WO2000066737A9 - VARIANTES DE TRAF2 AGISSANT COMME INHIBITEURS DE LA VOIE DE SIGNALISATION TNF-ALPHA (TNF α) - Google Patents
VARIANTES DE TRAF2 AGISSANT COMME INHIBITEURS DE LA VOIE DE SIGNALISATION TNF-ALPHA (TNF α)Info
- Publication number
- WO2000066737A9 WO2000066737A9 PCT/US2000/009178 US0009178W WO0066737A9 WO 2000066737 A9 WO2000066737 A9 WO 2000066737A9 US 0009178 W US0009178 W US 0009178W WO 0066737 A9 WO0066737 A9 WO 0066737A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- traf2tr
- tnf
- traf2td
- composition
- dna
- Prior art date
Links
- 102000004393 TNF receptor-associated factor 2 Human genes 0.000 title abstract description 80
- 108090000925 TNF receptor-associated factor 2 Proteins 0.000 title abstract description 80
- 230000019491 signal transduction Effects 0.000 title abstract description 13
- 239000003112 inhibitor Substances 0.000 title description 5
- 210000004027 cell Anatomy 0.000 claims description 127
- 108090000623 proteins and genes Proteins 0.000 claims description 109
- 238000000034 method Methods 0.000 claims description 84
- 108020004414 DNA Proteins 0.000 claims description 69
- 239000013604 expression vector Substances 0.000 claims description 49
- 239000002299 complementary DNA Substances 0.000 claims description 47
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 42
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 39
- 230000001105 regulatory effect Effects 0.000 claims description 39
- 229920001184 polypeptide Polymers 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 35
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 30
- 201000010099 disease Diseases 0.000 claims description 27
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 27
- 230000037361 pathway Effects 0.000 claims description 27
- 230000002401 inhibitory effect Effects 0.000 claims description 26
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 18
- 239000003937 drug carrier Substances 0.000 claims description 18
- 230000004054 inflammatory process Effects 0.000 claims description 10
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 9
- 238000006467 substitution reaction Methods 0.000 claims description 9
- 206010063837 Reperfusion injury Diseases 0.000 claims description 8
- 230000001419 dependent effect Effects 0.000 claims description 8
- 206010019280 Heart failures Diseases 0.000 claims description 6
- 230000006907 apoptotic process Effects 0.000 claims description 6
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 5
- 230000000747 cardiac effect Effects 0.000 claims description 5
- 238000011161 development Methods 0.000 claims description 5
- 230000007170 pathology Effects 0.000 claims description 5
- 208000037260 Atherosclerotic Plaque Diseases 0.000 claims description 4
- 206010007559 Cardiac failure congestive Diseases 0.000 claims description 4
- 208000011231 Crohn disease Diseases 0.000 claims description 4
- 208000009329 Graft vs Host Disease Diseases 0.000 claims description 4
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 4
- 201000004681 Psoriasis Diseases 0.000 claims description 4
- 238000002399 angioplasty Methods 0.000 claims description 4
- 230000005779 cell damage Effects 0.000 claims description 4
- 208000037887 cell injury Diseases 0.000 claims description 4
- 210000004351 coronary vessel Anatomy 0.000 claims description 4
- 210000002889 endothelial cell Anatomy 0.000 claims description 4
- 208000024908 graft versus host disease Diseases 0.000 claims description 4
- 230000037417 hyperactivation Effects 0.000 claims description 4
- 208000012947 ischemia reperfusion injury Diseases 0.000 claims description 4
- 230000002107 myocardial effect Effects 0.000 claims description 4
- 208000010125 myocardial infarction Diseases 0.000 claims description 4
- 238000012261 overproduction Methods 0.000 claims description 4
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 4
- 238000001356 surgical procedure Methods 0.000 claims description 4
- 238000002054 transplantation Methods 0.000 claims description 4
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims description 4
- 208000031225 myocardial ischemia Diseases 0.000 claims description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims 1
- 102100040247 Tumor necrosis factor Human genes 0.000 abstract description 75
- 230000014509 gene expression Effects 0.000 abstract description 39
- 230000027455 binding Effects 0.000 abstract description 17
- 230000004044 response Effects 0.000 abstract description 4
- 239000013598 vector Substances 0.000 description 92
- 150000007523 nucleic acids Chemical group 0.000 description 42
- 102000004169 proteins and genes Human genes 0.000 description 42
- 241000701161 unidentified adenovirus Species 0.000 description 41
- 238000010367 cloning Methods 0.000 description 39
- 235000018102 proteins Nutrition 0.000 description 39
- 102000039446 nucleic acids Human genes 0.000 description 30
- 108020004707 nucleic acids Proteins 0.000 description 30
- 238000012217 deletion Methods 0.000 description 27
- 230000037430 deletion Effects 0.000 description 27
- 239000013612 plasmid Substances 0.000 description 27
- 235000001014 amino acid Nutrition 0.000 description 26
- 108020004999 messenger RNA Proteins 0.000 description 25
- 241000700605 Viruses Species 0.000 description 24
- 229940024606 amino acid Drugs 0.000 description 24
- 150000001413 amino acids Chemical class 0.000 description 24
- 238000001727 in vivo Methods 0.000 description 23
- 230000004913 activation Effects 0.000 description 20
- 108091026890 Coding region Proteins 0.000 description 19
- 239000013603 viral vector Substances 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 230000002950 deficient Effects 0.000 description 16
- 230000010076 replication Effects 0.000 description 16
- 238000001890 transfection Methods 0.000 description 14
- 238000000338 in vitro Methods 0.000 description 13
- 239000003550 marker Substances 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 13
- 239000012634 fragment Substances 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 239000002773 nucleotide Substances 0.000 description 11
- 230000003612 virological effect Effects 0.000 description 11
- 241000702421 Dependoparvovirus Species 0.000 description 10
- 238000013459 approach Methods 0.000 description 10
- 125000003729 nucleotide group Chemical group 0.000 description 10
- 102000005962 receptors Human genes 0.000 description 10
- 108020003175 receptors Proteins 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 239000011701 zinc Substances 0.000 description 10
- 108091034117 Oligonucleotide Proteins 0.000 description 9
- 238000013519 translation Methods 0.000 description 9
- 102000053602 DNA Human genes 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 8
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- 230000000295 complement effect Effects 0.000 description 8
- 230000001177 retroviral effect Effects 0.000 description 8
- 230000002103 transcriptional effect Effects 0.000 description 8
- 239000013599 cloning vector Substances 0.000 description 7
- 238000005538 encapsulation Methods 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 241001430294 unidentified retrovirus Species 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 108010055717 JNK Mitogen-Activated Protein Kinases Proteins 0.000 description 6
- 238000001415 gene therapy Methods 0.000 description 6
- 238000001638 lipofection Methods 0.000 description 6
- -1 phosphate ester Chemical class 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 108010022394 Threonine synthase Proteins 0.000 description 5
- 102000000160 Tumor Necrosis Factor Receptor-Associated Peptides and Proteins Human genes 0.000 description 5
- 108010080432 Tumor Necrosis Factor Receptor-Associated Peptides and Proteins Proteins 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 102000004419 dihydrofolate reductase Human genes 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000028709 inflammatory response Effects 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 4
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 4
- 102000019145 JUN kinase activity proteins Human genes 0.000 description 4
- 238000010240 RT-PCR analysis Methods 0.000 description 4
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000002337 electrophoretic mobility shift assay Methods 0.000 description 4
- 230000005714 functional activity Effects 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 4
- 241000701447 unidentified baculovirus Species 0.000 description 4
- 241001529453 unidentified herpesvirus Species 0.000 description 4
- 108020004635 Complementary DNA Proteins 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 3
- 108091061960 Naked DNA Proteins 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 241000714474 Rous sarcoma virus Species 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 241000700618 Vaccinia virus Species 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 108700004026 gag Genes Proteins 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000001524 infective effect Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 238000007899 nucleic acid hybridization Methods 0.000 description 3
- 201000008968 osteosarcoma Diseases 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000013605 shuttle vector Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- 210000002845 virion Anatomy 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 2
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 2
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- 241000450599 DNA viruses Species 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 108010013369 Enteropeptidase Proteins 0.000 description 2
- 102100029727 Enteropeptidase Human genes 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101001040800 Homo sapiens Integral membrane protein GPR180 Proteins 0.000 description 2
- 101000950669 Homo sapiens Mitogen-activated protein kinase 9 Proteins 0.000 description 2
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 2
- 206010061216 Infarction Diseases 0.000 description 2
- 102100021244 Integral membrane protein GPR180 Human genes 0.000 description 2
- 102000013462 Interleukin-12 Human genes 0.000 description 2
- 108010065805 Interleukin-12 Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 102100037809 Mitogen-activated protein kinase 9 Human genes 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 2
- 102100030124 N-myc proto-oncogene protein Human genes 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- 108700005077 Viral Genes Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 102000035181 adaptor proteins Human genes 0.000 description 2
- 108091005764 adaptor proteins Proteins 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 230000007910 cell fusion Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000013377 clone selection method Methods 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 108700004025 env Genes Proteins 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 230000007574 infarction Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229940117681 interleukin-12 Drugs 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000001155 isoelectric focusing Methods 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 102000006240 membrane receptors Human genes 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- SXTAYKAGBXMACB-UHFFFAOYSA-N methionine sulfoximine Chemical compound CS(=N)(=O)CCC(N)C(O)=O SXTAYKAGBXMACB-UHFFFAOYSA-N 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- 210000000107 myocyte Anatomy 0.000 description 2
- 108010065781 myosin light chain 2 Proteins 0.000 description 2
- 210000004897 n-terminal region Anatomy 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 108010079892 phosphoglycerol kinase Proteins 0.000 description 2
- 108700004029 pol Genes Proteins 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 108091006024 signal transducing proteins Proteins 0.000 description 2
- 102000034285 signal transducing proteins Human genes 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- VLCQZHSMCYCDJL-UHFFFAOYSA-N tribenuron methyl Chemical compound COC(=O)C1=CC=CC=C1S(=O)(=O)NC(=O)N(C)C1=NC(C)=NC(OC)=N1 VLCQZHSMCYCDJL-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- 208000010370 Adenoviridae Infections Diseases 0.000 description 1
- 206010060931 Adenovirus infection Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 241000701157 Canine mastadenovirus A Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 101150044789 Cap gene Proteins 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 102100038909 Caveolin-2 Human genes 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- 241000252233 Cyprinus carpio Species 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010001515 Galectin 4 Proteins 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000720950 Gluta Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000740981 Homo sapiens Caveolin-2 Proteins 0.000 description 1
- 101000979342 Homo sapiens Nuclear factor NF-kappa-B p105 subunit Proteins 0.000 description 1
- 101100537863 Homo sapiens TRAF2 gene Proteins 0.000 description 1
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 1
- 241000598171 Human adenovirus sp. Species 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 108700002232 Immediate-Early Genes Proteins 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- ZQISRDCJNBUVMM-UHFFFAOYSA-N L-Histidinol Natural products OCC(N)CC1=CN=CN1 ZQISRDCJNBUVMM-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- ZQISRDCJNBUVMM-YFKPBYRVSA-N L-histidinol Chemical compound OC[C@@H](N)CC1=CNC=N1 ZQISRDCJNBUVMM-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 241000713862 Moloney murine sarcoma virus Species 0.000 description 1
- 102100026925 Myosin regulatory light chain 2, ventricular/cardiac muscle isoform Human genes 0.000 description 1
- 102400000108 N-terminal peptide Human genes 0.000 description 1
- 101800000597 N-terminal peptide Proteins 0.000 description 1
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 101710182846 Polyhedrin Proteins 0.000 description 1
- 101710093543 Probable non-specific lipid-transfer protein Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 241001112090 Pseudovirus Species 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 241001068295 Replication defective viruses Species 0.000 description 1
- 101100221606 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) COS7 gene Proteins 0.000 description 1
- 101000955420 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Xanthine phosphoribosyltransferase 1 Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241000713896 Spleen necrosis virus Species 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 102000004398 TNF receptor-associated factor 1 Human genes 0.000 description 1
- 108090000920 TNF receptor-associated factor 1 Proteins 0.000 description 1
- 101150113594 TRAF2 gene Proteins 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 208000011589 adenoviridae infectious disease Diseases 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000011748 cell maturation Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 101150098622 gag gene Proteins 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000001280 germinal center Anatomy 0.000 description 1
- 102000005396 glutamine synthetase Human genes 0.000 description 1
- 108020002326 glutamine synthetase Proteins 0.000 description 1
- 230000001456 gonadotroph Effects 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011102 hetero oligomerization reaction Methods 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000012966 insertion method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 230000006548 oncogenic transformation Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 101150066583 rep gene Proteins 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/715—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
- C07K14/7151—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for tumor necrosis factor [TNF], for lymphotoxin [LT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/08—Vasodilators for multiple indications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Definitions
- Tumor necrosis factor a is an intercellular mediator of immune responses produced by a variety of cells, including activated macrophages and monocytes. The responses triggered by TNF a are initiated through its interaction with two distinct TNF ⁇ cell surface receptors: TNFcuRl and TNF ⁇ R2. TNF binds to these cell surface receptors and triggers activation of transcriptional factors, for example, nuclear factor KB (NFKB) , which regulate the expression of a variety of immune and inflammatory response genes.
