WO2000056894A1 - Fungal beta-tubulin genes - Google Patents
Fungal beta-tubulin genes Download PDFInfo
- Publication number
- WO2000056894A1 WO2000056894A1 PCT/US2000/007995 US0007995W WO0056894A1 WO 2000056894 A1 WO2000056894 A1 WO 2000056894A1 US 0007995 W US0007995 W US 0007995W WO 0056894 A1 WO0056894 A1 WO 0056894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- taxol
- amino acid
- nucleotide
- tubulin
- beta
- Prior art date
Links
- 108090000704 Tubulin Proteins 0.000 title claims abstract description 236
- 230000002538 fungal effect Effects 0.000 title claims description 90
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims abstract description 457
- 229930012538 Paclitaxel Natural products 0.000 claims abstract description 455
- 229960001592 paclitaxel Drugs 0.000 claims abstract description 455
- 208000036815 beta tubulin Diseases 0.000 claims abstract description 244
- 102000004243 Tubulin Human genes 0.000 claims abstract description 215
- 230000027455 binding Effects 0.000 claims abstract description 202
- 241000918584 Pythium ultimum Species 0.000 claims abstract description 88
- 238000006467 substitution reaction Methods 0.000 claims abstract description 52
- 241000233618 Phytophthora cinnamomi Species 0.000 claims abstract description 51
- 102000029749 Microtubule Human genes 0.000 claims abstract description 41
- 108091022875 Microtubule Proteins 0.000 claims abstract description 41
- 210000004688 microtubule Anatomy 0.000 claims abstract description 41
- 241000233866 Fungi Species 0.000 claims abstract description 23
- 241001674041 Pestalotiopsis microspora Species 0.000 claims abstract description 21
- 150000001413 amino acids Chemical group 0.000 claims description 262
- 235000001014 amino acid Nutrition 0.000 claims description 227
- 239000002773 nucleotide Substances 0.000 claims description 203
- 125000003729 nucleotide group Chemical group 0.000 claims description 203
- 229940024606 amino acid Drugs 0.000 claims description 197
- 108020004414 DNA Proteins 0.000 claims description 111
- 210000004027 cell Anatomy 0.000 claims description 88
- 238000000034 method Methods 0.000 claims description 48
- 239000000203 mixture Substances 0.000 claims description 48
- 108090000623 proteins and genes Proteins 0.000 claims description 48
- 150000001875 compounds Chemical class 0.000 claims description 41
- 230000035945 sensitivity Effects 0.000 claims description 33
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 30
- 239000004473 Threonine Substances 0.000 claims description 30
- 102000004169 proteins and genes Human genes 0.000 claims description 30
- 235000018102 proteins Nutrition 0.000 claims description 27
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 claims description 20
- 239000003153 chemical reaction reagent Substances 0.000 claims description 19
- 230000012010 growth Effects 0.000 claims description 19
- 238000012216 screening Methods 0.000 claims description 17
- 229930024421 Adenine Natural products 0.000 claims description 16
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 claims description 16
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 16
- 229960000643 adenine Drugs 0.000 claims description 16
- 229960001230 asparagine Drugs 0.000 claims description 16
- 235000009582 asparagine Nutrition 0.000 claims description 16
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 16
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 14
- 108020004705 Codon Proteins 0.000 claims description 10
- 244000000003 plant pathogen Species 0.000 claims description 10
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 10
- 229940113082 thymine Drugs 0.000 claims description 10
- 229940104302 cytosine Drugs 0.000 claims description 8
- 230000001939 inductive effect Effects 0.000 claims description 8
- 230000001717 pathogenic effect Effects 0.000 claims description 8
- 244000052769 pathogen Species 0.000 claims description 7
- 230000009261 transgenic effect Effects 0.000 claims description 6
- 108091026890 Coding region Proteins 0.000 claims description 5
- 239000002689 soil Substances 0.000 claims description 4
- 230000001131 transforming effect Effects 0.000 claims description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 3
- 230000006957 competitive inhibition Effects 0.000 claims description 3
- 229960000310 isoleucine Drugs 0.000 claims description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 3
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 3
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 claims description 2
- 238000004113 cell culture Methods 0.000 claims description 2
- 230000009036 growth inhibition Effects 0.000 claims description 2
- 230000008635 plant growth Effects 0.000 claims 1
- 125000003275 alpha amino acid group Chemical group 0.000 abstract description 90
- 238000003556 assay Methods 0.000 abstract description 15
- 229940079593 drug Drugs 0.000 abstract description 15
- 239000003814 drug Substances 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 9
- 206010028980 Neoplasm Diseases 0.000 abstract description 8
- 241000233654 Oomycetes Species 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 8
- 108020004635 Complementary DNA Proteins 0.000 abstract description 7
- 239000002246 antineoplastic agent Substances 0.000 abstract description 7
- 241000235349 Ascomycota Species 0.000 abstract description 5
- 210000004102 animal cell Anatomy 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract description 4
- 229940041181 antineoplastic drug Drugs 0.000 abstract description 3
- 230000025084 cell cycle arrest Effects 0.000 abstract description 2
- 230000000144 pharmacologic effect Effects 0.000 abstract description 2
- 238000000159 protein binding assay Methods 0.000 abstract 1
- 244000309636 Phoma microspora Species 0.000 description 57
- 239000002299 complementary DNA Substances 0.000 description 41
- 230000009870 specific binding Effects 0.000 description 19
- WJCNZQLZVWNLKY-UHFFFAOYSA-N thiabendazole Chemical compound S1C=NC(C=2NC3=CC=CC=C3N=2)=C1 WJCNZQLZVWNLKY-UHFFFAOYSA-N 0.000 description 16
- 229960004546 thiabendazole Drugs 0.000 description 16
- 239000004308 thiabendazole Substances 0.000 description 16
- 235000010296 thiabendazole Nutrition 0.000 description 16
- 238000003752 polymerase chain reaction Methods 0.000 description 15
- 241000233665 Achlya klebsiana Species 0.000 description 14
- 241000196324 Embryophyta Species 0.000 description 14
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 239000012634 fragment Substances 0.000 description 11
- 239000000523 sample Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000002955 isolation Methods 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 7
- 238000002003 electron diffraction Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 241000894007 species Species 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 241000282414 Homo sapiens Species 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 239000013610 patient sample Substances 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 241000228212 Aspergillus Species 0.000 description 5
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 241000221961 Neurospora crassa Species 0.000 description 5
- 229920004890 Triton X-100 Polymers 0.000 description 5
- 239000013504 Triton X-100 Substances 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 229960001338 colchicine Drugs 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 241000486634 Bena Species 0.000 description 4
- KYRVNWMVYQXFEU-UHFFFAOYSA-N Nocodazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1C(=O)C1=CC=CS1 KYRVNWMVYQXFEU-UHFFFAOYSA-N 0.000 description 4
- 108091034057 RNA (poly(A)) Proteins 0.000 description 4
- 230000000843 anti-fungal effect Effects 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- PCHPORCSPXIHLZ-UHFFFAOYSA-N diphenhydramine hydrochloride Chemical compound [Cl-].C=1C=CC=CC=1C(OCC[NH+](C)C)C1=CC=CC=C1 PCHPORCSPXIHLZ-UHFFFAOYSA-N 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 229950006344 nocodazole Drugs 0.000 description 4
- 230000009871 nonspecific binding Effects 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 238000007423 screening assay Methods 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 3
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 3
- 108020005345 3' Untranslated Regions Proteins 0.000 description 3
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 241000224485 Physarum Species 0.000 description 3
- 108091036407 Polyadenylation Proteins 0.000 description 3
- 241000233639 Pythium Species 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 241001116500 Taxus Species 0.000 description 3
- 108020005038 Terminator Codon Proteins 0.000 description 3
- 241000269370 Xenopus <genus> Species 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 239000003080 antimitotic agent Substances 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 210000004292 cytoskeleton Anatomy 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000000054 fungal extract Substances 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000009630 liquid culture Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000000419 plant extract Substances 0.000 description 3
- 239000001965 potato dextrose agar Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000014621 translational initiation Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 2
- 108091077621 MAPRE family Proteins 0.000 description 2
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 102000006335 Phosphate-Binding Proteins Human genes 0.000 description 2
- 108010058514 Phosphate-Binding Proteins Proteins 0.000 description 2
- 241000233616 Phytophthora capsici Species 0.000 description 2
- 101100536478 Schizosaccharomyces pombe (strain 972 / ATCC 24843) nda3 gene Proteins 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 101000838347 Sus scrofa Tubulin beta chain Proteins 0.000 description 2
- 229940123237 Taxane Drugs 0.000 description 2
- 241001138405 Taxodium distichum Species 0.000 description 2
- 241001678487 Taxomyces andreanae Species 0.000 description 2
- 241001116498 Taxus baccata Species 0.000 description 2
- 241000015728 Taxus canadensis Species 0.000 description 2
- 241000223892 Tetrahymena Species 0.000 description 2
- 241000223261 Trichoderma viride Species 0.000 description 2
- 108091023045 Untranslated Region Proteins 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 229940044684 anti-microtubule agent Drugs 0.000 description 2
- 230000002927 anti-mitotic effect Effects 0.000 description 2
- 230000000118 anti-neoplastic effect Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- RIOXQFHNBCKOKP-UHFFFAOYSA-N benomyl Chemical compound C1=CC=C2N(C(=O)NCCCC)C(NC(=O)OC)=NC2=C1 RIOXQFHNBCKOKP-UHFFFAOYSA-N 0.000 description 2
