WO1999039176A1 - Mechanical handling systems for laser capture microdissection - Google Patents
Mechanical handling systems for laser capture microdissection Download PDFInfo
- Publication number
- WO1999039176A1 WO1999039176A1 PCT/US1999/001987 US9901987W WO9939176A1 WO 1999039176 A1 WO1999039176 A1 WO 1999039176A1 US 9901987 W US9901987 W US 9901987W WO 9939176 A1 WO9939176 A1 WO 9939176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cellular material
- transporting substrate
- tissue sample
- identified cellular
- selectively activated
- Prior art date
Links
- 238000000370 laser capture micro-dissection Methods 0.000 title description 22
- 239000000758 substrate Substances 0.000 claims abstract description 182
- 239000000463 material Substances 0.000 claims abstract description 145
- 230000001413 cellular effect Effects 0.000 claims abstract description 139
- 238000000576 coating method Methods 0.000 claims abstract description 109
- 239000011248 coating agent Substances 0.000 claims abstract description 104
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000001070 adhesive effect Effects 0.000 claims abstract description 32
- 239000000853 adhesive Substances 0.000 claims abstract description 30
- 230000004913 activation Effects 0.000 claims description 20
- 230000003213 activating effect Effects 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims description 7
- 238000011065 in-situ storage Methods 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims 7
- 238000002224 dissection Methods 0.000 claims 2
- 125000006850 spacer group Chemical group 0.000 claims 2
- 239000012141 concentrate Substances 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 8
- 210000001519 tissue Anatomy 0.000 description 58
- 238000012546 transfer Methods 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 6
- 241000723353 Chrysanthemum Species 0.000 description 5
- 235000005633 Chrysanthemum balsamita Nutrition 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000012800 visualization Methods 0.000 description 5
- 239000002313 adhesive film Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000004093 laser heating Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000001464 adherent effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000007479 molecular analysis Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000011536 extraction buffer Substances 0.000 description 2
- 238000001531 micro-dissection Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 208000031737 Tissue Adhesions Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004980 dosimetry Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00009—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with a sample supporting tape, e.g. with absorbent zones
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/2813—Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/2813—Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
- G01N2001/282—Producing thin layers of samples on a substrate, e.g. smearing, spinning-on with mapping; Identification of areas; Spatial correlated pattern
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/2813—Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
- G01N2001/2833—Collecting samples on a sticky, tacky, adhesive surface
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/2813—Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
- G01N2001/2833—Collecting samples on a sticky, tacky, adhesive surface
- G01N2001/284—Collecting samples on a sticky, tacky, adhesive surface using local activation of adhesive, i.e. Laser Capture Microdissection
Definitions
- This invention relates to laser capture microdissection (LCM) in which direct extraction of cellular material from a tissue sample occurs to a transfer surface.
- LCM laser capture microdissection
- the disclosure herein relates to isolating selected tissue samples to a film matrix in a format where the isolated sample segments can be conveniently collected for subsequent analysis .
- LCM Laser Capture Microdissection
- the substrate is then activated, typically be being pulsed with laser beam.
- the light energy is absorbed by the plastic film which melts in a 2 small region.
- the activatable coating then flows onto and around microscopic tissue components thereby causing the film on cooling to be firmly adherent to the identified cellular material of tissue sample.
- Other target areas on the same slide can similarly treated.
- the identified cellular material is dispersely distributed on the transporting substrate.
- the selected series of spots is then removed from the film by placing the film in a suitable reagent (e.g., proteinase K which digests the structural proteins of the tissue) which frees the molecules of DNA or RNA to be subsequently analyzed (using, e.g., PCR and gel electrophoresis) .
- a suitable reagent e.g., proteinase K which digests the structural proteins of the tissue
- the transferred tissue spots and underlying attached film can be manually excised with a scalpel or scissors, or punched out with a precision punch/die directly into a cuvette.
- the spots in the film are randomly located roughly in a position corresponding to their location on the sample.
- Precise location is required so that the extracted portions of the sample can be precisely cut out.
- the target tissue is completely recovered with minimal contamination from surrounding areas of film with low density nonspecific tissue adhesion.
- precise computer control of the storage position and storage of coordinates may be practical. However, this computer control may loose the reliability of visual observation of the transfer process and may be complex and expensive. Further, computer location could fail to be accurate in many cases such as when the tape is distorted when it is lifted off the slide.
