに相溶性がわるいポリエステルジオール とポリエ一テルジオールを混合して使用する場合においても、 本発明の製造方法 のように、 あらかじめそれぞれイソシァネ一卜末端プレボリマ一および水酸基末 端プレボリマ一とすることできわめて優れた混合状態が得られ、 その結果として 両ポリマージオールのそれぞれの長所を十分に発揮したポリウレタン弾性体が得 られる。 発明を実施するための最良の形態 以下、 本発明を実施例により更に詳細に説明する。 実施例 1 両末端に水酸基を持つポリエチレンアジペート (分子量 2 , 1 0 0 ) 1 0 0重 量部に対し、 ジフヱニルメタンジイソシァネ一ト 2 4重量部とブチレングリコ一 ル 2 2重量部の割合で、 反応温度 1 1 5 °C、 反応時間 6 0分の条件で攪拌しなが ら連続的に反応させて、 水酸基末端プレボリマ一を得た。 この水酸基末端プレボ リマ一の 7 0 °Cにおける粘度は 4, 0 0 0センチボイズであった。
一方、 両末端に水酸基を持つポリエチレンアジペート (分子量 2, 1 0 0 ) 2 0 0重量部に対し、 ジフヱニルメタンジイソシァネート 8 4重量部の割合で、 反 応温度 1 1 5 °C、 反応時間 6 0分の条件で攪拌しながら連続的に反応させて、 ィ ソシァネ一ト末端プレボリマ一を得た。 このィソシァネ一ト末端プレポリマ一の 7 0 °Cにおける粘度は 1 , 5 0 0センチボイズであった。
このようにして得られた水酸基末端プレボリマ一 1 4 6重量部に対しイソシァ ネート末端プレボリマー 2 8 4重量部の割合で、 搔面型熱交換式反応機に連続的 に注入し、 反応温度 1 9 0 °C、 滞留時間 3 0分の条件下で混合攪拌した。 得られ た粘稠物を直ちに紡糸ポンプによりノズルを通して押し出し、 鉱物油主体の油剤 で処理後、 5 0 0 m /分で 4 0デニールのポリウレタン弾性糸を巻取る操作を 7 日間連続して行なった。 得られたポリウレタン弾性糸の原料として用いられたジ オール (ポリエチレンアジペートおよびブチレングリコール) の合計モル量とジ イソシァネート (ジフヱニルメタンジイソシァネート) のモル量の比は 1 . 1 2 であった。
本発明の方法の場合、 従来の方法であるワンショッ 卜法により直接紡糸する方 法、 プレボリマ一法により直接紡糸する方法と比べ、 この間の糸切れは 2回で、 従来法の 1 Z 2以下であった。 又、 得られたポリウレタン弾性糸の伸度は、 従来 法によるものと同様 4 5 0 %であり、 熱的性質を表す指標として、 1 0 0 %伸長 状態で 1 1 5 °C 1分間処理後の残留歪を測定した結果、 従来法によるものが 4 5 %であるのに対し、 3 0 %と低下した。
尚、 上記原料を用いて本発明の方法と従来方法とを実施した場合における、 原 料、 プレボリマ一といった各構成成分の粘度比および容積比を比較すると、 以下 のようになる。 ぐ従来方法: ヮ ョッ 卜法 >
構成成分 粘度比 容積比
ポリマ一ジオール 1 1 0 1 2
低分子量ジオール 1 0 1
ジイソシァネート 1 4
<従来方法:プレポリマ一法 >
構成成分 粘度比 容積比
ィソシァネート末端
プレポリマ一 4 3 1 6
低分子量ジオール 1 1 く実施例 1〉
構成成分 粘度比 容積比
水酸基末端
プレポリマー 1 . 8
ィソシァネ一ト末端
プレポリマ一 なお、 物性の測定は以下の方法に従って行った。 下記実施例でも同様である。
(粘度)
試料を 7 0 °Cに加温 (約 3時間) し、 東京計器製の B型粘度計を用いて測定す る。
(伸度 (%) :糸の場合)
室温 2 0 °C、 湿度 6 5 °Cの雰囲気下で、 試料に 0 . 1 g荷重をかけ把握長を 4 c mとし初期状態の試料とする。 初期状態の試料を 1分あたり 3 0 c mの速度で 破断するまで伸長させ、 破断時の試料長さから把握長を差し引いた長さ 「A」 を 求め、 下記式 1により伸度を求める。 なお、 試料は 1種につき 1 0本ずつ行い、 その平均値をもってその試料の伸度とする。 式 1 :伸度 (%) = A/40 x 1 0 0
(伸度 (%) :テープの場合)
テープについての伸度 (%) は、 J I S規格 (K 7311) に準じて行う。
(残留歪 (%) )
室温 2 0て、 湿度 6 5%の雰囲気下で、 試料に 0. 1 g荷重をかけ把握長 4 c mとして初期状態の試料とする。 初期状態の試料を試料長さ 1 6 cmに伸長させ た後、 4 cmまで緩めるという操作を 2回繰り返す。 この間応力を測定し、 応力 と伸長長さとをチヤ一卜に表し、 2回目に試料を緩めて応力が 0となるときの試 料の伸長長さ 「B」 を求め、 下記式 2より残留歪 (%) を求める。 なお、 試料は 1種つき 5本ずつ行い、 その平均値をもってその試料の残留歪とする。
式 2 :残留歪 (%) =BZ40 x l 0 0
(耐かび性)
試料とウーリ一ナイロン (WN50/16/1) でカバリング糸を作り、 これを用いて 3 60本編み機で筒編みにする。 各編み地を 7 cmずつ平行に輪切りしたものを試 料とする。
ふるいでおろした土に適度に水を加え、 軽くかき混ぜ、 この中に試料を入れて 密閉し、 24〜26°Cで放置する。 一定期間後、 試料を取り出し、 試料の穴のあ き具合等 (穴の有無、 日数、 穴の数など) を測定する。 実施例 2 両末端に水酸基を持つポリエチレンアジペート (分子量 2, 1 00 ) 1 00重 量部に対し、 ジフヱニルメタンジイソシァネート 24重量部の割合で、 反応温度 80°C、 反応時間 60分の条件で反応させて前駆物質を得、 次いで得られた前駆 物質に 1 24重量部にブチレングリコール 33重量部の割合で反応温度 1 1 5°C、 反応時間 60分の条件で攪拌しながら連続的に反応させて、 水酸基末端プレポリ マ一を得た。 この水酸基末端プレボリマーの 70°Cにおける粘度は 5, 0 00セ ンチボイズであった。
