WO2000061992A1 - Unite de turbulence/insecteur de gaz multi-pales a effet tunnel pour bruleur - Google Patents
Unite de turbulence/insecteur de gaz multi-pales a effet tunnel pour bruleur Download PDFInfo
- Publication number
- WO2000061992A1 WO2000061992A1 PCT/US2000/009190 US0009190W WO0061992A1 WO 2000061992 A1 WO2000061992 A1 WO 2000061992A1 US 0009190 W US0009190 W US 0009190W WO 0061992 A1 WO0061992 A1 WO 0061992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- burner
- swirler
- guide pipe
- hollow guide
- swirl
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D1/00—Burners for combustion of pulverulent fuel
- F23D1/02—Vortex burners, e.g. for cyclone-type combustion apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
- F23C7/004—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/20—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
- F23D14/22—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
- F23D14/24—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D17/00—Burners for combustion simultaneously or alternately of gaseous or liquid or pulverulent fuel
Definitions
- the present invention relates generally to the field of industrial furnace and utility boiler fossil fuel burners and. in pa ⁇ icular, to a new and useful burner swirler with tunnels in the swirler blades for injecting a gaseous substance such as natural gas or oxygen into the combustion mix.
- Fossil fuel-burning industrial and utility power plants emit oxides of nitrogen (nitric oxide. NO and nitrogen dioxide. NO : ) - generally referred to as NO x - by oxidizing the nitrogen contents of the combustion air and/or the fuel.
- NO x is a known precursor to acid rain, photochemical smog and air pollution.
- Various methods have been formulated to reduce NO x emissions.
- One such NO x reduction method involves the use of natural gas in fossil fuel burners.
- U.S. Patent No. 5.807.094 to Sarv. an air-premixed natural gas burner is provided which reduces NO x formation resulting from partial pre-mixing of air and natural gas adjacent the burner throat.
- the entire disclosure of U.S. Patent No. 5.807.094 is hereby incorporated by reference as though fully set forth herein.
- U.S. Patent No. 5.470.224 to Bortz discloses a burner having natural gas injected between the blades of an air swirler for rapid mixing. A physical embodiment of the burner is sold by Todd Combustion Company under the name Rapid Mix Burner RMBTM.
- a swirler for use with liquid fuel burning burners.
- a swirler with a hollow guide pipe supporting multiple blades adjacent a furnace end is provided.
- the swirler blades each include tunnels in fluidic communication with a transport passage located inside the hollow guide pipe and openings in the swirler blade edges facing the furnace combustion chamber.
- the tunnels may be used to transport oxygen, natural gas, or other combustible gaseous substances.
- the tunnels may comprise a single passage or multiple passages interconnecting the transport passage to one or more openings in the trailing edge of the swirl blade.
- the swirler comprises an inner liquid fuel pipe inserted through the hollow guide pipe and forms an annular passage therebetween, and a liquid fuel atomizer is connected to the inner liquid fuel pipe and located at the furnace end of the hollow guide pipe.
- a liquid fuel atomizer is connected to the inner liquid fuel pipe and located at the furnace end of the hollow guide pipe.
- one or more tunnels are provided to fluidically interconnect the annular passage to the openings.
- Fig. 1 is a perspective view of a swirler according to the invention
- Fig. 2 is a side elevational view of a natural gas burner employing the swirler of the invention
- Fig. 3 is a side elevational view of a pulverized coal burner using the swirler of the invention; and Fig. 4 is a perspective view of an alternate embodiment of the swirler used with liquid fuel fired burners.
- FIG. 1 shows a swirler 10 for a burner (not shown in Fig. 1) having a hollow guide pipe 20 which defines a transport passage 22 therein and which also supports several swirl blades 30 adjacent a furnace end 50 of the hollow guide pipe 20.
- the swirl blades 30 of swirler 10 impart a desired spin to air or mixtures of pulverized coal and air which are conveyed past the swirler 10, thereby improving the air or air/fuel mixing adjacent the burner throat (not shown in Fig. 1).
- Furnace end 50 of swirler 10 is typically positioned very close to the burner throat opening into the associated furnace and is oriented facing the furnace combustion region.
- the transport passage 22 is used to carry gaseous substances, generally referred to as 40, into the combustion region to improve the combustion process.