- NFKB nuclear factor KB
- TNF o; receptors Upon the binding of TNF ⁇ , the TNF o; receptors interact through their cytoplasmic domains with a variety of intra ⁇ ellular signal translation proteins.
- One group of intracellular signal translation proteins known to associate with the TNF o: receptors are the tumor necrosis factor receptor associated factors known as the "TRAF" family of receptor proteins.
- the TRAF family is comprised of a number of homologous proteins which share common structural features and which associate with and transduce signals from TNF receptor proteins.
- the TRAF proteins lack enzymatic activity motifs and instead appear to function as adapter proteins which couple the receptors to downstream signaling cascades.
- TRAF2 One member of the family, TRAF2, associates with a number of TNF ⁇ receptor family proteins, including TNF ⁇ Rl, TNFo:R2, CD40 and CD30.
- TRAF2 direct binding of at least eight intracellular molecules has been identified.
- TRAF2 has been shown to be critical for TNF a mediated activation of a variety of transcriptional factors, in particular, NFKB and the C-jun N-terminal kinase (JNK/SAPK) and these transcription factors are in turn responsible for expression of an immune/inflammatory response.
- TNF binding triggers an inflammatory response which ultimately results in a disease state. Accordingly, it would be desirable to develop means for preventing diseases related to TNF . receptor binding. In particular, it would be desirable to find a way to prevent activation of an inflammatory response that would otherwise be initiated by TNF ⁇ activation.
- the present invention provides polypeptides which are based on TRAF2 and which are capable of inhibiting the TNF o; signaling pathways in order to treat and prevent diseases linked to TNF binding.
- TRAF2 TRAF2-FL
- TRAF2 TRAF2-FL
- These proteins have an N-terminal region with a zinc ring finger motif, followed by an array of zinc finger-like structures.
- the zinc finger region is followed by a. conserved (TRAF) domain which is composed of two subdomains: an N-terminal domain and a C-terminal domain.
- the C-terminal domain is involved in receptor association and homo-, as well as hetero-oligomerization of TRAFs, and serves as a docking site for a variety of other signaling proteins.
- TRAF2 follows the general structure of the TRAF proteins described above. A number of studies have attempted to correlate the structural subdomains of the TRAF2 protein with the protein ' s functions .
- TRAF2 is composed of modular domains mediating distinct activities.
- the authors determined that the N-terminal ring finger and 2 adjacent zinc fingers of TRAF2 are required for NFKB activation and that the distinct TRAF-N and TRAF-C subdomains within the TRAF domain appear to independently mediate self association and interaction with TRAF1.
- TRAF2 is the bifurcation point of two kinase cascades leading to activation of NFKB and JNK. This observation supports a functional model for TRAF2 and other members of the TRAF family as adaptor proteins with docking sites for additional signaling proteins that initiate parallel downstream responses.
- TRAF2 containing the TRAF domain, but lacking amino terminal residues 1-80 had been previously shown to inhibit TNF induced NFKB activation. The authors demonstrated that this TRAF2 variant also blocked JNK activation by TNF .
- TRAF2A The cDNA of TRAF2A is identical to TRAF2 with the exception of an extra 21 bp of sequence encoding a seven amino acid insert within the TRAF2A ring finger domain.
- TRAF2A mRNA expression is regulated in a tissue specific manner and TRAF2A protein is capable of binding to the cytoplasmic domain of TNF R2. They also found that, in contrast to TRAF2 , TRAF2A is unable to stimulate NFKB activity when overexpressed in 293 cells and acts as a dominant inhibitor of TNF ⁇ R2 dependent NFKB activation.
- variants of TRAF2 in particular, a variant that includes a naturally occurring splice variation (TRAF2TR) and a variant that includes the naturally occurring splice variation and a deletion in the N-terminal region of TRAF2 (TRAF2TD) , provide for inhibition of TNF ⁇ x signal transduction and the associated immune inflammatory responses.
- TRAF2TR naturally occurring splice variation
- TRAF2TD naturally occurring splice variation and a deletion in the N-terminal region of TRAF2
- the TRAF2TR and TRAF2TD DNA are cDNAs.
- the present invention provides a TRAF2TR polypeptide which is capable of inhibiting tumor necrosis factor (TNF ) regulated pathways comprising an amino acid sequence as shown in Figure 2b and a TRAF2TD polypeptide which is capable of inhibiting TNF ⁇ regulated pathways comprising an amino acid sequence as shown in Figure 3b.
- TNF tumor necrosis factor
- Another aspect of the present invention provides a method of inhibiting TNF or regulated pathways in a patient comprising introducing into the body of the patient a composition which is capable of inhibiting the TNF or regulated pathway and which comprises an expression vector capable of expressing TRAF2TR polypeptide, an expression vector capable of expressing TRAF2TD polypeptide, a TRAF2TR polypeptide and a pharmaceutically acceptable carrier, or a TRAF2TD polypeptide and a pharmaceutically acceptable carrier.
- Still another aspect of the present invention provides a method of inhibiting diseases involving overproduction of TNF comprising administering to a patient a composition which is capable of inhibiting TNF ⁇ regulated pathways and which comprises an expression vector capable of expressing TRAF2TR, an expression vector capable of expressing TRAF2TD, a TRAF2TR polypeptide and a pharmaceutically acceptable carrier, or a TRAF2TD polypeptide and a pharmaceutically acceptable carrier.
- Yet another aspect of the present invention provides a method of inhibiting TNF ⁇ pathologies involving hyperactivation of nuclear factor ⁇ B(NF ⁇ B) dependent genes comprising administering to a patient a composition which is capable of inhibiting TNF regulated pathways and which comprises an expression vector capable of expressing TRAF2TR, an expression vector capable of expressing TRAF2TD, a TRAF2TR polypeptide and a pharmaceutically acceptable carrier, or a TRAF2TD polypeptide and a pharmaceutically acceptable carrier.
- the present invention also provides a method of inhibiting inflammatory processes involving tumor necrosis factor comprising administering to a patient a composition which is capable of inhibiting ⁇ TNF o; regulated pathways and which comprises an expression vector capable of expressing TRAF2TR, an expression vector capable of expressing TRAF2TD, a TRAF2TR polypeptide and a pharmaceutically acceptable carrier, or a TRAF2TR polypeptide and a pharmaceutically acceptable carrier.
- the inflammatory process is selected from the group consisting of Crohn's disease, psoriasis, rheumatoid arthritis, graft versus host disease, inflammatory bowel disease, non-insulin dependent diabetes and neurogenerative diseases.
- the inflammatory process is a cardiovascular disease selected from the group consisting of (a) cardiac ischemia-reperfusion injury following myocardial infarction, coronary artery bypass surgery, cardiac transplantation or ischemia-reperfusion injury in the CNS following stroke; (b) the progression and rupture of advanced coronary atherosclerotic plaques; (c) the development and progression of congestive heart failure; (d) endothelial cell injury following balloon angioplasty; and (e) apoptotic cell death of myocardial cells.
- a cardiovascular disease selected from the group consisting of (a) cardiac ischemia-reperfusion injury following myocardial infarction, coronary artery bypass surgery, cardiac transplantation or ischemia-reperfusion injury in the CNS following stroke; (b) the progression and rupture of advanced coronary atherosclerotic plaques; (c) the development and progression of congestive heart failure; (d) endothelial cell injury following balloon angioplasty; and (e) apoptotic cell death
- Another aspect of the present invention provides a TRAF2TR/2TD variant polypeptide which is capable of inhibiting TNF -regulated pathways.
- the present invention provides the advantage of being able to treat a wide variety of disease states using variants of a naturally-occurring protein which interferes with an early event common to these disease states, i.e., TNF signal transduction.
- FIG 1 is a schematic structure of full length TRAF2 (TRAF2-FL) and the alternatively spliced variant, TRAF2TR.
- Figures 2a and 2b are the nucleic acid sequence (2a) of TRAF2TR cDNA and the amino acid sequence of TRAF2TR (2b) .
- Figures 3a and 3b are the nucleic acid sequence of TRAF2TD (3a) and the amino acid sequence of TRAF2TD (3b) .
- Figures 4a and 4b are the nucleic acid (4a) and amino acid (4b) alignment of spliced TRAF2 (TRAF2TR) and full length TRAF2.
- FIG. 5 illustrates the tissue distribution of TRAF2TR variant mRNA.
- Lanes 1 - control TRAF2FL cDNA; 2 - control TRAF2 spliced variant (TRAF2TR) cDNA; 3 - Jurkat; 4 - HeLa cell line; 5 - Thymus; 6 - placenta; 7 - Thymus; 8 * - spleen; 9 - ovary; 10 - control TRAF2FL.