一方、 両末端に水酸基を持つポリエチレンアジペート (分子量 2, 1 0 0) 2 0 0重量部に対し、 ジフヱニルメタンジイソシァネート 1 1 0重量部の割合で、 反応温度 8 0 °C、 反応時間 6 0分の条件で攪拌しながら連続的に反応させて、 ィ ソシァネ一ト末端プレポリマ一を得た。 このィソシァネ一ト末端プレポリマ一の 7 0。Cにおける粘度は 1 , 5 0 0センチボイズであった。
このようにして得られた水酸基末端プレボリマ一 1 5 7重量部に対しィソシァ ネート末端プレボリマー 3 1 0重量部の割合で、 搔面型熱交換式反応機に連続的 に注入し、 反応温度 1 9 0 °C、 滞留時間 3 0分の条件下で混合攪拌した。 得られ た粘稠物を直ちに紡糸ポンプによりノズルを通して押し出し、 鉱物油主体の油剤 で処理後、 巻取って 7 0デニールのポリウレタン弾性糸を得た。 3 5 0 m /分で 巻取る操作を 7日間連続して行なったが、 ノズル詰まりは全く見られなかった。 又、 上記 7日間の実験を 3回繰り返した後、 反応機を分解して内部の状態を観察 した結果、 異常反応物の付着は見られなかった。 得られたポリウレタン弾性糸の 原料として用いられたジオール (ポリエチレンアジべ一トおよびブチレングリコ —ル) の合計モル量とジイソシァネート (ジフヱニルメタンジイソシァネート) のモル量の比は 1 . 0 5であった。
得られたポリウレタン弾性糸の伸度は 5 0 0 %であり、 熱的性質を表す指標と して、 1 0 0 %伸長状態で 1 1 5 °C 1分間処理後の残留歪を測定した結果、 3 5 %であった。 実施例 3 両末端に水酸基を持つポリエチレンアジペート (分子量 2, 1 0 0 ) 1 0 0重 量部に対し、 ジフヱニルメタンジイソシァネ一ト 2 4重量部とブチレンダリコ一 ル 2 8重量部の割合で、 反応温度 1 1 5 °C、 反応時間 6 0分の条件で攪拌しなが ら連続的に反応させて、 水酸基末端プレボリマ一を得た。
この水酸基末端プレボリマーの 7 0 °Cにおける粘度は 4 , 5 0 0センチボイズ であった。 一方、 両末端に水酸基を持つポリエチレンアジペート (分子量 2, 1 0 0 ) 2 0 0重量部に対し、 ジフヱニルメタンジイソシァネート 9 6重量部との 割合で、 反応温度 1 1 5 °C、 反応時間 6 0分の条件で攪拌しながら連続的に反応 させて、 イソシァネート末端プレボリマ一を得た。 このイソシァネ一ト末端プレ ポリマーの 7 0 °Cにおける粘度は 1, 8 0 0センチボイズであった。
このようにして得られた水酸基末端プレボリマ一 1 5 2重量部に対しィソシァ ネ一ト末端プレボリマ一 2 9 6重量部の割合で、 スクリュ一式押出成形機に連続 的に注入し、 反応温度 1 9 0 °C、 滞留時間 1 0分の条件下で混合攪拌した。 得ら れた粘稠物を直ちに紡糸ポンプによりスリツ トノズルを通して押し出し、 水に油 脂分を界面活性剤により分散させて得られる油剤で処理後、 5 O mZ分で 1 0 , 0 0 0デニール (巾約 6 m m、 厚さ約 1 8 0〃m ) のポリウレタンテープを巻取 る操作を 7日間連続して行なった。 得られたポリウレタンテープの原料として用 いられたジオール (ポリエチレンアジペートおよびブチレングリコール) の合計 モル量とジイソシァネート (ジフヱニルメタンジイソシァネート) のモル量の比 は 1 . 0 6であった。
従来のポリウレタン樹脂ペレツ トを押出成形する方法の場合、 押出成形中に主 としてペレツ 卜の溶融不均一により、 巾不良部が通常 1万 mに 2— 3個所発生す るが、 本発明方法の場合、 巾不良部の発生は 1 0万 m中 1個所以下に低減した。 又、 得られたポリゥレタンテープの伸度は、 従来法によるものと同様、 4 0 0 %であった。 このテープの熱的性質を示す指標として、 テープの上に 1 3 0 °Cに 熱した直径 3 m mの鉄球を乗せ、 テープが伸びて切断する時の伸度を測定した結 果、 従来法によるものを 1 0 0 %とした場合に、 本発明によるものは 1 5 0 %と 向上した。
また、 1 0 0 %伸長状態で 1 1 5 ° (:、 1分間処理後の残留歪を測定した結果、 5 0 %であった。 実施例 4 ポリエチレンアジぺート 1 0 0重量部に対してジフヱニルメタンジィソシァネ ―ト 2 4重量部の割合で反応温度 1 1 5 °C、 反応時間 6 0分で反応させて、 前駆 物質を得、 ついで得られた前駆物質 1 2 4重量部にブチレングリコール 2 8重量 部の割合で反応時間 1 1 5 °C、 反応時間 6 0分の条件で攪拌しながら連続的に反 応させて水酸基末端プレボリマーを得た。
この水酸基末端プレボリマ一の 7 0 °Cにおける粘度は 4 , 5 0 0センチボイズ であった。 一方、 両末端に水酸基を持つポリエチレンアジペート (分子量 2 , 1 0 0 ) 2 0 0重量部に対し、 ジフヱニルメタンジイソシァネート 9 6重量部との 割合で、 反応温度 1 1 5 °C、 反応時間 6 0分の条件で攪拌しながら連続的に反応 させて、 イソシァネート末端プレボリマ一を得た。 このイソシァネート末端プレ ポリマーの 7 0 °Cにおける粘度は 1 , 8 0 0センチボイズであった。