- Nonspecific transfer to the film of un-targeted tissue in the region surrounding the identified cellular material is another problem. This non-specific transfer becomes increasingly important as spot size of targeted tissue is reduced. Ideally, no tissue outside the targeted region illuminated by the laser should be attached to the film upon its removal from the slide. Attachment of any undesired tissue would cause sample contamination with the desired tissue. As smaller and smaller target spots are used, the amount of stray tissue which can be tolerated becomes proportionally smaller.
- a problem then arises as to how to handle the transfer surface. Specifically, the positioning of a small spot of activatable transfer surface on the tissue at the target site, picking the small activated transfer surface off the tissue, and placing the isolated targeted cells in a 4 cuvette, or storing them in a specifically identifiable manner without contamination by un-targeted tissue elements.
- a method and apparatus of gathering by LCM identified cellular material from random locations on a tissue sample to designated locations on a transporting substrate enables convenient further processing.
- a transporting substrate has an identified mapped location for receiving identified cellular material.
- At least a segment of a selectively activatable coating is placed on the side of the transporting substrate in apposition to the tissue sample at the mapped location.
- the transporting substrate and sample are relatively moved to place the selectively activated coating at the mapped location in apposition to identified cellular material of the tissue sample which is to be extracted.
- the selectively activating coating is activated and impressed or impressed and activated to form an adhesive region on the transporting substrate for adhering to the identified cellular material.
- identified cellular material adheres to the transporting substrate at the mapped location.
- individual small pieces or coatings of selectively activated material are placed on a transporting film.
- a selectively activatable coating is placed at the center of discrete pieces of film and exposed toward the sample.
- Each different piece of film is separately activated at its coated center by the laser. Apposition to the tissue during or after laser action occurs by using a pressure plate.
- a continuous strip including a transparent substrate is used to hold the film, such as a continuous reel of tape with equally spaced, centrally located pieces of selectively activatable coatings. Thereafter, the continuous strip of transparent substrate is 5 incrementally advanced so that center of the activatable coating is in the center of the microscope field. Adjacent bar codes or other optical encoded identifiers could serve to identify the individual transferred samples.
- Sample collection can include a pressure plate actuated to hold the transporting substrate in contact with the tissue in the center of the microscope field before ' or after laser heating. After laser heating and attachment to the selected material from the sample, the pressure plate is raised, and the transporting substrate with the local activated coating with adherent tissue separated from the tissue sample.
- This process is sequentially repeated so that the transporting substrate is again advanced, the next piece of transporting substrate (clean) is put into the center of the field, pressed onto the tissue surface, and laser activated.
- This repetition not only advances the transporting substrate but also applies forces to reproducibly lift the targeted (adherent) tissue off the specimen slide.
- the microscope stage and transporting substrate will be translated (in x & y) so that the next tissue target is in the center of the microscope field.
- the substrate can be locally removed from the remainder substrate tape by punching or cutting off or peeling off the local regions of activated coating. This will leave attached identified cellular material localized to small pieces of transporting substrate. These small pieces of transporting substrate can be placed into a specific chamber or vessel for further processing and molecular analysis.
- the individual pieces of selectively activatable coating are mounted at the ends of arrays of deflectable struts attached to and projecting from a central common support, such as a wheel or a comb like structure.
- a central common support such as a wheel or a comb like structure.
- Each strut with its selectively activatable coating at the end acts as the transporting substrate and is sequentially indexed through the center of the microscope 6 field.
- the ends of the struts serve as pressure plates, contacting the tissue with the activatable coating at the ends of the struts.
- the selectively activatable coat can be actuated when the strut is deflected, e.g., by a solenoid, (one spoke at a time, similar to a daisy wheel printer) .
- the force on the strut is removed, allowing the strut to lift off the slide with the identified cellular material adhered to it. Thereafter, the strut array indexes the next strut with its piece of film into place, the stage can be moved to the next tissue target and the next strut is placed in contact with the new target.
- Another variant of this approach is to use a comb shaped array (i.e, target film spots are in a linear array attached to a linear carriage by parallel spokes perpendicular to the array axis rather than the radial spokes of a "daisy wheel") .
- a minute spot of film is placed at the end of each comb finger.
- a small solenoid deflects the finger so its end, which acts as a pressure plate, contacts the tissue in the center of the field. After laser heating, the solenoid force is removed, the finger returns to its undeflected position (lifting off the slide the tissue adhered to the film) , and the comb is linearly indexed so a different finger/piece of film is in the center of the field and a different tissue target can be moved in place. Marks on the base of the comb could identify the samples. This technique allows extremely small and precise sample extraction.