- MITFXPHMIHQXPI-UHFFFAOYSA-N benzoxaprofen Natural products N=1C2=CC(C(C(O)=O)C)=CC=C2OC=1C1=CC=C(Cl)C=C1 MITFXPHMIHQXPI-UHFFFAOYSA-N 0.000 description 2
- 230000000443 biocontrol Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000008384 membrane barrier Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000025090 microtubule depolymerization Effects 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 230000011278 mitosis Effects 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 241000195628 Chlorophyta Species 0.000 description 1
- 241000222199 Colletotrichum Species 0.000 description 1
- 241001362614 Crassa Species 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 239000005759 Diethofencarb Substances 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 108010058643 Fungal Proteins Proteins 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 230000004668 G2/M phase Effects 0.000 description 1
- 101150074355 GS gene Proteins 0.000 description 1
- 102000018638 GTP binding domains Human genes 0.000 description 1
- 108050007795 GTP binding domains Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241001534793 Haemanthus Species 0.000 description 1
- 125000000010 L-asparaginyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(=O)N([H])[H] 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 1
- 241000243190 Microsporidia Species 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 244000264897 Persea americana var. americana Species 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 241000224486 Physarum polycephalum Species 0.000 description 1
- 108010054060 SDZ 280 446 Proteins 0.000 description 1
- YJDYDFNKCBANTM-QCWCSKBGSA-N SDZ PSC 833 Chemical compound C\C=C\C[C@@H](C)C(=O)[C@@H]1N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C(=O)[C@H](C(C)C)NC1=O YJDYDFNKCBANTM-QCWCSKBGSA-N 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 241001330449 Taxus wallichiana Species 0.000 description 1
- 241000248384 Tetrahymena thermophila Species 0.000 description 1
- 241000488908 Torreya Species 0.000 description 1
- 241000223104 Trypanosoma Species 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- 101710176279 Tubulin beta-2 chain Proteins 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000719 anti-leukaemic effect Effects 0.000 description 1
- 239000000063 antileukemic agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000003793 centrosome Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000021572 chromosome movement towards spindle pole Effects 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- LNJNFVJKDJYTEU-UHFFFAOYSA-N diethofencarb Chemical compound CCOC1=CC=C(NC(=O)OC(C)C)C=C1OCC LNJNFVJKDJYTEU-UHFFFAOYSA-N 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 150000004141 diterpene derivatives Chemical class 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 241000957301 fungal endophyte Species 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000013383 initial experiment Methods 0.000 description 1
- 230000007154 intracellular accumulation Effects 0.000 description 1
- 210000002415 kinetochore Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000007479 molecular analysis Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 102000026415 nucleotide binding proteins Human genes 0.000 description 1
- 108091014756 nucleotide binding proteins Proteins 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 238000005222 photoaffinity labeling Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000784 purine nucleoside phosphorylase inhibitor Substances 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 230000020347 spindle assembly Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000003239 susceptibility assay Methods 0.000 description 1
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 108010082372 valspodar Proteins 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56961—Plant cells or fungi
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
Definitions
- TAXOL ® Bristol-Myers-Squibb
- taxol paclitaxel
- MTs microtubules
- Taxol an antimitotic agent with a new mechanism of action
- Mechanism of action of taxol " Trends Pharmacol Sci 13: 134- 136
- taxol affects spindle function during mitosis, resulting in cell cycle arrest in G2/M phase.
- taxol promotes MT assembly and prevents their disassembly under conditions which would otherwise cause depolymerization (Schiff, et al. 1979. "Promotion of microtubule assembly in vitro by taxol” Nature 277:665-667; and Pamess, J. and Horwitz, S.B.
- Taxol was found originally in the inner bark of pacific yew trees (Taxus brevifoha) by Wani et al (Warn, et al 1971 "Plant antitumor agents VI The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifoha, " J Am Chem Soc 93 2325-2327), and noted to constitute about 0 02% of dry phloem weight The limited resource of yew trees made it advantageous to locate additional sources for taxol
- taxol inhibited nuclear division at low concentrations, indicating that it acts through a mechanism similar to that in mammalian cells
- four ascomycete species were identified as resistant to taxol (IC50 > 50 ⁇ M). This resistance was reported to be due to the reduced ability of fungal microtubules to interact with taxol Taxol was also shown to be unable to stabilize MTs assembled with purified S.
- beta-tubulin genes useful for developing isogenic fungal strains that are either taxol-sensitive or taxol- resistant
- beta-tubulin genes and/or isogenic fungal strains can then be applied to anticancer drug screening and for developing diagnostic tests for tumor sensitivity assays
- the invention is a purified DNA segment encoding a beta-tubulin of the fungal species Pestalotiopsis microspora or a portion thereof
- the DNA segment encodes at least one taxol binding site
- the DNA segment encodes a protein having taxol binding site I and taxol binding site II
- the DNA segment encodes a protein which has taxol binding site I and taxol binding site II and is able to interact with alpha-tubulin
- An exemplary DNA segment comprises at least a portion of SEQ ID NO 1
- Another exemplary DNA segment comprises a portion of SEQ ID NO 1 comprising the nucleotide sequence from nucleotide 75 through nucleotide 167 of SEQ ID NO 1, with or without substitution
- Another exemplary DNA segment comprises a portion of SEQ ID NOJ comprising the nucleotide sequence from nucleotide 708 through nucleotide 764 of SEQ ID NOJ,
- Another exemplary DNA segment comprises the nucleotide sequence from nucleotide 75 to nucleotide 1412 of SEQ ID NOJ wherein at least one nucleotide in the nucleotide sequence is substituted and wherein the taxol binding capacity of the beta-tubulin is not altered.
- Another exemplary DNA segment comprises the nucleotide sequence from nucleotide 75 to nucleotide 1412 of SEQ ID NOJ wherein at least one nucleotide in the nucleotide sequence is substituted and wherein the taxol binding capacity of the beta-tubulin is altered.
- Another exemplary amino acid sequence comprises a portion of SEQ ID NOJ consisting essentially of Amino Acids 1-446 the portion contains at least one amino acid substitution that alters the taxol binding property of the portion.
- Another exemplary amino acid sequence comprises a portion of SEQ ID NOJ consisting essentially of Amino Acids 1-446 the portion contains at least one amino acid substitution that does not alters the taxol binding property of the portion.
- Another exemplary amino acid sequence is substituted with any amino acid which perturbs the three- dimensional structure of the amino acid sequence surrounding Amino Acid 219 as numbered in SEQ ID NOJ.
- the invention is a purified DNA segment encoding a beta-tubulin of the fungal species Pythium ultimum or a portion thereof.
- the DNA segment encodes at least one taxol binding site.
- the DNA segment encodes a protein having taxol binding site I and taxol binding site II.
- the DNA segment encodes a protein which has taxol binding site I and taxol binding site II and is able to interact with alpha- tubulin.
- An exemplary DNA segment comprises at least a portion of SEQ ID NOJ.
- Another exemplary DNA segment comprises a portion of SEQ ID NOJ comprising nucleotide 92 through nucleotide 184, with or without substitution.
- Another exemplary DNA segment comprises a portion of SEQ ID NOJ comprising the nucleotide sequence from nucleotide 725 through nucleotide 781, with or without substitution.
- Another exemplary DNA segment comprises a portion of SEQ ID NOJ comprising the nucleotide sequence from nucleotide 725 through nucleotide 781, wherein either nucleotide 746, nucleotide 747 or nucleotide 748 or mixtures thereof are substituted.
- Another exemplary DNA segment comprises the nucleotide sequence from nucleotide 92 to nucleotide 1429 of SEQ ID NOJ with at least one nucleotide substitution in the nucleotide sequence and wherein the taxol binding capacity of the beta-tubulin is altered.
- the invention is an amino acid sequence comprising at least a portion of a beta-tubulin of the fungal species Pythium ultimum.
- the amino acid sequence comprises at least one taxol binding site.
- the amino acid sequence is a protein having taxol binding site I and taxol binding site II.
- the amino acid sequence has taxol binding site I and taxol binding site II and is able to interact with alpha-tubulin.
- An exemplary amino acid sequence comprises at least a portion of the beta-tubulin as depicted in SEQ ID NO:4.
- Another exemplary amino acid sequence comprises a portion of SEQ ID NO:4 consisting essentially of Amino Acids 1-446 having at least one amino acid substitution that alters the taxol binding property of the portion.
- Another exemplary amino acid sequence comprises a portion of SEQ ID NO:4 consisting essentially of Amino Acids 1-446 having at least one amino acid substitution that does not alter the taxol binding property of the portion.
- Another exemplary amino acid sequence is substituted with any amino acid which perturbs the three-dimensional structure of the amino acid sequence surrounding Amino Acid 219 as numbered in SEQ ID NO:4.
- Another exemplary DNA segment comprises a portion of SEQ ID NO:5 comprising nucleotide sequence from nucleotide 644 through nucleotide 700, wherein at least one nucleotide in the nucleotide sequence is substituted, providing that when nucleotide substitution changes only one amino acid code nucleotide 665 cannot be adenine while nucleotide 666 is adenine and nucleotide 667 is cytosine or thymine.
- Another exemplary DNA segment comprises a portion of SEQ ID NO:5 comprising the nucleotide sequence from nucleotide 11 to nucleotide 1342 and wherein the DNA segment encodes a beta- tubulin.