このようにして得られた水酸基末端プレボリマ一 1 5 2重量部に対しィソシァ ネート末端プレボリマ一 2 9 6重量部の割合で、 スクリユー式押出成形機に連続 的に注入し、 反応温度 1 9 0 °C、 滞留時間 1 0分の条件下で混合攪拌した。 得ら れた粘稠物を直ちに紡糸ポンプによりスリ ツ トノズルを通して押し出し、 水に油 脂分を界面活性剤により分散させて得られる油剤で処理後、 5 0 mノ分で 1 0 , 0 0 0デニール (巾約 6 m m、 厚さ約 1 8 0〃m ) のポリウレタンテ一プを卷取 る操作を 7日間連続して行なった。 得られたポリウレタンテープの原料として用 いられたジオール (ポリエチレンアジペートおよびブチレングリコール) の合計 モル量とジイソシァネート (ジフエニルメタンジイソシァネート) のモル量の比 は 1 . 0 6であった。
従来のポリウレタン樹脂ペレツ トを押出成形する方法の場合、 押出成形中に主 としてペレツ 卜の溶融不均一により、 巾不良部が通常 1万 mに 2— 3個所発生す るが、 本発明方法の場合、 巾不良部の発生は 3 0万 m中 1個所以下に低減した。 又、 得られたポリウレタンテープの伸度は、 4 2 0 %であった。 このテープの 熱的性質を示す指標として、 テープの上に 1 3 0 °Cに熱した直径 3 m mの鉄球を 乗せ、 テープが伸びて切断する時の伸度を測定した結果、 従来法によるものを 1 0 0 %とした場合に、 本発明によるものは 1 6 0 %と向上した。 また、 1 0 0 % 伸長状態で 1 1 5 °C 1分間後の残留歪を測定した結果、 4 5 %であった。 実施例 5 両末端に水酸基を持つポリテトラメチレングリコール (分子量 6 5 0 ) 1 0 0 重量部に対して、 ジフヱニルメタンジイソシァネート 7 5重量部の割合で、 反応 温度 8 0 °C、 反応時間 6 0分で反応させ前駆物質を得、 ついで得られた前駆物質 1 7 5重量部にブチレングリコール 5 8重量部の割合で反応温度 8 0 °C、 反応時 間 6 0分の条件で攪拌しながら連続的に反応させて、 水酸基末端プレボリマ一を 得た。 この水酸基末端プレボリマーの 7 0 °Cにおける粘度は 5, 5 0 0センチポ ィズ( めった。
一方、 両末端に水酸基を持つポリエチレンアジペート (分子量 3 , 0 0 0 ) 3 2 7重量部に対し、 ジフヱニルメタンジィソシァネ一ト 1 7 3重量部の割合で反 応温度 8 0 °C、 反応時間 6 0分の条件で攪拌しながら連続的に反応させて、 イソ シァネ一ト末端プレボリマ一を得た。 このィソシァネ一 ト末端プレボリマーの 7 0 °Cにおける粘度は 1 , 3 0 0センチボイズであった。
このようにして得られた水酸基末端プレボリマ一 2 3 3重量部に対しィソシァ ネ一ト末端プレボリマ一 5 0 0重量部の割合で、 搔面型熱交換式反応機に連続的 に注入し、 反応温度 1 9 0 °C、 滞留時間 3 0分の条件下で混合攪拌した。 得られ た粘調物を直ちに紡糸ポンプによりノズルを通して押し出し、 鉱物油主体の油剤 で処理後、 巻取って 2 0デニールのポリウレタン弾性糸を得た。 得られたポリウ レタン弾性糸の原料として用いられたポリマージオール (ポリテトラメチレング リコールおよびポリエチレンアジべ一 ト) 全量の 5 9モル%がポリテトラメチレ ングリコ一ルであつた。 ジオール (ポリテトラメチレングリコール、 ブチレング リコールおよびポリエチレンアジペー ト) の合計モル量とジイソシァネート (ジ フエニルメタンジイソシァネート) のモル量の比は 1 . 1 0であった。
8 0 0 m /分で巻取る操作を 7日間連続して行ったがノズル詰まりは全くみら れなかった。 又、 得られたポリウレタン弾性糸の伸度は、 4 4 0 %であり、 熱的 性質を表す指標として、 1 0 0 %伸長状態で 1 1 5 °C 1分間処理後の残留歪は 3 5 %であった。
又、 耐かび性の測定結果は 2 8日と良好であった。 実施例 6 両末端に水酸基を持つポリテ卜ラメチレングリコール (分子量 1 , 0 0 0 ) 1 0 0重量部に対して、 ジフヱニルメタンジィソシァネ一ト 4 8重量部の割合で、 反応温度 8 0 °C、 反応時間 6 0分で反応させて前駆物質を得、 ついで得られた前 駆物質に 1 4 8重量部にブチレングリコール 5 4重量部の割合で反応温度 8 0 °C、 反応時間 6 0分の条件で攪拌しながら連続的に反応させて、 水酸基末端プレポリ マーをして得た。 この水酸基末端プレボリマ一の 7 0 °Cにおける粘度は 5, 0 0 0センチボイズであった。 一方、 両末端に水酸基を持つポリエチレンプロピレン アジべ一ト (分子量 2 1 0 0、 E G : P G = 1 : 9 ) 4 4 5重量部に対し、 ジフ ェニルメタンジイソシァネート 1 9 0重量部の割合で反応温度 8 0 °C、 反応時間 6 0分の条件で攪拌しながら連続的に反応させて、 イソシァネート末端プレポリ マ一を得た。 このイソシァネ一ト末端プレボリマ一の 7 0 °Cにおける粘度は 2 , 0 0 0センチボイズであった。 このようにして得られた水酸基末端プレボリマ一 2 0 2重量部に対しイソシァネート末端プレボリマ一 7 0 8重量部の割合で、 搔 面型熱交換式反応機に連続的に注入し、 反応温度 1 9 0 °C、 滞留時間 3 0分の条 件下で混合攪拌した。 得られた粘調物を直ちに紡糸ポンプによりノズルを通して 押し出し、 鉱物油主体の油剤で処理後、 巻取って 2 0デニールのポリウレタン弾 性糸を得た。 ポリマージオール (ポリテトラメチレングリコールおよびポリェチ レンプロピレンアジべ一ト) 全量の 3 2モル%がポリテトラメチレングリコール であった。 ジオール (ポリテトラメチレングリコール、 ブチレングリコール、 ポ リエチレンプロピレンアジペート) の合計モル量とジイソシァネート (ジフエ二 ルエタンジイソシァネート) のモル量の比は 1 . 0 5であった。