- the strut at the attached identified cellular material can be broken off, and this broken off portion deposited into a capsule for collection and further processing.
- a piece of continuous transporting substrate is provided with a continuous central and narrow selectively activatable coating.
- This piece of continuous film is put in contact with the tissue at the narrow selectively activatable coating by a narrow (in the direction of the film travel) pressure plate to define the (small) area of contact.
- This approach has the advantage that it enables a small contact area of adhesive film on the tissue without: a) complications due to handling and alignment between the film and the target area, b) requiring specialized developments in the film above and beyond its basic adhesive properties, and c) requiring development of a specialized tape cassette e.g. with a built in pressure plate etc.
- FIG. 1 is a perspective view of a mechanism for the practice of LCM including a supply reel, a laser activation system, a pressure plate for pushing the activated coating against a sample, and a cutting mechanism for generating discrete film sections with selected portions of the specimen contained thereon;
- Fig. 2A-2E are a side elevation cartoon series of the sequential removal of selected sample from a slide mounted specimen in which: 8
- Fig. 2A is illustrates the transporting film with coating attached to a selected specimen at a slide with the pressure plate withdrawn from contact with the slide;
- Fig. 2B illustrates the apparatus of Fig. 2A with the tape being advanced to withdraw the selected portion of the sample from the slide ;
- Fig. 2C illustrates the tape completely advanced for receipt of the next sequential sample
- Fig. 2D illustrates the tape clamped as advance prior to collection of the next sample section
- Fig. 2E illustrates the pressure plate pushing the activatable coating against the next sequentially selected portion of the sample
- Fig. 3 is a schematic of tape being disposed parallel to the elongate axis of an underlying side with the pressure plate having transverse excursion relative to the slide to enable X and Y excursion of the sample collection point of the apparatus;
- Fig. 4 is a plan view of a first embodiment of transporting tape utilized with this invention in which the film from the supply reel includes separate and discrete evenly spaced spots of selectively activatable coatings for the collection of sample;
- Fig. 5 is a plan view of a second embodiment of the transporting tape here utilizing a separate central strip of selectively activatable coating for impressment to the sample;
- Fig. 6 is a plan view of a tape having detachable sections with activatable coatings on the detachable sections;
- Fig. 7 is a side elevation perspective illustrating a tape having a covering layer and illustrating the placement of marker coding on either the transporting substrate or the covering layer for subsequent retrieval of the tape;
- Fig. 8 is a perspective view of a circular spoke apparatus having pads with selectively activatable coatings for the collection of selected sample from a specimen;
- Fig. 9 is a perspective view of a linear spoke array of tines having an overall comb like configuration in which 9 sample is collected by individually actuating successive comb tines to collect designated sample ;
- Fig. 10 is a detail at a spoke with the spoke acting through a transporting substrate to impress an activatable coating onto tissue sample with the activatable coating placed at the end of the spoke;
- Fig. 11 illustrates sample being extracted from a tape to a collection vial
- Fig. 12 illustrates sample being collected from a spoke to a collection vial
- Fig. 13A illustrates an apparatus in which a sample is visualized with the results of visualization being placed into memory
- Fig. 13B illustrates the slide of Fig. 13A with schematically indicated selected cellular material locations
- Fig. 13C illustrates the slide of Fig. 13A transferred to apparatus activated to remotely undertake laser capture micro dissection utilizing the memory prepared by the apparatus of Fig. 13A;
- Figs. 14A-14E are an illustration of activation of the coating in non-contact laser capture microdissection;
- Fig. 14A shows the selectively activated coating on one side of the transporting substrate recessed from the target tissue by a gap;
- Fig. 14B illustrates schematically laser energy being directed through the tissue sample to the selectively activated coating to activate that coating and cause the activated coating to expand downward to the sample at the identified cellular material;
- Fig. 14C illustrates the transporting substrate and selectively activated coating after adhesion of the cellular material and contraction of the selectively activated coating to the transporting substrate;
- Fig. 14D illustrates the transporting substrate of Fig. 14C with a new and different slide and tissue sample placed under the substrate
- Fig. 14E illustrates the transporting substrate having samples from two differing slides, the collection here 10 illustrated showing an effective concentration selected cellular material, even though the selected material was contained on two separate samples .
- Stepper motor 14 drives supply reel 16 dispensing coated tape 18.
- Tape stop mechanism 24 includes stop bar
- tape cut off knife 30 enables tape with contained sample S to be cut into small strips for further processing.