- Figure 6 illustrates the immunodetection of Myc-fused TRAF2FL and TRAF2TR in transfected HeLa cells. Lanes: 1- p ⁇ DNA3 vector; 2-myc-TRAF2FL; 3-myc-TRAF2TR.
- FIG. 7 illustrates an electrophoretic mobility shift assays (EMSA) that was performed using an NFKB UAS probe.
- Nuclear extracts from cells overexpressing FL TRAF2 (lanes 3 and 4) show TNF-alpha induced shifts significantly stronger in comparison to control (lanes 1 and 2) .
- TRAF2-TR overexpression blocks formation of NF-kB and, as a result, no shift has been detected in TNF stimulated cells (lanes 5 and 6) .
- a "cloning vector” is a replicon, for example, a plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.
- a “replicon” is any genetic element (e.g., plasmid, chromosome, virus) that functions as an autonomous unit of DNA replication in vivo, i .e . , capable of replication under its own control.
- a cloning vector may be capable of replication in one cell type and expression in another (“shuttle vector”) .
- the cloning vector is capable of expression in a host cell and the "expression vector" is able to express
- TRAF2TR or TRAF2TD at sufficient levels to interfere with a TNF ⁇ regulated pathway in the cell.
- a “cassette” refers to a segment of DNA that can be inserted into a vector at one or more specific restriction sites.
- the segment of DNA encodes a polypeptide of interest and the cassette and restriction sites are designed to ensure insertion of the cassette in the proper reading frame for transcription and translation.
- a cell has been "transfected” by exogenous or heterologous DNA when such DNA has been introduced inside the cell.
- a cell has been "transformed” by exogenous or heterologous DNA when the transfected DNA effects a phenotypic change.
- the transforming DNA can be integrated (covalently linked) into chromosomal DNA making up the genome of the cell.
- nucleic acid molecule refers to the phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidine; "RNA molecules”) or of deoxyribo- nucleosides (deoxyadenosine, deoxyguanosine, deoxythymidine, or deoxycytidine; "DNA molecules”) or of any phosphoester analogs thereof, such as phosphorothioates and thioesters, in either single stranded form or a double-stranded helix. Double stranded DNA-DNA, DNA-RNA and RNA-RNA helices are possible.
- nucleic acid molecule and in particular DNA or RNA molecule, refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double- stranded DNA found, inter alia , in linear or circular DNA molecules (e.g., restriction fragments), plasmids, and chromosomes.
- sequences may be described herein according to the normal convention of giving only the sequence in the 5 ' to 3 ' direction along the nontranscribed strand of DNA (i.e., the strand having a sequence homologous to the mRNA) .
- a "recombinant DNA molecule” is a DNA molecule that has undergone a molecular biological manipulation.
- a nucleic acid molecule is "hybridizable" to another nucleic acid molecule, for example, a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength (see Sambrook et al., infra) .
- the conditions of temperature and ionic strength determine the "stringency" of the hybridization.
- Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible.
- the appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art.
- oligonucleotide refers to a nucleic acid, generally of at least 18 nucleotides, that is hybridizable to a genomic DNA molecule, a cDNA molecule, or an mRNA molecule encoding TRAF2. Oligonucleotides can be labeled, e.g., with 32 P-nucleotides or nucleotides to which a label, such as biotin, has been covalently conjugated. In one embodiment, a labeled oligonucleotide can be used as a probe to detect the presence of a nucleic acid encoding TRAF2.
- oligonucleotides (one or both of which may be labeled) can be used as PCR primers, either for cloning full length or a fragment of TRAF2, or to detect the presence of nucleic acids encoding TRAF2.
- an oligonucleotide can form a triple helix with a TRAF2 DNA molecule.
- oligonucleotides are prepared synthetically, preferably on a nucleic acid synthesizer. Accordingly, oligonucleotides can be prepared with non- naturally occurring phosphoester analog bonds, such as thioester bonds, etc.
- a DNA "coding sequence” is a double-stranded DNA sequence which is transcribed and translated into a polypeptide in a cell in vitro or in vivo when placed under the control of appropriate regulatory sequences.
- the DNA coding sequences and the appropriate regulatory sequences are preferably provided in an expression vector. The boundaries of the coding sequence are determined by a start codon at the 5 1 (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus.
- a coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e . g. , mammalian) DNA, and even synthetic DNA sequences. If the coding sequence is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.
- Transcriptional and translational control sequences are DNA regulatory sequences, such as, for example, promoters, enhancers, and terminators that provide for the expression of a coding sequence in a host cell.
- polyadenylation signals are control sequences.
- a "promoter sequence” is a DNA regulatory region capable of binding RNA poly erase in a cell and initiating transcription of a downstream (3 1 direction) coding sequence.
- the promoter sequence is bounded at its 3 ' terminus by the transcription initiation site and extends upstream (5* direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background.
- a transcription initiation site (conveniently defined for example, by mapping with nuclease SI) , as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase.
- a coding sequence is "under the control" of transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then spliced (if the coding sequence contains introns) and translated into the protein encoded by the coding sequence.
- sequence similarity refers to the degree of identity or correspondence between nucleic acid or amino acid sequences of proteins that may or may not share a common evolutionary origin.
- sequence similarity refers to the degree of identity or correspondence between nucleic acid or amino acid sequences of proteins that may or may not share a common evolutionary origin.
- “highly,” may refer to sequence similarity and not a common evolutionary origin.
- TNF regulated pathway and related terms refer to signal transduction pathways involving the binding of TNF to a member of the tumor necrosis factor receptor amily (TNFR) .
- TNFR tumor necrosis factor receptor amily
- corresponding to is used herein to refer to similar or homologous sequences, whether the exact position is identical or different from the molecule to which the similarity or homology is measured.
- a nucleic acid or amino acid sequence alignment may include spaces.
- corresponding to refers to the sequence similarity and not the numbering of the amino acid residues or nucleotide bases.
- splice variant refers to a polypeptide encoded by an mRNA produced by alternative processing of the full length mRNA encoded by a gene or genes resulting in an mRNA that contains one or more deletions relative tb the full length mRNA for the genes.
- Embodiments of the Invention relate to two variants of TRAF2 which inhibit TNF signaling pathways.
- One embodiment is an RNA processing splice variant of TRAF2 referred to hereinafter as "TRAF2 truncated” or “TRAF2TR” .
- Another embodiment is based on TRAF2TR having a deletion of amino acid residues 1 to 87 relative to TRAF2TR and is referred to as "TRAF2 truncated-deleted” or "TRAF2TD” .
- Both TRAF2TR and TRAF2TD have the ability to inhibit TNF or signaling pathways.
- TRAF2TD is a particularly preferred embodiment due to its ability to dramatically reduce the response to TNF ⁇ binding. There follows hereinbelow a description of the structure of these two embodiments, followed by a discussion on how to prepare these embodiments.
- TRAF2TR The cDNA sequence for this splice variant is presented in Figure 2a and the amino acid sequence is presented in Figure 2b.
- Figure 1 which shows TRAF2TR schematically, it can be seen that the deletion removes amino acid residues 123 to 201 of TRAF2FL, which encompasses the C- terminal portion of Zn finger domain 1 and all of the Zn fingers 2 and 3 , as well as the N-terminal residues of Zn finger 4. ,
- the TRAF2TR embodiment of the present invention can be prepared by any suitable method, including a variety of methods known to those of skill in the art. Teachings on the isolation, cloning and sequencing DNA can be found in a variety of sources. General molecular biology, microbiology and recombinant DNA techniques within the skill of the art, are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (herein "Sambrook et al., 1989”); DNA Cloning: A Practical Approach, Volumes • I and II (D.N. Glover ed. 1985); Oligonucleotide Synthesis (M.J.
- nu ⁇ leotide sequences encoding TRAF2TR and TRAF2TD can be cloned readily or prepared from wild type
- TRAF2 and inserted into an appropriate vector for expression of these proteins in vitro or in vivo.
- TRAF2 for a description of methods relating to cloning cDNA and expression vectors, see Sambrook et al., 1989, supra .
- TRAF2 DNA may be obtained by standard procedures known in the art from cloned DNA (e.g., a DNA "library"). It is obtained preferably from a cDNA library prepared from tissues with high level expression of the protein (e.g., cells of lymphoid origin, in particular, B cells or an osteosarcoma cell line, for example, human osteosarcoma SAOS-2 (ATCC No. HTB-85) that exhibit high levels of expression of TRAF2 or TRAF2TR) .
- cloned DNA e.g., a DNA "library”
- a cDNA library prepared from tissues with high level expression of the protein (e.g., cells of lymphoid origin, in particular, B cells or an osteosarcoma cell line, for example, human osteosarcoma SAOS-2 (ATCC No. HTB-85) that exhibit high levels of expression of TRAF2 or TRAF2TR) .
- the DNA may also be obtained by the cloning of genomic DNA, or fragments thereof, purified from the desired cell (See, for example, Sambrook et al., 1989, supra; Glover, D.M. (ed. ) , 1985, DNA Cloning: A Practical Approach, MRL Press, Ltd., Oxford, U.K. Vol. I, II) or by chemical synthesis.
- Clones derived from genomic DNA may contain regulatory and intron DNA regions in addition to coding regions; clones derived from cDNA will not contain intron sequences.
- the present invention is based in part on the isolation of a splice variant (TRAF2TR) of full length TRAF2 , it is desirable to obtain a cDNA encoding the TRAF2TR sequence.
- RNAs messenger RNA
- cDNAs double-stranded DNA copies
- RT-PCR reverse transcriptase-polymerase chain reaction
- the double-stranded cDNA mixture is inserted into cloning vehicles by any one of many known techniques, depending at least in part on the particular vehicle used.
- Various insertion methods are discussed in considerable detail in Methods in Enzymology, 68, 16-18 (1980), as well as in Sambrook et al., 1989, supra .
- the cloning vehicle is used to transform a suitable host.
- These cloning vehicles usually impart an antibiotic resistance trait on the host.
- Such hosts are generally prokaryotic cells and only a few of the host cells contain the desired cDNA.
- the transfected host cells constitute a gene "library", providing a representative sample of the mRNAs present in the cell from which the mRNAs were isolated.
- an appropriate oligonucleotide sequence may be prepared, preferably synthesized as discussed above, and used to identify clones containing TRAF2 sequences.
- individual transformed or transfected cells are grown as colonies on a nitrocellulose filter paper. The colonies are lysed and the DNA is bound tightly to the filter paper by heating. The filter paper is then incubated with a labeled oligonucleotide probe which is complementary to TRAF2. DNA fragments with substantial homology to TRAF2 will hybridize to the probe. The greater the degree of homology, the more stringent hybridization conditions can be used.
- the probe hybridizes with the cDNA for which it is complementary. It can be identified by autoradiography or by chemical reactions that identify the presence of the probe.
- the corresponding clones are characterized in order to identify one or a combination of clones which contain all of the structural information for the desired protein.