- the gaseous substance 40 may advantageously comprise oxygen to facilitate combustion, or it may itself comprise a combustible gas such as, but not limited to, natural gas, propane, methane, refinery gas, etc.
- the swirl blades 30 are fixedly mounted to the outside of the hollow guide pipe 20 in a known manner and orientation, but the number of swirl blades 30 and their orientation can be varied as required depending on the application of the swirler 10 to a given burner.
- Each swirl blade 30 is provided with at least one hole or opening 32 in a trailing edge of the swirl blade 30 adjacent the furnace end 50 of the hollow guide pipe 20.
- a plurality of openings 32 is provided in each swirl blade 30.
- the opening(s) 32 are fluidically connected to the transport passage 22 by at least one tunnel 34 provided within the body of the swirl blade 30.
- a single tunnel 34 may be provided in each swirl blade 30, fluidically connecting the transport passage 22 with a single opening 32 so that the gaseous substances 40 within the transport passage 22 can be conveyed through the swirl blades 30 and out through the openings 32.
- various combinations, shapes, and configurations of the tunnel 34 may be provided in each swirl blade 30.
- each tunnel 34 could define a substantially straight flow passage from the transport passage 22 to a given opening 32, or the tunnel 34 could be provided with segments or be curved or provided with what could be defined as an inlet portion 36 and an outlet portion 38 as illustrated in Fig. 1.
- Multiple, independent tunnels 34 could be provided, one for each opening 32.
- a tunnel 34 could be provided with a single inlet portion 36 that could serve essentially as a manifold which feeds multiple outlet portions 38 and their associated openings 32.
- the inlet portions 36 could extend substantially radially outwards from a longitudinal axis A of the hollow guide pipe 20, with the outlet portions 38 extending substantially parallel to the longitudinal axis A.
- each defines a fluidic passage within the swirl blade 30 which fluidically conveys a gaseous substance 40 from the transport passage 22 to and at through the openings 32.
- Fig. 2 shows the swirler 10 of the invention used in a gas-fired burner 90 for a furnace.
- Combustion air 100 is provided to the outlet end of the burner 90 via conventional elements including a core air damper 92 and adjustable spin vanes 94 within a burner barrel 96.
- the burner 90 itself would not be located within a windbox 98.
- the swirler 10 has hollow guide pipe 20 supported along a central longitudinal axis A of the gas-fired burner 90.
- Swirl blades 30 are adjacent the furnace end 50 of the hollow guide pipe 20 and are positioned in close proximity to a burner throat 60 defined by burner quarl 62.
- the gaseous substance 40 is advantageously natural gas, and is supplied through the transport passage 22 in the guide pipe 20 to the tunnels 34 in the swirl blades 30.
- the swirler 10 is used in this configuration, it is thus possible to create a locally pre-mixed, fuel-rich zone which suppresses flame temperature and oxygen concentration adjacent the burner throat 60. These conditions result in lower NO x formation. Further NO x reduction can also be achieved by recirculating a portion of the combustion products from the furnace exit and mixing the recirculated combustion product gases with the combustion air 100 prior to entering the windbox 98.
- Fig. 3 illustrates use of the swirler 10 of the invention in a pulverized coal-fired burner 120.
- a mixture of primary air and pulverized coal 122 is provided to a coal supply nozzle 124.
- Secondary air 128 is provided via a control damper 130 to fixed and adjustable spin vanes 132, 124, respectively, located within a burner barrel 136.
- the swirler 10 and its swirl blades 30 swirls the PA/PC mixture passing thereacross.
- the swirler 10 positioned within the coal supply nozzle 124 adjacent the furnace throat 60 can be used to provide either natural gas or oxygen 40 through the hollow guide pipe 20 and tunnels 34 within the swirl blades 30 to the openings 32 at the furnace end 50 of the coal supply nozzle 124.
- the furnace end 50 of the hollow guide pipe 20 is again positioned near the end of the coal nozzle 124 and adjacent the furnace.
- Natural gas co-firing using the swirler 10 not only reduces NO x formation and unburned carbon emissions, but also improves flame stability at ⁇ iinimum firing rates. Other benefits include lower SO 2 and CO 2 emissions from the furnace. Injecting fuel gas 40 near the exit of the coal supply nozzle 124 from the swirler 10 scavenges oxygen from the NO x and converts it to N 2 (elemental nitrogen).