- Another exemplary DNA segment comprises a portion of SEQ ID NO:5 comprising the nucleotide sequence from nucleotide 1 1 to nucleotide 1342, wherein at least one nucleotide in the nucleotide sequence is substituted, providing that when nucleotide substitution changes only one amino acid code, nucleotide 665 cannot be adenine while nucleotide 666 is adenine and nucleotide 667 is cytosine or thymine.
- Another exemplary DNA segment comprises a portion of SEQ ID NO:5 comprising the nucleotide sequence from nucleotide 11 to nucleotide 1342, wherein at least one nucleotide in the nucleotide sequence is substituted, providing that when nucleotide substitution changes only one amino acid code, nucleotide 665 cannot be adenine while nucleotide 666 is adenine and nucleotide 667 is cytosine or thymine, and wherein the taxol binding capacity of the beta-tubulin is altered.
- the invention is an amino acid sequence comprising at least a portion of a beta-tubulin of the fungal species Phytophthora cinnamomi as depicted in SEQ ID NO:6.
- An exemplary amino acid sequence comprises a portion of SEQ ID NO:6 comprising Amino Acids 1-31.
- An exemplary amino acid sequence comprises a portion of SEQ ID NO:6 comprising Amino Acids 1-31, having at least one amino acid substituted, providing that when only one amino acid is substituted Amino Acid 24 is not isoleucine.
- Another exemplary amino acid sequence comprises a portion of SEQ ID NO: 6 comprising Amino Acids 212-230.
- Another exemplary amino acid sequence comprises a portion of SEQ ID NO:6 comprising Amino Acids 212-230, having at least one amino acid substituted, providing that when only one amino acid is substituted Amino Acid 219 is not asparagine.
- Another exemplary amino acid sequence comprises a portion of SEQ ID NO:6 comprising Amino Acids 212-230 with an amino acid substitution at Amino Acid 219, wherein the Amino Acid 219 is not substituted with asparagine.
- the invention is a vector comprising a purified DNA segment encoding a beta-tubulin of the fungal species Pythium ultimum or a portion thereof
- the vector comprises a portion encoding at least one taxol binding site
- the invention is a vector comprising a purified DNA segment encoding a beta-tubulin of the fungal species Phytophthora cinnamomi wherein the DNA segment consists essentially of SEQ ID NO 5 or a portion thereof
- the vector comprises a portion encoding at least one taxol binding site
- the invention is a method of determining the taxol binding capacity of a beta-tubulin or beta-tubulin-like compound comprising providing antibodies raised against amino acid sequences comprising at least one taxol binding site of a beta- tubulin from a taxol-resistant Pestalotiopsis microspora, a taxol-sensitive Pythium ultimum, or taxol-sensitive Phytophthora cinnamomi as depicted in SEQ ID NO 6 to form a reagent, such antibodies distinguishing between taxol-binding and non-taxol-binding properties, contacting the beta-tubulin or beta-tubulin-like compound with the reagent, and determining degree of binding between the antibodies in the reagent and the beta-tubulin or beta-tubulin- like compound; whereby binding of antibodies raised against a taxol-resistant Pestalotiopsis microspora to the beta-tubulin or beta-tubulin-like compound indicates taxol resistance and
- the antibodies in the reagent are raised against an amino acid sequence comprising at least one taxol binding site of a beta-tubulin from a taxol-resistant Pestalotiopsis microspora. In another embodiment, the antibodies in the reagent are raised against an amino acid sequence comprises at least one taxol binding site from SEQ ID NOJ. In another embodiment, the antibodies in the reagent are raised against an amino acid sequence comprising at least one taxol binding site of a beta-tubulin from a taxol-sensitive Phythium ultimum. In another embodiment, the antibodies in the reagent are raised against an amino acid sequence comprises at least one taxol binding site from SEQ ID NO:4.
- the antibodies in the reagent are raised against an amino acid sequence comprising at least one taxol binding site of a beta-tubulin from a taxol-sensitive Phytophthora cinnamomi as depicted in SEQ ID NO:6.
- the antibodies in the reagent are raised against an amino acid sequence comprises at least one taxol binding site from SEQ ID NO:678.
- the beta-tubulin or beta-tubulin-like compound are selected from the group consisting of recombinantly expressed protein, exogenously isolated protein, synthetic peptides, and cell cultures.
- the invention is a method of screening a composition of matter for the presence of taxol or taxol-like compounds comprising providing beta-tubulins with amino acid sequences comprising both taxol binding sites from Pythium ultimum or taxol- sensitive Phytophthora cinnamomi as depicted in SEQ ID NO: 6 in addition to alpha-tubulin from any taxol-sensitive organism to form a reagent; contacting the composition of matter with the reagent; and determining the ability of the composition of matter to promote MT assembly or ability to prevent depolymerization of assembled MTs under depolymerizing conditions;whereby the ability to promote microtubule assembly or prevent depolymerization indicate the possible presence of taxol or taxol-like compounds in the composition of matter.
- the invention is a method of screening a composition of matter for the presence of taxol or taxol-like compounds comprising providing mycelia of taxol- sensitive Pythium ultimum or a taxol-sensitive Phytophthora cinnamomi which harbors beta- tubulin in SEQ ID NO:6; contacting the composition of matter with the mycelia in the presence of the labeled taxol; and determining the degree of competitive inhibition of binding between the beta-tubulins and the labeled taxol by the composition of matter, whereby the composition of matter is determined to possess taxol or taxol-like compounds if it is able to block labeled taxol binding to the beta-tubulins from the taxol-sensitive Pythium ultimum or Phytophthora cinnamomi.
- the invention is a method of altering the taxol binding property of a recombinantly expressed beta-tubulin or a portion thereof comprising determining the identity of the codon at Amino Acid 219 as numbered in SEQ ID NOJ in the coding region of the vector; and if the codon at Amino Acid 219 codes for any amino acid except threonine, substituting nucleotides in the codon to code for threonine at Amino Acid 219 to alter a non-taxol-binding beta-tubulin or portion thereof to a taxol-binding beta-tubulin or portion thereof, or if the codon at Amino Acid 219 codes for threonine, substituting nucleotides in the codon to code for any amino acid except threonine at Amino Acid 219 to alter a taxol-binding beta-tubulin or portion thereof to a non-taxol-binding beta-tubulin or portion thereof.
- the invention is a method of developing a taxol-sensitive fungal cell from a taxol-resistant fungal cell comprising transforming the non-taxol-sensitive fungal cell by introducing a DNA segment encoding taxol-binding beta-tubulin comprising threonine at Amino Acid 219 as numbered in SEQ ID NOJ; wherein the transformed fungal cell expresses the DNA segment under the control of a suitable constitutive or inducible promoter when exposed to conditions which permit expression.
- the invention is a transgenic taxol-sensitive fungal cell transformed by introducing a DNA segment encoding taxol-binding beta-tubulin comprising threonine at Amino Acid 219 as numbered in SEQ ID NOJ, wherein the transformed fungal cell expresses the DNA segment under the control of a suitable constitutive or inducible promoter when exposed to conditions which permit expression.
- the invention is a method of developing a taxol-resistant fungal cell from a taxol-sensitive fungal cell comprising transforming the taxol-sensitive fungal cell by introducing a DNA segment encoding non-taxol-binding beta-tubulin wherein the amino acid at Amino Acid 219 as numbered in SEQ ID NOJ is not threonine; wherein the transformed fungal cell over-expresses the DNA segment under the control of a suitable constitutive or inducible promoter when exposed to conditions which permit expression.
- the invention is a transgenic taxol-sensitive fungal cell transformed by introducing a DNA segment encoding taxol-binding beta-tubulin comprising threonine at Amino Acid 219 as numbered in SEQ ID NOJ, wherein the transformed fungal cell over-expresses the DNA segment under the control of a suitable constitutive or inducible promoter when exposed to conditions which permit expression.
- the invention is a method of screening a composition of matter for the presence of taxol or taxol-like compounds comprising providing distinguishable taxol- resistant and taxol-sensitive fungal cells; contacting the composition of matter with the fungal cells; and determining the growth of inhibition of the fungal cells; whereby the composition of matter is determined to possess taxol or taxol-like compounds if it is able to inhibit the growth of taxol-sensitive fungal cells but not able to inhibit the growth of taxol- resistant fungal cells.
- the method can be performed wherein the distinguishable taxol- resistant and taxol-sensitive fungal cells consists essentially of transgenic taxol-resistant and taxol-sensitive isogenic fungal cells.
- the method can also be performed with taxol-resistant fungal cells derived from one fungus which is unrelated to the fungi from which the taxol- sensitive fungal cells are derived.
- the invention is a method for controlling the growth of a plant pathogen comprising determining the taxol sensitivity of the plant pathogen; and if the pathogen is determined to be taxol-sensitive, the plant and soil surrounding the plant are treated with a taxol-producing P. microspora.
- the taxol sensitivity of the plant pathogen is determined by identifying Amino Acid 219, wherein the plant is designated as taxol-sensitive if Amino Acid 219 is threonine.
- Fig 1 is a graph depicting the effect of taxol on mycelial growth in P. microspora, P. ultimum, P. cinnamomi and A. klebsiana.