- the nucleic acid sequence coding for the protein of interest is isolated and reinserted into an expression vector.
- the expression vector brings the cloned gene under the regulatory control of specific prokaryotic or eukaryotic control elements which allow the efficient expression (transcription and translation) of the ds-cDNA.
- the gene encodes a protein product having the isbelectric, electrophoretic, amino acid composition, or partial amino acid sequence of the TRAF2 protein as disclosed herein.
- the presence of the gene may be detected by assays based on the physical, chemical, or immunological properties of its expressed product.
- cDNA clones, or DNA clones can be selected which produce a protein that has similar or identical properties to TRAF2TR with regard to electrophoretic migration, isoelectric focusing, non- equilibrium pH gel electrophoresis, proteolytic digestion, or antigenicity.
- TRAF2TD has a deletion of amino acids 1 to 87 and the corresponding nucleotides encoding these amino acids.
- the DNA sequence for TRAF2TD is presented in Figure 3a and the amino acid sequence is presented in Figure 3b.
- TRAF2TD embodiment Any suitable method can be used to prepare the TRAF2TD embodiment, including, for example, a variety of methods based on the information provided above. In particular, there are a number of methods for creating a truncated version of TRAF2TR containing a deletion of amino acids 1 to 87.
- TRAF2TR cDNA is used as a template or PCR using a 5 ' primer encompassing nucleotides 262 to 280 of the TRAF2 full length coding sequence (ATGAGTTCGGCCTTCCCAGAT wherein the ATG codon was included to create a translation initiation site; the 3' primer was TTA TAG CCC TGT CAG GTC CAC.
- the resulting construct begins at amino acid 88 of full length TRAF2 and contains the 123 to 201 amino acid deletion of TRAF2TR.
- TRAF2TR can be prepared using methods such as those described above for the preparation of TRAF2TD.
- the present invention includes within its scope allelic variants, substitution, addition and deletion mutant variants, analogs, and derivatives of TRAF2TR or TRAF2TD (hereinafter referred to as "TRAF2TR/2TD variants") and homologs from other species that have the same or homologous functional activity as TRAF2TR.
- genes having deletions or substitutions that increase the ability to inhibit TNF signaling pathways are utilized in the practice of the invention.
- Preparation or isolation of TRAF2TR/2TD variants are within the scope of the present invention. Accordingly, the scope of the present invention includes TRAF2TR/2TD variants which are functionally active, i.e., capable of exhibiting one or more functional activities associated with TRAF2TR.
- TRAF2TR/2TD variants can be made by altering encoding nucleic acid sequences by substitutions, additions or deletions that provide for functionally equivalent molecules.
- TRAF2TR/2TD embodiments are made that have enhanced or increased functional activity relative to TRAF2TR or TRAF2TD.
- nucleotide coding sequences which encode substantially the same amino acid sequence as TRAF2TR, including an amino acid sequence that contains a single amino acid variant, may be used in the practice of the present invention.
- DNA sequences which encode substantially the same amino acid sequence as TRAF2TR, including an amino acid sequence that contains a single amino acid variant, may be used in the practice of the present invention.
- These include, but are not limited to, allelic genes, homologous genes from other species, and nucleotide sequences comprising all or portions of TRAF2TR which are altered by the substitution of different codons that encode the same amino acid residue within the sequence, thus producing a silent change.
- the TRAF2TR/2TD variants of the invention include, but are not limited to, those containing, as a primary amino acid sequence, all or part of the amino acid sequence of a TRAF2TR protein including altered sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a conservative amino acid substitution.
- one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity, which acts as a functional equivalent, resulting in a silent alteration.
- Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs.
- the nonpolar (hydrophobic) amino acids include alanine, leu ⁇ ine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine.
- Amino acids containing aromatic ring structures are phenylalanine, tryptophan, and tyrosine.
- the polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine.
- the positively charged (basic) amino acids include arginine, lysine and histidine.
- the negatively charged (acidic) amino acids include aspartic acid and gluta ic acid. Such alterations will not be expected to affect apparent molecular weight as determined by polyacrylamide gel electrophoresis, or isoelectric point.
- Amino acid substitutions may also be introduced to substitute an amino acid with a particularly preferable property.
- a Cys may be introduced a potential site for disulfide bridges with another Cys.
- a His may be introduced as a particularly "catalytic" site (i.e., His can act as an acid or base and is the most common amino acid in biochemical catalysis) .
- Pro may be introduced because of its particularly planar structure, which induces ⁇ -turns in the protein ' s structure.
- TRAF2TR/2TD variants of the invention can be produced by various methods known in the art. The manipulations which result in their production can occur at the gene or protein level.
- the cloned TRAF2 gene sequence can be modified by any of numerous strategies known in the art (Sambrook et al., 1989, supra) . The sequence can be cleaved at appropriate sites with restriction endonuclease(s) , followed by further enzymatic modification if desired, isolated, and ligated in vitro.
- TRAF2TR/2TD In the production of the gene encoding a TRAF2TR/2TD embodiment, care should be taken to ensure that the modified gene remains within the same translational reading frame as the TRAF2TR gene, uninterrupted by translational stop signals, in the gene region where the desired activity is encoded.
- the TRAF2TR/2TD-encoding nucleic acid sequence can be mutated in vitro or in vivo to create and/or destroy translation, initiation, and/or termination' sequences, or to create variations in coding regions and/or form new restriction endonuclease sites or destroy preexisting ones, to facilitate further in vitro modification.
- mutations enhance the functional activity of the mutated TRAF2TR gene product.
- Any technique for mutagenesis known in the art can be used, including but not limited to, in vitro site-directed mutagenesis (Hutchinson, C. , et al., 1978, J. Biol . Chem.
- the identified and isolated DNA sequence can be inserted into an appropriate cloning/expression vector (hereinafter
- vectors to facilitate modifications to the sequence or expression of the protein.
- vectors typically include multiple cloning sites, promoters, sequences which facilitate replication in a host cell and selection markers.
- Any suitable vector can be used.
- vectors that can be used include, but are not limited to, plasmids or modified viruses.
- the vector is typically compatible with a given host cell into which the vector is introduced to facilitate replication of the vector and expression of the encoded proteins.
- the insertion of a DNA sequence into a given vector can, for example, be accomplished by ligating the DNA fragment into a cloning vector which has complementary cohesive termini. However, if the complementary restriction sites used to fragment the DNA are not present in the cloning vector, the ends of the DNA molecules may be enzymatically modified.
- any site desired may be produced by ligating nucleotide sequences (linkers) onto the DNA termini; these ligated linkers may comprise specific chemically synthesized oligonucleotides encoding restriction endonuclease recognition sequences.
- Useful vectors may consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences. Examples of specific vectors useful in the practice of the present invention include, but are not limited to, E. coli bacteriophages, for example, lambda derivatives, or plasmids, for example, pBR322 derivatives or pUC plasmid derivatives, e . g.
- plasmids such as RP4; phage DNAs, e.g., the numerous derivatives of phage 1, e.g., NM989, and other phage DNA, e . g.
- yeast vectors such as the 2 jum plasmid or derivatives thereof
- vectors useful in eukaryotic cells for example, vectors useful in insect cells, such as baculovirus vectors, vectors useful in mammalian cells
- vectors derived from combinations of plasmids and phage DNAs, plasmids that have been modified to employ phage DNA or other expression control sequences and the like.
- Yeast vectors that can be used according to the invention include, but are not limited to, the non-fusion pYES2 vector (Xbal, Sphl, Shol, Not!, GstXI , EcoRI , BstXI, Bam ⁇ l , Sacl , Kpnl, and Hindlll cloning sit; Invitrogen) or the fusion pYESHisA, B, C (Xbal, Sphl, Shol, Notl, BstXI, FCoRI, BamHl, Sacl , Kpnl , and fl ndlll cloning site, N- terminal peptide purified with ProBond resin and cleaved with enterokinase; Invitrogen) .
- the non-fusion pYES2 vector Xbal, Sphl, Shol, Not!, GstXI , EcoRI , BstXI, Bam ⁇ l , Sacl , Kpnl,
- Baculovirus vectors that can be used in the practice of the invention include a variety of vectors, including both non-fusion transfer vectors, for example, pVL941 (BamHl cloning site; Summers), pVL1393 (Ba El , Smal , Xbal , EcoRl , Notl, Xmalll, Bglll, and Pstl cloning site; Invitrogen) , pVL1392 (Bglll, Pstl, Notl, Xmalll, EcoRl , Xbal , Smal , and BamHl cloning site; Summers and Invitrogen) , and pBlueBadll (BamHl, Bglll, Pstl, Ncol, and Hindlll cloning site, with blue/white recombinant screening possible; Invitrogen) , and fusion transfer vectors, for example, pAc700 (BamHl and Kpn
- Mammalian vectors contemplated for use in the invention include, for example, vectors with inducible promoters, for example, the dihydrofolate reductase (DHFR) promoter, e.g., any expression vector with a DHFR expression vector, or a DHFR/methotrexate co-amplification vector, for example, pED (Pstl, Sail , Sbal , Smal , and EcoRl cloning site, with the vector expressing both the cloned gene and DHFR ⁇ see Kaufman, Current Protocols in Molecular Biology, 16.12 (1991).
- DHFR dihydrofolate reductase
- a glutamine synthetase/methionine sulfoximine co-amplification vector for example, pEE14 (iindlll, Xbal , Smal , Sbal , EcoRl , and Bell cloning site, in which the vector expresses glutamine synthase and the cloned gene; Celltech) .
- a vector that directs episomal expression under control of Epstein Barr Virus can be used, for example, pREP4 (BamEl , Sfil , Xhol , Notl , Nhel , Hindlll , Nhel , Pvul ⁇ , and Kpnl cloning site, constitutive Rous Sarcoma Virus Long Terminal Repeat (RSV-LTR) promoter, hygromycin selectable marker; Invitrogen) , pCEP4 (BamHl, Sfil , Xhol , Notl , N ely Hindlll , Nhel , Pvull , and Kpnl cloning site, constitutive human cytomegalovirus (hCMV) immediate early gene, hygromycin selectable marker; - Invitrogen), pMEP4 (Kpnl , Pvul , Nhel , Hindlll , Notl , Xhol ,
- RSV-LTR Rous Sar
- Selectable mammalian expression vectors for use in the invention include pRc/CMV (Hindlll, BstXI, Notl, Sbal, and Apal cloning site, G418 selection; Invitrogen), pRc/RSV (Hindlll, Spel, BstXI, Notl , Xbal cloning site, G418 selection; Invitrogen), pcDNA3 (Hindlll, Kpnl, BamHI , BstXI , EcoRl , EcoRV , BstXI [repeat], Notl , Xhol , Xbal , Apal , cloning sites, G418, ampicillin selection, Invitrogen) and others.