- the extent of natural gas co-firing can range from 10% to 100% of the combined heat release by natural gas and pulverized coal. At 10% natural gas co-firing, 90% of the heat release is supplied by coal.
- the gaseous substance 40 would preferably be oxygen and would be injected through the tunnels 34 in the swirl blades 30 to enhance the ignition and flame stability over a wide load range.
- a small amount of oxygen 40 can be injected through the transport passage 22 and conveyed via the tunnels 34 to the openings 32 in the swirl blades 30 to raise the elemental oxygen concentration to about 25-35 % by volume.
- oxygen concentration in atmospheric combustion air is only about 21 % by volume. The higher oxygen concentration improves the combustion reactions, fuel ignition, and flame stability.
- FIG. 4 An alternate embodiment of the swirler, generally referred to as 200, can be used with liquid fuel burners and is shown in Fig. 4.
- the swirler 200 is again provided with a hollow guide pipe 20, but in this case the hollow guide pipe 20 surrounds an inner liquid fuel supply pipe 210.
- An annular passage 212 is thus formed between the hollow guide pipe 20 and the inner liquid fuel supply pipe 210.
- Natural gas, oxygen or suitable gaseous substance 40 (as described above) can be supplied through the annular passage 212 to the openings 32 in the swirl blades 30 via the tunnels 34.
- the tunnels 34 are again formed as described above in connection with the first embodiment shown in Fig. 1.
- Inner liquid fuel supply pipe 210 is used to carry liquid fuel (such as fuel oil) and an atomizing medium, collectively designated 214, to a liquid fuel atomizer 216 provided in the furnace end 50 of the swirler 200.
- the present invention can be used with both staged (substoichiometric) and unstaged (stoichiometric or above) combustion.
- the present invention can be employed in retrofit applications to existing burners, as well as in new burner constructions.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU44517/00A AU4451700A (en) | 1999-04-09 | 2000-04-07 | Tunneled multi-blade swirler/gas injector for a burner |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US28947499A | 1999-04-09 | 1999-04-09 | |
| US09/289,474 | 1999-04-09 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2000061992A1 true WO2000061992A1 (fr) | 2000-10-19 |
Family
ID=23111700
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/009190 WO2000061992A1 (fr) | 1999-04-09 | 2000-04-07 | Unite de turbulence/insecteur de gaz multi-pales a effet tunnel pour bruleur |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU4451700A (fr) |
| WO (1) | WO2000061992A1 (fr) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6951454B2 (en) | 2003-05-21 | 2005-10-04 | The Babcock & Wilcox Company | Dual fuel burner for a shortened flame and reduced pollutant emissions |
| EP2657599A1 (fr) * | 2012-04-23 | 2013-10-30 | Babcock Borsig Steinmüller GmbH | Brûleur pour combustibles en forme de poussière et/ou de particules avec tourbillon variable |
| WO2015103832A1 (fr) * | 2014-01-13 | 2015-07-16 | 徐州燃控科技股份有限公司 | Brûleur à charbon pulvérisé à faible émission de nox dont la robustesse est accrue par classification |
| CN106838905A (zh) * | 2017-01-12 | 2017-06-13 | 中国科学院工程热物理研究所 | 具有分形叶片的喷嘴、喷嘴阵列和燃烧器 |
| WO2019134748A1 (fr) | 2018-01-04 | 2019-07-11 | Wärtsilä Moss As | Brûleur à deux combustibles pourvu d'agencement de turbulence |
| CN113277760A (zh) * | 2021-06-30 | 2021-08-20 | 崇左南方水泥有限公司 | 一种水泥窑协同处置电解锰渣的方法及其系统 |