- Fungal mycelia were grown on potato dextrose agar (PDA) plates containing different concentrations of taxol The inhibitory effect of taxol was assessed by colony diameter, and compared to mycelia grown in the absence of taxol Experiments were conducted in duplicate, and data presented are an average of several experiments
- Fig 2 depicts the nucleotide and deduced amino acid sequence of beta-tubulin from P microspora Ne32 cDNA, TUBB-pm Numerals on the left indicate nucleotide position, and numerals on the right indicate amino acid position
- the sequences of the gene-specific primers NETUB5 and NETUB6 are underlined
- the translation initiation codon ATG is underlined
- the translation termination codon is marked by an asterisk
- the putative polyadenylation signal is double underlined
- Fig 3 depicts the nucleotide and deduced amino acid sequence of beta-tubulin from P. ultimum cDNA, TUBB-pu Numerals on the left indicate nucleotide position, and numerals on the right indicate amino acid position
- the sequences of the gene-specific primers WT1L-U and WT1L-L are underlined
- the translation initiation codon ATG is underlined
- the translation termination codon is marked by an asterisk
- the two putative polyadenylation signals are double underlined
- the arrow at nucleotide 1507 indicates the position of the poly (A) tract in the shorter 1537 bp cDNA
- Fig 4 depicts the nucleotide and deduced amino acid sequence of beta-tubulin from P cinnamomi cDNA
- TUBB-pc Numerals on the left indicate nucleotide position, and numerals on the right indicate amino acid position
- the sequences of the gene-specific primers PCBTUB 1U, PCBTUB2U and PCBTUB4L are underlined
- the translation initiation codon ATG is marked by ###
- Fig. 6 A and 6B depict the amino acid sequence alignment of beta-tubulins. The alignment was obtained using the ClustalW alignment program. The amino acid sequence of P. microspora beta-tubulin is shown in its entirety, and residues which differ in other beta-tubulins are shown below. Numerals on the right indicate amino acid positions. Sequences underlined indicate regions important for GTP binding (Amino Acids 63-77), phosphate binding (Amino Acids 140-146), and Mg 2+ binding (Amino Acids 203-206). Amino Acids 1-31 and 212-231 (denoted here as taxol binding region I and II, respectively) are indicated by a line above the sequence.
- Amino Acids Phe270, Leu273 and Ser364 are marked above with #.
- Amino acids which are important for fungal resistance to benzimidazoles (Amino Acids 6, 165, 167, 198, 200 and 241) are marked above by asterisks. Gaps in alignment are indicated by dashes, and the end of each sequence is marked by "$”.
- Genbank accession numbers for beta-tubulins from N. crassa, A. idulans benA, A. klebsiana and human ⁇ 2 are listed in Table I.
- the P. cinnamomi depicted is SEQ ID NO:6.
- Fig. 7A and 7B are graphs depicting the specific binding of [ 3 H]taxol to P. ultimum but not to P. microspora.
- Fig. 7A demonstrates that specific binding of [ 3 Hltaxol to P. ultimum increased as a function of [ H]taxol concentration, while P. microspora showed no or very little specific binding.
- Actively growing fungal cells were incubated with different concentrations of [ 3 H]taxol at room temperature for 2 hours before quenching. Specific binding was calculated as the difference between binding of [ 3 H]taxol in the presence and absence of a 100-fold excess of unlabeled taxol. Specific binding represents 30-70% of the total binding to P.
- Fig 8 depicts the amino acid sequences of the taxol binding region I (Amino Acids
- beta-tubulins from different organisms
- the amino acid sequences of the taxol binding regions I and II for pig beta-tubulin are shown in their entirety and residues which differ are shown for other beta-tubulins
- the taxol sensitivity of each organism is indicated, "s" for sensitive and “r” for resistant Amino Acids 15-25 and 212-222, which have been shown to be involved in taxol binding by both cross-linking and electron crystallography, are marked with asterisks
- the taxol binding region II of A are marked with asterisks The taxol binding region II of A.
- klebsiana is between Amino Acids 211-230 due to a gap in its sequence
- Pig beta-tubulin is described by Nogales, et al (Nogales, et al 1999 Nature 391 199-203), and Genbank accession numbers for other sequences are listed in Table I
- the sequence for P. cinnamomi presented herein is depicted in SEQ ID NO 6
- One aspect of the present invention is an isolated gene comprising an open reading frame coding for the protein beta-tubulin or a portion thereof
- the corresponding cDNA have been isolated and characterized for taxol-resistant Pestalotiopsis microspora Ne32, taxol-sensitive Pythium ultimum, and taxol-sensitive Pythium cinnamomi
- the nucleotide and deduced amino acid sequences of beta-tubulin for Pestalotiopsis microspora Ne32 are given in SEQ ID NO 1 and SEQ ID NO 2, respectively, for Pythium ultimum, in SEQ ID NO 3 and SEQ ID NO 4, respectively, and for Pythium cinnamomi, in SEQ ID NO 5 and SEQ ID NO 6, respectively
- SEQ ID NO 219 of beta-tubulin As numbered in SEQ ID NO 2, SEQ ID NO 4, or SEQ ID NO:
- the present invention is the beta-tubulin protein or protein fragments encoded by the novel genes disclosed herein. Since the P. ultimum and P. cinnamomi beta-tubulin proteins of the present invention are capable of binding taxol, proteins and protein fragments comprising taxol-binding sites derived from the genes coding for beta-tubulin described herein can be produced by heterologous expression in E. coli and other systems, purified by standard procedures, and used in an in vitro assay for detecting taxol and taxol-like substances by using methods well known in the art (Schiff, et al. 1979. Nature 277:665-667).
- beta-tubulin proteins of the present invention can be used to screen plant or fungal extracts as well as synthetic compounds for taxol or taxol-like substances as possible anticancer drugs.
- Beta-tubulins produced by making specific amino acid substitutions, deletions, or alterations can be used as experimental tools to further determine the molecular basis of taxol binding to the beta-tubulin protein.
- antibodies polyclonal or monoclonal raised against all or portions of the beta tubulins of the present invention can be used to determine if a composition of matter has taxol binding properties.
- antibodies capable of binding to taxol-sensitive beta-tubulin and/or taxol-resistant beta tubulins are exposed to a composition of matter prepared for in situ hybridization (Ausubel, et al. 1997. Current
- antibodies raised to a portion of SEQ ID NO:4 comprising Amino Acid 219 would bind to a beta-tubulin which had threonine at Amino Acid 219 but would not bind to a beta-tubulin having a different amino acid at Amino Acid 219, so that detectable binding would indicate the presence of threonine at Amino Acid 219, and hence, sensitivity to taxol.
- This type of assay is useful for screening a variety of compositions of matter, including living matter such as plants or microorganisms, or non-living matter such as plant materials, patient samples, or compound libraries for the presence of beta-tubulin.
- the present invention is a method of designing taxol analogs or other compounds which mimic the interaction of taxol with beta-tubulin based on the identification of specific amino acids in the beta-tubulins corresponding to taxol-binding and taxol-sensitivity.
- the previously reported three-dimensional structure (Nogales, et al. 1998. Nature 391 : 199-203) can be applied to developing and optimizing antineoplastic and antifungal compounds with respect to Amino Acid 219 and the surrounding area. Further, such information can also be used to generate mutant beta-tubulins with altered taxol sensitivity by substituting amino acids at specific positions in the beta-tubulin protein.
- the present invention is a method of generating isogenic strains of fungi using a gene of the present invention, which allows studies of taxol related pharmacology to be performed against a known background. Further, the present invention is a method of using these isogenic fungal strains, one of which is taxol sensitive and the other taxol resistant, to screen plant extracts, fungal extracts, extracts from other organisms, and synthetic compounds for taxol-like substances as possible anticancer agents. The present invention is also a method of using two unrelated fungal strains, one of which is taxol sensitive and the other taxol resistant, to screen plant extracts, fungal extracts, extracts from other organisms, and synthetic compounds for taxol-like substances as possible anticancer agents.
- Example 1 Differential taxol sensitivity in selected fungi Taxol sensitivity was established for the fungal strains used in the isolation of the beta-tubulin cDNAs of the present invention.