- Slide 32 contains sample S, which sample includes desired sample sections 34 mixed irregularly with tissue 36 of sample S. It is the purpose of this disclosure to isolate with precision desired sample sections 34 from sample S. In order from such isolation to occur, visualization of sample S must occur.
- microscope M having an inverted optical path looking up from under slide 32 is shown schematically by eye E.
- slide 32 is mounted to a stage which is transportable in x-direction 38 and y-direction 40.
- coated tape 18 is activated by laser light source 42. After or during such activation, the activated coating on coated tape 18 is contacted to sample S at desired sample sections 34. This contacting or juxtaposition between coated tape 18 and desired sample sections 34 occurs by pressure plate P bearing down on uncoated side 17 of coated tape 18 to cause the tape to move into apposition with sample S at desired sample sections 34. Adhesion of desired sample sections 34 occurs to coated side
- tape tensioning apparatus 44 It may be desirable to maintain constant tension between supply reel 16 on dispensed coated tape 18. Accordingly, there is provided tape tensioning apparatus 44. It will be understood that this apparatus is optional. Once coated tape 18 has adhered to desired sample sections 34, the tape is moved. Under the normal circumstance, the tape will have sufficient adhesion to desired sample sections 34 to dissect the sample section from the remainder of the tissue of sample S. Referring to Figs. 2A - 2F, a schematic cartoon series of this apparatus is illustrated. In Fig. 2A, supply reel 16 is shown having coated tape 18 with coated side 19 in contact with sample S on slide 32. Because of previous activation, coated tape 18 is now adhered to desired sample sections 34 of sample S. As can be seen in the view of Figs 2A and 2F, pressure plate P is withdrawn.
- stepper motor 14 causes a measured amount of coated tape 18 to be withdrawn from supply reel 16. When the limit of this measured amount is reached, stepper motor 14 freezes, and coated tape 18 is ready to be cut by tape cut off knife 30. Naturally, with stepper motor 14 precisely controlling dispensing of coated tape 18, the placement of desired sample sections 34 relative to the overall length cut off at tape cut off knife 30 occurs.
- the transporting substrate has an identified mapped location for receiving identified cellular material.
- tape segment 50 has been cut and removed. Further, tape stop mechanism 24 has been activated. As a consequence, the end of coated tape 18 is a fixed distance from P and is disposed for the collection of the next 12 visualized sample when pressure plate P deflects the tape onto the slide.
- FIG. 2D it will be seen that slide 32 and consequently sample S have been moved to a new position. In this new position, another desired sample section 34 has been centered for pick up by movement of slide 32 in x- direction 38 and y-direction 40.
- pressure plate P causes juxtaposition of coated tape 18 at coated side 19.
- Stepper motor 14 is no longer frozen in order to provide the amount of slack necessary to deflect the tape onto slide 32. Again activation of coated side 19 by laser light source 42 through laser light focusing lens 46 occurs.
- Fig. 2F the cycle illustrated is ready for repeat; it being seen that Fig. 2F illustrates the same cycle state as that previous observed in Fig. 2A.
- a segment of a selectively activated coating is placed on the side of the transporting substrate in apposition to the tissue sample what amounts to a mapped location. Further, and during the gathering of desired sample sections 34, the transporting substrate and sample are relatively moved to place the selectively activated coating at the mapped location in apposition to identified cellular material of the tissue sample which is to be extracted.
- the selectively activating coating is activated and impressed or impressed and activated to form an adhesive region on the transporting substrate for adhering to the identified cellular material.
- identified cellular material adheres the transporting substrate at the mapped location.
- coated tape 18 may have several differing configurations.
- coated tape 18A is shown constructed from, e.g., polyester films such as Mylar ® having discrete and spaced apart coated spots 52 placed on coated side 19 of the tape. Additionally, sprocket holes 54 are shown for positioning the tape with precision in 13 combination with sprocket 56. Each different discrete and spaced apart coated spots 52 is separately activated at its coated center by the laser. Apposition to the tissue during or after laser action occurs by using a pressure plate.
- a continuous strip including a transparent substrate is used to hold the film.
- the continuous strip of transparent substrat'e or coated tape 18B has continuous central strip of activatable coating 58.
- Adjacent bar codes 60 or other optical encoded identifiers could serve to identify the individual transferred samples, which samples can be either anywhere along the continuous central strip of activatable coating 58 or evenly spaced.
- coated tape 18 transporting substrate with selectively coated spots or discrete and spaced apart coated spots 52 likewise can be used.