| WO2022194991A1 (fr) * | 2021-03-17 | 2022-09-22 | Messer Austria Gmbh | Brûleur et procédé permettant la combustion d'un combustible contenant de l'hydrogène |
Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2105546A (en) * | 1937-01-21 | 1938-01-18 | Todd Comb Equipment Inc | Flame cone or diffuser |
| US2204719A (en) * | 1938-10-14 | 1940-06-18 | John S Zink | Combination gas and oil burner |
| US2253175A (en) * | 1940-10-19 | 1941-08-19 | Gerquest Arthur Steven | Fuel burner |
| US2276961A (en) * | 1941-02-18 | 1942-03-17 | Peabody Engineering Corp | Burner |
| US2276960A (en) * | 1941-02-18 | 1942-03-17 | Peabody Engineering Corp | Burner |
| US2531316A (en) * | 1946-08-09 | 1950-11-21 | John S Zink | Multiple fuel burner |
| AT198404B (de) * | 1956-12-18 | 1958-07-10 | Oesterreichische Koerting A G | Brenner für flüssige und gasförmige Brennstoffe |
| DE1218102B (de) * | 1961-10-05 | 1966-06-02 | Thaelmann Schwermaschbau Veb | Einrichtung zur Flammregelung bei Gasbrennern |
| FR1518756A (fr) * | 1967-01-18 | 1968-03-29 | Pillard Chauffage | Brûleur à gaz à flamme rayonnante |
| GB1183728A (en) * | 1968-02-17 | 1970-03-11 | Powrmatic Ltd | Improvements in and relating to Burners. |
| US3775039A (en) * | 1971-01-22 | 1973-11-27 | Gen Chauffage Ind Pillard Frer | Burners for liquid or gaseous fuels |
| US4105394A (en) * | 1976-10-18 | 1978-08-08 | John Zink Company | Dual pressure flare |
| US4472136A (en) * | 1982-10-13 | 1984-09-18 | Denis Lefebvre | Flame retention head assembly for fuel burners |
| US4899670A (en) * | 1988-12-09 | 1990-02-13 | Air Products And Chemicals, Inc. | Means for providing oxygen enrichment for slurry and liquid fuel burners |
| SU1548607A1 (ru) * | 1986-12-08 | 1990-03-07 | Среднеазиатский Филиал Всесоюзного Научно-Исследовательского Института Использования Газа В Народном Хозяйстве Подземного Хранения Нефти, Нефтепродуктов И Сжиженных Газов | Газова горелка |
| US5169304A (en) * | 1989-12-28 | 1992-12-08 | Institut Francais Du Petrole | Industrial liquid fuel burner with low nitrogen oxide emission, said burner generating several elementary flames and use thereof |
-
2000
- 2000-04-07 WO PCT/US2000/009190 patent/WO2000061992A1/fr active Application Filing
- 2000-04-07 AU AU44517/00A patent/AU4451700A/en not_active Abandoned
Patent Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2105546A (en) * | 1937-01-21 | 1938-01-18 | Todd Comb Equipment Inc | Flame cone or diffuser |
| US2204719A (en) * | 1938-10-14 | 1940-06-18 | John S Zink | Combination gas and oil burner |
| US2253175A (en) * | 1940-10-19 | 1941-08-19 | Gerquest Arthur Steven | Fuel burner |
| US2276961A (en) * | 1941-02-18 | 1942-03-17 | Peabody Engineering Corp | Burner |
| US2276960A (en) * | 1941-02-18 | 1942-03-17 | Peabody Engineering Corp | Burner |
| US2531316A (en) * | 1946-08-09 | 1950-11-21 | John S Zink | Multiple fuel burner |
| AT198404B (de) * | 1956-12-18 | 1958-07-10 | Oesterreichische Koerting A G | Brenner für flüssige und gasförmige Brennstoffe |
| DE1218102B (de) * | 1961-10-05 | 1966-06-02 | Thaelmann Schwermaschbau Veb | Einrichtung zur Flammregelung bei Gasbrennern |
| FR1518756A (fr) * | 1967-01-18 | 1968-03-29 | Pillard Chauffage | Brûleur à gaz à flamme rayonnante |
| GB1183728A (en) * | 1968-02-17 | 1970-03-11 | Powrmatic Ltd | Improvements in and relating to Burners. |
| US3775039A (en) * | 1971-01-22 | 1973-11-27 | Gen Chauffage Ind Pillard Frer | Burners for liquid or gaseous fuels |
| US4105394A (en) * | 1976-10-18 | 1978-08-08 | John Zink Company | Dual pressure flare |