- Pestalotiopsis microspora strain Ne32 previously disclosed in U.S. Patent No. 5,861,302, was licensed from Montana State University. Pythium ultimum (ATCC 26083), Achlya klebsiana (ATCC 52605), and Pythium cinnamomi (ATCC 200982) were purchased from American Type Culture Collection (Manassas, VA) Taxol was obtained from Sigma Chemical Company (St Louis, MO)
- cinnamomi was inhibited even at low concentrations of taxol (IC50 0 1 ⁇ M) This sensitivity is comparable to the level of taxol (0 25 ⁇ M) that inhibits Hela cell division (Schiff, et al 1979 Nature 277 665-667)
- Beta-tubulin cDNA sequences were determined for P. microspora Ne32, P. ultimum, and P. cinnamomi from RNA isolated from fungal mycelia Automated dideoxynucleotide sequencing was performed by a contracting laboratory Sequence comparison was performed using the BLAST program at the Internet site of the National Center for Biotechnology Information The amino acid sequence alignment was performed using ClustalW program, and other analysis using Mac Vector program
- a forward degenerate primer BTUB 1 5'-CTGGGCYAAGGGYC AYTACACYGAG-3' (SEQ ID NO 7, was designed corresponding to amino acid residues Trp-Ala-Lys-Gly-His-Tyr-Thr-Glu (or WAKGHYTE in single letter amino acid code, SEQ ID NO 8), a reverse primer BTUB2, S'-CGAAGAARTGRARNCGRGGGAARGG-S' (SEQ ID NO 9), corresponding to amino acid residues Pro-Phe-Pro-Arg-Leu-His-Phe-Phe (or
- the resulting composite cDNA from P. microspora was 1668 bp long, designated as TUBB-pm, and its nucleotide and deduced amino acid sequence are shown in SEQ ID NO 1 and SEQ ID NO 2, respectively, as well as Fig 2
- This cDNA encodes a protein of 446 amino acids with a calculated Mr of 49,832 and pi of 4 6 It contains 74 nucleotides in the 5' untranslated region (UTR), and 229 nucleotides in the 3' UTR followed by a 24 nucleotide poly (A) tail
- a sequence AATAA nucleotides 1539- 1543 of SEQ ID NO 1 with the closest similarity to the animal and viral polyadenylation signal AATAAA (Proudfoot, N J and Brownlee, G G 1976 "3' Non-coding region sequences in eukaryotic messenger RNA," Nature 263 211-214) was located 103 bp upstream of the poly (A) tract
- RNA from mycelia grown for six days was used to synthesize first strand cDNA with oligo-dT primer (GibcoBRL, Gaithersburg, MD) in a twenty microliter (20 ⁇ l) reaction
- oligo-dT primer Gaithersburg, MD
- Two microliters (2 ⁇ l) of cDNA product were used as the template in PCR reactions with a cycling program similar to that described above
- Degenerate primers BTUB1 and BTUB4 generated a product of 1 0 kb
- BTUB1 and BTUB2 amplified a product of 0 5 kb
- the desired bands were gel-purified and ligated into the pPCRJ 1 vector Inserts were sequenced and used to design a gene-specific forward primer WT1L-U, 5 -CTAT
- first-strand cDNA was synthesized using primer WT1L-L and used as template in PCR reactions
- Primers WT1L-L and Cap-Switch generated a 0 95 kb product using Advantage- GC cDNA PCR kit (Clontech)
- Second strand cDNA was synthesized using CapFinder cDNA Library Construction kit (Clontech) With the resulting cDNAs as template, primers WTIL-U and CDS/3' (Clontech) generated two PCR products of 1 0 and 1 1 kb, respectively PCR fragments were gel-purified and cloned into the pPCRJ 1 vector In P.
- isolated tubulin cDNAs were of two types, one composite cDNA was 1650 bp long, and the other was 1537 bp long These two cDNAs differ only in the position at which the poly (A) tail has been added
- the region between 1 to 824 bp from the 5' RACE product was ligated at an internal Mfel site with the region between 825 to 1650 bp from the 1 1 kb 3' RACE product to form the composite 1650 bp cDNA designated as TUBB-pu, and its nucleotide and deduced amino acid sequence are shown in SEQ ID NO 3 and SEQ ID NO 4, respectively, as well as Fig 3
- This cDNA encodes a protein of 446 amino acids with a calculated Mr of 50,047 and pi of 4 6 It contains 91 nucleotides in the 5' UTR, and 199 nucleotides in the 3' UTR followed by a 19 nucleotide poly (A) tract Two imperfect polyadenylation signals were tentatively
- RNA from P. cinnamomi mycelia grown for 5 days was used to synthesize first-strand cDNA using oligo-dT primer in a 20 ⁇ l reaction
- One microliter (1 ⁇ l) of the cDNA product was used as template for PCR
- the cycling program comprised 30 cycles with an annealing temperature of 62°C Primer PCBTUBIU and PCBTUB4L generated an amplification product of 1 3 kb, and primer PCBTUB2U and PCBTUB4L generated an amplification product of 0 75 kb Primer PCBTUBIU or PCBTUB2U in combination with PCBTUB3L did not generate any product
- the desired bands were gel-purified using Geneclean (BIO101), ligated into the pPCRJ 1 vector (Invitrogen), and transformed into E.
- TUBB-pc are shown in SEQ ID NO 5 and SEQ ID NO 6, respectively, as well as Fig 4 It encodes a 444 amino acid long beta- tubulin protein, with a calculated Mr of 50 kDa, and a pi of 4 7 There are 10 nucleotides in the 5' untranslated region (UTR), and 5 nucleotides in the 3' UTR
- beta-tubulin from P. microspora SEQ ID NO 2
- P. ultimum SEQ ID NO 4
- P. cinnamomi SEQ ID NO 6
- FIG. 1 The deduced amino acid sequence of beta-tubulin from P. microspora (SEQ ID NO 2), P. ultimum (SEQ ID NO 4), and P. cinnamomi (SEQ ID NO 6) show features expected of beta-tubulin, as shown by an alignment with human ⁇ 2-tubulin (SEQ ID NO 24) and from beta-tubulins from Neurospora crassa (SEQ ID NO 25), A. mdulans benA (SEQ ID NO 26), and A.
- klebsiana depicted in Fig 6
- N-terminal amino Acids 1-205
- intermediate amino Acids 206-381
- C- terminal domains Nogales, et al 1998 Nature 391 199-203
- Their N-terminal domain contains conserved motifs important for GTP binding [Ala-Ile-Leu-Val-Asp-Leu-Glu-Pro- Gly-Thr-Met-Asp-Ser-Val-Arg or AILVDLEPGTMDSVR in single letter amino acid code (SEQ ID NO 28) and Ala-Val-Leu-Val-Asp-Leu-Glu-Pro-Gly-Thr-Met-Asp-Ser-Val-Arg or AVLVDLEPGTMDSVR in single letter amino acid code (SEQ ID NO 29) between Amino Acids 63-77 in SEQ ID NO 2, SEQ ID NO 4, SEQ ID NO 6, SEQ ID NO 24, SEQ ID NO 25, and SEQ ID NO
- beta-tubulins from different organisms are well conserved and exhibit at least 63% identity (Oakley, B R 1994 "Gamma-tubulin " In Hyams JS, Lloyd CW (eds) Microtubules. Wiley-Liss, New York, pp 38-45) Table I shows the percentage identity between the beta-tubulin amino acid sequence of P. microspora and P. ultimum with beta-tubulins of other organisms
- the beta-tubulin from P. microspora shares the highest identity (93-97%) with filamentous ascomycetes such as A flavus, A. mdulans benA and N.
- beta-tubulin from P. ultimum shows the highest identity (96-97%) with beta-tubulin from two oomycetes, A. klebsiana and P. cinnamomi, but shares limited identity (71-78%) with beta-tubulin from ascomycetes
- the beta-tubulin from P. ultimum also shows relatively high identity (86-93%) with beta-tubulin from non- fungal organisms such as the green algae C reinhardtn, the protozoa T. thermophila, the slime mold Physarum polycephalum, and various animals
- beta-tubulin a The amino acid sequences of beta-tubulin were retrieved from Genbank or Swiss- Prot. Pairwise identity was performed either with ClustalW or BLAST program.
- ultimum beta-tubulin was generated with primers WT1L-U and WT1L-L.
- PCR products were gel-purified and labeled with ⁇ - 32 P dCTP using Ready-to-Go beads (Pharmacia, Piscataway, NJ) by random priming. Probes were purified with Micro Bio-Spin columns (Biorad).
- the beta-tubulin probe hybridized to a single band from genomic DNA digested with EcoK , Hindlll, or Sail, and two bands from BamHl digested sample.
- the beta-tubulin probe hybridized to a single band from genomic DNA digested with BamHl, Sail, Pvul, or Pstl, and two bands from EcoRI digested sample. The sizes of these fragments match those predicted from the restriction endonuclease map of the corresponding cDNA clones. Since beta-tubulin genes are typically highly conserved, these results show that both P. microspora and P.
- ultimum contain a single copy of the beta- tubulin gene, consistent with previous reports that fungi generally have one, or at most a few, beta-tubulin genes (Neff, et al. 1983. "Isolation of the ⁇ -tubulin gene from yeast and demonstration of its essential function in vivo, " Cell 33:211-219; Hiraoka, et al. 1984. "The NDA3 gene of fission yeast encodes ⁇ -tubulin: a cold sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis," Cell 39:349-358; Orbach, et al. 1986. "Cloning and characterization of the gene for ⁇ -tubulin from a benomyl- resistant mutant o ⁇ Neurospora crassa and its use as a dominant selectable marker," Moi
- RNA from mycelia grown for 2, 5, 6, or 11 days were converted to cDNA, and used as a template in PCR reactions Using gene-specific primers NETUB5 and NETUB6, a 413 bp beta-tubulin cDNA fragment was amplified from mycelia grown in log (2, 5 and 6 days) or stationary phase (11 days), but not from a control reaction that contained no template
- the values of total and nonspecific binding were determined by binding of [ 3 H]taxol to fungal cells in the absence or presence of 100-fold excess unlabeled taxol. The specific binding of [ 3 H]taxol was then calculated as the difference between the amount of total and nonspecific binding.
- Fresh mycelia from P. microspora Ne32, and P. ultimum were grown in 140 milliliters modified MID media in Roux bottles at 24°C for 1-2 days. These actively growing mycelia were transferred to 50 milliliter conical tubes, and centrifuged at 7,000 rpm for 5 minutes at room temperature. Mycelia were suspended in 1 milliliter remaining MID medium and 1 milliliter fresh MID medium. Cells were either untreated or pretreated with the anti-mitotic drug thiabendazole to depolymerize microtubules. In pretreated cells, thiabendazole (in DMSO) was added to desired concentrations, and DMSO was adjusted to the same concentration in all samples. Samples were then incubated at room temperature for 3 hours.