8 0 0 m /分で巻取る操作を 7日間連続して行ったがノズル詰まりは全くみら れなかった。 又、 得られたポリウレタン弾性糸の伸度は、 4 9 0 %であり、 熱的 性質を表す指標として、 1 0 0 %伸長状態で 1 1 5 °C 1分間処理後の残留歪は 3 0 %であった。
又、 耐かび性の測定結果は 1 9日と良好であった。 (参考までに、 比較例 2の プレボリマ一法で製造したポリマージオールが全量ポリエステルジオールの場合 の耐かび性の測定結果は 3日であった) 実施例 7 両末端に水酸基を持つポリテトラメチレングリコール (分子量 2, 0 0 0 ) 1 0 0重量部に対して、 ジフヱニルメタンジイソシァネ一ト 24重量部の割合で、 反応温度 8 0°C、 反応時間 6 0分で反応させて前駆物質を得、 ついで得られた前 駆物質 1 24重量部にブチレングリコール 6 0重量部の割合で反応温度 8 0°C、 反応時間 6 0分の条件で攪拌しながら連続的に反応させて、 水酸基末端プレポリ マ一を得た。 この水酸基末端プレボリマ一の 7 0°Cにおける粘度は 3, 5 0 0セ ンチボイズであった。 一方、 両末端に水酸基を持つポリエチレンプロピレンアジ ぺ一 卜 (分子量 2 1 0 0、 E G : P G= 1 : 9) 5 0 0重量部に対し、 ジフエ二 ルメタンジイソシァネート 24 0重量部の割合で反応温度 8 0°C、 反応時間 6 0 分の条件で攪拌しながら連続的に反応させて、 ィソシァネ一ト末端プレボリマ一 を得た。 このイソシァネート末端プレボリマ一の 7 0°Cにおける粘度は 1, 8 0 0センチボイズであった。 このようにして得られた水酸基末端プレボリマ一 1 8 4重量部に対しイソシァネ一ト末端プレボリマ一 7 5 0重量部の割合で、 搔面型 熱交換式反応機に連続的に注入し、 反応温度 1 9 0°C、 滞留時間 3 0分の条件下 で混合攪拌した。 得られた粘調物を直ちに紡糸ポンプによりノズルを通して押し 出し、 鉱物油主体の油剤で処理後、 巻取って 2 0デニールのポリウレタン弾性糸 を得た。 ポリマージオール (ポリテトラメチレングリコールおよびポリエチレン プロピレンアジべ一ト) 全量の 1 7モル%がポリテトラメチレングリコールであ つた。 ジオール (ポリテトラメチレングリコール、 ブチレングリコールおよびポ リエチレンプロピレンアジべ一卜) の合計モル量とジイソシァネート (ジフエ二 ルメタンジイソシァネート) のモル量の比は 1. 1 2であった。
8 0 O mZ分で巻取る操作を 7日間連続して行ったがノズル詰まりは全くみら れなかった。 又、 7日間連続運転を 3回繰り返した後、 反応機を分解して内部の 状態を観察したところ、 異常反応物の付着は見られなかった。 得られたポリウレ タン弾性糸の伸度は、 4 2 0 %であり、 熱的性質を表す指標として、 1 0 0 %伸 長状態で 1 1 5 °C 1分間処理後の残留歪は 3 1 %であった。
又、 耐かび性の測定結果は 1 8日と良好であった。 比較例 1 ポリエチレンアジペート (分子量 2, 1 0 0 ) 1 0 0重量部に対して、 ジフエ ニルメ夕ンジィソシァネ一ト 4 0重量部とブチレングリコール 8部の割合でヮン ショッ ト法により紡糸を行った。 8 0 O m Z分で巻取る操作を行ったが 1 日でノ ズル詰まりを起こした。 連続紡糸終了後、 反応機を分解すると内部に異常反応物 が多量に付着していた。 また 1 0 0 %伸長状態で 1 1 5 °C 1分間処理後の残留歪 は 5 0 %で、 本発明の製造方法により得られたポリウレタン弾性糸などより劣つ ていた。 比較例 2 ポリエチレンアジペート (分子量 2 , 1 0 0 ) 1 0 0重量部に対して、 ジフヱ ニルメ夕ンジィソシァネート 4 0重量部を反応させ、 得られたプレボリマ一とブ チレングリコール 8部を従来のプレボリマ一法により紡糸を行った。 8 0 O m Z 分で巻取る操作を行ったが 2日でノズル詰まりを起こした。 又、 比較例 1 と同様 に反応機内に異常反応物の付着が見られた。 また 1 0 0 %伸長状態で 1 1 5 °C 1 分間処理後の残留歪は 5 0 %で、 本発明の製造方法により得られたポリウレタン 弾性糸などより劣っていた。 産業上の利用可能性 本発明では、 あらかじめ粘度の比較的近いィソシァネ一ト末端プレボリマー及 び水酸基末端プレボリマーを得た後に重合反応を行ない、 しかも、 2種のプレボ リマ一の容積比も従来の方法に比し 1に近くなつているため、 反応成分の均一混 合が可能となるとともに、 異常反応物の生成を抑制できるため、 紡出安定性を飛 躍的に向上させることができる。
更に、 プレボリマーを 2段階に分けて合成することにより、 異常反応物の生成 を抑制し、 2種のプレボリマ一の粘度を同レベルにすることによる攪拌効果の向 上と相俟って、 紡出安定性をより一層改良することができる。
更に、 本発明における 2種のプレボリマ一の各原料配合割合は、 相溶性の点か らも優れており、 紡糸安定性に加えて熱的性質、 耐かび性等の品質も向上させる ことができる。