- Vaccinia virus mammalian expression vectors for use according to the invention include but are not limited to pSCll (Smal cloning site, TK- and ⁇ -gal selection) , pMJ601 (Sail, Smal, Afll, Narl, BspMII, BamHI, Apal , Nhel , SacII , Kpnl , and Hindlll cloning site; TK- and ⁇ -gal selection) , and pTKgptFIS (EcoRl , Pstl , Sail , Accl , Hindll , Sbal , BamHI, and Hpa cloning site, TK or XPRT selection) .
- pSCll Mal cloning site, TK- and ⁇ -gal selection
- pMJ601 Sail, Smal, Afll, Narl, BspMII, BamHI, Apal , Nhel , SacII ,
- a variety of methods may be used to confirm that the desired DNA sequence encoding TRAF2TR, TRAF2TD or TRAF2TR/2TD variants have been cloned into a vector.
- one or more of the following approaches is used: (a) PCR amplification of the desired plasmid DNA or specific mRNA, (b) nucleic acid hybridization, (c) presence or absence of selection marker gene functions, (d) analyses with appropriate restriction endonucleases, and (e) expression of inserted sequences.
- the nucleic acids can be amplified by PCR to provide for detection of the amplified product.
- the presence of a foreign gene inserted in an expression vector can be detected by nucleic acid hybridization using probes comprising sequences that are homologous to an inserted marker -gene.
- the recombinant vector/host system can be identified and selected based upon the presence or absence of certain "selection marker" gene functions (e .g. , ⁇ - gala ⁇ tosidase activity, thymidine kinase activity, resistance to antibiotics, transformation phenotype, occlusion body formation in baculovirus, etc.) caused by the insertion of foreign genes in the vector.
- recombinants containing the TRAF2TR insert can be identified by the absence of the selection marker gene function.
- recombinant expression vectors are identified by digestion with appropriate restriction enzymes.
- recombinant expression vectors can be identified by assaying for the activity, biochemical, or immunological characteristics of the gene product expressed by the recombinant, provided that the expressed protein assumes a functionally active conformation.
- the nucleotide sequence coding for TRAF2TR or TRAF2TD or a TRAF2TR/2TD variant thereof can be inserted into an expression vector which contains the necessary elements for the transcription and translation of the inserted protein- coding sequence. Such elements are termed herein a
- the nucleic acid encoding the polypeptides of the invention is operationally associated with a promoter in an expression vector of the invention.
- a promoter in an expression vector of the invention.
- Both cDNA and genomic sequences can be cloned and expressed under control of such regulatory sequences.
- An expression vector also preferably includes a replication origin.
- the necessary transcriptional and translational signals can be provided on a recombinant expression vector, or they may be supplied by the native gene encoding TRAF2 and/or its flanking regions. Any of the methods previously described for the insertion of DNA fragments into a cloning vector may be used to construct expression vectors containing a gene consisting of appropriate transcriptional/translational control signals and the protein coding sequences. These methods may include in vitro recombinant DNA and synthetic techniques and in vivo recombination (genetic recombination) .
- TRAF2TR expression may be controlled by any promoter/enhancer element known in the art, but these regulatory elements must be functional in the host selected for expression.
- Promoters which may be used to control TRAF2TR gene expression include, but are not limited to, the SV40 early promoter region (Benoist and Cha bon, 1981, Nature 290:304-310), the promoter contained in the 3 ' long terminal repeat of Rous sarcoma virus (Yamamoto, et al., 1980, Cell 22:787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, Proc. Natl . Acad. Sci . U.S.A.
- the regulatory sequences of the metallothionein gene (Brinster et al., 1982, Nature 296:39-42); prokaryotic expression vectors for example, the ⁇ -lactamase promoter (Villa-Kamaroff , et al. , 1978, Proc. Natl . Acad . Sci . U.S .A. , 75:3727-3731), or the tac promoter (DeBoer, et al. , 1983, Proc . Natl . Acad . Sci . U.S .A.
- elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-646; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant . Biol . , 50:399-409; MacDonald, 1987, Hepatology 7:425-515); insulin gene control region which is active in pancreatic beta cells (Hanahan,
- albumin gene control region which is active in liver (Pinkert et al., 1987, Genes and Devel . 1:268-276) , alpha-fetoprotein gene control region which is active in liver (Kru lauf et al., 1985, Mol . Cell . Biol . , 5:1639-1648; Hammer et al., 1987, Science 235:53-58), alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al., 1987, Genes and Devel . , 1:161-171), beta-globin gene control region which is active in myeloid cells (Mogra et al.
- Vectors can be introduced into host cells by any suitable method, including, e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, lipofection (lysosome fusion) , use of a gene gun, or a DNA vector transporter (see, e.g., Wu et al., 1992, J. Biol . Chem . 267:963-967; Wu and Wu, 1988, J. Biol . Chem . 263:14621-14624; Hartmut et al., Canadian Patent Application No. 2,012,311, filed March 15, 1990), so that many copies of the gene sequence are generated.
- a suitable method including, e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, lipofection (lysosome fusion) , use of a gene gun, or a DNA vector transporter (see, e.
- the cloned gene is contained on a shuttle vector plasmid, which provides for expansion in a cloning cell, e .g. , E. coli , and facilitates purification for subsequent insertion into an appropriate expression cell line.
- a shuttle vector which is a vector that can replicate in more than one type of organism, can be prepared for replication in both E. coli and Saccharomyces cerevisiae by linking sequences from an E. coli plasmid with sequences from the yeast 2 /xm plasmid.
- Potential host cell systems include but are not limited to mammalian host cell systems infected with virus (e . g. , vaccinia virus, adenovirus, etc.); insect host cell systems infected with virus (e.g., baculovirus); microorganisms such as yeast containing yeast vectors; or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA.
- virus e.g. vaccinia virus, adenovirus, etc.
- insect host cell systems infected with virus e.g., baculovirus
- microorganisms such as yeast containing yeast vectors
- bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA e.g., bacteriophage, DNA, plasmid DNA, or cosmid DNA.
- the expression elements of vectors vary in their strengths and specificities. Depending on the host cell system utilized, any one of a number of suitable transcription and translation elements may be used
- a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired.
- Different host cells have characteristic and specific mechanisms for the translational and post- translational processing and modification of proteins.
- Appropriate cell lines or host systems can be chosen to ensure the desired modification and processing of the foreign protein expressed.
- Expression in yeast can produce a biologically active product.
- Expression in eukaryotic cells can increase the likelihood of "native" folding.
- expression in mammalian cells can provide a tool for reconstituting, or constituting, TRAF2TR-inhibiting activity.
- different vecto /host expression systems may affect processing reactions, such as proteolytic cleavages, to a different extent.
- Expression vectors of the invention can be used, as pointed out above, both to transfect cells for screening or biological testing of modulators of TRAF2TR activity.
- a recombinant TRAF2TR, TRAF2TD or TRAF2TR/2TD variant of the invention may be expressed chromosomally, after integration of the coding sequence by recombination.
- any of a number of amplification systems may be used to achieve high levels of stable gene expression (See Sambrook et al., 1989, supra) .
- the cell into which the recombinant vector comprising the nucleic acid encoding TRAF2TR " is introduced is cultured in an appropriate cell culture medium under conditions that provide for expression of TRAF2TR by the cell.
- Soluble forms of the protein can be obtained by collecting culture fluid, or solubilizing inclusion bodies, e . g. , by treatment with detergent, and if desired sonication or other mechanical processes, as described above.
- the solubilized or soluble protein can be isolated using various techniques, including polyacrylamide gel electrophoresis (PAGE) , isoelectric focusing, 2- dimensional gel electrophoresis, chromatography (e . g.
- a "vector" is any means for the transfer of a nucleic acid according to the invention into a host cell.
- Preferred vectors are viral vectors, for example, retroviruses, herpes viruses, adenoviruses, and adeno- associated viruses.
- a gene encoding a protein or polypeptide domain fragment of the present invention is introduced in vivo, ex vivo, or in vitro using a viral vector or through direct introduction of DNA.
- Expression in targeted tissues can be effected by targeting the transgenic vector to specific cells, such as with a viral vector or a receptor ligand, or by using a tissue-specific promoter, or both.
- Viral vectors commonly used for in vivo or ex vivo targeting and therapy procedures are DNA-based vectors and retroviral vectors. Methods for constructing and using viral vectors are known in the art [see, e .g. , Miller and Ros an, BioTechniques 7:980-990 (1992)].
- the viral vectors are replication defective, that is, they are unable to replicate autonomously in the target cell.
- the- genome of the replication defective viral vectors which are used within the scope of the present invention lack at least one region which is necessary for the replication of the virus in the infected cell.
- These regions can either be eliminated (in whole or in part) , or be rendered nonfunctional by any technique known to a person skilled in the art. These techniques include the total removal, substitution (by other sequences, in particular by the inserted nucleic acid) , partial deletion or addition of one or more bases to an essential (for replication) region. Such techniques may be performed in vitro (on the isolated DNA) or in situ , using the techniques of genetic manipulation or by treatment with mutagenic agents. Preferably, the replication defective virus retains the sequences of its genome which are necessary for encapsulating the viral particles.
- DNA viral vectors include an attenuated or defective DNA virus, such as but not limited to herpes simplex virus (HSV) , papillomavirus, Epstein Barr virus (EBV) , adenovirus, adeno- associated virus (AAV), vaccinia virus, and the like.
- HSV herpes simplex virus
- EBV Epstein Barr virus
- AAV adeno-associated virus
- vaccinia virus vaccinia virus
- Defective viruses which entirely or almost entirely lack viral genes, are preferred. Defective virus is not replication competent after introduction into a cell, and thus does not lead to a productive viral infection.
- Use of defective viral vectors allows for administration to cells in a specific, localized area, without concern that the vector can infect other cells. Thus, a specific tissue can be specifically targeted.
- Examples of particular vectors include, but are not limited to, a defective herpes virus 1 (HSV1) vector [Kaplitt et al., Molec. Cell . Neurosci . 2:320- 330 (1991)], defective herpes virus vector lacking a gly ⁇ o- protein L gene [Patent Publication RD 371005 A] , or other defective herpes virus vectors [International Patent Publication No. WO 94/21807, published September 29, 1994; International Patent Publication No. WO 92/05263, published April 2, 1994]; an attenuated adenovirus vector, such as the vector described by Stratford-Perricaudet et al. [J " . Clin . Invest .
- HSV1 herpes virus 1
- an appropriate immunosuppressive treatment is employed in conjunction with the viral vector, e .g. , adenovirus vector, to avoid im uno- deactivation of the viral vector and transfected cells.
- the viral vector e .g. , adenovirus vector
- immunosuppressive cytokines such as interleukin-12 (IL-12) , interferon-g (IFN-g) , or anti-CD4 antibody
- IL-12 interleukin-12
- IFN-g interferon-g
- anti-CD4 antibody can be administered to block humoral or cellular immune responses to the viral vectors [see, e .g. , Wilson, Nature Medicine (1995)].
- the invention contemplates delivery of a vector that will express a therapeutically effective amount of TRAF2TR for gene therapy applications.