- the substrate can be locally removed from the remainder of the substrate tape by punching or cutting off the local regions of activated coating.
- punch 62 is shown separating desired sample sections 34 on punched film sections 64. This will leave attached identified cellular material or desired sample sections 34 localized to small pieces of transporting substrate on punched film sections 64. These small pieces of transporting substrate can be placed into a specific chamber or vessel such as test tube 66 for further processing and molecular analysis.
- activatable coating 68 is attached to pull tabs 70 on coated tape 18C. As is apparent, by removal of pull tabs 70, sample gathered to activatable coating 68 is likewise removed.
- coated tape 18D is shown being gathered to take up roll 72.
- covering tape 74 covers over and helps in the preservation of the remaining sample on an interleave basis . Sample thus collected can be preserved. 14
- FIG. 8 another embodiment of this invention is set forth.
- Individual pieces of selectively activatable coating 76 are mounted at the ends of spoke arrays 78 attached to and projecting from central common support, such as central hub 80.
- Spoke actuator 82 selectively depresses each spoke 79 of spoke array 78.
- each spoke with its selectively activatable coating at the end acts as the transporting substrate and is sequentially indexed through the center of the microscope field from central hub 80.
- the ends of the spokes serve as a pressure plates, contacting the tissue with the activatable coating at the ends of the spokes.
- the selectively activatable coat can be actuated when the spoke is deflected, e.g., by a solenoid, (one spoke at a time, similar to a daisy wheel printer) . After activation, the force on the spoke is removed and the spoke indexed, allowing the spoke to lift off the slide with the identified cellular material adhered to the spoke. Thereafter, the spoke array indexes the next piece of film into place and the stage can be moved to the next tissue target.
- a solenoid one spoke at a time, similar to a daisy wheel printer
- central hub 80 is utilized.
- a comb like structure, or a flexible backing can be used for the substrate support .
- a preferred variant of this approach is to use comb shaped array 80 (i.e, target film spots are in a linear array attached to a linear carriage by parallel spokes perpendicular to the array axis rather than the radial spokes of a "daisy wheel") .
- Minute spot of activatable coating 88 is placed a on the undersurface at the end of each comb finger 84.
- Small solenoid 86 deflects the finger so its end, which acts as a pressure plate, contacts .the tissue in sample S in the center of the field.
- the solenoid force is removed, the finger returns to its undeflected position (lifting off the slide the tissue adhered to the film) , and the comb is linearly indexed so a different finger/piece of film is in the center of the field and a different tissue target can be moved in place.
- Optical marks 90 on the base of the comb could 15 identify the samples. This technique would allows extremely small and precise sample extraction.
- spoke 79 with the attached identified cellular material can be broken off, and the broken off spoke portion 92 deposited into a container such as test tube 66 capsule for collection and further processing. Braking off can occur through breaker solenoid 94 at some convenient point along its length. It is possible with the disclosed invention and known technology to separate visualization and the requisite laser capture micro dissection.
- slide 32 is shown having sample S viewed by microscope M. Slide 32 is mounted on stage 96 indicated by x-translation arrow 98 and y-translation arrow 99.
- the typical sample S will include number sample locations as schematically indicated by x ⁇ y*** . through x 4 ,y 4 . These stage positions, when noted under observation, would be placed in conventional computer memory commonly provided with such stages .
- Fig. 13C it will be seen that laser capture micro dissection is then remote.
- the apparatus of Fig. 2 schematically shown by film strip laser capture micro-dissection apparatus A is shown in the process of sequential gathering of samples at x- ⁇ y- L through x 4 , y 4 (See Fig. 13B) .
- the collection sample can extend to smaller samples.
- utilizing techniques of laser capture microdissection it has been possible to collect samples down to a single cell in size (about five (5) microns reduced down to one (1) micron) or subcellular targets. With such small samples, correspondingly reduced analysis volume is required.
- reagents for some analyses are extremely expensive; the smaller the sample and reagent used, the more economical the test. Laser capture 16 micro dissection is especially adaptable to such circumstances .
- the laser activation allows targeting of elements on a complex tissue slide down to optical diffraction limits (ie. approximately 1 micron). Further, by precise positioning of film and substrate after each transfer, multiple small tissue elements can be precisely concentrated so that they comprise enough homogenous material to allow accurate subsequent processing (such as molecular analysis) .
- concentration works best where contact between the sample and the tape does not occur before activation. Presuming that precise and accurate tracking of previously accumulated material is made, sample previously collected to the tape will not be physically impacted by sample currently being collected. At the same time, this subsequently collected sample will be adjacent the previously collected sample. By repeating this collection to adjacent portions of a substrate, concentration of the particular cells to be analyzed can occur, even though such cells were not naturally concentrated in situ.