- [ 3 H]taxol (3.7 X 10 7 Bq/ml, Moravek) was added to desired concentrations either in the presence or absence of 100-fold excess unlabeled taxol. Samples were incubated for 2 hours at room temperature, then quenched on ice. [ 3 H]taxol binding to P. microspora cells was performed in the presence of 0.1% (v/v) Triton X-100 to disrupt the cell membrane.
- Each GFC filter (Whatman; Clifton, NJ) was weighed using an analytical balance.
- GFC filters were dried at 80°C in an oven overnight and then weighed to obtain mycelia dry weight. Filters were counted for 5 minutes under 20 milliliters of Cytoscint (Fisher Scientific; Pittsburgh, PA) in a Beckman LS3801 scintillation counter. Specific binding was calculated as the difference between [ 3 H]taxol bound in the presence and absence of a 100-fold excess unlabeled taxol. Nonspecific binding was determined as binding in the presence of 100-fold excess unlabeled taxol.
- [ 3 H]taxol was found to bind specifically to P. ultimum cells, and the amount of specific binding increased as a function of [ 3 H]taxol concentration (Fig. 7A).
- the specific binding of [ 3 H]taxol decreased in a dose-dependent manner (Fig. 7B).
- treatment with 1 mM of thiabendazole completely abolished the specific binding of [ 3 H]taxol.
- Taxol stabilizes MTs by binding to beta-tubulin in assembled MTs, and its binding site has been characterized by photo cross-linking, electron crystallography, and mutagenesis Regions between Amino Acids 1-31 and 217-231 were found to cross-link to the C-3' and C-2 group of taxol, respectively (Rao, et al 1994 JBiol Chem 269 3132-3134, and Rao, et al 1995 JBiol Chem 270 20235-20238) Recently, the structure of the beta- tubulin dimer was solved by electron crystallography of zinc induced sheets of tubulin dimer (Nogales, et al 1998 Nature 391 199-203) Modeling of taxol bound to this structure shows that the C-3' group of taxol is near Amino Acids 15-25 of beta-tubulin (near the top of helix HI), and the C-2 group is near Amino Acids 212-222 (near helix H6 and the loop between H6-H7)
- Beta-tubulins from taxol-sensitive organisms such as human, pig, Drosophila, Xenopus, Tetrahymena and Physarum are highly conserved in taxol binding region I and II, and are identical between Amino Acids 15-25 and 217-222 (except a conserved substitution at Amino Acid 23 in Drosophila ⁇ 1)
- Beta-tubulin from P. ultimum displays only four substitutions compared to the above sequences, none of which occurs between Amino Acids 15-25 and 217-222 This similarity is consistent with the fact that P.
- ultimum like the animal organisms noted above, is taxol-sensitive Also consistent with this, previous biochemical studies of animal tubulins and data of [ 3 H]taxol binding to P. ultimum demonstrated herein (Fig 7A and 7B), show that taxol binds beta-tubulin in assembled MTs of these organisms (Kellogg, et al 1989 J Cell Biol 109 2977-2991, and Manfredi, J J and Horwitz, S B 1984 Pharmacol Ther 25 83-125) Beta-tubulin sequences from P. ultimum and A. klebsiana are identical in taxol binding region I and II except Amino Acid 219, but A.
- klebsiana is relatively resistant to taxol (IC50 > 11 7 ⁇ M) This reduced sensitivity is due in part to the fact that A. klebsiana contains an asparagine at Amino Acid 219, whereas P. ultimum, and six other beta-tubulins from taxol-sensitive organisms, have threonine
- Beta-tubulins from taxol-resistant organisms such as P. microspora, A. mdulans and S. cerevisiae are similar to each other within taxol binding region I and II, but differ from the above discussed sequences in seven positions (19, 22, 23, 25, 218, 219, and 221) within regions 15-25 and 217-222
- the [ 3 H]taxol binding data presented herein (Fig 7A and 7B), together with previous biochemical studies (Yoon, Y and Oakley, B R 1995 Biochem 34 6373-6381, and Barnes, et al 1992 Moi Biol Cell 3 29-47), show that beta-tubulins in assembled MTs of these organisms are unable to efficiently bind taxol
- These sequences contain the asparagine (or glutamine in the case of S.
- Asn219 (asparagine at Amino Acid 219) or Glu219 (glutamine at Amino Acid 219).
- the taxol sensitivity of P. cinnamomi is consistent with the presence of Thr219 in TUBB-pc (SEQ ID NO:6) and not Asn219 as previously reported by Weerakoon et al. The presence of Asn219 (asparagine at Amino Acid 219) found in P.
- microspora is consistent with the taxol resistance of this species Using the information that the presence of threonine at Amino Acid 219 in beta-tubulins corresponds to taxol-binding and taxol-sensitivity, taxol analogs or other compounds can be designed which mimic the interaction of taxol with beta- tubulin. Further, such information can also be used to generate mutant beta-tubulins resistant to taxol by substituting the threonine for another amino acid residue at Amino Acid 219.
- Example 6 Sensitivity to microtubule-depolymerization drugs.
- Colchicine, colcemid, nocodazole, and thiabendazole were obtained from Sigma Chemical Company (St. Louis, MO).
- a stock solution of colchicine was prepared in water, and other stock solutions in DMSO.
- An agar plug (6 mm in diameter) of fresh mycelia was transferred onto PDA plates containing 1 % (v/v) DMSO in the presence or absence of an anti-microtubule agent.
- Fungal colonies were grown at 24°C for 24 hours in the case of P. ultimum or 48 hours in the case of P. microspora and A. klebsiana. The growth inhibitory effect of these anti-mitotic agents was measured by the size of colony diameters.
- beta-tubulin from P. ultimum and A klebsiana differ at Amino Acids 165, 167 and 200 It has been previously shown that a phenylalanine-to- tyrosine change at Amino Acid 167 results in benzimidazole resistance in N. crassa
- Monoclonal or polyclonal antibodies can be raised against the following antigens 1) native beta-tubulins extracted from P. microspora, P. ultimum, or P. cinnamomi, 2) beta- tubulins of P. microspora, P. ultimum, or P. cinnamomi produced from a heterologous system such as E.
- the antibodies are used to interact with the above mentioned beta-tubulins using Elisa or Western blotting using standard protocols (Harlow, E D and Lane, D 1988 Antibodies: A Laboratory Manual)
- the antibodies which could distinguish the taxol binding beta-tubulin from the taxol non-binding beta-tubulin are selected as the reagent
- a specific example is to raise polyclonal or monoclonal antibodies to synthetic peptides corresponding to SEQ ID NO 4 or SEQ ID NO 6 which comprise at least one taxol binding region, for instance containing the taxol-binding region II comprising Thr219 or in which the Thr219 is replaced by Asn219/Gln219
- the ability of these antibodies to interact with beta-tubulin is examined using Elisa using standard protocols
- the antibody which can binds to peptide containing Thr219 but not to peptide containing Asn/Gln 219 is selected as the reagent which is specific for the taxol-binding site containing Thr 219.
- the antibody which specifically binds to the peptide containing Asn219/Gln 219 but not to the peptide containing Thr 219 is selected as the reagent which specifically recognizes taxol binding site devoid of Thr 219.
- Example 8 Screening Assays to Detect Beta-Tubulin in Matter
- compositions of matter contains beta- tubulin capable of binding taxol.
- assays are useful for screening a variety of compositions of matter, including living matter such as plants or microorganisms, or nonliving matter such as plant materials or patient samples for the presence of beta-tubulin.
- the first assay is performed using Northern or Southern hybridization method well known in the art (Sambrook, et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).
- the total RNA, mRNA or genomic DNA are isolated from the composition of matter and separated by electrophoresis.
- DNA, synthetic oligonucleotide, or RNA corresponding to the coding region or a portion of beta-tubulin (e.g., derived from SEQ ID NOJ, SEQ ID NO: 3 or SEQ ID NO:5) which comprises at least one taxol binding region will be used to synthesize isotopically labeled probes.
- Hybridization with a probe derived from SEQ ID NO: 1 will indicate beta-tubulin with high probability of taxol resistance.
- the hybridization with a probe derived from SEQ ID NOJ or SEQ ID NO: 5 will indicate beta-tubulin with a high probability of taxol sensitivity.
- the second assay is to use a PCR-based assay using standard protocols (Sambrook, et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989). Both genomic DNA or cDNA converted from total RNA or mRNA are used as template in a PCR assay. Gene-specific or degenerate primers corresponding to the coding region of beta-tubulin (e.g., derived from SEQ ID NO: 1, SEQ ID NOJ or SEQ ID NO:5) which comprises at least one taxol binding region will be synthesized. Only DNA containing the appropriate primer sequences will be amplified, and all other variations will be suppressed.
- beta-tubulin e.g., derived from SEQ ID NO: 1, SEQ ID NOJ or SEQ ID NO:5
- the amplification of PCR fragment of the predicted size using primers derived from SEQ ID NOJ or SEQ ID NO:5 but not from primers derived from SEQ ID NO: 1 will indicate high probability of taxol binding beta-tubulin.
- the amplification of a PCR fragment of the predicted size using primers derived from SEQ ID NO: 1 but not from primers derived from SEQ ID NOJ or SEQ ID NO:5 will indicate high probability of taxol non-binding beta-tubulin.
- the subsequent obtaining of the beta-tubulin sequence and examination of the presence or absence of Thr219 residue will provide further determination.
- the third assay is to use Elisa or Western blotting using standard protocols (Harlow, E.D. and Lane, D. 1988. Antibodies: A Laboratory Manual).
- Cell extracts of the composition of matter are prepared.