- therapeutically effective amount is used herein to mean an amount sufficient to reduce and most preferably prevent an immune response resulting in a clinically significant manifestation of a disease linked to TNF ⁇ binding.
- a therapeutically effective amount is sufficient to cause an improvement in a clinically significant condition in the host.
- the vector is an adenovirus vector.
- Adenoviruses are eukaryotic DNA viruses that can be modified to efficiently deliver a nucleic acid of the invention to a variety of cell types.
- Various serotypes of adenovirus exist. Of these serotypes, preference is given, within the scope of the present invention, to using type 2 or type 5 human adenoviruses (Ad 2 or Ad 5) or adenoviruses of animal origin (see W094/26914).
- Those adenoviruses of animal origin which can be used within the scope of the present invention include adenoviruses of canine, bovine, murine (example: Mavl, Beard et al.
- the adenovirus of animal origin is a canine adenovirus, more preferably a CAV2 adenovirus (e.g. Manhattan or A26/61 strain (ATCC VR-800) , for example).
- the replication defective adenoviral vectors of the invention comprise the ITR ⁇ , an encapsidation sequence and the nucleic acid of interest. Still more preferably, at least the El region of the adenoviral vector is nonfunctional. The deletion in the El region preferably extends from nucleotides 455 to 3329 in the sequence of the Ad5 adenovirus (Pvull-Bglll fragment) or 382 to 3446 (Hinfll- Sau3A fragment) .
- E3 region WO95/02697
- E2 region W094/28938
- E4 region W094/28152, W094/12649 and WO95/02697
- the adenoviral vector has a deletion in the El region (Ad 1.0). Examples of El-deleted adenoviruses are disclosed in EP 185,573, the contents of which are incorporated herein by reference. In another preferred embodiment, the adenoviral vector has a deletion in the El and E4 regions (Ad 3.0). Examples of El/E4-deleted adenoviruses are disclosed in W095/02697 and W096/22378, the contents of which are incorporated herein by reference. In still another preferred embodiment, the adenoviral vector has a deletion in the El region into which the E4 region and the nucleic acid sequence are inserted (see FR94 13355, the contents of which are incorporated herein by reference) .
- the replication defective recombinant adenoviruses according to the invention can be prepared by any technique known to the person skilled in the art (Levrero et al. , Gene 101 (1991) 195, EP 185 573; Graham, EMBO J. 3 (1984) 2917). In particular, they can be prepared by homologous recombination between an adenovirus and a plasmid which carries, inter alia, the DNA sequence of interest. The homologous recombination is effected following cotransfection of the adenovirus and plasmid into an appropriate cell line.
- the cell line which is employed should preferably (i) be transformable by the said elements, and (ii) contain the sequences which are able to complement the part of the genome of the replication defective adenovirus, preferably in integrated form in order to avoid the risks of recombination.
- Examples of cell lines which may be used are the human embryonic kidney cell line 293 (Graham et al., J. Gen . Virol . 36 (1977) 59) which contains the left-hand portion of the genome of an Ad5 adenovirus (12%) integrated into its genome, and cell lines which are able to complement the El and E4 functions, as described in applications W094/26914 and WO95/02697.
- Recombinant adenoviruses are recovered and purified using standard molecular biological techniques, which are well known to one of ordinary skill in the art.
- the adeno-associated viruses are DNA viruses of relatively small size which can integrate, in a stable and site-specific manner, into the genome of the cells which they infect. They are able to infect a wide spectrum of cells without inducing any effects on cellular growth, morphology or differentiation, and they do not appear to be involved in human pathologies.
- the AAV genome has been cloned, sequenced and characterised. It encompasses approximately 4700 bases and contains an inverted terminal repeat (ITR) region of approximately 145 bases at each end, which serves as an origin of replication for the virus .
- ITR inverted terminal repeat
- the remainder of the genome is divided into two essential regions which carry the encapsulation functions: the left-hand part of the genome, which contains the rep gene involved in viral replication and expression of the viral genes; and the right-hand part of the genome, which contains the cap gene encoding the capsid proteins of the virus .
- the replication defective recombinant AAVs according to the invention can be prepared by cotransfecting a plasmid containing the nucleic acid sequence of interest flanked by two AAV inverted terminal repeat (ITR) regions, and a plasmid carrying the AAV encapsulation genes (rep and cap genes) , into a cell line which is infected with a human helper virus (for example an adenovirus) .
- ITR inverted terminal repeat
- a human helper virus for example an adenovirus
- the invention also relates, therefore, to an AAV-derived recombinant virus whose genome encompasses a sequence encoding a nucleic acid encoding TRAF2TR or TRAF2TD flanked by the AAV ITRs.
- the invention also relates to a plasmid encompassing a sequence encoding a nucleic acid encoding TRAF2TR or TRAF2TD flanked by two ITRs from an AAV.
- a plasmid can be used as it is for transferring the nucleic acid sequence, with the plasmid, where appropriate, being incorporated into. a liposomal vector (pseudo-virus).
- the gene can be introduced in a retroviral vector, e . g. , as described in Anderson et al., U.S. Patent No. 5,399,346; Mann et al., 1983, Cell 33:153; Temin et al., U.S. Patent No. 4,650,764; Temin et al. , U.S. Patent No. 4,980,289; Markowitz et al., 1988, J. Virol . ' 62:1120; Temin et al., U.S. Patent No. 5,124,263; EP 453242, EP178220; Bernstein et al. Genet . Eng .
- the retroviruses are integrating viruses which infect dividing cells.
- the retrovirus genome includes two LTRs, an encapsulation sequence and three coding regions (gag, pol and env) .
- the gag , pol and env genes are generally deleted, in whole or in part, and replaced with a heterologous nucleic acid sequence of interest.
- These vectors can be constructed from different types of retrovirus, such as, HIV, MoMuLV (" urine Moloney leukaemia virus” MSV ("murine Moloney sarcoma virus”) , HaSV ("Harvey sarcoma virus”) ; SNV ("spleen necrosis virus”) ; RSV ("Rous sarcoma virus”) and Friend virus.
- Refective retroviral vectors are disclosed in WO95/02697.
- a plasmid which contains the LTRs, the encapsulation sequence and the coding sequence.
- This construct is used to transfect a packaging cell line, which cell line is able to supply in trans the retroviral functions which are deficient in the plasmid.
- the packaging cell lines are thus able to express the gag, pol and env genes.
- Such packaging cell lines have been described in the prior art, in particular the cell line PA317 (US 4,861,719); the PsiCRIP cell line (WO90/02806) and the GP+envAm-12 cell line (W089/07150) .
- the recombinant retroviral vectors can contain modifications within the LTRs for suppressing transcriptional activity as well as extensive encapsulation sequences which may include a part of the gag gene (Bender et al., J. Virol . 61 (1987) 1639). Recombinant retroviral vectors are purified by standard techniques known to those having ordinary skill in the art.
- Retroviral vectors can be constructed to function as infections particles or to undergo a single round of transfection.
- the virus is modified to retain all of its genes except for those responsible for oncogenic transformation properties, and to express the heterologous gene.
- Non-infectious viral vectors are prepared to destroy the viral packaging signal, but retain the structural genes required to package the co-introduced virus engineered to contain the heterologous gene and the packaging signals.
- the viral particles that are produced are not capable of producing additional virus. Targeted gene delivery is described in International Patent Publication WO 95/28494, published October 1995.
- a vector can be introduced in vivo by lipofection.
- liposomes for encapsulation and transfection of nucleic acids in vitro .
- Synthetic cationic lipids designed to limit the difficulties and dangers encountered with liposo e mediated transfection can be used to prepare liposomes for in vivo transfection of a gene encoding a marker [Feigner, et. al., Proc. Natl . Acad. Sci . U.S .A. 84:7413-7417 (1987); see Mackey, et al., Proc. Natl . Acad . Sci . U.S .A.
- cationic lipids may promote encapsulation of negatively charged nucleic acids, and also promote fusion with negatively charged cell membranes [Feigner and Ringold, Science 337:387-388 (1989)].
- Particularly useful lipid compounds and compositions for transfer of nucleic acids are described in International Patent Publications W095/18863 and W096/17823, and in U.S. Patent No. 5,459,127.
- the use of lipofection to introduce exogenous genes into the specific organs in vivo has certain practical advantages. Molecular targeting of liposomes to specific cells represents one area of benefit.
- Lipids may be chemically coupled to other molecules for the purpose of targeting [see Mackey, et. al., supra] .
- Targeted peptides e . g. , hormones or neurotransmitters, and proteins for example, antibodies, or non-peptide molecules could be coupled to liposomes chemically.
- a nucleic acid in vivo, for example, a cationic oligopeptide (e . g. , International Patent Publication W095/21931) , peptides derived from DNA binding proteins (e .g. , International Patent Publication W096/25508) , or a cationic polymer (e . g. , International Patent Publication W095/21931) .
- a cationic oligopeptide e . g. , International Patent Publication W095/21931
- peptides derived from DNA binding proteins e .g. , International Patent Publication W096/25508
- a cationic polymer e g. , International Patent Publication W095/21931
- naked DNA vectors for gene therapy can be introduced into the desired host cells by methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, use of a gene gun, or use of a DNA vector transporter [see, e. g. , Wu et al., J. Biol . Chem. 267:963-967 (1992); Wu and Wu, J. Biol . Chem .
- TRAF2TR overexpression blocks formation of NFKB and, as a result, no shift has been detected in TNF ⁇ stimulated cells (lanes 5 and 6) . These results suggested strong inhibition of NFKB formation as no shift band appeared in TNF or stimulated cells. Increased amount of NF KB binding activity is present in cells overexpressing full-length TRAF2 after stimulation with TNF (lane 4) .
- the present invention relates to the use of TRAF2TR and TRAF2TD and variants thereof to inhibit TNF ⁇ regulated pathways.
- the present invention relates to using the aforementioned to effectively block TNF ⁇ induced activation of several transcriptional factors, including NFKB and AP-1.
- TRAF2TR and TRAF2TD and variants thereof are useful in inhibiting TNF ⁇ signal transduction pathways in pathologies which involve overproduction of TNF and hyperactivation of NFKB dependent genes.
- a variety of diseases appear to involve TNF regulated pathways and the pathological basis for these diseases may involve overproduction of TNF o; or hyperactivation of NFKB dependent genes. These diseases can be treated using the TRAF2TR and TRAF2TD proteins and their variants.
- cardiovascular disease states including cardiac ischemia-reperfusion injury following myocardial infarction, coronary artery bypass surgery, cardiac transplantation or ischemia-reperfusion injury in the CNS following stroke; the progression and rupture of advanced coronary atherosclerotic plaques; the development and progression of congestive heart failure; and endothelial cell injury following balloon angioplasty.
- the present invention can be used to prevent apoptotic cell death of myocardial cells during heart failure or infarction and to avoid myocyte apoptosis.
- TRAF2TR or TRAF2TD or a variant thereof can be used to treat these diseases.