- selected cellular areas should not overlap. If overlapping occurs, sample can be lost. Further, with imprecise collection, the gap utilized could change effecting the predictability of the collection parameters. For example, the dosimetry of the laser radiation could be changed.
- the spacing between the tape and sample can be in the broad range of 2 to 20 microns, in the intermediate range of 5 to 15 microns, and preferably about 10 microns when the thickness of the activatable coating is in the preferable range of 100 microns. Thicknesses of the activatable film in the range 17 from 20 to 200 microns can be used. As a practical limit, the thickness should be sufficient that the coating when activated has the desired adhesive effect. As a practical limit, it is presently believed that the coating should exceed 10 microns. Referring to Fig. 14A, slide 32 is shown with sample
- Fig. 14B laser light source L is shown passing through slide 32, sample S, and onto coated side 19. As schematically shown by the broken lines of Fig. 14B, it will be understood that the laser light source L can be incident from an opposite direction.
- Coated side 19 becomes locally activated and swells in dimension.
- Activated region 112 extends downward at extended column 114 and at sample exposed portion 116, fastens to selected cellular material C.
- extended column 114 shrinks, substantially back to the original profile of coated side 19. At this time, the contracting extended column 114 with selected cellular material C separates from sample S. (See Fig. 14C).
- coated tape 18 can be transported so that a new segment of the coated tape overlies a targeted portion of a sample S on slide 32.
- a new slide 32A can be introduced; thus several differing samples S from differing slides can be utilized for the collection and concentration of selected cellular material C.
- tissue from two slides 32 and 32A ends up side-by-side on coated tape 18.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
- Microscoopes, Condenser (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU24850/99A AU749378B2 (en) | 1998-02-03 | 1999-01-29 | Mechanical handling systems for laser capture microdissection |
EP99904451A EP1053461A1 (en) | 1998-02-03 | 1999-01-29 | Mechanical handling systems for laser capture microdissection |
JP2000529587A JP4344474B2 (en) | 1998-02-03 | 1999-01-29 | Mechanical processing system for laser capture microanalysis. |
US09/601,559 US6720191B1 (en) | 1998-02-03 | 1999-01-29 | Mechanical handling systems for laser capture microdissection |
CA002319589A CA2319589C (en) | 1998-02-03 | 1999-01-29 | Mechanical handling systems for laser capture microdissection |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7348098P | 1998-02-03 | 1998-02-03 | |
US60/073,480 | 1998-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999039176A1 true WO1999039176A1 (en) | 1999-08-05 |
Family
ID=22113940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/001987 WO1999039176A1 (en) | 1998-02-03 | 1999-01-29 | Mechanical handling systems for laser capture microdissection |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1053461A1 (en) |
JP (1) | JP4344474B2 (en) |
AU (1) | AU749378B2 (en) |
CA (1) | CA2319589C (en) |
WO (1) | WO1999039176A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000034757A1 (en) * | 1998-12-10 | 2000-06-15 | The Government Of The Unites States Of America Represented By The Secretary, Department Of Health And Human Services | Designs for non-contact laser capture microdissection |
WO2001073397A1 (en) * | 2000-03-27 | 2001-10-04 | P.A.L.M. Microlaser Technologies Ag | Collecting device for collecting objects that are dissolved out of a mass, especially by means of laser radiation |
US6743601B1 (en) | 1998-12-10 | 2004-06-01 | The United States Of America As Represented By The Department Of Health And Human Services | Non-contact laser capture microdissection |
WO2004045768A1 (en) * | 2002-11-20 | 2004-06-03 | P.A.L.M. Microlaser Technologies Ag | Sample holder for a reception device receiving biological objects and microscope system designed to operate using one such sample holder |
US6908766B2 (en) * | 2002-10-18 | 2005-06-21 | Industrial Technology Research Institute | Device and method for capturing biological tissues |
US7075640B2 (en) | 1997-10-01 | 2006-07-11 | Arcturus Bioscience, Inc. | Consumable for laser capture microdissection |