Claims

請求の範囲
1 . 分子量 6 0 0以上の第 1のポリマージオールと、 前記第 1のポリマージォ —ルと同一であっても異なっていてもよい分子量 6 0 0以上の第 2のポリマ一ジ オールと、 分子量 5 0 0以下の第 1の低分子量ジオールと、 前記第 1の低分子量 ジオールと同一であっても異なっていてもよい第 2の低分子量ジオールと、 第 1 のジィソシァネ一トと、 前記第 1のジィソシァネ一トと同一であっても異なって いてもよい第 2のジイソシァネートとを主原料とし、
原料中における第 1のジイソシァネート及び第 2のジイソシァネートの合計量が、 第 1のポリマージオール、 第 2のポリマージオール、 第 1の低分子量ジオール及 び第 2の低分子量ジオールの合計モル量に対して 0 . 9 5〜 1 . 2 5倍のモル量 であるポリウレタン弾性糸の製造方法であって、
第 1のポリマージオールと第 1の低分子量ジオールと第 1のジィソシァネ一トと を反応させて得られる水酸基末端プレボリマーと、 第 2のポリマージオールと第 2の低分子量ジオールと第 2のジィソシァネ一トとを反応させて得られるイソシ ァネート末端プレボリマーとを連続的に反応させて得られる流動状態のポリウレ タンポリマーを、 連続的にノズルから押し出すことを特徴とするポリウレタン弾 性糸の製造方法。
2 . 前記第 2の低分子量ジオールが、 第 2のポリマージオールに対して 1 . 0 倍未満のモル量であることを特徴とする請求項 1記載のポリウレタン弾性糸の製 造方法。
3 . 前記水酸基末端プレボリマ一が、 第 1のポリマージオール及び第 2のポリ マージオールの全量に対して 6 0モル%〜 1 0モル%の量の第 1のポリマ一ジォ —ルと、 この第 1のポリマージオールに対して 1 . 3〜 2 . 5倍のモル量の第 1 のジイソシァネ一卜と、 第 1のポリマージオールに対し 2倍以上のモル量の第 1 の低分子量ジオールとを反応させて得られ、
かつ、 前記イソシァネート末端プレボリマーが、 第 1のポリマージオール及び第 2のポリマージオールの全量に対して 9 0モル%〜4 0モル%の第 2のポリマ一 ジオールと、 この第 2のポリマージオールに対して 2倍以上のモル量の第 2のジ イソシァネートと、 第 2のポリマージオールに対して 1 . 0倍未満のモル量の第 2の低分子量ジオールとを反応させて得られることを特徴とする請求項 1または 2に記載のポリゥレタン弾性糸の製造方法。
4 . 前記水酸基末端プレボリマ一が、 第 1のポリマージオールと第 1のジイソ シァネー卜とを反応させて第 1の前駆物質を得た後、 第 1の前駆物質と第 1の低 分子量ジオールとを反応させて得られ、
かつ、 前記イソシァネート末端プレボリマ一が、 第 2のポリマージオールと第 2 のィソシァネートとを反応させて第 2の前駆物質を得た後、 第 2の前駆物質と第 2のポリマージオールに対して 1 . 0倍未満のモル量の第 2の低分子量ジオール とを反応させて得られることを特徴とする請求項 1〜 3の何れかに記載のポリゥ レ夕ン弾性糸の製造方法。
5 . 第 1のポリマージオール及び第 2のポリマージオールがそれぞれポリェ一 テルジオール及びポリエステルジオールからなる群より選ばれることを特徴とす る請求項 1〜 4の何れかに記載のポリウレタン弾性糸の製造方法。
6 . 第 1のポリマージオールがポリエーテルジオールであり、 第 2のポリマ一 ジオールがポリエステルジオールである請求項 5に記載のポリゥレタン弾性糸の 製造方法。
7 . 分子量 6 0 0以上の第 1のポリマージオールと、 前記第 1のポリマージォ —ルと同一であっても異なっていてもよい分子量 6 0 0以上の第 2のポリマージ オールと、 分子量 5 0 0以下の第 1の低分子量ジオールと、 前記第 1の低分子量 ジオールと同一であっても異なっていてもよい第 2の低分子量ジオールと、 第 1 のジィソシァネ一トと、 前記第 1のジィソシァネ一卜と同一であっても異なって いてもよい第 2のジィソシァネ一トとを主原料とし、 原料中における第 1のジイソシァネ一ト及び第 2のジイソシァネ一卜の合計量が、 第 1のポリマージオール、 第 2のポリマージオール、 第 1の低分子量ジオール及 び第 2の低分子量ジオールの合計モル量に対して 0 . 9 5〜 1 . 2 5倍のモル量 であり、 前記第 2の低分子量ジオールが、 第 2のポリマージオールに対して 1 . 0倍未満のモル量であるポリウレタン弾性体の製造方法であって、
第 1のポリマ一ジオールと第 1の低分子量ジオールと第 1のジィソシァネ一卜と を反応させて得られる水酸基末端プレボリマーと、 第 2のポリマージオールと第 2の低分子量ジオールと第 2のジィソシァネ一トとを反応させて得られるイソシ ァネ一ト末端プレボリマ一とを連続的に反応させて得られる流動状態のポリウレ タンポリマーを、 連続的にノズルから押し出すことを特徴とするポリウレタン弾 性体の製造方法。
8 . 前記水酸基末端プレボリマ一が、 第 1のポリマージオール及び第 2のポリ マージオールの全量に対して 6 0モル%〜 1 0モル%の量の第 1のポリマ一ジォ —ルと、 この第 1のポリマージオールに対して 1 . 3〜 2 . 5倍のモル量の第 1 のジィソシァネ一卜と、 第 1のポリマージオールに対し 2倍以上のモル量の第 1 の低分子量ジオールとを反応させて得られ、
かつ、 前記イソシァネート末端プレボリマ一が、 第 1のポリマージオール及び第 2のポリマージオールの全量に対して 9 0モル%〜4 0モル%の第 2のポリマ一 ジオールと、 この第 2のポリマージオールに対して 2倍以上のモル量の第 2のジ イソシァネートと、 第 2のポリマージオールに対して 1 . 0倍未満のモル量の第 2の低分子量ジオールとを反応させて得られることを特徴とする請求項 7に記載 のポリウレタン弾性体の製造方法。
9 . 前記水酸基末端プレボリマーが、 第 1のポリマージオールと第 1のジイソ シァネ一トとを反応させて第 1の前駆物質を得た後、 第 1の前駆物質と第 1の低 分子量ジオールとを反応させて得られ、
かつ、 前記イソシァネート末端プレボリマーが、 第 2のポリマージオールと第 2 のィソシァネートとを反応させて第 2の前駆物質を得た後、 第 2の前駆物質と第 2のポリマージオールに対して 1 . 0倍未満のモル量の第 2の低分子量ジオール とを反応させて得られることを特徴とすることを特徴とする請求項 7または 8に 記載のポリゥレタン弾性体の製造方法。
1 0 . 前記第 1のポリマージオール及び第 2のポリマージオールがそれぞれポ リエーテルジオール及びポリエステルジオールからなる群より選ばれることを特 徴とする請求項 7〜 9の何れかに記載のポリウレタン弾性体の製造方法。
1 1 . 第 1のポリマージオールがポリエーテルジオールであり、 第 2のポリマ ージオールがポリエステルジオールである請求項 1 0に記載のポリゥレタン弾性 体の製造方法。
1 2 . 分子量 6 0 0以上の第 1のポリマージオールと、 前記第 1のポリマージ オールと同一であっても異なっていてもよい分子量 6 0 0以上の第 2のポリマ一 ジオールと、 分子量 5 0 0以下の低分子量ジオールと、 第 1のジイソシァネート と、 前記第 1のジイソシァネ一卜と同一であっても異なっていてもよい第 2のジ ィソシァネートとを主原料とし、
原料中における第 1のジィソシァネ一 卜及び第 2のジィソシァネ一卜の合計量が、 第 1のポリマージオール、 第 2のポリマージオール及び低分子量ジオールの合計 モル量に対して 0 . 9 5〜 1 . 2 5倍のモル量であるポリウレタン弾性糸の製造 方法であって、
第 1のポリマージオールと低分子量ジオールと第 1のジイソシァネートとを反応 させて得られる水酸基末端プレポリマ一と、 第 2のポリマージオールと第 2のジ ィソシァネ一トとを反応させて得られるイソシァネ一ト末端プレボリマーとを連 続的に反応させて得られる流動状態のポリウレタンポリマーを、 連続的にノズル から押し出すことを特徴とするポリウレタン弾性糸の製造方法。