- the use of TRAF2TD is preferred, given its highly effective inhibition of TNF ⁇ regulated pathways.
- TRAF2TR of TRAF2TD can be used to treat other disease states where TNF is involved in the pathogenesis.
- diseases states include, but are not limited to, Crohn's disease, psoriasis, rheumatoid arthritis, graft versus host disease, inflammatory bowel disease, non- insulin dependent diabetes and neurodegenerative diseases (e.g., Parkinson's disease).
- TRAF2TD can be used in various assays to study the mechanisms of TRAF2-dependent signal transduction pathways.
- any vector, viral or non-viral, of the invention is preferably introduced in vivo in a pharmaceutically acceptable vehicle or carrier.
- pharmaceutically acceptable refers to molecular entities and compositions that are physiologically tolerable and do not typically produce a significant allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human.
- pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- carrier refers to a diluent, adjuvant, excipient, or vehicle with which the compound is administered.
- Such pharmaceutical carriers can be sterile liquids, for example, water and oils, including those of petroleum, animal, vegetable or synthetic origin, for example, peanut oil, soybean oil, mineral oil, sesame oil and the like.
- Water or aqueous solution saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W: Martin.
- the present invention provides methods of treatment which comprise the administration to a human or other animal of an effective amount of a composition of the invention.
- Effective amounts may vary, depending on the age, type and severity of the condition to be treated, body weight, desired duration of treatment, method of administration, and other parameters. Effective amounts are determined by a physician or other qualified medical professional.
- polypeptides according to the invention will be used most widely in doses of about 0.01 mg/kg to about 100 mg/kg of body weight per day. Preferred doses are about 0.1 mg/kg to about 50 mg/kg, with doses of about 1 mg/kg to about 10 mg/kg of body weight per day being more preferred.
- Recombinant viruses according to the invention are generally formulated and administered in the form of doses of between about 10 4 and about 10 14 pfu.
- doses of from about 10 5 to about 10 11 pfu are preferably used.
- the term "pfu" (“plaque-forming unit") corresponds to the infective power of a suspension of virions and is determined by infecting an appropriate cell culture and measuring the number of plaques formed. The techniques for determining the pfu titre of a viral solution are well documented in the prior art.
- TRAF2TR The TRAF2 splice variant, TRAF2TR, was isolated during RT PCR cloning (Current Protocols in Molecular Biology, 1996) of full length TRAF2 using mRNA from the human Osteosarcoma cell line (OSA1) . While using primers to produce full length TRAF2 cDNA, a smaller PCR product was observed. The fragment was excised and cloned independently.
- the 5' primer used for the RT PCR was ATG GCT GCA GCT AGC GTG ACC and the 3 ' primer was TTA TAG CCC TGT CAG GTC CAC.
- TRAF2TR tissue in the body
- tissue distribution of TRAF2TR RT-PCR was performed using a pair of primers outside of the spliced region.
- the primer on the 5' side of the deletion was: GGT GGA GAG CCT GCC GGC CG and the primer on the 3 ' side of the deletion was: GGC AGC CGA TGG CGT GGA ATC TG, and cDNA was generated using an oligo-dT primer from total RNA from different tissues.
- the cDNAs were separated by agar electrophoresis and transferred to nitrocellulose.
- Hybridization was performed using a specific probe from the TRAF2 sequence adjacent to the 5* end of the spliced region (5 « - GAT GCA CCT GGA AGG GGA CCC TGA AAT - 3') .
- This probe recognizes both non-spliced and spliced variants of TRAF2.
- the expected size for the non-spliced variant (TRAF2FL) is 373 bp and for the spliced variant (TRAF2TR) , 136 bp.
- Western blot analysis of lysates from various cell sources does not unequivocally detect the presence of the truncated TRAF2 variant at the level of expressed protein. It appears that the high level expression and production of the protein are limited developmentally, temporally, or controlled by an undefined mechanism, in a cell type dependent manner (e.g., B cell maturation in Germinal centers. ) .
- the deletion in the splice variant TRAF2TR retains an open reading frame and the 5 ' splice boundary matches canonical splice donor sequence.
- the deletion removes amino acid residues 123-201 of WT TRAF2, which encompasses the C- terminal portion of zinc finger domain 1 and all of zinc fingers 2 and 3 as well as the N-terminal residues of zinc finger 4 ( Figure 1) .
- This deletion more than likely disrupts the function of the zinc finger region, and is similar to the deletion created by Takeuchi et al., J. Biol. Chem. 271(33), 19935-19942 (1996) which they report exhibits a dominant negative effect on TNF induced NFKB activation.
- TRAF2TR cDNA was used as a template for PCR using a 5' primer encompassing nucleotides 262 to 280 of the TRAF2 full length coding sequence (ATGAGTTCGGCCTTCCCAGAT wherein the ATG codon was included to create a translation initiation site; the 3* primer was TTA TAG CCC TGT CAG GTC CAC.
- the resulting construct begins at amino acid 88 of full length TRAF2 and contains the 123 to 201 amino acid deletion of TRAF2TR, providing a "double deletion" construct.
- the construct was verified by DNA sequencing and cloned into a mammalian expression vector (pcDNA3, Invitrogen).
- TRAF2 cDNA 5 » - ATG GAG CAG AAA TTG ATT TCC GAG GAA GAT CTG AAC ATG GCT GCA GCT AGC GTG AC - 3 ' .
- the 3' PCR primer sequence was: 5' - TTAGAGCCCTGTCAGGTCCACAA - 3 ' .
- the PCR product was purified and cloned into the pcDNA3 vector using standard techniques.
- HeLa cells were transfected with pcDNA3-myc TRAF2 constructs using LipoFectamine (BRL, Gibco) reagent using the protocol provided by the reagent supplier.
- LipoFectamine (BRL, Gibco) reagent
- 4 ml of LipoFectamine were mixed with 1 mg of the DNA in 1 ml of
- Serum free DMEM (BRL) media and 3 x 10 5 cells in 60 mm Petri dish were incubated with that mixture overnight at 37°C at 5% C0 2 incubator. Twenty-four hours after transfection, cells were washed with phosphate buffered saline and lysed in 200 ml of an SDS electrophoresis sample buffer (SIGMA) . Ten ml of the lysate was separated by electrophoresis and Western blotted to a nitrocellulose membrane. Immunostaining and ECL (AMERSHAM) detection was performed according to the recommendations of the antibody supplier.
- SIGMA SDS electrophoresis sample buffer
- Anti-Myc antibodies (BABCO, Berkeley) detected proteins of the expected size in HeLa cells transfected with pcDNA- TRAF2FL and pcDNA-TRAF2TR (Fig. 6) .
- the results, shown in Figure 6, show the immunodetection of Myc-fused TRAF2FL and TRAF2TR in transfected HeLa cells.
- HeLa cells were transfected with expression constructs of TRAF-FL and TRAF-TR using lipofectamine (Gibco BFL) and after 24 hours cells were lysed in SDS loading buffer.
- Myc-fusion proteins were detected using anti- yc Ab and ECL detection system.
- an NFKB reporter system can be used, such as the system utilized and described in Takeuchi et al. , J. Biol .
- NFKB reporter activation system may be utilized in conjunction with appropriate cells, such as 293 cells, COS7 cells or HeLa cells.
- appropriate cells such as 293 cells, COS7 cells or HeLa cells.
- the cells would be transfected with different TRAF2 constructs, i.e., full length TRAF2, TRAF2TR and TRAF2TD, using the lipofectamine protocol discussed in Example 3.
- the effect of the different TRAF2 fragments on activation of a cotransfected NFKB reporter can then be compared to identify the most effective.. inhibitor species.
- TRAF2 constructs comprising full length TRAF2, TRAF2TR and TRAF2TD, as well as variants of TRAF2TR and TRAF2TD, can be transfected into 293 cells and the level of NFKB reporter activity monitored in the presence or absence of TNFor.
- the full-length TRAF2 would be expected to activate the cotransfe ⁇ ted NFKB reporter while the other TRAF2 constructs would be expected to block TNF a mediated activation of the NFKB reporter to varying degrees.
- Methods of ex vivo gene therapy are known in the art and generally involve four stages. In the first stage, cells of a given type are collected from the patient to be treated.
- the desired gene is transfected into the isolated cells.
- those cells which have taken up the desired gene are selected and grown.
- the cells are either infused or transplanted back into the patient where they express the desired gene and treat the disease.
- cells are obtained from the patient. The choice of cell is based on a number of factors, primarily the specific disease being treated. Blocking activation in these target cells would inhibit expression of pro-inflammatory cytokines and other, proteins involved in the inflammatory processes linked to manifestation of a cardiovascular disease state.
- the TRAF2TR or TRAF2TD or variant cDNA is cloned into an appropriate mammalian expression vector.
- an expression vector for example, pcDNA3 can be used.
- TRAF2TD given its enhanced ability to inhibit TNF ⁇ binding effects, is cloned into pcDNA3 or another suitable mammalian expression vector.
- the promoter utilized in the expression vector is chosen based on the type of cells being transfected and the desired method for regulating the level of expression. An appropriate promoter can be selected from among the promoters discussed supra .
- a promoter for example, 2MHC (see Palermo et al., Circ.
- TRAF2TD cDNA containing expression vector is then used in a liposome- mediated transfection utilizing lipofe ⁇ tamine (BRL, Gibco) reagent using the supplied protocol.
- BRL lipofe ⁇ tamine
- the second stage of the ex vivo treatment protocol utilizes a recombinant adenovirus vector system.
- the TRAF2TD cDNA is cloned into an adenovirus expression vector, for example, adeno- quest pQBI-AdBN/NB (QUANTUM Biotechnologies Inc.).
- the adenoviral transfer vector now containing the TRAF2TD cDNA is then co-transfected with adenovirus viral DNA into 293 cells.
- recombinant adenovirus containing the TRAF2TD cDNA is amplified and then purified using conventional CsCl step gradient purification, followed by dialysis using an appropriate buffer, for ⁇ example, phosphate buffered saline.
- the recombinant adenovirus is then used to transfect the target cells ex vivo .
- Recombinant viruses according to the invention are formulated and administered in the form of doses of between about 10 4 and about 10 14 pfu.
- doses of from about 10 s to about 10 11 pfu are preferably used.
- the term "pfu" (“plaque-forming unit") corresponds to the infective power of a suspension of virions and is determined by infecting an appropriate cell culture and measuring the number of plaques formed. The techniques for determining the pfu titre of a viral solution are well documented in the prior art.
- the transfected cells obtained by either lipofection or recombinant adenovirus infection are grown up in culture, selecting for those cells which have been transfected. Selection can be done in a variety of ways, including using a drug marker that provides for survival and growth of only those cells which have taken up the expression vector.
- the transfected cells are infused or transplanted directly into the patient, either near the tissue to be treated or at a location that allows the TRAF2TD cDNA product to be released into the circulation so as to interact with the cells subject to activation by TNF . binding.