DE102005007793A1 (en) * | 2005-02-14 | 2006-08-31 | Laserinstitut Mittelsachsen E.V. | Laser e.g. short pulsed YAG-laser, beam, body producing method for cutting biological material, has form specific bodies forming bar that fixes body, where gap is arranged so that bodies are separated after formation of gap and bar |
DE102006051460A1 (en) * | 2006-10-31 | 2008-05-08 | P.A.L.M. Microlaser Technologies Gmbh | Apparatus, methods and tape material for collecting and transporting sample material |
WO2008052836A1 (en) * | 2006-10-31 | 2008-05-08 | Robert Bosch Gmbh | Method for the detection of impurities on a surface |
GB2550526A (en) * | 2010-02-25 | 2017-11-22 | Prairie Ventures Llc | System and method for anatomical pathology sample handling, storage, and analysis |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2714803A1 (en) * | 2008-02-25 | 2009-09-03 | Bizpac (Australia) Pty Ltd | Punch sampling apparatus and method |
JP6611610B2 (en) * | 2013-10-07 | 2019-11-27 | 国立大学法人名古屋大学 | Laser microdissection device, analyzer including the laser microdissection device, and method for manufacturing microchip |
KR20200075814A (en) * | 2017-08-15 | 2020-06-26 | 옴니옴 인코포레이티드 | Scanning devices and methods useful for the detection of chemical and biological analytes |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997013838A1 (en) | 1995-10-10 | 1997-04-17 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Isolation of cellular material under microscopic visualization |
WO1999000658A1 (en) * | 1997-06-27 | 1999-01-07 | The Government Of The United States Of America, | Convex geometry adhesive film system for laser capture microdissection |
-
1999
- 1999-01-29 CA CA002319589A patent/CA2319589C/en not_active Expired - Fee Related
- 1999-01-29 WO PCT/US1999/001987 patent/WO1999039176A1/en active IP Right Grant
- 1999-01-29 EP EP99904451A patent/EP1053461A1/en active Pending
- 1999-01-29 AU AU24850/99A patent/AU749378B2/en not_active Ceased
- 1999-01-29 JP JP2000529587A patent/JP4344474B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997013838A1 (en) | 1995-10-10 | 1997-04-17 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Isolation of cellular material under microscopic visualization |
WO1999000658A1 (en) * | 1997-06-27 | 1999-01-07 | The Government Of The United States Of America, | Convex geometry adhesive film system for laser capture microdissection |
Non-Patent Citations (1)
Title |
---|
BONNER R F ET AL: "LASER CAPTURE MICRODISSECTION: MOLECULAR ANALYSIS OF TISSUE", SCIENCE, vol. 5342, no. 278, 21 November 1997 (1997-11-21), pages 1481, 1483, XP002060626 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7221447B2 (en) | 1997-10-01 | 2007-05-22 | Molecular Devices Corporation | Consumable for laser capture microdissection |
US7075640B2 (en) | 1997-10-01 | 2006-07-11 | Arcturus Bioscience, Inc. | Consumable for laser capture microdissection |
AU760200B2 (en) * | 1998-12-10 | 2003-05-08 | Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | Designs for non-contact laser capture microdissection |
US6743601B1 (en) | 1998-12-10 | 2004-06-01 | The United States Of America As Represented By The Department Of Health And Human Services | Non-contact laser capture microdissection |
WO2000034757A1 (en) * | 1998-12-10 | 2000-06-15 | The Government Of The Unites States Of America Represented By The Secretary, Department Of Health And Human Services | Designs for non-contact laser capture microdissection |
US7044008B1 (en) | 2000-03-27 | 2006-05-16 | P.A.L.M. Microlaser Technologies Ag | Collecting device for collecting objects that are dissolved out of a mass, especially by means of laser radiation |
WO2001073397A1 (en) * | 2000-03-27 | 2001-10-04 | P.A.L.M. Microlaser Technologies Ag | Collecting device for collecting objects that are dissolved out of a mass, especially by means of laser radiation |
DE10015157A1 (en) * | 2000-03-27 | 2001-10-18 | P A L M Gmbh | Collecting device for objects dissolved out of mass, especially by laser radiation, has control system automatically generating accommodation unit displacement signals |
US6908766B2 (en) * | 2002-10-18 | 2005-06-21 | Industrial Technology Research Institute | Device and method for capturing biological tissues |
DE10254229A1 (en) * | 2002-11-20 | 2004-06-17 | P.A.L.M. Microlaser Technologies Ag | Positioning device for positioning a positioning object |
DE10254229B4 (en) * | 2002-11-20 | 2004-10-28 | P.A.L.M. Microlaser Technologies Ag | Positioning device for positioning a collecting device of a laser microdissection system |