1 3 . 前記水酸基末端プレボリマ一が、 第 1のポリマージオール及び第 2のポ リマージオールの全量に対して 6 0モル%〜 1 0モル%の量の第 1のポリマージ オールと、 この第 1のポリマージオールに対して 1 . 3〜2 . 5倍のモル量の第 1のジィソシァネ一トと、 第 1のポリマージオールに対し 2倍以上のモル量の低 分子量ジオールとを反応させて得られ、
かつ、 前記イソシァネート末端プレボリマーが、 第 1のポリマージオール及び第 2のポリマージオールの全量に対して 9 0モル%〜4 0モル%の第 2のポリマ一 ジオールと、 この第 2のポリマージオールに対して 2倍以上のモル量の第 2のジ ィソシァネ一トとを反応させて得られることを特徴とする請求項 1 2に記載のポ リウレタン弾性糸の製造方法。
1 4 . 前記水酸基末端プレボリマーが、 第 1のポリマージオールと第 1のジィ ソシァネ一トとを反応させて前駆物質を得た後、 該前駆物質と低分子量ジオール とを反応させて得られることを特徴とする請求項 1 2または 1 3に記載のポリウ レタン弾性糸の製造方法。
1 5 . 第 1のポリマ一ジオール及び第 2のポリマージオールがそれぞれポリェ —テルジオール及びポリエステルジオールからなる群より選ばれることを特徴と する請求項 1 2〜 1 4の何れかに記載のポリウレタン弾性糸の製造方法。
1 6 . 第 1のポリマージオールがポリエーテルジオールであり、 第 2のポリマ —ジオールがポリエステルジオールである請求項 1 5に記載のポリウレタン弾性 糸の製造方法。
1 7 . 分子量 6 0 0以上の第 1のポリマージオールと、 前記第 1のポリマージ オールと同一であっても異なっていてもよい分子量 6 0 0以上の第 2のポリマ一 ジオールと、 分子量 5 0 0以下の低分子量ジオールと、 第 1のジイソシァネート と、 前記第 1のジイソシァネ一卜と同一であっても異なっていてもよい第 2のジ ィソシァネ一トとを主原料とし、
原料中における第 1のジイソシァネート及び第 2のジイソシァネートの合計量が、 第 1のポリマージオール、 第 2のポリマージオール及び低分子量ジオールの合計 モル量に対して 0 . 9 5〜 1 . 2 5倍のモル量であるポリウレタン弾性糸の製造 方法であって、
第 1のポリマージオールと低分子量ジオールと第 1のジィソシァネ一トとを反応 させて得られる水酸基末端プレボリマ一と、 第 2のポリマージオールと第 2のジ イソシァネ一卜とを反応させて得られるイソシァネ一ト末端プレボリマ一とを連 続的に反応させて得られる流動状態のポリウレタンポリマーを、 連続的にノズル から押し出すことを特徴とするポリゥレタン弾性体の製造方法。
1 8 . 前記水酸基末端プレボリマーが、 第 1のポリマージオール及び第 2のポ リマージオールの全量に対して 6 0モル 〜 1 0モル%の量の第 1のポリマージ オールと、 この第 1のポリマージオールに対して 1 . 3〜 2 . 5倍のモル量の第 1のジイソシァネ一卜と、 第 1のポリマージオールに対し 2倍以上のモル量の低 分子量ジオールとを反応させて得られ、
かつ、 前記イソシァネート末端プレボリマ一が、 第 1のポリマージオール及び第 2のポリマージオールの全量に対して 9 0モル%〜4 0モル%の第 2のポリマ一 ジオールと、 この第 2のポリマ一ジオールに対して 2倍以上のモル量の第 2のジ ィソシァネートとを反応させて得られることを特徴とする請求項 1 7に記載のポ リウレタン弾性体の製造方法。
1 9 . 前記水酸基末端プレボリマーが、 第 1のポリマージオールと第 1のジィ ソシァネ一卜とを反応させて前駆物質を得た後、 該前駆物質と低分子量ジオール とを反応させて得られることを特徴とする請求項 1 7または 1 8に記載のポリゥ レタン弾性体の製造方法。
2 0 . 前記第 1のポリマージオール及び第 2のポリマージオールがそれぞれポ リエーテルジオール及びポリエステルジオールからなる群より選ばれることを特 徴とする請求項 1 7〜 1 9の何れかに記載のポリウレタン弾性体の製造方法。
2 1 . 第 1のポリマージオールがポリエーテルジオールであり、 第 2のポリマ —ジオールがポリエステルジオールである請求項 2 0に記載のポリゥレタン弾性 体の製造方法。
PCT/JP1998/000400 1998-01-30 1998-01-30 Procede de fabrication d'un elastomere de polyurethanne et d'un filament souple WO1999039030A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AT98901068T ATE280852T1 (de) 1998-01-30 1998-01-30 Verfahren zur herstellung eines polyurethanelastomers und eines elastischen filaments
DE69827242T DE69827242T2 (de) 1998-01-30 1998-01-30 Verfahren zur herstellung eines polyurethanelastomers und eines elastischen filaments
EP98901068A EP0972864B1 (en) 1998-01-30 1998-01-30 Process for producing polyurethane elastomer and elastic filament
CN98805568A CN1100896C (zh) 1998-01-30 1998-01-30 聚氨酯弹性体及其弹性丝的制造方法
US09/402,361 US6252031B1 (en) 1998-01-30 1998-01-30 Production process for producing polyurethane elastic material and elastic yarn
CA002285396A CA2285396A1 (en) 1998-01-30 1998-01-30 Production process for producing a polyurethane elastic material and elastic yarn.
HK01100717.1A HK1030027B (en) 1998-01-30 Process for producing a polyurethane elastomer and elastic filament
JP53914499A JP3636727B2 (ja) 1998-01-30 1998-01-30 ポリウレタン弾性体および弾性糸の製造方法
PCT/JP1998/000400 WO1999039030A1 (fr) 1998-01-30 1998-01-30 Procede de fabrication d'un elastomere de polyurethanne et d'un filament souple
KR10-1999-7008930A KR100469550B1 (ko) 1998-01-30 1998-01-30 폴리우레탄 탄성체 및 탄성사의 제조방법
BR9808443-7A BR9808443A (pt) 1998-01-30 1998-01-30 Processos para produção de fio e material elásticos de poliuretano
TR1999/02380T TR199902380T1 (xx) 1998-01-30 1998-01-30 Poli�retan elastomer ve elastik filaman �retim usul�.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/000400 WO1999039030A1 (fr) 1998-01-30 1998-01-30 Procede de fabrication d'un elastomere de polyurethanne et d'un filament souple