- Synthetic peptide, or native beta-tubulins extracted from P. microspora, P. ultimum, or P. cinnamomi, or produced from a heterologous system such as E. coli, yeast, and insect cells will be used to raise polyclonal or monoclonal antibodies.
- the antibodies will be used in the above mentioned Elisa or Western blotting.
- the antibody which recognizes the taxol binding from the non taxol binding is used in these assays.
- Example 9 Construction of Taxol-sensitive and Taxol-resistant Isogenic Strains
- P. ultimum contains a single beta-tubulin.
- its beta-tubulin gene or cDNA can be altered to change the Thr219 to a different residue, for instance to Asn219 or Gln219.
- This altered DNA sequence is cloned into a transformation vector, and used to transform the wild-type strain P. ultimum using established protocols (Balance, et al. 1985. Gene 36:321- 331). Homologous recombination between the wild-type beta-tubulin gene and the modified beta-tubulin in the vector occur. Transformed fungus are selected on media containing taxol.
- the taxol-resistant clones are selected and their beta-tubulin cDNA sequenced to confirm the absence of Thr 219.
- the taxol-resistant isogenic strain of P. cinnamomi is similarly constructed and used in screening assays as described in later examples. The only difference between these isogenic strains is that the taxol-sensitive strain is capable of binding to taxol due to the presence of Thr 219, and the taxol-resistant strain is incapable of binding to taxol due to the absence of Thr 219.
- Such taxol-resistant strains can be used in combination with the wild-type taxol-sensitive strains for screening as described in later examples.
- Example 10 Screening Assays to Detect Taxol or Taxol-like Compounds in Matter
- compositions of matter can be used to detect taxol or taxol-like compounds in a composition of matter. These assays are useful for screening a variety of compositions of matter, including living matter such as plants or microorganisms, or non-living matter such as plant materials, patient samples, or compound libraries for the presence of taxol or taxol-like compounds.
- Taxol inhibits the growth of both P. ultimum by binding to their beta-tubulin, while taxol does not affect the growth of P. microspora since it does not interact with its beta-tubulin.
- a composition of matter which is capable of the inhibition of P. ultimum, but not P. microspora has a high probability of containing taxol-or a taxol-like compound.
- An improved screening method uses taxol-sensitive and taxol-resistant isogenic strains of P. ultimum or P. cinnamomi as described in above example.
- the composition of matter is used to examine its effect on the growth of both the taxol-sensitive as well as the taxol-resistant strains.
- the inhibition of the taxol-sensitive strain but not the taxol-resistant strain indicates the presence of taxol or a taxol-like compound.
- the non- inhibition of both the taxol-sensitive and taxol-resistant strains indicates the absence of taxol or a taxol-like compound.
- composition of matter can be screened for the presence of taxol or taxol-like compounds based on their ability to promote the assembly of microtubules, as well as to stabilize assembled microtubules in conditions such as cold which otherwise cause depolymerization (Schiff, et al. 1979; Horwitz, 1981).
- the alpha- and beta-tubulins used in these assays can be from the following sources. 1) native microtubules consisting of beta- tubulins and alpha-tubulins extracted from P. ultimum or P. cinnamomi; 2) beta-tubulins extracted from P. ultimum or P.
- composition matter has the ability to promote the assembly of these MTs, as well as to prevent depolymerization of assembled MTs in conditions which otherwise cause depolymerization, the composition of matter is likely to contain taxol or a taxol-like compound. Meanwhile, these isolated compounds should be unable to promote the assembly of MTs as well as prevent the depolymerization of MTs which consist of beta-tubulin derived from P. microspora.
- An alternative screening method can be performed based on the competitive inhibition of [ 3 H]taxol binding to MTs in P. ultimum or P. cinnamomi by taxol or taxol-like compounds.
- the specific binding of [ 3 H]taxol to P. ultimum is performed as described in Example 5.
- the amount of [ 3 H]taxol specifically bound to P. ultimum in the absence of inhibitors is considered 100%.
- the composition of matter is added to the assay mixture, and the amount of [ 3 H]taxol specifically bound to P. ultimum in the presence of the composition of matter is measured. Reduction in the [ 3 H]taxol specific binding indicates that the composition of matter possesses taxol-like quality. If increased concentrations of the composition of matter can completely inhibit the [ 3 H]taxol binding, it will indicate that the compound likely binds to the same binding site in the beta-tubulin in MTs.
- compositions of matter for taxol or taxol-like compounds can be performed by one of the above methods.
- one of the first two methods is used for an initial screening, since they are simple to perform and easily handle large amounts of samples.
- the third and fourth method can be used for subsequent screening.
- Example 7 antibodies depicted in Example 7 which could distinguish taxol-binding beta-tubulin from the non-binding beta-tubulin are used.
- Cellular proteins are extracted from a tumor specimen from a patient sample to detect the presence of a beta- tubulin with either taxol-binding or non-binding capabilities.
- the taxol binding regions of taxol-sensitive and taxol-resistant beta-tubulins of the present invention are provided.
- SEQ ID NOJ SEQ ID NO:4, and SEQ ID NO:6
- SEQ ID NOJ SEQ ID NO:4
- SEQ ID NO:6 SEQ ID NO: 6
- monoclonal antibody probes are reacted with a patient sample, such as a tumor specimen, to detect the presence of a beta- tubulins with either taxol-binding or non-binding capabilities.
- Visualization of antibody- antigen binding is mediated through any means known in the art, e.g., secondary radiolabeled or fluorescent antibodies or colorimetric methods using peroxidase and/or alkaline phosphatase (Harlow, E.D. and Lane, D.
- beta-tubulins with taxol-binding capability i.e., taxol-sensitive beta- tubulins
- taxol-binding capability i.e., taxol-sensitive beta- tubulins
- non-binding taxol-resistant beta-tubulins and/or the absence of taxol-sensitive beta-tubulins corresponds to a diminished or lack of response to taxol therapy.
- P. ultimum and P. cinnamomi are plant pathogens which can cause crop damage and result in severe economical loss.
- P. ultimum causes root rot of beans
- P. cinnamomi causes root rot of Avacado (ATCC: Catalogue of Filamentous Fungi, 18th edition, 1991).
- Many of the oomycetes are also taxol-sensitive (Young, et al. 1992. "Antifungal properties of taxol and various analogues," Experientia 48:882-885). Two of these strains, P. ultimum and P. cinnamomi, contain threonine at Amino Acid 219.
- the biocontrol method of the present invention involves a two-step process: 1) the taxol sensitivity of the plant pathogen is determined and 2) if the plant pathogen is taxol- sensitive, a taxol-producing P. microspora is applied to the infected plants and surrounding soil as a source of growth-inhibiting taxol.
- the taxol sensitivity of the plant pathogen is first determined.
- One method of identifying taxol sensitivity is to determine the presence or absence of threonine at Amino Acid 219. If the identity of the pathogen is known, DNA and protein databases are searched to determine whether the beta-tubulin sequence has been reported, if so, the identity of Amino Acid 219 is determined from the database. If the pathogen's beta-tubulin sequence is unavailable, the cDNA sequence is isolated and analyzed to determine the identity of Amino Acid 219. The presence of threonine at Amino Acid 219 in the pathogen's beta-tubulin gene indicates sensitivity to taxol, and thus, the pathogen is designated as treatable by a taxol- producing P. microspora.
- Taxol sensitivity would have to be determined by other means such as taxol growth inhibition.
- Other screening methods presented herein for determining the presence of taxol-binding beta-tubulins can also be used.
- Example 13 Use of Crystal Structures in Design of Antineoplastic or Antifungal Drugs
- beta-tubulins are used to rationally design taxol- like compounds using methods known in the art (Ealick, et al. 1991. "Application of crystallographic and modeling methods in the design of purine nucleoside phosphorylase inhibitors," Science 88: 11540-11544; Rossman, et al. 1991. “Application of crystallography to the design of antiviral agents,” Infectious Agents and Disease 1 :3-10).