WO2004045768A1 (en) * | 2002-11-20 | 2004-06-03 | P.A.L.M. Microlaser Technologies Ag | Sample holder for a reception device receiving biological objects and microscope system designed to operate using one such sample holder |
US8431078B2 (en) | 2002-11-20 | 2013-04-30 | Carl Zeiss Microscopy Gmbh | Sample holder for a reception device receiving biological objects and microscope system designed to operate using one such sample holder |
DE102005007793A1 (en) * | 2005-02-14 | 2006-08-31 | Laserinstitut Mittelsachsen E.V. | Laser e.g. short pulsed YAG-laser, beam, body producing method for cutting biological material, has form specific bodies forming bar that fixes body, where gap is arranged so that bodies are separated after formation of gap and bar |
DE102005007793B4 (en) * | 2005-02-14 | 2013-03-07 | Lim Laserinstitut Mittelsachsen Gmbh | Method for both working out and releasing free-form bodies with laser beams of at least one laser from material blocks transparent to the laser wavelength used |
US8363213B2 (en) | 2006-10-31 | 2013-01-29 | Robert Bosch Gmbh | Method for detecting impurities on a surface |
WO2008052655A1 (en) * | 2006-10-31 | 2008-05-08 | P.A.L.M. Microlaser Technologies Gmbh | Device, method, and strip material for collecting and transporting sample material |
WO2008052836A1 (en) * | 2006-10-31 | 2008-05-08 | Robert Bosch Gmbh | Method for the detection of impurities on a surface |
DE102006051460A1 (en) * | 2006-10-31 | 2008-05-08 | P.A.L.M. Microlaser Technologies Gmbh | Apparatus, methods and tape material for collecting and transporting sample material |
GB2550526A (en) * | 2010-02-25 | 2017-11-22 | Prairie Ventures Llc | System and method for anatomical pathology sample handling, storage, and analysis |
GB2490453B (en) * | 2010-02-25 | 2018-01-17 | Prairie Ventures Llc | System and method for anatomical pathology sample handling, storage, and analysis |
GB2550526B (en) * | 2010-02-25 | 2018-02-07 | Prairie Ventures Llc | System and method for anatomical pathology sample handling, storage, and analysis |
US9989449B2 (en) | 2010-02-25 | 2018-06-05 | Prairie Ventures, L.L.C. | System and method for anatomical pathology sample handling, storage, and analysis |
US11079307B2 (en) | 2010-02-25 | 2021-08-03 | Prairie Ventures, L.L.C. | System and method for anatomical pathology sample handling, storage, and analysis |
Also Published As
Publication number | Publication date |
---|---|
EP1053461A1 (en) | 2000-11-22 |
CA2319589C (en) | 2008-11-18 |
CA2319589A1 (en) | 1999-08-05 |
JP4344474B2 (en) | 2009-10-14 |
AU2485099A (en) | 1999-08-16 |
AU749378B2 (en) | 2002-06-27 |
JP2002502025A (en) | 2002-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6720191B1 (en) | Mechanical handling systems for laser capture microdissection | |
CA2319589C (en) | Mechanical handling systems for laser capture microdissection | |
US9279749B2 (en) | Laser microdissection method and apparatus | |
US6157446A (en) | Laser capture microdissection analysis vessel | |
CN102918376B (en) | Cell sorter, cell sorting system, and cell sorting method | |
EP1641571B1 (en) | Biological laser printing for tissue microdissection via indirect photon-biomaterial interactions | |
US8691524B2 (en) | Method for isolating a part of a layer of a biological material | |
EP2784473A1 (en) | Tissue segmentation apparatus, cell sorting apparatus, cell sorting system, tissue display system, substrate, extendible member, tissue segmentation method, and cell sorting method | |
US20160305855A1 (en) | Method and apparatus for extracting and collecting single cells from formalin-fixed paraffin embedded tissues | |
US7456938B2 (en) | Laser microdissection on inverted polymer films | |
CA2354270C (en) | Designs for non-contact laser capture microdissection | |
US20190056294A1 (en) | Methods for selectively separating samples from substrate | |
KR102457508B1 (en) | Device for selective sorting of specimens | |
US20250180442A1 (en) | Biological sample transfer and rearrangement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2319589 Country of ref document: CA Ref country code: CA Ref document number: 2319589 Kind code of ref document: A Format of ref document f/p: F Ref country code: JP Ref document number: 2000 529587 Kind code of ref document: A Format of ref document f/p: F |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 24850/99 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999904451 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09601559 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1999904451 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 24850/99 Country of ref document: AU |