| US4472136A (en) * | 1982-10-13 | 1984-09-18 | Denis Lefebvre | Flame retention head assembly for fuel burners |
| SU1548607A1 (ru) * | 1986-12-08 | 1990-03-07 | Среднеазиатский Филиал Всесоюзного Научно-Исследовательского Института Использования Газа В Народном Хозяйстве Подземного Хранения Нефти, Нефтепродуктов И Сжиженных Газов | Газова горелка |
| US4899670A (en) * | 1988-12-09 | 1990-02-13 | Air Products And Chemicals, Inc. | Means for providing oxygen enrichment for slurry and liquid fuel burners |
| US5169304A (en) * | 1989-12-28 | 1992-12-08 | Institut Francais Du Petrole | Industrial liquid fuel burner with low nitrogen oxide emission, said burner generating several elementary flames and use thereof |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6951454B2 (en) | 2003-05-21 | 2005-10-04 | The Babcock & Wilcox Company | Dual fuel burner for a shortened flame and reduced pollutant emissions |
| EP2657599A1 (fr) * | 2012-04-23 | 2013-10-30 | Babcock Borsig Steinmüller GmbH | Brûleur pour combustibles en forme de poussière et/ou de particules avec tourbillon variable |
| RU2546343C2 (ru) * | 2012-04-23 | 2015-04-10 | Бабкок Борсиг Штайнмюллер Гмбх | Горелка для пылевидного и/или имеющего форму частиц топлива с переменным завихрением |
| WO2015103832A1 (fr) * | 2014-01-13 | 2015-07-16 | 徐州燃控科技股份有限公司 | Brûleur à charbon pulvérisé à faible émission de nox dont la robustesse est accrue par classification |
| CN106838905A (zh) * | 2017-01-12 | 2017-06-13 | 中国科学院工程热物理研究所 | 具有分形叶片的喷嘴、喷嘴阵列和燃烧器 |
| CN106838905B (zh) * | 2017-01-12 | 2019-02-01 | 中国科学院工程热物理研究所 | 具有分形叶片的喷嘴、喷嘴阵列和燃烧器 |
| WO2019134748A1 (fr) | 2018-01-04 | 2019-07-11 | Wärtsilä Moss As | Brûleur à deux combustibles pourvu d'agencement de turbulence |
| WO2022194991A1 (fr) * | 2021-03-17 | 2022-09-22 | Messer Austria Gmbh | Brûleur et procédé permettant la combustion d'un combustible contenant de l'hydrogène |
| CN113277760A (zh) * | 2021-06-30 | 2021-08-20 | 崇左南方水泥有限公司 | 一种水泥窑协同处置电解锰渣的方法及其系统 |
| CN113277760B (zh) * | 2021-06-30 | 2023-08-15 | 崇左南方水泥有限公司 | 一种水泥窑协同处置电解锰渣的方法及其系统 |
Also Published As
| Publication number | Publication date |
|---|---|
| AU4451700A (en) | 2000-11-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2003237815B2 (en) | Low nox combustion | |
| US9822967B2 (en) | Apparatus for burning pulverized solid fuels with oxygen | |
| EP1303726B1 (fr) | Ensemble de tubes venturi, et bruleurs et procedes utilisant ces ensembles | |
| US6699031B2 (en) | NOx reduction in combustion with concentrated coal streams and oxygen injection | |
| US5269679A (en) | Staged air, recirculating flue gas low NOx burner | |
| US5240410A (en) | Dual fuel low nox burner | |
| CA2188778A1 (fr) | Appareil et procede permettant de reduire les rejets de nox, de co et d'hydrocarbures lors de la combustion de combustibles gazeux | |
| CA2509631C (fr) | Procede et appareil d'enrichissement de l'oxygene dans les gaz de transport de combustible | |
| WO2000061992A1 (fr) | Unite de turbulence/insecteur de gaz multi-pales a effet tunnel pour bruleur | |
| US7367798B2 (en) | Tunneled multi-swirler for liquid fuel atomization | |
| KR102317704B1 (ko) | 재순환 포트를 포함하는 초저질소산화물 연소장치 | |
| US20090029302A1 (en) | System of close coupled rapid mix burner cells | |
| EP1559956A2 (fr) | Ensemble de tubes venturi et brûleurs et procedes utilisant cet ensemble | |
| ZA200504684B (en) | Process and apparatus for oxygen enrichment in fuel conveying gases |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: JP |