Publications (2)

Publication Number Publication Date
WO1999039030A1 true WO1999039030A1 (fr) 1999-08-05
WO1999039030A8 WO1999039030A8 (fr) 2001-09-27

Family

ID=14207527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000400 WO1999039030A1 (fr) 1998-01-30 1998-01-30 Procede de fabrication d'un elastomere de polyurethanne et d'un filament souple

Country Status (11)

Country Link
US (1) US6252031B1 (ja)
EP (1) EP0972864B1 (ja)
JP (1) JP3636727B2 (ja)
KR (1) KR100469550B1 (ja)
CN (1) CN1100896C (ja)
AT (1) ATE280852T1 (ja)
BR (1) BR9808443A (ja)
CA (1) CA2285396A1 (ja)
DE (1) DE69827242T2 (ja)
TR (1) TR199902380T1 (ja)
WO (1) WO1999039030A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121424A1 (ja) * 2004-06-09 2005-12-22 Nisshinbo Industries, Inc. ポリウレタン弾性繊維混用緯編地及びその製造方法
JP2007521415A (ja) * 2003-06-30 2007-08-02 ノベオン, インコーポレイテッド 溶融紡糸されたモノフィラメントまたは弾性テープおよびプロセス
WO2020162507A1 (ja) * 2019-02-06 2020-08-13 サンスター技研株式会社 硬化性組成物

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357889B2 (en) 2003-04-09 2008-04-15 Lubrizol Advanced Materials, Inc. Melt spun TPU fibers and process
US8148475B2 (en) * 2003-06-30 2012-04-03 Lubrizol Advanced Materials, Inc. Melt spun polyether TPU fibers having mixed polyols and process
US7763341B2 (en) 2004-01-23 2010-07-27 Century-Board Usa, Llc Filled polymer composite and synthetic building material compositions
CN101111353B (zh) 2004-06-24 2011-09-28 世纪-博得美国公司 用于三维泡沫产品的连续成型设备
US8568637B2 (en) 2004-08-02 2013-10-29 Ramot At Tel-Aviv University Ltd. Method of forming a fiber made of peptide nanostructures
US7794224B2 (en) 2004-09-28 2010-09-14 Woodbridge Corporation Apparatus for the continuous production of plastic composites
CA2646735A1 (en) 2006-03-24 2007-10-04 Century-Board Usa, Llc Extrusion of polyurethane composite materials
US9526813B2 (en) 2009-07-13 2016-12-27 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Intraluminal polymeric devices for the treatment of aneurysms
US9481759B2 (en) 2009-08-14 2016-11-01 Boral Ip Holdings Llc Polyurethanes derived from highly reactive reactants and coal ash
US8846776B2 (en) 2009-08-14 2014-09-30 Boral Ip Holdings Llc Filled polyurethane composites and methods of making same
ES2666857T3 (es) 2011-07-18 2018-05-08 Mor-Research Applications Ltd. Un dispositivo para ajustar la presión intraocular
CA2851349C (en) 2011-10-07 2020-01-21 Russell L. Hill Inorganic polymer/organic polymer composites and methods of making same
WO2014168633A1 (en) 2013-04-12 2014-10-16 Boral Ip Holdings (Australia) Pty Limited Composites formed from an absorptive filler and a polyurethane
US10138341B2 (en) 2014-07-28 2018-11-27 Boral Ip Holdings (Australia) Pty Limited Use of evaporative coolants to manufacture filled polyurethane composites
US9752015B2 (en) 2014-08-05 2017-09-05 Boral Ip Holdings (Australia) Pty Limited Filled polymeric composites including short length fibers
US9988512B2 (en) 2015-01-22 2018-06-05 Boral Ip Holdings (Australia) Pty Limited Highly filled polyurethane composites
WO2016195717A1 (en) 2015-06-05 2016-12-08 Boral Ip Holdings (Australia) Pty Limited Filled polyurethane composites with lightweight fillers
EP3302358B8 (en) 2015-06-08 2019-09-18 Corneat Vision Ltd Keratoprosthesis
US20170267585A1 (en) 2015-11-12 2017-09-21 Amitabha Kumar Filled polyurethane composites with size-graded fillers
MA52774A (fr) 2018-06-05 2021-04-14 Corneat Vision Ltd Timbre de greffe ophtalmique synthétique
CN113747856A (zh) 2019-04-25 2021-12-03 科尔尼特视觉有限公司 角膜假体装置和套件及其使用的外科方法
AU2020330857B2 (en) 2019-08-12 2023-07-13 Corneat Vision Ltd. Gingival graft
IT202100012584A1 (it) * 2021-05-17 2022-11-17 Ima S R L Film poliuretanico e metodo per l’ottenimento
TW202313845A (zh) * 2021-09-16 2023-04-01 廣鑫複合材料股份有限公司 熱塑性聚氨酯組成物及可染色纖維
EP4444943A1 (en) * 2021-12-10 2024-10-16 Lubrizol Advanced Materials, Inc. Melt-spun thermoplastic polyurethane fiber
IL315227A (en) 2022-02-27 2024-10-01 Corneat Vision Ltd A sensor intended for implantation
WO2024075118A1 (en) 2022-10-03 2024-04-11 Corneat Vision Ltd. Dental and subperiosteal implants comprising biocompatible graft
WO2024209469A1 (en) 2023-04-03 2024-10-10 Glaucure Ltd Devices for adjusting the intraocular pressure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179513A (ja) * 1983-03-29 1984-10-12 Asahi Chem Ind Co Ltd 新規なポリエステルポリエ−テル系線状ブロツクポリウレタンの製造法
JPH0275657A (ja) * 1988-09-12 1990-03-15 Mitsubishi Kasei Corp 重合体組成物
JPH07300721A (ja) * 1994-04-25 1995-11-14 Bayer Ag エラスタンフイラメントの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101017A (en) * 1980-12-17 1982-06-23 Nisshinbo Ind Inc Preparation of elastic polyurethane
JPS57101016A (en) * 1980-12-17 1982-06-23 Nisshinbo Ind Inc Preparation of elastic polyurethane
JPH06316617A (ja) * 1992-02-25 1994-11-15 Nippon Polyurethane Ind Co Ltd 熱可塑性ポリウレタンの製造方法
JPH0881624A (ja) * 1994-09-14 1996-03-26 Nippon Polyurethane Ind Co Ltd 熱可塑性ポリウレタン樹脂組成物、及びポリイソシアネート組成物、並びにそれらを用いたポリウレタン弾性糸及びその製造方法
DE19504671C1 (de) * 1995-02-13 1996-06-05 Fischer Karl Ind Gmbh Verfahren und Vorrichtung zum Schmelzspinnen von Polyurethan und/oder Polyurethanharnstoff und danach erhaltene Fäden
JP4132244B2 (ja) * 1998-07-06 2008-08-13 株式会社クラレ 熱可塑性ポリウレタンからなるポリウレタン弾性繊維およびその製造方法
CN1274770A (zh) * 1999-05-20 2000-11-29 聚隆纤维股份有限公司 高性能聚胺酯弹性纤维之制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179513A (ja) * 1983-03-29 1984-10-12 Asahi Chem Ind Co Ltd 新規なポリエステルポリエ−テル系線状ブロツクポリウレタンの製造法
JPH0275657A (ja) * 1988-09-12 1990-03-15 Mitsubishi Kasei Corp 重合体組成物
JPH07300721A (ja) * 1994-04-25 1995-11-14 Bayer Ag エラスタンフイラメントの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521415A (ja) * 2003-06-30 2007-08-02 ノベオン, インコーポレイテッド 溶融紡糸されたモノフィラメントまたは弾性テープおよびプロセス
WO2005121424A1 (ja) * 2004-06-09 2005-12-22 Nisshinbo Industries, Inc. ポリウレタン弾性繊維混用緯編地及びその製造方法
JP2005350800A (ja) * 2004-06-09 2005-12-22 Nisshinbo Ind Inc ポリウレタン弾性繊維混用緯編地及びその製造方法
US8173558B2 (en) 2004-06-09 2012-05-08 Nisshinbo Textile Inc. Weft knitted fabric including polyurethane elastomer fiber and process for producing the same
KR101160513B1 (ko) * 2004-06-09 2012-06-28 군제 가부시키가이샤 폴리우레탄 탄성섬유 혼용 위편지 및 그 제조방법
WO2020162507A1 (ja) * 2019-02-06 2020-08-13 サンスター技研株式会社 硬化性組成物
CN113366062A (zh) * 2019-02-06 2021-09-07 盛势达技研株式会社 固化性组合物
CN113366062B (zh) * 2019-02-06 2023-10-03 盛势达技研株式会社 固化性组合物
US12344743B2 (en) 2019-02-06 2025-07-01 Sunstar Engineering Inc. Curing composition