- application of the knowledge that Thr219 in the protein structure plays an important role in binding of taxol to taxol-like compounds can be critically applied to the development of drugs having taxol-like activities.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Botany (AREA)
- Food Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002367471A CA2367471A1 (en) | 1999-03-23 | 2000-03-23 | Fungal beta-tubulin genes |
| JP2000606753A JP2002541782A (en) | 1999-03-23 | 2000-03-23 | Fungal β-tubulin gene |
| EP00919658A EP1163345A1 (en) | 1999-03-23 | 2000-03-23 | Fungal beta-tubulin genes |
| AU40311/00A AU4031100A (en) | 1999-03-23 | 2000-03-23 | Fungal beta-tubulin genes |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12571799P | 1999-03-23 | 1999-03-23 | |
| US60/125,717 | 1999-03-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2000056894A1 true WO2000056894A1 (en) | 2000-09-28 |
Family
ID=22421074
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/007995 WO2000056894A1 (en) | 1999-03-23 | 2000-03-23 | Fungal beta-tubulin genes |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP1163345A1 (en) |
| JP (1) | JP2002541782A (en) |
| AU (1) | AU4031100A (en) |
| CA (1) | CA2367471A1 (en) |
| WO (1) | WO2000056894A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001013122A3 (en) * | 1999-08-19 | 2001-06-21 | Tularik Inc | Method for monitoring beta tubulin isotype modification |
| WO2003008965A1 (en) * | 2001-07-20 | 2003-01-30 | Consejo Superior De Investigaciones Científicas | Method of detecting and analysing paclitaxel-mimetic compounds |
| WO2003064617A3 (en) * | 2002-01-30 | 2004-04-01 | Univ Montana State | Pestalotiopsis microsporia isolates and compounds derived therefrom |
| CN104211776A (en) * | 2013-05-03 | 2014-12-17 | 南京工业大学 | Strong secretory signal peptide enhanced small peptide module sequence and application thereof |
| CN106868164A (en) * | 2017-03-23 | 2017-06-20 | 福建省农业科学院植物保护研究所 | A kind of primer and nested PCR detection method for detecting camphor tree phytophthora |
| CN112029887A (en) * | 2020-08-20 | 2020-12-04 | 中国医学科学院药用植物研究所 | Gene, primer, kit and method for detecting fusarium solani carbendazim resistant strain |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4771755B2 (en) * | 2005-03-28 | 2011-09-14 | アサヒ飲料株式会社 | Oligonucleotide, eukaryotic detection method and identification method using oligonucleotide |
| KR101150749B1 (en) | 2009-11-18 | 2012-06-08 | 주식회사 한국감염관리본부 | A card-type plate for detection of infectious pathogens which is easily attached and detached |
| CN110468233A (en) * | 2019-09-26 | 2019-11-19 | 四川农业大学 | A kind of primer, kit and the detection method of quick detection Machilus nanmu leaf blight |
-
2000
- 2000-03-23 EP EP00919658A patent/EP1163345A1/en not_active Withdrawn
- 2000-03-23 AU AU40311/00A patent/AU4031100A/en not_active Abandoned
- 2000-03-23 WO PCT/US2000/007995 patent/WO2000056894A1/en not_active Application Discontinuation
- 2000-03-23 CA CA002367471A patent/CA2367471A1/en not_active Abandoned
- 2000-03-23 JP JP2000606753A patent/JP2002541782A/en active Pending
Non-Patent Citations (7)
| Title |
|---|
| "Acremonium chrysogenum wild-type beta-tubulin.", GENESEQ DATABASE ; ACESSION NUMBER R40226 ; JP5192157, XP002143080 * |
| LONG DAVID M ET AL: "In vivo addition of telomeric repeats to foreign DNA generates extrachromosomal DNAs in the taxol-producing fungus Pestalotiopsis microspora.", FUNGAL GENETICS AND BIOLOGY, vol. 24, no. 3, August 1998 (1998-08-01), pages 335 - 344, XP000929414, ISSN: 1087-1845 * |
| MU J -H ET AL: "Analysis of beta-tubulin cDNAs from taxol-resistant Pestalotiopsis microspora and taxol-sensitive Pythium ultimum and comparison of the taxol-binding properties of their products.", MOLECULAR AND GENERAL GENETICS, vol. 262, no. 4-5, December 1999 (1999-12-01), pages 857 - 868, XP002143081, ISSN: 0026-8925 * |
| NOGALES EVA ET AL: "Structure of the alphabeta tubulin dimer by electron crystallography.", NATURE (LONDON), vol. 391, no. 6663, 8 January 1998 (1998-01-08), pages 199 - 203, XP002143079, ISSN: 0028-0836 * |
| RAO SRINIVASA ET AL: "Characterization of the Taxol Binding Site on the Microtubule: 2-(m-azidobenzoyl)taxol photolabels a peptide (amino acids 217-231) of beta-tubulin.", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 35, 1995, pages 20235 - 20238, XP002143078, ISSN: 0021-9258 * |
| WEERAKOON N D ET AL: "Isolation and characterization of the single beta-tubulin gene in Phytophthora cinnamomi.", MYCOLOGIA, vol. 90, no. 1, January 1998 (1998-01-01), pages 85 - 95, XP000929307, ISSN: 0027-5514 * |
| YOUNG D H ET AL: "Antifungal properties of taxol and various analogues.", EXPERIENTIA (BASEL), vol. 48, no. 9, 1992, pages 882 - 885, XP000929422, ISSN: 0014-4754 * |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001013122A3 (en) * | 1999-08-19 | 2001-06-21 | Tularik Inc | Method for monitoring beta tubulin isotype modification |
| US6306615B1 (en) * | 1999-08-19 | 2001-10-23 | Tularik Inc. | Detection method for monitoring β tubulin isotype specific modification |
| WO2003008965A1 (en) * | 2001-07-20 | 2003-01-30 | Consejo Superior De Investigaciones Científicas | Method of detecting and analysing paclitaxel-mimetic compounds |
| ES2180453A1 (en) * | 2001-07-20 | 2003-02-01 | Consejo Superior Investigacion | Method of detecting and analysing paclitaxel-mimetic compounds |
| US7476511B2 (en) | 2001-07-20 | 2009-01-13 | Jose Manuel Andreu Morales | Method of detecting and analyzing paclitaxel-mimetic compounds |
| WO2003064617A3 (en) * | 2002-01-30 | 2004-04-01 | Univ Montana State | Pestalotiopsis microsporia isolates and compounds derived therefrom |
| US7192939B2 (en) | 2002-01-30 | 2007-03-20 | Montana State University | Pestalotiopsis microsporia isolates and compounds derived therefrom |
| CN104211776A (en) * | 2013-05-03 | 2014-12-17 | 南京工业大学 | Strong secretory signal peptide enhanced small peptide module sequence and application thereof |
| CN106868164A (en) * | 2017-03-23 | 2017-06-20 | 福建省农业科学院植物保护研究所 | A kind of primer and nested PCR detection method for detecting camphor tree phytophthora |
| CN106868164B (en) * | 2017-03-23 | 2020-09-22 | 福建省农业科学院植物保护研究所 | A kind of primer and nested PCR detection method for detecting Phytophthora cinnamomea |
| CN112029887A (en) * | 2020-08-20 | 2020-12-04 | 中国医学科学院药用植物研究所 | Gene, primer, kit and method for detecting fusarium solani carbendazim resistant strain |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1163345A1 (en) | 2001-12-19 |
| CA2367471A1 (en) | 2000-09-28 |
| JP2002541782A (en) | 2002-12-10 |
| AU4031100A (en) | 2000-10-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Cramer Jr et al. | Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus | |
| Jain et al. | Targeted disruption of a G protein α subunit gene results in reduced pathogenicity in Fusarium oxysporum | |
| Studt et al. | Signaling governed by G proteins and cAMP is crucial for growth, secondary metabolism and sexual development in Fusarium fujikuroi | |
| Mukherjee et al. | cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens | |
| Kraus et al. | Calcium-and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth | |
| Osmani et al. | A single p34cdc2 protein kinase (encoded by nimX cdc2) is required at G1 and G2 in Aspergillus nidulans | |
| US6599705B2 (en) | Regulation of fungal gene expression | |
| EP1163345A1 (en) | Fungal beta-tubulin genes | |
| Zhang et al. | BcRPD3-mediated histone deacetylation is involved in growth and pathogenicity of Botrytis cinerea | |
| Cheng et al. | Cytochrome P450 and glutathione S-transferase confer metabolic resistance to SYP-14288 and multi-drug resistance in Rhizoctonia solani | |
| Gorfer et al. | Characterization of small GTPases Cdc42 and Rac and the relationship between Cdc42 and actin cytoskeleton in vegetative and ectomycorrhizal hyphae of Suillus bovinus | |
| Zhang et al. | FgRad50 regulates fungal development, pathogenicity, cell wall integrity and the DNA damage response in Fusarium graminearum | |
| Mu et al. | Analysis of β-tubulin cDNAs from taxol-resistant Pestalotiopsis microspora and taxol-sensitive Pythium ultimum and comparison of the taxol-binding properties of their products | |
| O'Mara et al. | The Fusarium graminearum transporters Abc1 and Abc6 are important for xenobiotic resistance, trichothecene accumulation, and virulence to wheat | |
| Zheng et al. | Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum | |
| JP2008521427A (en) | Fungal signaling and metabolic enzymes | |
| Del Sorbo et al. | Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea) | |
| Tanaka et al. | A nuclear protein NsiA from Epichloë festucae interacts with a MAP kinase MpkB and regulates the expression of genes required for symbiotic infection and hyphal cell fusion | |
| Zeng et al. | Inactivating the mannose-ethanolamine phosphotransferase Gpi7 confers caspofungin resistance in the human fungal pathogen Candida albicans | |
| Galli et al. | MIF-like domain containing protein orchestrates cellular differentiation and virulence in the fungal pathogen Magnaporthe oryzae | |
| Dickman | Colletotrichum | |
| Debieu et al. | Sterol biosynthesis inhibitors: C-4 demethylation | |
| Shin et al. | The CsSTE50 adaptor protein in mitogen-activated protein kinase cascades is essential for pepper anthracnose disease of Colletotrichum Scovillei | |
| AU771546B2 (en) | Compositions and methods for inhibiting human immunodeficiency virus infection by down-regulating human cellular genes | |
| Zhou et al. | RinRK1 Promotes Accumulation of Nod Factor Receptors in Nanodomain-like structures at the tip of infected root hairs |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| ENP | Entry into the national phase |
Ref document number: 2367471 Country of ref document: CA Ref country code: CA Ref document number: 2367471 Kind code of ref document: A Format of ref document f/p: F |
|
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 606753 Kind code of ref document: A Format of ref document f/p: F |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2000919658 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 09937052 Country of ref document: US |
|
| WWP | Wipo information: published in national office |
Ref document number: 2000919658 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 2000919658 Country of ref document: EP |