- Delivery means include, but are not limited to, direct injection, or delivery by catheter, infusion pump or stent.
- EXAMPLE 6 In Vivo Treatment Methods
- Methods of in vivo treatment can utilize a variety of different viral vectors, including adenovirus vectors, adeno- asso ⁇ iated virus vectors, and retrovirus vectors.
- an adenovirus system is used to introduce the TRAF2TR or TRAF2TD cDNA into host cells.
- the TRAF2TD cDNA is cloned into an adenovirus transfer vector, for example, the adeno-Quest pQBI-AdBN/NB (QUANTUM
- the promoter utilized in the expression vector is chosen based on the type of cells being transfected and the desired method for regulating the level of expression.
- An appropriate promoter can be selected from among the promoters discussed supra .
- adenoviral transfer vector containing the desired promoter and the TRAF2TD cDNA would be then co-transfected with adenovirus viral DNA into 293 cells.
- recombinant adenovirus containing the TRAF2TD cDNA is amplified and then purified using conventional CsCl step gradient purification, followed by dialysis using an appropriate buffer, for example, phosphate buffered saline.
- viral particle titer Prior to transfecting cells in vivo, viral particle titer is determined and experiments in vitro are performed to determine the level of protein expression and the tissue culture infectious dose (TCID50) .
- Recombinant viruses according to the invention are formulated and administered in the form of doses of between about lO 4 and about 10 14 pfu. In the case of AAVs and adenoviruses, doses of from about 10 s to about 10 11 pfu are preferably used.
- the term "pfu" (“plaque- forming unit”) corresponds to the infective power of a suspension of virions and is determined by infecting an appropriate cell culture and measuring the number of plaques formed. The techniques for determining the pfu titre of a viral solution are well documented in the prior art.
- the recombinant adenovirus would then be used to infect the patient at a dose of between about 10 6 to about 10 ⁇ pfu.
- the recombinant adenovirus may be introduced by inhalation, by infusion, by surgical implantation, by direct injection or delivery by catheter, infusion pump or stent.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Diabetes (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Zoology (AREA)
- Rheumatology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Neurosurgery (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Neurology (AREA)
- Biotechnology (AREA)
- Physical Education & Sports Medicine (AREA)
- Physics & Mathematics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cell Biology (AREA)
- Toxicology (AREA)
- Hospice & Palliative Care (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Psychiatry (AREA)
Abstract
Priority Applications (10)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/018,030 US6998475B1 (en) | 1999-04-30 | 2000-04-06 | Variants of traf2 which act as an inhibitor of tnf-alpha (tnfα) signaling pathway |
| KR1020017013914A KR20020012194A (ko) | 1999-04-30 | 2000-04-06 | TNF-알파(TNF α) 시그널링 경로의 억제제로서작용하는 TRAF2의 변이체 |
| AU40768/00A AU4076800A (en) | 1999-04-30 | 2000-04-06 | Variants of TRAF2 which act as an inhibitor of TNF-alpha (TNF-alpha) signaling pathway |
| IL14624100A IL146241A0 (en) | 1999-04-30 | 2000-04-06 | VARIANTS OF TRAF2 WHICH ACT AS AN INHIBITOR OF TNF-ALPHA (TNF α) SIGNALING PATHWAY |
| EP00920190A EP1180140A4 (fr) | 1999-04-30 | 2000-04-06 | Variantes de traf2 agissant comme inhibiteurs de la voie de signalisation tnf-alpha |
| MXPA01011107A MXPA01011107A (es) | 1999-04-30 | 2000-04-06 | Variantes de traf2 que actuan como un inhibidor de la via de senalizacion fnt-alfa (fnt ). |
| CA002372803A CA2372803A1 (fr) | 1999-04-30 | 2000-04-06 | Variantes de traf2 agissant comme inhibiteurs de la voie de signalisation tnf-alpha (tnf .alpha.) |
| JP2000615761A JP2002542826A (ja) | 1999-04-30 | 2000-04-06 | 腫瘍壊死因子α(TNF−α)シグナル伝達経路のインヒビターとして働くTRAF2の改変体 |
| AU2005203749A AU2005203749A1 (en) | 1999-04-30 | 2005-08-17 | Variants of Traf2 which act as an inhibitor of TNF-ALPHA (TNF alpha) signaling pathway |
| US11/294,246 US7332593B2 (en) | 1999-04-30 | 2005-12-05 | Variants of TRAF2 which act as an inhibitor of TNF-alpha (TNFα) signaling pathway |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13194099P | 1999-04-30 | 1999-04-30 | |
| US60/131,940 | 1999-04-30 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10018030 A-371-Of-International | 2000-04-06 | ||
| US11/294,246 Continuation US7332593B2 (en) | 1999-04-30 | 2005-12-05 | Variants of TRAF2 which act as an inhibitor of TNF-alpha (TNFα) signaling pathway |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2000066737A1 WO2000066737A1 (fr) | 2000-11-09 |
| WO2000066737A9 true WO2000066737A9 (fr) | 2002-08-29 |
Family
ID=22451697
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/009178 WO2000066737A1 (fr) | 1999-04-30 | 2000-04-06 | VARIANTES DE TRAF2 AGISSANT COMME INHIBITEURS DE LA VOIE DE SIGNALISATION TNF-ALPHA (TNF α) |
Country Status (10)
| Country | Link |
|---|---|
| EP (1) | EP1180140A4 (fr) |
| JP (1) | JP2002542826A (fr) |
| KR (1) | KR20020012194A (fr) |
| CN (1) | CN1309830C (fr) |
| AU (2) | AU4076800A (fr) |
| CA (1) | CA2372803A1 (fr) |
| HU (1) | HUP0200946A3 (fr) |
| IL (1) | IL146241A0 (fr) |
| MX (1) | MXPA01011107A (fr) |
| WO (1) | WO2000066737A1 (fr) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB0003458D0 (en) * | 2000-02-16 | 2000-04-05 | Secr Defence Brit | Rubber structure & method of making the same |
| WO2002098458A1 (fr) * | 2001-06-07 | 2002-12-12 | Medvet Science Pty Ltd | Sphingosine kinase interagissant avec traf2 et modulant l'activite cellulaire induite par le facteur de necrose tumorale |
| BRPI0415765A (pt) * | 2003-10-24 | 2006-12-26 | Medtronic Inc | técnicas para tratar desordens neurológicas pela atenuação da produção de mediadores pró-inflamatórios |
| WO2022152856A1 (fr) * | 2021-01-15 | 2022-07-21 | Fundació Hospital Universitari Vall D'hebron - Institut De Recerca | Procédés et compositions pour le traitement de l'ischémie chez un sujet |
| CN116262120A (zh) * | 2021-12-13 | 2023-06-16 | 上海中医药大学 | 特异性结合TRAF2的试剂在制备Wnt通路抑制剂中的应用 |
| CN114672550B (zh) * | 2022-05-05 | 2023-11-17 | 青岛大学 | 一种动脉粥样硬化生物标志物及其抑制剂和应用 |
-
2000
- 2000-04-06 CN CNB008082790A patent/CN1309830C/zh not_active Expired - Fee Related
- 2000-04-06 IL IL14624100A patent/IL146241A0/xx unknown
- 2000-04-06 HU HU0200946A patent/HUP0200946A3/hu unknown
- 2000-04-06 AU AU40768/00A patent/AU4076800A/en not_active Abandoned
- 2000-04-06 WO PCT/US2000/009178 patent/WO2000066737A1/fr not_active Application Discontinuation
- 2000-04-06 EP EP00920190A patent/EP1180140A4/fr not_active Withdrawn
- 2000-04-06 MX MXPA01011107A patent/MXPA01011107A/es unknown
- 2000-04-06 KR KR1020017013914A patent/KR20020012194A/ko not_active Withdrawn
- 2000-04-06 CA CA002372803A patent/CA2372803A1/fr not_active Abandoned
- 2000-04-06 JP JP2000615761A patent/JP2002542826A/ja not_active Withdrawn
-
2005
- 2005-08-17 AU AU2005203749A patent/AU2005203749A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| AU4076800A (en) | 2000-11-17 |
| JP2002542826A (ja) | 2002-12-17 |
| AU2005203749A1 (en) | 2005-09-15 |
| MXPA01011107A (es) | 2002-08-09 |
| EP1180140A1 (fr) | 2002-02-20 |
| WO2000066737A1 (fr) | 2000-11-09 |
| KR20020012194A (ko) | 2002-02-15 |
| CN1309830C (zh) | 2007-04-11 |
| HUP0200946A3 (en) | 2005-06-28 |
| EP1180140A4 (fr) | 2004-08-25 |
| IL146241A0 (en) | 2002-07-25 |
| CA2372803A1 (fr) | 2000-11-09 |
| CN1353754A (zh) | 2002-06-12 |
| HUP0200946A2 (hu) | 2002-07-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2000508522A (ja) | アポトーシス誘導分子ii | |
| KR100700908B1 (ko) | Akt 핵산, 폴리펩타이드 및 이의 약제학적 조성물 | |
| AU767010B2 (en) | Isoforms of human calcium sensing receptor | |
| WO2000066737A9 (fr) | VARIANTES DE TRAF2 AGISSANT COMME INHIBITEURS DE LA VOIE DE SIGNALISATION TNF-ALPHA (TNF α) | |
| US7332593B2 (en) | Variants of TRAF2 which act as an inhibitor of TNF-alpha (TNFα) signaling pathway | |
| US8642739B2 (en) | Nuclear factor κB inducing factor | |
| HUP0201663A2 (en) | Induction of vascular endothelial growth factor (vegf) by the serine/threonine protein kinase akt | |
| JP4548938B2 (ja) | Mekk1(セリントレオニンキナーゼ)相互作用性fha(フォークヘッド結合ドメイン)タンパク質1(mif1) | |
| CA2404688C (fr) | Facteur inducteur du facteur nucleaire .kappa.b | |
| AU2001247931B2 (en) | Nuclear factor kB inducing factor | |
| AU2001247931A1 (en) | Nuclear factor kB inducing factor | |
| ZA200207767B (en) | Nuclear factor kB inducing factor. | |
| AU2003262315A1 (en) | Isoforms of Human Calcium Sensing Receptor | |
| HK1053312B (en) | Nuclear factor kb inducing factor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 00808279.0 Country of ref document: CN |
|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| ENP | Entry into the national phase |
Ref document number: 2000 615761 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2372803 Country of ref document: CA Ref document number: 2372803 Country of ref document: CA Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2001/011107 Country of ref document: MX Ref document number: 1020017013914 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2000920190 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020017013914 Country of ref document: KR |
|
| WWP | Wipo information: published in national office |
Ref document number: 2000920190 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| AK | Designated states |
Kind code of ref document: C2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: C2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| COP | Corrected version of pamphlet |
Free format text: PAGES 1/13-13/13, DRAWINGS, REPLACED BY NEW PAGES 1/13-13/13; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 10018030 Country of ref document: US |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1020017013914 Country of ref document: KR |