Also Published As

Publication number Publication date
BR9808443A (pt) 2000-05-23
KR20010005854A (ko) 2001-01-15
TR199902380T1 (xx) 2000-11-21
KR100469550B1 (ko) 2005-02-02
DE69827242T2 (de) 2006-02-02
WO1999039030A8 (fr) 2001-09-27
ATE280852T1 (de) 2004-11-15
EP0972864A1 (en) 2000-01-19
JP3636727B2 (ja) 2005-04-06
EP0972864A4 (en) 2002-11-06
DE69827242D1 (de) 2004-12-02
CN1100896C (zh) 2003-02-05
EP0972864B1 (en) 2004-10-27
HK1030027A1 (en) 2001-04-20
CA2285396A1 (en) 1999-08-05
US6252031B1 (en) 2001-06-26
CN1261930A (zh) 2000-08-02

Similar Documents

Publication Publication Date Title
WO1999039030A1 (fr) Procede de fabrication d&#39;un elastomere de polyurethanne et d&#39;un filament souple
EP1611177B1 (en) Melt spun tpu fibers and process
JPH0742610B2 (ja) ポリウレタンの弾性繊維
JP3276475B2 (ja) 高強力弾性糸の製造方法
JPS5846573B2 (ja) ポリウレタン弾性糸の製造方法
JPS6353288B2 (ja)
JP4371583B2 (ja) ポリ(ウレタン尿素)繊維の製造
US3296212A (en) Polyesterurethane fibers
MXPA99008938A (en) Process for producing polyurethane elastomer and elastic filament
JPH08260240A (ja) エラスタン繊維を乾式または湿式紡糸するための極めて濃厚なエラスタン溶液の粘度を調節する方法
TW568920B (en) Process for producing of polyurethane elastomer and elastic thread
RU2181152C2 (ru) Способ получения полиуретановых эластичного материала и эластичной нити
JP4017232B2 (ja) 押出成形用ポリウレタン樹脂組成物
JPS6353287B2 (ja)
JPH09279014A (ja) ウレタン樹脂組成物
KR20030067342A (ko) 열가소성 폴리우레탄의 제조방법, 그 폴리우레탄 및 그를이용하여 제조된 폴리우레탄 탄성사
KR100851740B1 (ko) 세트성 및 염색 견뢰도가 우수한 폴리우레탄 탄성사 및 그제조 방법
JPH0959821A (ja) ポリウレタンウレア弾性繊維の製造方法
JPH0376811A (ja) ポリウレタン弾性繊維
JPH02127515A (ja) 耐熱ウレタン糸の製造法
JP2613858B2 (ja) ポリウレタン弾性糸の製造法
JPH0411011A (ja) 耐熱ウレタン糸の製造法
JPH07138338A (ja) ポリウレタンウレアの反応成形法
JPH083261A (ja) ポリウレタンウレアの反応成形方法
HK1030027B (en) Process for producing a polyurethane elastomer and elastic filament

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98805568.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN ID JP KR MX RU TR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2285396

Country of ref document: CA

Ref document number: 2285396

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/008938

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1019997008930

Country of ref document: KR

Ref document number: 09402361

Country of ref document: US

Ref document number: 1999/02380

Country of ref document: TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998901068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1199900916

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 1998901068

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997008930

Country of ref document: KR

AK Designated states

Kind code of ref document: C1

Designated state(s): BR CA CN ID JP KR MX RU TR US VN

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

CFP Corrected version of a pamphlet front page

Free format text: UNDER (72, 75) THE TRANSLITERATION IN JAPANESE OF "TSUTSUMI, NOBUHISA" CORRECTED

WWG Wipo information: grant in national office

Ref document number: 1998901068

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997008930

Country of ref document: KR